Prolog and Natural-Language Analysis

DicrtaL Eprtion

Prolog and Natural-Language Analysis
Fernando C. N. Pereira and Stuart M. Shieber

Microtome Publishing
Brookline, Massachusetts

©F. C. N. Pereira and S. M. Shieber 1987
Millenial reissue©F. C. N. Pereira and S. M. Shieber 2002

This work is the digital edition of Pereira and ShiebéP®log and Natural-Language Analysis
(revision of October 5, 2005). The work is also available date in a hardbound edition (ISBN
0-9719777-0-4), printed on acid-free paper with librargding and including all appendices and
two indices, from Microtome’s web site aw.mtome . com and other booksellers.

This work is covered by copyright, which restricts the used you may make of the work. All rights
are reserved by the copyright holder. The copyright holéeeby gives you permission to reproduce
and distribute the digital edition of this work, in whole ar part, in digital or physical formats,
under the following restrictions: You may not charge for iespof the work, with the exception of
recovery of direct costs of reproduction for distributidrtiee work to students in courses. You may
not modify the work, including elimination or modificatiorf any embedded notifications. You
must include title, author, copyright information, andstticense in any reproductions; this latter
requirement may be discharged by reproducing copies ofdhipnt pages from the work’s front
matter.

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Contents

Preface (¢
1 Introduction 1
1.1 PUIrPOSE e e
1.2 Logic Programmingand Language e . 1
1.3 ProgrammingInProlog e 3
14 OVEIVIEW ot e e e e
1.5 BibliographicNotes 4
2 Database Prolog 7
2.1 Databasesand Queries e e 7
2.1.1 ASimpleDatabase e
2.1.2 Queryingthe Database 8
2.2 Extendingthe QuerylLanguage e e 8
2.3 ThelogicofProlog. 11
2.4 The Operation of Database Prolog, 13
241 Proof TreesandTraces v v i ittt 15
2.5 Recursive Predicate Definitionso 16
2.5.1 \VariableRenaming L 18
252 Termination 91
2.6 Problem Section: Semantic Networks L. 20
2.7 Context-Free Grammars i e e 22
2.7.1 Axiomatizing Context-FreeGrammars.c.. ... 25
2.7.2 Context-Free GrammarsinProlog 25
2.7.3 PrologasParser. 26
2.8 Problem Section: Grammars 28
2.8.1 A Syntactic Analyzer for DatabaseProlog 28
2.8.2 Extending CFGs with Intersection 29
2.8.3 Transition Networks 30
2.9 BibliographicNotes 32
3 Pure Prolog 35
3.1 Prolog NotationRevisited oo 35
3.2 TermsandUnification. 36
3.3 Functionsin Prolog and Other Languages 38
3.3.1 Alternate Notationsfor Functors 40

Contents

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

3.4 LiStS . . o 14
3.4.1 ListProcessing e 42
3.4.2 Representing String Positionswith Lists 48

3.5 The Logic and Operation of Prolog Revisited 48

3.5.1 Substitutions49
3.5.2 Unification e 49
3.5.3 Resolution e 50
3.5.4 Prolog’sproofprocedure e 50
3.5.,5 Semanticsof Prolog 51
3.6 Problem Section: TermsandLists 51
3.7 Definite Clause Grammars i i e e e e 54
3.7.1 TreesforSimpleSentences. 57
3.7.2 EmbeddingPrologCallsinDCGs 58
3.8 ProblemSection: DCGS e e e 61
3.8.1 The Syntax of First-OrderLogic 61
3.8.2 Extending SyntacticCoverage e 62
3.9 BibliographicNotes e 68
Further Topics in Natural-Language Analysis 71
4.1 Semantic Interpretation e 71
411 ThelambdaCalculus 2 7

4.1.2 A Simple Compositional Semantics 73
4.1.3 Encoding the Semantic SysteminProlog 74

4.1.4 Partial Execution 76
4.1.5 QuantifiedNounPhrases 77
4.1.6 QuantifierScope 18
4.2 Extending the Syntactic Coverage iiiier v 89
421 AuxiliaryVerbs 89
4,22 Yes-NOQUESLIONS i e 109
4.2.3 Filler-Gap Dependencies o 92
424 RelativeClauses e 94
425 WH-Questions e 95
4.2.6 Semantics of Filler-Gap Dependencies 96
427 GapThreading e 98
4.3 Problem Section: Grammar Extensions e ew L 101
4.3.1 NounComplements 110
4.3.2 NounPostmodifiers. 102
4.3.3 MoreFiller-Gap Constructions 102
4.3.4 CategorialGrammars 103
4.4 BibliographicNotes e e 105
Full Prolog 107
5.1 Metalogical Facilities e 107
5.1.1 Thecallpredicate 107
5.1.2 Thecutcommand. 810
5.1.3 The Negation-as-Failure Operatoro ... 112
5.1.4 Thesetofpredicate 113

5.1.5 Theassertcommand 114

Contents vii

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

5.1.6 Other Extralogical Predicates 115
5.2 ASimple Dialogue Program 116
5.2.1 OverallOperation. i 117
5.22 Parsing e e 117
5.2.3 LFEConversion 811
5.2.4 ConstructingAReply 119
5.3 Userinteraction e 120
5.3.1 Simple InpyOutputCommands 121
5.3.2 ASimpleUserinterface 121
5.4 BibliographicNotes e 122
6 Interpreters 125
6.1 ProloginProlog. 126
6.1.1 Absorption 712
6.1.2 KeepingProofTrees 127
6.1.3 UnitClauses e 912
6.2 Problem Section: Prolog Interpreters 130
6.2.1 Consecutively Bounded Depth-FirstSearch 130
6.2.2 AninterpreterForCut 131
6.3 InterpretersforDCGS o e 131
6.3.1 DCGinProlog e 132
6.32 DCGINDCG 132
6.3.3 AnInterpreter for Filler-GapDCGs 133
6.4 Partial Executionand Compilers e 135
6.4.1 Partial ExecutionRevisited e e 136
6.4.2 Compiling by Partial Execution 138
6.4.3 GeneralityoftheMethod 140
6.5 Bottom-UpParsing 141
6.5.1 Linking e 143
6.5.2 Compiling DCGs into Left-CornerParsers. 144
6.6 TabularParsing e 146
6.6.1 Indficiencies of Backtracking 146
6.6.2 Tabular Parsinginthe Abstract 147
6.6.3 Top-DownTabularParsingu. 148
6.6.4 Subsumption 015
6.6.5 The Top-Down Tabular Parserin Action 152
6.6.6 General TabularParsing 154
6.6.7 Earley Deduction and Earley’s CF Parsing Algorithm..... 162
6.6.8 Limitationsof TabularParsers 162
6.7 Problem Section: DCG Interpreters and Compilers 163
6.8 BibliographicNotes 164
A Listing of Sample Programs 167
A.l1 ANoteonProgrammingStyle 167
A2 TheTALKProgram e e e e e 168
A3 TheDCG Compiler 178

Bibliography 185

viii Contents

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Preface

This digital edition of Pereira and ShiebePsolog and Natural-Language Analy-
sisis distributed at no charge by Microtome Publishing undecenise describ

in the front matter and at the web site. A hardbound editi®@B{ 0-9719777
0-4), printed on acid-free paper with library binding andluding all appen
dices and two indices (and without these inline interrup)o is available fro
www .mtome . com and other booksellers.

Over the last few years, we have led a series of tutorials &as$es introducing the program-
ming language Prolog by way of example programs that appiytite problem of natural-language
analysis and processing. This volume began as the notegdtoral taught by one of the authors,
Pereira, at the Twenty-Third Annual Meeting of the Assaoiafor Computational Linguistics in
Chicago during July of 1985. During the fall of 1986, we orgad a course at Stanford University
on the same subject for which the original notes were exndée impetus for organizing and
expanding these various lecture notes into a more cohexentame from our colleagues at the
Center for the Study of Language and Information (CSLI), eredproject was made possible by a
gift from the System Development Foundation.

Along the way, we were aided by a number of our colleagues.HRaault was kind enough to
allow us to pursue work on this project even when our othgrassibilities at SRI International were
now and then overlooked. David Israel was instrumental atpring the occasional grant under
which the book was written and without which it would not hédeen; we must also thank other
members of the CSLI administration—in particular, Jon BaeyJohn Perry, and Brian Smith—for
their support and facilitation of this project.

The text was improved considerably by tHeoets of several colleagues who volunteered to read
drafts of the book. John Bear, Mary Dalrymple, Robert KelReter Ludlow, Richard O’Keefe,
Ray Perrault, and Ivan Sag all provided invaluable commeuatsections and improvements. We
attempted to use as much of their advice as time permittedorlyewish that we had enough time
to accomodate more of the changes that we now realize aredeed

Editorial assistance from Dikran Karagueuzian of CSLI amadekie Maslak of SRI was also
invaluable. Their forts are especially appreciated given thé §tine constraints under which they
were forced to work. The project was further expedited byeffarts of Emma Pease, Lynn Ruggles
and Nancy Etchemendy, who aided us in the formatting of ttué pespecially the figures and index.

Many drafts of the manuscript and the final camera-ready eggre typeset with the help of
Leslie Lamport'sATeX document preparation system and Donald KnutlgX fypesetting system
on which it is based. We thank them for creating and makinglyravailable those fine tools.

Finally, we want to thank Ana Pereira and Linda Sdfmdio bore the brunt of our idiosyncratic
behavior during the genesis of these notes. This book isdedi to them.

iX

Contents

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Preface to Millennial Reissue

This reissue oProlog and Natural-Language Analysigries only slightly from the original edi-

tion. The figures have been reworked. Thanks to Peter Araiftsiothe setting of the new figures.
A number of primarily typographical errata from the first temh have been fixed in this reissue.
Thanks to Cecile Balkanski, Mark Johnson, Karen Lochbauam Mauer, John O’'Neil, Ted Nes-
son, and Wheeler Ruml for pointing out errors in the previedsion. Errors or misfeatures of a

more substantial sort were not treated in the present ogvighny remaining problems in the text
are the authors’.

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Chapter 1

Introduction

This digital edition of Pereira and ShiebePslog and Natural-Language Anal
sisis distributed at no charge by Microtome Publishing undécenise describe
in the front matter and at the web site. A hardbound editi®@B{ 0-9719777
0-4), printed on acid-free paper with library binding andliding all appen
dices and two indices (and without these inline interrup)ois available fro
www . mtome . comand other booksellers.

L

1.1 Purpose

This book is an introduction to elementary computatiomgjuiistics from the point of view of logic
programming. The connection between computational Istgas and logic programming has both
formal and utilitarian aspects. On the formal side, we sgdlore the restricted logical language of
definite clauseas a means of expressing linguistic analyses and représestaOn the utilitarian
side, we shall introduce the logic-programming languagsdg; whose backbone is the definite-
clause formalism, as a tool for implementing the basic camepts of natural-language-processing
systems.

The main goal of the book is to enable the reader to acquirguiakly as possible, a working
understanding of basic computational linguistic and Iqggiegramming concepts. To achieve this
goal, the book is organized around specific concepts andqmyging techniques, with examples
supported by working programs. Most of the problems invgk@gramming and also supplement
the material in the main text. Although we have emphasizextemental rather than analytic or
comparative questions, all concepts and techniques abeeesgiven rigorous, if informal, theoret-
ical justification.

1.2 Logic Programming and Language

One of the main goals of the development of symbolic logictiesen to capture the notion of logical
consequence with formal, mechanical, means. If the camditior a certain class of problems can
be formalized within a suitable logic as a set of premises, ila problem to be solved can be
stated as a sentence in the logic, then a solution might bedfby constructing a formal proof of
the problem statement from the premises.

2 Chapter 1. Introduction

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

For instance, in the linguistic case the premises mightigdeoeonstraints on the grammaticality
of classes of utterances, and the problems to solve woule tevgeneral form “there is sonae
such thata is an analysis (or interpretation) of the grammatical afbeeu.” A constructiveproof
of this statement would not only show that an analgsixists but also find actual values far

A constructive proof procedure that not only creates praofisalso builds values for the un-
knowns in the problem statement can thus be seen as a compatakevice for determining those
unknowns. From this perspective, the premises can be segmpi@gram, the problem statement
as an invocation of the program with certain input values antpput unknowns, and a proof as a
computation from the program. This is the basic intuitiohibd logic programming.

However, it is not enough to have some sound and completd sales of inference and some
procedure to apply them systematically to have a logic @ogning system. To be satisfactory
as a computation device, a proof procedure should not leaaf possibilities uncheckedé¢arch
completenegsthat is the procedure should terminate without a proof @mo proof exists. We do
not want our programs to terminate with no answer if therenis @xcept possibly for running out
of computational resources such as computer memory). &unibre, a set of premises has many
consequences that are definitely irrelevant to the proofypfen consequence. The proof procedure
should begoal directedn that derivations of irrelevant consequences are avoiddado not want
the computations of a program to include subcomputaticeitsth not at least potentially contribute
in some way to the program’s output.

In fact, search completeness and goal directedness aralifeylt to achieve in general, but
become more feasible in weaker logical languages. The @molhen becomes one of finding a
good compromise between expressiveness of the logicalégegand the constraints of sound and
efficient computation. The development of logic programmimgehed from the discovery of a
reasonable compromisgefinite clausesand its partial implementation in Prolog, the first praatic
logic programming language.

Almost from its origin, the development of logic programigimas been closely tied to the search
for computational formalisms for expressing syntactic aathantic analyses of natural-language
sentences. One of the main purposes in developing Prolotpweasate a language in which phrase-
structure and semantic-interpretation rules for a natarsjuage question-answering system could
be easily expressed.

Phrase-structure rules for a language state how phraseagenf types combine to form larger
phrases in the language. For example, a (simplistic) pkstgeture rule for declarative sentences in
English might state that a declarative sentence consistaofin phrase (the subject of the sentence)
followed by a verb phrase (the predicate of the sentence&h 8Bues have a very simple expression
in first-order logic:

(Yu, v, WINP(u) A VP(V) A condu, v, w) = S(w)

whereNP represents the class of noun phras#the class of verb phraseSthe class of sentences,
andconcholds of any stringsi, v andw such thatwv is u followed byv, that is, the concatenation of
u andv. This expression in first-order logic thus states that anynrmhraser and verb phrasecan
be concatenated to form a declarative sentemeeuv. The termlogic grammarhas come to refer
to such uses of logic to formalize grammatical rules.

The above formula is an example of a definite clause. We shaltteat many important classes
of linguistic rules and constraints can be put in this gelferan, which states that any objects sat-
isfying certain constraints (properties or relationshadso satisfy some other constraint (property
or relationship). The fact that linguistic rules can be puthis format is the basis for the usefulness
of definite clauses in language analysis. This fact has ngttbeoretical but also practical impor-
tance, in that linguistic rules encoded as definite clauaae run directly by Prolog, providing an
efficient and direct computational realization of grammarsiatetpretation rules.

1.3. Programming In Prolog 3

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

1.3 Programming In Prolog

Logic programming languages in general, and Prolog in @i, difer from conventional pro-
gramming languages (such as Pascal or Fortran) in sevepatiamt ways. First of all, Prolog can
be thought of as a largelyeclarativelanguage; that is, a Prolog program can be viewed as stating
whatis computed, independent of a particular method for comjmntaPascal, on the other hand,
is procedural in that what a Pascal program computes is definable onlyrninstef how it performs
the computatiort.Of course, Prolog also has a procedural interpretatiorsgsa particular method
for computing the relations which a program can be viewedez$adatively stating. Furthermore,
certain “impure” portions of the Prolog language defeatlg#glarative interpretation. But Prolog,
as a first step toward a logic programming language, can tea gxtent be seen as a declarative
language.

Second, Prolog programs are structured in termelationswhereas traditional languages for
the most part are structured in termsfahctions The notions of calling a function, returning
a value, and so forth are foreign to Prolog. Instead, Prolqmesses relations among entities.
Function calls correspond to queries as to whether a p&aticelation holds or not and under what
conditions. This dterence has tremendous ramifications. For instance, it nieansriablesplay
a completely dterent role in Prolog than they do in conventional languages.

From this relational structure, it follows that Prolog pragns arenondeterministicsince several
elements can be in a particular relation to a given elememicaBse conventional languages are
geared toward functions, that is, relations in which onenelet is uniquely defined in terms of the
others, computation proceedsterministicallyin such languages.

These three properties of Prolog make it quit&edent from other programming languages.
Consequently, a éfierent way of thinking about programs and programming is s&a® in using
Prolog. Learning a new programming language can often beddiy analogy with previously
learned languages. But Prolog might be most easily leargédrioring previous experience with
other programming languages and trying to absorb the Pg#etalt from first principles.

Unfortunately, learning a language in this way requires ynfustrative examples of the lan-
guage and much detailed explanation about how they work andthey were derived. Since the
goal of this book is to concentrate on natural-languagegssiag applications, we must often forego
such detailed analysis. Therefore, as part of a first cour&ralog, it is probably best to supplement
the material here with one of the texts discussed in thedmbdiphic notes below.

All the particulars of the interaction with a Prolog systdmattare used in the present work are
those of the Edinburgh family of Prolog systems, and whem wgithout qualification, the term
“Prolog” means any system of that family.

1.4 Overview

The Prolog language is presented in this book through a drselées of sublanguages. Chapter 2
presentslatabase Prologa limited subset of Prolog that can express relationshépsden named
individuals and constraints between those relationshifye. then describe how phrase-structure
rules can be represented in this subset. Database Proligigled in Chapter 3 foure Prolog the
largest subset of Prolog that can be viewed as a logic pragiaglanguage. This extension allows
us to represent more complex kinds of linguistic rules amg@airticular, thelefinite-clause grammar
formalism. Techniques for linguistic analysis in definifeuse grammars are developed further in

1This is not to say that Pascal can have no denotational st only an operational semantics. Rather, any denota-
tional semantics must make explicit reference to the statgeaccomputation as encoded, for instance, in an envirohmen

4 Chapter 1. Introduction

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Chapter 4, where issues of syntactic coverage and sematetipiietation are discussed. Extralogical
extensions to the pure subset of Prolog lead to the full Brialoguage, which is presented in Chapter
5. These facilities are used to develop a simple naturgtlage question answering system which
demonstrates the application of many of the techniqueslajesd in earlier chapters. Finally, in
Chapter 6 we explore the metalevel programming capalsilitié’rolog, showing how to implement
logic-programming language and logic-grammar interpse¢ahibiting diferent control strategies
from that provided directly by Prolog.

Throughout the book we have included exercises and problefxercises are interspersed
throughout the text and are intended to help readers vérdfy tinderstanding of the concepts cov-
ered. Problems, collected into separate problem sectéxtsnd the material in the book and are
appropriate for assignments in a course based on this teghould be noted that problems vary
widely in difficulty; instructors should take this variation into account

Given the orientation of the book, we limited the discussifrissues of a more general na-
ture, such as comparisons with other computational linguischniques or formal mathematical
results. Three areas stand out among the omissions. Fesipwmot compare the logic program-
ming approach with other approaches to natural-languageepsing, in particular the closely re-
lated unification-based grammar formalisms. Second, wead@resent or compare the plethora
of grammar formalisms based on logic programming. Finally,do not address formal-language-
theoretic issues of generative power and computationaptmdity for the formalisms and analysis
mechanisms we present.

One of the major ingfliciencies remaining in the text is a lack of linguistic sophaion and
coverage evinced by the analyses we use. The reader shdutimiothat such naiveté inheres in
Prolog as a tool for natural-language analysis; the bilbéippic notes at the end of the chapters often
cite work with more convincing analyses.

1.5 Bibliographic Notes

In these bibliographic notes we give both the original searor our material and other works that
elaborate or supplement topics discussed in this book. 8&és the case, the original source for a
topic may no longer be the best place to learn about it. Urddsswise specified, the most recent
reference we give for a topic, and in particular a recenbieok, is to be preferred to other sources
in a first approach to a topic.

Prerequisites

This book presupposes some acquaintance with elementéipnsdrom logic, formal-language
theory, computer science and linguistics.

The textbookMathematical Methods for Linguistidsy Partee, ter Meulen and Wall (1987)
covers much of the background material we require in logianfl-language theory and semantics
(concepts such as first-order logic, quantifier scope, sidarand intension).

For a more computation-oriented introduction to logic aeduttion, Robinson’s bookogic:
Form and Functior{1979) covers in detail all the concepts from logic and awttad theorem prov-
ing used in this book. Galliersogic for Computer Sciendd986) contains a mathematically more
demanding coverage of the same material. Kowalgldgic for Problem Solving1980) gives an
informal introduction to the use of logic in a logic prograimg setting for representing compu-
tational problems. The example problems are mostly takem fartificial intelligence applications
including simple examples of syntactic analysis by dedunctiFinally, Automated Reasoning: In-
troduction and Applicationby Wos, Overbeek, Lusk and Boyle (1984) gives a comprehersid

1.5. Bibliographic Notes 5

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

readable discussion of many automated-deduction methutishair applications to knowledge-
representation tasks.

Most of the concepts we use from formal-language theory hedretical computer science
(automata, context-free grammars, etc.) can be found inciédipand Ullman’sintroduction to
Automata Theory, Languages and Computait®79) or in Harrison'$ntroduction to Formal Lan-
guage Theory1978). Aho and Ullman'’s encyclopeditieory of Parsing, Translation and Compil-
ing (1972) covers specific parsing algorithms not included @nttio preceding references.

Many of the basic concepts and terminology of modern [gdive]asyntactic theory are used
informally in this book. For an introduction to them, the fiitwo chapters of Baker'troduction
to Generative-Transformational Syntéb978) should be gficient. For readers interested in further
backgroundin the generative grammar tradition, the teoiogy of which has now become standard
in modern syntax and has occasionally crept into this téet rémainder of Baker's book and the
clear and elegant arguments of the volume by Soames andRent®yntactic Argumentation and
the Structure of EnglisfiLl979) are good sources.

Winograd'sLanguage as a Cognitive Process. Volume |: Sy(i®#83) gives a computationally
oriented introduction to some of the basic concepts fromnaddanguage syntax (e.g., parse tree,
labeled bracketing, noun phrase, relative clause) usddsmook, in addition to much other related
material. Chapter 3 is particularly relevant.

Although this book is intended to be self-contained in itsezage of Prolog and basic logic-
programming concepts, it could be usefully supplementeati @iProlog textbook. Sterling and
Shapiro’sThe Art of Prolog(1986) is particularly suitable since it amplifies many of toncepts
used here with further discussion, examples, and exerdiSesept for divergences in some minor
typographical conventions, the dialect of Prolog used &t Hook is compatible with the one used
here.

Historical Material

The basic ideas of logic programming emerged in the late 486@ early 1970s from work on
automated deduction. Proof procedures based on Robinmssoeition principle(1965) operate by
building values for unknowns that make a problem statemeohaequence of the given premises.
Green (1968) observed that resolution proof procedurekldbus in principle be used for com-
putation. Resolution on its own is not afBaient basis for logic programming, because resolution
proof procedures may not beflaiently goal-directed. Thus, Green’s observations ligkiompu-
tation to deduction (1968) had ndéfective realization until the development of more goal-otéel
linear resolutionproof procedures, in particular Kowalski and Kuehner's 8salution (1971). This
development allowed Kowalski (1974a) to suggest a gengaldoach to goal-directed deductive
computation based on appropriate control mechanisms $otuton theorem provers and the fur-
ther specialization of SL resolution to Horn clauses, amecthrresponding procedural interpretation
of Horn clauses, was first described in principle by Kowa({8&i74a; 1974b).

Even the SL resolution procedure and related theorem-pgorriethods were notfiécient
enough for practical computation, mainly because they bape with the full generality of first-
order logic, in particular disjunctive conclusions. Fantprogress required the radical step of delib-
erately weakening the language to one that could be impledavith dficiency comparable to that
of procedural languages. This step was mainly due to Colmeerand his colleagues at Marseille
in the early 1970s. Their work proceeded in parallel withd{@minteraction with) the theoretical
developments from the automated theorem-proving commungpired by his earlier Q-systems, a
tree-matching phrase-structure grammar formalism (Crdoer, 1970), Colmerauer started devel-
oping a language that could at the same time be used for lgecaraalysis and for implementing

6 Chapter 1. Introduction

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

deductive question-answering mechanisms. It eventualbpime clear that a particular kind of lin-
ear resolution restricted to definite clauses had just tite goal-directness andfeiency, and also
enough expressive power for linguistic rules and some itapbaspects of the question-answering
problem. Their approach was first described as a tool forrablanguage processing applications
(Colmerauer et al., 1973). The resulting deductive systpplemented with a few other com-
putational devices, was the first Prolog system, known asréble Prolog”. The first detailed
description of Prolog was the language manual for the Méedeiolog interpreter (Roussel, 1975).

As noted above, Prolog was originally developed for natlanajuage processing. Besides the
original application (Colmerauer et al., 1973), other wanfluential work includes systems by
Colmerauer (1982; 1978), Pasero (1973) and Dahl (1981)yMtrer natural-language-processing
systems and techniques based on logic programming havelséen developed, which we will refer
to when the relevant topics are discussed.

The collectionReadings in Natural Language Processif@grosz et al., 1986) reprints papers
covering a wide variety of topics in natural-language pssagg, including some of the papers re-
ferred to in this book. In the bibliography, we use the origipublication data, but we also indicate
when the paper has been reprinted in that collection.

Besides natural-language processing, logic programmidgPaolog have been used in many
other application areas, particularly in artificial intglince. For an idea of the current areas of
application, the reader is directed to the collection eflitg van Caneghem and Warren (1986) and
the extensive logic-programming bibliography prepare®bipin and Lecot (1985).

Since the original implementation in Marseille, Prolog lerpentation techniques, including
compilation and various space-saving devices, have psegeeto the point that Prolog is today at
least comparable with other symbolic-processing langsiagiech asise, for a variety of problems
areas, in particular natural-language processing (Watrah, 1977; Warren, 1979; Warren, 1983).

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Chapter 2

Database Prolog: A Prolog Subset

This digital edition of Pereira and ShiebePsolog and Natural-Language Analy-
sisis distributed at no charge by Microtome Publishing undecenise describ

in the front matter and at the web site. A hardbound editi®@B{ 0-9719777
0-4), printed on acid-free paper with library binding andliding all appen
dices and two indices (and without these inline interrup)o is available fro
www . mtome . comand other booksellers.

2.1 Databases and Queries

We will start by seeing how simple tables of information carelipressed in Prolog. This may seem
an odd way to start discussing a programming language (textsay, Pascal, start by discussing
numbers and expressions), but it is revealing of the nathiferalog as a language fateclara-
tive information, whether that information be simple relatibips between individuals or complex
constraints between types of individuals.

2.1.1 A Simple Database

Recall that Prolog programs are written in a subset of firdeplogic (FOL). Like FOL, the lan-
guage includesonstant symbolsaming entities angredicate symbolsaming relations among the
entities. Our first examples will use just this much Prologation, which is actually only useful to
encode the type of information one might find in a relatiorstbtbase. For this reason, we call this
subsetiatabase Prolog

In Prolog, both predicate and constant symbols are writsetoleens starting with a lower-case
alphabetic character. Predication is notated in the nowasglfor logical languages using parenthe-
ses surrounding the arguments following the predicateetyeforming anatomic formula With
this much notation we can already state some simple infeomat Prolog. For instance, a simple
database of professors and the books and computer prograynksave written might be expressed
by the following Prolog program:

Program 2.1
wrote(terry, shrdlu).

wrote(bill, lunar).

8 Chapter 2. Database Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

wrote(roger, sam).

wrote(gottlob, begriffsschrift).
wrote(bertrand, principia).
wrote(alfred, principia).

book(begriffsschrift).
book (principia).

program(lunar).
program(sam) .
program(shrdlu).

Each line in this program is elauseformed from a single atomic formula and ending with a
period. As the clauses in this program have only a single @ttormula, they are referred to asit
clauses Later, we will see that clauses with several atomic forraalee also allowed. In Program
2.1, an atomic formularote (X, Y) is intended to mean that pers&iwrote entityY, book (X) is
intended to mean thatis a book, angrogram(X) is intended to mean thatis a program. Thus
the first clause in the program states the fact that Terryasgraibru, and the last clause, thatroru
is a program.

2.1.2 Querying the Database

Now that we have given some facts to the Prolog system as & s&tamms expressed as clauses
(which is really all that a Prolog program is) we can answegsgjions about the information by
having Prolog try to prove theorems from the axioms. We ds ltiyi prefixing agoal G with the
Prolog symbol for implication, the:-" symbol, thereby forming thguery:- G. In this way we
are asking Prolog “Does anything in the axioms imply an amsa/eur question?”

For example, here is how the queries “Did Terry weitépLu?” and “IsPrincipia a program?”

are written?

:- wrote(terry, shrdlu).
yes

:- program(principia).
no

It should be observed that the reply to the second query dutdadicate that Principia is not
a program” is true, but rather that Prolog could not proRéricipiais a program” from the axioms
in Program 2.1. This subtle distinction is the basis of muwgid programming research on what
assumptions about a database warrant the conclusionRlisfédlse in the database” froni*is not
provable from the database” and we will have more to say abouSection 5.1.3.

2.2 Extending the Query Language

Such limited potential for querying a Prolog program woufditself hardly constitute a useful
programming language. Prolog extends this potential gjindbie use o¥ariables complex queries
andrules

1Throughout this text, user’s input is typeset inywewriter font, the Prolog system’s answer is typeset ilanted
typewriter font.

2.2. Extending the Query Language 9

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Variables

We can ask open-ended questions of Prolog by using varigblpce of constants in a query.
To distinguish variables from constants, Prolog uses tekbat begin with upper-case letters for
variables. We can ask whethemyonewrotesuroLu with the following query:

:- wrote(Who, shrdlu).
yes

Since there exists amssignmento the variables in the query that makes it a consequenceeof th
program axioms (namely, the assignment in whitto = terry,? Prolog replies yes”. Such
assignments to variables are also cabedlings

Of course, we are usually interested not only in whether suchssignment exists but also in
what it looks like. To request Prolog to indicate what assignt led to the proof of the goal, we
simply use ?-" instead of “: -” to introduce the goal. For instance,

?- wrote(Who, shrdlu).
Who = terry
yes

The assignment is printed, along with thees” that means that a solution was found.

If there are several fferent ways to assign values to variables that make the gatahsent a
consequence of the program, the Prolog execution mechamibrgenerate alternative bindings
to the goal variables. Prolog prints one such solution amne tand then waits for a one-character
command: a semicolon {*) to produce the next solution, or a newline to stop genegagolutions
for the query. For example, the query “Who wr&encipia?” has two satisfying assignments:

?- wrote(Who, principia).
Who = bertrand ;

Who = alfred ;

no

Notice that the final Prolog reply is6” meaning that after this second assignment, no more solu-
tions could be found.

Complex Queries

More complex queries can be constructed from goals congisfi multiple conditions, interpreted
conjunctively, by separating the conditions by commas)(“ For example, suppose we define an
author as a person who has written a book. Then, if we wantgcoder who the authors are
according to the database, we might ask the conjunctiveydiféhat persorPerson is such that
there is a booBook andPerson wroteBook?”, which can be phrased as a Prolog query as

?- book(Book), wrote(Person, Book).
Person = gottlob, Book = begriffsschrift ;
Person = bertrand, Book = principia ;
Person = alfred, Book = principia ;

no

°Theslanted typewriter font will be used for assignments as well as Prolog output to esipahe fact that they
are computer-generated structures.

10 Chapter 2. Database Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Rules

The query above demonstrates that the property of beingthoras implicit in the given database.
The utility of the database can be increased by making tlupesty explicit through the addition
of a unary predicatauthor corresponding to this property. But this predicate is be$ined not

in terms of an exhaustive list of unit clauses—as previoesligates have been—but rather as a
general rule for determining whether the property of beingathor holds. In fact, the conjunctive
guery above gives just such a rule. A per®mrson is an author just in the case that the goal
book (Book), wrote(Person, Book) holds. The Prolog implication symbol:=” (read “if”)
allows the encoding of this general rule.

author (Person) :-
book (Book) ,
wrote(Person, Book).

This clause can be rea®érson is an author if there is a bodook andPerson wrote Book,” or,
more simply, “an author is a writer of a book.” Because clausech as this one are composed of
several atomic formulas, they are referred tmasunit clausesThe left-hand side of the clause is
often called théheadof the clause, the right-hand side thedy. Some people take the anatomical
analogy a step further, referring to tlhe operator itself as theeckof the clause.

Theauthor clause defines a simple property. However, multiplaceicglatcan be defined in
this way as well. Consider the relation of a per&earson being the author of a bodkook. This
author_of relation can be axiomatized similarly.

author_of(Person, Book) :-
book (Book) ,
wrote(Person, Book).

Exercise 2.1 Write a Prolog clause that defines a programmer as a personwrbte a program.

Exercise 2.2 Consider the following augmentation of the sample database

professor(terry).
professor(roger).
professor(bertrand).
professor(gottlob).

concerns(shrdlu, blocks).
concerns(lunar, rocks).
concerns(sam, stories).

concerns(principia, logic).
concerns(principia, mathematics).
concerns (begriffsschrift, logic).

Write a Prolog clause that defines a logician as a professar wiote a book concerning logic.

2.3. The Logic of Prolog 11

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

2.3 The Logic of Prolog

We have alluded to the relationship between database Paolddirst-order logical languages. In
this section we describe this relationship in more detihoaigh still at an informal level.

First-order logic (FOL) is a logical language that inclugeedicate and function symbols and
constants, from which are formedomic formulagepresenting primitive propositions. An atomic
formula is an expression of the forpfty, ..., t), wherep is a predicate symbol drity k applied
toterms t. Aterm is aconstantavariable or acompound term (ty, .. .,tn), wheref is a function
symbol of aritym and thet; are terms. Following standard practice, we will use lefterg, r, etc.
and upper case letters for predicate symbols and Ieftgrsh, etc. for function symbols. Variables
will be denoted by (possibly subscriptex)y, z,etc. A term without variables is calledground
term For the nonce, we will ignore the role of function symbolsl@ompound terms in FOL,
returning to them when we discuss the relation between F@LfihProlog in the next chapter.

The well-formed formulas of FOL are defined inductivelysstay with the atomic formulas and
combining simpler formulas into larger formulas with optera from some dfficiently rich set, e.g.,
conjunction @), disjunction /), negation €), implication (), and universalY) and existentiald])
guantification. If¢ andy are well-formed formulas andis a variableg A y (¢ andy), ¢ v (¢ or
W), =¢ (note), ¢ = ¢ (¢ impliesy) (YX)¢ (for everyx, ¢) and @X)¢ (there is anx such thatp), with
extra parenthesization to avoid ambiguity if necessagyyaall-formed formulas. Both inx)¢ and
(Ax)¢, the formulag is the scopeof the quantifier, anc is the variableboundby the quantifier.
Closedwell-formed formulas are those in which every variable goence is within the scope of a
guantifier binding that variable.

Many important automated deduction methods, and in pdatichose from which Prolog is
derived, do not operate on general FOL formulas, but onlyoomélas inclausal form(clauses$.
A formula is in clausal form if it is a disjunction diterals, where a literal is an atomic formula
or the negation of an atomic formula. All variables in theguligtion are universally quantified by
guantifiers whose scope includes the whole disjunctionsTawlause can be written in the form

PovPiv:---vaNgVv-=aNiv---

The P; are positive literals; the:N; are negative literals. Note that we have |efit the quantifiers,
under the convention that all variables are quantified usally at the outermost level unless spec-
ified otherwise. The usefulness of clausal form stems fragrfalet that any closed formulacan
be mechanically transformed into a conjunction of cladesich thatp is inconsistent if and only
if £ is. Notice that in generat and® are not equivalent, because the transformation into clausa
form may require the introduction of auxiliary functionsremove existential quantifiers (so-called
Skolem functions® However, as we will see below, the intended use of clausal fsiin proofs by
contradiction, so preservation of inconsistency is all wed

Using deMorgan’s law

-P v =Qifand only if =(P A Q)

and the definition of implication in terms of negation andutistion, i.e.,
P= Qifandonly if =P v Q .
we can reexpress clauses as a single implication

(NoANgA--)= (PoVPLV--))

3Thus even a formula without function symbols may be tramséat into a clause with function symbols, outside the
database subset we have been considering. But since tret ®ijust a stopping4® point to full Prolog, and the arguments
are meant to be indicative only, we will ignore this subtlety

12 Chapter 2. Database Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

The left-hand side of the implication is igstecedentthe right-hand side itsonsequentHence-
forth, we will refer to theN; andP; as the literals composing the clause, although, strictyakmg,
the negative literals in the clause are of the fofM, rather thar\;.

By expressing a clause as an implication as explained abowesee that a clause states that
at least one of the atomic formulas in the consequent holdmener all the atomic formulas in
the antecedent hold. In particular, if a clause containsegative literals, it will have an empty
antecedent when written as an implication. Therefore antgamtecedent should be interpreted as
standing for truth: The clause states that under all camtlitat least one of the atomic formulas in
the consequent holds. Conversely, if a clause has no pobitvals, it asserts that at least one of the
formulas in its antecedent is false, that is, the conjumatibthe atomic formulas in the antecedent
is false. When written as an implication, such a clause hangsty consequent. An implication
is equivalent to the negation of its antecedent providetlith@onsequent is false. Thus an empty
consequent corresponds to falsity. Finally, émepty clausgwith empty antecedent and consequent,
corresponds to the implicatidrue = false which is equivalent tdalse

Theorem-proving in first-order logic—and hence clausaif&iOL—is a computationally ¢i-
cult task and an area of active research. As we indicateddtid®el .2, for computational feasibility
Prolog is not based on full clausal form, but on a strictl\slespressive subsédprn clauseswhich
are clauses witht most one positive literalThus there are only three types of Horn clauses:

e Unit clauseswith one positive literal, no negative literals, i.e., ogttormPq (or, equivalently,
= Po)

e Nonunit clauses:with one positive literal, one or more negative literalg,,i.of the form
Po VvV =Ng VvV =N Vv - (or, equivalentlyNg A N1 A - -+ = Po).

e Negative clauseswith no positive literals, one or more negative literalg,,i.of the form
=Ng V =Nz Vv --- (or, equivalentlyNg A Np A - - - =).

The first two types of Horn clauses are collectively refetedsdefinite clausebecause they have
exactly one positive literal—a single definite conclusiorite implication—unlike general clauses
with their potentially disjunctive, indefinite, conseqtien

Each type of Horn clause plays df@rent role in an axiomatization of a particular problem.tUni
clauses, of the formRy, assert the truth of their consequents. We might call sumiseldacts

A nonunit clause states that its consequent is true if itecattent is true. Such clauses thus
serve as generallesby which the consequent can be determined to hold.

Finally, a negative clause

NoAN{A--- =

has the equivalent form
“(No ANgA--")

That is, a negative clause denies the truth of its antecebiegfative clauses can be seeryasries
as to under what conditions their antecedent is true, byal@aing reasoning. Suppose we have a
set of facts and rule® (aprogram and a conjunction

No ANy A--- . (21)

We want to determine values for the variables in (2.1) thdterina consequence @. In other
words, we want a constructive proof, frgf of

3%, X)(No ANp A--) . (2.2)

2.4. The Operation of Database Prolog 13

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

One way of attempting to prove (2.2) is by contradictiont taby showing that the conjunction
of the clauses i? and the negation of (2.2) is inconsistent. From the incéascy of the conjunc-
tion, we can infer that (2.2) follows fro® because” itself, being a set of definite clauses, cannot
be inconsistent on its own.

Now, the negation of (2.2) can be putin the form

(VXo, .-, X)=(No AN A ---) (2.3)
which is just another notation for the negative clause
NoAN{A--- . (24)

A constructive proof of the inconsistency of (2.3) withwill provide a counterexample for the
universal statement (2.3). It will yield valugs . . ., v for the variables, . . ., X such that

PA=(NoANLA--) (2.5)

with eachv; substituted foi; is false.

The proof of falsity comes about because we are proving isistency of (2.3) withP. The
actual values for the variables follows from the fact that pioof is constructive. It is easy to see
from the proof of the falsity of (2.5) that (2.1) under thatreasubstitution of values for variables is
a consequence @f. AssumeP is true. Then-(No A N1 A ---) must be false, and therefore (2.1) true,
under the given values for variables. This concludes thsteoctive proof of the original existential
query (2.2) from the program. Thus (2.4) can be seen as a query about the truth of its algete
(2.1) relative to the program.

This method of proving an existential statement is cal&fdtation because the proof proceeds
by refuting the negation of the statement.

As we have seen, Prolog programs follow this paradigm exdeticts and rules, presented with
the Prolog implication and conjunction operators™ and “,” respectively, are queried using a
negative clause. The onlyfterence is that the Prolag operator puts its antecedent and consequent
“backwards”, that is; - corresponds te=, so thatP = Qis written asQ :- P andP = is written
as:- P. A Prolog proof of a goal includes an assignment of valuesatéables in the goal which
makes it a consequence of the program. It becomes appdrent,why the notation:- G” was
chosen for queries. We are merely presenting the goal statetm Prolog directly in its negated
form.

Exercise 2.3 (For the logically inclined.) Recall that the discussionoal assumed that any set of
definite clauses is consistent. Why is this so?

2.4 The Operation of Database Prolog

Intuitively, our definition of, for instanceuthor_of in terms of subsidiary predicates seems correct
from the logical standpoint just outlined. But how does th@®y system make use of this predicate?
Suppose we ask Prolog for the writings of Bertrand RusseH thie following query:

?- author_of(bertrand, What).
What = principia
yes

14 Chapter 2. Database Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

How does Prolog determine that a correct assignment tdys#iis goal (i.e., disprove its negation)
is What = principia? What is theproceduralinterpretation of Horn clauses that Prolog uses in
actually executinga goal? In this section we describe the execution of a Prodag ipformally,
returning to a more precise discussion of the execution am@sh, and its relation to the logical
basis for Prolog through a technique caltedolution in Section 3.5.

To execute a goal, Prolog searches forward from the beginoirthe program for the first
clause whose head matches the goal. We will have more to sayt #tis matching process,
called unification when we further discuss the theory of Prolog in Section &&r. the time be-
ing, think of two literals matching if there exists an assigmt to the variables in them under
which they become identical. For instance, the litarathor_of (bertrand, What) matches the
literal author_of(Person, Book) under the assignmeRerson = bertrand, Book = What,
because if the literals are modified by replacing the vaesbi the assignment with their assigned
value, both literals becommuthor_of (bertrand, What).

If a match is found, the selected clausadtivated The matching assignment is applied to both
the goal and a copy of the clause by replacing variables wiighr binding value, e.g., replacing
Person with bertrand andBook with What. The literals in the body of the instantiated clause (if
any) are then executed in turn, from left to right. If at anydithe system fails to find a match for
a goal, itbacktracksthat is, it rejects the most recently activated clausepinglany substitutions
made by applying the assignment engendered by the match teetid of the clause. Next it recon-
siders the original goal that activated the rejected claarse tries to find another clause whose head
also matches the goal. When finding alternative clausespdPedways works from the top of the
program to the bottom, trying earlier clauses first.

We will trace through the operation of the system for the tings of Russell” example. We
begin by executing the goalithor_of (bertrand, What). Prolog finds a clause in its database
whose head matches the goal. In this case, the only matclasingecis

author_of(Person, Book) :-
book (Book) ,
wrote(Person, Book).

The head of this clause matches the goal under the bindegson = bertrand, Book =
what as described above. Under these bindings, the body of teebetomesook (What),
wrote(bertrand, What). Prolog activates the clause taking this conjunction onisagew goal,
executing the conjuncts one by one, working from the lefhright.

Executingbook (What) requires finding a clause whose head matches it. But in tlsis tteere
are two such clauses, namely the unit clausssk (begriffsschrift) andbook(principia).
When faced with several clauses to choose from, Prolog @sotte textually earliest one that
has not been considered in satisfying this goal; in this,casae have been considered, so the
first matching claus@ook (begriffsschrift) is chosen, which matches the gdalok (What)
under the bindingwhat = begriffsschrift. Under this binding, the second conjunct is
wrote(bertrand, begriffsschrift), and this becomes the next goal.

However, no clause head matches this goal, so the goal fRitelog backtracks to its last
choice among alternative clauses. In this case, the cha@sebetween the two unit clauses match-
ing book(What). This time, in satisfying the goal, the next matching claissehosen, namely
book(principia); the second conjunct then becomeste(bertrand, principia). This
goal matches the identical unit clause in the database.

Thus we have satisfied all of the conjuncts in the antecedght@uthor_of clause, thereby
satisfying the original goal itself. Perusing the bindirigat were necessary to satisfy the goal,

2.4. The Operation of Database Prolog 15

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

author of (bertrand, principia)

book (principia) wrote (bertrand, principia)

Figure 2.1: A proof tree

we note that the variablighat in the original goal was bound tarincipia; the bindingwhat =
principiais therefore reported.

2.4.1 Proof Trees and Traces

Often it is useful to have a method for summarizing the exenudf a goal. We describe two
such methods here. The first one, fhv@of tree describes the literals that were proved in the
course of the proof of the main goal and the dependenciesketiihem. For the “writings of Rus-
sell” example, the main goal proved, under the satisfyirgigasnent, wagauthor_of (bertrand,
principia). It depended on the proofs of two subsidiary literals, ngmsbok (principia)
andwrote(bertrand, principia). These literals were proved primitively with no dependent
literals. Thus the proof tree for this example is as giveniguFe 2.1.

This proof tree makes explicit the steps in the executionrofdg that led to a successful proof
of the goal under a given assignment. However, it abstracsy drom the parts of the execution
that led down blind alleys, not becoming part of the final firad®second method of summarizing
Prolog executions, thieace, is useful when this higher level of detail is desired.

The particular tracing method we shall use is calledhive mode(Byrd, 1980), since it models
a predicate as a box with certagorts through which the computation passes. The box model
underlies the tracing and debugging facilities of most Bdigh Prolog systems.

In a box-model trace, each step the system takes—whether tihdo recursive proving of a
literal, the activating of a clause to prove it, or the sulbget success or failure of the subproof—is
sequentially listed using the following general format:

M dp G

Each goalG is given agoal number iwhich uniquely identifies it throughout the execution. As
the goal progresses through the execution, trace linestivitlgiven goal number show the state
of instantiation of the goal at flerent points. Theecursion depthis given asd. The main goal
has recursion depth 0, its subgoals, recursion depth ¥,ghbgoals, 2, and so forthTrace lines
correspond to dierent kinds of steps in the execution of a Prolog query. Jdre name pspecifies
the type of step in the execution that the trace line recorfdi& execution of a literal is started at
a Call port corresponding to the activation of the first matchireuske. When the proof using this
clause is successful, a trace line with the port n&xieis listed. If the first clause activated does
not yield a successful proof,Redoport line is added for each later clause that is invoked. I§ina
if all clauses fail to provide a proof for the given goakail port trace line is used.

4We will also sometimes use indentation to reflect the deptie@irsion of the execution in order to aid readability.

16 Chapter 2. Database Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

The following trace of the “writings of Russell” example malycidate the Prolog trace facility.
Note especially the changing instantiation of the variallaring the trace. The Prolog tracing
facility is invoked with the literal trace”.

7- trace.
Debug mode switched on.
yes

?- author_of(bertrand, What).
(1) 0 Call : author_of(bertrand,What)

(2) 1 Call : book(What)

(2) 1 Exit : book(begriffsschrift)

(3) 1 Call : wrote (bertrand, begriffsschrift)
(3) 1 Fail : wrote(bertrand,begriffsschrift)
(2) 1 Redo : book(begriffsschrift)

(2) 1 Exit : book(principia)

(4) 1 Call : wrote(bertrand,principia)

(4) 1 Exit : wrote(bertrand,principia)

(1) 0 Exit : author_of(bertrand,principia)

What = principia
yes

Note that the exit lines leading to the final proof containghee information as a proof tree for the
goal.

Not only does the trace make explicit the ordering in which pimoof tree was traversed by
Prolog, it also shows all the blind alleys that Prolog trieefdse finding an actual proof. These
two phenomena are related. For example, if the second brafnitte proof tree (corresponding
to the second literal in the clause definiagthor_of) had been tried first, the only satisfying
assignment for it would have bedwok = principia. Under this assignment, the first clause
becomedook (principia), which is immediately proved from the database. Thus nallditeys
are tried. This behavior would be engendered by the follgvaiiternative definition ofiuthor_of:

author_of(Person, Book) :-
wrote(Person, Book),
book (Book) .

This example shows that although the ordering of literalthiwia clause does nottact the
logical meaning of the clause as a definition of a relationait have far-reachingtects in terms
of the control flow of the program. That is, although Prolog ba viewed as a subset of a logical
language, we cannot forget that it is still a programmingylaage, and issues of control are still
important.

2.5 Recursive Predicate Definitions
The relations discussed abovewsthor, logician, and so forth—are defined directly in terms

of other relations, which ultimately are defined in termshaf briginal database. However, it is not
possible to give such definitions for relations that invaitains of relationships of arbitrary lengths.

2.5. Recursive Predicate Definitions 17

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

To define such relations, we need to utseursivedefinitions in which a predicate is defined (possibly

indirectly) in terms of itself.
As a simple illustration of the need for recursive definispnonsider the following database,

which encodes a portion of the family tree of Bertrand Russel

parent (katherine, bertrand). parent(amberley, bertrand).

parent (katherine, frank). parent (amberley, frank).
parent (katherine, rachel). parent (amberley, rachel).
parent(dora, kate). parent (bertrand, kate).
parent(dora, john). parent (bertrand, john).
parent (peter, conrad). parent (bertrand, conrad).
female(katherine). male(amberley).

female(rachel). male(frank).

female(dora). male(bertrand) .

female(peter). male(conrad).

female(kate). male(john).

Here a literaparent (X, Y) is intended to mean th&tis a parent of. The information in this
database is conveniently factored amonggheent, male, andfemale predicates so that there is
no duplication as there would be if the same information vexqgressed in terms of, for instance,
father, mother, male andfemale.

Exercise 2.4 Write Prolog clauses defininfather, grandmother, uncle, cousin, etc., in terms
of the primitivegarent, male, andfemale.

Suppose we wanted to define a notion of ancestor. Intuitigefjersorold is an ancestor of
a persor¥oung if there is some chain of parent relationships of arbitrangth connectingld to
Young. We could start by writing clauses like:

ancestor(0ld, Young) :-
parent(0ld, Young).

ancestor(0ld, Young) :-
parent (01d, Middle),
parent (Middle, Young).

ancestor(0ld, Young) :-
parent (0ld, Middle),
parent (Middle, Middle2),
parent(Middle2, Young).

Clearly, no finite axiomatization in this style is possiblestead, we definencestor recursively.
At the base, one’s closest ancestors are parents. All otteistors are parents of closer ancestors.
Stating this in Prolog, we have

Program 2.2
ancestor(0ld,Young) :-

parent (0ld,Young) .
ancestor(0ld,Young) :-

18 Chapter 2. Database Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

parent (0l1d,Middle),
ancestor (Middle,Young) .

The execution of the quergncestor(katherine, kate), under this definition ofincestor,
proceeds as follows:

?- ancestor(katherine, kate).
(1) 0 Call: ancestor(katherine, kate)

(2) 1 Call: parent (katherine, kate)

(2) 1 Fail: parent (katherine, kate)

(3) 1 Call: parent (katherine, Middle_3)
(3) 1 Exit: parent(katherine, bertrand)
(4) 1 Call: ancestor (bertrand, kate)
(5) 2 Call: parent (bertrand, kate)
(5) 2 Exit: parent (bertrand, kate)
(4) 1 Exit: ancestor (bertrand, kate)
(1) 0 Exit: ancestor(katherine, kate)

yes

The reader should confirm that this definition of ancestok&appropriately by following the trace
and executing similar queries.

Exercise 2.5What is the proof tree corresponding to this execution?

The reader with some knowledge of model theory for first-ololgic might be wondering about
our use of recursive predicate definitions like the one ablovgeneral, the transitive closure of a bi-
nary relation is nofirst-order definabléBoolos and J&rey, 1980). That is, given a binary predicate
p there is no first-order formul@(x, y) with free variables< andy such that for all interpretations
of predicate symbols, constants and free variali€s,y) holds in the interpretation if and only if
the values fox andy in the interpretation are in the transitive closure of tHatien interpreting the
predicatep. Thus, the above definition, and others like it used in theokthis book, seem not to
really define what they are supposed to define. The solutititonundrum is that definite-clause
programs must be interpreted with a specific model in mirgllgast Herbrand moddlvan Emden
and Kowalski, 1976; Lloyd, 1984) for the program, rathemtivaterms of arbitrary first-order mod-
els. In the intended model, a program like the above indefdatethe transitive closure of the base
relation.

2.5.1 Variable Renaming

In previous examples we have ignored the issue of the scoparible names. We have been
implicitly assuming that several occurrences of variablil the same spelling all occurring in one
clause are to be considered instances of the same varidhls, if the first clause of Program 2.2,
the two occurrences dfoung are intended to notate the same variable. When one is bouaml in
assignment, they both are. However, these two occurremzbtha two in the second clause are
not intended to notate the same variable. For instance,einrffte above, each of these rules is
used once in the proof, the first under the assignmetit = bertrand, Young = kate and the
second under the assignmeéntl = katherine, Middle = bertrand, Young = kate. These
two assignments are incompatible, assignirffedént values t@1d. Yet their use in the execution
of the query is not inconsistent because they arose frdfardnt invocations of clauses. Thus we

2.5. Recursive Predicate Definitions 19

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

need some way of distinguishing variables iffelient clauses—or fierent invocations of the same
clause—that happen to be spelled the same.

One way of doing so would be to require that the programmeaydvwuse dierent variables
in each clause. But not only would this be cumbersome, it diaalt solve the problem for dif-
ferent invocations for the same clause, which recursivenifieins make possible. Therefore, each
invocation of a given clause in a proof conceptually recgittee renaming of the variables in the
clause to new variables. In this book, we will represent drgables in a clause invocation resulting
from renaming byx_i wherex is the textual name of the original variable arid the number of the
invocation. For instance, in the execution trace abovethine clause invocation has a variable that
is an instance of the variabiid dd1e from the second clause of Program 2.2. It is therefore liated
Middle_3in the trace. Thus variables fromfffirent invocations are guaranteed to be unique.

In practice, Prolog systems use less obvious (but mi@i@ent) variable-renaming mechanisms.
Typically, new variables are internally represented asnaiex into Prolog’s working storage, and
are displayed with the notationi” wherei encodes the index.

2.5.2 Termination

In ancestor we find our first example of a predicate whose definition hastodrefully designed
to avoid nontermination. The idea of the definitionadkestor given above is that in the recursive
second clause the proof procedure will have to follow a djgegarent link in the family tree or
graph before recurring to follow other links. As the familsagh is finite and acyclic, at some point
we will run out ofparent links to explore and the procedure will terminate.

In contrast, the following definition is possibly more natidsut causes nontermination problems
for the Prolog interpreter.

Program 2.3
ancestor(0ld,Young) :-
ancestor(0ld,Middle),
ancestor(Middle,Young) .
ancestor(0ld,Young) :-
parent (0ld,Young) .

The definition can be read “an ancestor is a parent or an amoaSan ancestor” and includes
directly an instance of thigansitivity axiom schema which would be expressed in FOL as

R(x,¥) AR(Y,2) = R(X, 2

However, when Prolog tries to prowacestor (X, z) for any termsx andz, it falls into an infinite
loop, because the first subgoal it attempts to prowmisstor (x,Y_1), which in turn leads to an
attempt to provencestor(x,Y_2) and so on.

If the two clauses are interchanged, we have

ancestor(0ld,Young) :-
parent (0l1d,Young) .

ancestor(0ld,Young) :-
ancestor(0ld,Middle),
ancestor(Middle,Young) .

In this case, Prolog will first try to usgarent facts and therefore produce a solution in finite
time if one exists. However, if we ask for more solutions bgkieacking, there will come a point

20 Chapter 2. Database Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

when all theparent facts will have been used in all possible ways, and Prolobgeilinto a loop
using the recursive clause alone.

The source of the fliculty in these cases is that one of the clausésfigecursive that is, the
leftmost antecedent literal in a clause defining a predisdtself a reference to that same predicate.
In general, left recursive predicates cause problems ®tefi-to-right, depth-first control regime
that Prolog uses. In fact, the left recursion need not evatirbet. If by following a chain of leftmost
literals we can cycle back to a predicate previously usesl Pitolog proof procedure may follow
this chain depth-first, fruitlessly searching for a way olitshould be noted that there are more
sophisticated Horn-clause proof procedures that will noplwith transitive relation definitions.
Unfortunately, those procedures are in general so expetisat it is infeasible to use them for
general programming tasks. However, some of them are ufsgfaértain parsing problems as we
will see in Chapter 6.

Thus, in the avoidance of termination by clause and literdenng, just as in the previous
discussion of using such ordering to reduce search, we s¢edhntrol issues must be carefully
considered in writing Prolog programs, very much as whemamming in other languages. In
Prolog we can ignore some low-level details of data reptasem and execution control, but that
does not mean that we can ign@léissues of data representation and control. Each prograghmin
language places this kind of abstraction barrier inféedént place. One of the mainfiiculties in
learning Prolog after learning other programming langsagérolog’s particular placement of the
barrier.

2.6 Problem Section: Semantic Networks

Semantic networkare graph structures often used for knowledge representatiartificial intel-
ligence. The simplest form of semantic network consistsi@desrepresenting individuals and
directed arcsrepresenting binary relationships between nodes. For pbearthe network in Fig-
ure 2.2 contains several types of arcs representing refdtips between nodes. For instance, the
isa arcs represent membership relations, e.g., Ole BlelkMustang (that is, is a member of the
class of Mustangs). Similarlyko, which stands for kind of represents the inclusion relation
between classes. For instance, Mustangs are a kind of abttlemo

Problem 2.6 Find a way of representing this simple semantic network wid?y using unit clauses.
It should be possible with your representation to answeriggeparaphrasable as “What class is
Ole Black a member of?” (the answer shouldmestang) or “What companies are there?” (the
answers should bgm and ford). Demonstrate that your representation can handle theseigs.

We can ask Prolog what individuals satisfy a given relatiblowever, we cannot ask directly
what relations hold between given individuals. In semangittvork representations, we often want
to ask the latter kind of question, for instance, “What lielaghips hold between Ford and the class
of companies?”

Problem 2.7 Modify your representation of semantic networks to allmththis new kind of ques-
tion and the kind in the previous problem. (HINT: Treat setitanetwork relations as Prolog
individuals. This is an important Prolog programming tefure, sometimes callegtificationin
philosophical circles.)

Semantic networks are often used to repret@anomiesvith property inheritance A taxon-
omy, like the one in the example above, places individualdasses, and specifies which classes

2.6. Problem Section: Semantic Networks 21

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

AKO
AKO

Legal

Persons
N

L

A

KO
4 1S4

1S.

Figure 2.2: A semantic network

are subclasses of other classes. If all the members of aretgsssarily have a certain property, we
say (abusing language slightly) that the class has the propairther, we say that all individuals in
the class, and all subclasses of the clagserit the property. The following three conventions are
usually followed for economy of representation:

¢ Class containment statements are given only between aatasthe smallest classes in the
taxonomy that contain it. (For instance, we do not have ati@kpepresentation of the fact
that Mustangs are physical objects.)

¢ Class membership statements are given between an indiéiddahe smallest classes in the
taxonomy that contain it. (For instance, we do not explicittpresent that Ford is a legal
person.)

e Properties are associated with the largest class in thetemg that has them. (For instance,
we explicitly associate the property of being self-propelivith automobiles but not with
Mustangs).

The transitivity of class containment is then used to dedrara the explicit data whether spe-
cific individuals or classes have certain properties or areertain classes, for example, that Mus-
tangs are physical objects.

Problem 2.8 Use your Prolog encoding of semantic networks for a genarabding of taxonomies
of the kind described. Define the following Prolog predisateterms of your representation:

22 Chapter 2. Database Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

e is_instance(Individual, Class) holds whermlndividual is an element oflass.
e has_property(Individual,Property) holds wherindividual has Property.

e subclass(Classl, Class2) holds whenClass1 is a [possibly improper] subclass of
Class2.

Test your program by demonstrating that GM is a legal persioat, Ole Black is self-propelled, and
that Mustangs are physical objects.

In Prolog, we can have predicates of any number of arguméfgsnay, for example, represent
the fact that Ford built Ole Black in 1965 by the clabse 1t (ford,ole_black, 1965). However,
in the simple form of semantic network discussed so far, we ardy represent directly binary
relations.

Problem 2.9 Find a way of representing n-ary predicates using nodes ahdled arcs in a seman-
tic network. How would you represent “Ole Black was built lyrd=in 1965” with this encoding?
How would you ask Prolog to determine which company builttistugs in 19677

2.7 Context-Free Grammars

We begin the discussion of natural-language analysis amddle Prolog can play therein with a
discussion of context-free grammars and their axiomatizan the database subset of Prolog.

Context-free grammarfCFG) constitute a system for defining the expressions ohguage
in terms ofrules which are recursive equations over expression typesdatinterminals and
primitive expressions, callegrminals The standard notation for a context-free rule is

No = Vi---Vj

whereNp is some nonterminal and thg are nonterminals or terminals. Such a rule has the following
informal interpretation: “if expressionsy,...,w, matchV;,..., V,, respectively, then the single
expressiomn; - - - w, (the concatenation of th&) is itself of expression typbly.” By an expression
w; matching av; we mean that eithey; is a terminal (a primitive expression) and identicaioor
Vi is a honterminal (an expression type) amds of that type (presumably by virtue of some rule in
the grammar).

Consider, for example, the following context-free grammoala fragment of English:

S— NP VP
NP — Det N OptRel
NP — PN
OptRel—- ¢
OptRel- that VP
VP - TV NP
VP — IV

PN — terry
PN — shrdlu
Det— a
N — program
IV — halts
TV — writes

2.7. Context-Free Grammars 23

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

S
/\
NrP VP

|
PN v
|
SHRDLU halts

Figure 2.3: Parse tree for a simple sentence

We have notated nonterminals with upper-case names anéhtdsmwith lower-case. The nonter-
minal names we have used here are, for the most part, staindardent linguistics. For reference,
we include below a table of the terms they abbreviate.

symbol abbreviates

S Sentence

NP Noun Phrase
VP Verb Phrase

v Intransitive Verb
TV Transitive Verb
PN Proper Noun
Det DETermine?

N Noun

OptRel | OPTional RELative clause

The grammar above classifies strings as being of zero or nidhese types. For instance, by
virtue of the ninth rule, the expressiosskoLu” is classified as &N. An alternate terminology is
often used in which the nonterminBN is said tocoverthe string %uroLu”. Similarly, the string
“halts” is covered by the nonterminBY. Furthermore, by the twelfth rule, “halts” is also classlifie
as aVvP. The first and third rules allow the conclusion that the enpinrase $uroLu halts” is anS,

This classification of an expression and its subexpressiotsrding to a context-free grammar
can be summarized in phrase-structure tre®r parse tree The tree for the sentencerkpLu
halts” is given in Figure 2.3. Each local set of nodes, cdimgjof a parent node and its immediate
children, corresponds to a rule application. For instative,top set of nodes corresponds to an
application of the rul&&— NP VP. The leaves of the tree, that is, the symbols at the bottomnat
children, correspond to the primitive expressions, thateals, and the interior nodes correspond to
nonterminals. The expression covered by a given node ishjagtinge of the subtree whose root is
that node. Such a phrase-structure tree for a string preddert of proof that the string is classified
as the nonterminal at the root.

The symbol ‘€”, which occurs in the first rule for optional relative clagsés used to mark a
rule with zero elements on the right-hand side, hence, aoyéne “empty string”. For example, the
string “a program halts” is classified as 8ras illustrated by the parse tree of Figure 2.4. Note that
since thedptRel rule has no elements on the right-hand side, it requires perd#ents in the parse
tree and covers no portion of the string.

5Determiners (likeheanda) are also sometimes called articles.

24 Chapter 2. Database Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

NP VP

DET N OptRel v

a program halts

Figure 2.4: Parse tree including empty constituent

Any procedure for determining the parse tree correspongirgy expression must perform the
rule applications in a given order. Such an ordering of th@liegtions summarized in the tree is
called aderivation of the string. In the particular exampledkorLu halts”, we might derive the
string performing lower applications in the tree beforesthdigher up, as we did in the informal
description above. Alternatively, we might start by apptythe first rule to the root symb#8l, then
expanding theNP andVP and so forth, working down from the top of the tree. Derivat®f the
former sort are referred to &®ttom-upderivations, those of the latter typetap-downderivations.
On an orthogonal dimension, we can halepth-firstor breadth-firstderivations, depending on
whether an entire subtree is or is not derived before theatén of its siblings begins. Many other
possible derivation orderings are possible, combiningti&of top-down versus bottom-up, depth-
versus breadth-first, left-to-right versus right-to-leftlerings, and so forth. The parse tree abstracts
away from all these ordering issues manifested in particldavations, just as a proof tree abstracts
away from ordering issues manifested in particular traces.

As a side note, it is traditional to separate a grammar of gbi$ into two parts, one which
contains the grammar rules proper and one which containsithe with a single terminal on the
right hand side. The latter part is called tietionary or lexicon for the grammar. Dictionary
rules correspond to the lines in the parse tree connectimgtarminal—a nonterminal immediately
covering a terminal—and the terminal it covers.

Exercise 2.10What expression types are the following expressions fikadsinder according to
the context-free grammar just given?

halts

writes a program

a program that Terry writes

Terry writes a program that halts

a program that halts writes a program that halts
Terry halts a program

a program that Terry writes halts

No ogkrwDdnE

Exercise 2.11For each classification of each expression in the precedkagoise, give the parse
tree for the derivation of that expression under that clisation.

2.7. Context-Free Grammars 25

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

S
NP VP
DET N OptRel 3%
a program halts
0o 1 2 3

Figure 2.5: Parse tree with string positions

2.7.1 Axiomatizing Context-Free Grammars

In parse trees like the one given in Figure 2.4, nontermicafsbe interpreted not only as a clas-
sification of expressions (viz., the expressions that agefrihges of trees labeled with the given
nonterminal) but also as binary relations positionsin the expression, where a position divides
an expression into two subexpressions which concatenatgdher form the original expression.
For example, string positions for the the sample parse tréégare 2.4 are shown in Figure 2.5.
Position 2, for example, divides the expression into thesulmexpressions “a program” and “halts”.

The nonterminals can now be seen as binary relations on tigqms. The pair of positions
(0, 2) is in theNP relation because the nontermiméP covers the subexpression between positions
0 and 2. Using logical notation for the relation, this fach dse notated aslP(0,2). Similarly,
S0,3) holds because the nontermiBatovers the expression between positions 0 and 3. The empty
optional relative clause covers the string between pasgiand itself, i.e.OptRe(2,2).

In fact, the general statement made by the context-free rule

S - NP VP

can be summarized using relations on positions with thevielig logical statement:

NP(po, p1) A VP(p1, p) = S(po. P)

that is, if there is arlNP between positiongy and p; and aVP between positiong; and p, then
there is arBbetween positionpy andp. Indeed, any context-free rule of the form

Ng — Vi- -V,
can be axiomatized as

V1(Po, P1) A - -+ A Va(Pn-1, P) = No(Po, p)

2.7.2 Context-Free Grammars in Prolog

To express a context-free grammar in Prolog, then, we mamgbythat this general form for axiom-
atizing rules is itself in definite clause form. Thus, it candirectly stated in Prolog. For instance,
the sentence formation rule is expressed

s(P®, P) :- np(P®, P1), vp(P1l, P).

26

Chapter 2. Database Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

A full axiomatization of the English fragment would be addals:

Program 2.4

s(P®, P) :- np(PO®, P1), vp(P1l, P).

np(P®, P) :- det(PO®, P1), n(P1, P2), optrel(P2, P).
np(PO®, P) :- pn(PO, P).

vp(P®, P) :- tv(PO®, P1), np(P1l, P).

vp(PO®, P) :- iv(PO, P).

optrel(P, P).

optrel(P®, P) :- connects(that, P®, P1), vp(Pl, P).

pn(P®, P) :- connects(terry, PO, P).
pn(P®, P) :- connects(shrdlu, PO, P).
iv(P®, P) :- connectsChalts, PO, P).
det(PO®, P) :- connects(a, PO, P).

n(PO®, P) :- connects(program, PO, P).
tv(P0®, P) :- connects(writes, PO, P).

We have used the literalonnects(Terminal, Positionl, Position2) to mean that the ter-
minal symbolTerminal lies between consecutive positidhssitionl andPosition2.

This axiomatization of a CFG in Prolog can be seen as the butpa general mapping or

algorithmic translation from CFGs into Prolog. The mappiaikes any CF rule and forms a corre-
sponding Prolog clause as follows:

e For each nonterminal, construct a literal applying a biresdicate for that nonterminal to

two position arguments (e.g., the nontermiN& becomes the literalp (P1, P2)).

e For each terminal, construct a literal applying the pretdicannects to three arguments,

viz., the terminal symbol expressed as a Prolog constartixemgosition arguments (e.g., the
terminalhaltsbecomes the literalonnects(halts, P1, P2)).

Furthermore, as exemplified above, the position argumentedch constituent form a sequence

Po, - .-

, Pn such that the constituent defined by the rule relge® p, and subconstitueritin the

right-hand side of the rule relatg@g ; to p;. The ability to describe this mapping algorithmically is
the basis for interpreters for this and other grammar foismad. We will investigate such formalisms
and interpreters in Chapter 6.

2.7.3 Prolog as Parser

Given our usage of theonnects predicate, an expression can be axiomatized by statinghwhic
terminal symbols in the string connect the string positioR®r instance, the string “a program
halts” is represented by the following unit clauses:

connects(a, 0, 1).
connects(program, 1, 2).
connects(Chalts, 2, 3).

2.7. Context-Free Grammars 27

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

This axiomatization of expressions and context-free gramsnn definite clauses allows any
Horn-clause proof procedure to serve agaaser (or, strictly speaking, aecognize) for expres-
sions® The Prolog proof procedure, in particular, gives utop-down, depth-first, left-to-right
parsing mechanism because the derivations Prolog assignstting by its execution correspond
to top-down, depth-first, left-to-right traversal of therpaitree. A query of the form(®, 3) will
hold if the string between positions 0 and 3 is a sentencerditpto the grammar.

?7- s(0, 3).
yes
?7- s(0, 2).
no

Tracing the execution by Prolog explicitly exhibits theidation order implicit in using Prolog
as a parser of grammars encoded in this way. The executiomdfahe grammar given above with
the input sentence “a program halts” represented by unitsela clearly shows Prolog’s top-down,
depth-first, left-to-right behavior.

?7- s(0,3).
(1) 0 Call : s(0,3)
(2) 1 Call : np(0,P1_2)
(3) 2 Call : det (0,P1_3)
(4) 3 Call : connects(a,0,P1_3)
(4) 3 Exit : connects(a,0,1)
(3) 2 Exit : det (0,1)
(5) 2 Call : n(1,P2_5)
(6) 3 Call : connects (program, 1,P2_5)
(6) 3 Exit : connects (program,1,2)
(5) 2 Exit : n(1,2)
(7) 2 Call : optrel(2,P1_2)
(7) 2 Exit : optrel(2,2)
(2) 1 Exit : np(0,2)
(8) 1 Call : wp(2,3)
(9) 2 Call : tv(2,P1_9)
(10) 3 Call : connects(writes,2,P1_9)
(10) 3 Fail : connects (writes,2,P1_9)
(9) 2 Fail : tv(2,P1_9)
(11) 2 Call : iv(2,3)
(12) 3 Call : connects(halts,2,3)
(12) 3 Exit : connects(halts,2,3)
(11) 2 Exit : iv(2,3)
(8) 1 Exit : wvp(2,3)
(1) 0 Exit : s(0,3)

yes

The trace shows that Prolog parses by searching for a denwaitthe expression starting at the top
node in the parse tree and working its way down, choosinguleeat a time and backtracking when

6A recognizer is a program that determines whether or not aression is grammatical according to the grammar. A
parser is a recognizer that furthermore determines thetamaiunder which grammatical strings are admitted by thengnar.

28 Chapter 2. Database Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

s (0, 3)
/\
np (0, 2) vp (2, 3)
det (0,1) n(l,?2) optrel (2,2) iv(2,3)
|
connects (a,0,1) connects (program, 1, 2) connnects (halts, 2, 3)

Figure 2.6: Proof tree for parse of sentence

dead ends in the search are reached. For pure context-ieer@rs, many other better parsing
mechanisms are known, so this parsing technique is not weyeisting for CFGs. It becomes
more interesting for the more general grammars discuss8ddtion 3.7. Furthermore, alternative
axiomatizations of CFGs can engendeffatient parsing mechanisms, and Prolog interpreters for
grammars can make use of alternative algorithms for par3ihgse possibilities are explored further
in Chapter 6.

The axiomatization of grammars just presented makes meiggerthe sense in which a parse
tree provides a kind of proof of the grammaticality of an egsion, as the parse tree for a sentence
corresponds directly to the proof tree that Prolog developecognizing the expression. This can
be readily seen for the sample sentence whose proof treeen g Figure 2.6 (cf. Figure 2.5). In
fact, this isomorphism is exploited further in Section 3,7n developing a grammar that builds the
parse tree corresponding to a given derivation.

2.8 Problem Section: Grammars

In this problem section, we will develop alternative wayseatoding languages in Prolog. First,
we will consider how to encode the syntax of database Pra$edf iusing the encoding technique
described in Section 2.7.2 but with a much freer encodindhefarimitive expressions. Then we
will look at various other mechanisms for encoding langsdagsed on adding operations like in-
tersection or using fierent data structures like graphs.

2.8.1 A Syntactic Analyzer for Database Prolog

We will consider here the question of how to build a syntaatialyzer for a programming language,
in this case the database subset of Prolog we have seen $bifasubset has a very simple syntax:

e A clause is alause ternfollowed by a period.

¢ A clause term is aatomic formula(a unit clause) or an atomic formula followed by an impli-
cation followed by a sequence of atomic formulas separateminmas (a nonunit clause).

e An atomic formula is gredicate symbadla constant) optionally followed by a parenthesized
list of comma-separateatguments

2.8. Problem Section: Grammars 29

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

e An argumentis a constant or a variable.

Prolog syntactic analyzers, like those for other prograngntanguages, do not usually analyze
character strings directly but rather strings of lexiokengproduced by a lexical analyzer (Aho and
Uliman, 1977). We will assume in this problem that the resoftlexical analysis of a string are
expressed not byonnects clauses but rather by Prolog unit clauses of the followingi

e constant(Constant,From,To), meaning that there is a constant token between points
From andTo in the string with spellingonstant.

e variable(Variable,From,To), meaning thatthere is a variable token between p&inds
andTo in the string with spelling/ariable.

e punctuation(Punct,From,To), meaning that there is a punctuation mark between points
From andTo in the string with “spelling”Punct.

For example, for the Prolog clause
ancestor(0ld,Young) :- parent(0ld,Young).
we can assume that the following assertions will be in thédgrdatabase:

constant (ancestor,1,2).
punctuation(’ (', 2,3).
variable(’01d’,3,4).
punctuation(’,’,4,5).
variable(’Young’,5,6).
punctuation(’)’,6,7).
punctuation((:-),7,8).

punctuation(’.’,14,15).

Note that punctuation and capitalized constants (dendtiagpelling of variables) must be in
guotes so they are read as constants by Prolog, and not agaper variables, respectively. Also
note the extra parentheses in the seventh clause. Theseqalieed by Edinburgh Prolog syntax
because of the precedences of operators in order to prevenbterpretation of - as a prefix
operator.

Problem 2.12 Write a context-free grammar for dbProlog. Translate it twl®g, and test it with
some of its own clauses as data. (We recommend choosing:tdugses for the data as the encoding
is tedious. Chapter 3 discusses better string position éimgss.)

2.8.2 Extending CFGs with Intersection

Context-free grammars can be generalized by usingrfeesectionoperator “&”. A rule of the
form

X>a&p (2.6)

is interpreted as saying that a string is Xnf it is simultaneously arr and aB. This extended
notation thus represenitstersectionsof context-free languages, which in general are not context
free (Hopcroft and Uliman, 1979, pages 134-135).

30 Chapter 2. Database Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

00,0

Figure 2.7: A graph

Problem 2.13 Extend the standard mapping of context-free rules to Prdliigcussed in Sec-
tion 2.7.2) to allow for rules with the intersection opemat®@emonstrate the mapping by writing
and testing a Prolog program defining a grammar for the nontest-free language made of all
strings of the forma"b"c" for n > 0.

2.8.3 Transition Networks

Transition networks are an alternative to formal grammardéfining formal languages (i.e., sets of
strings). Whereas a formal grammar defines a language i teffoombinations of types of strings,
a transition network for a language is a kind of abstract rimecfor recognizing whether strings
are in the language. The machine can be in one of a set of statgshe transitions from state to
state correspond to processing successive symbols inrthg & be recognized. Certain special
states correspond to acceptance or recognition of thestfithe machine finishes processing when
in such a state, the string is accepted as being in the laegwaggnized by the machine. If the
machine does not end up in such a state, the string is not teckephe problems in this section
cover the writing of interpreters for transition network$oth nonrecursive and recursive varieties.

Graph Languages

The states and state transitions of a machine like the kistddescribed form a kind of graph or
network with the states as the nodes and the transitionseaartls. For this reason, we will start
by looking at a simple way to recognize languages using gr,ageld move on to the more complex
networks in later problems.

A finite directed labeled grapis a finite setG of triples (, I, m), wheren andm are elements of
a set ofnodesandl is an element of a set ddbels A paththrough the graph is a string of labels
[1-- -1k such that there exist graph nodes. . ., ng for which the triplesifo, 11, n1), . . ., (Nk-1, Ik, NK)
are in the graph. The graphpsth languagés the language whose strings are all pathg.in

For example, the grapttl, a, 2), (2, b, 3), (3, c, 2)} can be depicted as in Figure 2.7. This graph
describes a language containing, among other stringsab, bc, cbcbg and so forth.

Problem 2.14 Write a Prolog program that can be combined with a Prolog esg@ntation of an
arbitrary finite directed labeled graph and a Prolog repretation of a string to recognize that
string as belonging to the path language of the graph.

Nonrecursive Transition Networks

Transition networks can be seen as a kind of graph where ttiesnare calledtatesand the arcs
state transitionsMore formally, a nonrecursive transition network is a laedirected grapi (as

2.8. Problem Section: Grammars 31

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Figure 2.8: A nonrecursive transition network

in the previous problem) together with a distinguisl@tial state iand a set ofinal states F A
strings = |;...lx is accepteddy the network (or is in théanguageof the network) if and only if
there is a path ilN given by the triplesrfo, 11, n1), . . ., (Nk-1, Ik, N) such thahy is the initial state and
ng is a final state.

For example, Figure 2.8 depicts a transition network withahstate 1 (signified by the arrow
“>") and final state 5 (signified by the concentric circles). sThetwork will accept strings such as
“every professor’s professor’s program halts”, but noogmam halts” (because it does not start at
the start state) or “every professor’s professor” (bec#ud®es not end in a final state).

Problem 2.15 Write a Prolog program that will recognize the strings in taaguage of an arbitrary
transition network described by an appropriate set of utdtises. Test the program at least on the
example in Figure 2.8. (Your solution of Problem 2.14 mightbeful here.)

Recursive Transition Networks

A recursivetransition network (RTN) is a transition network with a sétabeled initial stategach
labeled by a dterent label, instead of a single initial state. Initial stitbels play the same role as
nonterminals in CFGs. Of all the initial state labels, weidgguish astart label(or start symbol).

A string sis recognizedas anX by RTN N if and only if

1. Xis the label of an initial statg, and

2. there is a path (string of labels) - - Ik that is accepted bi¥ seen as a nonrecursive transition
network with initial statex, and

3. there are stringsy, ..., sxsuchthas=s;--- 5, and

4. for eachs, eithers = I; or 5 is recognized (recursively) as §rby N. (We will extend this
part of the definition shortly.)

A string sis recognized by an RTN with start labelS if and only if sis recognized as a8 by
N. Thelanguageof an RTN is the set of strings it recognizes.

Consider the sample RTN in Figure 2.9. A labeled initialestatvith labell is represented in
the example by : n. By convention in such drawings of transition networksirtieral symbols are
written in lower case and nonterminal symbols (subnetwabels) are written in upper case. Of

32 Chapter 2. Database Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

's

NPA /\ ()
@ED——>O"—0
that @ VP

Figure 2.9: A recursive transition network

the nonterminal symbols in the example, 08)\NP, VP andREL have corresponding subnetworks.
Rather than give subnetworks for the other nonterminalskvborrespond to preterminal categories
(DET, N andTV), we treat them specially. A pretermirlwill match a wordw in the string ifw is
listed as g in a dictionary external to the network. That is, we are edileg Part 4 of the definition
given above of what it means for a string element to match el kballow a case whers is listed
in a dictionary under the preterminal categry

The network of Figure 2.9 would therefore recognize serdgstike

every professor’s student wrote a program

assuming that ‘every’ and ‘a’ are listed BETs; ‘professor’, ‘program’, and ‘student’ aids; and
‘wrote’ is aTVin the dictionary.

Problem 2.16 Extend your solution of the previous problem to recognieesttings in the language
of an arbitrary recursive transition network plus dictiayarepresented by appropriate unit clauses
for both the network and the dictionary. Test it at least améxample RTN of Figure 2.9.

2.9 Bibliographic Notes

The database subset of Prolog (Section 2.1) is discussediia detail by Sterling and Shapiro
(1986). The relationship between first-order logic and®yd$ covered to some extent in that book,
and is also addressed in the books by Kowalski (1980), G4lli@86) and Clocksin and Mellish
(1981). The dual interpretation of logic programs, dedlaeaand procedural, was first discussed
by Kowalski (1974a; 1974b), and related to denotationalesgios for programming languages by
van Emden and Kowalski (1976). Lloyd’s book (1984) gives tailied mathematical account of the
semantics of definite-clause programs.

The family tree of Bertrand Russell (Section 2.5) was derifvem Katherine Tait's biography
of her father (1975).

2.9. Bibliographic Notes 33

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

The more general question of the relationship between aldosm and full first-order logic
(Section 2.3) is discussed in detail in every book on autethétieorem-proving, a few of which
were mentioned in Section 1.5. The concepts underlyingseldorm and Skolem functions were
used in logical investigations for several decades, as e@eén in the papers by Skolem (1920) and
Herbrand (1930) in the van Heijenoort collection (1967)il@ing upon Herbrand’s work, Robinson
(1965) developed the resolution inference procedure farsal form.

The tracing and debugging of Prolog programs (Section Rag unique diiculties that can
be attributed to the nondeterminacy of clause selectionofRrees are commonly used in logic to
represent the relationship between premises and conohigi@ proof. The space of alternatives in
the search for a proof can also be represented by a tree, awndhbination of the two trees forms
an and-or tree. These concepts are discussed by Kowals0)19

Tree representations are convenient in proof theory ankdduoristic purposes, but are unwieldy
when tracing large Prolog executions. Byrd’s box model ()9&he first practical framework for
debugging Prolog programs, has been implemented in mahygsgstems. More advanced models
have since been proposed, in particular the familalgbrithmic debuggingnethods that started
with Shapiro’s dissertation (1983).

Semantic networks (Section 2.6) were originally proposg®hillian (1967). They have been
the object of much work in artificial intelligence, includithat of Hendrix (1979), from which
we derived our example. The connections between semantiore and logic are discussed, for
instance, by Woods (1975) and by Deliyanni and Kowalski @97

Context-free grammars (Section 2.7) originated in the &dization of the notions of immediate
constituent and phrase structure in structural lingwsstie particular with the work of Chomsky
(1956). A detailed history of the development of these idsagiven by Greibach (1981), who
also supplies a comprehensive bibliography of formal-lege theory. A linguistically oriented
overview of context-free grammars can be found in the booRé#rgee et al. (1987). A full math-
ematical treatment of context-free grammars, their prdggerand parsing algorithms is given, for
instance, by Harrison (1978). The representation of cd+ftee grammars in first-order logic has
been in the folklore for a long time, but the first referencéidea in print that we know of is by
Kowalski (1974a).

The problem in Section 2.8.1 requires the text of Prolog mots to be given in a “predigested”
tokenized form. The techniques of lexical analysis requtoeproduce that form are discussed in
any compiler-design reference, e.g., (Aho and Ullman, 1977

The problem in Section 2.8.2 introduces intersections ofex-free languages, which in gen-
eral are not context free. Classes of languages are pawdiacterized by how languages in the
class behave under set operations such as intersectionfsRhat a certain language is not in a
certain class (e.g. context free) often depend on the aqzuperties of language classes under set
operations (Ginsburg, 1966; Harrison, 1978). Such resaltsbe useful in linguistic argumentation
(Shieber, 1985b).

Transition networks (Section 2.8.3) are a common reprasientof abstract string-recognition
devices. In the nonrecursive case, they are just anothatiowtfor nondeterministic finite-state
acceptors, which are discussed in any introductory bookamnpiers or formal-language theory
(Hopcroft and Ullman, 1979; Aho and Ullman, 1972; Harris@@/8). Recursive transition net-
works are closely related to the nondeterministic pushdaeaeptors, which are the abstract ma-
chine counterparts of context-free grammars (Hopcroft@ian, 1979; Aho and Ullman, 1972;
Harrison, 1978). However, the actual notion of recursiaasition network used here comes from
Woods's work on transition networks for natural-languag@gsis (1970). Woods extends recursive
transition networks with data registers that can be set kigrescand tested by conditions on arcs.
The resulting formalismaugmented transition network&TNSs), is very powerful; in fact, an ATN

34 Chapter 2. Database Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

can be written to recognize any recursively enumerableuagg. Bates (1978) gives a very good
tutorial on ATNs and their application in natural-languggecessing. Pereira and Warren (1980)
have compared ATNs with logic grammars in detail.

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Chapter 3

Pure Prolog:
Theory and Application

This digital edition of Pereira and ShiebePsolog and Natural-Language Analy-
sisis distributed at no charge by Microtome Publishing undecenise describ

in the front matter and at the web site. A hardbound editi®@B{ 0-9719777
0-4), printed on acid-free paper with library binding andliuding all appen
dices and two indices (and without these inline interrup)o is available fro
www .mtome . com and other booksellers.

In the database subset of Prolog we have seen so far, the entgito predicates have been
constants or variables. Like FOL, however, Prolog allowsiteary termsto serve as arguments
of predicates, of which constants and variables are but tbclasses. Terms also include recur-
sive structures formed by applyirignction symbol$o other terms, using the parenthesized syntax
familiar from logic.

The extension of database Prolog to include terms of arpit@mplexity is callechure Prolog
because it is a pure subset of FOL, containing no extralbfgetures (except for those in Section
3.4.1). Full Prolog, discussed in Chapter 6, does have saturfes; consequently, its declarative
semantics and procedural operation diverge. But pure gisla pure logic programming language.
It has a procedural interpretation that is potentially gb(though not complete) with respect to its
declarative interpretatioh.

3.1 Prolog Notation Revisited

At this point, let us review the notation for Prolog that wedaeen using and augment it to include
compound terms formed with function symbols, as mentioneskiction 2.3. We give a simplified
CFG for the Prolog syntax introduced so far, augmented fodecfunctions and terms formed from
them.

IHowever, because of the lack of the “occurs check” in Prolgjesns (Section 3.5.2), this potential soundness is not
realized in most implementations.

35

36 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Program— Clause
Program— Clause Program

Clause— AtForm : - Condition.
Clause— AtForm.

Condition— AtForm
Condition— AtForm, Condition

AtForm— Predsym
AtForm — Predsym(TermSe@

TermSeg- Term
TermSeg- Term, TermSeq

Term— Constant

Term— Number

Term— Variable

Term— Funcsym(TermSeq

The primitive types of expressions, then, amnstantsfunction symbolgFuncsyn), predicate
symbolgPredsyn), andvariables Constants are eitheumbergsuch a®, 99.99, -129) oratoms
Atoms are tokens beginning with a lower-case alphabeticoonposed of a sequence of special
characters or composed of any characters surrounded Hg sjugtes. For instance, the following
are atomsa, bertrand, =, :=, ’Bertrand Russell’, [].

Function symbols and predicate symbols (often collegtiveferred to afunctor9 are also
notated with atoms.

Compound expressions (a functor applied to a sequencenftguments) are by default repre-
sented in parenthesized prefix notation asumcsym(TermSeq or Predsym(TermSeq@ above.

3.2 Terms and Unification

To illustrate the notation, here is an example program tkiaminaatizes addition in successor nota-
tion:

Program 3.1
add(0®, Y, Y).
add(succ(X), Y, succ(Z)) :- addX, Y, Z2).

In this program, the simple termis intended to represent the number 0, the tetrric (0) the
number 1,succ(succ(0)) the number 2, and so forth. (The function symbatc is so-called
because it corresponds to the integer successor funciidmg, the first clause states that 0 added
to any number is that number. The second clause states éhstiticessor of any numbeadded to
y is the successor of the sunof x andy.

Unlike in imperative languages, tiacc function symbol when applied to a term will not “re-
turn a value”; the ternsucc(0) does not equal (reduce to, return, evaluate to, etc.) the ter
any other structure. The only relationship between the 4eand the numbers is the meaning rela-
tionship we, as programmers and users, attribute to thesteFhre program respects this attribution
because it holds of three terms just in case the numbers #pegsent are related by the addition
relation. We can see this in the following queries:

?- add(0®, succ(®), Result).

3.2. Terms and Unification 37

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Result = succ(0)
yes

?- add(succ(succ(®)), succ(succ(®)), Result).
Result = succ(succ(succ(succ(0))))
yes

These queries correspond to computing thatl0is 1 and 2+ 2 is 4.

Prolog augmented with terms works in exactly the same wapaslatabase subset discussed
in the previous chapter. The onlyfilirence is that the matching of a goal literal with the head
of a rule, the process amificationinformally defined in Section 2.4 and more fully discussed in
Section 3.5.2, must in general apply to arbitrary compowmnohs. Recall the informal definition
of unification given previously. Two atomic formulas unifiythere exists an assignment to the
variables in them under which the two formulas become idahtiApplying this definition to an
example, consider the unification of the two atomic formulas

add(succ(succ(0)), succ(succ(0)), Result)
and

add(succ(X), Y, succ(Z))
This unification succeeds because the assignment

X = succ(0), Y = succ(succ(0)), Result = succ(Z)
transforms both formulas into

add(succ(succ(®)), succ(succ(®)), succ(Z))

The execution of a goal to add 2 and 2 (encoded in successatiortwould then proceed as
follows: The initial goal is

add(succ(succ(®)), succ(succ(0)), Result)

This fails to unify with the first clause fardd, but unifies with the head of the second clause with
the unifying assignment as above. Under this assignmenhdby of the clause becomes

add(succ(0), succ(succ(®)), Z)

Now this clause also matches the head of the second clauseh(wk will write with variables
renamed taX_1, Y_1 andZ_1 to avoid confusion as per Section 2.5.1). This time the umify
assignment is

X_1 =0, Y_1 = succ(succ(0)), Z = succ(Z_1)
The body of this second activation of the clause becomes
add (0, succ(succ(®)), Z_1)

This goal matches the unit clauséd (0, Y,Y) under the assignment

38 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Y_2 = succ(succ(0)), Z_1 =Y_2 ,

and the execution is complete. In looking at the assignmémis were involved in the
proof, we note thatResult was bound tosucc(Z), Z to succ(Z_1), Z_1 to Y_2, and

Y_2 to succ(succ(®)). Thus, aggregating assignments, we ha@ssult = succ(Z) =

succ(succ(Z_1)) = succ(succ(Y_2)) = succ(succ(succ(succ(0)))). The query thus
computesthat 2 2 = 4.

3.3 Functions in Prolog and Other Languages

In logics that include equality between terms as a primitis&on, the reducibility of one term to
another enables a powerful technique for reasoning abawtifins. Conventional programming
languages—and even more so, so-called functional progmnagilisnguages—make use of this by
basing their constructs on equalities (usually in the gafdeinction definitions). These equalities
are typically interpreted as rewriting rules that can bedusereduce terms to simpler ones, and
eventually to irreducible terms that are identified with ltues”. In imperative programming lan-
guages, this notion is implicit in the notion of a functiorldhat returns a value. All of this, of
course, depends on the language in some sense embodyingsafi@equality. For instance, reduc-
tion corresponds to the substitutivity of equality. In fgmioof procedures for equality could be used
as the basis for functional computation very much as Hoansg proof procedures are the basis for
relational computation.

General proof procedures for logics with equality are veffyallt to control, and therefore have
to date been too irfgcient to use in logic programming. It was observed, howetiat,much of the
work of equations and function symbols could be done instyalations. For example, instead of
representing addition as a functiernwith axioms

sucgx) +y sucex +Y)
O+x = X

we can use the ternary predicatid with the Prolog definition given in Program 3.1.

The simple observation that subject-domain functions camdpresented as relations was a
crucial step in making logic programming practical. Howevhis step is not without losses. For
example, the uniqueness of function values, a consequédtice equality axiom schemata in FOL
with equality, is not available for reasoning when the ielzl encoding of functions is used. It
may be that the Prolog definition of a function gives only ongat for each input (as is the case
with add above), but this is a contingent property of a particuladpa&te definition rather than a
necessary property as it is with functional notation. Amottiisadvantage is that relational syntax
requires the introduction of intermediate variables fandiion composition, often impairing the
readability of programs.

Of the standard equality axioms and their consequencegrlyeone that is left in Prolog,
because it is definable in the language, is the reflexivitgraxi = x, which can be implemented in
Prolog with the unit clause

Program 3.2
X = X.

In fact, the infix= operator is built in to most Prolog systems.

3.3. Functions in Prolog and Other Languages 39

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

The lack of more powerful equality axioms in Prolog means thdrolog it is not possible to
reason about whether two distinct terms denote the sametobjeother words, the value of apply-
ing a function to some arguments can only be representedebietim expressing that application
and not by some other (presumably simpler) term represgtiim “value” of the function on those
arguments. Thus, in Prolog we look at functiongasstructorsone-to-one functions with disjoint
ranges. Each ground term is seen as denoting a distinctetémtbe domain, and function symbols
are means of constructing new elements from old, analogocsitstructor functions such asns
in Lisp or record constructors in Ada. Compound terms in Prolog tla@same role as record struc-
tures in other languages, namely, representing structofednation. For instance, in the addition
example above, theucc function symbol applied to an argumentioes not “return” the successor
of the argument. It merely constructs the larger teunec (). We may choose to interpret the
terms®, succ(®), succ(succ(0)), ... as representing the nonnegative integers (which they are
isomorphic to). We can then compute with these terms in wapsistent with their interpretation
as integers, as we did in the addition example.

To extend our analogy between Prolog terms and data stag;tnote that unification between
terms plays both a structuselectionrole, picking up the arguments of functions, and a structure
constructiorrole, instantiating variables to compound terms. For eXxappcall the query

add(succ(succ(®)), succ(succ(0)), Result)
This literal matched the head of the second clausaddrunder the assignment
X = succ(0), Y = succ(succ(0)), Result = succ(Z)

Note how unification between the first arguments of the godihezad has decomposed the argument,
performing a selection role. The body of the clause, the nea¥, gvas

add(succ(0),succ(succ(®)),2) ,
which succeeded with the unifying assignment
Z = succ(succ(succ((0)))
Thus the original goal succeeds with
Result = succ(Z) = succ(succ(succ(succ(0))))

The unification between the third arguments of goal and headtlds time playing a con-
struction role, building the representation of the resultc(succ(succ(succ(0)))) from
succ(succ(succ(0))), the intermediate result. This simple example of additiemdnstrates
that computations that might have been formulated in foneti-equational terms in another lan-
guage can be formulated as a relational computation ovwaistar Prolog.

Compound terms in Prolog thus play the same role as complexsiiaictures such as lists,
trees, or records in other programming languages. But valsereLise, for example, every list
(S-expression) is fully specified once it is built, termshwitariables in Prolog stand farartially
specifieddata structures, possibly to be further specified by vagidhétantiation in the course
of a proof. This role of variables as “stand-ins” for as yespecified structures is veryftirent
from the roles of variables as formal parameters or updatabhtions in functional and imperative
languages likeasp and Pascal. To distinguish Prolog variables from variablesher languages,
the Prolog type of variable has often been calldoggcal variable

40 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

3.3.1 Alternate Notations for Functors

We digress here briefly to discuss a useful extension to §nmodtation. In addition to the default
parenthesized prefix notation for compound terms, Prollmgvalunary functors to be used with a
prefix or postfix notation, and binary functors in infix notettj given appropriateperator declara-
tions For example, the expressions

succ succ 0 3+4 f* =
are convenient notations for
succ (succ(0)) +(3,4) *(*(£))

Prefix, postfix, and infix operators must be declared to PrdtogPrologs of the Edinburgh fam-
ily, the system can be informed about the operators usedsextample by executing the following
queries:

- op(500, yfx, +).
:- op(300, fy, succ).
- op(300, yf, *).

The final argument of thep predicate is simply the operator being declared. The figtiraent
is the relative precedence of the operator, with larger remnimdicating lower precedence, that is,
weaker binding and wider scope. Thtigvill have a lower precedence number thanThe second
argument provides its position (prefix, infix, postfix). Indiibn, it determines the iterability or
associativity of the operator. We call a unary operétrableif it can apply to an expression whose
main functor has the same precedence. Noniterable can pply to expressions whose main
functor has lower precedence. Thaagcc above is an iterable operator, whereas the standard prefix
operator?- is noniterable. Nonassociative operators are defined goasdy.

The dfixing behavior of operators is determined according to tfieving table:

symbol| position| associativity
£x prefix noniterable

fy prefix iterable

xf postfix | noniterable

yf postfix | iterable

xfx infix nonassociative
yfx infix left associative
xfy infix right associative)

The intuition behind these symbols is that in the case of gmmession with two operators of
equal precedence, one will be chosen as main functor sutththather occurs to the same side of
the main functor as the occurs to the side of thé For example, since the operator is declared
yfx in Prolog,X+Y+Z will be parsed agX+Y)+Z. The subordinate comes on the left side of the
main+. If the symbol associated with an operator hasyno it, expressions where it occurs with
scope immediately over an operator of equal precedenceaatilbe allowed at all.

Clearly, operator declaration queries are being executetheir side &ects. As suchop is
extralogical, and hence, not part of pure Prolog. Theseadstibns should therefore be thought of
as imperativeommandso the system, not as part of the logical structure of a pmogior further
information about such declarations, refer to the manuafdar Prolog system.

3.4. Lists 41

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

3.4 Lists

Returning to the main topic of the use of compound terms iddgrprogramming, we consider a
particular kind of data structure, lists, that will be esp#¢ useful in later programs.

The abstract notion of a finite sequence is a basic notion thenaatical descriptions of many
concepts. For example, the sentences of a language can feseefed as sequences of words.
Formally, a sequence can be seen as a function from an is@gaghent of the natural numbers to
some set, the elements of the sequence. Another view of segsiewhich will be more useful
here, is an inductive one following closely the inductivditiGon of the natural numbers. Given
some sek of sequence elements, the Sétof finite sequences of elements®tan be informally
characterized as the smallest set satisfying the followorglitions:

e Theempty sequengg is a sequence.

¢ If sis a sequence araan element oE, the pair €,) is a sequence withead eandtail s.

Thus (1 (2,(3,()))) is a sequence of three elements: 1, 2, and 3. Notatigradlyourse, the more
common expression of this sequencéli, 3). In the angle bracket notatiotey, . . ., €,) expresses
the list whose head i, and whose tail is expressed b8, .. ., €n).

Sequences are represented in Prolotjdty. In Edinburgh Prolog, the empty sequence is repre-
sented by thempty listconstant], and the sequence,§) with heade and tailsis represented by
the expressiorie| s]. More generally, the sequenag ((- - - (e, S) - -) is represented by the term
[e1,...,en]S]. This can be abbreviated wheiis the empty sequence {@,. .., e,].

For example,

[Head|Tail] [a,b|X] [a,b]

are respectively the Prolog representations of a sequeitté@adHead and tailTail, a sequence
with heada and tail the sequence with headand tailX, and the sequengga, b). The inductive
conditions defining lists given above can then be repreddnté¢he Prolog program

list([]).
list([Head|Tail]) :- element(Head), list(Tail).

where the predicatelement tests whether its argument belongs in the element domainte Mo
generally, lists with any Prolog terms (including lists!s elements can be characterized by the
following program.

list([D).
list([_Head|Tail]) :- list(Tail).

In this program we used the common Prolog notational comwmeinf giving a name beginning
with an underbar to variables whose role is not to pass a \mltimerely to be a place holder, as the
variable_Head is in the preceding program. Prolog further allows so-chdleonymous variables
notated by a single underbar. Each occurrence bfas a variable name in a clause represents a
distinct place-holder variable. For example, the two amooys variables irf(_,_) are distinct,
so the unification of that term witli(a,X) does not bind to a. Anonymous variables are used
for place-holder variables for those rare occasions in whaming the variable would detract from
program readability.

Although we have introduced lists as a special notationdquences, lists are Prolog terms like
any other. Our inductive conditions for sequences invo@ingredients: the empty sequence and

42 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

the pairing function that puts together an element and assempto make a longer sequence. As we
have seen, the empty sequence is represented by the emptynistant] 1, which is just a Prolog
constant. The pairing function is represented by the spreotation[e| s], but in fact corresponds

to a binary function symbol which in most Prolog systems imed “.”. Thus, the lists shown
earlier are shorthand notation for the Prolog terms

. (Head,Tail) -(@,.(,X)) -(a,.(b,[1))

Exercise 3.1 What terms (expressed using the binary operatdj to the following Prolog expres-
sions abbreviate?

[a,b,c]

al[b,c]]
[[a,b],c]
[[a,b]lc]
[[AIB]IC]

o w npoE

3.4.1 List Processing

Lists and the list notations above play an important rol@@remainder of these notes. As examples
of the definition of predicates over lists, we will give Prglprograms to concatenate, e, and
sort lists. Along the way, we will introduce some useful Bmptoncepts—modes of use of Prolog
predicates and Prolog arithmetic tests.

The basic form of list processing programs has been denatedtby thelist predicate itself,
namely, the separating of two cases, one for the empty listome for nonempty lists of the form
. (Head, Tail) or, equivalently[Head | Tail].

List concatenation

The definition of the concatenation of two lists to form adhitivides similarly into two cases. The

base case occurs when concatenating the empty list to anwhigh yields the latter unchanged.

For nonempty lists, the concatenation is the head of thdiitstdded to the recursive concatenation
of the tail of the first list and the entire second list. The @atenation relation is implemented in

Prolog by the predicateonc, which holds of three listk r, andc if ¢ is the concatenation dfand

r. Using juxtaposition to represent concatenation, thetcaimé can be stated=Ir.

Program 3.3
conc([], List, List).

conc([Element |Rest], List, [Element|LongRest]) :-
conc(Rest, List, LongRest).

As an example of the operation oénc, consider the following goal:

?- conc([a,b], [c,d],Result).
Result = [a,b,c,d]

3.4. Lists 43

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

conc([a,b], [c,d], [a,b,c,d])

conc ([b], [c,d], [b,c,d])

conc([], [c,d]l, [c,d])

Figure 3.1: Proof tree for concatenation query

yes

Its proof tree is given in Figure 3.1. Note that althoughdishcatenation is functional, in the sense
that the third argument is uniquely defined by (hence funetiy dependent on) the other two, it is
implemented relationally in Prolog. We will see an advartafthis relational view of concatenation
in the next example.

Shuffling lists

The shidfe of two lists consists of taking a few elements from the fiist Ithe next few from
the second, some more from the first, and so forth until the &se exhausted. More formally,
the shuile relation holds between three lidts ands (i.e., sis ashyfling of | andr) if and only

if there are (possibly empty) lists,...,lx andry,...,rge such thatl = ly---lx, r = ry---r¢ and
s=11ry1---Ixrk. Thatis,scontains interspersed all the elementsafidr, but maintains the original
order of elements dfandr.

We can break this definition down recursively by considetimg concatenation df andr;
separate from the concatenations for the restaofdr. In particular, we defins to be the shfile
of | andr if s = I1r1Sest, Wherel = l1ljest andr = rirest and Sest is a shufle of lest andryest. TO
guarantee that this definition is well-founded, i.e., thattecursive shiie is a smaller problem than
the original, we require that one fandr; be nonempty. In fact, without loss of generality, we can
assume that it is; that is nonempty. Further, we can assume tha&ontains exactly one element;
callite.

Exercise 3.2Why are these assumptions valid?

We still must settle on the base case for the recursion. Becaach recursive shile decreases
the length of the second list by exactly one element, we agnwhen this list is empty. In this case,
the shifie of | with the empty list is simply. This definition can be translated directly into Prolog
as follows:

Program 3.4
shuffle(L, [], L).

shuffle(L, [E|Rrest], S) :-
conc(L1l, Lrest, L),
shuffle(Lrest, Rrest, Srest),

44 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

conc(L1l, [E|Srest], S).

In this program, the last argument is the Steuof the first two. It is conventional in Prolog pro-
gramming to place the arguments that tend to be thought ofpegs before those that are outputs.

Nondeterminism and modes

The shuffle program exhibits several important facets of Prolog prognéng. First, the notion
of a shufle of two lists, unlike the notion of concatenation, is insically nondeterministic. But
this causes no problem for the Prolog definition. Our deénitvill merely compute all the various
shufles by backtracking, e.g.,

?- shuffle([a,b], [1,2], Shuffle).
Shuffle = [1,2,a,b] ;

Shuffle = [1,a,2,b] ;

Shuffle = [1,a,b,2] ;

Shuffle = [a,1,2,b] ;

Shuffle = [a,1,b,2] ;

Shuffle = [a,b,1,2] ;

no

Secondshuffle demonstrates theeversibility of Prolog programs. In particular, the predi-
cateconc is used inshuffle not only to concatenate two lists together (i.e., combiringand
[R1]|Srest]), but also to take a list apart into two sublists (i.e., $ipif L into L1 andLrest).
Because Prolog programs likenc can be used to compute any of their arguments from any others,
they are said to be reversible.

To capture the idea of which arguments are being computetiebadsis of which others, the
notion of amodefor a Prolog predicate can be defined. A mode tells which asqusnare used as
inputs and which as outputs. That is, it specifies which aentson execution of the predicate are
nonvariables and which are variables. Modes are typicaitated by marking the input arguments
with the symbok and the outputs with. Thus, the normal mode faonc in its use as a program for
concatenating lists isonc (+, +, -). But the mode of the first use abnc in theshuffle program
is conc(-,-,+). By reversibility of Prolog programs, we merely mean tha hhme program can
be used in dierent modes, whereas in other languagefeidint programs must be designed for
each mode.

Although the third argument taonc is functionally dependent on the other two, inverses of
functions are not in general themselves functional. Thulgusonc in modeconc(-,-,+) is
nondeterministic. Indeed, this is the source of the nomdetésm of theshuffle predicate itself.

There are severe restrictions on the reversibility of Ry@mgrams. Pure Prolog programs that
terminate when used in one mode may no longer terminate waeshin another mode. Full Prolog
programs with their metalogical facilities can exhibit qaletely diterent behavior when executed
in different modes. Nonetheless, the use of Prolog programs widretit modes is often a useful
technique, and it is important to note that pure Prolog mowy will never allow contradictory
solutions just on the basis of being used iffelient modes. The worst that can happen is that
execution in certain modes will not terminate.

3.4. Lists 45

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Arithmetic tests and operations

While on the subject of mode limitations, we will mention semseful built-in predicates that
are restricted to operate only in certain modes. Thesdatstis arise for reasons officiency or
implementation ease but are in no way part of the logic. Onetiriak of the restricted predicates as
approximationgo ideal, logically correct predicates, which the Prologtsyn has not implemented
in their full generality.

The situation that arises when a restricted predicate lsctal the wrong mode, that is, with
improperly instantiated arguments, is callediastantiation fault Different Prolog systems han-
dle instantiation faults dierently, but most will at least produce some kind of error sage and
stop the execution of the faulting goal. Therefore, whemgisiestricted predicates, it is im-
portant to keep track of calling patterns for predicates tkensure that the restricted ones are
called with the correct modes. This is shown clearly by thegasort example in the next sec-
tion.

Among the constants that Prolog allows are numbers. Nundzrde compared using a set
of built-in Prolog predicates. For instance, the binaryxidperator <" holds of two numbers if
the first is less than the second. Thé bperator operates only in the mode< +, that is, neither
argument may be a variable. Other arithmetic tests inclutiddreater than), £<” (less than or
equal to), and *=" (greater than or equal to) and have the same mode restrictidvithout these
mode restrictions, Prolog would either have to be able tkipack through all pairs of numbers
satisfying an arithmetic comparison, leading to combinat@xplosion, or to delay the execution
of the comparisons until both arguments are instantiatelge [@tter approach has actually been
implemented in a few experimental Prolog systems.

In fact, in Edinburgh Prolog the arithmetic predicates amsgtive not only to the modes of their
arguments but also to their types, since amlighmetic expressionare allowed as the arguments of
comparisons. An arithmetic expression is a term built frarmeric constants and variables with
variousarithmeticoperators such as *, -,and/, which is to be evaluated according to the usual
arithmetic evaluation rules to produce a number. When dhradtic-predicate goal is executed, all
the variables in its expression arguments must be boundrtars so that the expression may be
evaluated to a number.

The best way to understand arithmetic expressions is tk tfithem as shorthand for sequences
of calls to arithmetic relations defining the basic arithimeperations. Thus, the goal

X*X + Y*Y > Z*%Z
could be read as an abbreviation of

times(X, X, V1),
times(Y, Y, V2),
plus(Vi, v2, V),
times(Z, Z, W),
V>W

wheretimes andplus are hypothetical predicates that compute the obvious iumedf their first
two arguments.

For arithmetic calculations, Edinburgh Prolog providesitimary infix predicatd s with mode
? is + (where? in a mode is intended to mean that the ifiputput distinction is not being deter-
mined for this argument). The second argumeni ©fs some arithmetic expression, and the first
argument (typically a variable) is unified with the resuleefluating the second argument.

46 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

It should be noted that type restrictions on the argumengsprédicate are of afllerent nature
from mode restrictions. Mode restrictions indicate thatithplementation of a predicate is not able
to cope with uninstantiated arguments, usually becaus@thkmentation needs to know more
about the arguments to do anything sensible. The appregitibn for Prolog to take is therefore an
instantiation-fault report. In contrast, failure to prasehe conceptually correct action in the face of
arguments of incorrect type (e.g., non-numbers given tariéimaetic comparison predicate), since
these arguments are merely outside the extension of th&cptedHowever, many Prolog systems
signal an error on type restriction violations as an aid tougdging.

Sorting numbers

The final example is a program to sort lists of numbers. Therétgm we will use is callednergesort
because the basic operation is the merging of two previassted lists. The merge of two sorted
lists is a shffle of the lists in which the output list is sorted.

Program 3.5

merge(A, []1, A).

merge([], B, B).

merge([A|RestAs], [B|RestBs], [A|Merged]) :-
A < B,
merge (RestAs, [B|RestBs], Merged).

merge([A|RestAs], [B|RestBs], [B|Merged]) :-
B =< A,
merge([A|RestAs], RestBs, Merged).

Note that this merge operation is redundant, in the sensehtbee are two proofs for the goal
merge([], [], Merged). As aresult, we get the following behavior.

?- merge([], [], Merged).
Merged = [] ;

Merged = [] ;

no

We will carefully avoid invoking thenerge predicate in this way, so that the redundancy will not
affect the behavior of other programs.

Sorting using the merge operation consists of splittinguhgorted list into two smaller lists,
recursively sorting the sublists, and merging the resnottsthe final answer. The recursion bottoms
out when the list to be sorted is too small to be split into $endists, that is, it has less than two
elements, in which case the sorted list is identical to theorted.

Program 3.6
mergesort([], [1).

mergesort([A], [A]).

mergesort([A,B|Rest], Sorted) :-
split([A,B|Rest], L1, L2),
mergesort(L1l, SortedLl),
mergesort(L2, SortedL2),
merge(SortedLl, SortedL2, Sorted).

3.4. Lists 47

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

A simple (though nonoptimal) method for splitting a listaritvo lists of roughly equal size is to add
alternate elements in the list to the sublists. Again, treelmase of the recursion occurs when the
list is too short.

Program 3.7
split(l1, [1, [1).
split([A], [Al, [D).
split([A,B|Rest], [A|RestA], [B|RestB]) :-
split(Rest, RestA, RestB).

We can demonstrate the mergesort program and its varioillaanpredicates with the follow-
ing queries.

?- mergesort([3,1,4,2], [1,2,3,4]).
yes

?- mergesort([3,1,4,2], Sorted).
Sorted = [1,2,3,4]
yes

Note thatmergesort cannot be used to “unsort” a sorted list (i.e., to generatmptations of
a sorted list); it cannot be used in mosglert(-,+). If it were so used, the execution nérge
inside would be with modeerge(?,?,-). Then the third clause of merge would executaith
mode? < -. But< must be executed in mode< +. Consequentlynergesort will not execute
correctly in an “unsorting” mode. The impurity efinfects all programs that are built using it. Thus,
the merging and sorting programs are not in the pure subs&ddg.

Exercise 3.3 Rewritemerge so that it does not generate redundant solutions.

Exercise 3.4 Write a definition for the binary predicatember, which determines whether its first
argument is an element in the list that is its second argumkntt instance, the following queries
should work:

?- member(a, [a,b,c]).

yes

?- member(d, [a,b,c]).

no

?- member (£(X), [g(a),f(b),h(c)]).
X =05>

yes

Exercise 3.5Write a definition for the binary predicatszverse, which holds of two arguments if
one is a list that is the reverse of the other. For instance ftlowing queries should work:

?- reverse([a,b,c], [c,b,a]l).
yes

?- reverse([a,b,c], [c,b,b,a]).
no

48 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

?- reverse([a,X,c], [Y,b,a]).
X=b, Y=¢
yes

Exercise 3.6 Write an alternative definition afplit which works by placing the first half of the
elements on one list and the rest on another. (HINT: TlfeedIt part is determining when you have
reached the middle of the list. Use a copy of the list as a @unthelp you determine when you
have moved half the elements.)

3.4.2 Representing String Positions with Lists

An application of lists which we will use extensively is theise in representing string positions.
This representation can serve as the basis of an altermagitfeod for axiomatizing phrase-structure
grammars. Instead of a specific setcohnects clauses representing an input string as in Section
2.7.3, we have a single general clause:

Program 3.8
connects(Word, [Word|Rest], Rest).

Effectively, this clause induces a representation of eaafgghdsition bythe substring following
the position In particular, the position after the last word is représdrby the empty lis{]. For
example, to use the grammar of Program 2.4 to parse the senten

Terry writes a program that halts.

we need not put in unit clauses for the individual words. dagt we use the list encoding of the
string itself as the initial position and the empty list as fimal position:

:- s([terry,writes,a,program,that,halts],[]).
yes

The singleconnects clause then describes the relation between the words airdstireounding
positions.

3.5 The Logic and Operation of Prolog Revisited

The operation of pure Prolog should by now be relatively feami It seems appropriate, then, to
return to the logical foundations of Prolog, the preseatatif which was begun in Section 2.3, and
extend it to the operation of Prolog presented informall@éttions 2.4 and 3.2.

For a logical language to be used for logic programming, wetrhave an gectiveproof pro-
cedureto test whether a goal statement is a consequence of theapndgihis proof procedure
must be éicient enough to make a proof step analogous in computatomslto, say, a function

2Actually, if the logical language is powerful enough to egs all the kinds of relationships normally expressed by
programs (i.e., all recursive relations), then the prootpdure will be only aemidecision procedurdf the goal statement
is a theorem, the procedure will terminate with successitoay loop for nontheorem goal statements—corresponaing t
the fact that the language can express partial recursivaifuns that are not total.

3.5. The Logic and Operation of Prolog Revisited 49

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

call in a traditional programming language; only in this weyhe program execution (proof gener-
ation) suficiently predictable in performance to qualify the proofgedure as a program execution
mechanism.

Because of the strict requirements on the computationa\bdehof programs in the language,
Prolog programs are restricted to definite clauses andegigrinegative clauses. In this section, we
discuss the proof procedure that this restriction makesiples an instance of a class of Horn-clause
proof procedures known &l.D resolution First, however, we clarify some terms that have been
used in the informal discussions of Prolog execution, ngreebstitutionandunification

3.5.1 Substitutions

A substitutionis a function from a set of variables, ..., X to termsty, ..., t. Such a function is
notated{x; = ti,..., X = tx}. Theapplicationof a substitutioro- to an expressios, notated €],
is the expression with all instances of theeplaced by the correspondihgFor example,

[f(x 9W)lix=a,y = h(a, 2)} = f(a g(h(a. 2))

If, for someo, [e1]o = &, thene; is said to be amstanceof e; ande; is said tosubsume £ Thus
f(x, g(y)) subsumed(a, g(h(a, 2))). If e, subsumes, but not vice versa, thee, is more general
than e. Thusf(x, g(y)) is more general thafi(a, g(h(a, 2)), but is not more general th&dtfz g(w)).

3.5.2 Unification

Given two expressiong ande,, some substitutions may have the property thaglo = [&]o;
the substitutiorr- serves to transform the expressions into identical ingtsn8uch a substitution is
called aunifying substitutioror unifierfor e, ande,. Not all pairs of expressions have unifiers. For
example, there is no unifier for the expressid(e x) and f (b, y). However, when two expressions
do have a unifier, they have one that can be considered mostaje® most general unifieis a
unifier that, intuitively speaking, makes no commitmentd tire not called for by the expressions;
no extra variables are instantiated, nor are variablesutisted to more complex terms than is
necessary. More formallyr is a most general unifier fag ande, if and only if for every unifier
o’ of e andey, [e1]o subsumes (is no less general tham)¢’. When two expressions have a most
general unifier, then that unifier applied to either of the expressions is anificationof the two
expressions.

The dfect of most general unifiersisique up to renaming of variablgis the sense thatif and
0 are most general unifiers ef ande;,, then [e1]o- and [e1]6 either are identical or élier only in the
names of variables. Since the naming of variables in an egfme s really an incidental property—
unlike the sharing structure of the occurrences of the lgg&a—we can think of uniqueness up to
renaming as being, for all intents and purposes, actualbienigss.

An algorithm that computes the most general unifier of tworeggions is called anification
algorithm, and many such have been designed. We will not discuss tadsdet unification algo-
rithms here, but mention one aspect of their design. A unifinaalgorithm constructs a unifying
substitution by finding “mismatches” between the two exgi@ss and adding appropriate bindings
to alleviate them. But consider the case of two expressi¢rsand f(g(x)). Although there is no
unifying substitution for these terms, a naive unificatigoaithm might note the mismatch between
the variablex and the terng(x) and construct the substitutigr = g(x)}. But applying this substi-
tution to the two terms, we havigg(x)) and f (g(g(x))) respectively, which are not identical. Thus,
the substitution is not a unifier for the expressions. Thangzle demonstrates that an algorithm
to compute most general unifiers must be careful not to coctssubstitutions in which a variable

50 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

is assigned a term in which that variable occurs. For a utiificalgorithm to be correct, it must
check that such occurrences do not exist; this test is tiipieHerred to as th@ccurs check

3.5.3 Resolution

Given the tools of substitutions and unification, we canmeto the issue of proof procedures for
Prolog. The use of refutation to construct proofs, as dsedisn Section 2.3, is characteristic of
Robinson’s resolution principle. We will not discuss resimn in general here, but merely present
its specialization to Horn clauses, which for historicalgens is calle&LD resolution

SLD Resolution: From aquery(a negative Horn clause)
NogA---ANA---ANp=

and a definite clause
Con---ANCy= Py

whereo is a most general unifier ¢ty andN;, produce the new query

[No/\---/\Ni_l/\CoA---/\Ck/\Ni+1/\---/\Nm]0'$

The new query is called theesolventof the original query and clause, obtained fegolving R
andN;. If the resolvent contradicts the program from which therdeficlause was taken, then the
original query does also.

As we have seen in Section 2.3, to find an instance of a@axlatomic formulas that follows
from a program, we try to show that the que&dy= contradicts the program. We show such a
contradiction with SLD resolution by constructing 8hD derivationof G, a sequenc®, ..., R,
of queries such tha; is G =, R, is the empty clause and each element of the sequence is@ttain
from the preceding one by an SLD resolution step. Since thgyeolause indicates contradiction,
we have shown that the original queBy= contradicts the given definite-clause program.

Each step in the derivation, froR_; to R;, has an associated substitution The goal instance
[G =]o:1 - - -0 is @ counterexample to the query, which as we have seen nfeaf8lo; - - - oy is
a consequence of the program. Because the substitutiomsateyeneral unifiers, this consequence
is the most general instance of the goal that follows by u#fiigyparticular sequence of program
clauses. The derivation sequence can be seen as a trafeagabof tree for the goal.

3.5.4 Prolog’s proof procedure

Prolog’s proof procedure, then, amounts to a particulaamse of SLD resolution. As described
above, resolution is hondeterministic in that there areymasolvents that follow from a given
guery, corresponding to the choice of literal in the quersesolve, and the choice of rule to resolve
the query literal against. The Prolog proof procedure m#ékese choices as follows: literals in a
query are resolved froteft to right, and rules are tried in order frotap to bottonin a depth-first,
backtracksearch.

The proof procedure is depth-first because all ways of medudigiven resolvent are tried before
backtracking to try a dierent resolvent (by choosing &i#irent rule to resolve against). As should
be apparent, the discussions of Prolog execution in Secfghand 3.2 were merely informal de-
scriptions of the Prolog variant of SLD resolution.

3.6. Problem Section: Terms and Lists 51

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

3.5.5 Semantics of Prolog

Because of their relationship to Horn-clause logic, Prgdoagrams have both a declarative and a
procedural semantics. The declarative semantics of aamoglus query is derivative on the seman-
tics of the Horn-clause subset of FOL. A goal follows from agnam just in case the conjunction
of its negation and the program is unsatisfiable.

Note that the declarative semantics makes no reference teetiuencing of literals within the
body of a clause, nor to the sequencing of clauses within grano. This sequencing information
is, however, very relevant for the procedural semanticsRhalog gives to Horn clauses.

The procedural semantics reflects SLD resolution. A godddid from a program just in case
the negated goal and program generate the empty clause WBrdley proof procedure, that is,
left-to-right, top-to-bottom, depth-first, backtracki8gD resolution.

The Prolog proof procedure gives Horn-clause programs tampretation in terms of more
usual programming constructs. The set of clauses with acpkat predicate in the consequent
is the procedurethat defineshe predicate. Each clause in a procedure is like a caseaseor
conditionalstatement. Each literal in the antecedent of a claus@is@dure call

This analogy with programming concepts for Algol-like laagies is the basis of veryheient
implementation techniques for Prolog. However, thiscency is bought at some cost. The two
semantics for Prolog diverge at certain points. The pro@diemantics lacksompletenesand
soundneseelative to the declarative semantics.

The lack of completeness in the Prolog proof proceduretefoim the fact that Prolog’s depth-
first search for a proof may not terminate in some cases whdeei there is a proof. We saw this
problem in Program 2.3.

The lack of soundness comes from a property of the Prolodf procedure that we have hereto-
fore ignored, namely, the lack of an occurs check (Sectibr2Bin Prolog’s unification algorithm.
The occurs check is too expensive for general use in a basi@atipn of a computation mechanism
as unification is in Prolog; thus the unification algorithredi®y Prolog is not sound. However, this
unsoundness is not a problem for the great majority of pralgtirograms.

Further divergence of the two semantics results from extjiehl mechanisms that have been
introduced into Prolog. Some of these are discussed in €hapt

3.6 Problem Section: Terms and Lists

Tree Manipulation

Suppose we encode trees like the parse trees of Sectioni@g/Rrslog terms in the following way.
Internal tree nodes will be encoded with the binary funcBgmbolnode whose first argument is
the node label, and whose second is a list of the childreneohtide. Leaves of the tree will be
encoded with the unary function symhiaddaf whose single argument is the label at the leaf. Thus
the tree of Figure 2.4 would be encoded as the Prolog term

node(s, [node(np, [node(det, [leaf(a)]),
node(n, [leaf(program)]),
node(optrel, [1)1),
node(vp, [node(iv, [leafChalts)])1)1)

3There is also a way to reinterpret the Prolog proof proceitusedomain of [conceptually] infinite terms such that it is
sound with respect to that class of interpretations (Cchuner, 1986; Jéar and Stuckey, 1986.)

52 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Although this method for encoding trees is more complex tt@none we will use for parse
trees in Section 3.7.1, this method is preferable for gdere-manipulation programs because it
limits the number of functors introducing tree nodes to two.

The fringe of a tree is just the leaves of the tree in order.sTthe fringe of the example tree is
the list [a, program, halts]. In formal-language theory, the fringe of a parse tree ikedahe
yield of the tree.

Problem 3.7 Write a program implementing the relatidiringe (Tree, List), which holds just
in caseTree, a tree encoded as above, has fririges t.

Simplifying Arithmetic Expressions

Terms can represent arithmetic expressions. Using fumstimbols+ and* and representing vari-
ables by the terma (V) and constants by(C), we can represent the expression

Xy + X % (0+ 1)

by the term
+(x(D, *(x(2), +(c(®, c(1))))

or, using the fact that and* are infix operators in most Prologs,
x(1) + x(2) * (c(® + c(1))

However, this arithmetic expression can be simplified usiaigain identities. Because zero is the
additive identity, O+ 1 can be simplified to 1. Because one is the multiplicativatidg x, = 1 can
be simplified tox,. Thus the whole expression can be simplifiecia x.

Problem 3.8 Write a program that implements the binary relatioimpli fies_to such that the
following behavior is engendered:

?7- simplifies_to(x(1) + x(2) * (c(®) + c(1)), S).
S =x(1) + x(2)
yes

You can use simplifications such as the multiplicative andita identities, distributivity of
multiplication over addition, multiplication by zero, asd forth. (HINT: In general it is preferable
to simplify an expressioafter simplifying its arguments.)

Tree Grammars?

In the same way as phrase-structure grammars define setingssh terms of rules that rewrite
nonterminal symbols, one may define certain classes of inetesms of rules that rewrite certain
nonterminal tree nodes into other trees. This is best expthin terms of the representation of trees
as logic terms.

LetX be a set of function symbols aixda set of variables. Then the setiterms oveX 7x(X)
is the least set of terms satisfying the following inductieaditions:

4This section and the included problems are intended priyriari the formally inclined reader.

3.6. Problem Section: Terms and Lists 53

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

S
/’\ i

Figure 3.2: A tree rewrite

o If xe Xthenx € Tx(X).
e If f € Xisan-ary functionsymboland,...,t,areterms iz (X), thenf(ty,...,t,) € T=(X).

That is,73(X) is the set of terms built from the variablesXrwith the function symbols i&. In this
definition and in what follows, constants are identified witlllary function symbols.

LetX = NUT whereN (thenonterminal3andT (theterminalg are two disjoint sets of function
symbols. Nonterminals stand for tree nodes that may bettewiinto subtrees, terminals for nodes
of the final trees. A tree all of whose nodes are terminal iedaterminaltree.

Tree rewriting is done bproductionghat are the tree analog of phrase-structure grammar rules.
A production ovel is a pair QA(Xg, . .., Xn), t) (which is conventionally writte®\(xy, . . ., Xn) — t).
Ais ann-ary nonterminalxg, ..., X, are variables antle 7x({xs, ..., X,}). This production states
that a term with main function symbél and subterms,, t, may be rewritten into the new term
[t]lo, whereo is the substitutiortx; = ti, ..., X, = t;}. Notice that by definition every variable that
occurs int is one of thex;.

For example, considéd = {S3}, T = Ay, By, Cy, ap, bo, ¢o and the productios(xy, xg, X3) —
S(A(a, x1), B(b, X2), C(c, x3)). Figure 3.2 shows the application of this rule to a node tfka to
derive a new tree.

In general, productions can apply to any node of a tree andmigtto the root node. To define
this formally, consider a set of productiofis a ground ternt, and one of its subterns Clearly,
there is a unigue nonground teare 7x({x}) such that = [c]{x = s}. Assume that there is a rule
s — uin IT such thats' and s unify with most general unifies-. Then we say thatrewritesinto
t' = [c]{x = [u]o}, in symbolgt = t’. Informally, we have applied the production to the subseé

t and replaced in t by the result {ijo- of the production. As usual, we will use the notattos t’
for the reflexive-transitive closure of the rewriting rédet.

Formally, acontext-free tree grammag a triple €, S, IT) of a finite function symbol (tree node)
alphabet divided in terminals and nonterminals as aboveijta etll of productions oveE and a
finite setS of start trees which are ground terms ovEr A terminal tree (termjis thetree language

generated by the grammar if there is a start §eeS such thats = t. Finally, thestring language
yielded by a tree grammar is the set of the yields of the treesigted by the grammar.

Context-free tree grammars are so called because prodsetpply freely to tree nodes without
regard for the form of the tree above or below the node. Oneldlmarefully distinguish this notion
of context-freeness from the one for string grammars. Tiwegslanguages yielded by context-free
tree grammars are in general in the classndexed languagesvhich is a larger class than that of
context-free languages (Aho, 1968; Rounds, 1969).

Problem 3.9 Write a context-free tree grammar whose yield is the setrioigst d'b"c" for n > 0.

54 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

In the problems that follow, you may want to take advantageefencoding for trees used in
the previous section.

Problem 3.10 Define an encoding of context-free tree grammars in Prolog. should give encod-
ings for terminals, nonterminals, start trees, and produrts.

Problem 3.11 It can be shown (Maibaum, 1974) that when constructing ava¢ion of a terminal
tree from a start tree of a context-free tree grammar it isyonécessary to consider production
applications tooutermoshonterminal nodes, that is, nodes whose ancestors areraiitals. This
strategy is calledoutside-in(O-I) rewriting. Using the encoding from the last problem, write
program that performs O-l rewriting to nondeterministiyagenerate terminal trees in the tree
language of an arbitrary context-free tree grammar. In thisblem, you must use the search order
of Prolog to avoid looping without producing any answerseltlse grammar of Problem 3.9 to test
your program.

3.7 Definite Clause Grammars

In Section 2.7 we saw how to translate CFGs into Horn clauedagct into definite clauses. This
translation method can be used as the basis for an extensioR@s based on definite clauses,
definite-clause gramma(®CGs).

The general form of the definite clause associated with aegbifitee grammar rule

No = Vi---Vj
is (in Prolog notation)
nd(P®, P) :- vi(PO, P1), ..., vn(Pn-1, P).

We can generalize such an axiom by allowing, in addition ®ttho predicate arguments for the
string positions, additional arguments that further sfyetbie expression type. For instance, suppose
we want to distinguish theumberof noun and verb phrases—whether they are singular or plural
S0 as to guarantee that sentences are composed of NPs andti/Btse same numbeiVe might
extend the axiomatization of the grammar and dictionanhwait additional argument in certain
predicates (e.gnp, vp, pn) encoding number. A fragment of such a grammar would loak tiks:

Program 3.9

s(PO, P) :-
np (Number, PO, P1),
vp (Number, P1, P).

np (Number, PO, P) :-
pn(Number, PO, P).

vp (Number, PO, P) :-
tv(Number, PO, P1),
np(_, P1, P).

vp (Number, PO, P) :-
iv(Number, PO, P).

3.7. Definite Clause Grammars 55

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

pn(singular, PO, P) :- connects(shrdlu, PO, P).
pn(plural, P®, P) :- connects(they, PO, P).
iv(singular, P®, P) :- connectsChalts, PO, P).
iv(plural, PO®, P) :- connects(halt, PO, P).
tv(singular, PO, P) :- connects(writes, PO, P).

As an example, the first rule in this grammar encoding stdtasans (sentence) may be aip
(noun phrase) with number valtiember followed by avp (verb phrase) with the same number.
Note the use of an anonymous variable (Section 3.4) for tiecoNP in the transitive verb rule as a
way of ignoring the number of the object. This grammar adthiéssentencestiroLu halts” but not

“* surpLU halt”® even though both verbs are intransitive.

:- s([shrdlu,halts], [1).

yes
:- s([shrdlu,halt], []1).
no

:- s([they,halt], []).
yes

Just as the two-argument-predicate clauses can be seeroasrgcontext-free grammars, these
multiple-argument-predicate clauses can be seen as encadieneralization of context-free gram-
mars, calledlefinite-clause grammaf®CG). DCGs difer from CFGs just in the way this extended
encoding of rules in Horn clausesfiiirs from the simple two-argument encoding: A DCG non-
terminal may haveargumentgust like the arguments of a predicate, and a terminal symim}
be an arbitrary term. For instance, the extended Prologdéng@bove axiomatizes the following
definite-clause grammar. (We here use the FOL conventiangfiables and constants discussed
in Section 2.3.)

S — NP (%um) VP (um)
NP (um) = PN(um)
VP (%um) — TV(%um) NP (Yhum)
VP (um) = 1V (Xnum)

PN(s)— shrdlu
PN(p)— they
IV(s) — halts
IV(p) — halt
TV(s)— writes

The meaning of a DCG rule is given by translating the rule attefinite clause using the same
mapping as for context-free rules except that nownargument nonterminal is translated into an
n + 2-argument literal in which the final two arguments représéing positions.

Definite-clause grammars are so useful that Prolog systées include a special notation for
encoding them directly, rather than having to go througtctbmsy translation described above. In
particular, the notation used within Prolog to notate a D@8 is the following:

e Predicate and function symbols, variables, and constéreg wormal Prolog syntax.

5We are here using the convention from the linguistics litera that in discussions of grammaticality, ungrammatical
strings are prefixed with asterisks to highlight the fact thay are not expressions of English. Of course, this isdnst
expository device; the asterisks themselves have no ptagemmars that people write.

56 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

o Adjacent symbols in the right-hand side of a DCG rule are isepd by the ;" operator, just
like literals in a clause.

e The arrow in a DCG rule is+->".
e Terminal symbols are written inside Prolog list bracketsdnd “]”.

e The empty string is represented by the empty list constamt.”

For example, the DCG grammar painstakingly encoded in Rrod.9 could be directly stated
in Prolog using the Prolog DCG notation as:

s --> np(Number), vp(Number).

np (Number) --> pn(Number).

vp (Number) --> tv(Number), np(_).
vp (Number) --> iv(Number).

pn(singular) --> [shrdlu].
pn(plural) --> [they].
iv(singular) --> [halts].
iv(plural) --> [halt].
tv(singular) --> [writes].

The Prolog DCG notation allows context-free grammars totheed directly in Prolog as well,
since CFGs are a special case of DCGs. In so doing, the Prtdtgnsents of the grammars are

considerably more succinct. For instance, the Englishnfiextt of Program 2.4 could be directly
stated in Prolog as:

Program 3.10
s --> np, vVp.
np --> det, n, optrel.

np --> pn.
vp --> tv, np.
vp --> iv.

optrel --> [].
optrel --> [that], vp.

pn --> [terry].

pn --> [shrdlu].
iv --> [halts].

det --> [a].

n --> [program].
tv --> [writes].

In fact, Prolog systems typically perform the appropriagaslation from DCG rules like these to
Prolog clauses immediately upon reading the program, amdltuses are stored internally in the
fully expanded form. Consequently, queries will receive same replies as the expanded version,
e.g.,

:- s([terry,writes,a,program,that,halts],[]).

3.7. Definite Clause Grammars 57

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

S

TN

np vp

/N

Det Nom Verb NP

Figure 3.3: A partially specified tree

yes

The connection between definite-clause grammars and Podboglose one. But it is important
to keep in mind that DCGs are a formal language independeheafProlog encoding just as Horn
clauses are of their instantiation in Prolog programs. Rstance, just as Prolog is an incomplete
implementation of Horn-clause theorem-proving, the DC@tion as interpreted by Prolog is in-
complete for DCGs in the abstract. We have tried to emphdis&éditerence by using a flerent
notation (akin to that of CFGs) for DCGs in the abstract, befiresenting the Prolog notation. The
distinction between DCGs in the abstract and their statéme®rolog using the special notation is
important to keep straight as it has, in the past, been thesat considerable confusion.

3.7.1 Trees for Simple Sentences

The DCG ability to add arguments to the nonterminals in a gnamis useful in a variety of ways.
The addition of more detailed syntactic information suctagseement features, which we saw in
the previous section and which will be explored in more dé@tdater problems, is just one of these.
Indeed, much of the remainder of these notes is merely eibaron this basic capability.

As a simple example of the utility of argument-passing in G@& will develop a grammar
which not only recognizes the strings in the fragment of imgbf Program 3.10, but also builds a
representation of the parse tree for the sentence, encsdeB@log term.

Terms can be seen as partially specified trees in which ‘asabrrespond to as yet unspecified
subtrees. For example, the term

s(np(Det,Nom) ,vp(Verb,NP))

corresponds to the (partial) tree of Figure 3.3 in which theables may be replaced by any trees.

Itis therefore only natural to use terms to represent paees in definite clause grammars. To do
this, every nonterminal predicate will have an argumentaggnting the parse tree for that portion
of the string covered by the nonterminal. For each nonteshtirere will be a homonymous function
symbol to represent a node of that type. Finally, we will usmastantepsilon, to represent an
empty subtree.

The following DCG covers the same fragment of English as tR& @xiomatized in Program
3.10, but it adds an argument to each nonterminal predioatarty the parse tree. Once the DCG
is translated into a Prolog program, the execution of theltieg program is very similar to that of
the earlier one, except that unification incrementallydsithe tree for the sentence being analyzed.

Program 3.11
s(s(NP,VP)) --> np(NP), vp(VP).

58 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

np(np(Det,N,Rel)) --> det(Det), n(N), optrel(Rel).
np(np(PN)) --> pn(PN).

vp(vp(TV,NP)) --> tv(TV), np(NP).

vp(vp(IV)) --> iv(IV).

optrel(rel(epsilon)) --> [].

optrel (rel(that,VP)) --> [that], vp(VP).

pn(pn(terry)) --> [terry].
pn(pn(shrdlu)) --> [shrdlu].
iv(iv(halts)) --> [halts].
det(det(a)) --> [a].
n(n(program)) --> [program].
tv(tv(writes)) --> [writes].

For example, the analysis of “Terry writes a program thatshiabould be as follows:

?- s(Tree, [terry,writes,a,program,that,halts],[]).
Tree = s(np(pn(terry)),
vp(tv(writes),
np(det(a),
n(program),
rel (that,
vp(iv(halts))))))

yes

Notice that the parse tree for a noun phrase without a relafiause still includes a relative
clause node covering the symleglsilon representing the empty string.

?- np(Tree, [a, program], []).
Tree = np(det(a),
n(program),
rel(epsilon))
yes

3.7.2 Embedding Prolog Calls in DCGs

The abstract DCG formalism augments CFGs by allowing namiteals to take extra arguments
which, through the sharing of logical variables, allow pagsof information among subphrases.
However, no other form of computation other than this slgaohinformation is allowed. The
Prolog notation for DCGs goes beyond this limited form of patation in DCGs by providing a
mechanism for specifying arbitrary computations over tlggdal variables through direct execution
of Prolog goals. Prolog goals can be interspersed with tmeitels and nonterminals on the right-
hand side of a DCG rule. They are distinguished from the gratizal elements notationally by
being embedded under the bracketing operator-1”.

3.7. Definite Clause Grammars 59

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Removing extraneous tree nodes

As a simple example, we will modify the parse-tree-buildgrgmmar in such a way that noun-
phrase parse trees do not include nodes for empty relativeses. There are several methods for
achieving this behavior. We take the simple expedient ofding the parse tree for the NP us-
ing a separate Prolog program for this purpose. Thus, theah@dnge to the grammar involves a
modification of the NP formation rule.

np(NP) --> det(Det), n(N), optrel(Rel),
{build_np(Det,N,Rel,NP)}.

Thebuild_np predicate operates in modaild_np(+,+,+, -), building the parse tree for an NP
from the trees for the subconstituents. In the case whenethive-clause tree is empty, no node is
included in the output parse tree.

build_np(Det, N, rel(epsilon),
np(Det,N)).

build_np(Det, N, rel(that,VP),
np(Det,N,rel(that,VP))).

Using this modified grammar, the behavior of the grammar mpk noun phrases becomes:

?- np(Tree, [a, program], []).
Tree = np(det(a),

n(program))
yes

Simplifying the lexicon

One of the most common uses for adding Prolog goals to a DGt sitnplification of the encoding
of the lexicon. Imagine a DCG with a large lexicon. Rathenteacoding the lexicon with separate
DCG rules for each lexical item, e.g.,

n --> [problem].
n --> [professor].
n --> [program].

it is much simpler and less redundant to have a single DCG rule

n --> [Word], {n(Word)}.

that says that the nonterminaktan cover any terminal symbol that is anAlong with this single
rule, we need dictionarylike this:

n(problem).
n(professor).
n(program)

60 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

The utility of this technique is magnified in the context ofit@l items associated with extra
arguments. If an argument is directly computable from thedvitself, the lexical entry can perform
the computation and the dictionary entry need not give aevBduthe argument. Such is the case
for the parse trees associated with terminal symbols. Thuthe parse-tree-building grammar, the
lexical entries might look like

n(n(Word)) --> [Word], {n(Word)}.

And for arguments that are idiosyncratically related towloed, for example, grammatical number,
the dictionary entry will contain this information in talauiform.

n(Number) --> [Word], {n(Word, Number)}.

n(professors, plural).
n(program, singular).
n(programs, plural).

In fact, a more succinct encoding of grammatical paradigses wnit clauses to list the entries in
the paradigm as a table and uses the lexicon rules to decedalile. For instance, for nouns we
might have

n(singular) --> [Word], {n(Word, _)}.
n(plural) --> [Word], {n(_, Word)}.

n(professor, professors).
n(project, projects).
n(program, programs) .

For verbs, the table might include entries for each form efutérb, as is done in Appendix A.

Using this technique in the English fragment we have beerldping, we have the follow-
ing grammar, with dictionary augmented to include someckexitems we will find useful in later
examples.

Program 3.12
s --> np, Vp.

np --> det, n, optrel.
np --> pn.

vp --> tv, np.
vp --> iv.

optrel --> [].
optrel --> [that], vp.

3.8. Problem Section: DCGs 61

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

det --> [Det], {det(Det)}.
det(a). det(every).
det(some). det(the).

n --> [N], {n(ND}.
n(author). n(book) .
n(professor). n(program) .
n(programmer). n(student).

pn --> [PN], {pn(PN)}.
pn(begriffsschrift). pn(bertrand).

pn(bill). pn(gottlob).
pn(lunar). pn(principia).
pn(shrdlu). pn(terry).

tv --> [TV], {tv(TV)}.
tv(concerns). tv(met).
tv(ran). tv(wrote).

iv --> [IV], {iv(IV)}.
iv(halted).

3.8 Problem Section: DCGs
3.8.1 The Syntax of First-Order Logic

First-order formulasare built from the followingzocabulary
e A countable set ofariables V,

e Countable setE,, of n-aryfunction symbolor eachn > 0 (the elements df are also called
constant},

e Countable setP, of n-ary predicate symbolfor eachn > 0,
e Theconnective¥, 3, v, A, =, and
e The punctuation marks (,), and

The set of first-ordetermsis the smallest set satisfying the following conditions:

e Each variable is a term.

e If fis ann-ary function symbol (an element &%) andty, ..., t, are terms, therfi(t, ..., t,)
is aterm. As a special casenf= 0, f as a term can be written without parentheses. In such
a casef is referred to as aullary functionor, more simply, aonstant

The set ofwell-formedformulas (vff5) is the smallest set satisfying the following conditions:

¢ If pis ann-ary predicate symbol (an element®f) andt, ..., t, are termsp(t,...,t,) is a
wif.

62 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

e If pis a wff andx is a variable, {xX)p and @x)p are wfs.
e If py andp, are wits, (p1 vV p2) and (1 A p2) are wis.
o If pisawf, —pisawt.

For example
(VX)(= (x.0) v (Ay) = (s(y). X))

is a wif assuming thax andy are inV, O is inFg, sisin F; and=is in Ps.

Problem 3.12 Define an encoding of the vocabulary of first-order logic asl&y terms. Your en-
coding should represent each vocabulary item as a distirabg term in such a way that the repre-
sentation of each type of item (variable, function symb@dizate symbol, etc.) is distinguishable
from all the others. Using this representation, write a DC&fiding the set of 5. (HINTS: Make
sure you can distinguish function and predicate symbolsjfdrdnt arities; if for your solution you
need an encoding of numbers, you can either use the sucaessmion for numbers or the built-in
arithmetic facilities of Prolog discussed in Section 3)4.1

A term or wif occursin a W iff the term was used in constructing théf\@ccording to the
inductive definition of vits given above. A string of one of the form&¥)’ or ‘(3x)’ is a binderfor
X. In a wff of the formB pwhereB is a binder angb is a wit, p is thescopeof B. An occurrence of a
variablex is boundin a wit if and only if the variable occurrence occurs within the seopa binder
for x. A wff is closedif and only if every one of its variable occurrences is bourar. example,

(Yx)p(x %)

is closed but
(Y¥)p(x,y)

is not.
Problem 3.13 Modify your wf analyzer to accept only closedfa

A binder forx in a wit is vacuousf there is no occurrence ofin the scope of the binder. For
example, the binded) is vacuous in

(@x)p(a)

Problem 3.14 Modify your wf analyzer to accept only closedfawithout vacuous binders.

3.8.2 Extending Syntactic Coverage

The following problems deal with extending the sophistmatof the syntactic treatments in the
grammars we are developing.

63

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge

3.8. Problem Section: DCGs

for noncommercial use by Microtome Publishing.

DET

every

]

NP

N

student

DET

1

S

OPTREL

S
/\
NP VP
T
DET N OPTREL TV NP
]
NP 's book concerns DET N
N OPTREL NP 's program
professor DET N OPTREL

some€ programmer

Figure 3.4: Parse tree with possessives

OPTREL

64 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Possessives

The grammar of Program 3.12 does not accept sentences hsiBgglish possessive construction,
such as “Every student’s professor’s book concerns somgramumer’s program”. In general, a
noun phrase followed by the possessiviiigts plays the same syntactic role as a determiner. Thus,
an appropriate parse tree for the sentence above would beeRBH.

Problem 3.15 Extend the DCG above to accept the English possessive aotistr according to
the analysis exemplified in this analysis tree. Assume tirgpdssessive §ix is represented by the
constants in the input string. Testing the DCG will probably be unswesfal as the analysis will
undoubtedly be left-recursive.

The analysis of possessives illustrated in the tree of Ei§ut isleft-recursive that is, a phrase
type X has a possible analysis A&. (In this particular case, the noun phrases may be analyzed a
a noun phrase followed by amand a noun.)

As the discussion in the previous problem and Section 2lo®/ deft-recursive analyses cause
problems with the use of Prolog as a DCG parser. A possiblenigue to avoid this problem is to
transform (by hand, or, in some cases, automatically) adeftirsive grammar into one without left-
recursion that isveakly equivalento the original one, that is, that accepts exactly the sanmggst
even though it assigns thenfiirent structures.

Problem 3.16 Develop a non-left-recursive grammar for the English seoés covered by the
grammar in the last problem. To what extent are systematiboas for converting left-recursive
CFGs to weakly equivalent non-left-recursive ones (sudirasliscussed by Hopcroft and Uliman
(1979, pages 94-99)) applicable to definite-clause gransfhar

Problem 3.17 (Easy) Modify your solution of the previous problem to proela parse tree, as was
done in the previous section.

Problem 3.18 (More dificult) Modify your solution of Problem 3.16 to produce leftursive parse
trees like the one given above. How general is your method?

Problem 3.19 Modify your solution so that so-calldteavy NPse.g., noun phrases with relative
clauses, are disallowed in possessives. For instance,alfmving NP should be ungrammatical
according to the grammar: “* a program that halts’s prograneni.

Prepositional Phrases

Prepositional phrases (PP) are used in English in a varfetyags. They can play the role of an
adverbial phrase modifying the entire action described bgrh and its complements, as in

Terry wrote a program with a computer.
Every professor wrote a book for a dollar.

And like relative clauses, they can modify a class of objgatsn by a noun, e.g.,

Every program in Bill's book halts.
Alfred met a student with a problem.

3.8. Problem Section: DCGs 65

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

In Problem 4.6, we will see yet another role for PPs.

Typical analyses of the structure of English sentencesaiing PPs place them as siblings to
the constituent they modify. Thus, adverbial PPs are gibliof VPs (or, under certain conditions,
Ss), and noun-modifying PPs are siblings of N (like relatilauses). There are two ways that such
a configuration could come about. Consider the VP-modifgdgerbial PPs. The PP could occur
under the S node, just as the VP does. Alternatively, a new noder the S could cover both the VP
and the PP. Usually, this node is considered to be a VP itsei§ allowing for a left-recursive VP
structure. Linguistically, this analysis may be preferbetause it allows for several adverbials to
follow a VP. The left recursion, however, presents a proliemniProlog; therefore, we will assume
the former analysis. Indeed, the positioning of relativeusks directly under NP as a sibling of
the noun was chosen for the same reason, to avoid the lefsienumplicit in the more traditional
analysis.

Note that the first and last example sentences include the satagories of lexical items, i.e.,

PN TV DetN P Det N

Yet intuitively the first PP modifies the verb phrase—it iswréing of the program that is performed
with a computer—while the second does not modify the VP—itas the meeting of the student
that is performed with a problem. These two sentences asedfmtacticallyambiguousthough
semantically only one of the tweadingsseems plausible. This phenomenon of ambiguity in the
structural placement of PPs is often called Bfeattachment problem

Problem 3.20 Write DCG rules to allow adverbial and NP-modifier PPs suchhasse above. You
will need rules not only for the prepositional phrases theiviss but also for their use in modifying
VPs and NPs. Is your grammar ambiguous, that is, does it ajstiie PP attachment ambiguities
discussed above? How might you augment the grammar (prddumih semantic information) so
that spurious readings are filtered out?

Subject-Verb Agreement

In Section 3.7 we alluded to the phenomenon of subject-vgrbeanent in English. This problem
explores the phenomenon in greater detail.

In English, subjects agree with the verb they are the subjelsbth in person (first, second or
third) and in number (singular or plural). For instance, $tiing “*| writes programs” is not a
grammatical English sentence because the word “I” is afiiesson, singular noun phrase, whereas
the verb “writes” is third-person, singular. On the othentha“l write programs” is grammatical
because “write” is a first-person singular verb. Of coursés also second-person singular as in
“you write programs” and any-person plural as in “they wytegrams”, “we write programs”, etc.

The problem is compounded in that in complex noun phrases, as “a programmer” or “all
programmers”, both the determiner and the noun carry agreemformation. So we have “all
programmers write programs” but not “* all programmers @giprograms” or “* a programmers
write programs” or “* a programmers writes programs”. A fisamplication is the fact that certain
determiners, nouns, and verbs are unmarked for person obewon both. For instance, as we
have seen above, the word “write” viewed as a plural verb imanked for person. The determiner
“the” is unmarked for number, as seen in “the programmer” ‘dhd programmers”. Rarer are
nouns that are unmarked for number. Examples include $edcsimmation plurals (e.gs¢issors
binoculars jeang, certain foreign words (e.gcorps chamois although there is a fference in
pronounciation despite identical spelling in the sing@ad plural), certain other words ending in

66 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

-s (e.g.,crossroadsspeciesserie3, some nationality terms (e.gChinese Eskimg and some other
idiosyncratic nouns (e.goffspring, aircraft), and certain zoological terms (e.fish sheepsalmon
etc.

Thus, we have “a fish swims” and “all fish swim”. We could harttiis phenomenon by having
separate lexical entries for the singular ndish and the plural noufish just as we would have
separate entries for the notish and the verlfish but a nicer solution is to allow entries to be
unmarked for person ayat number. Nonetheless, the less elegant solution is stitad for the
first/second-person singular venlrite, since leaving it unmarked for person would allow the string
“* he write a program” as a sentence.

Problem 3.21 Extend the grammar so that it requires that subjects agrdk werbs in sentences
and that determiners and nouns agree as well. You shouldisibytadding a single extra argument
to appropriate nonterminals to hold agreement informatiddiscuss the following facets of the
solution:

1. How the various strings are or are not admitted (parsed)tgygrammar.

2. How certain lexical entries can be underspecified foraiaragreement information. Demon-
strate at least the full paradigm of agreement of the veali and the verb be, that is, make
sure you have dficient lexical entries for all the forms of the verb.

3. What you do for proper nouns and pronouns.

4. Why it is preferable to use only one argument position §geament.

(For the purposes of these problems you can think of pronbke$, we, he, etc. as merely a
type of proper noun.)

Relative Clause Agreement

Agreement in English does not stop at the subject and theofettiie whole sentence. Even sub-
clauses like relative clauses display this phenomenons Tristring

A program that concerns Bertrand halted.
is a grammatical sentence whereas
*A program that concern Bertrand halted.

is not, even though in both cases the subject “a prograngrées with the verbalted The problem,
of course, is that thanplicit subject of the verb phrase in the relative clause “concerir&@®l” is
that same phrase “a program” (often called kisadof the relative clause), but the vecbncernis
either plural or first- or second-person singular, whereaprogram” shows third-person singular
agreement.

Problem 3.22 Extend your grammar so that it captures the phenomenon cfesigent between
heads of relative clauses and the verbs in the relative eadgain demonstrate that your solution
interacts appropriately with normal subject-verb agreeenderspecified lexical entries, etc.

3.8. Problem Section: DCGs 67

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Subcategorization

We have seen in previous grammars thdfedent verbs require flierentcomplementsthat is,
phrases following them in the verb phrase. So, for instatieeyerbwrote requires a single noun
phrase following it as in the VP “met Bertrand”. Thus thergri*met Bertrand a book” is not
a grammatical VP (or anything else for that matter), nor i;1&t”. On the other hand, the verb
gaverequires (or, in the linguistics jargosubcategorizes fprtwo NPs, not one, as in the VP
“gave Bertrand a book”, but not “*gave Bertrand”. This pherenon ofsubcategorizatiohas been
primitively encoded in previous grammars in the distinetieetween TVs (transitive verbs) and Vs
(intransitive verbs). In this problem we will investigatgbeategorization in more detail.

One possible solution to the subcategorization problem &ssociate another argument to each
verb, its subcategorization type. Then for each type, weldvbave a rule that admitted only verbs
of the appropriate type. Here is a piece of a grammar usirsgntigithod of subcategorization (but
ignoring agreement, verb form, etc.):

Program 3.13
vp --> v(intransitive).
vp --> v(transitive), np.
vp --> v(ditransitive), np, np.
vp --> v(dative), np, pp.

v(intransitive) --> [halted].
v(transitive) --> [met].
v(ditransitive) --> [gave].
v(dative) --> [gave].

(By dativehere we mean that the verb requires a noun phrase and a pi@paigdhrase with the
prepositionto as in “gave the book to Bertrand”. Thus the vefvehas two subcategorization
frames: ditransitive and dative.)

The phenomenon has been called subcategorization beteusgtta argument puts verbs into
subclasses, or subcategories, of the main categaty Estimates by linguists as to the number of
differentsubcategorization framese., types of subcategorization, vary, but at least 30 sutes
are postulated for English by Gazdar et al. (1985) and piglaany more would be required.
Estimates run as high as the tens of thousands (Gross, 1B@5dhis reason (and the fact that we
have already given this solution), we will not use this sédttack on the problem.

Instead, we will use a é@ierent technique for handling subcategorization. We willeha single
rule allowing a verb phrase to be formed from a verb followgdabsequence of zero or more
complements where a complement is either a noun phrase epagitional phrase. The verb will
have a list of complement types in its lexical entry. Foramste, the verlgavemight have the
list [np,np], the verbhalted might have the empty list . While building up the sequence of
complements, the grammar will keep track of the types of tplements and make sure they
match the list in the lexical entry for the verb. The sequesfceomplements “Bertrand a book”
would have the associated list of typgesp,np]. Since this matches the lexical entry for the verb
gave the grammar would allow “gave Bertrand a book” but sinceoésh't match the empty list,
the grammar would disallow “*halted Bertrand a book”.

Problem 3.23 Extend your grammar so that it handles subcategorizatiquirements of verbs
in the way just described. Demonstrate that it allows appedp verb phrases and sentences and

68 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

conversely for non-sentences. Then extend the soluti@ptare the fact that the verdpaverequires
a prepositional phrase with the prepositiom whereasboughtrequires a PP with the preposition
from, e.g., “bought a book from Bertrand”.

Notice that in either of the subcategorization methods ioaatl here a PP complement is (a
subconstituent of) a sibling of the verb, rather than a sipbf the VP as adverbial PPs are. This
can be a further source of the kind of grammatical ambiguggwksed in Problem 3.20.

3.9 Bibliographic Notes

Edinburgh Prolog syntax is so simple that a detailed accofitite syntax is rarely required when
programming. The manual for each particular Prolog impletaition usually contains a full de-
scription of the syntax for reference purposes. Appendikthe DEC-10 Prolog manual contains
such a description for the Edinburgh family of Prologs (Baw&982).

Functional programming (Section 3.3) has been developeddny of the same reasons as logic
programming has been (Backus, 1978JtoEs to introduce functional and equational notions into
logic programming languages have been numerous. A good-sexgion can be found in the book
by DeGroot and Lindstrom (1986). Equality (i.e., equatidogic) as a s#icient basis for logic
programming is developed by O’Donnell (1985).

The term “logical variable” (Section 3.3) was introducedbyH. D. Warren (1977) to distin-
guish the specific procedural properties given to the viesin definite clauses by Prolog, or more
generally by SLD proof procedures, from both the variablesnperative languages (names for
assignable locations) and the variables of functionallaggs (names for values). The distinguish-
ing characteristics of logical variables include theierim standing for as yet unfilled parts of a term
and their ability to become coreferential through variable/ariable bindings.

Lists as a data structure (Section 3.4) are heavily usedhiguiages other than Prolog. In par-
ticular, the programming languagsp (which stands forist processing) makes heavy use of lists.
Many introductoryLise books are available, but few introduce the subject as simpti/clearly as
the originaluise 1.5 Programmers’ Manual (McCarthst al,, 1965). The modernsp dialectscueme
is thoroughly discussed in an excellent textbook by Abebswth Sussman (1985).

The notion of modes (Section 3.4.1) for predicates in logagpams appeared first in the DEC-
10 Prolog. Mode declarations allowed the DEC-10 Prolog dempo generate better code for
predicates known to be used only in certain modes (Warrefi{; 2®arren, 1979). The concept has
since then been explored as an additional control mechdoidoygic programs (Clark and McCabe,
1981; Naish, 1986) and in global program-optimization reghes (Mellish, 1985).

Mode assignments depend on the particular order of callsgrogram. Thus correct mode
assignments are program properties tied to the prograwéedural interpretation. Other properties,
such as what types of arguments predicates accept, depbnoiathie declarative interpretation of
programs (Mycroft and O’Keefe, 1984; Mishra, 1984). Typsigsments to predicates can be
useful both for program verification and for compilation. tkieds to compute both declarative
and procedural properties of Prolog programs, among thederand type assignments, often rely
on the techniques adbstract interpretationa means of analyzing the properties of programs by
interpreting them over simplified data domains in which theperties of interest are computable
(Mellish, 1986; Jones and Sgndergaard, 1987).

As we noted before, the resolution method (Section 3.5) éstdiRobinson (1965). Resolution,
substitutions, and unification are covered in any of the mated deduction books mentioned on
Section 1.5; Robinson’s treatment (1979) is particulaiyac The special case of SLD resolution is
discussed by Lloyd (1984), who gives a detailed mathemat@unt of the semantics of Prolog.

3.9. Bibliographic Notes 69

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Definite-clause programs define relations overtleebrand universgthe set of all ground terms
built from the constants and function symbols in the progrdinis possible to represent the tape
of a Turing machine as a term, and it is then ndliclilt to show that the relation betweeen initial
and final configurations for any Turing machine can be repiteskby a definite-clause program
(Tarnlund, 1977). Furthermore, it is possible to show #rgt computable function on terms, for a
suitable definition of computation on terms, can be represewithout encoding of the data by a
definite-clause program (Andreka and Nemeti, 1976). Theath@mputation model given by SLD
resolution is rather similar to the alternating Turing maehmodel (Shapiro, 1982). Background
material on notions of computability and decidability fraammputer science and logical perspec-
tives can be found in the books by Hopcroft and Ullman (197%8) Boolos and Jéey (1980)
respectively.

The concept of definite-clause grammar (Section 3.7) wasdnted by Pereira and Warren
(1980). DCGs are a simplification of Colmerauarigtamorphosis gramma(4978), which were
the first grammar formalism based on Horn clauses. Metanesiplyrammars and definite-clause
grammars are two instances lofjic grammars grammar formalisms whose meaning is given in
terms on an underlying logic. Even from a fixed logic such dmde clauses, one can construct
distinct formalisms depending on what grammatical notions chooses to make part of the for-
malism instead of representing explicitly by grammar ruEEgsamples of such formalisms include
extraposition grammars (Pereira, 1981), definite-clawgestation grammars (Abramson, 1984) and
gapping grammars (Dahl and Abramson, 1984). The basicmofitogic grammar has also been
instantiated within other logics, in particular Roundsgigits for linguistic descriptions, which for-
malize certain aspects of DCGs to give logical definitiongifatural recognition-complexity classes
of formal languages (Rounds, 1987).

The construction of fcient sorting algorithms (Section 3.4.1) is of course a vargortant
problem in computer science. The most thorough design aalgises of sorting algorithms (Knuth,
1973) have usually been done for random-access memory neactddels. It is possible to rewrite
many of those algorithms (eg. bubblesort, quicksort) fad&y's declarative model, but in general
the computational cost of the algorithm will change, beedbe sequences to be sorted are encoded
as lists rather than as arrays with direct access to all elesnélgorithms specifically designed to
sort lists, such as mergesort, are more suitable for impMatien in Prolog, which is the reason for
our choice of example.

Tree grammars (Section 3.6) were introduced as the gramahatbunterparts of generalized
automata that operate on trees (Rounds, 1969). The yietdgolar tree grammars (finite-state-tree
automata) are exactly the context-free languages, andi¢tasyof context-free tree grammars are
exactly the indexed languages (Rounds, 1970). Indexeditages have another characterization, the
indexed grammarmtroduced by Aho (1968; Hopcroft and Ullman, 1979), which much closer
in form to definite-clause grammars.

Arithmetic expression simplification is a particular cas¢he general problem of rewriting an
expression according to a set of equations giving the atgebaws of the operators in the expres-
sions, e.g., associativity or commutativity. The rewgtimethod we suggest in Section 3.6 is rather
simple-minded. More sophisticated approaches involvenau= to determine aarientationfor
equations so that the result of applying an equation is inesappropriate sense simpler than the
starting expression, and methods éompletinga set of equations so that the order of application of
oriented equalities does not matter. These techniquesiareyed by Huet and Oppen (1980) and
Buchberger (1985).

Subcategorization has been a primary phenomenon of ihieresodern linguistics, and there
are as many analyses of the phenomenon as there are linghestiries, if not more. We start by
using a subcategorization method (Program 3.12) loosedgdan the terminology of Montague

70 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

grammar. The first augmentation (Program 3.13) is inspise@&zdar et al. (1985). Section 3.8.2
works toward an analysis common in the logic programminglfiglwas first published by Dahl
(1981) and extended by several authors such as McCord (1988)lar analyses employing lists,
but in slightly diferent ways, can be found in HPSG (Sag and Pollard, 1986) ahAShieber,
1985a).

The PP attachment problem (Section 3.8.2) has received wutmhtion in the computational
linguistics literature. A particularly detailed discussiis that of Church (1980; Church and Patil,
1982). Pereira (1982) discusses the problem from a logimgyar perspective.

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Chapter 4

Further Topics in
Natural-Language Analysis

This digital edition of Pereira and ShiebePsolog and Natural-Language Analy-
sisis distributed at no charge by Microtome Publishing undecenise describ

in the front matter and at the web site. A hardbound editi@B{N 0-9719777
0-4), printed on acid-free paper with library binding andliding all appen
dices and two indices (and without these inline interrup)o is available fro
www . mtome . comand other booksellers.

In this chapter, we will be concerned with extending the bdjiges and coverage of grammars
in two ways. First, we will explore grammars that express oy syntactic but also semantic
relationships among constituents. These grammars incagoonstraints on how the meaning of
a phrase is related to the meanings of its subphrases. Segemdll extend the range of syntactic
constructions covered by previous grammars. Both of thegkslof extensions will prove useful in
the next chapter in the development of a simple naturaldagg question-answering system.

4.1 Semantic Interpretation

First, we turn to the incorporation of semantic informatioto a DCG. A common way to model the
semantics of a natural language is to associate with eaels@Hogical form that is, an expression
from some logical language that has the same truth conditisnthe phrase. A simple recursive
method for maintaining such an association is possiblesifitigical form associated with a phrase
can be composed out of the logical forms associated withuliparts. Thicompositionamethod
for modeling the semantics of a natural language is the lakrof the highly influential work by
the logician Richard Montague and his students and follewer

Montague used a higher-order logic based on the typed lacdidalus,ntensional logi¢ as the
language for logical forms. We will describe a vastly sirfiptl form of compositional semantics
inspired by Montagovian techniques but using first-ordgidextended with an untyped lambda
calculus as the logical form language. Then we will show hoehsa semantics can be encoded in
a DCG which builds logical forms in the course of parsing. Ahtieique of general utilitypartial
execution will be introduced as a method with which we can simplify B€G. We will then

71

72 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

proceed to discuss several topics in the encoding of secsanamely, quantifiers, quantifier scope,
and (after the appropriate syntactic background in Sedtigpfiller-gap dependencies.

4.1.1 The Lambda Calculus

In the semantics we will develop, logical forms for sentenwél be expressions in first-order logic
that encode propositions. For instance, the sentenaestt halts” and “Every student wrote a pro-
gram” will be associated with the first-order logic expressihaltyshrdlu) and {s)studengs) =
(Ap)(programp)&wrotg(s, p)), respectively.

We again emphasize thefitirences between the FOL notation we use here (see Sect)an.3
the notation for Prolog. The filerences help to carefully distinguish the abstract notidogical
forms from the particular encoding of them in Prolog. FOLnfiatas will later be encoded in Prolog
not as Prolog formulas, but as terms, because our prograntieating the formulas akata

Most intermediate (i.e., nonsentential) logical formshia grammar do not encode whole propo-
sitions, but rather, propositions with certain parts nmgsiFor instance, a verb phrase logical form
will typically be a proposition parameterized by one of tiiitées in the situation described by the
proposition. That is, the VP logical form can be seen &snationfrom entities to propositions,
what is often called aropertyof entities. In first-order logic, functions can only be sified with
function symbols. We must have one such symbol for each iiumthat will ever be used. Because
arbitrary numbers of functions might be needed as interatedibgical forms for phrases, we will
relax the “one symbol per function” constraint by extendihg language of FOL with a special
function-forming operator.

The lambda calculus allows us to specify functions by deswgithem in terms of combinations
of other functions. For instance, consider the functiomfiem integer, call ik, to the integex + 1.
We would like to specify this function without having to giitea name (likesuccas we have done
previously). The expressiot+1 seems to have all the information needed to pick out whinbtfan
we want, except that it does not specify what in the expraessiarks the argument of the function.
This problem may not seem especially commanding in the dage dunctionx + 1, but when we
consider the function specified by the expressiony, it becomes clear that we must be able to
distinguish the function that takes an integesnto the sum of that integer aiydrom the function
that takes an integgronto the sum of it andt.

Therefore, to pick out which variable is marking the argutmathe function, we introduce
a new symbol 2" into the logical language (hence the name “lambda cal¢ulu$o specify a
function, we will use the notation

xXé

wherex is the variable marking the argument of the function &nid the expression defining the
value of the function at that argument. Thus we can spec#ysilccessor function as.x + 1
and the two incrementing functions can be distinguishedbas+ y and 1y.x + y. We will allow
theselambda expressionanywhere a functor would be allowed. For instance, the folg is a
well-formed lambda calculus term:

(Axx+ 1)(3)

Intuitively, such a function application expression shitloé semantically identical to the expression
3+ 1. The formal operation called (for historical reasofisgductioncodifies this intuition. The
rule of B-reduction says that any expression of the form

(Ax.¢)a

4.1. Semantic Interpretation 73

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

can be reduced to the (semantically equivalent) expression

[olix=a

that is, the expressianwith all occurrences ox replaced witha. We ignore here and in the sequel
the problem of renaming of variables, so-called¢onversionto avoid capture of free variables.
In the examples to follow, we will always make sure that Valea in the various lambda-calculus
expressions being applied are distinct. The scoping riléyaog (Section 2.5.1), being geared
toward logical languages in the first place, guarantee tipeogpiate scoping of variables in the
case of the encoded logical language as well. In fact, thosmésof the advantages of using Prolog
variables to encode variables in the logical form languageye will do in Section 4.1.3 below.

We will see in the next section how the lambda calculusgnelduction can be used to provide
a simple compositional semantics for a fragment of English.

4.1.2 A Simple Compositional Semantics

We will now consider how to specify a semantics for the fraghwé English given as the context-
free grammar in Section 2.7 and axiomatized in Programsritl8d.0. We will associate with each
context-free rule a corresponding rule for composing tlygckl forms of the subconstituents into
the logical form for the parent constituent. For instansspaiated with the rule

S— NP VP
we will have the rulé

Semantic Rule 1:If the logical form of theNP is NP and the logical form for th&/Pis VP’
then the logical form for th&is VP’ (NP').

and with the rule
VP = TV NP
we will associate

Semantic Rule 2:If the logical form of theTVis TV’ and the logical form of th&lP is NP’
then the logical form for th&Pis TV (NP’).

For instance, the sentenceikorLu halts” can be decomposed into an NP and a VP. Suppose the
logical form for the NP $arpru” is shrdluand that for the VP “halts” idialts Then by Semantic
Rule 1 above, the logical form for the whole sentence wilhlbégshrdlIu), an expression which,
under the natural interpretation and idealizations, hasstime truth conditions as the sentence
“surpLU halts”. So far, no use of the lambda calculus extension toditder logic has been needed.

Now consider the sentence “Bertrand wrd®incipia’. Again, we will have the log-
ical forms for the proper nouns “Bertrand” andPrincipia” be bertrand and principia re-
spectively. The logical form for the transitive verb “wrbdtavill be the lambda expres-
sion Ax.Ay.wrotgly, X). By the second rule above, the VP “wroRrincipia” will be associ-
ated with the expressiomx.Ay.wrote(y, X))(principia), which by B-reduction is equivalent to
Ay.wrote(y, principia). Now by the first rule above, the sentence “Bertrand wietiecipia” is

1By convention, we will notate variables representing thgidal form associated with a nonterminal by adding a prime
sufix.

74 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

wrote(bertrand, principia)

NP VP
bertrand Ay.wrote(y, principia)
bertrand \Y% NP
Ax.Ay.wrote(y,x) principia
wrote principia

Figure 4.1: Parse tree with logical forms

associated with the logical formiy.wrotgly, principia))(bertrand, which, g-reducing again, is
equivalent towrotg(bertrand principia). The derivation can be summarized in the parse tree of
Figure 4.1, which has been annotated with appropriatedd@icms. Similar semantic rules could
be given to the other context-free rules in the grammar tmathe building of logical forms for a
larger class of phrases.

Exercise 4.1 What do the following lambda-calculus expressions reda@e t

1. (Axhaltgx))(shrdlu)
2. ((Ay.ax-haltgx))(shrdlu)(lunar)
3. (y.ap.Ax.wantgx, p(y)))(shrdlu(1zhaltg2))(terry)

4. (y.yy)(1y.yy)

4.1.3 Encoding the Semantic System in Prolog

We now turn to the issue of encoding such a grammar with coitipeal semantics in Prolog.
Several problems face us. First, we must be able to encodtmldgrms in Prolog. Second, we
must be able to associate with each constituent an encoadditaexpression. Finally, we must be
able to encode the process@®feduction.

As mentioned before, we will encode all FOL expressions-hiiotmulas and terms—as Pro-
log terms, since we will be manipulating them as data withem DCGs. As it turns out, we will
encode FOL variables in Prolog as Prolog variables, and r@ttfon symbols as Prolog function
symbols, but this is where the isomorphism stops, for FOLntjtiars, predicate symbols, and con-
nectives will also receive encodings as Prolog functiontsyis In particular, we will encode the
universal quantificatiorMX)¢ with the Prolog termall (X, ¢’), whereg’ is the Prolog encoding of
¢. Similarly, AX)¢ is encoded asxists(X, ¢’).2 The implication and conjunction connectives

2From a strict logical point of view, the use of Prolog variblko encode FOL variables is incorrect, being a case of
confusion between object variables (those in the logicahj@nd metalanguage variables (those in Prolog, the nmeadeye
used here to describe the relation between strings andaldgians). It would be possible to avoid this confusion beswe
object and metalanguage variables with a somewhat morelatepl description. However, this particular abuse oétioh,
if properly understood, is unlikely to cause problems andgs substantial benefits in program simplicity.

4.1. Semantic Interpretation 75

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

are encoded with the binary infix functor symbois-" and “&” respectively. All FOL predicate and
function symbols are encoded by their homonymous Prologtfoim symbols.

Lambda expressions consist of a variable and a logical sgfme which uses that variable.
We will encode the pairing of the variable with the expressiath a new infix binary Prolog
operator, the caret™. Thus the lambda expressiotx.x + 1 would be encoded in Prolog as
X" (X+1). Similarly, the lambda expressiarx.Ay.wrote(y, X) would be encoded as the Prolog term
X"Y wrote(Y,X), assuming right associativity of ".3

We solve the second problem—associating an encoded lamkpeession with each
constituent—using the by now familiar technique of addingaagument position to each nonter-
minal to hold the logical form encoding. So a skeletal DCGrigdr combining an NP and VP to
form an S (ignoring for the moment the constraints on thedalgiorms expressed in Semantic Rule
1) will be:*

s(S) --> np(NP), vp(VP).

which can be read as “a sentence with logical féroan be formed by concatenating a noun phrase
with logical formNP and a verb phrase with logical fortp”.

Finally, we model the application of a lambda expression &zsequerg-reduction with the
predicatereduce. The intended interpretation of a literedduce (Function, Arg, Result) is
thatResult is thes-reduced form of the application of the lambda express$ianction to the
argumentrg. We implement the predicate with the following single urituse.

Program 4.1
reduce(Arg " Expr, Arg, Expr).

The earlier examples g#-reduction can now be handled by this Prolog encoding. Feor in
stance, corresponding to the reduction of the applicatiothéltgx))(shrdlu) to the logical form
haltqshrdlu) we have the following Prolog dialogue:

?- reduce(X"halts(X), shrdlu, LF).
LF = halts(shrdlu)

The other examples are handled similarly.

Thereduce predicate performs a single outermost reduction. It do¢setuce a lambda ex-
pression until no further reductions can be performed. ®h#tdoes not reduce tcanonical form
For instance, consider an expression that has a variabtelimyual used as a function in the body of
the lambda expression, e.gp.p(a). When this lambda expression is itself applied to, gy (y),
the result can be reduced fg¢a). The Prolog encoding of the former expressiBiP (a), is not
even well-formed. Even if it were, theeduce predicate does not perform internal reductions, but
only the reduction associated with the outermost expras$ithen expressions with internal appli-
cations like this are needed, we will be forced to implemhbatihternal applications with explicit
reduce literals. For instance, the troublesome lambda expresgigu(a) could be implemented as
P"Q wherereduce (P, a, Q) holds.

Using thereduce predicate, we can now directly encode the compositionabs¢imrules de-
scribed above. For the first semantic rule applying the Viclddorm to that of the NP, we add to
the DCG an appropriate extra condition.

SThere is precedent for the use of the caret to form lambdaessfms. The notation that Montague himself used for the
lambda expressionx.¢ was (ignoring details of intensionality operatorg), Which we have merely linearized.
4For ease of expression within the Prolog syntax, we drop tineipg convention when writing Prolog clauses.

76 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

s(S) --> np(NP), vp(VP), {reduce(VP,NP,S)}.
Similarly, for the verb-phrase rules, we have,

vp(VP) --> tv(TV), np(NP), {reduce(TV, NP, VP)}.
vp(VP) --> iv(VP).

Lexical entries must now include semantic information.

tv(X"Y wrote(Y,X)) --> [wrote].
iv(X"halts(X)) --> [halts].
np(shrdlu) --> [shrdlu].
np(terry) --> [terry].

Given this augmented grammar and lexicon, which is meradydinect encoding of the type
of compositional semantic rules presented at the beginofrtis section, we can parse simple
sentences while building encodings of their logical form#hie process.

?- s(LF, [shrdlu, halts], [1).
LF = halts(shrdlu)
yes

?- s(LF, [terry, wrote, shrdlu], []).
LF = wrote(terry, shrdlu)
yes

and so forth.

4.1.4 Partial Execution

In this section, we will introduce a technique callegktial executiorwhich is a device of general
utility for the manipulation of Prolog (and other logic anghttional) programs. Partial execution
of a program involves the replacing of certain computatitwag would normally be performed at
execution time by changes to the program itself.

Pure Prolog programs are particularly well suited for phdkecution because this technique is
just a diferent way of applying the basic Horn-clause computatioa, ngsolution, that is used for
normal execution.

For instance, consider the DCG rule

s(S) --> np(NP), vp(VP), {reduce(VP,NP,S)}.

The computation of theeduce condition is deterministic and involves only the mutualdiirg of
several variables. If we change the clause by performinggthéndings in the clause itself, we can
actually remove theeduce literal, since its purpose has been fulfilled. In the caseatifreduce
merely requires thaiP be of the fornNP"S. If we guarantee this in the clause, i.e.,

s(S) --> np(NP), vp(NP"S).

4.1. Semantic Interpretation 77

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

we can leave fb the application, as it is already implicit in the clause. Theuse is said to have
beenpartially executed with respect to treduce predicate
Similarly, we can partially execute the transitive VP clats get

vp(VP) --> tv(NP"VP), np(NP).

Partial execution becomes more complex in the face of nenaéism. If the literal we are
removing from a clause by partial execution has severalisols, we must replace the original
clause by all of the possible partial executions of the aagiClearly, partial execution of a clause
with respect to a literal is useful only if there are a finitemher of solutions to the literal in the
context of the clause. If there are potentially an infinitendber, then we must in general wait
until run time to execute the literal, in the hope that thevjines computation will provide enough
restrictions on the goal literal to limit the search space.

From now on, we will often eschew explicitduce literals by implicitly partially executing the
clauses so as to remove them. We will discuss partial exa@tirtimore detail in Section 6.4.

4.1.5 Quantified Noun Phrases

In attempting to extend the technique of compositional s#ios to the rest of the context-free
grammar in Program 3.12, we immediately run into problemth whe rule for quantified noun
phrases. Consider a sentence such as “every program Wditshatural first-order logical form for
this sentence is

(YX)program(x) = haltgx)

Using the encoding of FOL as Prolog terms, this would be
all(X, program(X) => halts(X))

Notice that the main functor of the expression is the unalgrsantifier, whereas the application
of the logical form for “halts” will always result in the mafanctor of the output being the predicate
halts This problem in term manipulation is actually the formdle® of a much deeper problem
noticed by Montague, which led to a drastic reorganizatidm®compositional semantics. Unlike
the simple two-rule grammar above, in which verb-phrasécidgorms apply to noun phrases,
Montague required noun phrases (which are, of course, tiresof the quantifier functors) to apply
to verb phrase arguments. For instance, for the senteneey‘program halts”, the verb “halts” will
retain its logical formix.haltgx), but the noun phrase will have the LF.(V p)progran(p) = q(p).
Applying the noun phrase LF to that of the verb phrase, we have

(10.(Yp) program(p) = q(p))(Ax.halts(x)) =
(Yp)progran(p) = (Ax.haltx))(p) =
(Yp)progran(p) = halts(p)

The DCG rule encoding this revised application direction is
s(S) --> np(VP"S), vp(VP).

The verb phrase logical forms will be encoded as before. Nwuases, on the other hand will
now be of the form

Q"all(M, (program(M) => R)) ,

78 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

whereR is the application ofy to M, that is, reduce(Q,M,R) holds. (Recall that such internal
applications would not be performed automatically by tkduce predicate, so we must list them
explicitly.) In fact, we can remove this extra condition bgripal execution with respect to the
reduce predicate, yielding the rather more cumbersome

(M"R) "all(M, (program(M) => R))

The LF associated with the noun “program” we will take to be #imple property of being a
program, that isdx.program(x) encoded in Prolog & program(X) . Determiners will be functors
from noun logical forms (simple properties) to the compléx dgical forms like that above. Thus,
the determiner “every” will have the logical form

Ap.A9.(YX)p(x) = q(x)
encoded in Prolog (with applications removed by partiakcexien) as
E'P)"X"Q"allX, (P => Q)
The lexical entry for “every” is therefore
det(X'P)"(X"Q "allX,(P => Q)) --> [every].

As implied above, determiners will be functions on their n@uguments, so the DCG rule for NP
formation (ignoring relative clauses for the moment) is:

np(NP) --> det(N"NP), n(N).

Exercise 4.2 Check that these rules and lexical entries allow for theofelhg parse, and give its
proof tree.

?- s(LF, [every, program, halts], []).
LF = all(X, (program(X) => halts(X)))
yes

Given the reorientation of application, we have developedppropriate LF for determined
noun phrases, but we must rework the encoding of proper naanimgs we were using before.
Clearly, their LFs must be modified to respect the new apipdinalirection. In particular a proper
noun like “surpLu” must, like all NPs, be a function from VP-type LFs to full $ence LFs; that is,
it must be of the form

VP"S ,

wherereduce(VP, shrdlu, S) holds. By partial execution, we have the relatively unitivei
logical form

(shrdlu”S)"s
In any case, the lexical entry

np((shrdlu®S)"S) --> [shrdlu].

4.1. Semantic Interpretation 79

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

allows the parse

?- s(LF, [shrdlu, halts], [1).
LF = halts(shrdlu)
yes

as before.

The logical form for $urpLU” SEEMS UNINtuitive because it is not the encoding of any @anb
expression. The position that should be occupied by a Varialtbccupied by a constaghrdlu.
Actually, we have seen a similar phenomenon before in LFgléerminers and noun phrases, in
which the same position is occupied by a full lambda expogsdPartial execution of applications
can yield bizarre expressions, exactly because the execigtipartial. Only part of the work of
B-reduction is done, the remainder being performed at rue tithen the appropriate variables are
instantiated. Thus, we should not worry too much that thevdimg of the lambda expressions we
are using has certain properties that the calculus in theeadbsloes not have.

Finally, modifying the transitive verb phrase rule, agaihaeging the direction of
application, consider the verb phrase “wrote a program”ictvhshould have the LF
Az(dp)programp)&wrote(z, p). Recall that the LFs for “wrote” and for “a program” are, pes-
tively, Ax.dy.wrotg(y, X) and Aqg.(3p)progran(p)&q(p). To simplify the derivation, we vary the
treatment of transitive verbs slightly, taking the LF forrote” to be Ax.Ay.wrotgx,y). Thus we
want the VP’s LF to bezNP/(TV'(2)).

Exercise 4.3 Check that this lambda expression is the appropriate onéd\Nf8rand TV as in the
example above.

In Prolog, we have:
vp(Z~S) -—>
tv(TV), np(NP),

{reduce(TV,Z,IV),
reduce(NP,IV,S)}.

which through partial execution is equivalent to
vp(Z~S) --> tv(Z"IV), np(IV'S).
The full fragment of Program 3.12, augmented so as to prolgieal forms, is given below.
Program 4.2
:- op(500,xfy,&).
:- op(510,xfy,=>).
s(S) --> np(VP"S), vp(VP).

np(NP) -->
det(N2°NP), n(N1), optrel(N1°N2).
np((E"S)"S) --> pn(E).

vp(X~"S) --> tv(X"IV), np(IV"S).
vp(IV) --> iv(IV).

80

Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

optrel ((X"S1)"(X"(S1 & S2))) --> [that], vp(X"S2).
optrel(N"N) --> [].

det(LF) --> [D], {det(D, LF)}.
det(every, (X"S1)"(X"S2)"all(X,(S1=>S2))).
det(a, (X"S1)"(X"S2) "exists(X,S1&S2)).

n(LF) --> [N], {n(N, LF)}.
n(program, X program(X)).
n(student, X"student(X)).

pn(E) --> [PN], {pn(PN, E)}.
pn(terry, terry).
pn(shrdlu, shrdlu).

tv(LF) --> [TV], {tv(TV, LF)}.
tv(wrote, X" Y wrote(X,Y)).

iv(LF) --> [IV], {iv(IV, LF)}.
iv(halts, X"halts(X)).

Exercise 4.4 Check that the grammar as augmented now allows the follopénges, and give their
proof trees:

?- s(LF, [terry, wrote, shrdlu], []).
LF = wrote(terry, shrdlu)
yes

?- s(LF, [every, program, halts], []).
LF = all(P,program(P)=>halts(P))
yes

?- s(LF, [every, student, wrote, a, program], []).
LF = all(S,student(S)=>
exists (P,program(P)&
wrote(S,P)))
yes

Exercise 4.5 How does this grammar handle the semantics of relative elsis

The role of unification and the logical variable in increnadiytbuilding complex representations

is clearly evident in DCGs that describe the relation betwestural-language sentences and their
logical meaning representations.

We can illustrate the order in which a logical form is builrithg parsing by the analysis trace of

the sentence “Every program halts”. The trace has beenifimaigby replacing variables referring

4.1. Semantic Interpretation 81

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

to string positions witt? and by omitting uninteresting subgoals. String positiomsenchanged
from lists to integers for readability.

?7- s(LF, 0, 3).
(1) 0 Call: s(S_1,0,3)

(2) 1 Call: np(VP_2"°S_1,0,7)
(3) 2 Call: det (N2_3"VP_2"S_1,0,7)
(5) 3 Call: det (every,N2_3"VP_2"S_1)
(5) 3 Exit: det (every, (X_57S1_5) "
(X_5°52_5)"
all(X_5,581_5=>82_5))
(3) 2 Exit: det ((X_57S1_5)"
(X_5°582_5)"
all(X_5,81_5=>52_5),0,1)
(6) 2 Call: n(N1_6,1,7)
(8) 3 Call: n(program,N1_6)
(8) 3 Exit: n(program,X_8 program(X_8))
(6) 2 Exit: n(X_8 program(X_8),1,2)
(9) 2 Call: optrel ((X_8 program(X_8))"
X_5°81_5,2,7)
(9) 2 Exit: optrel ((X_5"program(X_5))"
X_5"program(X_5),2,2)
(2) 1 Exit: np((X_5°S2_5)"
all(X_5,program(X_5)=>S2_5),0,2)
(11) 1 Call: vp(X_5-52_5,2,3)
(12) 2 Call: tv(X_5"IV_12,2,7)
(14) 3 Call: tv(halts,X_5"IV_12)
(14) 3 Fail: tv(halts,X_5"IV_12)
(12) 2 Fail: tv(X_5"IV_12,2,7?)
(15) 2 Call: iv(X_5"82_5,2,3)
(17) 3 Call: iv(halts,X_57S2_5)
(17) 3 Exit: iv(halts,X_5"halts(X_5))
(15) 2 Exit: iv(X_5"halts(X_5),2,3)
(11) 1 Exit: vp(X_5"halts(X_5),2,3)
(1) 0 Exit: s(all(X_5,program(X_5)=>

halts(X_5)),0,3)

LF = all(X_5,program(X_5)=>halts(X_5))
yes

During the DCG execution by Prolog, ti in the s rule is executed first, even though part
of its argumen¥P will be fully determined only when thep literal is executed. This pattern of
operation pervades the grammar, and shows how the logidabl@ helps put together a complex
expression without having to know beforehand the full sfieation of its parts.

4.1.6 Quantifier Scope

The DCG of Program 4.2 and those of Problems 4.6 and 4.7 haeeiqus deficiency in their
handling ofquantifier scopeFor a sentence like

82 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Every professor wrote a book.

the grammar assigns the single interpretation

all(P, professor(P) =>
exists(B, book(B) & wrote(P, B))) ;

that is, for every professor there is a book that he or sheawigbw, thiswide scopenterpretation
of “every” might agree with our common sense, but it is notah& combinatorially possiblene.
In the other, less intuitive interpretation, there is a Brigpok that every professor wrote:

exists(B, book(B) &
all(P, professor(P) => wrote(P,B)))

This narrow scopénterpretation for “every” is in fact the more intuitive oiresentences like
Every student ran a program that the professor wrote foribgedation.

It is clear that decisions on the likelihood offiigirently scoped logical forms for a sentence
depend on many sources of information, such as empiricaklattge about the kind of situation
being described and the actual order of words in the sentén@ny case, scope decisions are too
subtle to be determined purely by the syntactic structuseofences, as they are in the grammar of
Program 4.2.

The overall issue of scopgeterminationis therefore a very dicult open research question
(Woods, 1977; Vanlehn, 1978; F. C. N. Pereira, 1982). Heeewill address the simpler question
of scope generatiarhow to generate logical forms for a sentence with all coratmnally possible
quantifier scopings. Such a generator could then be usedpwge alternative scopings seope
critics that would use syntactic and empirical information to cledeely scopings.

A scope generator has to satisfy two major constraints:

e SoundnessEvery formula generated must be a closed well-formed foan(thlat is, without
free variables) corresponding to a correct scoping of theesee.

e CompletenessEvery combinatorially possible scoping will be generated.

A basic observation we need is that the meaning of a deternisiagunction of a noun meaning
and an intransitive verb phrase meaning, thiege and scoperespectively. Alternative quantifier
scopings in the logical form correspond to alternative césiof range and scope for the quantifiers
in the sentence meaning. The job of the scope generatorsstohconsider the determiners in a
sentence and generate all possible choices of range and frdhe corresponding quantifiers.

The method we will use here for scope generation relies ddibgian intermediate represen-
tation, aquantifier tree whose nonleaf nodes correspond to determiner meanpgs({ifiernodes)
or logical connectivescpnnectivenodes) and whose leaf gredicationnodes correspond to the
translations of nouns, verbs and other content words imihietisentence. The daughters of a quan-
tifier node include a determiner meaning and two subtrees fihich the determiner meaning at
the node will get its range and scope. The quantifier nodesripresendelayeddecisions as to the
range and scope of their quantifiers. For example, the diearitiee for

Every professor that wrote a book ran a program.

4.1. Semantic Interpretation 83

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

q
PAQAallmq
professor (X) qg T U”exists (Z,

R"S"exists (Y, R & 9) program (Z)

book (vy) ran (X, Z)

wrote (X, Y)

Figure 4.2: Quantifier tree

is shown in Figure 4.2.
In practice, we will represent a quantifier node by a term efftrmq(D, R, S), whereD
is the expression representing the determiner meaningRaamid S are the subtrees from which

Ds range and scope will be obtained. A connective node is septed by the connective itself

applied to its arguments, and a predication node with casfenill be represented byP. The
backquote (* ¢ ") is used as a prefix operator to syntactically distinguiggdiations that have not

been scoped both from predications that have been scopeficendhe quantifier and connective

nodes. The use of the operator allows a simple check of the fuactor to distinguish among the
various cases.

The following grammar is a simple modification of that of Praxg 4.2 that builds a quantifier
tree rather than a logical form directly.

Program 4.3
:- op(500,xfy,&).
:- op(510,xfy,=>).
:- op(100,£fx,).

s(T) --> np(VP"S), vp(VP), {pull(S, T)}.
np(NP) -->

det(N2°NP), n(N1), optrel(N1°N2).
np((E"S)"S) --> pn(E).

vp(X™S) --> tvX"IV), np(IV"S).
vp(IV) --> iv(IV).

84 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

optrel ((X"S1)"(X"(S1 & S2))) --> [that], vp(X"S2).
optrel(N"N) --> [].

det(LF) --> [D], {det(D, LF)}.

det(every, (X"S1)"(X"S2)"
q(P"Q"all(X,P=>Q),S1,S2)).

det(a, X" s X s2)"
q(P"Q"exists(X,P&Q),S1,S2)).

n(LF) --> [N], {n(N, LF)}.

n(book, X" (‘book (X))).
n(professor, X" (‘professor(X))).
n(program, X" (‘program(X))).
n(student, X" (“student (X))).

pn(E) --> [PN], {pn(PN, E)}.
pn(terry, terry).
pn(shrdlu, shrdlu).

tv(LF) --> [TV], {tv(TV, LF)}.
tv(ran, XY (‘ran(X,Y))).
tv(wrote, XY " (‘wrote(X,Y))).

iv(LF) --> [IV], {iv(IV, LF)}.
iv(halts, X" (‘halts(X))).

This grammar generates the following quantifier tree forsumple sentence above.

q(P"Q all(X,P=>Q),
‘professor(X)&q(R"S"exists(Y,R&S),
‘book (Y),
‘wrote(X,Y)),
q(T U exists(Z,T&U),
‘program(Z),
‘ran(X,2)))

This is just the term encoding of the tree of Figure 4.2.

In the first sentence rule, the extra conditiarl1 (S, T) invokes theull predicate that defines
the translation relation between quantifier trees and dirder formulas. Thus the quantifier tree is
translated into FOL to provide a logical form for the wholatsnce.

The binary predicateull is itself defined in terms of a ternary predicate, also catletll,
which defines the relation between a quantifier treeatrix, and astoreof quantifiers. The matrix is
a formulawith free variables, and the store is a list of qifi@n$ whose ranges have been determined,
but not their scopes. The name “pull” suggests the idea ofitfyyl quantifiers out of storage and
applying them to a matrix to produce a closed formula. Thentifiers in storage are represented
by 1-expression encodings. For example, the stored elemetiidaroun phrase “every student” is
the termP~all(S, student(S) => P). Applying a quantifier to a matrix is thus simple function
application with reduction.

4.1. Semantic Interpretation 85

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

The order of quantifiers in a store list indicates their ieéascopes in the final result. The
guantifiers that appear earlier in the list, i.e., farthevaas the front, have been chosen to have
wide scope over those at the back of the list.

The nondeterminism in the definition which produces altéwaacopings comes from the uses
of the predicateshuffle andconc to operate on storage lists. These predicates were defiged pr
ously as Programs 3.3 and 3.4 in Section 3.4.1, where we tizaeshuffle was nondeterministic,
as wasconc when used in its “reverse” mode.

The ternarypull predicate turns a simple predication node into a matrix eftipty store.

pull(‘Predication, Predication, []).

A node with the conjunction connectiveis treated as follows. Each conjunct is separately
pulled, thereby obtaining a matrix and store for both thedefl the right conjunct. Now, we want
to apply some of the remaining quantifiers in each of the stqrassing some on for application at
a higher level. Theonc predicate is used “backwards” to break each store list irffort and a
back, the back to be applied to the corresponding conjunttbnand the front to be passed as part
of the store of the whole conjunction. Note that since we wfim back part only, we maintain the
condition that things earlier in the store have wider scdter applying quantifiers to each of the
conjuncts, we shitie the remaining quantifiers (the fronts of the lists for baihjancts) to form the
store list for the whole conjunction.

pull(QuantTreel & QuantTree2,

Formulal & Formula2, Store) :-
pull(QuantTreel, Matrixl, Storel),
pull(QuantTree2, Matrix2, Store2),
conc(Passl, Applyl, Storel),
conc(Pass2, Apply2, Store2),
apply_quants(Applyl, Matrixl, Formulal),
apply_quants(Apply2, Matrix2, Formula2),
shuffle(Passl, Pass2, Store).

Finally, a quantifier node with quantifi€) is similar in its handling to a connective node except
that instead of two conjuncts, we have the range and scogeeajuantifier to scope recursively.
Recursive calls tpull deliver a matrix and a store for both the range and the scegs wof the
quantifier. The range store listis split bync into a frontand a back, the front quantifiers outscoping
Q and the back quantifiers to be applied to the range matrixrta the range of). Then, the front
guantifiers are concatenated with the singleton [li3f, because they have been chosen to have
wider scope tha. Finally, the result is shiled with the scope store to make the store for the
whole node. Note that it is not necessary to split the staseaated with the scope subtree, because
the shiifle determines the position & in the overall store.

pull(g(Quantifier, RangeTree, ScopeTree),
Matrix, Store) :-

pull (RangeTree, RangeMatrix, RangeStore),
pull (ScopeTree, Matrix, ScopeStore),
conc(RangePass, RangeApply, RangeStore),
apply_quants(RangeApply, RangeMatrix, Range),
reduce(Quantifier, Range, StoreElement),
conc(RangePass, [StoreElement], Pass),

86 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

shuffle(Pass, ScopeStore, Store).

The predicatapply_quants takes a store list and applies all its quantifiers in ordernwarix
to produce a new matrix.

apply_quants([], Formula, Formula).
apply_quants([StoreElement |[Elements],
Matrix, Formula) :-
apply_quants(Elements, Matrix, SubFormula),
reduce(StoreElement, SubFormula, Formula).

The binarypull predicate itself merely scopes its quantifier-tree argumgelding a matrix
and a store, and then usesply_quants to apply all the outstanding quantifiers to the matrix,
resulting in a closed formula.

pull(QuantTree, Formula) :-
pull (QuantTree, Matrix, Store),
apply_quants(Store, Matrix, Formula).

As an example of the operationpfil1, we will consider the possible scopings of the quantifier
tree for the sample sentence

Every professor that wrote a book ran a program.

The binary predicatpull first generates a matrix and a store from the tree by applyingejuan-
tifiers in the tree and storing the rest. The outermost gfiantiorresponding to “every professor’
is dealt with by recursively pulling its range and scope. \@asider each of these recursive calls in
order.

The range

‘professor(X)&q(R"S"exists(Y,R&S),
‘book(Y),
‘wrote(X,Y))

might be decomposed into matrix and store by placing thdesipgantifier into storage, yielding the
matrix

professor(X) & wrote(X,Y)
with store
[S"exists(Y, book(Y) & S)] ,

thereby leading to the wide-scope reading for the exisaenfilternatively, the quantifier might be
applied directly, rather than stored, leading to the matrix

professor(X) & exists(Y, book(Y) & wrote(X,Y))

with empty store. We will pursue the former possibility hésedemonstrate how the wide-scope
reading is achieved.

4.1. Semantic Interpretation 87

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Once the range is pulled, the scope must be as well. Againslstippose that the quantifier in
the scope is placed in storage, so that the matrix

ran(X,Z)
is associated with the store
[Uexists(Z, program(Z) & U)]

Now, to form the matrix for the whole tree (recall that the mquantifier we are trying to scope
is the universal for “every professor”), we take the stor¢hefrange and decide which quantifiers
should be applied to the range matrix (thereby taking nagoape relative to the universal) and
which should take wide scope. Again, let us suppose theesiighment in the range store is to take
wide scope. Then the formula that serves as the range of tirequantifier is

professor(X) & wrote(X,Y)

and, applying the quantifer to the range, the appropriate &lement corresponding to the quantifier
is

Q all(X, (professor(X) & wrote(X,Y)) => Q)

We now place this element in the store after the range quamtifé are passing on, yielding the
Pass store

[S"exists(Y, book(Y) & S),
Q"all(X, (professor(X) & wrote(X,Y)) => Q)]

This is shified with the store from the scope. The one element in the s¢opecan be placed in
any of three places in the combined store corresponding fmissible scopings relative to the other
two quantifiers in the sentence. We will choose the placemkiite scope store at the front of the
list giving it widest scope. The full store is then

[Utexists(Z, program(Z) & U),
S"exists(Y, book(Y) & S),
Q"all(X, (professor(X) & wrote(X,Y)) => Q)]

and the matrix, recall, is
ran(X, 2)

This decomposition of the quantifier tree into range and a®pnly one of seven nondeterministic
possibilities. The binarpull predicate successively applies the three quantifiers renggin store
to the matrix, the last getting narrowest scope as it is agdirst. This first application yields the
formula

all(X, (professor(X) & wrote(X,Y)) =>
ran(X,Z2))

The next derives

88 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

exists(Y, book(Y) &
all(X, (professor(X) & wrote(X,Y)) =>
ran(X,Z2)))

Finally, the last quantifier is applied, giving the fully gem form

exists(Z, program(Z) &
exists(Y, book(Y) &
all(X, (professor(X) &
wrote(X,Y)) =>
ran(X,2))))

In all, seven fully scoped forms can be generated for thisesme—corresponding to the seven
decompositions of the quantifier tree into matrix and stoas-ean be seen by backtracking through
the solutions.

?- s(LF, [every,professor,that,wrote,a,book,
ran,a,program], []).

LF = exists(Z,program(Z)&
all(X,professor(X)&
exists(Y,book(Y)&
wrote(X,Y))=>
ran(X,Z))) ;

LF = all(X,professor(X)&
exists(Y,book(Y)&
wrote(X,Y))=>
exists(Z,program(Z)&
ran(X,2))) ;

LF = exists(Z,program(Z)&
all(X,exists(Y,book(Y)&
professor(X)&
wrote(X,Y))=>
ran(X,2))) ;

LF = all(X,exists(Y,book(Y)&
professor (X)&
wrote(X,Y))=>

exists(Z,program(Z)&
ran(X,2))) ;

LF = exists(Z,program(Z)&
exists(Y,book(Y)&
all(X,professor(X)&
wrote(X,Y)=>
ran(X,Z)))) ;

4.2. Extending the Syntactic Coverage 89

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

LF = exists(Y,book(Y)&
exists(Z,program(Z)&
all(X,professor(X)&
wrote(X,Y)=>

ran(X,2)))) ;

LF = exists(Y,book(Y)&
all(X,professor(X)&
wrote (X,Y)=>
exists(Z,program(Z)&

ran(X,Z2)))) ;

no

The solution illustrated above is the fifth of the seven dedisn this query.

The quantifier scoping method outlined here is sound witheetsto the quantifier trees that are
the output of the presented grammar. However, certain digaritees involving nested quantifiers
are not correctly handled by the algorithm; ill-formed sogs are generated in which quantifiers do
not outscope all variable occurrences they were intendedth Such quantifier trees do not arise
with the particular grammar given here, although more cetepjrammars including both relative
clause and PP modifiers for nouns would exhibit the problenusTthe presented algorithm is only
an approximation to a fully general sound scoping mechanisom a full discussion of this issue
and a particular solution (including a Prolog implememta}j see (Hobbs and Shieber, 1987).

4.2 Extending the Syntactic Coverage

In this section, we discuss several changes to the grammhawveebeen developing that expand its
coverage to include auxiliary verbs, full relative claysa®d various types of questions.

4.2.1 Auxiliary Verbs

None of the grammars dealt with so far allow for auxiliarybhstike could, have andbeenin the
sentence “Bill could have been writing a program”. In thisldem we extend the grammar to
allow for this subclass of verbs. The simple analysis of E&hgauxiliaries which we will use is
the following: a verb phrase can always have an auxiliarfixed to it if a certain condition holds,
namely, that thdorm of the verb phrase that follows the auxiliary is the form the auxiliary
requires

This analysis depends on the fact that verbs comeffiardint forms: finite, nonfinité jnfinitival,
and so forth. Every main verb (i.e., nonauxiliary) is of ofi¢he@se forms, as is every auxiliary verb.
Furthermore, each auxiliary verb specifies a form for thd\@hrase it is attached to. Below are
listed some examples of the forms of verb phrases.

5The class of verbs we call “nonfinite” is not the class of atbseexcept for the finite ones. Rather it consists of the base
or stem forms of verbs only.

90 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

form examples
finite halts, halted, writes a program,
is halting, has been halting
present participlg halting, writing a program
past participle halted, written a program, been halting
nonfinite halt, write a program, be halting
infinitival to halt, to write a program,
to have been halting

Now the auxiliary verlbe requires that the verb phrase following it be of presentigiaié form.
Thus “be halting” is a grammatical verb phrase, but “*be$iadind “*be halt” are not. The auxiliary
verb haverequires that the verb phrase following it be of past paticiorm, as in “have been
halting” or “have halted” but not “*have halting”.

We can even treat the word “to” (when used to introduce a verage) as an auxiliary verb,
rather than a preposition. As an auxiliary verb, “to” regsia nonfinite verb phrase, and is itself
infinitival.

We will encode verb form information as an argument to theteoninal in a DCG grammar.
For main verbs, this argument will contain one of the cornstasmfinite, infinitival, etc. For
auxiliary verbs, the argument will contain a term of the fdform/Requires, whereForm is the
form of the auxiliary an®equires is the form that the auxiliary requires the following vertrase
to be® We can think of the auxiliary as convertingaquires type of verb phrase intoEorm type.
Thus we will have main verb entries like

iv(Form) --> [IV], {iv(IV, Form)}.
iv(halts, finite).
iv(halt, nonfinite).
iv(halting, present_participle).
iv(halted, past_participle).

and auxiliary verb entries such as

aux(Form) --> [Aux], {aux(Aux, Form)}.

aux(could, finite / nonfinite).
aux(have, nonfinite / past_participle).
aux(has, finite / past_participle).
aux(been, past_participle / present_participle).
aux(be, nonfinite / present_participle).

The form of a simple verb phrase composed of a main verb anaiisus complements is the
form of the main verb itself. We can modify the VP rules to refflihis as follows:

vp(Form) --> iv(Form).
vp(Form) --> tv(Form), np.

6The use of ¥” in this context is inspired by categorial grammar (Sectod.4).

4.2. Extending the Syntactic Coverage 91

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

To combine an auxiliary verb with a verb phrase, it is onlyessary that the verb phrase be of
the required form. The combined phrase will be of the fornt tha auxiliary is.

vp(Form) --> aux(Form/Require), vp(Require).

This augmented grammar will allow “could have been halting”a VP because “halting” is a
present participle intransitive verb, hence a presentqpale VP which satisfies the requirement of
the verb “been”. Thus “been halting” is a well-formed VP whdsrm is the form of “been”, namely
past participle. “Have” requires a past participle VP farmthe nonfinite VP “have been halting”,
which combines with “could” to form the finite VP “could haveén halting”.

The rule for forming sentences

S --> np, vp.

must be modified to account for the fact that VPs now have \@rh fnformation. In deciding on the
form of the VP in sentences, we note that the following NP-ékhbinations are not grammatical
English:

* Bertrand write a book.
* The program been halting.
* Bill writing every program.

The pertinent restriction is that full-fledged sentencesgt incorporate a finite VP. Thus the
sentence formation rule should be

s --> np, vp(finite).

4.2.2 Yes-No Questions

Yes-no questions are formed in English exactly like detilaaaentences, except for twdidirences.
e Yes-no questions always have at least one auxiliary verb.
e The leftmost auxiliary verb occurs before, rather thanraftee subject NP.

This switching of the placement of the leftmost auxiliarylvand the subject is calleslibject-
aux inversion We will allow such inverted sentences with the followinggrtor the new nonterminal
sinv:

sinv --> aux(finite/Required), np, vp(Required).
This rule allows finite subject-aux-inverted sentences lik

Could Bertrand write a book?
Has the program been halting?
Is Bill writing every program?

all of which are typical examples of English yes-no questiofe can state this in a rule for forming
guestions from inverted sentences:

92 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

g --> sinv.

But, as we will see in Section 4.2.5, inverted sentencesalaje in the formation of WH-questions
as well as yes-no questions.

4.2.3 Filler-Gap Dependencies

The grammars that have been presented heretofore havdeédduvery simple analysis of relative
clauses as verb phrases preceded by the tiatd This analysis vastly oversimplifies the variety of
relative clauses possible in English. For instance, redatiauses such as “that Bertrand wrote” (as
in the NP “every book that Bertrand wrote”) are not the coenation of “that” and a VP; instead
of a VP, a sentence missing its object is substituted. Im&ht the head of the noun phrase, i.e.,
“every book” fills the role of the missing object, the thingflsat Bertrand wrote. For this reason,
the phenomenon has been calldilar-gap dependency

In general, a filler-gap dependency occurs in a naturaldlagg sentence when a subpart of some
phrase (thgapor trace) is missing from its normal location and another phrase gtones called
thefiller), outside of the incomplete one, stands for the missinggghr&he occurrence of a gap is
said to bdicensedby the previous occurrence of the filler, and we have a depmydeetween the
gap and the filler because the gap can only occur (i.e., tiresmonding phrase be missing) when
the appropriate filler occurs.

The canonical instances of filler-gap dependency congtngin English are relative clauses
and WH-questions. For example, in the sentence

Terry read every book that Bertrand wrote.

we have seen that there is a filler-gap dependency betweeslétive pronoun “that” (the filler)
and the missing direct object (the gap). The parse tree émsdhtence, given in Figure 4.3, indicates
the trace by the pseudo-termirtal The subscript on the trace and filler is intended to indicate the
dependency between the two.

Filler-gap dependencies are a subclasko§-distanceor unbounded dependencje®-called
because the amount of material between the dependent phrtfg=gap and the filler in this case—
can be arbitrarily large, and the path in the analysis tremfthe filler to the gap can in principle
cross an arbitrary number of phrase boundaries (but onlgdare kinds of phrases). The long-
distance behavior of filler-gap dependencies is exempiifistdich sentences as

Terry read every book that Bertrand told a student to write.
Terry read every book that Bertrand told a student to ask #egsor to write.

and so forth.

The obvious way of representing long-distance dependeitie@ DCG is to use a nonterminal
argument to indicate the presence or absence of a gap withjphrase covered by the nonterminal.
If there is a gap, we must also indicate the syntactic cajegamterminal) of the gap. Although the
grammar we develop below does not require this informatisrofily noun phrase gaps are allowed),
the ability to extend the coverage by including, for insemgrepositional phrase gaps, motivates
this requirement. We will use the constaiigap as the value for the gap information argument to
indicate the absence of a gap, and the tgap(T) to indicate the presence of a gap with category
For instance, the sentence “Bertrand wrote a book” wouldvered by the nonterminalnogap),

“Analyses dfer as to whether the filler is the relative pronoun or the hdatie@NP as first mentioned. Although the
latter may be more intuitive, other factors lead us to thenfa, not the least of which is ease of semantic interpretatio

4.2. Extending the Syntactic Coverage 93

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

S
NP VP
/\
terry V NP
read DET N OPTREL
every book RELPRON; S
that NP VP

bertrand V NP

Figure 4.3: Parse tree including filler-gap dependency

whereas the incomplete sentence “Bertrand wrote” (as i bibok that Bertrand wrote”) would be
covered by the nonterminalgap (np)).

To allow noun phrase gaps in the grammar, we add a speciakhitd introduces an NP cover-
ing no string.

np(gap(np)) --> [].

This rule states that a noun phrase containing a noun phagseam cover the empty string; that is,
a noun phrase gap can be realized by omitting a noun phrase.

Now the information about the presence of a gap must be apptely distributed throughout
the grammar so that “Bertrand wrote”, but not “Bertrand wrabook”, is associated witiap (np).
For instance, the transitive VP rule must be modified so ti@aWP is associated with the same gap
information as its object. (We ignore verb form informationthis section and the next. The
grammar in Appendix A contains both verb form and filler-gaformation in the nonterminals.)

vp(GapInfo) --> tv, np(GapInfo).
Similarly, the S rule must force the S and VP to share gap in&dion.
s(GapInfo) --> np(nogap), vp(GapInfo).

In addition, the rule disallows subject NPs that containsgagund outside of them, thereby embody-
ing a so-calledsland constrainthat linguists have proposed as accounting for the ungraioatity
of noun phrases like

* the book that the author of wrotrincipia

94 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

as compared with
the book that the author éfrincipia wrote

Island constraints are so-called because they constratairteconstituents, e.g., subject noun
phrases, to act as if surrounded by a boundary which allovidleiegap dependencies to cross.

There is considerable debate in the linguistics literatirene status of island constraints such
as these. Certainly, some phrases with gaps within suljeets quite grammatical, e.qg.,

the professor who a picture of has appeared in every newspeaibe country

Furthermore, certain constructions can license the exdstef a gap within an island. For instance,
the parasitic gapconstruction allows sentences with multiple gaps boundhieysame filler, even
when one of the gaps is within an island.

the book that the author of wrote a letter about

We have merely represented here one traditional analysfeegbhenomenon. Other analyses,
including ones in which filler-gap dependencies which cassbject NP boundary were allowed,
could easily be designed.

4.2.4 Relative Clauses

Relative clauses can be formed by concatenating a relatireopn filler with a sentence that con-
tains the corresponding gap.

rel --> relpron, s(gap(np)).

This rule then embodies the actual filler-gap dependencyadlodis relative clauses such as
“the book that Bertrand wrote”. Unfortunately, becausehefisland constraint disallowing gaps in
subjects of sentences, this rule will admit ontymplement relativese., relative clauses in which a
complement of a verb is gappe8ubject relativesin which the entire subject is gapped, as in “the
professor who wrot®rincipia” are not allowed by this rule. To remedy this problem, weadtice
a special rule for subject relatives, akin to the relatiaisk rule of Program 3.12.

rel --> relpron, vp(nogap).

In summary, here is the grammar of Program 3.12 augmente@rndld both subject- and
complement- relative clauses.

Program 4.4
s --> s(nogap).
s(Gap) --> np(nogap), vp(Gap).

np(nogap) --> det, n, optrel.
np(nogap) --> pn.
np(gap(np)) --> [].

vp(Gap) --> tv, np(Gap).
vp(nogap) --> iv.

4.2. Extending the Syntactic Coverage 95

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

optrel --> [].
optrel --> relpron, vp(nogap).
optrel --> relpron, s(gap(np)).

det --> [Det], {det(Det)}.
det(a). det(every).
det(some). det(the).

n --> [N], {n(ND}.
n(author). n(book) .
n(professor). n(program) .
n(programmer). n(student).

pn --> [PN], {pn(PN)}.
pn(begriffsschrift). pn(bertrand).

pn(bill). pn(gottlob).
pn(lunar). pn(principia).
pn(shrdlu). pn(terry).

tv --> [TV], {tv(TV)}.
tv(concerns). tv(met).
tv(ran). tv(wrote).

iv --> [IV], {iv(IV)}.
iv(halted).

relpron --> [RelPron], {relpron(Relpron)}.
relpron(that). relpron(who).
relpron(whom) .

4.2.5 WH-Questions

WH-questions, that is, questions introduced by a wordietautith “wh”, as in

Who wrotePrincipia?
What did Bertrand write?
Who did Alfred tell Bertrand to write a book about?

and so forth, also exhibit a filler-gap dependency. The fités time is the WH word; the gap, as
usual, can be arbitrarily deep in the adjacent sentence. Wese a technique similar to that for
relative clauses to handle WH-questions. Just as subjetivess and complement relatives must be
distinguished, we will distinguish subject and complenwréstions.

Subject questions, such as

Who loves Mary?

96 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

are constructed from a WH pronoun and a finite VP.
g --> whpron, vp(nogap).

Complement questions, for instance,
Who does Mary love?

are formed from a WH pronoun acting as a filler for a gap in aesttbgux-inverted sentence.
g --> whpron, sinv(gap(np)).

Of course, thesinv rule must be modified to allow gaps.

sinv(GapInfo) --> aux, np(nogap), vp(GapInfo).

4.2.6 Semantics of Filler-Gap Dependencies

A treatment of semantics of relative clauses is possibledmytining the syntactic analysis of Pro-
gram 4.4 with the semantic analysis of Program 4.2. The hdsi&is that a gap is analyzed very
much like a proper noun, except that instead of supplyingrestamt term to the logical form it
supplies a variable which is carried as the second argunfiéié gap information terngap (T, V).

np((X"S)"S, gap(np, X)) --> [].

A relative clause meaning is like an intransitive verb magnnamely, a property. However,
relative clause meanings will be conjoined with a noun nmegutd make a complex property such
as

M" (professor (M) & wrote(M, principia))

for “professor who wrotdPrincipia’. In the case of a subject relative the meaning comes dyrectl
because the clause is itself a verb phrase.

optrel ((X"S1)" (X" (S1&S2))) -—>
relpron, vp(X“S2, nogap).

For complement relative clauses, the meaning representegtiof the formX"S where X is the
variable associated to the argument position filled by the gadS is the encoding of the meaning
of the sentence in the relative clause, in whicls a free variable.

optrel ((X"S1)" (X" (S1&S2))) -—>
relpron, s(S2, gap(np, X)).

Thus, for the relative clause “that Bertrand wrote” we widMeS = wrote(bertrand,B), X = B,
and the gap argument will have the fogap (np, B).

We interpret a question as a property which is to be true ofattmvers to the question. For
subject WH-questions, the property is that given by the . d@mplement questions, it is the
property that the S predicates of the gap.

4.2. Extending the Syntactic Coverage 97

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

q(VP) --> whpron, vp(VP, nogap).
q(X"S) --> whpron, sinv(S, gap(np, X)).

For yes-no questions, the property we want of the answeflstquestion is that the answer be

“yes” if the condition given by the inverted sentence holds.

q(yes”S) --> sinv(S, nogap).

For the time being, we ignore the contribution of the auryliso the meaning of the inverted sen-

tence® Thus the rule fosinv, including semantics, is

sinv(S, GapInfo) -->
aux, np(VP"S, nogap), vp(VP, GapInfo).

A slightly different approach to the semantics of questions will be useleinalk program

developed in Chapter 5, in which the meaning of a question isnplication of the form: If some

condition holds of thenx is an answer.

Summarizing, the grammar for relative clauses and questi@have developed in this chapter

is the following:

Program 4.5
q(VP) --> whpron, vp(VP, nogap).
q(X"S) --> whpron, sinv(S, gap(np, X)).
q(yes”S) --> sinv(S, nogap).

s(S) --> s(S, nogap).
s(S, Gap) --> np(VP"S, nogap), vp(VP, Gap).

sinv(S, GapInfo) -->
aux, np(VP"S, nogap), vp(VP, GapInfo).

np (NP, nogap) --> det(N2"NP), n(N1), optrel(N1°N2).
np((E"S)"S, nogap) --> pn(E).
np((X"S)"S, gap(np, X)) --> [].

vp(X"S, Gap) --> tv(X"VP), np(VP"S, Gap).
vp(VP, nogap) --> iv(VP).

optrel(N"N) --> [].

optrel ((X"S1) (X" (S1&S2))) -—>
relpron, vp(X“S2, nogap).

optrel ((X"S1) " (X" (S1&S2))) -—>
relpron, s(S2, gap(np, X)).

det(LF) --> [D], {det(D, LF)}.
det(every, (X"S1)"(X"S2)"all(X,(S1=>S2))).
det(a, (X"S1)"(X"S2) "exists(X,S1&S2)).

8The talk program described in Chapter 5 can handle the semanticsnplesiauxiliaries, although the logical forms

provided lexically for auxiliaries do not happen to modifieir VP arguments.

98 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

n(LF) --> [N], {n(N, LF)}.
n(program, X program(X)).
n(student, X"student(X)).

pn(E) --> [PN], {pn(PN, E)}.
pn(terry, terry).
pn(shrdlu, shrdlu).

tv(LF) --> [TV], {tv(TV, LF)}.
tv(wrote, XY 'wrote(X,Y)).

iv(LF) --> [IV], {iv(IV, LF)}.
iv(halts, X"halts(X)).

relpron --> [RelPron], {relpron(Relpron)}.
relpron(that). relpron(who).
relpron(whom) .

4.2.7 Gap Threading

The technique used for passing gap information among theemaimals in grammar rules outlined
in the previous section has two problems:

1. Several versions of each ruleffdring only in which constituent(s) the gap information is
passed to, may be needed. For instance, a rule for builditngedeerb phrases

vp --> datv, np, pp.
would need two versions

vp(GapInfo) -->

datv, np(GapInfo), pp(nogap).
vp(GapInfo) -->

datv, np(nogap), pp(GapInfo).

so as to allow a gap to occur in either the NP or PP, as in theiseas

What did Alfred give to Bertrand?
Who did Alfred give a book to?

2. Because of the multiple versions of rules, sentencesnaithaps will receive multiple parses.
For instance, the sentence

Alfred gave a book to Bertrand.

would receive one parse using the first dative VP rule (W@ithInfo bound tonogap) and
another with the second dative VP rule.

An alternative method for passing gap information, somesimeferred to agap threading
has been used extensively in the logic programming litegatli is based on data structures called
difference lists

4.2. Extending the Syntactic Coverage 99

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Difference Lists

The encoding of sequences of terms as lists using thygerator and] is so natural that it seems
unlikely that alternatives would be useful. However, intagr cases, sequences may be better
encoded with a data structure known agifgerence list A difference list is constructed from a pair
of list structures one of which is sufix of the other. Every list is a $tix of itself. Also, if the
list is of the form[Head|Tail] then every sfiix of Tail is a sufix of the whole list. Thus the
relation between lists and theirfues is the reflexive transitive closure of the relation bemvist
and their tails. We will use the binary infix operatof”'to construct a dference list from the two
component lists. A dierence listList-Suffix encodes the sequence of elementkiint up to
but not including those iSuffix. Thus the elements inist-Suffix are the listdifferenceof the
elementsirList and the elements Buffix. For instance, the sequence of eleméhtg, 3) might
be encoded as the ligtl,2,3] or as any of the dierence lists[1,2,3,4]-[4], [1,2,3]1-[1,
[1,2,3]X]-X.

We will be especially concerned with tmeost generatlifference-list encoding of a sequence,
thatis, the encoding in which theffix is a variable. The final example of ai@irence-list encoding
of the sequencél, 2, 3) is of this form. Any other dierence-list encoding of the sequence is an
instance off 1, 2, 3|X]-X. Henceforth, the term “dierence list” will mean a most generatidirence
list. We will also use the termfsont andbackfor the two components of aftiérence list. Note that
the empty diference list iX-X.

The diference-list encoding of sequences has one key advantagthewtandard list encoding.
Concatenation of dlierence lists is far simpler, requiring only a single uniusie.

Program 4.6
conc_dl (Front-Backl, Backl-Back2, Front-Back2).

The predicateconc_d1 performs concatenation offeérence lists by simply unifying the back of
the first list with the front of the second. This engendersatiewing behavior:

?- conc_dl([1,2,3|X]-X, [4,5|Y]-Y, Result).
Result = [1,2,3,4,5|Y]-Y
yes

Actually, we have seen fiierence lists before. The use of pairs of string position@ded as
lists to encode the list between the positions is an instahadliference list encoding. We can see
this more clearly by taking the encoding of grammar rulesgigixplicit concatenation, as briefly
mentioned in Chapter 1, and substitutinffelience-list concatenation. Using explicit concatenation
the rule

S - NP VP

would be axiomatized (as in Chapter 1) as
(Yu, v, WINP(u) A VP(V) A condu, v, w) = S(w)
or in Prolog,
s(W) :- np(U), vp(V), conc(U, V, W).
Substituting diference-list concatenation, we have

s(W) :- np(U), vp(V), conc_dl(U, V, W).

100 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

and partially executing this clause with respect todhec_d1 predicate in order to remove the final
literal, we get the following clause (with variable names®#n for obvious reasons):

s(PO-P) :- np(PO-P1), vp(P1-P).

Thus, we have been using dfdrence list encoding for sequences of words implicitly tigtwout
our discussion of DCGs.

Difference Lists for Filler-Gap Processing

We now turn to the use of flerence lists in filler-gap processing. First, think of the gdormation
associated with each node as providing the list of gaps eoviey the node whose corresponding
fillers are not covered by it. Alternatively, this cn be vialas the list of gaps whose filler-gap
dependency passes through the given node. We will calligtithefiller list of the node. For the
most part the filler list of each constituent is the concatienaf the filler lists of its subconstituents.
For instance, for the dative VP rule, we have

vp(FL) --> datv, np(FL1), pp(FL2),
{conc_dl(FL1, FL2, FL)}.

We include only those constituents which might potentiatiglude a gap in the concatenation.
Again, we remove the explicit concatenations by partiatexien yielding

vp(FO-F) --> datv, np(F0-F1), pp(F1-F).
Similarly, other rules will display this same pattern.

s(FO-F) --> np(F0-F1), vp(F1-F).
vp(FO-F) --> tv, np(FO-F).
vp(FO-FO®) --> iv.

We turn now to constituents in which a new filler or a new gamisoduced. For instance, the
complement relative clause rule requires that a gap be ioeatén the S which is a sibling of the
filler. It therefore states that the filler list of the S contaa single NP.

optrel(F-F) --> relpron, s([gap(np) |F]-F).

The rule introducing NP gaps includes a single NP filler madtethe S, thereby declaring that
the S covers a single NP gap.

np([gap(np) |[F]-F) --> [].

Island constraints can be added to a grammar using this anofifiller-gap dependencies in
two ways. First, we can leave out filler information for cérteonstituents, as we did for verbs and
relative pronouns. More generally, however, we can marttiatea constituent not contain any gaps
bound outside the constituent by making its filler list thepgyrlist (i.e., F-F). For instance, the
sentence formation rule above can be modified to make theaudfjthe sentence an island merely
by unifying the two parts of its filler list.

4.3. Problem Section: Grammar Extensions 101

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

s(FO-F) --> np(FO-FO), vp(FO-F).

The gap-threading technique for encoding filler-gap depenigs solves many of the problems
of the more redundant gap-passing method described edteh unthreaded rule generates only
one rule with appropriate gap information. The filler-linfarmation is added in a quite regular
pattern. Fillers, islands, and gaps are all given a simplgttnent. All of these properties make the
gap-threading technique conducive to automatic inteatiat as we will do in Section 6.3.3.

However, several problems with the gap-threading techenare known, most showing up only
in rather esoteric constructions such as parasitic gagremtions, multiple gaps, crossing filler-gap
dependencies, and so forth. Many of these problems can lukeluiloy using more complex com-
binations of filler lists rather than simple concatenatior. instance, crossing dependencies can be
handled by shffling the filler lists of subconstituents to yield the fillertlef the full constituent. Of
course, this defeats the simple elegant pattern of varsideing that dference-list concatenation
engenders.

4.3 Problem Section: Grammar Extensions

These problems concern the extension of Program 4.2 to tadep other English constructions,
namely some simple casesmdun complementsnd postmodifierand the corresponding gapped
constructions. Since these examples require prepoditadimases in the grammar, you may want
to refer to Problem 3.20 for background. In addition, we wificuss a system of grammar writing
used by Montague himself for his semantic work. This systatgegorial grammaris quite diferent
from the phrase-structure-based methods we have beenprsivigusly.

4.3.1 Noun Complements

A noun phrase complement plays a similar role to that of anraent of a predicate. For example, in
the noun phrase “an author of every book” the nauthorhas as its complement the prepositional
phrase “of every book”. For the purposes of this section, \iltagsume that nouns that take a
complement are interpreted as binary predicates. For egathp sentence

An author of every book wrote a program.

might have the logical form

all(B, book(B) =>
exists(A, author_of(A,B) &
exists(P, program(P) &
wrote(A,P))))

Notice thatauthoris here translated by the binary predicatehor_o£f. Note also that the quantifier
all that translates the determirmreryin the complement cduthoris given a wider scope than the
guantifierexists that translates the determiraarof the phrase “an author.”. This is not the only
possible reading for the English sentence, but for the tigiedowe will assume that the quantifiers
from noun complements always outscope the quantifier fod&terminer preceding the noun that
has the complement. To achieve thiteet in a DCG, the translation of “an author” must somewhow
be given as an argument to the translation of the complenoémvery book”, in a way similar to
the passing of an intransitive verb phrase meaning into & pbuase meaning to make a sentence
meaning in the first rule in the DCG of Program 4.2.

102 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Problem 4.6 Add one or more DCG rules to the grammar in Program 4.2 to arabnd translate
noun complements. We will assume that there is a separataleategoryn2 for nouns that
take a prepositional phrase as a complement. To simplifyptbblem, we will also assume that
all complements are prepositional phrases (see Problerfi)3drroduced by the prepositioof.
Your DCG should be able to analyze the sample sentence albaovassign to it the given logical
form. You need not handle noun phrases with both a relataesel and a complement prepositional
phrase.

4.3.2 Noun Postmodifiers

A prepositional phrase can also appear as a noun postmogifiere it does not supply an argument
to the noun but instead it further restricts the range of a@bjdescribed by the noun. In this case,
such a postmodifier operates like a restrictive relativasga For example, the prepositional phrase
“about Gottlob” in the sentence

Bertrand wrote a book about Gottlob.

is a postmodifier obookthat further restricts the book in question to be about GbitWe may in
this case interpret the prepositiaboutvery much like a transitive verb, and give the sentence the
translation

exists(B, (book(B) & about(B,gottlob)) &
wrote(bertrand,B))

We will assume that the quantifiers in the translation of thstmodifier have smaller scope than
that of the quantifier for the determiner preceding the medifioun. As mentioned in the previous
problem, such assumptions are overly restrictive, and vledigicuss how to do better in Section
4.1.6.

Problem 4.7 By adding appropriate lexical items and rules (or modifyigsting ones), change
the DCG of Program 4.2 to handle prepositional phrases asnnpostmodifiers. The new rules
for postmodifiers may be modeled closely on those for oftiefetive clauses, and the resulting
grammar should be tested on sentences like the one abovee $fak that quantifiers from the
postmodifier are properly scoped.

4.3.3 More Filler-Gap Constructions

Many other filler-gap constructions occur in English. In tiext two problems we will discuss gaps
in the constructions introduced in the previous two proldeimater, in Problem 6.15, we will see
two more English filler-gap constructions.

Problem 4.8 Extend your solution to Problems 4.6 and 4.7 so that gaps #osvad in preposi-
tional phrases used as NP modifiers and complements and astaalé. The solution should allow
sentences like

What did Bertrand write a book about?

Who did Terry meet a student of?

What did Terry write a program with?

The professor that Terry met a student of wrote a program.

4.3. Problem Section: Grammar Extensions 103

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Problem 4.9 Extend the solution to Problem 4.8 so that it can handle qoesthere the filler is a
prepositional phrase and the PP gap is playing an adverloéd re.g., questions like

With what did Terry write a program?

Note that the grammaticality status of PP gaps used as NFiersdir complements in English
is unclear. Sentences containing such constructions séem ungrammatical.

*? About what did Terry write a program?
*? Of whom did Terry meet a student?

However, the data are unclear, and the correct analysista&my not a foregone conclusion.

4.3.4 Categorial Grammars

A categorial grammarCG) specifies a language by describing the combinatorissipdities of
its lexical items directly, without the mediation of phrasteucture rules (like CFG or DCG rules).
Consequently, two grammars in the same categorial gramysatem difer only in the lexicon.

The ways in which a phrase can combine with other phrasesiaogled in a&ategoryassociated
with the phrase. The set of categories is defined inducta®ffpllows:

e A primitive category is a category. For the purposes of thihfem, the primitive categories
areSandNP.

e If A andB are categories theA/B and A\B are categories. These are callmmmpouncdor
functorcategories.

¢ Nothing else is a category.
Combination of phrases is sanctioned by their categoriesrding to two rules:

e Forward application (FA): A phrasep; of categoryA/B can be combined with a phrapg
of categoryB to form a phrase; p, of categoryA.

e Backward application (BA): A phraseps of categoryA\B can be combined with a phrase
pa of categoryB to form a phrase,ps of categoryA.

Notice that the direction of the slash/("or “\") determines which side of the functor phrase its
argument will be found on (right or left, respectively).

As an example of a categorial grammar, we might associatealeitems with categories as
follows:

type of word examples| category

proper nouns Terry NP
Bertrand
Principia

intransitive verbs| halts S\NP

transitive verbs | wrote (S\NP)NP
met

104 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

S
NP S\NP
Bertrand (S\NP)/NP NP
wrote Principia

Figure 4.4: Parse tree for categorial grammar derivation

Then combining “wrote” andPrincipia” by FA, we conclude that “wrot@rincipia” is of category
S\NP. Combining this with “Bertrand”, we have that “Bertrand we®rincipia” is an S. As usual,
we can summarize the derivation in a parse tree as in Figdre 4.

Problem 4.10 Write a Prolog program (including DCG rules) to implementategorial grammar
system. Lexical entries can be encoded as unit clauses firiine

lex(bertrand, NP).
lex(halts, S\NP).
lex(wrote, (S\NP) /NP).

Given a lexicon encoded as above, the program should be algarse sentences containing
those lexical items.

Categorial grammars have been widely used in linguistiearsh concerning semantics of natu-
ral language. The close relation between CG and semargipnetation follows from the observa-
tion that forward or backward syntactic application of adtan category to its argument corresponds
to the semantic applications of the corresponding logiocahs. Thus, the application rules can be
used to control semantic application as well as syntactichioatorics. We merely make sure that
lexical items are associated with semantic functions wharinespond to the syntactic functions im-
plicit in their categories. For instance, a phrase of cate§NP must semantically be a function
from NP-type items toStype items. In terms of logical forms, it must be associatétl a lambda
expression of the formx.¢ for ¢ a formula. (This relationship can be made more rigorous lfinde
ing a notion oftypeand using a typed lambda-calculus for the logical forms, astsigue in fact
did.)

The logical forms of Section 4.1.2 are appropriate for thegary assignments above. Given
these logical forms, we can determine the logical form far ¢imtire sentence by performing the
applications according to the syntactic structure of thetesece. For instance, since “wrote” is
associated with a functor category applying (by FA) ®rihcipia’, we apply its logical form
Ax.ay.wrotgly, X) to that of its argumentrincipiayielding Ay.wrotg(y, principia). Similarly, by BA,
we will associate the whole sentence with the logical fevrote(bertrand principia). The beauty
of this system is that the semantic constraints are uniy@sapposed to the types of grammars seen
previously in which semantic constraints are stated onexlbylrule basis. Merely augmenting the
lexicon with primitive LFs determines LFs for all the podsibentences admitted by the grammar.

4.4. Bibliographic Notes 105

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Problem 4.11 Augment your solution to the previous problem so that Iddmans are built during
parsing.

Problem 4.12 Using the solution to Problem 4.11 write a categorial granmmwaich handles quan-
tified NPs as in Section 4.1.5 and builds logical forms. Yawukhneed to change only the lexicon.
Take 1V, N, and S to be the primitive categories.

As a side note to the discussion of categorial grammar, h@tedince the matching of the
argument category to the requirement of the functor cajegarceeds by unification, we can use
full terms instead of atoms as the primitive categories dratetby pass information among the
categories in ways reminiscent of DCGs. In fact, this extsnt categorial grammar which we get
“for free” is the correlate of the DCG extension to CFGs. 8wt that use unification for matching
in categorial grammars have come to be knowrcatggorial unification grammarand are the
subject of active research.

4.4 Bibliographic Notes

Our discussion of semantic interpretation (Section 4.1pdsely based on some of the ideas of
Montague grammar, although our goals are radically moreasiothan Montague’s. Basically, we
take from Montague the idea of using some form of the lambdtaikies to represent the meanings
of phrases and function application as the means of conpthim meanings of subphrases into the
meaning of a phrase. The simplifications in our presentaiermade clear by observing that the
fully reduced form for the meaning of a sentence is given bys-@irder sentence. In contrast,
sentence meanings in Montague have to be represented lepsestn the much richer system of
intensional logiqIL), because the English fragment under considerationdes semantic phenom-
ena such as intensional contexts (as in “John seeks a ubjicorn

Montague introduced his approach to the relation betweptagyand semantics of natural lan-
guage in the articles “English as a Formal Language,” “UrsseGrammar,” and “The Proper Treat-
ment of Quantification in Ordinary English” which have beeprninted in the volume of his selected
works edited by Thomason (1974). The textbook by Dowty, Wadld Peters (1981) gives a full
account of Montague’s theory and of all the required backgdomaterial, which is omitted in
Montague’s extremely concise papers. For further detailthe lambda calculus (Section 4.1.1),
and in particular its logical and computational propertves refer the reader to the book by Hindley
and Seldin (1986) for the untyped lambda calculus, and tlo& by Andrews (1986) for the typed
lambda calculus (Church’s simple theory of types).

Our Prolog encoding of semantic interpretation rules, angbarticular the encoding 8-
reduction as unification, was implicit in the early work orgio grammars (Colmerauer, 1982;
Dahl, 1981; Pereira and Warren, 1980). Our presentaties td make clear the connection be-
tween the logic grammar techniques and the techniques opaesitional semantics. Some of our
semantic rules are clearly too simplistic, and were showiminéo illustrate the power of the log-
ical variable for incrementally building complex descidgpts. More sophisticated examples can be
found in the Prolog natural-language analysis literatieGord, 1982; F. C. N. Pereira, 1982; Dahl
and McCord, 1983). Compositional semantics based on Moetggammar has also been used in
natural-language processing systems not based on logirgmmming (Rosenschein and Shieber,
1982; Warren and Friedman, 1982; Schubert and Pelleti&2)1Moore (1981) surveys some of
the main dfficulties involved in constructing logical representatiémisthe meanings of a wider
class of natural-language constructions. Last but not,l&@should be noted that the above work

106 Chapter 4. Further Topics in Natural-Language Analysis

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

on computing logical forms for natural-language derivesiynaf its analyses and techniques from
Woods's early and influential research (1977).

As we noted, the encoding gfreduction in unification has to be used very carefully beeanf
the lack of a full reduction mechanism fa@fterms within Prolog. This question has been discussed
in detail by D. S. Warren (1983), and a general solution inftaenework of a Prolog extension
based on Church’s simple theory of types was given by Miltet Badathur (1986).

Partial execution has long been in the folklore of logic pergming. The notion is implicit in
Kowalski's connection-graph resolution proof procedur®15; Eisinger, 1986). A related notion
in functional programming is Burstall and Darlingtoniafoldingrule for program transformation
(1977). Their techniques were extended to logic programSlayk and Sickel (1977) and Tamaki
and Sato (1984), among others. Further techniques ingbeauctive derivations of programs are
discussed by Clark and Tarnlund (1977) and Hogger (1981).

The discussion of quantifier scope in Section 4.1.6 presesitsplified version of some of the
concepts developed independently by Woods in a computdtiamework (1977) and by Cooper
in a compositional semantics setting (1983). In partiGutae explicit notion of quantifier storage
is due to Cooper. Hobbs and Shieber (1987) give a preciseiatoban algorithm for generating
scope alternatives and prove some important propertiasuwelo its soundness and completeness.
Reliable criteria for choosing among scoping alternatasesnotoriously hard to come by. Vanlehn
(1978) gives a comprehensive account of théialilties. Various partial engineering solutions for
the problem have nevertheless been proposed (Woods, 19T7;N= Pereira, 1982; Grosz et al.,
1987).

Our treatment of the English auxiliary system in Section}4i2 based on that by Gazdar et al.
(1982).

The treatment of long-distance dependencies and, in patjdiller-gap dependencies given
in Section 4.2.3 is rather idealized, its goal being just tblioe a few basic techniques. For a
linguistically sophisticated treatment of the problemeng a much broader subset of English, see
for example the book by Gazdar et al. (1985). The analysisibjest relatives as being composed
from VPs and not Ss follows Gazdar (1981). Island constsair@re originally proposed by Ross
(1974).

As far as we know, the idea of gap threading appeared firsgrim somewhat dierent from
the one used in Section 4.2.7, as part of the extrapositemgrar formalism (Pereira, 1981). It has
been reinvented numerous times.

Categorial grammars as formal systems originated with tlekvof the Polish logicians
LeSniewski and Adjukiewicz in the 1930s, but it was Barleli(1964) who considered their ap-
plication to natural-language syntax. With Gaifman andr@ihaBar-Hillel proved that the basic
categorial grammars have the same weak generative capacitgntext-free grammars. Lambek
(1961) provided important early research in the area. Sihisework, many diterent categorial
accounts of the syntax and semantics of natural languagesbeen developed, including those
by Lewis (1972) and by Cresswell (1973) from a philosophjaispective and that of Ades and
Steedman (1982) from a linguistic one. Van Benthem (198®&)iges a recent survey of logical and
semantic issues in categorial grammar. For discussiontefodal unification grammars, see the
papers by Karttunen (1986) and Uszkoreit (1986) and wottksl ¢therein.

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Chapter 5

Full Prolog and a
Simple Dialogue Program

This digital edition of Pereira and ShiebePslog and Natural-Language Analy-
sisis distributed at no charge by Microtome Publishing undecenise describ

in the front matter and at the web site. A hardbound editi®@B{ 0-9719777
0-4), printed on acid-free paper with library binding andliuding all appen
dices and two indices (and without these inline interrup)o is available fro
www .mtome . comand other booksellers.

The subset of Prolog used up to this point has been pure iretiteeghat a Prolog system can
be viewed as a sound (though incomplete) inference engma fmarticular logic. However, the
Prolog language includes several extralogical facilitiagch have been found to be of considerable
utility in writing large programs. Some of these facilitiage referred to as “metalogical” because
their semantic domain is the domain of logical expressions roofs. This section introduces
some of the most important extralogical mechanisms in Brbjomeans of an example of a simple
natural-language dialogue program]k.

5.1 Metalogical Facilities
5.1.1 Thecall predicate

The first metalogical predicate exemplifies the level-drassvolved in interpreting Prolog terms
as encoding Prolog clauses and goals. Thtl predicate takes a single term argument which
encodes a Prolog goal. The argumentall is executed by reinterpreting it as the goal which
the term encodes. Thus, executiorcalll (conc([a,b], [c,d],A)) is equivalent to execution of
the goalconc([a,b], [c,d],A) directly. The utility ofcall comes about because the goal to be
executed can be a variable in the prograsJong as it is instantiated to an appropriate term by
execution time Sincecall depends on the instantiation of its arguments and reirgtsperms as
literals, it is clearly a metalogical predicate. Note that irgument to call can represent not only
single literal goals but any clause body, including conjiots, disjunctions and so forth.

The call predicate can be used to implement a simple Prolog intenpratunary predicate
which holds of its argument if Prolog would prove the arguimghen interpreted as a goal. The
definition is trivial.

107

108 Chapter 5. Full Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Program 5.1
prove(G) :- call(G).

We will see other more interesting examples of predicataisabt like interpreters in Chapter 6.

5.1.2 The cut command

The behavior of a Prolog program is based on the depth-fiegtktbacking control regime that
the Prolog system follows. The Prolog interpreter will expl the entire space of backtracking
alternatives in search of a solution to a goal. This behawalihough simple and (in the limit)
complete, sometimes has undesirable consequences. sethisn we present a metalogical facility
that changes the control regime of a Prolog program and #atbe used for several purposes
including increasingf@ciency, eliminating redundancy, and encoding conditienal

The cut command, notated by an exclamation mark is used to eliminate branches of the
search space. We refer to cut as a command, rather than agieedi operator, to emphasize that
it does not fit smoothly into the logical view of Prolog, andhnat be felicitously thought of as a
predicate which holds or does not hold of arguments.

The clauses for a predicate give alternative ways of prouistances of that predicate. In
proving a goal, Prolog chooses each alternative in turd angé leads to a proof of the goal. The
cut command always succeeds, but as a sitkceit makes some of the current clause choices
permanent for the duration of the proof. Specifically, if aude

P :-015--5Gis!5..-50n-

is being used to prove an instancepodind the cut is reached, then the choice of this clause to prove
that instance op, as well asll choices of clauses in proving throughg;, are made permanent for
the duration of the overall proof of which the proofpfs a part.

Another way of looking at the action of the cut command is a&sdbnverse of the previous
statements, that is, by examining which proofs the cut elatdgs. When Prolog backtracks to find
an alternative proof of an occurrence of cut, not only is heeoproof found for the cut instance but
also the whole goal that invoked the clause with this cutinst is taken to have no proof (even if
other clause alternatives might lead to such proof in therdxs of the cut).

The cut command can be used in several ways. If we have a séridmuses for a particular
predicate which we happen to know are all mutually exclysiten once one of the clauses has
succeeded, there is no use in attempting to find other sokjtiall other branches in the search
space will ultimately fail. We can eliminate the ffieiency engendered by searching these blind
alleys by using cut to force the clause choice.

For instance, consider the definition ofiax_valued predicate which holds of a nonempty list
of terms and the term in the list with highest valuation adawg to a binary comparison predicate
higher_valued. (We assume that all objects in the list have distinct vaunat there must be
no “ties”.) Such a predicate might be used, for instancejriplémenting a priority system on
terms. Inthe case whehd gher_valuedis simple arithmetic comparison of numbetsx_valued
computes the maximum number in a list.

The maximum-valued term of a nonempty list is the higher edlaf the head of the list and the
maximum valued term of the tail of the list. We will use a teynaax_valued predicate to capture
this latter relationship between a list, a term, and the mara-valued element in the entire bunch.

max_valued([Head|Tail], Max) :-
max_valued(Tail, Head, Max).

5.1. Metalogical Facilities 109

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

The ternary predicate is easily implemented. If the listrigpgy, then the lone term is the highest
valued. Otherwise, we pick the highest valued of the heatfist, the lone term, and the tail of
the list, by using the ternamax_valued predicate recursively.

max_valued([], Term, Term).

max_valued([Head|Tail], Term, Max) :-
higher_valued(Head, Term),
max_valued(Tail, Head, Max).

max_valued([Head|Tail], Term, Max) :-
higher_valued(Term, Head),
max_valued(Tail, Term, Max).

The clauses in the definition of ternatyx_valued are mutually exclusive. In particular, the last
two require dfferent relative magnitudes #tad andTerm. However, if the second clause is used
and later failure causes backtracking, the third clausétidn be tried. The complete recom-
putation ofhigher_valued(Term, Head) will be performed which, by virtue of the asymme-
try of the notion “higher valued”, will fail. However, arlbéry computation may have to be per-
formed before this mutual exclusivity of the two clauses &nifested, because the computation of
higher_valued(Term, Head) may be arbitrarily complex.

We can increase thdfieiency ofmax_valued by making this exclusivity explicit so that if the
second clause is chosen, the third clause will never be taadd into. The following redefinition

sufices:

max_valued([Head|Tail], Max) :-
max_valued(Tail, Head, Max).

max_valued([], Term, Term).
max_valued([Head|Tail], Term, Max) :-

higher_valued(Head, Term),

.

max_valued(Tail, Head, Max).
max_valued([Head|Tail], Term, Max) :-

higher_valued(Term, Head),

max_valued(Tail, Term, Max).

In this version of the program, as soon as we have ascertétia¢Head is higher tharTerm in
value, we will eliminate the possibility of using the thirhase, since we know that its first literal is
doomed to failure anyway.

This cut maintains the semantics of the program only forabennodes of execution of the
program. In particular, if the mode isax_valued(-,?), then the cut version may return fewer
solutions than the uncut. However, usamak_valued in this way will in any case generate instan-
tiation errors if the arithmetic operators are used withigher_valued.

In summary, using cuts in this way without changing the meguoif the program can in some
cases improve performance significantly. Nonethelesstrick (and trick it is) should only be used
whennecessarynot whenpossible

A second use of cuts is for eliminating redundancy in a progi@onsider the alternathuffle
predicate defined by the following clauses:

shuffle(A, [1, A).

110 Chapter 5. Full Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

shuffle([], B, B).

shuffle([A|RestA], B, [A|Shuffled]) :-
shuffle(RestA, B, Shuffled).

shuffle(A, [B|RestB], [B|Shuffled]) :-
shuffle(A, RestB, Shuffled).

This shuffle program correctly implements thehyfle relation. However, the predicate allows
redundant solutions; we can see this by backtracking thrtiug solutions it allows.

?- shuffle([a,b],[1],Shuffled).
Shuffled = [a,b,1] ;
Shuffled = [a,b,1] ;
Shuffled = [a,b,1] ;
Shuffled = [a,1,b] ;
Shuffled = [a,1,b] ;
Shuffled = [a,1,b] ;
Shuffled = [1,a,b] ;
Shuffled = [1,a,b] ;
Shuffled = [1,a,b] ;
Shuffled = [1,a,b] ;
no

The problem is that if one of the lists is empty, the programtha choice either of using one of the
first two clauses to immediately determine the answer, oravetrsing the nonempty list using one
of the last two clauses. In either case, the solution is theesaDne way to fix the predicate is to
guarantee that the clauses are mutually exclusive.

shuffle([], [1, [1).

shuffle([A|RestA], B, [A|Shuffled]) :-
shuffle(RestA, B, Shuffled).

shuffle(A, [B|RestB], [B|Shuffled]) :-
shuffle(A, RestB, Shuffled).

However, this solution might be seen asfligent, since in the case that one of the lists is empty,
the other list is still entirely traversed. An alternatigetd place cuts after the first two clauses so
that if one of the lists is empty, the use of one of the first téemses will cut away the possibility of
using the later clauses to traverse the nonempty list.

shuffle(A, []1, A) :- !.

shuffle([], B, B) :- !.

shuffle([A|RestA], B, [A|Shuffled]) :-
shuffle(RestA, B, Shuffled).

shuffle(A, [B|RestB], [B|Shuffled]) :-
shuffle(A, RestB, Shuffled).

As a matter of style, we prefer the nonredundant solutioh wit cuts to this final one. The example
was introduced merely as an illustration of the generalrtigre of removing redundancy.

The third use of cut we will discuss here is a technique forl@menting conditionals. Unlike
the previous two uses, in which the declarative interpiataif the programs was the same whether
or not the cuts were inserted, this use of cut actually chahgth the procedurahdthe declarative

5.1. Metalogical Facilities 111

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

interpretations. Such uses of cut are often referred toex¥ ‘Guts, to distinguish them from the less
dangerous “green” cuts we first discussed.

A conditional definition of a predicate of the form “if conditionthentruecaseelsefalsecasé
can be represented in Prolog using cuts as follows:

p :- condition, !, truecase
p :- falsecase

If the condition holds, the cut will prevent backtrackingarnthefalsecase On the other hand,
if the condition fails, theruecasewill, of course, not be executed. Thus the cases are exepised
according to the normal notion of the conditional.

As an application of such a conditional, consider the memngetion introduced in Section 3.4.1.

merge(A, [1, A).
merge([], B, B).
merge([A|RestAs], [B|RestBs], [A|Merged]) :-
A < B,
merge (RestAs, [B|RestBs], Merged).
merge([A|RestAs], [B|RestBs], [B|Merged]) :-
B =< A,
merge([A|RestAs], RestBs, Merged).

The last two clauses can be thought of as sayingA“i B then pickA else pickB.” The predicate
can be reimplemented using cut to reflect this conditional:

merge(A, [], A).
merge([], B, B).
merge([A|RestAs], [B|RestBs], [A|Merged]) :-

A < B,
|

merge (RestAs, [B|RestBs], Merged).
merge([A|RestAs], [B|RestBs], [B|Merged]) :-

merge([A|RestAs], RestBs, Merged).

Certain versions of Prolog include a notation for condisitsrwhich generalizes those built with
cuts in this way. The goal

condition -> truecase; falsecase

is used for this purpose. Use of the explicit conditionaliisferred to implicit conditionals built
with cut. With this notation, theerge example can be rewritten as

merge(A, [1, A).
merge([], B, B).
merge([A|RestAs], [B|RestBs], [C|Merged]) :-
A <B
-> (merge(RestAs, [B|RestBs], Merged),
C=24
; (merge([A|RestAs], RestBs, Merged),
C = B).

112 Chapter 5. Full Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Note the use of the operator defined in Program 3.2.

5.1.3 The Negation-as-Failure Operator

In pure Horn clauses, it is possible to prove only positiveatasions; Prolog can prove that some-
thingisthe case, but never that something@ However, some situations intuitively have the same
character as reaching a negative conclusion, namely thaskich Prolog fails to prove a goal. We
might assume that if Prolog cannot prove something true) thenust be false. Implicit in this
assumption is the idea that the Prolog program from whictogroould not prove the given goal
has complete information about its intended domain of pritation. This “complete information”
interpretation (orclosed world assumptioas it is called) is so natural that we use it all the time
without noticing. For example, if a string cannot be anatyas a sentence for some grammar, we
may conclude that the string is not grammatical. If two peagrle not related by thencestor
relation in our family database, we may conclude that neithan ancestor of the other. Conclud-
ing the negation of a statement from failure to prove it haob®e known in logic programming as
negation as failuré¢Clark, 1978).

Negation as failure is a reasonable interpretation of piahfre under the closed world assump-
tion because Prolog providesampleteproof procedure; that is, Prolog will not conclude there is
no proof of a goal when there is one. However, things are mdrdesthan the foregoing discussion
implies. Since any Turing machine can be represented byeaRnadog program (Tarnlund, 1977),
the recursive unsolvability of the Turing-machine haltprgblem implies that the determination of
whether a goal is provable is in general an undecidable iquest a goal is unprovable, Prolog may
terminate with a failure answer, or it may loop forever (igng resource limitations!). Because of
its leftmost-literal selection rule, Prolog might in facblp even for goals for which a proof proce-
dure with a dfferent selection rule would terminate with failure. In gexiga goal iffinitely failed
(with respect to a program) if the proof procedure termisatith failure for the goal.

All versions of Prolog provide some form of negation-aduiie operator. We will here assume
the Edinburgh\+ operator. A goah+G succeeds if and only if Prolog (finitely) fails to pro@ It
turns out thatk+ behaves exactly as if defined by the program

\+ Goal :- call(Goal) -> fail ; true.

This program has no reasonable declarative interpretaBomcedurally)\+ tries to execute its
argumentoal in the first clause. Ifioal succeeds, théail causes the whole call to+ to fail.
Otherwise\+ Goal succeeds trivially in the second branch of the conditional.

An important limitation of the above operator is that it doesachieve its intended interpretation
if its argument contains unbound variables. This is showthkydiferent behaviors of the queries

?7-\+ pX), X = a.
and

?7-X=a, \+ p&X).
with the program

p(b).

Tracing the execution of+ in both queries, we see that the first query fails while th@sdmne

5.1. Metalogical Facilities 113

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

succeeds, even though the two queries have the same logiagdrietation.

The problem here is that the implementatior\eG behaves as if any unbound variable<Gn
were existentially quantifieshsidethe operator, whereas, to be consistent with the varialolgisg
conventions Prolog uses (as discussed in Section 2.3)atlibles should be treated as quantified
at the outermost level in the enclosing query or clause.herowords, a goal such as

- \+ p(X).

is executed as if it meant- \+((3IX)p (X)), while in fact it should meanvk):- \+p(X). As a
consequenceé+ can be interpreted declaratively as negation-as-failahg ibits argument has no
unbound variables. Some versions of Prolog, for instancePdlog (Naish, 1986), have a sound
negation-as-failure operator, which basically delaysetkecution of the negated goal until all of its
variables have been fiiciently instantiated. (What “sticiently” means here is beyond the scope of
this book.)

5.1.4 Thesetof predicate

The control regime of Prolog generates alternative satstior a goal only through backtracking.
Unless some literal fails, an alternate solution to an eagloal will never be generated. On occasion,
however, we may be interested notsomesolution to a goal, but irall solutions. Thesetof
predicate allows execution of a goal—likell—but in such a way that a list of all solutions is
generated.

A literal of the formsetof (T, G, S), whereT is some term (usually a variable) adis a
goal (usually containing the variable), will hold just inses is a list representing the instantiations
of T under all assignments generated as solutions to the3jckthis goal can be read “the setD$
such thatG holds of each one iS”. For instance, the query

?- setof(T, shuffle([a,b],[1],T), S).
S =1[[1,a,b],[a,1,b],[a,b,1]],
T=_,

no

computes the set of sfiles of[a,b] and[1], encoded as a list.

An importantissue concerns variables in the ggalkther than those ii. For instance, consider
the goalsetof(T, conc(T, U, [1,2,3]), S). We must distinguish between variables that are
interpreted as bound by an existential quantifier withingbepe of asetof literal and variables
that are bound outside the scope of #eeof, or, in other words, to distinguish between “the set of
Ts such that there is@...” and “for someU, the set ofT s such that .”. As seen in the following
query, variables occurring i@ that are not irfil are in general treated as being outside of the scope
of thesetof.

?- setof(T, conc(T, U, [1,2,3]), S).

T=_,
v=11,
s =1[[1,2,3]] ;

T=_,
U= [1;2)3-7)

114 Chapter 5. Full Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

S =[] ;
T=_,

U= 1[2,3],

S = [[1]] ;
T=_,

U= [3],

s = [[1,2]] ;
no

To obtain behavior reflecting the narrow scope for bindingwdéh variables, theetof predicate
allows “existentially quantified” variables to be prefixedthe goalG with the infix operator *”.*

?- setof(T, U'conc(T, U, [1,2,3]), S).

T=_,
u=_,
s = [[],[1],[1,2],[1,2,3]] ;

no

Note that asetof literal fails (rather than succeeding wihthe empty list) if the goab has no
solutions.
Arelated predicatéagof, differs fromsetof only in that redundant solutions are not removed.

?- setof(T, member(T, [1,1,2]), S).

T=_,
S = [1,2]
yes

?- bagof(T, member(T, [1,1,2]), S).

T=_,
S =1[1,1,2]
yes

5.1.5 Theassert command

Interaction with Prolog as discussed so far consists ofgmtésg queries to be executed against a
static database of Horn clauses. B3gert command (and related commands liketract) allow
a program to alter the clause database dynamically; ther@mogan “rewrite itself” as execution
progresses. The idea of a program changing itself whilewgiegis both powerful and dangerous.
The use of facilities to perform such actions is therefonelémtious. Overuse of these facilities is
one of the most common errors of beginning Prolog progrargmin

A clause can be added to the database by calggpert with the clause as argument. For
example, the clause

1This use of" is unrelated to and should not be confused with its use in d@xpression encodings.

5.1. Metalogical Facilities 115

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

remembered([shrdlu, halts],
s(np(shrdlu),vp(iv(halts)))).

can be added to the database by execution of the followinlg goa

assert (remembered([shrdlu, halts],
s(np(shrdlu),vp(iv(halts)))))

Here again Prolog relies on the trick of representing obat| variables by metalevel variables.

The following program, for instance, will compute the parse for a sentence (assuminga DCG
like that in Program 3.11). Furthermore, once the parsetasdeen computed, it is “remembered”
by asserting a unit clause into the database. If the parsédréhe sentence is ever again requested,
the computation using the grammar will not be done; instéae appropriate unit clause will be
used. The cut in the program guarantees that even on bakkigaoo recomputation of the parse
tree is performed.

remember (Sentence, Parse) :-
remembered(Sentence, Parse), !.

remember (Sentence, Parse) :-
s(Parse, Sentence, []),
assert (remembered(Sentence, Parse)).

This program can be understood only procedurally. It makeses only under certain execu-
tion modes and calling conventions. In particular, if thargmar was ambiguous for a particular
sentence, this ambiguity will never be manifested, sinceaxktracking after the first call the cut
eliminates further possibilities. We will see a more cohgraseful application foassert as a tool
for remembering lemmas (that is, previously proven reyintSection 6.6.3.

5.1.6 Other Extralogical Predicates

We conclude our discussion of extralogical features of d&gratith a grab bag of built-in Prolog
predicates that we will find useful in later examples. Of saysince these predicates fall outside
the pure subset of Prolog they should be used sparingly athcaywpropriate trepidation.

Perhaps the canonical metalogical predicateis which holds if its single argument is a vari-
able at the time the literal is executed. Similadyomic holds of a term if it is a constant (i.e., a
number or atom) at execution time. Note that procedurakwsdilke literal ordering are crucial in
determining the behavior of these predicates. For instareapare the two queries

?- var(X), X = a.

X = a
yes

?- atomic(X), X = a.
no

to the queries with literals reversed.

?- X =a, var(X).
no

116 Chapter 5. Full Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

?- X = a, atomic(X).
X =a
yes

A useful device for composing and decomposing terms is tharkiinfix operatoe. ., which
holds of two argumentSerm andList if Term is a term with functor of arit,k andList is a list
of lengthk + 1 whose first element is the functor nameleim and whose ladt elements are thie
arguments oferm. For example, we have

?-T=.. [f, a, X, gX)].
T = f(a,X,g(X))
yes

?7- £f(a,X,g(X)) =.. L.
L =1[f, a, X, g(X)]
yes

This predicate, like the arithmetic predicates of Sectigh13 is not so much extralogical as incom-
pletely implemented, in that execution of the predicatdwitproper instantiation of its arguments
results in an instantiation error rather than a failure efchll. In particular, it must be called with
either one or the other of its arguments instantiated. Euntlore, if the first argument is uninstanti-
ated, the second must be a list whose first element is a can$taese restrictions follow from the
requirement that appropriate solutions for variables rhestleterminable at the execution time of
the predicaté.

5.2 A Simple Dialogue Program

We now turn to the design of thealk program, a simple natural-language question-answerisig sy
tem which demonstrates some of the metalogical facilitissdescribed. Here is a typical dialogue
that could be handled byalk.

?- main_loop.
>> principia is a book
Asserted "book(principia)."
>> bertrand wrote every book
Asserted "wrote(bertrand,B) :- book(B)."
>> which of the books did bertrand write
Error: too difficult.
>> what did bertrand write
principia.
>> every professor that wrote a program met bertrand
Asserted "met (P,bertrand) :-
professor(P), program(R), wrote(P,R)."

20ften the use of. . can be replaced by the morfiieient built-in predicatefunctor(Term, Name, Arity), which
holds whenTerm has main functor with namkame and arityArity, andarg(Number, Term, Arg), which holds when
the argument oferm in positionNumber is Arg. In the cases we will consider, the . operator is more readable.

5.2. A Simple Dialogue Program 117

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Notice thattalk can give onlyextensionabnswers to questions; for example, to the question
“What did Bertrand write?” it can answer only with specifictidas that it can prove Bertrand
wrote, and not with general answers such as “every book.att, the best way of understanding
talk input is as convenient notation for Prolog clauses to be dtl¢éhe knowledge base and for
Prolog goals to be proved.

talk is also limited in that it works with a predefined vocabulapgecified in the grammar. It
would not be dificult to add a simple mechanism to allow the user to define nesdsydut such
a mechanism would be usable only because of the small graoahand semantic capabilities of
talk. The more general problem of vocabulary acquisition fogdanatural-language processing
systems is a separate research topic (Grosz et al., 1987).

Thetalk program works by

1. Parsing a sentence, simultaneously building a reprasenbf its logical form.
2. Converting the logical form to a Horn clause (if possible)

3. Either adding the clause to the Prolog database (if theseawas declarative) or interpreting
the clause as a query and retrieving the answers to the query.

To perform these tasks, the program makes use of the metaldagilities just described. The
cut command is used to encode conditionals. Iseert command is used to modify the Prolog
database incrementally while the program is running. ddw £ predicate is used to find all answers
to a query.

5.2.1 Overall Operation

The main predicate isalk which when executed performs the three phases of computiaisd
described.

talk(Sentence, Reply) :-
parse(Sentence, LF, Type),
clausify(LF, Clause, FreeVars), !,
reply(Type, FreeVars, Clause, Reply).
talk(Sentence, error(’too difficult’)).

Note the use of cut. If the sentence cannot be parsed or d@gisdl form cannot be converted to a
Horn clause, the reply will berror(’too difficult’). The cut encodes the conditional “if the
sentence can be parsed and clausified then reply apprdpatge the sentence is tooffiicult”.

5.2.2 Parsing

The sentence is parsed by therse predicate instantiatingF to the logical form for the sentence (as
in Section 4.1), and instantiatirype to query or assertion depending on whether the sentence
was interrogative or declarative.

parse(Sentence, LF, assertion) :-
s(finite, LF, nogap, Sentence, []).
parse(Sentence, LF, query) :-
q(LF, Sentence, []).

118 Chapter 5. Full Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

The grammar used in thealk program is based on that developed in previous chapters, in
particular Program 4.5, but modified to allow questions aedatative sentences with the copular
verb “be”. The analysis of the copula which we use here islgdnadequate. It serves merely as
an expedient to allow certain sentences needed for naatdialogues. More sophisticated anal-
yses of auxiliaries that mesh more nicely with the copulaldde inserted. Semantically, the
verb “be” requires a complement noun phrase which is existénquantified, i.e., of the form
(X"Q) “exists(X,P&Q). The logical form of a sentence containing “be” is consteddty applying
the subject LF to the properBy ignoringQ altogether.

As in Program 4.3, the terms that give the meanings of contends such a®ookare now
marked with the prefix operator*, as in ‘book (X). This makes the translation from logical form
to Prolog easier, because it clearly distinguishes logioahectives from subject domain operators.

The logical forms for questions are implicatiofis=> answer (a), meaning thaa is an answer
for the question if conditiol€ representing the text of the question holds. For yes-notigumss the
answer igyes if the text of the question holds. For WH-questions, the arsvare the instantiations
of athat satisfy the goal. Note that thigidirs from the semantics given by Program 4.5.

5.2.3 LF Conversion

Logical forms are converted to Horn clauses by the predicatausify. A literal
clausify(Formula, Clause, Vars) holds if Clause is the clausal form of the FOL formula
Formula andVars is a list of the variables free in the antecedent of the cla(idee need foVars
will be explained later.)

The main point to note aboullausify is that it is a partial function. Although all logical forms
generated by the grammar are closed first-order formulase s them are not Horn clauses. For
example, the question “Who wrote every book?” has the ldficen

all(B,book(B) => wrote(X,B)) => answer(X). ,

which is not a Horn clause. We leave as an exercise for ther¢adietermine what sentence types
may or may not be represented by Horn clauses. As we haveldeanclauses must obey several
restrictions. Outermost quantifiers must be universallgrgified. Thus, to clausify a universally
quantified expression, we merely striff the quantifier and clausify the rest.

clausify(all(X,F®),F, [X|V]) :- clausify(FO,F,V).

If a clause has an implication symbol, the consequent mustdirgle literal, and the antecedent
must have variables existentially quantified with no oth@plication symbols.

clausify(A0=>CO, (C:-A),V) :-
clausify_literal(C0,0),
clausify_antecedent(A®,A,V).

Otherwise, if the clause has no implication symbol it musahmit clause, a single literal.

clausify(C0,C,[]1) :-
clausify_literal(C0,0).

As mentioned above, antecedents must have variables fiedmtkistentially, but may consist
of several literals, not just the one allowed in the consague

5.2. A Simple Dialogue Program 119

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

clausify_antecedent(LO®,L,[]) :-
clausify_literal(LO,L).

clausify_antecedent (EO&FO, (E,F),V) :-
clausify_antecedent (E®,E,V0),
clausify_antecedent (FO®,F,V1),
conc(VO,V1,V).

clausify_antecedent (exists(X,F0),F, [X|V]) :-
clausify_antecedent(FO,F,V).

Finally, literals are clausified merely by removing the bguoste marker.
clausify_literal(‘L,L).

Note that each clause falausify andclausify_antecedent includes a third argument that
keeps track of the variables free in the antecedent of thisela

In the translation from logical form to Prolog we can alsolsee Prolog clauses are represented
as Prolog terms with the binary functors-" and “,” used for implication and conjunction, respec-
tively. On the second clause elausify we have the tern(C:-A)® used to construct a clause
representation, and in the second clauselafusify_antecedent we have the terngk, F) being
used to build a conjunction in the antecedent of a clause.

Here also we see another instance of the previously disdussafusion” between object level
and metalevel. In the clauses fotausify andclausify_antecedent, variables are used to
stand for fragments of logical forms and Prolog clauses.hAtdame time, quantified variables in
the logical form are also represented by Prolog variablesead up as the variables of the resulting
Prolog clause.

5.2.4 Constructing A Reply

Finally, once the sentence has been parsed and its logical donverted to a clause, a reply is
constructed. If the sentence is declarative, the clauseislgnasserted into the Prolog database so
that future queries will use it.

reply(assertion, _FreeVars, Assertion,
asserted(Assertion)) :-
assert(Assertion), !.

Clauses associated with queries are always of the &mswer (Answer) :- Condition, by virtue

of the semantics given to questions in the grammar. Atmvers associated with all solutions of
Condition are generated usirggtof and this set forms the reply. If no answers are generated, the
simple reply “no” is used.

reply(query, FreeVars,
(answer (Answer) : -Condition), Reply) :-
(setof(Answer, FreeVars Condition, Answers)
-> Reply = Answers
; Reply = [no]), !.

For example, the question “Who wrote a book?” would be ti@asl into the Prolog clause

3The parentheses are required as usual for reasons of apemretedence.

120 Chapter 5. Full Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

answer(X) :- book(B), wrote(X,B).
This is then evaluated by the goal
setof (X, [B] " (book(B),wrote(X,B)),S) ;

that is, S is the set offs such that there is a bo@&thatX wrote. Note the use of the set of free
clause variables that we took pains to recover in the LF asime predicates. By existentially
guantifying them inside theetof predicate, we guarantee that all solutions for any assightoe
the free variables are recovered, not just for one assightodimem.

Finally, any other type of sentence generates an error messehe cuts in previous clauses
prevent backtracking into this clause once another claasertatched.

reply(_Type, _FreeVars, _Clause,
error (’unknown type’)).

5.3 User Interaction

The mode of interaction of thealk program as it stands requires putting to the Prolog intéepre
goals encoding the sentence as a list. For instance, we maghtthe following dialog.

?- talk([principia, is, a, book], Reply).
Reply = asserted(book(principia))
yes

?- talk([bertrand, wrote, every, book], Reply).
Reply = asserted((wrote(bertrand,B) :-book(B)))
yes

?- talk([what, did, bertrand, write], Reply).
Reply = answer ([principia])
yes

A more natural mode of interaction would enable the usergie sentences directly, and receive
replies from the system not as variable assignments, but ap@ropriate response to the input. To
enable such interfaces to be written, Prolog systems iedbudt-in commands for performing input
to and output from a terminal or other device.

Input/output specification is typically the most idiosyncraticlarariable part of any program-
ming language, and Prolog is no exception. We will therefmesent just a few very primitive
commands—dfticient to write a user interface faralk—which tend to be supported by most
Prolog systems. Readers will undoubtedly want to refer éonttanuals for their own systems to
determine the range of ingoutput commands that are available.

Note that all of these commands work through siffeas such as changing the state of the
terminal screen or input ifier. Since side fects have no place in the declarative semantics of
Prolog, these are all members of the strictly extralogieat pf Prolog. Retrying such commands
or backtracking through them does not cause their et to be undone, and they work only in
certain modes.

5.3. User Interaction 121

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

5.3.1 Simple InpufOutput Commands

The unarywrite command prints its term argument to the standard outpug(lystine terminal).
Its inverse read, reads a term delimited by a period and newline from the stahuhput (usually
the terminal as well) and unifies its argument with the terat th read. Typically, it is called in
moderead(-), so that its argument is a variable that is bound to the tead.re

Input/output behavior at the character rather than term level ssipte with commandget
andput. Theget command reads a single printing character from the inpeasir unifying its
argument with the integer that is thecn code for the character read. Nonprinting characters (like
spaces, tabs, newlines and control characters) are skigfeedompanion commanget® works
the same, except that nonprinting characters are not skippe print a character to the standard
output, theput command is called with the integer corresponding to theattar to be printed as
its argument. The zero-ary predicafeputs a newline character to the standard output.

5.3.2 A Simple User Interface

Using these commands, we can develop a simple user intefidatiee talk program. First, we
need a program to read sentences from the terminal. Thecptedead_sent will return a list of
words which were typed separated by spaces and ended by ia@ehracter.

read_sent (Words) :-
get®(Char),
read_sent (Char, Words).

It gets the next character from the input stream as a lookhhed, depending on the lookahead
character, either continues reading or stops. If the loe&dltis a newline, input is ended.

read_sent(C, []) :- newline(C), !.
If the lookahead is a space, it is ignored, as spaces are rtaifghe next word.

read_sent(C, Words) :- space(C), !,
get®(Char),
read_sent(Char, Words).

Any other character is assumed to start a word. The auxipeedicateread_word is called to
retrieve the characters that constitute the next word flwrirtput. Then the built-in predicatame
packs this list of characters into an atom. Finally, moredsare read from the input.

read_sent(Char, [Word|Words]) :-
read_word(Char, Chars, Next),
name (Word, Chars),
read_sent (Next, Words).

Reading a word from the input stream proceeds similarly. fieelicateread_word takes the
lookahead character and builds a list of characters sgawith the lookahead that comprise the
word. The new lookahead, the delimiter following the wosdpiatched with the third argument to
read_word. Newlines and spaces delimit the words.

read_word(C, [], O :- space(O), !.

122 Chapter 5. Full Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

read_word(C, [], ©) :- newline(Q), !.
All other characters are added to the list of characters fotmeed into a word.

read_word(Char, [Char|Chars], New) :-
get®(Next),
read_word(Next, Chars, New).

Usingread_sent, we can write a top-level loop that reads sentences, comsfluteappropriate
reply with talk, and prints that reply.

main_loop :-
write('>>),
read_sent (Words),
talk(Words, Reply),
print_reply(Reply),
main_loop.

The final recursive call afiain_loop starts the read-compute-printloop over again.

Finally, a program to print the replies in a more satisfacfashion was assumed in the definition
of main_loop. This predicateprint_reply, is listed in the Appendix A code. As it presents no
interesting problems, its definition is not repeated here.

Interacting with thetalk program through this interface, although not ideal, is aierably
more natural as evidenced by the dialogue presented at tfienirg of Section 5.2. The full
commented listing for thealk program is given in Appendix A.

5.4 Bibliographic Notes

Most of the extralogical facilities of Prolog discussedhistchapter go back to the original Marseille
Prolog (Roussel, 1975). In that system,assert and=. . were called respectively (the slash
suggesting the cutting of alternative branches of the bespace)AJOUT, andUNIV.

The general question of extralogical facilities has led tecindiscussion in the logic program-
ming community. At their best, those facilities can be seeoferators on axiom sets and deriva-
tions, for which a reasonable semantics might be forthcgrfBowen and Kowalski, 1981; Bowen
and Weinberg, 1985). At their worst, extralogical facsitre just means of simulating imperative
language features within Prolog. Often, these simulatiinly detract from the logical seman-
tics of Prolog but also incur considerable performance Ihesasince the mostficient aspects of
Prolog are generally those with a clean semantics (War@&fi})1

Of all extralogical operations in Prolog, the cut seems tthigemost often used and the source
of most controversy. The primitive storage managementiegcies of early Prolog systems meant
that nondeterminate computations used very large amoftiggg@oe. Since the cut operator makes a
subcomputation determinate, “green” cuts were used ity €adlog programs as the main method
of storage conservation. More recently, improved storagaagement techniques and better de-
terminacy detection in Prolog compilers (Warren, 1977kTaad Warren, 1984; Pittomvils et al.,
1985; Bowen et al., 1986) have made that use of cut less impodt least for those with access to
state-of-the-art Prolog systems.

The use of cut to implement a limited form of negation as nowability also goes back to
Marseille, although it is diicult to give a precise reference to the first appearance déttmique.

5.4. Bibliographic Notes 123

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

The overall question of the meaning of negation-as-norgiriity has been extensively researched.
Lloyd’s book (1984) presents some of the main theoreticatepts and results on the subject, orig-
inally discovered by Clark (1978), Apt and van Emden (198R) ddfar, Lassez, and Lloyd (1983).
These results include denotational characterizationseofrteaning of dierent possible notions of
negation, and proofs of the soundness and completenesgatioeas-failure with respect to the
completionof definite-clause programs. A more recent survey of resuitsopen problems was
given by J&ar, Lassez and Maher (1986). These theoretical developmesteeded in parallel with
the discovery of computational mechanisms allowing soomuémentations of negation-as-failure,
embodied in Colmerauer’s Prolog-1l (1986) and Naish’s MkdiBg (1986). These mechanisms in-
volve delaying negations (or, as a special case, inegesllitintil variables become “giciently”
bound.

The set construction operatestof we use here is due to D. H. D. Warren (1982) and was first
implemented in DEC-10 Prolog (Bowen, 1982). From a pratgioat of view, the requirement that
all narrow-scope existentially quantified variables beliekty marked with the™ operator is some-
times burdensome. Other proposed set operators (Mortis £986) adopt the opposite convention.

Our talk program is a rather simplistic example of a natural-languatgrface to a knowledge
base. A comparable example program was given as an examplepbti€ation of Colmerauer’s
metamorphosis grammars (1978). The program’s structulleoperation are closely modeled on
those of more comprehensive Prolog natural-language as¢ainterfaces such as those by Dahl
(1981), F. C. N. Pereira (1982), Pereira and Warren (1982) McCord (1982), even though those
systems dealt only with questions and not with assertiohs.limitation of allowable assertions to
those whose meaning can be expressed by definite clausese#nts the diicult question of what
to do with assertions that contradict existing system keodgé (Haas and Hendrix, 1981). More
generally, natural-language interface systems shouldlgeta deal with unmet presuppositions in
guestions and commands as well as with assertions thatclcttexisting information (Winograd,
1972).

As we pointed out, our example program cannot acquire newdswoot in its initial vocabulary.
In general, this is a dlicult question. Besides the determination of syntacticgmateand fea-
tures, word acquisition should be able to determine use aahing constraints for the word, either
from other information supplied in natural language (Haad ldendrix, 1981) or from specialized
acquisition-dialogue mechanisms (Grosz et al., 1987 gBdkhnd Stumberger, 1986).

124 Chapter 5. Full Prolog

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Chapter 6

Interpreters

This digital edition of Pereira and ShiebePsolog and Natural-Language Analy-
sisis distributed at no charge by Microtome Publishing undecenise describ

in the front matter and at the web site. A hardbound editi®@B{ 0-9719777
0-4), printed on acid-free paper with library binding andlirding all appen
dices and two indices (and without these inline interrup)o is available fro
www . mtome . comand other booksellers.

In previous chapters we have seen that a very powerful granfonmalism, definite-clause
grammars, can be used to describe a variety of NL-relatedgyzhena and can be directly embedded
in Prolog. In so doing, the grammar engenders a top-downrsae-descent, backtrack parser for
the language of the grammar. For applications where suchsgmpia stficient, this technique can
be quite useful. We have, however, already seen evidenomittfefls of Prolog and DCGs. For
instance,

e Since Prolog programs with left-recursion have termimapooblems, so will direct Prolog
execution of DCGs with left-recursive rules.

e Arguments in DCG rules having a regular, predictable stmget-e.g., those which enforce
filler-gap dependencies, build parse trees, or constrgatdbforms—tend to proliferate and
complicate grammars.

These and similar problems have been addressed in logigrgroming research. Some of the
tools for solving them—»by extending or modifying Prolog betgrammar formalism—exist within
Prolog itself, but rely on using the language iffeient ways. Rather than embedding programs or
grammars directly in Prolog, we can defineiatrerpreterfor the extended language in Prolog itself.
An interpreter is aneta-programin that it uses other programs as datBy writing specialized in-
terpreters, it is possible not only to cover new languagetrants, but also to try out new evaluation
strategies for a language.

1For this reason, what we call interpreters are sometimesreef to somewhat confusingly ageta-interpreterseven
though they do not in general interpret interpreters.

125

126 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

6.1 Prologin Prolog

We will begin our discussion of interpreters with the basis éxtensions to Prolog, namely, an
interpreter for pure Prolog, written in pure Prolog itseBuch interpreters written in their own
object language are often calleteta-circular interpretersin fact, we have seen one meta-circular
Prolog interpreter already, the predicateove in Program 5.1. In this less trivial example, we
assume that the object-level Prolog program to be intezgrist encoded with the unary predicate
clause. For instance, theonc predicate, defined as Program 3.3, would be encededhta for
the interpreterby the clausée’s

clause((conc([], L, L) :- true)).
clause((conc([E|R], L, [E|RL]) :-
conc(R, L, RL) D).

Notice that the clauses are encoded by Prolog terms and jeetdével variables by meta-
level variables. We have seen this kind of “level-shiftifggtween object- and meta-level before,
for instance, in the use of Prolog (meta-level) variablesrioode lambda-calculus (object-level)
variables (see Section 4.1.3). In the writing of interprgteuch level-crossing is ubiquitous.

The interpreter is implemented by the predigateve, which takes an object level goal (encoded
as a term) and follows the Prolog proof procedure using thgnam axiomatized bylause clauses.
The intention is that the goalrove (Goal) be provable by Prolog if the go&oal is as well.
Clearly, the trivial goakrue is always provable.

prove(true).
Any other goal is provable only if there is some clause whiglahes it and whose body is provable.

prove(Goal) :-
clause((Goal :- Body)),
prove (Body) .

Finally, if the body consists of the conjunction of two suby they must be proved independently.
prove((Bodyl, Body2)) :-
prove(Bodyl),
prove (Body2).

These three clauses, summarized as Program 6.1, conatftuténterpreter for pure Prolog written
in Prolog.

Program 6.1
prove(true).
prove(Goal) :-
clause((Goal :- Body)),
prove (Body) .
prove((Bodyl, Body2)) :-
prove (Bodyl),

2The extra parentheses around each clause are required miyuEgh Prolog syntax to inhibit Prolog from interpreting
the : - with its normal precedence, which would cause it to be talegnireding weaker than thelause predicate itself. The
parentheses force it to be interpreted in the natural waglasg just the material inside the parentheses as argumginés
same trick was used in Section 2.8.1.

6.1. Prolog in Prolog 127

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

prove (Body2).

By tracing the execution of the program proving a goal andganing it to the trace of Prolog ex-
ecuting the same goal directly, as in Figure 6.1, we can sepahallelism between the interpreter’'s
axiomatization of the object-level Prolog interpreter #mel object-level interpreter itself.

6.1.1 Absorption

The diference between the three-clause interpreter and thd tivéaclause interpreter usingl1
(Program 5.1) resides in the amount of work of the interpritat is done by the Prolog execution
mechanism the interpreter is being executed by. In the cheedrivial interpreter, all of the
interpretation process &bsorbedy the Prolog that is executing the interpreter. In the tioleese
interpreter, much, but not all, of the work is being absorbledr example, the unification of goal
literals and clause heads is absorbed into the unificatioerofs in the executing Prolog. The order
of clause choice is also absorbed. In fact, the only partishait absorbed is the selection of literals
in a conjunctive goal.

Interpreters are written so that portions of the intergi@taprocess can be manipulated,
changed, and otherwise investigated. The part of the irgtafion process absorbed by the pro-
gram executing the interpreter is not subject to such mdatipn. Thus, if we are interested in
experimenting with alternate literal selection rules, tme-clause interpreter will be infiicient
for our purposes (since it absorbs literal selection), whsithe three-clause interpreter does allow
changes in that area (since it makes literal selection @xpliHowever, if we wish to experiment
with alternate unification methods (as is commonly don&jheeof these interpretersiices; they
both absorb unification into the underlying execution. Nio& the interpreters presented so far all
absorb the various facets of the control structure of Prolpgmplementing them with theame
facets in the underlying execution. This circularity is netessary, but is often the simplest method
of absorption.

6.1.2 Keeping Proof Trees

As an example of one sort of extension to the language trexpirdters make possible, we consider a
version of Prolog that automatically generates proof tfeegoals that it proves. An extra argument
in the interpreter keeps track of the proof tree of the goaldproved. The proof tree encoding is
as follows: If a literalL is proved by virtue of subproof3,, ..., P,, then the proof tree fat

L

N

P... P
1 n

is encoded as the Prolog term
L :-P1, ..., Pn
The following interpreter accomplishes this task:

Program 6.2
prove(true, true).

prove(Goal, (Goal :- BodyProof)) :-
clause((Goal :- Body)),

Chapter 6. Interpreters

128

A hardbound edition of Prolog and Natural-Language Analysis is available from

www.mtome . com and other booksellers.

?- conc([a,b]

(1) 0 Call :

(2) 1 Call

(3) 2 Call :

(3) 2 Exit :
(2) 1 Exit :
(1) 0 Exit :
A = [a,b,c,d]

yes

,[c,d],A).

conc([a,b], [c,d],L_1)

: conc([b], [c,d],RL_2)

conc([], [c,d],RL_3)

conc([], [c,d], [c,d])
conc([bl, [c,d], [b,c,d])

conc([a,b], [c,d], [a,b,c,d])

?- prove(conc([a,b],[c,d],A)).

(1)
(2)
(2)

(3
(4)
(4

(5)
(6)
(6)
(7)
(7)

(5

(3)

yes

0 Call

1 Call
2 Call

Call

Call
Exit

2
3
3 Exit
3
3
2 Exit
1 Exit

0 Exit

[a,b,c,d]

: prove(conc([a,b], [c,d],L_1))
1 Call :
1 Exit :

clause((conc([a,b], [c,d],L_1):-Body_2))
clause((conc([a,b], [c,d], [alRL_2]) :-
conc([b], [c,d],RL_2)))

: prove(conc([b], [c,d],RL_2))
: clause((conc([b], [c,d],RL_2):-Body_4))
2 Exit :

clause((conc([b], [c,d], [bIRL_3]) :-
conc([], [c,d],RL_3)))

: prove(conc([], [c,d],RL_3))
Call :
: clause((conc([], [c,d], [c,d]) :-true))
: prove(true)
: prove(true)

clause((conc([], [c,d],RL_3) :-Body_6))

: prove(conc([], [c,d], [c,d]))
: prove(conc([b], [c,d], [b,c,d]))

: prove(conc([a,b], [c,d], [a,b,c,d]))

Figure 6.1: Comparison of Direct Execution and Indirecetptetation.

6.1. Prolog in Prolog 129

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

prove (Body, BodyProof).

prove ((Bodyl, Body2), (BodylProof, Body2Proof)) :-
prove(Bodyl, BodylProof),
prove (Body2, Body2Proof).

As an example, the interpreter generates the following fsr@manually indented for readability)
for queries concerning thehuffle predicate defined as Program 3.4.

?- prove(shuffle([a,b]l,[1,2],S), Proof).

S = [1,2,a,b],
Proof = shuffle([a,b],[1,2],[1,2,a,b]):-
(conc([], [a,b], [a,b]):-
true),
(shuffle([a,b], [2],[2,a,b]): -
(conc([],[a,bl,[a,b]):-
true),
(shuffle([a,b], [], [a,b]):~
true),
(conc([],[2,a,b],[2,a,b]):-
true)),
(conc([],[1,2,a,b],[1,2,a,b]):—
true) ;

S = [1,a,2,b],
Proof = shuffle([a,b],[1,2],[1,a,2,b]):-
(conc([],[a,b], [a,b]):-
true),
(shuffle([a,b], [2],[a,2,b]):-
(conc([a], [b], [a,b]) :-
(conc([1,[bl, [b]):-
true)),
(shuffle([b], [1,[b]):-
true),
(conc([a], [2,b], [a,2,b]):-
(conc([1,[2,b],[2,b]):-
true))),
(conc([],[1,a,2,b],[1,a,2,b]):-
true)

yes

Using techniques of this sort, one can imagine writing ioteters that trace the execution of a
program, detect looping in a program’s execution, or allotgiiactive single-stepping of a program.

6.1.3 Unit Clauses

The three-clause Prolog interpreter does not allow unitsea, e.g.,

130 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

conc([], L, L).

to be stated directly, say as
clause(conc([], L, L)).

Instead, they are encoded as
clause((conc([], L, L) :- true)).

Extending the interpreter to handle unit clauses corrédwtl/one subtlety, in that the straightforward
“solution” of adding a new clause to the interpreter

prove(Goal) :-
clause(Goal).

does not accurately reflect the top-to-bottom clause angetiat Prolog uses. Instead, we could
introduce a new predicateclause, which picks up clauses from the database and in the case of
unit clauses, instantiates the body of the clauseras.

Program 6.3
aclause((Head :- Body)) :-

clause(Clause),
(Clause = (Head :- Body)
-> true
; (Clause = Head, Body = true)).

Because thelause goal does not distinguish unit from nonunit clauses, thettepottom clause
ordering will be respected in backtracking througilause.

6.2 Problem Section: Prolog Interpreters

6.2.1 Consecutively Bounded Depth-First Search

Because of its depth-first control regime, Prolog may fafirid a solution to a query even when one
exists. One solution to this problem is to substitute fortb€ist execution an alternative regime
calledconsecutively bounded depth-fiestecution, which we will define in terms of a simpler, but
highly incomplete, control regime calletkpth-boundedxecution.

In depth-bounded execution of a goal, the goal is proved ieldfirst manner until a given
depth of recursion is reached. At that point, if no solutias been found, that branch of computation
is considered to have failed, and the system backtracksa Given depth bound, we will refer to
n-depth-bounded execution.

A depth-bounded Prolog interpreter will never loop infihitdHowever, it will fail to find solu-
tions that involve proofs that are deeper than the depth dhoArcompromise control regime that,
unlike depth-bounded execution, can find arbitrarily coerpdroofs, yet that will not loop infinitely
in a depth-first manner, is consecutively bounded depthdiscution. In this regime, a goal is
executed by executing it under a 1-depth-bounded regimao Holutions are found, the system
uses 2-depth-bounded execution, then 3-depth-boundedpaon. If a proof exists, the system will
eventually attempt to execute the goal with a large enougthdeound, and the proof will be found.

6.3. Interpreters for DCGs 131

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Since each depth-bounded execution terminates, the agivgdyg bounded regime has the benefit
that if a proof exists, it will eventually be found—a propethat Prolog’s depth-first regime does
not share.

Of course, consecutively bounded execution involves arrédncy in computation, since later
depth-bounded executions reiterate all the computati@adier ones. The cost may not be as much
as it appears at first blush, however, as the cost of execthtinfirstn — 1 levels is only a constant
factor of the cost of executing level Further analysis of the cost of this method is well beyored th
scope of this problem.

Problem 6.1 Write an interpreter for Prolog that uses a consecutivelytaed depth-first control
regime. Try it on a left-recursive program like Program 2o3femonstrate that it finds proofs where
Prolog’s control regime would not.

6.2.2 An Interpreter For Cut

The interpreters devised so far have been concerned onfypuite Prolog. In this section we
consider the problem of writing an interpreter for pure Bgohugmented with the impure cut op-
erator. For the purposes of this problem, we will assumediaatses have at most one cut in them.
There are two cases we must consider. If there is no cut inltuse, we can interpret it as be-
fore. If there is a cut in the clause, we must interpret th¢ Ipafore the cut, then cut away further
choices oflause clauses, and then interpret the part after the cut. (Ndtie@ice symmetry here:
The pure Prolog meta-circular interpreter was written ineprolog. Augmenting the object lan-
guage with cut requires the same augmentation to the megardae. In essence, we will absorb
the execution of cut using the cut of the underlying execujioMe will need a predicate, call it
cut_split(Body, Before, After) which takes &8ody of a clause and finds the p&¢fore
andAfter the cut (if there is one). The predicate fails if there is nb cu

Problem 6.2 Write cut_split and use it to augment the interpreter to handle clauses withcst
one cut per clause. Make sure the top-to-bottom clause orgés respected.

Problem 6.3 (More djficult.) Write an interpreter that can correctly interpret ®og programs
with more than one cut per clause.

6.3 Interpreters for DCGs

Extensions to the DCG formalism can be implemented just teneions to Prolog, by extending
an interpreter for DCGs. The DCG interpreter will use dedirdtause grammars encoded in Prolog
using the same encoding as in Section 3.7, except that the fonactor will be ---> rather than
-->, as declared by the following operator declaration:

:- op(1200,xfx,--->).

We use a dferent arrow for the same reason we used thause predicate in the Prolog
interpreters—to prevent the DCG from being automaticaltgipreted by the normal Prolog mech-
anism, since it is merely data for the interpreter.

132 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

6.3.1 DCG in Prolog

We turn now to the design of a DCG interpreter in Prolog. Thecstire of the interpreter—its use
of pairs of string positions to keep track of the portion ofrgg parsed—should by now be familiar.
The interpreter is implemented by the predigadese corresponding to the predicaieove in

the Prolog interpreter. The literahrse (NT, PO, P) holds if the string between positioR§ and
P can be parsed as (i.e., is covered by) the nonterrNihaktcording to the definite-clause grammar.
A nonterminal covers a string between two positions if thdybof a matching rule does also.

parse(NT, P_0, P) :-
(NT ---> Body),
parse(Body, P_0, P).

If the body has several parts, all must be matched, in order.

parse((Bodyl, Body2), P_0®, P) :-
parse(Bodyl, P_0®, P_1),
parse(Body2, P_1, P).

The empty string, encoded with], covers no string.
parse([], P, P).

A list of terms is treated as a list of terminal symbols to berfd directly connecting the positions
in the string.

parse([Word|Rest], P_O, P) :-
connects(Word, P_0, P_1),
parse(Rest, P_1, P).

Finally, recall that the Prolgp)CG brace notation allows a kind of level-crossing betwe&G3
and Prolog—an “escape” to Prolog. To implement this leveksing, we need a way of interpreting
terms as literals and executing them. Taé1 predicate serves this purpose; its use in implementing
the DCG escape to Prolog is as follows:

parse({Goals}, P, P) :- call(Goals).

For completeness, we repeat the definition ofdbwnects predicate, originally defined by Program
3.8in Section 3.4.2.

connects(Word, [Word|Rest], Rest).

Exercise 6.4 Test the DCG interpreter just defined with a small DCG on a femtences to convince
yourself that it actually implements the DCG correctly.

6.3.2 DCGinDCG

The astute reader may have noticed that the DCG interpredsepted above is in just the form of a
DCG translated into Prolog. Thus, the interpreter coulceHaen more succinctly stated by writing
it as a DCG itself! In particular, the following DCG implemsra meta-circular DCG interpreter.

6.3. Interpreters for DCGs 133

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Program 6.4
:- op(1200,xfx,--->).

parse(NT) -->
{NT ---> Body},
parse(Body) .

parse((Bodyl,Body2)) -->
parse(Bodyl),
parse(Body2).

parse([]) --> [].

parse([Word|Rest]) -->
[Word],
parse(Rest).

parse({Goals}) --> {call(Goals)}.

Exercise 6.5 Extend the DCG interpreter in Program 6.4 so that it autoroalty builds a parse tree
representation of the parsed expression. This corresperdstly to the problem of automatically
generating a proof tree in the Prolog interpreter. You maywa refer to the discussion preceding
Problem 3.7 for an applicable tree encoding method or use=theoperator of Section 5.1.6 to
build more standard tree encodings.

6.3.3 An Interpreter for Filler-Gap DCGs

Filler-gap dependencies constitute a set of linguisticpin@ena with a quite cumbersome encoding
in DCGs, as we have seen in Sections 4.2.3 and 4.2.7. Thitepndtas been noted by many people
working on the design of logic grammars, and has been theraigm for a large number of the
logic grammar formalisms extending DCGs. As noted in Sedli®.7, the gap-threading encoding
of filler-gap dependencies lends itself to use in implemmgndin extension of DCGs to handle filler-
gap dependencies because of the simple, regular strudtilme extra filler-list argument it requires.

In this section we will develop a formalism, FG-DCG, thabalk a simpler statement of filler-
gap constraints and construct an interpreter for it. FG-D@Es appear, for the most part, identical
to DCG rules (except using the operater> as usual for interpretation). However, to directly state
filler-gap constraints we must add to DCGs the ability to dexlvhich constituents are fillers, which
are islands, and what nonterminals can be realized as gap®u¥ extensions to DCGs to handle
filler-gap phenomena have takerffdrent approaches to this notational problem. We will use the
following notations.

o Afiller of type ¢ requiring a gap of type will be notated as a term of the forgnfills y,
wherefills is an infix Prolog operator.

e Anisland of typep will be notated as a term of the forgni sland, whereisland is a postfix
Prolog operator.

e The fact that a gap of typgcan be realized as (usually, the empty string), is notated by the
FG-DCG rule:

134 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

gap(y) ---> a.

The interpretation of the special filler and island spedifices in an FG-DCG rule is as follows:
Aterm¢ £ills y matches a constituent of tyge but requires that a gap of typebe foundwithin
some sibling to the right af. A phrase covered by the tergni sland can never have a gap within
it that is filled outside it. A use of a rule of the forgap(y) ---> . must always fill a gap.

As a simple example of an FG-DCG grammar, we rewrite the granmohProgram 4.4 in the
new notation. For brevity, we leave out the lexicon, whichimghanged from the earlier grammar.
We also add a new rule for ditransitive verb phrases to hihihtihe fact that this grammar does not
fall prey to the dificulties mentioned in Section 4.2.7.

Program 6.5
s ---> np island, vp.

np ---> det, n, optrel.
np ---> pn.

vp ---> dv, np, np.
vp ---> tv, np.
vp ---> iv.

optrel ---> [].
optrel ---> [that] fills np, s.
optrel ---> [that], vp.

gap(np) ---> [].

Note that the grammar encodes the filler-gap dependenciewére implicit in the earlier grammar
far more simply and directly.

An interpreter for FG-DCGs is a straightforward extensimthie DCG meta-circular interpreter
of Program 6.4. First, we declare the necessary operators.

:- op(1200,xfx,--->).
- op(300, xfx, fills).
;- op(300, xf, island).

Next, we augment thparse predicate with an argument for the filler list. Thus the césief
the interpreter become

parse(NT, FO-F) -->
{NT ---> Body},
parse(Body, FO-F).
parse((Body1l,Body2) ,F0-F) -->
parse(Bodyl,F0-F1),
parse(Body2,F1-F).

parse([], FO-FO) --> [].
parse([Word|Rest], FO-F) -->
[Word],
parse(Rest, FO-F).

6.4. Partial Execution and Compilers 135

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

parse({Goals}, FO-F®) --> {call(Goals)}.

Finally, we require special rules for islands, fillers, amagg. An island is parsed as a constituent
with empty filler list.

parse(NT island, FO-F®) -->
parse(NT, FO-FO0).

A list of nonterminals the first of which is a filler is parsedmgrsing the filler, then parsing the rest
of the list but with an additional element on the filler listrettype of gap that this filler corresponds
to.

parse((NT fills GapType,Body2), FO-F) -->
parse(NT,F0-FOQ),
parse(Body2, [GapType|FO]-F).

Finally, a nonterminaliT can be realized as a gap corresponding to a filler in the fileif there is
arule

gap(NT) ---> Body.

and theBody can itself be parsed. Of course, in most caBedy will encode the empty string, but
this additional ability to specify nonempty bodies of “gagpnstituents allows us to use FG-DCGs
for other long-distance dependencies such as resumptwv@pns in which the filler is associated
with a pronoun embedded in the sentence.

parse(GapType, [GapType|FO]-FO®) -->
{9ap(GapType) ---> Body},
parse(Body, FO-FO).

Exercise 6.6 Modify the grammar of Program 4.5 to use the FG-DCG notation.

6.4 Partial Execution and Compilers

Using an interpreter to interpret a Prolog program is in galmauch less ficient than executing the
program directly. Thus interpreters are of little use uskbe language they interpret is extension
of Prolog; otherwise, using Prolog itself is an equivalerd anore #icient method. We can recoup
some of the ficiency lost in using an interpreter Ixanslatingor compilingthe extended language
into Prolog rather thamterpretingit with an interpreter. For just this reason, DCGs are coetpil
into equivalent Prolog programs upon their being read inéoRrolog system.

From an intuitive standpoint, the fikrence between a compilation and subsequent execution
of a program and interpretation of the program is that thenBarmoves some of the predictable
proof steps to an earlier phase of processing. The idea &dmp&ng proof steps at an earlier stage
is reminiscent of the notion gartial executionintroduced in Section 4.1.4. In this section, we
ground this intuition by developing a program to partialkeeute clauses and using it to build a
compiler for definite-clause grammars.

136 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

6.4.1 Partial Execution Revisited

Recall the basic Prolog proof step of SLD resolution (Sec3i®.3). Resolution proceeds by picking
a literal in a clause and replacing it with the body of a matghilause under the unifying substitution
of the literal and the head of the clause. Partial executfoa dause merely performs certain of
these resolution steps at an earlier stage of computataledecompile time Since the order of
resolutions is thereby changed, partial execution is oolynd in the subset of Prolog in which the
order of selection of literals is not critical to the cormeess of execution of the program, that is, in
pure Prolog. A clause (which we will call thgogram clausgis thus partially executed with respect
to a set of predicates (calledixiliary predicatesby resolving the clause on literals containing these
predicates and recursively partially executing the remulvuntil no more such resolutions can be
performed.

Executing a goal involving thprogram predicatdthe predicate defined by the program clause
or clauses) using all possible partial executions of thgyram clauses is equivalent to executing
it using the original program clauses plus all the auxilielguses as well. Consequently, we can
replace the program and auxiliary clauses by the clauseirgsfrom partial execution. It is not
necessary to resolve literals in the program clauses aghmprogram clauses themselves, as their
equivalents will be available at run time anyway. Furthemmadt is fortunate that such recursive
resolutions are not needed, as they might lead to nontetiminaf the partial execution facility.

Partial execution thus requires a recursive traversal tafiese and its literals just as an interpreter
does. But instead of proving each subgoal, we replace it igttiefinition. Thus the definition of
a predicate to compute the relation between a program ckngés partial executions follows the
form of an interpreter relatively closely. To partially exge a clause, we merely partially execute
its body.

partially_execute((Head:-Body),
(Head: -ExpandedBody)) :- !,
partially_execute(Body, ExpandedBody).

To partially execute a conjunction of goals, we partiallgexte the first literal and the rest of the
literals and conjoin their expansions.

partially_execute((Literal, Rest), Expansion) :- !,
partially_execute(Literal, ExpandedLiteral),
partially_execute(Rest, ExpandedRest),
conjoin(ExpandedLiteral, ExpandedRest,
Expansion).

We will replace literals with their definitions only if theyeaspecified as auxiliary literals. The pred-
icateaux_literal specifies which literals are subject to partial executiamtfermore, we require
that there exist at least one clause matching the literdle@tise, the literal is left unchanged.

partially_execute(Literal, Expansion) :-
(aux_literal(Literal),
match_exists(Literal))
-> (clause((Literal :- Body)),
partially_execute(Body, Expansion))
; Expansion = Literal.

6.4. Partial Execution and Compilers 137

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Testing Existence and Double Negation

To determine whether a match exists, we can check that thef suses with the literal as head
contains at least one element.

match_exists(Literal) :-
setof(Body, Literal"clause((Literal:-Body)),
[_Clause|_Others]).

This definition, though correct, is quite ifieient. A naive implementation afatch_exists
merely looks for a matching clause.

match_exists(Literal) :-
clause((Literal :- Body)).

However, this definition has the unwanted sidieet of actually binding variables initeral de-
pending on what clause was found. Furthermore, if theress@ral matching clauses, this definition
will allow backtracking.

A common trick for solving problems of unwanted bindingshe tlouble use of the negation-
as-failure operatox+. In the case at hand, we can change the definition as follows:

Program 6.6
match_exists(Literal) :-

\+ \+ clause((Literal :- Body)).

Looking just at the logicp and--p are equivalent. However, the implementation of nega-
tion as failure makes sure that in executing a gealG all bindings toG will be undone; thus
match_exists will leave Literal unchanged.

This double use of negation is a very common device in Proletaprogramming. It must be
stressed that nothing in the device has a direct logicalpné¢ation. In particulan+ is being used
to undo bindings of variables, but as we have seenannot be interpreted as “failure to prove” if
called with a nonground argument!

A Sample Partial Execution

Using this definition of partial execution we can check thdieaclaims made about it in Chapter
4. For instance, we can partially execute the clause at ti@e8ection 4.1.5

vp(Z"S) -—>
tv(TV), np(NP),

{reduce(TV,Z,IV),
reduce(NP,IV,S)}.

with respect tareduce literals
aux_literal(reduce(_,_,_)).
under the definition of reduce given in Program 4.1

clause((reduce(Arg Expr, Arg, Expr) :- true)).

138 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

with the query

?- partially_execute((vp(Z"S, PO, P) :-
tv(TV, PO, P1),
np(NP, P1, P),
reduce(TV,Z,IV),
reduce (NP, IV,S)),
Expansion).
Expansion = vp(Z~S, PO, P) :-
tv(Z"1V, PO, P1),
np(IV-S, P1, P)
yes

Notice that this is just the Prolog encoding of the partiaexrion result given in Section 4.1.5.

6.4.2 Compiling by Partial Execution

A simple compiler for an object language can be written upigial execution of its interpreter. We
divide the clauses of the interpretendtaclausésinto program and auxiliary clauses; the clauses
that actually interpret thebject clause®f the object language are the program clauses, the rest
auxiliary. We will distinguish the two clauses by using thieglicateclause for the auxiliary clauses
(as above) anflrogram_clause for program clauses.

The compiler generates all possible partial executionhefprogram clauses with respect to
predicates defined in the auxiliary clauses and assertefisdvents generated. The driver for the
compiler is, then, quite simple.

compile :-
program_clause(Clause),
partially_execute(Clause, CompiledClause),
assert(CompiledClause),
fail.

This clause backtracks repeatedly (because of i) until no more partial executions of program

clauses are possible. This method for cycling through eoists known as &ailure-driven loop As

a side &ect, it asserts all of the partial executions into the Pralatabase. The Prolog interpreter,

processing queries using these asserted clauses, isiegacabmpiled form of the object language.
As an example, we build a compiler for DCGs. We merely sepatet DCG interpreter into a

single program clause

program_clause((parse(NT, P_0, P) :-
(NT ---> Body),
parse(Body, P_0, P) D).

and several auxiliary clauses, treatimgrse and---> as auxiliary predicates.

Suppose the DCG of Program 3.11 is compiled using this cemghat is, the compiler and
the DCG (encoded using the operater->) are loaded into Prolog, and thempile predicate
is invoked. One possible partial execution of the prograausé involves resolving the literal
NT ---> Body against the first rule of the grammar. This resolution rezgithe unifying sub-
stitution NT = s(s(NP,VP)), Body = (np(NP),vp(VP)). The body of the unit clause is just

6.4. Partial Execution and Compilers 139

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

true. The partial execution ofarse((np(NP), vp(VP)), PO, P) results in the conjunction

parse(np(NP), P®, P1), parse(vp(VP), P1, P). Conjoining this with the body of the unit
clause expanding the first literal leaves the former uncednghus the full partial execution of the
program clause is, in this instance,

parse(s(s(NP,VP)), PO, P) :-
parse(np(NP), PO, P1),
parse(vp(VP), P1, P).

Clearly, this is a compilation of the DCG rule into Prologheit slightly more complex than the
standard compilation, namely

s(s(NP,VP), PO, P) :-
np(NP, PO, P1),
vp(VP, P1, P).

The full text of the compiler, including the program for palexecution and the encoding of the
interpreter is given in Appendix A. This version adds a réwg step to convert literals of the form

parse(nt(...), Pi, Pj)
to literals of the more familiar form
nt(..., Pi, Pj)
A sample run of the compiler using the grammar of Program &.3% follows:

?- compile.
Asserting "s(s(NP,VP),PO,P):-
np (NP,PO,P1),vp(VP,P1,P)."
Asserting "np(np(Det,N,Rel),PO,P):-
det (Det,P0,P1),
n(N,P1,P2),
optrel(Rel,P2,P)."
Asserting "np(anp(PN),PO,P):-pn(PN,PO,P)."
Asserting "vp(vp(TV,NP),PO,P) :-
tv(TV,P0,P1) ,np(NP,P1,P)."
Asserting "vp(vp(IV),PO,P):-iv(IV,PO,P)."
Asserting "optrel (rel(epsilon),PO,P):-true."
Asserting "optrel (rel(that,VP),PO,P):-
connects (that,P0,P1),
vp(VP,P1,P)."
Asserting "pn(pn(terry),P0,P):-
connects (terry,PO,P)."
Asserting "pn(pn(shrdlu),PO,P):-
connects (shrdlu,P0,P)."
Asserting "iv(iv(halts),P0,P):-
connects (halts,P0,P)."
Asserting "det(det(a),P0,P):-
connects(a,P0,P)."

140 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Asserting "n(n(program),PO,P):-
connects (program,P0,P) . "
Asserting "tv(tv(writes),PO0,P):-
connects(writes,PO,P)."
Asserting "connects (Word, [Word/|Rest],Rest):-true."
no

?- s(Tree, [terry,writes,a,program,that,halts], []).
Tree = s(np(pn(terry)),
vp(tv(writes),
np(det(a),
n(program) ,
rel (that,
vp(iv(halts))))))

yes

Compare this behavior with that of the original DCG as désatiin Section 3.7.1.

6.4.3 Generality of the Method

The technique used here to build the DCG compiler is quiteeg#@n The compile and
partially_execute predicates can be thought of together as a metacompilenainthey will
convertanyinterpreter for a language written in pure Prolog into a cbenfior the same language.
Since the only operations performed on the interpretereelutions, the compiler thereby derived
is guaranteed to be sound with respect to the interpreted simce all possible resolutions are
done, the compiler is complete as well. Thus partial exeaytrovides a way of generating correct
compilers for a language given an interpreter for the laggua

Furthermore, by adjusting which clauses are program ctawbese partial executions will re-
main in the compiled version and which are auxiliary clauses are to be “compiled away”, the
degree of compilation can be tuned. By increasing the nuwitarxiliary clauses, more of the work
is done at compile time and faster compiled grammars argaterHowever, there are limits to this
process. If too much work is attempted at compile time, thremite-time step may not terminate, or
the compiled grammar may grow explosively in size. The galitgiof this method allows solutions
to such trade-s to be developed experimentally.

Another method for even more finely tuning the partial exeguteyond the ability to make
clauses program or auxiliary clauses, is to predicategd@&stiecution on various conditions specified
in the antecedent ofuxiliary literals. For instance, we could require that literals ofieeqg
auxiliary predicate be partially executed only when therét is of a certain mode or its arguments
are of a certain form. An especially interesting conditiorpartial execution is that the literal match
exactly one clause in the database. Under this requirepestigl execution will only remove literals
that can be resolved deterministically. Many other poB&#s for controlling the partial executor
could be easily implemented in this way.

Exercise 6.7 Write a compiler which compiles DCGs into Prolog programattparse sentences
while building parse trees for them simultaneously and matically. You may want to use the
solution to Exercise 6.5.

6.5. Bottom-Up Parsing 141

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Exercise 6.8 Suppose we compile the pure Prolog program donc given in Program 3.3 into
Prolog using a compiler generated from the Prolog interpreif Program 6.1. What does Program
3.3 compile to?

6.5 Bottom-Up Parsing

Prolog supplies by default a top-down, left-to-right, blaakk parsing algorithm for DCGs. It is
well known that top-down parsing algorithms of this kind Mdop on left-recursive rules (cf. the
example of Program 2.3). Although techniques are availabtemove left recursion from context-
free grammars, these techniques are not readily gendstdima DCGs, and furthermore they can
increase grammar size by large factors.

As an alternative, we may consider implementing a bottorparping method directly in Prolog.
Of the various possibilities, we will consider here thf-cornermethod in one of its adaptations to
DCGs.

For programming convenience, the input grammar for thedeftier DCG interpreter is repre-
sented in a slight variation of the DCG notation. The rightth sides of rules are given as lists
rather than conjunctions of literals. Thus rules are uritses of the form, e.g.,

s ---> [np, vp].

or
optrel ---> [].

Terminals are introduced by dictionary unit clauses of tirenf
word(w,PT).

in whichPT is the preterminal category of terminal As an example, the grammar of Program 3.11
would be encoded in this format as

s(s(NP,VP)) ---> [np(NP), vp(VP)].
np(np(Det,N,Rel)) --->

[det(Det), n(N), optrel(Rel)].
np(np(PN)) ---> [pn(PN)].
vp(vp(TV,NP)) ---> [tv(TV), np(NP)].
vp(vp(IV)) ---> [iv(IV)].
optrel(rel(epsilon)) ---> [].
optrel (rel(that,VP)) ---> [relpro, vp(VP)].

word(that, relpro).
word(terry, pn(pn(terry))).
word(shrdlu, pn(pn(shrdlu))).
word(halts, iv(iv(halts))).
word(a, det(det(a))).
word(program, n(n(program))).
word(writes, tv(tv(writes))).

142 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Before we discuss left-corner parsing, we need to introdocee terminology. Theeft-corner
of a phraseis the leftmost subconstituent of that phrase. SimilaHg,l&ft corner of a ruleis the
first element on the right-hand-side of the rule. Often wé keifler to the transitive closure of the
left-corner relation using the tertaft corneras well, letting context determine the particular sense
we mean. Thus, in the parse tree of Figure RIB,is theleft corner ofS, butDet andS are left
corners ofS as well.

The basic idea of left-corner parsing is to key each rdifebits left corner. When a phrase is
found, rules that have that phrase type as their left correetriad in turn by looking for phrases
that span the rest of the right-hand-side of the rule. If #s¢ of a rule is satisfied, the left-hand
side is used to iterate the process by picking rules withpthetse type as left corner. Parsing thus
proceedbottom-upby looking for phrases whose left-most subphrase has alteaeh found. The
entire process begins with a subphrase that is guarantéecdeft corner of the whole expression,
namely, the leftmost leaf of the parse tree. To parse an ssioreas being of typehrase, we take
the next potential leaf in the expression and prove thatatleft corner of the phrase.

parse(Phrase) -->
leaf(SubPhrase),
lc(SubPhrase, Phrase).

Terminal symbols are obviously candidate leaves of theepine®. We use the binary predicate
word(Word, Cat) to encode the lexicon.

leaf(Cat) --> [Word], {word(Word,Cat)}.

In addition, a category can be considered a leaf if thereuseeadmitting it with an empty right-hand
side.

leaf(Phrase) --> {Phrase ---> []}.

The proof that some subconstituent of typgbPhrase is a left corner of aSuperPhrase
involves parsing the part ofSuperPhrase to the right of the left corner. The
lc(SubPhrase, SuperPhrase) literal thus covers all of th8uperPhrase excepfor its left cor-
nerSubPhrase. The base case for proving the left corner relationship¥edl from any phrase being
a left corner of itself.

lc(Phrase, Phrase) --> [].

Otherwise, we can infer th&ubPhrase is a left corner oSuperPhrase if we can find a rule that
SubPhrase is a left corner of and parse the remainder of the rule, fiqaibving that the left-hand
side of the rule is itself a left corner SfiperPhrase.

lc(SubPhrase, SuperPhrase) -->
{Phrase ---> [SubPhrase|Rest]},
parse_rest(Rest),
lc(Phrase, SuperPhrase).

Parsing the rest of the right-hand side involves a standstroelcursion.

parse_rest([]) --> [].
parse_rest([Phrase|Phrases]) -->

6.5. Bottom-Up Parsing 143

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

parse(Phrase),
parse_rest(Phrases).

As an example of the operation of the left-corner parserjpméting a grammar, we will consider
the sentence “a program halts” parsed with the grammar a@dweinitial query is

?- parse(s(Tree), [a, program, halts], []).

To prove this is a grammatic8l, we find a leaf and prove it is the left-corner of tBeThere are
two possible leaves at the beginning of the string, namlé/]léaf (det (det(a))) derived from
the lexical entry for the word, and theleaf (optrel (rel(epsilon))) derived from the rule for
empty relative clauses. Choosing the former, we must ptadet(det(a)), s(Tree)). Since
the two arguments are not unifiable, the fitstrule is not appropriate. Instead, the second rule is
invoked. We must find a rule with a determiner as its left carnemely

np(np(Det,N,Rel)) --->
[det(Det), n(N), optrel(Rel)].

Using this rule, we must parse the rest of the right-hand sid@rove that theDet is the
immediate left corner of arNP. We will omit details of this subproof, which proceeds by
left-corner parsing itself. The proof does succeed, cogethe string “program” and in-
stantiatingN to n(program) and Rel to rel(epsilon). Finally, we must prove that the
np(np(det(a), n(program), rel(epsilon)) is the left corner of the entir§. Notice that
we have made some progress. We started out attempting te firaiitheDet is the left corner of
theS and have generated the smaller task of proving thahifhes.
TheNP s the left corner of by virtue of the rule

s(s(NP,VP)) ---> [np(NP), vp(VP)].

But two subgoals are required to be proved. First, we musiepidue rest of the right-hand side, the
VP. Again, we will omit details, but note that the goal succebifgling VP to vp(iv(halts)).
Then we must prove that(...) is a left corner ofs(s(Tree)). This succeeds by the firdt
clause, binding@'ree to the parse tree for the entire sentence, namely

s(np(det(a),
n(program),
rel(epsilon))
vp(iv(halts)))

This completes the proofs of the various pendirgyoals and the original query itself.

6.5.1 Linking

In the previous discussion, we glossed over a problem in itteetédness of the left-corner parser.
The parser, in choosing among possible grammar rules ocesaaakes no use of information con-
cerning what type of expression it is attempting to parseirfsance, in the discussion of the choice
betweenleaf(det(det(a))) andleaf(optrel(rel(epsilon))) at the start of the parse, we

merely noted that the former was correct. Of course, if thegrehad chosen to pursue the latter, it
would eventually discover that it had followed a blind alyd backtrack to the correct choice. But

144 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

a considerably morefigcient way of eliminating the latter possibility is to notifiey inspection of
the grammar) that asptrel of anysort can never be a left corner of an

Suppose we tabulate some very general constraints of this@tcerning possible left corners,
using (for historical reasons) the predicaiisk.

link(np(L), s(O)
link(det(.), np(L)
link(det(), s(L)
link(pn(), np()
link(pn(L), s
link(tv(l), vp(L)
link(iv(l), vp(L)
link(relpro, optrel(_)
link(NT, NT).

)
)
)
).
).
)
)
)

(The last clause says that any nonterminal is a left cornéself.) We can use the information as
an inexpensive test of whether a branch in the parsing sespate can at least potentially yield a
solution. For example, thearse clause could be changed to make use oflthek table as follows:

parse(Phrase) -->
leaf(SubPhrase),
{link(SubPhrase, Phrase)},
lc(SubPhrase, Phrase).

With this modified definition, théeaf (optrel (rel(epsilon))) would fail the linking test; con-
sequently no further computation would be expended on thsgipility.
Similarly the second rule fatc could be changed to

lc(SubPhrase, SuperPhrase) -->
{Phrase ---> [SubPhrase|Rest],
link (Phrase, SuperPhrase)},
right(Rest),
lc(Phrase, SuperPhrase).

to limit rule choice to those which could at least potenyidde left corners of th&uperPhrase
being looked for.

The modification of the left-corner parser using linkingarrthation provides an element twfp-
down filteringinto the parsing process. Such a parser does not follow dhotiom-up or a purely
top-down regimen, but uses both kinds of information in firgda parse.

We will not pursue further here the question of finding gdadk definitions. Clearly, however,
we would want to use automatic methods for developing tHetéibles, rather than the hand coding
used in this section.

6.5.2 Compiling DCGs into Left-Corner Parsers

Using the techniques of Section 6.4.2, we can write a DCG demipat converts DCG grammars
encoded as for the left-corner interpreter into left-cofmlog parsers. The program clauses are
those that actually interpret the parts of the encoded gramtine twoleaf clauses and the twic
clauses. In addition, the single clauses definiognects andparse are added as program clauses

6.5. Bottom-Up Parsing 145

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

so that they will be passed through unchanged into the cechptite, just as theonnects clause
was in the previous compiler.

The rest of the clauses (including those embodying the D&&)tare auxiliary clauses defining
the auxiliary predicates-->, word, andparse_rest.

Exercise 6.9 Modify the DCG compiler given in Appendix A as described alsmthat it constitutes
a program to compile DCGs into left-corner parsers. The fiealriting step should be removed.

Executing the compiler on the encoded grammar of Prografinygelds the following behavior.

?- compile.
Asserting "connect (Word, [Word|Rest],Rest) :- true."

Asserting

Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting

Asserting
Asserting

Asserting

Asserting

Asserting

Asserting

Asserting

"parse (Phrase,P0,P) :-
leaf (SubPhrase,P0O,P1),
lc(SubPhrase, Phrase,P1,P)."
"leaf (pn(pn(terry)),PO,P) :-
connect (terry,P0,P)."
"leaf (pn(pn(shrdlu)),PO,P) :-
connect (shrdlu,PO,P)."
"leaf (iv(iv(halts)),P0O,P) :-
connect (halts,PO,P)."
"leaf (det (det (a)),PO,P) :-
connect (a,PO,P)."
"leaf (n(n(program)),PO,P) :-
connect (program,PO,P)."
"leaf (tv(tv(writes)),PO,P) :-
connect (writes,P0,P)."
"leaf (relpro,P0,P) :-
connect (that,P0O,P)."
"leaf (optrel (rel(epsilon)),P0,P0) :-true."
"lc (Phrase,Phrase,P0,P0) :- true."
"lc(np(NP),SuperPhrase,P0,P) :-
parse(vp(VP),P0,P1),
lc(s(s(NP,VP)),SuperPhrase,P1,P)."
"lc(det (Det) ,SuperPhrase,P0,P) :-
parse(n(N),P0,P1),
parse (optrel(Rel),P1,P2),
lc(np(np(Det,N,Rel)),
SuperPhrase,P2,P)."
"lc(pn(PN),SuperPhrase,P0,P) :-
lc(np(uap(PN)),SuperPhrase,P0,P)."
"l1c(tv(TV),SuperPhrase,PO,P) :-
parse (np(NP) ,P0O,P1),
lc(vp(vp(TV,NP)),SuperPhrase,P1,P)."
"1c(iv(IV),SuperPhrase,P0,P) :-
lc(vp(vp(IV)),SuperPhrase,P0,P)."
"lc(relpro,SuperPhrase,PO,P) :-
parse(vp(VP) ,P0,P1),
lc(optrel(rel(that,VP)),

146 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

SuperPhrase,P1,P)."
no

?- parse(s(Tree),
[terry, writes, a, program, that, halts],
[D.
Tree = s(np(pn(terry)),
vp(tv(writes),
np(det(a),
n(program),
rel(that,
vp(iv(halts))))))
yes

The first two rules are copies of the definitions fetrse and connects. The next six are the
compiled version of the lexicon; these are followed by thegle compiled epsilon rule. Finally,
the compiled versions of the other grammar rules are gestbrafgain, the compiled grammar
computes the same language and trees as if directly intetptey Prolog. However, Prolog’s
top-down control strategy in executing the compiled grampraduces the same behavior as that
of the left-corner control strategy in executing the or&iBCG. Furthermore, because the general
left-corner interpreter has been replaced by specialiaks f the resulting program will run much
faster than the interpreter operating over the originatgnar.

6.6 Tabular Parsing

6.6.1 Indficiencies of Backtracking

As we have seen, Prolog uses strict chronological backtrgdo search for a proof of a goal.
If a particular subgoal cannot be resolved, all the work eittte most recent resolved goal for
which there are still alternative clauses will be undoneuitively, this is the reason for the worst-
case exponential cost of backtrack search (Aho and UIlm@nA2)L In practical applications this
theoretical worst case may not matter, because there masabtgal bounds on input length (e.g.,
typical English sentences are short) and thiziency of Prolog may fiset the potential gains of
more sophisticated search procedures for practicallyroicguinputs. Nevertheless, it is worthwhile
to look at the issue in more detail to get a good understardfitiye trade€fs involved.

We will start with a very simple example. A ditransitive veilte give can be used in two ways.

Alfred gave a book to every student
Alfred gave every student a book

An obvious way of covering these two constructions is to heetwo rules

vp --> dv, np, pp(to).
vp --> dv, np, np.

Now suppose that we are using these DCG rules to analyzerthplease in the second sentence
above, and that we have appropriate rules for the noun plpesgositional phrase, and ditransitive
verb. Prolog will first try the earlievp rule. The wordgavewill be assigned to the categody
and the phrasevery studento the categoryp. The parser will look next for a prepositional phrase

6.6. Tabular Parsing 147

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

beginning with the prepositioto. However, the next word ia, so Prolog backtracks. Assuming
no more choices in the analysis of “every student” as a nouagghor in the assignment of the
ditransitive verb category tgave Prolog will have to undo these intermediate analyses anithér
next alternative rule for verb phrase, the second rule abd¥és rule will immediately go on to
reassign the categody to gaveand reanalyze “every student” ag, even though this analysis had
already been done when attempting the first rule.

The redundancy just described is not restricted to top-dosrsing methods. The same argu-
ment would show similar redundancies in using the left-eoalgorithm discussed earlier. In fact,
the situation here is even worse because the left-corneritidgn has less top-down guidance.

6.6.2 Tabular Parsing in the Abstract

In tabular parsers for context-free grammars, the redundancy justitbesl is avoided by storing
phrases just recognized iphrase tabl€also called &hartor well-formed-substring tabjéendexed
by the start and end positions of the phrases in the inpuigstri

In general, at any point in its execution a parser will be lagikfor phrases of some typd
starting in a certain range of positioBsand finishing in a certain range of positiosn the input
string. In the discussion that follows, we will represemsl constraints on what the parser is looking
for by the expressioN(S, E). The connection of this notation with the mapping from rontinals
to predicates in a DCG is no coincidence, as we shall see.heanbment, we will take a phrase
type as representing some set of acceptable nontermirchbs position range as denoting some set
of string positions.

Thus, when looking for some type of phradéS, E), the phrase table is consulted for phrases
p(i, j) satisfying NS, E), that is, withp € N, i € Sandj € E. There is a crucial subtlety here. If
the table does not already contailh possible phrases satisfyil(S, E), the parser will not know
whether to use some phrase from the table or to try and rezegtiernative phrases satisfying
N(S, E) using the rules in the grammar. But the latter option is @sstostly as looking for phrases
afresh without the phrase table. Thus the phrase table Heuealy if all phrases of a given type
are stored in the table before any attempt is made to useltkeettalook for phrases of that type.
Consequently, there must be a way of recognizing whethetathle iscompletefor a certain type.
We call this constraint on table entries tt@mpleteness conditiohin tabular context-free parsers,
completeness is achieved by looking only for certain speplirase types and building the table in
a certain order that guarantees a phrase type will be ceasoittly after it is completed.

For instance, the generalized Cocke-Kasami-Younger (Qsotfom-up context-free parser can
be thought of in this way. In the CKY algorithm, smaller pleasre always added to the table
before larger phrases. The phrase types under considebstithe algorithm are of the forv(i, j)
whereV stands for the set of all grammar symbols (terminals andearonibals) and and j are
specific string positions. Since the table is complete fosw@bstrings of the string betweéand j,
we merely need to check each rule, say» B; - -- By in G, and look fom + 1 positionskg through
ks such thai = kg andk, = j and eaclk; is greater thatk;_;, and such that thB;, are in the table
underV(km-1, km). If such a set of positions exists, théncan be added to the table und4(, j).

By performing the search for rules and positions in all paissivays, we can complete the table for
V(i, j), in which case larger strings can then be analyzed.

Thus the CKY parsing algorithm builds the table by lookinggbrases of typ¥(i, j) for larger

and largerj — i.

3Not to be confused with the logical notion of completeness.

148 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

6.6.3 Top-Down Tabular Parsing

In top-down parsing, on the other hand, the algorithm wilgeneral be looking for phrases of a
given typet starting at a given positioirbut with unknown end position (symbolicalii, {j|j > i})).
Thus the algorithm will have to produce and store in the taltil@ossiblet phrases starting at
before moving on. If the analysis later fails and the sameagditype is looked for at the same
position, there will be no need to use the grammar, all ptessédevant phrases will already be in
the table. In terms of the previous example, all noun phrstseting with the woraeverywill have
been stored when the first verb phrase rule looks for a nowsplafter the verb, so when the second
rule looks for a noun phrase at the same position the anahgzedll be immediately found.

With the definite-clause encoding of grammars, a phrase taljlist a store odemmasthat is,
consequences of the grammar axioms that have been recandidure use. The existence of a
noun phrase between positions 2 and 4 of an input string ceepdoesented by the lemma expressed
as a unit clause

np(2, 4).
Actually, for ease of access by an interpreter, we will useténnary predicatenown_phrase.
known_phrase(np, 2, 4).

Thus, in general a phrase table may be built by assertingbppipte facts as they are proved.
We can change the Prolog top-down parser to keep such a tabiedifying the DCG interpreter of
Program 6.4. We will assume at first that grammars are coiffteef that is, that all nonterminals are
atomic, and also that the initial string position for thelgsis is given. As the analysis proceeds from
left to right, the initial position of any phrase being sotighil thus be known. These restrictions
will be lifted later.

The interpreter uses the predic&teown_phrase (Type, PO, P) to store previously proved
lemmas that a phrase of typBype exists between positionB® and P and the predicate
complete(Type, P®) to indicate that thé&nown_phrase table is complete for the phrase type
Type starting at the string positioP®. The predicateonterminal identifies the nonterminals in
the specific grammar being interpreted.

Much of the interpreter is identical to the meta-circular®@terpreter it is modeled on. In
fact, the interpreter dliers only on the first clause f@rarse. This clause checks that its argument
NT is a nonterminal and then callind_phrase to find phrases of typET.

parse(NT, PO, P) :-
nonterminal (NT),
find_phrase(NT, PO, P).

The remaining clauses for tiparse predicate are repeated here merely for completeness.

parse((Bodyl, Body2), PO, P) :-
parse(Bodyl, PO, P1),
parse(Body2, P1, P).

parse([], P, P).
parse([Word|Rest], PO, P) :-

4This could be avoided at the cost of making the code somewheg nonvoluted.

6.6. Tabular Parsing 149

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

connects(Word, PO, P1),
parse(Rest, P1, P).

parse({Goals}, P, P) :- call(Goals).

The predicatefind_phrase first checks to see if the table is complete for phrases of Kipe
starting atP®, and if so, uses it to pick up appropriate phrases that hase peeviously computed
and stored in th&nown_phrase table. The cut guarantees that only the table is used anccnowre
putation of phrases is performed if the table is complete.

find_phrase(NT, PO, P) :-
complete(NT, PO®), !,
known_phrase(NT, PO, P).

Otherwise, if the table has not been completed for that ghngse, grammar rules are used to find
remaining phrases of ty@, and each such phrase is asserted as a known phrase. As wearaye t
to construct the table of all phrases of tyjie starting atP®, we do not restrict rule expansion to
phrases terminating with, but rather leave the check for a phrase’s final positior aftér asserting
that a phrase has been found.

find_phrase(NT, PO, P) :-
(NT ---> Body),
parse(Body, PO, P1),
assert (known_phrase(NT, PO, P1)),
P1 = P.

Finally, when no remaining alternative ways of finding a @eraf typeNT starting atP® exist,
the table is marked as complete for that phrase type at thetng position, and the branch of
computation that required more alternatives is failed. oifne other branch of the computation
later requires that same type of constituent starting as#imee position, only the first clause of
find_phrase will be used.

find_phrase(NT, PO, _) :-
assert(complete(NT, PO®)),
fail.

We have used here the nullary predicéaé 1, which is always false, that is, always fails.

Itis clear thatfind_phrase above has been designed for its sidieets rather than its logical
content. This is common practice in building interpretdisachieve the appropriate behavior in an
interpreter for a declarative language, one has to dealpridbedural issues such as the sequencing
of operations.

Checking Nonterminal Status

The definition of thenonterminal predicate can proceed in several ways. First of all, exteradi
definition is possible by merely listing all the possible tesminal terms, e.qg.,

nonterminal (s()).
nonterminal (np(L)).
nonterminal (det()).

150 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Alternatively, the definition can be made intensionally. @én define nonterminals as those
terms which occur on the left-hand side of some rule.

nonterminal (LHS) :-
\+ \+ (LHS ---> _Body).

The double negation is used as usual to prevent bindings therparticular rule that licenses the
terminal from decting the term. This definition thus works in the same wayasdtch_exists
predicate of Program 6.6.

Henceforth, we will assume the former method.

6.6.4 Subsumption

The interpreter in the previous section works correctlydat atomic nonterminals and an instanti-
ated initial string position for any phrase being soughtegérestrictions were needed to ensure that
the completeness constraintis obeyed. To see why this t®asider the following trivial grammar:

s ---> t.

t ---—> x(a, X).
t ---> x(, b).

x(W, W) ---> [W].

nonterminal(s).
nonterminal (t).
nonterminal (x(_, _)).

as used to parse (as ahnthe inputb encoded as
connects(b, 0, 1).

(From a practical point of view, when building tabular passsié is more convenient to have input
strings represented by facts and string positions by cotsstdn this way, the new facts asserted
by the parser will not have to include the possibly long libigt encode string positions in the list
representation of input strings.)

At some point in executing the queparse(s, 0, 1), find_phrase will be called to find
phrasex(a, X) starting at 0. Clearly there are no such phrases, so a sitagisecwill be added to
the database.

complete(x(a, X), 0).

Later in the executionfind_phrase will be called for phrases of typ&(Y, b) starting at
0. As this matches theomplete fact in the databasefind_phrase will go on to call
known_phrase(x(a, b), 0, P) which willimmediately fail. Thus, the overall analysis il
even though the given string is in the language acceptedebgrdimmar.

The problem here is that the interpreter is not careful ehdngmplementing the notion of
“being complete for a given phrase type”. With atomic nomtieials and ground first argument,

6.6. Tabular Parsing 151

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

there is no problem because unification in the first clausg&iafl_phrase is just doing an identity
check. But in the general case, unification is the wrong djmeréo use. The presence of the fact
complete(x(a, X), 0)indicatesthatthe parser has found all phrages t) starting at position
0 for some ternt. The phrases that can satisfgY, b) at position O may includesomethat satisfy
x(a, X), namely any phrases that satisfy the unificatiga, b) of the two phrase types, but will
in general also contaiothers such as the solution(b, b), that do not satisfx(a, X).

The correct check for completeness of a phrase type is thugnification, which corresponds
to intersection of the corresponding solution sets, bussniption or instantiation (Section 3.5.1),
which corresponds to containment of solution sets. Moreifipally, we can consider the phrase
table complete for a certain phrase typmly if it contains all phrases satisfyinigr any other type
t’ that subsumets Thus we should modify the first clause fifnd_phrases to be

find_phrase(NT, PO, P) :-
complete(GeneralNT, GeneralP®),
subsumes ((GeneralNT,GeneralP0®), (NT, P0)), !,
known_phrase(NT, PO, P).

The subsumption testubsumes ((GeneralNT, GeneralP@), (NT, P®)) checks whether the
nonterminal-position pair(NT, PQ) is a special case of an already completed phrase type
(GeneralNT, GeneralPO).

In general, the subsumption chesltbsumes (t,t") should test whether there is a substitution
o for variables int such that{lo = t’. This is clearly a meta-level facility, as it is sensitivethe
particular state of instantiation of terms. Thus the impdatation ofsubsumes in Prolog requires
the use of other meta-level facilities. One of the easieshats of implementation is based on the
observation that subsumes’ if and only if t is unifiable witht”, wheret” is obtained front’ by
replacing each distinct variable thwith a distinct constant term not occurringtinEquivalently t
subsumet if and only if the most general unifier dfandt’ does not bind any variable in

Exercise 6.10Prove the above assertions.

Suppose we have an extralogical prediasdke_ground which instantiates all the variables
in its argument to distinct new constants. It would then séleat the following is a reasonable
implementation okubsumes:

subsumes (General, Specific) :-
make_ground(Specific),
General = Specific.

However, this program has the unwanted siffeet of binding the variables iBpecific to con-
stants and also possibly instantiatiGgneral. This observation leads to a revision of the imple-
mentation of the subsumption test making use of the praggedf double negation discussed in
Section 6.4.P.

subsumes (General, Specific) :-
\+ \+ (make_ground(Specific),
General = Specific).

SHowever, this version ofubsumes is only correct if the variables iGeneral andSpecific are disjoint. Otherwise,
the execution ofake_ground will inapproriately bind variables iGeneral.

152 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Finally, it remains to see how the predicateke_ground is implemented. The predicate
numbervars(t, m, n), available in many Prolog systems, instantiates each ohthen dis-
tinct variables of ternt to a distinct term of the fornf (i) wherem < i < n. (The functorf is
implementation-dependent chosen so as not normally tordcauser programs.) We could thus
implementnake_ground as follows:

make_ground(Term) :-
numbervars(Term, 0, _).

Alternatively, we could implement the variable numberiogame directly.

make_ground(Term) :-
make_ground(Term,®, _).

make_ground(Term, M, N) :- var(Term), !,
Term = "A-Var’(M), N is M + 1.
make_ground(Term, M, M) :- atomic(Term), !.

make_ground(’A-Var’ (L), M, M) :- !.
make_ground(Term, M, N) :-
Term =.. [_Functor|Args],
make_ground_list(Args, M, N).

make_ground_list([], M, M).

make_ground_list([Term|Terms], M, N) :-
make_ground(Term, M, K),
make_ground_list(Terms, K, N).

Here, we assume that no term of the fot-Var’ (i) appears in the rest of the program. (See
Section 5.1.6 for descriptions of the various built-in pcates used imake_ground.)

6.6.5 The Top-Down Tabular Parser in Action

We now show how the top-down tabular parser avoids the reshaids of backtracking in the ex-
ample of Section 6.6.1. To avoid cluttering the example, wWeuse the following simple grammar
fragment:

vp ---> dv, np, pp(to).
vp ---> dv, np, np.

np ---> det, n.

pp(P) ---> p(P), np.

dv ---> [gave].

det ---> [every].

det ---> [a].

n ---> [student].

n ---> [book].

p(P) ---> [P], {p(P)}.
p(to).

6.6. Tabular Parsing 153

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

The example verb phrase is
o0 gave; every, studeng a4 books

We will examine a trace of the execution of the goal
?- parse(vp, 0, 5).

which asks whether the given string is a verb phrase.

The main predicates of interest in understanding the pars&ecution arefind_phrase,
complete andknown_phrase. The first attempt to prove the goal above involves the fipstule.
This leads to the following sequence of callsftimd_phrase and assertion$where the assertions
are indicated by messages of the foraz&erted f” for some factf:

?- parse(vp, 0, 5).
(6) 1 Call: find_phrase(vp,0,5)

(20) 4 Call: find_phrase(dv,0,P_1)
Asserted known_phrase(dv,0,1)

(20) 4 Exit: find_phrase(dv,0,1)

(49) 5 Call: find_phrase(np,1,P_2)

(63) 8 Call: find_phrase(det,1,P_3)
Asserted known_phrase(det,1,2)

(63) 8 Exit: find_phrase(det,1,2)

(87) 8 Call: find_phrase(n,2,P_4)
Asserted known_phrase(n,2,3)

(87) 8 Exit: find_phrase(n,2,3)
Asserted known_phrase (up,1,3)

(49) 5 Exit: find_phrase(np,1,3)

(115) 5 Call: find_phrase(pp(to),3,P_5)

(129) 8 Call: find_phrase(p(to),3,P_6)
Asserted complete(p(to),3)

(129) 8 Fail: find_phrase(p(to),3,P_6)
Asserted complete(pp(to),3)

(115) 5 Fail: find_phrase(pp(to),3,_5)

At this point, the parser has recognized the verb and the pbuase that follows it, and has just
failed to find a prepositional phrase as the second compleaighe verb. The recognized verb,
determiner, noun and noun phrase have been assertadw@as phrase lemmas. The failed search
for a prepositional phrase at position 3 led to the assetdfaromplete facts for the prepositional
phrase and its starting preposition, meaning that no phmaisihose types are available at position
3. Notice that naomplete facts have been asserted yet for the phrases recognized siméa the
parser has not yet tried other alternatives for those phrase

The execution continues by failing back into the alreadpgmized phrases and trying to find
them in alternative ways. When these attempts tailpplete assertions are made for the failed
phrases.

Asserted complete(n,2)

6The invocation numbers are not consecutive because we dttingrthe trace messages for other calls. ARegdoports
(Section 2.4.1) are not shown.

154 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

(87) 8 Fail: find_phrase(n,2,P_4)
Asserted complete(det,1)

(63) 8 Fail: find_phrase(det,1,P_3)
Asserted complete(np, 1)

(49) 5 Fail: find_phrase(np,1,P_2)
Asserted complete(dv,0)

(20) 4 Fail: find_phrase(dv,0,P_1)

Now the firstvp rule has failed and we have complete information for all theapes the parser
attempted to find during that rule’s execution. The executiow moves to the secong rule.

(184) 4 Call: find_phrase(dv,0,P_1)
(223) 5 Call: known_phrase(dv,0,P_1)
(223) 5 Exit: known_phrase(dv,0,1)
(184) 4 Exit: find_phrase(dv,0,1)

The table for phrases of typkr is complete at position 0, so the lemmas storekriown_phrase
can be used instead of the rules &. The situation is similar for the firstp complement of the
vp, therebysaving a reparse of that noun phrase

(234) 5 Call: find_phrase(np,1,P_2)
(267) 6 Call: known_phrase(unp,1,P_2)
(267) 6 Exit: known_phrase(np,1,3)
(234) 5 Exit: find_phrase(ap,1,3)

The analysis then proceeds as normal until the originaligqaioved.

(273) 5 Call: find_phrase(np,3,P_3)
(323) 8 Call: find_phrase(det,3,P_4)
Assert known_phrase(det,3,4)
(323) 8 Exit: find_phrase(det,3,4)
(389) 8 Call: find_phrase(n,4,P_5)
Assert known_phrase(n,4,5)
(389) 8 Exit: find_phrase(n,4,5)
Assert known_phrase(np,3,5)
(273) 5 Exit: find_phrase(ap,3,5)
Assert known_phrase(vp,0,5)
(6) 1 Exit: find_phrase(vp,0,5)

6.6.6 General Tabular Parsing

The phrase table for top-down parsing that we have just d&smliimproves the performance of
top-down parsing by stopping redundant reanalyses, boei diot do anything to alleviate a much
more serious redundancy, the redundancy of top-down catipatthat leads to nontermination in
grammars with left-recursive rules.

As we have seen, a top-down parser may fail to terminate wiven teft-recursive rules because
it works by guessing (gpredicting that a phrase of some typeoccurs and then trying all ways of
building anX. If one of those ways involves looking for afito start with, the procedure gets into a

6.6. Tabular Parsing 155

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

prediction loopand never terminates. One way of dealing with this probleto &void it totally by
using a bottom-up algorithm, as described in Section 6.5ottimately, this is achieved by losing
the accurate top-down predictions available in a top-doawsgr. Techniques such as the use of
linking information discussed in Section 6.5.1 can allevthis problem, but in the worst case even
a left-corner parser with linking information will geneeahany unextensible partial analyses that a
top-down parser would never attempt.

At first sight, it might appear as if the left-recursion prexol for top-down parsers has a solution
analogous to that for the redundancy problem which we hataljscussed. What would be needed
is to record the fact that the parser has predicted a phragpeX starting at some positiarso that
the parser can recognize when it is about to get into a piediltop. However, it is notimmediately
clear what should occur when a prediction loop is recogniz8tearly, for the prediction to be
fulfilled there should be some phrase of ty)eati, so we cannot just give up looking for an
ati. Furthermore, we cannot decide in advance how mamhrases start at as can be seen by
considering the rules

X—-Xa
X—b

applied to string®a” for different values of. Finally, a prediction loop may occur with rules with
apparently non-left-recursive rules such as

X—=YXb
Y- e

because a prefix of the body of a rule may cover the empty stmgithY in the rules above. Thus,
in general loop detection is needed when forming predistmmthe basis of any symbol in a rule
body.

The above problems can be solved by splitting the operatfidneoparser into two alternating
phasespredictionandresolution dealing respectively with top-down predictions and bwtop
rule applications.

To explain the process in more detail, we will not work in terafi DCG rules but rather in terms
of the corresponding definite clauses. From a deductivet pbiview, prediction selects instances
of rules that may apply to resolve against a particularditénonterminal). For instance, suppose
we are parsing an expression according to the DCG encodewgrd 2.4 and repeated here for
reference.

s(P®, P) :- np(P®, P1), vp(P1l, P).

np(P®, P) :- det(PO®, P1), n(P1, P2), optrel(P2, P).
np(PO®, P) :- pn(PO, P).

vp(P®, P) :- tv(PO, P1), np(Pl, P).

vp(PO®, P) :- iv(PO, P).

optrel(P, P).

optrel(P®, P) :- connects(that, P®, P1), vp(Pl, P).

pn(P®, P) :- connects(terry, PO, P).
pn(P®, P) :- connects(shrdlu, PO, P).
iv(P®, P) :- connectsChalts, PO, P).
det(PO®, P) :- connects(a, PO, P).

"Earley used the termompletionfor what we callresolution

156 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

n(PO®, P) :- connects(program, PO, P).
tv(P0®, P) :- connects(writes, PO, P).

Starting with a query of the form
- s(0, 2)

the Prolog proof procedure will predict that the first ruléhe grammar is applicable. Unifying the
goal literal with the prediction, we have the new clause

s(®, 2) :- np(0, P1), vp(P1, 2).

This clause is an instance of the first rule and a consequéiite grammar together with the initial
goal. Selecting the first literal in this new rule, we mighgitpredict the second or third rule, in the
latter case yielding

np(®1 P) Hi pn(®1 P)- 3
from which can be predicted
pn(®, P) :- connects(bertrand, 0, P).

This clause can beesolvedby matching a literal in its right-hand-side against a utause in the
program, say,

connects(bertrand, 0, 1).
The resolvent is formed by removing the matched literal.
pn(0, 1).
Now this clause can be used to resolve against another diaunsimg the resolvent
np(0, 1). :
which resolves against the original prediction.
s(0,2) :- vp(1,2).

Now the process can start over, this time predicting thesrideverb phrases. Eventually, if a verb
phrase is found between positions 1 and 2, the clause

vp(1,2).
will be generated, which can resolve the previous clause to
s(0, 2).

The existence of this clause formed by alternately pratictind resolving demonstrates that the
initial goal has been proved.

Thus the normal Prolog proof procedure can be seen as apghatiprediction and resolution,
and the results of prediction and resolution (tiegived clausésare lemmas, logical consequences

6.6. Tabular Parsing 157

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

of the program. The insight of methods of parsing and dedodiased on Earley’s algorithm is that
this general flow of control can be made into a tabular pamsiethod by storing each lemma in a
table, and only forming a new predicted or resolved clauieeitable does not already contain it (or
one which is more general).

We now describe the extended algorithm more precisely.

The predictoroperates on clauses with nonempty antecedents, what wearhthe past called
rules but will call active clausedy analogy with the use of the terattive edgan the parsing
literature. A literal is selected from the antecedent of dlsve clause and a matching program
clause is found. The clause instance formed by unifying éfhected literal and the matching clause
is then added as a lemma. In general, this new clause willtheeac

Theresolveroperates on clauses with empty antecedents, what we hake past calledinit
clausesor facts but will call passive clausewithin the discussion of Earley deduction. An active
clause is chosen whose selected (leftmost) literal matitteepassive clauend the resolvent of
the two, which may be either active or passive, is added asimé& Newly derived clauses have
one less literal in their bodies than the active clause frdritkvthey were formed so that repeated
resolution will eventually create new derived passive st

In each case, addition of the lemma occurs only if no subsgiciause exists in the table.

The predictor and the resolver interact as follows. The pprocess is setfd by calling the
predictor on the goal to be proved—in the case at hand, thargea start symbol with appropriate
string arguments for DCGs. Each time an active clause ischtidhe table, the predictor is called
on the selected literal of the active clause to create nesvingtances. Each time a passive clause
is added to the table, the resolver is called to resolve tksipa clause against appropriate active
clauses.

We can see now how the loop check on predictions is implerdeffigp-down prediction from
a literal X creates rule instances that may be used to concludé arhe predictor is recursively
applied on the selected literals of the newly added ruleaimss. If this prediction process leads to
another attempt to predict froi because of left recursion, the potential derived rule msta for
X will have already been added to the lemma table for the eanktance ofX, and the prediction
will stop.

The family of proof procedures based on the method just dexthas been given the collective
name ofEarley deductiorbecause of its close connection to Earley’s parsing algorfior CFGs.
However, the more specific constraints of CF parsing allovinglfication that we cannot take
advantage of here, and that we glossed over in the abovaputestrIn Earley’s algorithm, derived
clause creation proceeds strictly from left to right. Tlere, any passive clause needed to resolve
against some active clause is guaranteed to be construtgedhe active clause is created. Thus,
to perform all the pertinent resolutions, the algorithmadealy look for active clauses at the time
when a passive clause is created. A general Earley dedyrtiof procedure cannot guarantee this,
so in general it is necessary to run the resolver not only wdaasive clauses are added, but also
when active clauses are added as well.

We will now present a definite clause interpreter that ogsratcording to the Earley deduction
method. Turning the method into a specific procedure regspecifying a literal selection function
(we will assume the Prolog one) and a particular interlegngfprediction and resolution steps.

8This leftmost-literal selection rule is the same one thatdgyuses. Other selection rules are possible, leadingfereit
parsing algorithms. For example, one could have a notidmeafifor rules and always start by resolving head literals. It is
a common mistake to assume that it is necessary to try remwudvith all body literals, rather than just with the oneegiv
by the selection function. However, resolution only agaihe selected literal is $ficient, because if a resolution step with
some other body literal is required in a proof, any selecfiorction will sooner or later (maybe infinitely many stepteth
come to select that literal. This is because resolution wesa literal from the body, so that the selection functios feaer
and fewer literals from which to select.

158 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

There is also room for ingenuity in choosing a represemdtio the table of derived clauses that
will speed up the search for resolving derived clauses. ipéamentation below does not use such
methods, however, since it is intended to illustrate théchalgorithm as cleanly as possible.

In this implementation, user-supplied clauses (i.e., tlogmam to be interpreted) and derived
clauses (the results of prediction and resolution) areessprted a® <= [Py, ..., P,] and
P <*= [Py, ..., Pn] respectively, where= and<*= are appropriately declared infix operators.

The table of lemmas will be implemented by assertirtg clauses into the Prolog database.
However, we will need a temporary storage for clauses thiegptadictor and resolver produce. This
will store clauses that have been added to the table but lyetbeen processed to see what further
clauses they engender (by prediction or resolution). Fergbrpose, we add amgendaof derived
clauses that remain to be processed, which we will encodePaslag list. The main predicate of
the program takes the initial goal, uses the predictor todihtthe predicted clauses thereby forming
the initial agenda, and processes each derived clause piabsive clause encoding the goal can be
proved by this process, the goal itself has been proved.

prove(Goal) :-
predict(Goal, Agenda),
process(Agenda),
Goal <*= [].

The agenda of derived clauses is processed one by one byetiiegteprocess_one. If the
list is empty, all consequences of the axioms relevant tipgothe initial goal have been already
derived. Otherwise, the first clause in the agenda is coreidéeading to some s8tibAgenda of
new derived clauses to consider, which is combined with ¢isé of the main agenda and given to
process. Here we are actually adding the new derived clauses to ¢im¢ &f the main agenda; that
is, we have a stack rather than a queue discipline and coestiga kind of depth-first search. If
the new clauses were appended to the back of the agendadifateim a queue), the search would
be breadth-first.

process([]).

process([Head <*= Body | OldAgenda]) :-
process_one(Head, Body, SubAgenda),
conc(SubAgenda, 0ldAgenda, Agenda),
process(Agenda) .

Each new derived clause is processed according to its féime Herived clause body is empty,
we have a passive clause that should be given to the resolver.

process_one(Head, [], Agenda) :-
resolve_passive(Head, Agenda).

If the derived clause is active, the predictor has to be dalli¢h the clause’s selected literal,
the first body literal in this implementation. Furthermoas, we observed earlier it may be that
some passive clauses were added before active clauseshthdy sesolve with, so there is a sup-
plementary call taresolve to deal with those belated resolutions. The clause setdtirgsfrom
prediction and resolution are combined to give the set afsga newly derived from the clause being
considered.

process_one(Head, [First|Body], Agenda) :-

6.6. Tabular Parsing 159

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

predict(First, Front),
resolve_active(Head <*= [First|Body], Back),
conc(Front, Back, Agenda).

The predictor, the passive clause resolver, and the adivese resolver are all very similar.
They use the meta-predicai¢l_solutions(x, g, |) to find the listl of all instantiations of
such thag holds. This is defined to be just like the metapredibatgo f (Section 5.1.4), except that
it returns the empty list wheghas no solutions and does not backtrack for alternativartisitions
of free variables. As can be seen in the clause below, in B ofall_solutions all variables
are either bound i or in an existential quantifier, so there will be no free Vialés to instantiate in
alternative ways in any case.

A prediction is simply the instantiation of a derived clalsethe goal. A prediction is actually
made and stored only if the call taore succeeds.

predict(Goal, Agenda) :-

all_solutions(Clause,
Goal "prediction(Goal, Clause),

Agenda) .

prediction(Goal, Goal <*= Body) :-
Goal <= Body,
store(Goal <*= Body).

The resolver for passive clauses takes a derived passiusedtact and finds active derived
clauses whose selected literal unifies wititt, returning the results of the corresponding resolu-
tions.

resolve_passive(Fact, Agenda) :-
all_solutions(Clause,
Fact "p_resolution(Fact, Clause),
Agenda) .

p_resolution(Fact, Goal <*= Body) :-
Goal <*= [Fact|Body],
store(Goal <*= Body).

The resolver for active clauses works the opposite way twtieefor passive clauses: it takes

an active claus€lause and finds passive clauses whose head unifies with the seléeted of
Clause.

resolve_active(Clause, Agenda) :-
all_solutions(NewClause,
Clause”a_resolution(Clause,
NewClause),
Agenda) .

a_resolution(Head <*= [First|Body], Head <*= Body) :-
First <*= [],
store(Head <*= Body).

160 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Newly derived clauses are stored only if they are not subsilsgean existing derived clause.

store(Clause) :-
\+subsumed(Clause),
assert(Clause).

subsumed(Clause) :-
GenHead <*= GenBody,
subsumes (GenHead <*= GenBody, Clause).

Finally, the implementation af11_solutions is simply:

all_solutions(Var, Goal, Solutions) :-
bagof(Var, Goal, Solutions) -> true ; Solutions = [].

As we saw in Section 3.8.2, the Prolog proof procedure loapkefi-recursive rules such as
those for the English possessive construction.

NP — Det N
DET— NP's

However, our new proof procedure will cope with rules like thove. The clauses below encode an
extension of Program 3.11 to cover the possessive consinuntthe format required by the Earley
deduction interpreter.

s(s(NP,VP), PO, P) <=

[np(NP, PO, P1), vp(VP, P1, P)].
np(np(Det,N,Rel), PO, P) <=

[det(Det, PO, P1),

n(N, P1, P2),

optrel(Rel, P2, P)].
np(np(PN), PO, P) <= [pn(PN, PO, P)].
det(gen(NP), PO, P) <=

[np(NP, PO, P1), connects(’’’s’, P1, P)].
det(Det, PO, P) <= [art(Det, PO, P)].
vp(vp(TV,NP), PO, P) <=

[tv(TV, PO, P1), np(NP, P1, P)].
vp(vp(IV), PO, P) <= [iv(IV, PO, P)].
optrel (rel(epsilon), P, P) <= [].
optrel (rel(that,VP), PO, P) <=

[connects(that, PO, P1), vp(VP, P1, P)].

pn(pn(terry), PO, P) <= [connects(terry, PO, P)].
pn(pn(shrdlu), PO®, P) <= [connects(shrdlu, PO, P)].
iv(iv(Chalts), PO, P) <= [connects(halts, PO, P)].
art(art(a), PO®, P) <= [connects(a, PO, P)].
n(n(program), P®, P) <= [connects(program, PO, P)].
tv(tv(writes), PO, P) <= [connects(writes, PO, P)].

To show the operation of the algorithm, we use the input seete

6.6. Tabular Parsing 161

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Terry’s program halts.

encoded as

connects(terry, p®, pl) <= [].
connects(’’’s’, pl, p2) <= [].
connects(program, p2, p3) <= [].
connects(halts, p3, p4) <= [].

The listing below shows the derived clauses generated bgltfugithm in order of derivation. To
unclutter the listing, we have replaced by ellipses thevgerclauses used in recognizing preterminal
symbols @rt, pn, n, iv andtv).

(1) s(s(B,C),p0,p4) <*= [np(B,p0,D),vp(C,D,p4)].
(2) np(ap(B,C,D),p0,E) <*=

[det (B,p0,F),n(C,F,G),optrel(D,G,E)].
(3) np(ap(B),p0,C) <*= [pn(B,p0,C)].
(4) det(gen(B),p0,C) <*=

[np (B,p0,D),connects(’s,D,C)].
(5) det(B,p0,C) <*= [art(B,p0,C)].

(10) pn(pn(terry),p0,pl) <*= [].

(11) np(np(pn(terry)),p0,pl) <*= [].

(12) s(s(np(pn(terry)),B),p0,p4) <*= [vp(B,pl,p4)].

(13) det(gen(np(pn(terry))),p0,B) <*=
[connects(’s,pl,B)].

(14) vp(vp(B,C),pl,p4) <*= [tv(B,pl,D),np(C,D,p4)].

(15) vp(vp(B),pl,p4) <*= [iv(B,pl,p4)].

(19) det(gen(np(pn(terry))),p0,p2) <*= [].
(20) np(ap(gen(np(pn(terry))),B,C),p0,D) <*=
[n(B,p2,E),optrel(C,E,D)].

(23) n(n(program),p2,p3) <*= [].
(24) np(ap(gen(np(pn(terry))),
n(program),
B),
p0,C) <*= [optrel(B,p3,C)].
(25) optrel(rel(epsilon),p3,p3) <*= [].
(26) optrel(rel(that,B),p3,C) <*=
[connects (that,p3,D),vp(B,D,C)].
(27) np(ap(gen(np(pn(terry))),
n(program),
rel(epsilon)),
p0,p3) <*x= [].
(28) s(s(np(gen(np(pn(terry))),
n(program),
rel(epsilon)),
B),

162 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

p0,p4) <*= [vp(B,p3,p4)].
(29) det(gen(np(gen(np(pn(terry))),
n(program),
rel(epsilon))),
p0,B) <*= [connects(’s,p3,B)].
(30) vp(vp(B,C),p3,p4) <*= [tv(B,p3,D),np(C,D,p4)].
(31) vp(vp(B),p3,p4) <*= [iv(B,p3,p4)].

(35) iv(iv(halts),p3,pd) <= [].
(36) vp(vp(iv(halts)),p3,p4) <*= [].
(37) s(s(np(gen(np(pn(terry))),
n(program),
rel(epsilon)),
vp(iv(halts))),
p0,p4) <x= [].

Derived clause (4) is the instantiation of the left-recugsileterminer rule that the Prolog proof
procedure cannot handle. It is easy to see that the preakctiom the first literal in that clause are
instances of derived clauses (2) and (3), so the subsurmgdteek will avoid the loop.

6.6.7 Earley Deduction and Earley’s CF Parsing Algorithm

We have already informally indicated the connection betwiegrley deduction and Earley’s context-
free parsing algorithm. For readers who are familiar withl&gs algorithm, it may be useful to
describe the relationship more specifically. We will make ¢bnnection a bit more precise here by
considering the application of Earley deduction to the diefinlause representation of a context-free
grammar. In Earley’s parsing algorithm, the state of thesg@aat input positiorj is represented by
a collection ofdotted items = [X — « - B3,i], whereX — vy is some grammar rule;, = ¢, andi

is an input position with < j. Itis very easy to interpret these items in terms of our difinlause
representation. IB is empty, the iteml above is called @ompleted itenand represents the unit
derived clause&(i, j). If y = Y1--- YnandB = Yk - - - Y, item| represents the derived clause

X(i, p) < Yi(j» P) A== A Ym(Pm-1. P)

6.6.8 Limitations of Tabular Parsers

We have just seen how loops and redundant analyses are dumjidgsing a tabular parser rather
than a depth-first backtracking one. However, these adgastare bought at the cost of having
to store dotted items to represent intermediate stateseo&tialysis explicitly. For context-free
grammars, tabular parsers have an overwhelming advanegeie dotted items can baently
encoded as triples of a rule number, position of the dot withe rule, and item start position. In
contrast, storing a lemma (derived clauses) requiresngtdahie bindings for the variables in the
clause or clauses from which the lemma was derived. The @mmloof procedure avoids these
costs by considering only one alternative analysis at a,tbuethe whole point of tabular parsing
and tabular proof procedures is to be able to use lemmas fraralbternative proof path in other
proof paths. In our example interpreters above, we use théditncopying provided byassert to
store lemmas with their corresponding bindings. More ssffifdited schemes are available that may
reduce the overhead, but in the worst case tabular parsiid&s is asymptotically as bad as top-
down backtrack parsing, and substantially worse if one idens constant factors. On the whole,

6.7. Problem Section: DCG Interpreters and Compilers 163

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

the decision between tabular algorithms and Prolog for D@Sipg can only be done empirically
with particular classes of grammar in mind.

Similar observations apply to the question of terminatiéwen though Earley deduction termi-
nates for a larger class of programs than Prolog, it is easgnstruct programs for which Earley
deduction loops, such as the following DCG:

P(succ(x))y- P(x) a
P(0) —b

Our Earley deduction procedure applied to the definitesdaepresentation of this grammar will

loop in the predictor for any start symbol matchiRgsucé'(0)) for infinitely many values ofi. This

is because the subsumption test on derived clauses stqgsitowhich the clause or a more general
one already exists in the table, but this grammar predias more specific instances of the first
rule.

Exercise 6.11Check that Earley deduction loops on this grammar.

6.7 Problem Section: DCG Interpreters and Compilers

Problem 6.12 Extend the DCG interpreter of Section 6.3.1 to handle therggction operator as
defined in Problem 2.13.

Problem 6.13 Write a compiler for the extended language of the previooslem.

Problem 6.14 The DCG compiler given by the combinationaafnpile, partially_execute,
and parse (the DCG interpreter) compiles a grammar by using the pamieecutor to interpret
the DCG interpreter. This process could be made mgieient by partially executing the partial
executor with respect to thearse predicate, akin to compiling the DCG interpreter. Perforinist
compilation to yield a moreficient DCG compiler. What is lost in this process?

FG-DCG Analyses

Topicalizationis a construction in English in which a filler constituent refixed to a sentence with
a gap of the appropriate type. For the purposes of this pmobhe will assume that the filler is
always an NP. The following sentences exemplify the toja#ibn construction:

This book, Bertrand gave to Gottlob.
The professor that wrote this book, Alfred met.

The Englishleft dislocationconstruction is a similar construction, except that indtethe empty
string in the position associated with the filler, there isranpun (called aesumptive pronoun
filling that position, e.g.,

This book, Bertrand gave it to Gottlob.

The professor that wrote this book, Alfred met her.
Problem 6.15 Add FG-DCG rules to Program 6.5 to handle the English top&ation and left
dislocation construction. Be careful to avoid the ungrartiozd

*Bill read the book that Alfred wrote it.

164 Chapter 6. Interpreters

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Extending Earley Deduction with Restriction

In Section 6.6.8, we mentioned that even with the advantafésbular parsing in being able to
parse left-recursive and other grammars not parsable Br otieans, there are still problematic
grammars for the methods outlined. The subsumption tesstégping prediction loops requires
that eventually a new entry will be no more specific than astexg one. But the sample grammar
given in that section predicts rules with ever larger ter@ise method for solving this problem is to
limit the amount of structure that can be passed in the ptiediprocess, using a technique called
restriction When a literalG is to be predicted, we look for rules that might be useful isoheing
againsiG. But instead of performing this test by unifyi@itself with the head of the rule, we first
restrict Gto G’ by eliminating all but a finite amount of structure fradn The restricted versio®’
is then matched against possible rules. Since the amountarhiation inG’ can be bounded, the
nontermination problem disappears for the problematiesdsscussed in Section 6.6.8.

There are many possible ways of restricting a term to onlyiefamount of structure. We might
replace all subterms below a given depth (say 2) by variafileen the ternf(g(h(a), s(b)),
c) would be restricted tdi(g (X, Y), c). Another alternative is to define restriction templates tha
eliminate certain information. For instance, the unit skau

restrict(£(g(A,B),c), f(gX,Y),c)).

can be used to state the relationship between the samplgaadrierms like it) and the restricted
form.

Problem 6.16 Modify the Earley deduction program to perform restrictiogefore predicting using
either of the methods of restricting terms. Test it on theébfamatic grammar of Section 6.6.8 to
demonstrate that the algorithm now terminates.

6.8 Bibliographic Notes

Interpreters for Prolog-like languages in Prolog have hesad since the early days of Prolog as a
means to explore ffierent execution regimes for definite clauses and for tryirtgestensions to the
language (Gallaire and Lasserre, 1982; Porto, 1982; L. IveiRe 1982; Mukai, 1985). One of the
advantages of this approach is that it is not necessary tstrean an interpreter for all the features
of the new language because the aspects not being investigiat just absorbed by the underlying
Prolog implementation.

The technique we suggest for a Prolog-in-Prolog with cut(ie 6.2.2) seems to have been
first used in a version of the interpreter in the DEC-10 Prapstem due to David H. D. Warren,
although it might have been in the folklore before then. Asian is given by O’Keefe (1985).

Consecutively bounded depth-first search (Section 6.2a%)deen described and analysed by
Stickel and Tyson (1985) and, under the name “depth-finsttitee deepening” by Korf (1985).

Compilation by partial execution (Section 6.4) has beeoutised in a logic programming con-
text by Kahn (1982) and by Takeuchi and Furukawa (1985). Hewenuch of what is done in
this area by logic programming researchers is still unghield, so our particular approach to the
problem is to a great extent independently derived.

Left-corner parsers for context-free languages were dissdiin a form close to the one used
here (Section 6.5) by Rosenkrantz and Lewis (1970), althtlugibasic idea seems to be earlier. The
subject is also extensively covered in the exercise sextibho and Ullman'’s textbook (1972).

6.8. Bibliographic Notes 165

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Rosenkrantz and Lewis introduce an algorithm that trans$ca context-free grammar to an equiv-
alent one in which nonterminals are pairs of nonterminaltheforiginal grammar. Left-corner
derivations for the initial grammar correspond to top-daemivations for the new grammar. The
BUP parser for definite-clause grammars (Matsumoto, et883) uses a similar technique, except
that the nonterminal pairs are instantiated at run timeeratian at grammar compilation time. The
link relation (Section 6.5.1) gives a finite approximation ofithgeneral infinite set of DCG non-
terminals that would be the result of applying the Rosenzrand Lewis process to a DCG. Pratt
(1985) developed a tabular parser based on similar notions.

Tabular parsers for context-free languages are the re$ulieoapplication of “divide-and-
conquer”, dynamic-programming methods to the contexd{i@sing problem to avoid the exponen-
tial costs of backtracking (Aho and Ullman, 1972). The CeBlesami-Younger (CKY) algorithm
is the first of these, but it does not use any top-down prexdistso it will generate many useless sub-
phrases. Earley’s algorithm (1970; Aho and Uliman, 1972kueft-context to its full extent so that
any recognized subphrase is guaranteed to fit into an asallaisentence having as a prefix all the
input symbols seen so far. The algorithm of Graham, Harriaod Ruzzo (1980; Harrison, 1978)
combines a generalization of the CKY algorithm with pre¢ornged top-down prediction tables to
achieve the best practical performance known so far for aigénontext-free parsing algorithm.

The Earley deduction proof procedure is due to D. H. D. Wa(i&Y5), but the first published
discussion of the procedure and its application in natiatraduage parsing is given by Pereira and
Warren (1983). The tradeffis between termination and detail of top-down predictiondkseussed
by Shieber (1985c) for a class of formalisms with similargedies to definite-clause grammars. A
further dificulty with the extended Earley’s algorithm is the cost of miaining rule instantiations,
which does not occur in the original algorithm because gramsgmbols are atomic. Boyer and
Moore invented an instantiation-sharing method for clatls@orem provers (1972). The special
constraints of parsing allow some further optimizationstfeir method (Pereira, 1985).

The idea of parsing from the heads of phrases outwards rexsatfracted attention, even though
its computational merits are still to be proven. Instandetbis idea are McCord’s slot grammars
(1980) and head-driven phrase-structure grammar (Sag @lfedd? 1986), and the use of a head-
selection rule for DCGs (Pereira and Warren, 1983).

Topicalization and left dislocation are discussed by R&967).

166 Chapter 6. Interpreters

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Appendix A

Listing of Sample Programs

This digital edition of Pereira and ShiebePsolog and Natural-Language Analy-
sisis distributed at no charge by Microtome Publishing undecenise describ

in the front matter and at the web site. A hardbound editi®@B{ 0-9719777
0-4), printed on acid-free paper with library binding andliding all appen
dices and two indices (and without these inline interrup)o is available fro
www . mtome . comand other booksellers.

This appendix includes commented listings of ttedk program developed in Chapter 5 and
the DCG compiler of Chapter 6. Besides combining all of this bf code that were distributed
throughout that and other chapters, this listing providegxample of one commenting style for
Prolog.

A.1 A Note on Programming Style

We have adopted the following stylistic conventions in thegpams in this appendix and elsewhere
in the book. Although these particular conventions are aot@sanct, adherence to some set of
uniform conventions in Prolog programming (and, indeed,piamgramming in any language) is
desirable.

We attempted to use variable names that are long enough wdprsome mnemonic power.
Predicate names were chosen to be as “declarative” in topessible (without sacrificing appro-
priateness). Thus, we used the natoac (for “concatenation”) rather than the more common,
procedural termappend. Of course, certain predicates which rely on sidle&s are more appro-
priately named with procedural terms suchraad_word or print_reply.

Conventionally, the words in multi-word variable namesdeenarcated by capitalization of the
first letter, e.g.VariableName. Multiple words in functor symbols, on the other hand, apesated
with underbar, e.gnultiple_word. These conventions are relatively widespread in Prolomicell

As mentioned in Section 3.4, we use the Prolog notationaletion of giving a name beginning
with an underbar to variables whose role is not to pass a \altienerely to be a place holder.
Anonymous variables (notated with a single underbar) aeel & place-holder variables for those
rare occasions in which naming the variable would detrachfprogram readability. Such occasions
occurred only in two areas: in specifying the tables fordekentries and in listing generic forms
for auxiliary literals.

167

168 Appendix A. Listing of Sample Programs

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Despite statements to the contrary, no programming largisagelf-documenting. Since the
sample programs presented in the text have been surrounydadiiscussion of their operation,
no comments were interspersed. However, the commentingogframs is an important part of
programming.

The commenting style used here includes an introductorgrigigi®on of each predicate defined,
including a description of its arguments. The normal modexefcution of the predicate is conveyed
by the direction of arrows==> or <==) for each argument. In addition, the individual clauses are
commented when appropriate.

It is usually preferable to place comments pertaining toréiqadar literal on the same line as
the literal as is done, for instance, in the commented vergimain_loop below. Unfortunately,
page width limitations necessitated interleaving theseroents in many cases.

In general, cuts, asserts, and similar metalogical oaTaitare suspect in Prolog code. In the
programs that follow, cuts are used only to encode condit®rnThe conditional construct, though
typically preferred, was not used in several cases becawsasi deemed less readable than the
version using the cut. Asserts in these programs are not asquhrt of the program’s control
strategy, but rather, as the output of meta-programs.

A.2 The TALK Program

/7’: Fededededededededededededededededede et dededededededededededededdededededededededededededede el

TALK Program

B R R R R R A R R R R R Sk S A S A R R R R R R R R R R o R R R :':/

/7’:
Operators
*/
:- op(500,xfy,&).
- op(510,xfy,=>).
- op(100,£fx,).
/7’:
Dialogue Manager
7':/

%%% main_loop
%%Y% —=========

main_loop :-
write(’>> '), % prompt the user
read_sent (Words), % read a sentence

talk(Words, Reply), % process it with TALK
print_reply(Reply), % generate a printed reply
main_loop. % pocess more sentences

A.2. The TALK Program 169

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

%%% talk(Sentence, Reply)
%%%
%%%
%%% Sentence ==> sentence to form a reply to

%%% Reply <== appropriate reply to the sentence

talk(Sentence, Reply) :-
% parse the sentence
parse(Sentence, LF, Type),
% convert the FOL logical form into a Horn
% clause, if possible
clausify(LF, Clause, FreeVars), !,
% concoct a reply, based on the clause and
% whether sentence was a query or assertion
reply(Type, FreeVars, Clause, Reply).

% No parse was found, sentence is too difficult.
talk(_Sentence, error(’too difficult’)).

%%% reply(Type, FreeVars, Clause, Reply)
%%%
%%%

%%6% Type ==> the constant "query" or "assertion"
%%% depending on whether clause should
%%% be interpreted as a query or

%%% assertion

%%% FreeVars ==> the free variables (to be

%%% interpreted existentially) in the
%%% clause

%%% Clause ==> the clause being replied to

%%% Reply <== the reply
%%%

%%% If the clause is interpreted as an assertion,
%%% the predicate has a side effect of asserting
%%% the clause to the database.

% Replying to a query.
reply(query, FreeVars,
(answer (Answer) :-Condition), Reply) :-
% find all the answers that satisfy the query,
% replying with that set if it exists, or "no"
% or "none" if it doesn’t.
(setof(Answer, FreeVars“Condition, Answers)
-> Reply = answer(Answers)
; (Answer = []
-> Reply = answer([none])
; Reply = answer([no]))), !.

% Replying to an assertion.

170

Appendix A. Listing of Sample Programs

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

reply(assertion, _FreeVars,
Assertion, asserted(Assertion)) :-
% assert the assertion and tell user what we asserted
assert(Assertion), !.

% Replying to some other type of sentence.
reply(_Type, _FreeVars, _Clause, error(’unknown type’)).

%%% print_reply(Reply)
%%%
%%%

%%% Reply ==> reply generated by reply predicate
%%% that is to be printed to the
%%% standard output.

print_reply(error(ErrorType)) :-
write(’Error: "’), write(ErrorType), write(’."’), nl.

print_reply(asserted(Assertion)) :-
write(’Asserted "’), write(Assertion), write(’."’), nl.

print_reply(answer (Answers)) :-
print_answers(Answers) .

%%% print_answer (Answers)
%%%
%%%

%%% Answers ==> nonempty list of answers to be printed
%%6% to the standard output separated
%%% by commas.

print_answers([Answer]) :- !,
write(Answer), write(’.’), nl.

print_answers([Answer|Rest]) :-
write(Answer), write(’, ’),
print_answers(Rest).

%%% parse(Sentence, LF, Type)
%%%
%%%

%%% Sentence ==> sentence to parse

%%% LF <== logical form (in FOL) of sentence
%%% Type <== type of sentence

%%% (query or assertion)

% Parsing an assertion: a finite sentence without gaps.
parse(Sentence, LF, assertion) :-
s(LF, nogap, Sentence, []).

A.2. The TALK Program 171

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

% Parsing a query: a question.
parse(Sentence, LF, query) :-
q(LF, Sentence, []).

Clausifier

5':/

%%% clausify(FOL, Clause, FreeVars)
%%%
%%%

%%% FOL ==> FOL expression to be converted
%%% to clause form

%%6% Clause <== clause form of FOL expression
%%% FreeVars <== free variables in clause

% Universals: variable is left implicitly scoped.
clausify(all(X,F®),F,[X|V]) :- clausify(FO0,F,V).

% Implications: consequent must be a literal,
% antecedent is clausified specially.
clausify(A0=>CO, (C:-A),V) :-
clausify_literal(C0,0),
clausify_antecedent (A0,A,V).

% Literals: left unchanged (except literal
% marker is removed).
clausify(C0,C,[]) :- clausify_literal(C0,0).

% Note that conjunctions and existentials are
% disallowed, since they can’t form Horn clauses.

%%% clausify_antecedent (FOL, Clause, FreeVars)
%%%
%%%

%%6% FOL ==> FOL expression to be converted
%%% to clause form

%%% Clause <== clause form of FOL expression
%%6% FreeVars ==> list of free variables in clause

% Literals: left unchanged (except literal
% marker is removed).
clausify_antecedent(LO,L,[]) :- clausify_literal(LO,L).

% Conjunctions: each conjunct is clausified separately.
clausify_antecedent (EO&FO, (E,F),V) :-
clausify_antecedent (EO,E,V0),
clausify_antecedent (FO,F,V1),
conc(VO,V1,V).

172

Appendix A. Listing of Sample Programs

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

% Existentials: variable is left implicitly scoped.
clausify_antecedent(exists(X,F®),F, [X|V]) :-
clausify_antecedent (FO,F,V).

%%% clausify_literal(Literal, Clause)
%%%
%%%

%%6% Literal ==> FOL literal to be converted
%%% to clause form
%%% Clause <== clause form of FOL expression

% Literal is left unchanged (except literal
% marker is removed) .
clausify_literal(‘L,L).

/3’:
Grammar

Nonterminal names:

q Question

sinv INVerted Sentence

s noninverted Sentence

np Noun Phrase

vp Verb Phrase

iv Intransitive Verb

tv Transitive Verb

aux AUXiliary verb

rov subject-Object Raising Verb

optrel OPTional RELative clause
relpron RELative PRONoun
whpron WH PRONoun

det DETerminer
n Noun
pn Proper Noun

Typical order of and values for arguments:
1. verb form:
(main verbs) finite, nonfinite, etc.
(auxiliaries and raising verbs) Forml-Form2
where Forml is form of embedded VP
Form2 is form of verb itself)
2. FOL logical form

3. gap information:

nogap or gap(Nonterm, Var)
where Nonterm is nonterminal for gap

A.2. The TALK Program

173

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Var is the LF variable that
the filler will bind

%%% Questions

q(S => ‘answer(X)) -->

whpron, vp(finite, X"S, nogap).
q(S => ‘answer(X)) -->

whpron, sinv(S, gap(np, X)).
q(S => ‘answer(yes)) -->

sinv(S, nogap).
q(S => ‘answer(yes)) -->

[is],

np((X"SO)"S, nogap),

np((X"true) "exists(X,S0&true), nogap).

%%6% Declarative Sentences

s(S, GapInfo) -->
np(VP"S, nogap),
vp(finite, VP, GapInfo).

%%% Inverted Sentences

sinv(S, GapInfo) -->
aux(finite/Form, VP1°VP2),
np(VP2"S, nogap),
vp(Form, VP1, GapInfo).

%%% Noun Phrases

np(NP, nogap) -->

det(N2°NP), n(N1), optrel(N1°N2).
np(NP, nogap) --> pn(NP).
np((X"S)°S, gap(np, X)) --> [1.

%%6% Verb Phrases

vp(Form, X"S, GapInfo) -->
tv(Form, X"VP),
np(VP"S, GapInfo).

vp(Form, VP, nogap) -->
iv(Form, VP).

vp(Forml, VP2, GapInfo) -->
aux(Forml/Form2, VP1°VP2),
vp(Form2, VP1l, GapInfo).

vp(Forml, VP2, GapInfo) -->
rov(Forml/Form2, NP"VP1°VP2),
np(NP, GapInfo),

174

Appendix A. Listing of Sample Programs

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

vp(Form2, VP1, nogap).
vp(Form2, VP2, GapInfo) -->

rov(Forml/Form2, NP"VP1°VP2),

np (NP, nogap),

vp(Forml, VP1, GapInfo).
vp(finite, X°S, GapInfo) -->

[is],

np((X"P) "exists(X,S&P), GapInfo).

%%% Relative Clauses

optrel ((X"S1) " (X" (S1&S2))) -->
relpron, vp(finite,X"S2, nogap).
optrel ((X"S1) " (X" (S1&S2))) -->
relpron, s(S2, gap(np, X)).
optrel(N"N) --> [].

Dictionary

det(LF) --> [D], {det(D, LF)}.
n(LF) --> [N], {n(N, LFD}.
pn((E"S)"S) --> [PN], {pn(PN, E)}.

aux(Form, LF) --> [Aux], {aux(Aux, Form, LF)}.
relpron --> [RP], {relpron(RP)}.
whpron --> [WH], {whpron(WH)}.

% Verb entry arguments:
% 1. nonfinite form of the verb

% 2. third person singular present tense form of the verb
% 3. past tense form of the verb

% 4. past participle form of the verb

% 5. pres participle form of the verb

% 6. logical form of the verb

iv(nonfinite, LF) --> [IV], {iv(IVv, _, _, _, _, LF)}.
iv(finite, LF) --> [1v], {iv(., IV, _, _, _, LF)}.
iv(finite, LF) --> [1v], {iv(., _, IV, _, _, LF)}.
iv(past_participle, LF) --> [IV], {iv(., _, _, IV, _, LF)}.
iv(pres_participle, LF) --> [IV], {iv(., _, _, _, IV, LF)}.
tv(nonfinite, LF) --> [TV], {tv(TV, _, _, _, _, LF)}.
tv(finite, LF) --> [Tv], {tv(., TV, _, _, _, LFD}.
tv(finite, LF) --> [Tv], {tv(., _, TV, _, _, LF)}.

tv(past_participle, LF) --> [TV], {tv(_, _, _, TV, _, LF)}.

A.2. The TALK Program 175

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

tv(pres_participle, LF) --> [TV], {tv(_, _, _, _, TV, LF)}.
rov(nonfinite /Requires, LF)

--> [ROV], {rov(ROV, _, _, _, _, LF, Requires)}.
rov(finite /Requires, LF)

--> [ROV], {rov(_, ROV, _, _, _, LF, Requires)}.
rov(finite /Requires, LF)

--> [ROV], {rov(_, _, ROV, _, _, LF, Requires)}.
rov(past_participle/Requires, LF)

--> [ROV], {rov(_, _, _, ROV, _, LF, Requires)}.
rov(pres_participle/Requires, LF)

--> [ROV], {rov(_, _, _, _, ROV, LF, Requires)}.
/ A

relpron(that).
relpron(who).
relpron(whom).

whpron(who).
whpron(whom).
whpron(what).

det(every, (X"S1)"(X"S2)" all(X,S1=>S2)).
det(a, (X"S1)"(X"S2) "exists(X,S1&S2)).
det(some, (X"S1)"(X"S2) exists(X,S1&S2)).

‘author (X)).
‘book (X)).
n(professor, ‘professor(X)).
n(program, ‘program(X)).
n(programmer, X~ ‘programmer(X)).

n(author,

X
n(book, X"
X"
X

n(student, X" ‘student (X)).
pn(begriffsschrift, begriffsschrift).
pn(bertrand, bertrand).
pn(bill, bill).
pn(gottlob, gottlob).
pn(lunar, lunar).
pn(principia, principia).
pn(shrdlu, shrdlu).
pn(terry, terry).
iv(halt, halts, halted,
halted, halting, X" ‘halt(X)).
tv(write, writes, wrote,
written, writing, X"Y" ‘writes(X,Y)).
tv(meet, meets, met,
met, meeting, XYY" ‘meets(X,Y)).

tv(concern, concerns, concerned,

176

Appendix A. Listing of Sample Programs

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

concerned, concerning, X"Y" ‘concerns(X,Y)).

tv(run, runs, ran,

run, running, XYY" ‘runs(X,Y)).
rov(want, wants, wanted,

wanted, wanting,

% semantics is partial execution of

% NP =~ VP ~ Y " NP(X"want(Y,X,VP(X)))

(X" ‘want(Y,X,Comp))”S) ~ (X"Comp) "~ Y " S,
% form of VP required:

infinitival).
aux(to, infinitival/nonfinite, VP~ VP).
aux(does, finite/nonfinite, VP" VP).
aux(did, finite/nonfinite, VP~ VP).

/3’:

Auxiliary Predicates

%%% conc(Listl, List2, List)
%%%
%%%

%%6% Listl ==> a list
%%% List2 ==> a list
%%% List <== the concatenation of the two lists

conc([], List, List).

conc([Element |Rest], List, [Element|LongRest]) :-
conc(Rest, List, LongRest).

%%% read_sent (Words)
%%%
%%%

%%6% Words ==> set of words read from the
%%% standard input

%%%

%%6% Words are delimited by spaces and the
%%6% line is ended by a newline. Case is not
%%% folded; punctuation is not stripped.

read_sent (Words) :-
get®(Char), % prime the lookahead
read_sent (Char, Words). % get the words

% Newlines end the input.
read_sent(C, []) :- newline(C), !.

A.2. The TALK Program 177

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

% Spaces are ignored.

read_sent(C, Words) :- space(C), !,
get®(Char),
read_sent (Char, Words).

% Everything else starts a word.
read_sent(Char, [Word|Words]) :-
read_word(Char, Chars, Next), % get the word

name (Word, Chars), % pack the characters
% into an atom
read_sent (Next, Words). % get some more words

%%% read_word(Chars)
%%%
%%%

%%6% Chars ==> list of characters read from standard
%%6% input and delimited by spaces or
%%% newlines

% Space and newline end a word.
read_word(C, [], C) :- space(Q), !.
read_word(C, [], © :- newline(C), !.

% All other chars are added to the list.
read_word(Char, [Char|Chars], Last) :-
get®(Next),
read_word(Next, Chars, Last).

%%% space(Char)
s —
%%%

%%% Char === the ASCII code for the space
%%% character
space(32).

%%% newline (Char)

%Kk =============

%%%

%%% Char === the ASCII code for the newline
%%6% character

newline(10).

178 Appendix A. Listing of Sample Programs

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

A.3 The DCG Compiler

/3’: Fed

DCG Compiler

B R R R R R R R Rk R Sk S A S A R R Rk R R R R o o o o S S R R ‘.’:/

/:’:
Operator Declarations
5':/
- op(1200,xfx,--->).
%%% These declarations are required by certain Prolog
%%% systems for predicates that are to be asserted
%%% at run-time. Predicates are specified by terms
%%% of the form name/arity.
:- dynamic (--->)/2, parse/3, connect/3.
/3’:
Compiler Driver
7‘:/
%%% compile
%%%
%%% Generates compiled clauses by partial
%%% execution of the DCG metainterpreter below,
%%% and adds them to the Prolog database.
compile :-

program_clause(Clause),
partially_execute(Clause, CompiledClause),
add_rule(CompiledClause),

fail.

A.3. The DCG Compiler 179

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

%%% add_rule(Clause)
%%%
%%%

%%% Clause ==> clause to be added to database
%%% after rewriting into a normal
%%% form that changes calls to parse
%%% into calls on particular

%%% nonterminals

add_rule((Head :- Body)) :-
rewrite(Head, NewHead),
rewrite(Body, NewBody),
write(’Asserting "’),
write((NewHead :- NewBody)),
write(’."’), nl,
assert((NewHead :- NewBody)).

%%% rewrite(Term, NewTerm)
%%%
%%%

%%% Term ==> a term encoding a literal or
%%% sequence of literals

%%% NewTerm <== the term rewritten so literals
%%% of the form

%%% parse(s(...),...)

%%6% are rewritten into the form
%%% SCovuyens)

rewrite((A,B), (C,D)) :- !,

rewrite(A, C), rewrite(B, D).
rewrite(parse(Term, P1, P2), NewLiteral) :- !,

Term =.. [Function|Args],

conc(Args, [P1, P2], AllArgs),

NewLiteral =.. [Function|AllArgs].
rewrite(Term, Term) .

180

Appendix A. Listing of Sample Programs

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Partial Execution of Prolog Programs

7':/

%%% partially_execute(Term, NewTerm)
%%%
%%%

%%% Term ==> term encoding Prolog clause,
%%% literal list or literal to be
%%% partially executed with respect to the
%%6% program clauses and auxiliary clauses
%%% given by program_clause and clause
%%% predicates respectively.

%%%

%%6% NewTerm <== the partially executed term.

% Partially executing a clause involves
% expanding the body.
partially_execute((Head:-Body),
(Head: -ExpandedBody)) :- !,
partially_execute(Body, ExpandedBody).

% Partially expanding a literal list involves
% conjoining the respective expansions.
partially_execute((Literal, Rest), Expansion) :- !,
% expand the first literal
partially_execute(Literal, ExpandedLiteral),
% and the rest of them
partially_execute(Rest, ExpandedRest),
% and conjoin the results
conjoin(ExpandedLiteral, ExpandedRest, Expansion).

% Partially executing an auxiliary literal involves
% replacing it with the body of a matching clause (if
% there are any). Nonauxiliary literals, or those
% not matching any clauses, are left unchanged.
partially_execute(Literal, Expansion) :-

(aux_literal(Literal),

setof(Body, Literal”aclause((Literal :- Body)),
[_Clause|_Others]))
-> (aclause((Literal :- Body)),
partially_execute(Body, Expansion))
; Expansion = Literal.

A.3. The DCG Compiler 181

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

/‘«’: ___
Utilities

___ >'~‘/

%%% conc(Listl, List2, List)

%%%

%%%

%%% Listl ==> a list

%%6% List2 ==> a list

%%% List <== the concatenation of the two lists

conc([], List, List).

conc([Element |Rest], List, [Element|LongRest]) :-
conc(Rest, List, LongRest).

%%% conjoin(Conjunctl, Conjunct2, Conjunction)
%%%
%%6%

%%% Conjunctl ==> two terms to be conjoined
%%% Conjunct2 ==>
%%% Conjunction <== result of the conjunction

% Conjoining a conjunction works just like
% concatenation (conc).
conjoin((A,B), C, ABO) :- I,

conjoin(B, C, BQO),

conjoin(A, BC, ABQ).

% Conjoining true and anything leaves the other
% conjunct unchanged.

conjoin(true, A, A) :- !.

conjoin(A, true, A) :- !.

% Otherwise, use the normal comma conjunction
% operator.
conjoin(A, C, (A,0).

182

Appendix A. Listing of Sample Programs

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

%%% aclause(Clause)

%%%

%%%

%%% Clause <== the head and body of a clause
%%% encoded with the unary ‘clause’;
%%6% unit clauses can be encoded directly
%%% with clause and the Body returned will
%%% be ‘true’. Furthermore, the top-to-
%%% bottom clause ordering is preserved.

aclause((Head :- Body)) :-
clause(Clause),
(Clause = (Head :- Body)
-> true
; (Clause = Head, Body = true)).

/3’:
Program to Partially Execute
5':/

/3’: ___

Control Information for Partial Executor
___ :':/
aux_literal((_ ---> _)).
aux_literal(parse(_, _, _)).
/:’: ___

DCG Metainterpreter to be Partially Executed

Encoded form of program in Section 6.3.1

___ :':/

program_clause((parse(NT, P_0, P) :-
(NT ---> Body),
parse(Body, P_0, P) D).

program_clause((connect(Word, [Word|Rest], Rest) :-
true D).

A.3. The DCG Compiler 183

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge

for noncommercial use by Microtome Publishing.

clause ((parse((Bodyl, Body2), P_0®, P) :-
parse(Bodyl, P_0, P_1),
parse(Body2, P_1, P) D).
clause((parse([], P, P))).
clause((parse([Word|Rest], P_0, P) :-
connect (Word, P_0, P_1),
parse(Rest, P_1, P) D).
clause((parse({Goals}, P, P) :- call(Goals))).
/3’:
Operators
*/
/3’: ___
Sample Data for Program to Partially Execute:

The parse-tree building DCG of Program 3.11
___ * /
clause((s(s(NP,VP)) ---> np(NP), vp(VP))).
clause((np(np(Det,N,Rel)) --->

det(Det),

n(N),

optrel (Rel)).
clause((np(p(PN)) ---> pn(PN))).
clause((vp(vp(TV,NP)) ---> tv(TV), np(NP)).
clause((vp(vp(IV)) ---> iv(IV))).
clause((optrel(rel(epsilon)) ---> []).
clause((optrel(rel(that,VP)) ---> [that], vp(VP))).
clause((pn(pn(terry)) ---> [terry] D).
clause((pn(pn(shrdlu)) ---> [shrdlu])).
clause((iv(iv(halts)) ---> [halts]).
clause((det(det(a)) ---> [a] D).
clause((n(n(program)) ---> [program])).
clause((tv(tv(writes)) ---> [writes]).

184 Appendix A. Listing of Sample Programs

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Bibliography

Abelson, Harold and Gerald Jay Sussman with Julie Sussn@8b. Structure and Interpretation
of Computer ProgramsCambridge, Massachusetts: MIT Press.

Abramson, Harvey. 1984. Definite clause translation grarmma Proceedings of the 1984 Inter-
national Symposium on Logic Programmjr&B3—-240. Silver Springs, Maryland: IEEE Com-
puter Society Press.

Ades, Anthony E. and Mark J. Steedman. 1982. On the order mfsvbinguistics and Philosophy
4(4):517-558.

Aho, Alfred V. 1968. Indexed grammars—an extension of cartieee grammarsJournal of the
ACM, 15(4):647-671.

Aho, Alfred V. and Jérey D. Ullman. 1972.The Theory of Parsing, Translation and Compiling
Volume 1. Englewood Ci's, New Jersey: Prentice-Hall.

——. 1977.Principles of Compiler DesignReading, Massachusetts: Addison-Wesley.

Andreka, H. and |. Nemeti. 1976The Generalized Completeness of Horn Predicate Logic as a
Programming LanguageDAI Report 21, Department of Artificial Intelligence, Umisity of
Edinburgh, Edinburgh, Scotland.

Andrews, Peter B. 1986An Introduction to Mathematical Logic and Type Theory: tatfrThrough
Proof. Computer Science and Applied Mathematics Series. Orldfldada: Academic Press.

Apt, Kristoff R. and Maarten H. van Emden. 1982. Contributions to the theblogic program-
ming. Journal of the ACM29(3):841-862.

Backus, John. 1978. Can programming be liberated from thé&&mmann styleZommunications
of the ACM 21(8):613-641.

Baker, Carl L. 1978Introduction to Generative-Transformational Synt&nglewood Clifs, New
Jersey: Prentice-Hall.

Balbin, Isaac and Koenraad Lecot. 1985gic Programming: A Classified Bibliographyictoria,
Australia: Wildgrass Books.

Ballard, Bruce W. and Douglas E. Stumberger. 1986. Semaaotjaisition in TELI: a transportable,
user-customized natural language processoPrtiteedings of the 24th Annual Meeting of the
Association for Computational Linguistic0—29. Columbia University, New York, New York.

185

186 Appendix A. Listing of Sample Programs

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Bar-Hillel, Yehoshua. 1964.Language and Information Reading, Massachusetts: Addison-
Wesley.

Bates, Madeleine. 1978. The theory and practice of augrddraasition network grammars. In
Natural Language Communication with Computexew York, New York: Springer-Verlag.

Boolos, George S. and Richard Cftdey. 1980.Computability and Logic Second edition. Cam-
bridge, England: Cambridge University Press.

Bowen, David L., Lawrence Byrd, Fernando C. N. PereiraslMi Pereira, and David H. D. Warren.
1982. DECsystem-10 Prolog User's ManualDccasional Paper 27, Department of Artificial
Intelligence, University of Edinburgh, Edinburgh, Scaotia

Bowen, Kenneth A., Kevin A. Buettner, llyas Cicekli, and Aad/ K. Turk. 1986. The design and
implementation of a high-speed incremental portable Bralampiler. In Ehud Shapiro, ed.,
Proceedings of the Third International Conference on Ldgiogramming 650—655. Berlin,
Germany: Springer-Verlag.

Bowen, Kenneth A. and Robert A. Kowalski. 1984malgamating Language and Metalanguage in
Logic Programming Technical Report, School of Computer and Information Sage Syracuse
University, Syracuse, New York.

Bowen, Kenneth A. and Tobias Weinberg. 1985. A meta-levidresion of Prolog. IfProceedings
of the 1985 Symposium on Logic ProgrammiAg§—53. Washington, D.C.: IEEE Computer
Society Press.

Boyer, Robert S. and J. Strother Moore. 1972. The sharingrotsire in theorem-proving pro-
grams. In Bernard Meltzer and Donald Michie, eddachine Intelligence 7101-116. New
York, New York: John Wiley and Sons.

Brachman, Ronald J. and Hector J. Levesque, eds. 1888dings in Knowledge Representation
Los Altos, California: Morgan Kaufmann.

Buchberger, Bruno. 1985. Basic features and developmethteofritical-paifcompletion proce-
dure. In Jean-Pierre Jouannaud, dRewriting Techniques and Applicatigns-45. Berlin,
Germany: Springer-Verlag.

Burstall, Rod M. and John Darlington. 1977. A transformatsystem for developing recursive
programs.Journal of the ACM24(1):44-67.

Byrd, Lawrence. 1980. Understanding the control flow of Bggirograms. In Sten-Ake Tarnlund,
ed.,Proceedings of the Logic Programming Workshbp7—138. Debrecen, Hungary.

Chomsky, Noam. 1956. Three models for the description gfuage. INRE Trans. Information
Theory IT-2113-124.

Church, Kenneth A. 19800n Memory Limitations in Natural Language Processirnlgaster’s
thesis, Massachusetts Institute of Technology. Publigisé@eport MITLCS/TR-245.

Church, Kenneth A. and Ramesh Patil. 1982. Coping with sjictambiguity or how to put the
block in the box on the tableComputational Linguistigs8(3-4):139-149.

Clark, Keith L. 1978. Negation as failure. In H. Gallaire ahdJlinker, eds.l.ogic and Data Bases
New York, New York: Plenum Press.

Bibliography 187

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Clark, Keith L. and Frank McCabe. 1981. The control fa@ktof IC-PROLOG. In Donald Michie,
ed., Expert Systems in the Micro Electronic Age22-149. Edinburgh, Scotland: Edinburgh
University Press.

Clark, Keith L. and Sharon Sickel. 1977. Predicate logic:akwaus for deriving programs. In
Proceedings of the 5th International Joint Conference otifiial Intelligence 419-420. De-
partment of Computer Science, Carnegie-Mellon UniverBitlysburgh, Pennsylvania.

Clark, Keith L. and Sten-Ake Tarnlund. 1977. A first ordeedhy of data and programs. In
Proceedings of the IFIP-77 Congresdmsterdam, Netherlands: North-Holland.

Clocksin, William F. and Christopher S. Mellish. 198rogramming in Prolog Berlin, Germany:
Springer-Verlag.

Colmerauer, Alain. 1970.Les Systemes-Q ou un Formalisme pour Analyser et Sysehé&tes
Phrases sur Ordinateur Internal Publication 43, Département d’Informatiqueanivérsité de
Montreal, Canada.

———. 1978. Metamorphosis grammars. In Leonard Bolc, Mdtural Language Communication
with Computers Berlin, Germany: Springer-Verlag. First appeared as “Geammaires de
Metamorphose”, Groupe d’Intelligence Artificielle, Unig&é de Marseille 11, November 1975.

. 1982. An interesting subset of natural language. IrttKei Clark and Sten-Ake Tarnlund,
eds. Logic Programming45—66. New York, New York: Academic Press.

. 1986. Theoretical model of Prolog Il. In Michel van Cghem and David H. D. Warren,
eds. Logic Programming and Its Applicationshapter 1, 3-31. Norwood, New Jersey: Ablex.

Colmerauer, Alain, Henri Kanoui, Robert Pasero, and RlelRRoussel. 1973Jn Systeme de Com-
munication Homme-Machine en FrancalRapport, Groupe d’Intelligence Artificielle, Univer-
sité d’Aix-Marseille 11.

Cooper, Robin. 1983Quantification and Syntactic Theorgynthese Language Library, volume 21.
Dordrecht, Netherlands: D. Reidel.

Cresswell, M. J. 1973.ogics and Languages$.ondon, England: Methuen and Co. Ltd.

Dahl, Veronica. 1981. Translating Spanish into logic thlyiologic. Computational Linguistics
7(3):149-164.

Dahl, Veronica and Harvey Abramson. 1984. On gapping grammnhiaProceedings of the Second
International Logic Programming Conferencé&/—88. Uppsala University, Uppsala, Sweden.

Dahl, Veronica and Michael McCord. 1983. Treating coortorain logic grammars.Computa-
tional Linguistics 9(2):69-91.

DeGroot, Doug and Gary Lindstrom, eds. 198&gic Programming—Functions, Relations, and
Equations Englewood Clifs, New Jersey: Prentice-Hall.

Deliyanni, A. and Robert A. Kowalski. 1979. Logic and senianetworks. Communications of
the ACM 22(3):184-192.

Dowty, David R., Robert E. Wall, and Stanley Peters. 198itroduction to Montague Semantics
Synthese Language Library, volume 11. Dordrecht, NethddaD. Reidel.

188 Appendix A. Listing of Sample Programs

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Earley, Jay. 1970. Anf&cient context-free parsing algorithmCommunications of the ACM
13(2):94-102. Reprinted in (Grosz et al., 1986).

Eisinger, Norbert. 1986. What you always wanted to know aletause graph resolution. In
Jorg H. Siekmann, edth International Conference on Automated DeductBi¥6—-336. Berlin,
Germany: Springer-Verlag.

Gallaire, Hervé and Claudine Lasserre. 1982. Metaleveitrob for logic programs. In
Keith L. Clark and Sten-Ake Tarnlund, edsggic Programming173-185. New York, New
York: Academic Press.

Gallier, Jean H. 1986@.ogic for Computer Sciencé&ew York, New York: Harper & Row.

Gazdar, Gerald. 1981. Unbounded dependencies and cotrditnacture. Linguistic Inquiry,
12:155-184.

Gazdar, Gerald, Ewan Klein, G#ey K. Pullum, and Ivan A. Sag. 1985Generalized Phrase
Structure GrammarCambridge, Massachusetts: Harvard University Press.

Gazdar, Gerald, Géiey K. Pullum, and Ivan A. Sag. 1982. Auxiliaries and relgddgnomena in
a restrictive theory of grammalanguage58:591-638.

Ginsburg, Seymour. 1968.he Mathematical Theory of Context-Free Languadésw York, New
York: McGraw-Hill.

Graham, Susan L., Michael A. Harrison, and William L. Ruz4®80. An improved context-free
recognizerACM Transactions on Programming Languages and Syst2(85415-462.

Green, Cordell. 1968. Theorem-proving by resolution assasbfar question-answering systems.
In Bernard Meltzer and Donald Michie, ed#dachine Intelligence 4183-205. Edinburgh,
Scotland: Edinburgh University Press.

Greibach, Sheila A. 1981. Formal languages: origins anelctions. Annals of the History of
Computing 3(1):14-41.

Gross, Maurice. 1979Viéthodes en SyntaxParis, France: Hermann.

Grosz, Barbara, Douglas E. Appelt, Paul Martin, and Ferodeteira. 1987. TEAM: an experi-
ment in the design of transportable natural language extedf Artificial Intelligence to appear.

Grosz, Barbara J., Karen Sparck Jones, and Bonnie Lynn Wedite 1986 Readings in Natural
Language Processind.os Altos, California: Morgan Kaufmann.

Haas, Norman and Gary G. Hendrix. 1984achine Learning for Information Managemeiiech-
nical Note 252, Artificial Intelligence Center, SRI Intetiwaal, Menlo Park, California.

Harrison, Michael A. 1978.Introduction to Formal Language TheanReading, Massachussets:
Addison-Wesley.

Hendrix, Gary G. 1979. Encoding knowledge in partitionetivoeks. In Nicholas V. Findler, ed.,
Associative Networks—The Representation and Use of Kdge/lim Computers New York,
New York: Academic Press.

Bibliography 189

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Hindley, J. Roger and Jonathan P. Seldin. 19&6troduction to Combinators and-Calculus
London Mathematical Society Student Texts, volume 1. Caohgler England: Cambridge Uni-
versity Press.

Hobbs, Jerry R. and Stuart M. Shieber. 1987. An algorithmgiemerating quantifier scopings.
Computational Linguisticgo appear.

Hogger, Christopher J. 1981. Derivation of logic progradmirnal of the ACM28(2):372—-392.

Hopcroft, John E. and #&ey D. Ullman. 1979.Introduction to Automata Theory, Languages, and
Computation Reading, Massachussets: Addison Wesley.

Huet, Gerard and Derek Oppen. 1980. Equations and rewié#s,ra survey. In Ron V. Book, ed.,
Formal Languages: Perspectives and Open Probleiew York, New York: Academic Press.

Jdfar, Joxan, Jean-Louis Lassez, and John W. Lloyd. 1983. Gaermss of the negation as failure
rule. In Alan Bundy, ed.Proceedings of the Eighth International Joint ConferenneXatificial
Intelligence Los Altos, California: William Kaufmann Inc.

Jdfar, Joxan, Jean-Louis Lassez, and Michael J. Maher. 198@neSssues and trends in the
semantics of logic programming. In Ehud Shapiro, loceedings of the Third International
Conference on Logic Programmingerlin, Germany: Springer-Verlag.

Jdfar, Joxan, and Peter J. Stuckey. 1986. Semantics of infieiéddgic programmingTheoretical
Computer Science6:141-158.

Jones, Neil and Harald Sgndergaard. 1987. A semanticsHfraseework for the abstract interpre-
tation of Prolog. In S. Abramsky and C. Henkin, edsbstract Interpretation of Declarative
LanguagesChichester, West Sussex, England: Ellis Horwood.

Kahn, Kenneth M. 1982. A partial evaluator of Lisp programstten in Prolog. In
Michel van Caneghem, edirst International Logic Programming Conferenc9-25. ADDP-
GIA, Faculté des Sciences de Luminy, Marseille, France.

Karttunen, Lauri. 1986.The Relevance of Computational Linguistid®eport 59, Center for the
Study of Language and Information, Stanford, California.

Knuth, Donald E. 1973.Searching and SortingThe Art of Computer Programming, volume 3.
Reading, Massachusetts: Addison-Wesley.

Korf, Richard E. 1985. Depth-first iterative-deepeningoatimal admissible tree searcAtrtificial
Intelligence 27(1):97-109.

Kowalski, Robert A. 1974al ogic for Problem SolvingDCL Memo 75, Department of Artificial
Intelligence, University of Edinburgh, Scotland.

1974b. Predicate logic as a programming language.Prbteedings of the IFIP-74
Congress569-574. Amsterdam, Netherlands: North-Holland.

——. 1975. A proof procedure using connection graplmirnal of the ACM22(4):572-595.

———. 1980.Logic for Problem SolvingNew York, New York: North-Holland.

190 Appendix A. Listing of Sample Programs

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Kowalski, Robert A. and David Kuehner. 1971. Linear redolutvith selection functionArtificial
Intelligence 2:227-60.

Lambek, Joachim. 1961. On the calculus of syntactic type®dman Jakobson, edbtructure of
Language and its Mathematical Aspects (Proceedings ofyhg8sia in Applied Mathematics,
12), 166-178. Providence, Rhode Island: American Mathenlaiceiety. As cited in (Ades
and Steedman, 1982).

Lewis, David. 1972. General semantics. In Donald Davidsah@ilbert Harman, edsSemantics
of Natural LanguageDordrecht, Netherlands: D. Reidel.

Lloyd, John W. 1984Foundations of Logic Programmindgerlin, Germany: Springer-Verlag.

Maibaum, T. S. E. 1974. A generalized approach to formaldaggs.Journal of Computer and
System Scienceg:409-439.

Matsumoto, Yuji, Hozumi Tanaka, Hideki Hirakawa, Hideo Mshi, and Hideki Yasukawa. 1983.
BUP: a bottom-up parser embedded in Proldgw Generation Computing(2):145-158.

McCarthy, John, Paul W. Abrahams, Daniel J. Edwards, Tim&hHart, and Michael I. Levin.
1965.LISP 1.5 Programmer’s ManuaBecond ed. Cambridge, Massachusetts: MIT Press.

McCord, Michael C. 1980. Slot grammarSomputational Linguistic$(1):255-286.

. 1982. Using slots and modifiers in logic grammars fouratlanguage Artificial Intelli-
gence 18(3):327-367.

Mellish, Christopher S. 1985. Some global optimizationsad’rolog compiler.Logic Program-
ming, 2(1):43-66.

———. 1986. Abstract interpretation of logic programs. InugtShapiro, ed Proceedings of the
Third International Conference on Logic Programm|@$3-474. Berlin, Germany: Springer-
Verlag.

Miller, Dale A. and Gopalan Nadathur. 1986. Some uses ofdriginder logic in computational
linguistics. InProceedings of the 24th Annual Meeting of the AssociatiorCfimputational
Linguistics 247-256. Columbia University, New York, New York.

Mishra, P. 1984. Towards a theory of types in Prolog.Plnceedings of the 1984 International
Symposium on Logic ProgrammifZ89—298. Silver Springs, Maryland: IEEE Computer Soci-
ety Press.

Moore, Robert C. 1981. Problems in logical form.Hroceedings of the 19th Annual Meeting of the
Association for Computational Linguistick17—124. Stanford University, Stanford, California.
Reprinted in (Grosz et al., 1986).

Morris, Katherine, J&rey D. Ullman, and Allen Van Gelder. 1986. The design and @n@ntation
of a high-speed incremental portable Prolog compiler. lndE&hapiro, ed Proceedings of the
Third International Conference on Logic Programm|rigp4—-568. Berlin, Germany: Springer-
Verlag.

Mukai, K. 1985. Unification over Complex Indeterminates in Prologechnical Report TR-113,
ICOT, Tokyo, Japan.

Bibliography 191

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

Mycroft, Alan and Richard A. O’'Keefe. 1984. A polymorphiqity system for PrologAtrtificial
Intelligence 23(3):295-307.

Naish, Lee. 1986.Negation and Control in Prolog Lecture Notes in Computer Science, vol-
ume 238. Berlin, Germany: Springer-Verlag.

O’Donnell, Michael J. 1985.Equational Logic as a Programming Languag&oundations of
Computing Series. Cambridge, Massachusetts: MIT Press.

O’Keefe, Richard A. 1985. On the treatment of cuts in Prologrse-level tools. IProceedings
of the 1985 Symposium on Logic Programmif§—72. Washington, D.C.: IEEE Computer
Society Press.

Partee, Barbara Hall, Alice ter Meulen, and Robert Wall. Z.98athematical Methods for Linguis-
tics. Studies in Linguistics and Philosophy. Dordrecht, Ndtrats: D. Reidel.

Pasero, Robert. 197Representation du Francais en Logique du Premier Ordreyea de Dia-
loguer avec un OrdinateurThése de 3eéme Cycle, Groupe d’'Intelligence Artificidlaiversité
d’Aix-Marseille I1.

Pereira, Fernando C. N. 1981. Extraposition gramm@esnputational Linguistigs/(4):243-256.

. 1982. Logic for Natural Language Analysi$h.D. thesis, University of Edinburgh, Edin-
burgh, Scotland. Reprinted as Technical Note 275, Jan@88, Artificial Intelligence Center,
SRI International, Menlo Park, California.

. 1985. A structure-sharing representation for unifamabased grammar formalisms. In
Proceedings of the 23rd Annual Meeting of the Associatio€fomputational Linguistics137—
144. University of Chicago, Chicago, lllinois.

Pereira, Fernando C. N. and David H. D. Warren. 1980. Defl#tase grammars for language
analysis—a survey of the formalism and a comparison withnarged transition networks.
Artificial Intelligence 13:231-278. Reprinted in (Grosz et al., 1986).

. 1983. Parsing as deduction. Rroceedings of the 21st Annual Meeting of the Associa-
tion for Computational Linguistics Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts.

Pereira, Luis M. 1982. Logic control with logic. In Michehw Caneghem, edsjrst International
Logic Programming Conferenc8-18. ADDP-GIA, Faculté des Sciences de Luminy, Marsgill
France.

Pittomvils, Edwin, Maurice Bruynooghe, and Yves D. Willemi985. Towards a real time garbage
collector for Prolog. InProceedings of the 1985 Symposium on Logic Programpii@f—198.
Washington, D.C.: IEEE Computer Society Press.

Porto, Antdnio. 1982. Epilog: a language for extended mogning in logic. In
Michel van Caneghem, edirst International Logic Programming Conferenc®1-37. ADDP-
GIA, Faculté des Sciences de Luminy, Marseille, France.

Pratt, Vaughan R. 1975. LINGOL.: a project report.Advance Papers of the Fourth International
Joint Conference on Atrtificial Intelligencd22—-428. Thilisi, Georgia, USSR.

192 Appendix A. Listing of Sample Programs

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Quillian, M. Ross. 1967. Word concepts: a theory and siniadf some basic semantic capabili-
ties. Behavioral Sciencgel 2:410-430. Reprinted in (Brachman and Levesque, 1985).

Robinson, J. A. 1965. A machine-oriented logic based onékelution principle.Journal of the
ACM, 12:23-44.

. 1979. Logic: Form and Function Artificial Intelligence Series. New York, New York:
North-Holland.

Rosenkrantz, Daniel J. and Philip M. Lewis Il. 1970. Detemstic left corner parser. IHEEE
Conference Record of the 11th Annual Symposium on SwitemdgAutomata Theoryl 39—
152.

Rosenschein, Stanley J. and Stuart M. Shieber. 1982. atanglEnglish into logical form. In
Proceedings of the 20th Annual Meeting of the Associatio@&mputational Linguisticsl—8.
University of Toronto, Toronto, Canada.

Ross, John R. 1967Constraints on Variables in Synta®h.D. thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts. Excerpts regdrint@gRoss, 1974).

. 1974. Excerpts from ‘Constraints on Variables in Syhtdn Gilbert Harman, ed.On
Noam Chomsky: Critical Essay&arden City, New York: Anchor Books.

Rounds, William C. 1969. Context-free grammars on tree®réceedings of the ACM Symposium
on the Theory of Computing

. 1970. Tree-oriented proofs of some theorems on cotftegtand indexed languages. In
Proceedings of the ACM Symposium on the Theory of Computing

. 1987. LFP: a logic for linguistic descriptions and aralysis of its complexity.Computa-
tional Linguistics to appear.

Roussel, Phillipe. 1975Prolog: Manuel de Réféerence et Utilisatiomechnical Report, Groupe
d’Intelligence Artificielle, Université d’Aix-Marsei# |, Marseille, France.

Sag, Ivan A. and Carl Pollard. 1986. Head-driven phrasgesire grammar: an informal synopsis.
Draft CSLI Report.

Schubert, Lenhart K. and Francis J. Pelletier. 1982. Frogligmto logic: context-free computa-
tion of ‘conventional’ logical translationComputational Linguistics8(1):26—44. Reprinted in
(Grosz et al., 1986).

Shapiro, Ehud Y. 1982. Alternation and the computationahglexity of logic programs. In
Michel van Caneghem, edFjrst International Logic Programming Conferenc&54—16dis.
ADDP-GIA, Faculté des Sciences de Luminy, Marseille, Egan

———. 1983. Algorithmic Program DebuggingCambridge, Massachusetts: MIT Press.

Shieber, Stuart M. 1985a. Criteria for designing compueilities for linguistic analysisLinguis-
tics, 23:189-211.

———. 1985b. Evidence against the context-freeness of abdamguagelinguistics and Philoso-
phy, 8:333-343.

Bibliography 193

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge
for noncommercial use by Microtome Publishing.

1985c. Using restriction to extend parsing algorithiois complex-feature-based for-
malisms. InProceedings of the 23rd Annual Meeting of the AssociatiorClomputational
Linguistics 145-152. University of Chicago, Chicago, lllinois.

Soames, Scott and David M. Perimutter. 19B3ntactic Argumentation and the Structure of En-
glish. Berkeley, California: University of California Press.

Sterling, Leon and Ehud Shapiro. 198khe Art of Prolog Cambridge, Massachusetts: MIT Press.

Stickel, Mark E. and W. M. Tyson. 1985. An analysis of consiely bounded depth-first search
with applications in automated deduction.Rroceedings of the Ninth International Joint Con-
ference on Atrtificial Intelligengel073-1075. Los Angeles, California.

Tait, Katherine. 1975.My Father Bertrand RussellNew York, New York: Harcourt Brace Jo-
vanovich.

Takeuchi, A. and K. Furukawa. 198Bartial Evaluation of Prolog Programs and its Applicatiom t
Meta Programming Technical Report TR-126, ICOT, Tokyo, Japan.

Tamaki, Hisao and Taisuke Sato. 1984. Unffittl transformation of logic programs. Proceed-
ings of the Second International Logic Programming Confeee127—138. Uppsala University,
Uppsala, Sweden.

Tarnlund, Sten-Ake. 1977. Horn clause computabiByT, 2:215-226.

Thomason, Richmond H., ed. 197&ormal Philosophy—Selected Papers of Richard Montague
New Haven, Connecticut: Yale University Press.

Tick, Evan and David H. D. Warren. 1984. Towards a pipelinesld®) processor. IfProceedings
of the 1984 International Symposium on Logic Programm283-40. Silver Springs, Maryland:
IEEE Computer Society Press.

Uszkoreit, Hans J. 1986Categorial Unification GrammarsReport 66, Center for the Study of
Language and Information, Stanford, California.

Vanlehn, Kurt A. 1978. Determining the Scope of English QuantifierMaster’s thesis, Mas-
sachusetts Institute of Technology, Cambridge, MassattsusPublished as Report Al-TR-483.

Warren, David H. D. 1975. Earley deduction. Unpublisheanot

. 1977. Applied Logic—Its Use and Implementation as Programming). Té&®h.D. thesis,
University of Edinburgh, Edinburgh, Scotland. Reprintsdlachnical Note 290, Artificial In-
telligence Center, SRI, International, Menlo Park, Catifa.

. 1979. Prolog on the DECsystem-10. In Donald Michie, Edpert Systems in the Micro-
Electronic Age Edinburgh, Scotland: Edinburgh University Press.

. 1982. Higher-order extensions to Prolog—are they ad&d In Hayes, Michie, and Pao,
eds.,Machine Intelligence 10Chichester, West Sussex, England: Ellis Horwood.

1983. An Abstract Prolog Instruction SetTechnical Note 309, Atrtificial Intelligence
Center, SRI International, Menlo Park, California.

194 Appendix A. Listing of Sample Programs

A hardbound edition of Prolog and Natural-Language Analysis is available from
www.mtome . com and other booksellers.

Warren, David H. D. and Fernando C. N. Pereira. 1982. HAitient easily adaptable system
for interpreting natural language queriganerican Journal of Computational Linguistj&(3-
4):110-122.

Warren, David H. D., Luis M. Pereira, and Fernando C. N. P&ré977. Prolog—the language and
its implementation compared with Lisp. BIGPLANSIGART NewsletterACM Symposium
on Atrtificial Intelligence and Programming Languages.

Warren, David S. 1983. Usingrcalculus to represent meanings in logic grammar$rbteedings
of the 21st Annual Meeting of the Association for Computetid inguistics 51-56. Mas-
sachusetts Institute of Technology, Cambridge, Massattsus

Warren, David S. and Joyce Friedman. 1982. Using semantitsri-context-free parsing of Mon-
tague grammarComputational Linguistics8(3-4):123-138.

Winograd, Terry. 1972Understanding Natural Languag®ew York, New York: Academic Press.

———. 1983. Language as a Cognitive Process—Volume 1: Synfagading, Massachusetts:
Addison-Wesley.

Woods, William A. 1970. Transition network grammars forurat language analysisCommuni-
cations of the ACM13:591-606.

——— 1975. What's in a link: foundations for semantic netior In D. G. Bobrow and
A. M. Collins, eds. Representation and Understanding: Studies in Cognitiverse 35-82.
New York, New York: Academic Press.

1977. Semantics and Quantification in Natural Language Questioswering Re-
port 3687, Bolt Beranek and Newman Inc. Reprinted in (Grasd.£1986).

Wos, Larry, Ross Overbeek, Ewing Lusk, and Jim Boyle. 1984omated Reasoning: Introduction
and Applications Englewood Clifs, New Jersey: Prentice-Hall.

van Benthem, Johan. 198&ssays in Logical SemanticStudies in Linguistics and Philosophy,
volume 29. Dordrecht, Netherlands: D. Reidel.

van Caneghem, Michel and David H. D. Warren, eds. 1988jic Programming and its Applica-
tions Ablex Series in Atrtificial Intelligence. Norwood, New Jeys Ablex.

van Emden, Maarten H. and Robert A. Kowalski. 1976. The séiognf predicate logic as a
programming languag&ournal of the ACM23(4):733-742.

van Heijenoort, Jean, ed. 196From Frege to Godel—A Source Book in Mathematical Logic,
1879-1931 Cambridge, Massachusetts: Harvard University Press.

