
The Journal of Machine Learning Research
Volume 9
Print-Archive Edition

Pages 1437–2880

Microtome Publishing
Brookline, Massachusetts
www.mtome.com

The Journal of Machine Learning Research
Volume 9
Print-Archive Edition

The Journal of Machine Learning Research (JMLR) is an open
access journal. All articles published in JMLR are freely available
via electronic distribution. This Print-Archive Edition is published
annually as a means of archiving the contents of the journal in
perpetuity. The contents of this volume are articles published
electronically in JMLR in 2008.

JMLR is abstracted in ACM Computing Reviews, INSPEC, and
Psychological Abstracts/PsycINFO.

JMLR is a publication of Journal of Machine Learning Research,
Inc. For further information regarding JMLR, including open
access to articles, visit http://www.jmlr.org/.

JMLR Print-Archive Edition is a publication of Microtome
Publishing under agreement with Journal of Machine Learning
Research, Inc. For further information regarding the Print-Archive
Edition, including subscription and distribution information and
background on open-access print archiving, visit Microtome
Publishing at http://www.mtome.com/.

Collection copyright © 2008 The Journal of Machine Learning
Research, Inc. and Microtome Publishing. Copyright of individual
articles remains with their respective authors.

ISSN 1532-4435 (print)
ISSN 1533-7928 (online)

JMLR Editorial Board

Editors‐in‐Chief 
Lawrence Saul, University of California, San Diego  
Leslie Pack Kaelbling, Massachusetts Institute of Technology  
 
Managing Editor 
Aron Culotta, Southeastern Louisiana University  
 
Production Editor 
Rich Maclin, University of Minnesota, Duluth  
 
 
 
 
 
 
 
 
 
 
JMLR Action Editors 
Francis Bach,  INRIA,  France Yoshua Bengio,  Université  de Montréal,  Canada   David Blei,  Princeton 
University, USA   Léon Bottou  ,  NEC Research  Institute, USA   Mikio L. Braun, Technical Universtiy of 
Berlin, Germany  Carla Brodley, Tufts University, USA  Nicolò CesaBianchi, Università degli Studi di 
Milano,  Italy    David  Maxwell  Chickering,  Microsoft  Research,  USA   William  W.  Cohen,  Carnegie‐
Mellon  University,  USA   Michael  Collins,  Massachusetts  Institute  of  Technology,  USA   Peter  Dayan, 
University  College,  London,  UK    Inderjit  S. Dhillon,  University  of  Texas,  Austin,  USA   Luc  De Raedt, 
Katholieke  Universiteit  Leuven,  Belgium    Charles  Elkan,  University  of  California  at  San  Diego,  USA  
Stephanie Forrest, University of New Mexico, USA  Yoav Freund, University of California at San Diego, 
USA   Donald  Geman,  Johns  Hopkins  University,  USA    Russ  Greiner,  University  of  Alberta,  Canada  
Isabelle Guyon, ClopiNet, USA  Haym Hirsh, Rutgers University, USA  Aapo Hyvärinen, University of 
Helsinki, Finland  Tommi Jaakkola, Massachusetts Institute of Technology, USA  Thorsten Joachims, 
Cornell  University,  USA   Michael  Jordan,  University  of  California  at  Berkeley,  USA    Sham  Kakade, 
Toyota  Technology  Institute,  USA    Sathiya  Keerthi,  Yahoo!  Research,  USA    John  Lafferty,  Carnegie 
Mellon  University,  USA    Daniel  Lee,  University  of  Pennsylvania,  USA    Michael  Littman,  Rutgers 
University, USA   Gábor Lugosi, Pompeu Fabra University, Spain   David Madigan, Rutgers University, 
USA  Sridhar Mahadevan, University of Massachusetts, Amherst, USA  Shie Mannor, McGill University, 
Canada and Technion, Israel  Marina Meila, University of Washington, USA  Melanie Mitchell, Portland 
State  University,  USA    Cheng  Soon  Ong,  MPI  for  Biological  Cybernetics,  Germany   Manfred  Opper, 
Technical  University  of  Berlin,  Germany    Ronald  Parr,  Duke  University,  USA    Carl  Rasmussen, 
University of Cambridge, UK  Saharon Rosset,  IBM TJ Watson Research Center, USA  Rocco Servedio, 
Columbia University, USA   Alex Smola, Australian National University, Australia   Sören Sonnenburg, 
Fraunhofer  FIRST,  Germany    John  ShaweTaylor,  Southampton  University,  UK    Xiaotong  Shen, 
University of Minnesota, USA  Satinder Singh, University of Michigan, USA  Ingo Steinwart, Los Alamos 
National  Laboratory,  USA    Ben  Taskar,  University  of  Pennsylvania,  USA    Lyle  Ungar,  University  of 
Pennsylvania,  USA   Ulrike  von  Luxburg,  MPI  for  Biological  Cybernetics,  Germany   Nicolas  Vayatis, 
Ecole  Normale  Supérieure  de  Cachan,  France    Martin  J.  Wainwright,  University  of  California  at 
Berkeley,  USA    Manfred  Warmuth,  University  of  California  at  Santa  Cruz,  USA    Stefan  Wrobel, 
Fraunhofer  IAIS  and University  of  Bonn,  Germany   Bin Yu,  University  of  California  at  Berkeley,  USA  
Bianca Zadrozny, Fluminense Federal University, Brazil  Hui Zou, University of Minnesota, USA 
 
 
 
 
 

 
 
 
 
 
 
 
 
JMLR Editorial Board 
Naoki  Abe,  IBM  TJ  Watson  Research  Center,  USA    Yasemin  Altun,  MPI  for  Biological  Cybernetics, 
Germany  Christopher Atkeson, Carnegie Mellon University, USA  JeanYves Audibert, CERTIS, France 
Andrew  G.  Barto,  University  of  Massachusetts,  Amherst,  USA    Jonathan  Baxter,  Panscient  Pty  Ltd, 
Australia   Richard K.  Belew,  University of California  at  San Diego, USA   Tony Bell,  Salk  Institute  for 
Biological  Studies,  USA    Samy  Bengio,  Google,  Inc.,  USA  Kristin  Bennett,  Rensselaer  Polytechnic 
Institute,  USA    Christopher  M.  Bishop,  Microsoft  Research,  UK    Lashon  Booker,  The  Mitre 
Corporation, USA  Henrik Boström, Stockholm University/KTH, Sweden  Craig Boutilier, University of 
Toronto, Canada    Justin Boyan,  ITA Software, USA  Ivan Bratko,  Jozef Stefan  Institute, Slovenia Rich 
Caruana,  Cornell  University,  USA    David  Cohn,  Google,  Inc.,  USA    Koby  Crammer,  University  of 
Pennsylvania,  USA    Nello  Cristianini,  UC  Davis,  USA  Walter  Daelemans,  University  of  Antwerp, 
Belgium  Dennis DeCoste, Facebook, USA  Thomas Dietterich, Oregon State University, USA  Jennifer 
Dy, Northeastern University, USA  Saso Dzeroski, Jozef Stefan Institute, Slovenia  Usama Fayyad, DMX 
Group,  USA   Douglas  Fisher,  Vanderbilt  University,  USA    Peter  Flach,  Bristol  University,  UK   Dan 
Geiger,  The  Technion,  Israel    Claudio  Gentile,  Universita'  dell'Insubria,  Italy   Amir  Globerson,  The 
Hebrew University of Jerusalem, Israel   Sally Goldman, Washington University, St. Louis, USA  Arthur 
Gretton,  Carnegie  Mellon  University,  USA    Tom  Griffiths,  University  of  California  at  Berkeley,  USA  
Carlos  Guestrin,  Carnegie  Mellon  University,  USA    David  Heckerman,  Microsoft  Research,  USA  
Katherine Heller, University of Cambridge, UK  David Helmbold, University of California at Santa Cruz, 
USA    Geoffrey  Hinton,  University  of  Toronto,  Canada    Thomas  Hofmann,  Brown  University,  USA  
Larry Hunter,  University  of  Colorado,  USA   Daphne  Koller,  Stanford University,  USA   Risi  Kondor, 
University College London, UK   Erik  LearnedMiller, University of Massachusetts, Amherst, USA   Fei 
Fei  Li,  Stanford  University,  USA    Yi  Lin,  University  of  Wisconsin,  USA   WeiYin  Loh,  University  of 
Wisconsin,  USA    Yishay  Mansour,  Tel‐Aviv  University,  Israel    David  J.  C.  MacKay,  University  of 
Cambridge,  UK    Jon  McAuliffe,  University  of  Pennsylvania,  USA    Andrew  McCallum,  University  of 
Massachusetts, Amherst,  USA   Tom Mitchell, Carnegie Mellon University, USA   Raymond J. Mooney, 
University of Texas, Austin, USA   Andrew W. Moore, Carnegie Mellon University, USA   KlausRobert  
Muller,  Technical  University  of  Berlin,  Germany    Stephen Muggleton,  Imperial  College  London,  UK  
UnaMay  O'Reilly,  Massachusetts  Institute  of  Technology,  USA    Fernando  Pereira,  University  of 
Pennsylvania,  USA    Pascal  Poupart,  University  of  Waterloo,  Canada    Foster  Provost,  New  York 
University,  USA   Ben Recht,  California  Institute  of  Technology,  USA   Dana Ron,  Tel‐Aviv  University, 
Israel    Lorenza  Saitta,  Universita  del  Piemonte Orientale,  Italy   Claude  Sammut,  University  of  New 
South Wales,  Australia   Robert  Schapire,  Princeton University,  USA   Fei  Sha,  University  of  Southern 
California,  USA    Shai  ShalevShwartz,  Toyota  Technology  Institute,  USA    Jonathan  Shapiro, 
Manchester  University,  UK    Jude  Shavlik,  University  of  Wisconsin,  USA    Yoram  Singer,  Hebrew 
University,  Israel    Padhraic  Smyth,  University  of  California,  Irvine,  USA    Nathan  Srebro,  Toyota 
Technology Institute, USA  Richard Sutton, University of Alberta, Canada  Csaba Szepesvari, University 
of Alberta, Canada  Yee Whye Teh, University College London, UK  Moshe Tennenholtz, The Technion, 
Israel   Sebastian Thrun,  Stanford University,  USA   Naftali  Tishby,  Hebrew University,  Israel   David 
Touretzky,  Carnegie  Mellon  University,  USA    JeanPhilippe  Vert,  Mines  ParisTech,  France    Larry 
Wasserman, Carnegie Mellon University, USA   Chris Watkins, Royal Holloway, University of London, 
UK   Kilian Weinberger,  Yahoo!  Research,  USA   Max Welling,  University  of  California  at  Irvine,  USA  
Chris Williams, University of Edinburgh, UK  Tong Zhang, Rutgers University, USA 
 
JMLR Advisory Board 
ShunIchi Amari, RIKEN Brain Science Institute, Japan  Andrew Barto, University of Massachusetts at 
Amherst, USA  Thomas Dietterich, Oregon State University, USA  Jerome Friedman, Stanford 
University, USA  Stuart Geman, Brown University, USA  Geoffrey Hinton, University of Toronto, 
Canada  Michael Jordan, University of California at Berkeley, USA  Michael Kearns, University of 
Pennsylvania, USA  Steven Minton, University of Southern California, USA  Thomas Mitchell, Carnegie 
Mellon University, USA  Stephen Muggleton, Imperial College London, UK  Nils Nilsson, Stanford 
University, USA  Tomaso Poggio, Massachusetts Institute of Technology, USA  Ross Quinlan, Rulequest 
Research Pty Ltd, Australia  Stuart Russell, University of California at Berkeley, USA  Bernhard 
Schölkopf, Max‐Planck‐Institut für Biologische Kybernetik, Germany  Terrence Sejnowski, Salk 
Institute for Biological Studies, USA  Richard Sutton, University of Alberta, Canada  Leslie Valiant, 
Harvard University, USA  Stefan Wrobel, Fraunhofer IAIS and University of Bonn, Germany 

 
JMLR Web Master 
Luke Zettlemoyer, Massachusetts Institute of Technology  
 

Journal of Machine Learning Research
Volume 9, 2008

1 Max-margin Classification of Data with Absent Features
Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel, Daphne Koller

23 Linear-Time Computation of Similarity Measures for Sequential Data
Konrad Rieck, Pavel Laskov

49 On the Suitable Domain for SVM Training in Image Coding
Gustavo Camps-Valls, Juan Gutiérrez, Gabriel Gómez-Pérez, Jesús Malo

67 Discriminative Learning of Max-Sum Classifiers
Vojtǒch Franc, Bogdan Savchynskyy

105 Active Learning by Spherical Subdivision
Falk-Florian Henrich, Klaus Obermayer

131 Evidence Contrary to the Statistical View of Boosting
David Mease, Abraham Wyner

Responses to Evidence Contrary to the Statistical View of Boosting
175 Kristin P. Bennett
165 Andreas Buja, Werner Stuetzle
171 Yoav Freund, Robert E. Schapire
175 Jerome Friedman, Trevor Hastie, Robert Tibshirani
181 Peter J. Bickel, Ya’acov Ritov
187 Peter Bühlmann, Bin Yu

195 Rejoinder to Reponses to Evidence Contrary to the Statistical View of
Boosting
David Mease, Abraham Wyner

203 Optimization Techniques for Semi-Supervised Support Vector Machines
Olivier Chapelle, Vikas Sindhwani, Sathiya S. Keerthi

235 Near-Optimal Sensor Placements in Gaussian Processes: Theory, Effi-
cient Algorithms and Empirical Studies
Andreas Krause, Ajit Singh, Carlos Guestrin

285 Support Vector Machinery for Infinite Ensemble Learning
Hsuan-Tien Lin, Ling Li

313 Algorithms for Sparse Linear Classifiers in the Massive Data Setting
Suhrid Balakrishnan, David Madigan

339 Generalization from Observed to Unobserved Features by Clustering
Eyal Krupka, Naftali Tishby

371 A Tutorial on Conformal Prediction
Glenn Shafer, Vladimir Vovk

423 Theoretical Advantages of Lenient Learners: An Evolutionary Game
Theoretic Perspective
Liviu Panait, Karl Tuyls, Sean Luke

459 A Recursive Method for Structural Learning of Directed Acyclic Graphs
Xianchao Xie, Zhi Geng

485 Model Selection Through Sparse Maximum Likelihood Estimation for
Multivariate Gaussian or Binary Data
Onureena Banerjee, Laurent El Ghaoui, Alexandre d’Aspremont

517 Comments on the Complete Characterization of a Family of Solutions to
a Generalized Fisher Criterion
Jieping Ye

521 Estimating the Confidence Interval for Prediction Errors of Support Vec-
tor Machine Classifiers
Bo Jiang, Xuegong Zhang, Tianxi Cai

541 An Information Criterion for Variable Selection in Support Vector Ma-
chines (Special Topic on Model Selection)
Gerda Claeskens, Christophe Croux, Johan Van Kerckhoven

559 Closed Sets for Labeled Data
Gemma C. Garriga, Petra Kralj, Nada Lavrač

581 Learning Reliable Classifiers From Small or Incomplete Data Sets: The
Naive Credal Classifier 2
Giorgio Corani, Marco Zaffalon

623 A Library for Locally Weighted Projection Regression (Machine Learning
Open Source Software Paper)
Stefan Klanke, Sethu Vijayakumar, Stefan Schaal

627 Trust Region Newton Method for Logistic Regression
Chih-Jen Lin, Ruby C. Weng, S. Sathiya Keerthi

651 Graphical Models for Structured Classification, with an Application to
Interpreting Images of Protein Subcellular Location Patterns
Shann-Ching Chen, Geoffrey J. Gordon, Robert F. Murphy

683 Learning Control Knowledge for Forward Search Planning
Sungwook Yoon, Alan Fern, Robert Givan

719 Multi-class Discriminant Kernel Learning via Convex Programming (Spe-
cial Topic on Model Selection)
Jieping Ye, Shuiwang Ji, Jianhui Chen

759 Bayesian Inference and Optimal Design for the Sparse Linear Model
Matthias W. Seeger

815 Finite-Time Bounds for Fitted Value Iteration
Rémi Munos, Csaba Szepesvári

859 An Error Bound Based on a Worst Likely Assignment
Eric Bax, Augusto Callejas

893 Graphical Methods for Efficient Likelihood Inference in Gaussian Co-
variance Models
Mathias Drton, Thomas S. Richardson

915 Bouligand Derivatives and Robustness of Support Vector Machines for
Regression
Andreas Christmann, Arnout Van Messem

937 Accelerated Neural Evolution through Cooperatively Coevolved Synapses
Faustino Gomez, Jürgen Schmidhuber, Risto Miikkulainen

967 Search for Additive Nonlinear Time Series Causal Models
Tianjiao Chu, Clark Glymour

993 Shark (Machine Learning Open Source Software Paper)
Christian Igel, Verena Heidrich-Meisner, Tobias Glasmachers

997 Hit Miss Networks with Applications to Instance Selection
Elena Marchiori

1019 Consistency of Trace Norm Minimization
Francis R. Bach

1049 Learning Similarity with Operator-valued Large-margin Classifiers
Andreas Maurer

1083 Ranking Categorical Features Using Generalization Properties
Sivan Sabato, Shai Shalev-Shwartz

1115 A Multiple Instance Learning Strategy for Combating Good Word At-
tacks on Spam Filters
Zach Jorgensen, Yan Zhou, Meador Inge

1147 Cross-Validation Optimization for Large Scale Structured Classification
Kernel Methods
Matthias W. Seeger

1179 Consistency of the Group Lasso and Multiple Kernel Learning
Francis R. Bach

1227 Maximal Causes for Non-linear Component Extraction
Jörg Lücke, Maneesh Sahani

1269 Optimal Solutions for Sparse Principal Component Analysis
Alexandre d’Aspremont, Francis Bach, Laurent El Ghaoui

1295 Using Markov Blankets for Causal Structure Learning (Special Topic on
Causality)
Jean-Philippe Pellet, André Elisseeff

1343 A Bahadur Representation of the Linear Support Vector Machine
Ja-Yong Koo, Yoonkyung Lee, Yuwon Kim, Changyi Park

1369 Coordinate Descent Method for Large-scale L2-loss Linear Support Vec-
tor Machines
Kai-Wei Chang, Cho-Jui Hsieh, Chih-Jen Lin

1399 Online Learning of Complex Prediction Problems Using Simultaneous
Projections
Yonatan Amit, Shai Shalev-Shwartz, Yoram Singer

1437 Causal Reasoning with Ancestral Graphs (Special Topic on Causality)
Jiji Zhang

1475 Incremental Identification of Qualitative Models of Biological Systems
using Inductive Logic Programming
Ashwin Srinivasan, Ross D. King

1535 Learning to Combine Motor Primitives Via Greedy Additive Regression
Manu Chhabra, Robert A. Jacobs

1559 Aggregation of SVM Classifiers Using Sobolev Spaces
Sébastien Loustau

1583 Dynamic Hierarchical Markov Random Fields for Integrated Web Data
Extraction
Jun Zhu, Zaiqing Nie, Bo Zhang, Ji-Rong Wen

1615 Universal Multi-Task Kernels
Andrea Caponnetto, Charles A. Micchelli, Massimiliano Pontil, Yiming Ying

1647 A New Algorithm for Estimating the Effective Dimension-Reduction Sub-
space
Arnak S. Dalalyan, Anatoly Juditsky, Vladimir Spokoiny

1679 Value Function Based Reinforcement Learning in Changing Markovian
Environments
Balázs Csanád Csáji, László Monostori

1711 Regularization on Graphs with Function-adapted Diffusion Processes
Arthur D. Szlam, Mauro Maggioni, Ronald R. Coifman

1741 Nearly Uniform Validation Improves Compression-Based Error Bounds
Eric Bax

1757 Learning from Multiple Sources
Koby Crammer, Michael Kearns, Jennifer Wortman

1775 Exponentiated Gradient Algorithms for Conditional Random Fields and
Max-Margin Markov Networks
Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, Peter L. Bartlett

1823 Classification with a Reject Option using a Hinge Loss
Peter L. Bartlett, Marten H. Wegkamp

1841 Learning Balls of Strings from Edit Corrections
Leonor Becerra-Bonache, Colin de la Higuera, Jean-Christophe Janodet,
Frédéric Tantini

1871 LIBLINEAR: A Library for Large Linear Classification (Machine Learn-
ing Open Source Software Paper)
Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, Chih-Jen Lin

1875 On Relevant Dimensions in Kernel Feature Spaces
Mikio L. Braun, Joachim M. Buhmann, Klaus-Robert Müller

1909 Manifold Learning: The Price of Normalization
Yair Goldberg, Alon Zakai, Dan Kushnir, Ya’acov Ritov

1941 Complete Identification Methods for the Causal Hierarchy (Special Topic
on Causality)
Ilya Shpitser, Judea Pearl

1981 Mixed Membership Stochastic Blockmodels
Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, Eric P. Xing

2015 Consistency of Random Forests and Other Averaging Classifiers
Gérard Biau, Luc Devroye, Gábor Lugosi

2035 Approximations for Binary Gaussian Process Classification
Hannes Nickisch, Carl Edward Rasmussen

2079 Value Function Approximation using Multiple Aggregation for Multiat-
tribute Resource Management
Abraham George, Warren B. Powell, Sanjeev R. Kulkarni

2113 Gradient Tree Boosting for Training Conditional Random Fields
Thomas G. Dietterich, Guohua Hao, Adam Ashenfelter

2141 HPB: A Model for Handling BN Nodes with High Cardinality Parents
Jorge Jambeiro Filho, Jacques Wainer

2171 A Moment Bound for Multi-hinge Classifiers
Bernadetta Tarigan, Sara A. van de Geer

2187 Ranking Individuals by Group Comparisons
Tzu-Kuo Huang, Chih-Jen Lin, Ruby C. Weng

2217 Forecasting Web Page Views: Methods and Observations
Jia Li, Andrew W. Moore

2251 Finding Optimal Bayesian Network Given a Super-Structure
Eric Perrier, Seiya Imoto, Satoru Miyano

2287 Randomized Online PCA Algorithms with Regret Bounds that are Log-
arithmic in the Dimension
Manfred K. Warmuth, Dima Kuzmin

2321 Probabilistic Characterization of Random Decision Trees
Amit Dhurandhar, Alin Dobra

2349 Learning to Select Features using their Properties
Eyal Krupka, Amir Navot, Naftali Tishby

2377 Model Selection in Kernel Based Regression using the Influence Func-
tion (Special Topic on Model Selection)
Michiel Debruyne, Mia Hubert, Johan A.K. Suykens

2401 Non-Parametric Modeling of Partially Ranked Data
Guy Lebanon, Yi Mao

2431 On the Size and Recovery of Submatrices of Ones in a Random Binary
Matrix
Xing Sun, Andrew B. Nobel

2455 Minimal Nonlinear Distortion Principle for Nonlinear Independent Com-
ponent Analysis
Kun Zhang, Laiwan Chan

2489 On the Equivalence of Linear Dimensionality-Reducing Transformations
Marco Loog

2491 SimpleMKL
Alain Rakotomamonjy, Francis R. Bach, Stéphane Canu, Yves Grandvalet

2523 Active Learning of Causal Networks with Intervention Experiments and
Optimal Designs (Special Topic on Causality)
Yang-Bo He, Zhi Geng

2549 Stationary Features and Cat Detection
François Fleuret, Donald Geman

2579 Visualizing Data using t-SNE
Laurens van der Maaten, Geoffrey Hinton

2607 Model Selection for Regression with Continuous Kernel Functions Using
the Modulus of Continuity (Special Topic on Model Selection)
Imhoi Koo, Rhee Man Kil

2635 Multi-Agent Reinforcement Learning in Common Interest and Fixed
Sum Stochastic Games: An Experimental Study
Avraham Bab, Ronen I. Brafman

2677 An Extension on ”Statistical Comparisons of Classifiers over Multiple
Data Sets” for all Pairwise Comparisons
Salvador Garcı́a, Francisco Herrera

2695 JNCC2: The Java Implementation Of Naive Credal Classifier 2 (Ma-
chine Learning Open Source Software Paper)
Giorgio Corani, Marco Zaffalon

2699 Learning Bounded Treewidth Bayesian Networks
Gal Elidan, Stephen Gould

2733 Automatic PCA Dimension Selection for High Dimensional Data and
Small Sample Sizes
David C. Hoyle

2761 Robust Submodular Observation Selection
Andreas Krause, H. Brendan McMahan, Carlos Guestrin, Anupam Gupta

2803 Magic Moments for Structured Output Prediction
Elisa Ricci, Tijl De Bie, Nello Cristianini

2847 Structural Learning of Chain Graphs via Decomposition
Zongming Ma, Xianchao Xie, Zhi Geng

Journal of Machine Learning Research 9 (2008) 1437-1474 Submitted 6/07; Revised 2/08; Published 7/08

Causal Reasoning with Ancestral Graphs

Jiji Zhang JIJI@HSS.CALTECH.EDU

Division of the Humanities and Social Sciences
California Institute of Technology
Pasadena, CA 91106, USA

Editor: Gregory F. Cooper

Abstract

Causal reasoning is primarily concerned with what would happen to a system under external in-
terventions. In particular, we are often interested in predicting the probability distribution of some
random variables that would result if some other variables were forced to take certain values. One
prominent approach to tackling this problem is based on causal Bayesian networks, using directed
acyclic graphs as causal diagrams to relate post-intervention probabilities to pre-intervention prob-
abilities that are estimable from observational data. However, such causal diagrams are seldom
fully testable given observational data. In consequence, many causal discovery algorithms based
on data-mining can only output an equivalence class of causal diagrams (rather than a single one).
This paper is concerned with causal reasoning given an equivalence class of causal diagrams, rep-
resented by a (partial) ancestral graph. We present two main results. The first result extends Pearl
(1995)’s celebrated do-calculus to the context of ancestral graphs. In the second result, we focus
on a key component of Pearl’s calculus—the property of invariance under interventions, and give
stronger graphical conditions for this property than those implied by the first result. The second
result also improves the earlier, similar results due to Spirtes et al. (1993).

Keywords: ancestral graphs, causal Bayesian network, do-calculus, intervention

1. Introduction

Intellectual curiosity aside, an important reason for people to care about causality or causal expla-
nation is the need—for example, in policy assessment or decision making—to predict consequences
of actions or interventions before actually carrying them out. Sometimes we can base that predic-
tion on similar past interventions or experiments, in which case the inference is but an instance of
the classical inductive generalization. Other times, however, we do not have access to sufficient
controlled experimental studies for various reasons, and can only make passive observations before
interventions take place. Under the latter circumstances, we need to reason from pre-intervention or
observational data to a post-intervention setting.

A prominent machinery for causal reasoning of this kind is known as causal Bayesian network
(Spirtes et al., 1993; Pearl, 2000), which we will describe in more detail in the next section. In this
framework, once the causal structure—represented by a directed acyclic graph (DAG) over a set of
attributes or random variables—is fully given, every query about post-intervention probability can
be answered in terms of pre-intervention probabilities. So, if every variable in the causal structure is
(passively) observed, the observational data can be used to estimate the post-intervention probability
of interest.

c©2008 Jiji Zhang.

ZHANG

Complications come in at least two ways. First, some variables in the causal DAG may be
unobserved, or worse, unobservable. So even if the causal DAG (with latent variables) is fully
known, we may not be able to predict certain intervention effects because we only have data from
the marginal distribution over the observed variables instead of the joint distribution over all causally
relevant variables. The question is what post-intervention probability is or is not identifiable given
a causal DAG with latent variables. Much of Pearl’s work (Pearl, 1995, 1998, 2000), and more
recently Tian and Pearl (2004) are paradigmatic attempts to address this problem.

Second, the causal structure is seldom, if ever, fully known. In the situation we are concerned
with in this paper, where no substantial background knowledge or controlled study is available, we
have to rely upon observational data to inform us about causal structure. The familiar curse is that
very rarely can observational data determine a unique causal structure, and many causal discovery
algorithms in the literature output an equivalence class of causal structures based on observational
data (Spirtes et al., 1993; Meek, 1995a; Spirtes et al., 1999; Chickering, 2002).1 Different causal
structures in the class may or may not give the same answer to a query about post-intervention
probability. For a simple illustration, consider two causal Bayesian networks (see Section 2 below),
X → Y → Z and X ← Y → Z, over three variables X ,Y and Z. The two causal structures are
indistinguishable (without strong parametric assumptions) by observational data. Suppose we are
interested in the post-intervention probability distribution of Y given that X is manipulated to take
some fixed value x. The structure X → Y → Z entails that the post-intervention distribution of Y
is identical to the pre-intervention distribution of Y conditional on X = x, whereas the structure
X ← Y → Z entails that the post-intervention distribution of Y is identical to the pre-intervention
marginal distribution of Y . So the two structures give different answers to this particular query. By
contrast, if we are interested in the post-intervention distribution of Z under an intervention on Y ,
the two structures give the same answer.

The matter becomes formidably involved when both complications are present. Suppose we
observe a set of random variables O, but for all we know, the underlying causal structure may involve
extra latent variables. We will not worry about the estimation of the pre-intervention distribution of
O in this paper, so we may well assume for simplicity that the pre-intervention distribution of O is
known. But we are interested in queries about post-intervention probability, such as the probability
of Y conditional on Z that would result under an intervention on X (where X,Y,Z ⊆ O). The
question is whether and how we can answer such queries from the given pre-intervention distribution
of O.

This problem is naturally divided into two parts. The first part is what some causal discovery al-
gorithms attempt to achieve, namely, to learn something about the causal structure—usually features
shared by all causal structures in an equivalence class—from the pre-intervention distribution of O.
The second part is to figure out, given the learned causal information, whether a post-intervention
probability is identifiable in terms of pre-intervention probabilities.

This paper provides some results concerning the second part, assuming the available causal in-
formation is summarized in a (partial) ancestral graph. Ancestral graphical models (Richardson
and Spirtes, 2002, 2003) have proved to be an elegant and useful surrogate for DAG models with
latent variables (more details follow in Section 3), not the least because provably correct algorithms
are available for learning an equivalence class of ancestral graphs represented by a partial ances-
tral graph from the pre-intervention distribution of the observed variables—in particular, from the

1. The recent work on linear non-Gaussian structural equation models (Shimizu et al., 2006) is an exception. However,
we do not make parametric assumptions in this paper.

1438

CAUSAL REASONING WITH ANCESTRAL GRAPHS

conditional independence and dependence relations implied by the distribution (Spirtes et al., 1999;
Zhang, forthcoming).

We have two main results. First, we extend the do-calculus of Pearl (1995) to the context of
ancestral graphs (Section 4), so that the resulting calculus is based on an equivalence class of causal
DAGs with latent variables rather than a single one. Second, we focus on a key component of Pearl’s
calculus—the property of invariance under interventions studied by Spirtes et al. (1993), and give
stronger graphical conditions for this property than those implied by the first result (Section 5).
Our result improves upon the Spirtes-Glymour-Scheines conditions for invariance formulated with
respect to the so-called inducing path graphs, whose relationship with ancestral graphs is discussed
in Appendix A.

2. Causal Bayesian Network

A Bayesian network for a set of random variables V consists of a pair 〈G ,P〉, where G is a directed
acyclic graph (DAG) with V as the set of vertices, and P is the joint probability function of V, such
that P factorizes according to G as follows:

P(V) = ∏
Y∈V

P(Y |PaG (Y))

where PaG (Y) denotes the set of parents of Y in G . In a causal Bayesian network, the DAG G is
interpreted causally, as a representation of the causal structure over V. That is, for X ,Y ∈ V, an
arrow from X to Y (X → Y) in G means that X has a direct causal influence on Y relative to V. We
refer to a causally interpreted DAG as a causal DAG. The postulate that the (pre-intervention) joint
distribution P factorizes according to the causal DAG G is known as the causal Markov condition.

What about interventions? For simplicity, let us focus on what Pearl (2000) calls atomic
interventions—interventions that fix the values of the target variables—though the results in Sec-
tion 5 also apply to more general types of interventions (such as interventions that confer a non-
degenerate probability distribution on the target variables). In the framework of causal Bayesian
network, an intervention on X ⊆ V is supposed to be effective in the sense that the value of X is
completely determined by the intervention, and local in the sense that the conditional distributions
of other variables (variables not in X) given their respective parents in the causal DAG are not af-
fected by the intervention. Graphically, such an intervention amounts to erasing all arrows into X
in the causal DAG (because variables in X do not depend on their original parents any more), but
otherwise keeping the graph as it is. Call this modified graph the post-intervention causal graph.

Based on this understanding of interventions, the following postulate has been proposed by
several authors in various forms (Robins, 1986; Spirtes et al., 1993; Pearl, 2000):

Intervention Principle Given a causal DAG G over V and a (pre-intervention) joint distri-
bution P that factorizes according to G , the post-intervention distribution PX:=x(V)—that is,
the joint distribution of V after X⊆ V are manipulated to values x by an intervention—takes
a similar, truncated form of factorization, as follows:

PX:=x(V) =

{

∏Y∈V\X P(Y |PaG (Y)) for values of V consistent with X = x,

0 otherwise.

Note that in the case of a null intervention (when X = Ø), the intervention principle implies the
factorization of the pre-intervention distribution P according to G , which is just the causal Markov

1439

ZHANG

condition. So the intervention principle generalizes the causal Markov condition: it assumes that the
post-intervention distribution also satisfies the causal Markov condition with the post-intervention
causal graph.

By the intervention principle, once the causal DAG is given, the post-intervention joint distribu-
tion can be calculated in terms of pre-intervention probabilities.2 So if every variable is observed,
and hence those pre-intervention probabilities can be estimated, any post-intervention probability is
estimable as well.

It is time to recall the two complications mentioned in the last section. First, the intervention
principle is only plausible when the given set of variables is causally sufficient. Here is what causal
sufficiency means. Given a set of variables V, and two variables A,B ∈ V, a variable C (not neces-
sarily included in V) is called a common direct cause of A and B relative to V if C has a direct causal
influence on A and also a direct causal influence on B relative to V∪{C}. V is said to be causally
sufficient if for every pair of variables V1,V2 ∈ V, every common direct cause of V1 and V2 relative
to V is also a member of V. It is well known that the causal Markov condition tends to fail for a
causally insufficient set of variables (Spirtes et al., 1993), and even more so with the intervention
principle. But in most real situations, there is no reason to assume that the set of observed variables
is causally sufficient, so the causal Bayesian network may well involve latent variables.

Second, the causal DAG is not fully learnable with observational, pre-intervention data. The
causal discovery algorithms in the literature—some of which are provably correct in the large sam-
ple limit assuming the causal Markov condition and its converse, causal Faithfulness condition—
typically return an equivalence class of DAGs that imply the same conditional independence rela-
tions among the observed variables (according to the Markov condition), with some causal features
in common that constitute the learned causal information. Given such limited causal information, a
post-intervention probability may or may not be uniquely identifiable.

Taking both complications into account, the interesting question is this: what causal reasoning is
warranted given the causal information learnable by algorithms that do not assume causal sufficiency
for the set of observed variables, such as the FCI algorithm presented in Spirtes et al. (1999)? Before
we explore the question, let us make it a little more precise with the formalism of ancestral graphs.

3. Ancestral Graphical Models

Ancestral graphical models are motivated by the need to represent data generating processes that
may involve latent confounders and/or selection bias,3 without explicitly modelling the unobserved
variables (Richardson and Spirtes, 2002). We do not deal with selection bias in this paper, so we
use only part of the machinery.

A (directed) mixed graph is a vertex-edge graph that may contain two kinds of edges: directed
edges (→) and bi-directed edges (↔). Between any two vertices there is at most one edge. The two
ends of an edge we call marks. Obviously there are two kinds of marks: arrowhead (>) and tail
(−). The marks of a bi-directed edge are both arrowheads, and a directed edge has one arrowhead

2. A technical issue is that some conditional probabilities may be undefined in the pre-intervention distribution. In this
paper we ignore that issue by assuming that the pre-intervention distribution is strictly positive. Otherwise we just
need to add the proviso “when all the conditional probabilities involved are defined” to all our results.

3. Roughly speaking, there is selection bias if the probability of a unit being sampled depends on certain properties of
the unit. The kind of selection bias that is especially troublesome for causal inference is when two or more properties
of interest affect the probability of being sampled, giving rise to “misleading” associations in the sample.

1440

CAUSAL REASONING WITH ANCESTRAL GRAPHS

C D

(a)

C D

(b)

A B A B

Figure 1: (a) an ancestral graph that is not maximal; (b) a maximal ancestral graph.

and one tail. We say an edge is into (or out of) a vertex if the mark of the edge at the vertex is an
arrowhead (or tail).

Two vertices are said to be adjacent in a graph if there is an edge (of any kind) between them.
Given a mixed graph G and two adjacent vertices X , Y therein, X is called a parent of Y and Y a
child of X if X → Y is in G ; X is called a spouse of Y (and Y a spouse of X) if X ↔ Y is in G . A
path in G is a sequence of distinct vertices 〈V0, ...,Vn〉 such that for all 0≤ i≤ n−1, Vi and Vi+1 are
adjacent in G . A directed path from V0 to Vn in G is a sequence of distinct vertices 〈V0, ...,Vn〉 such
that for all 0≤ i≤ n−1, Vi is a parent of Vi+1 in G . X is called an ancestor of Y and Y a descendant
of X if X = Y or there is a directed path from X to Y . We use PaG ,ChG ,SpG ,AnG ,DeG to denote
the set of parents, children, spouses, ancestors, and descendants of a vertex in G , respectively. A
directed cycle occurs in G when Y → X is in G and X ∈ AnG (Y). An almost directed cycle occurs
when Y ↔ X is in G and X ∈ AnG (Y).4

Given a path p = 〈V0, ...,Vn〉 with n > 1, Vi (1 ≤ i ≤ n− 1) is a collider on p if the two edges
incident to Vi are both into Vi, that is, have an arrowhead at Vi; otherwise it is called a noncollider on
p. In Figure 1(a), for example, B is a collider on the path 〈A,B,D〉, but is a non-collider on the path
〈C,B,D〉. A collider path is a path on which every vertex except for the endpoints is a collider. For
example, in Figure 1(a), the path 〈C,A,B,D〉 is a collider path because both A and B are colliders
on the path. Let L be any subset of vertices in the graph. An inducing path relative to L is a path
on which every vertex not in L (except for the endpoints) is a collider on the path and every collider
is an ancestor of an endpoint of the path. For example, any single-edge path is trivially an inducing
path relative to any set of vertices (because the definition does not constrain the endpoints of the
path). In Figure 1(a), the path 〈C,B,D〉 is an inducing path relative to {B}, but not an inducing path
relative to the empty set (because B is not a collider). However, the path 〈C,A,B,D〉 is an inducing
path relative to the empty set, because both A and B are colliders on the path, A is an ancestor of
D, and B is an ancestor of C. To simplify terminology, we will henceforth refer to inducing paths
relative to the empty set simply as inducing paths.5

Definition 1 (MAG) A mixed graph is called a maximal ancestral graph (MAG) if

i. the graph does not contain any directed or almost directed cycles (ancestral); and

4. The terminology of “almost directed cycle” is motivated by the fact that removing the arrowhead at Y on Y ↔ X
results in a directed cycle.

5. They are called primitive inducing paths by Richardson and Spirtes (2002).

1441

ZHANG

ii. there is no inducing path between any two non-adjacent vertices (maximal).

The first condition is obviously an extension of the defining condition for DAGs. It follows
that in an ancestral graph an arrowhead, whether on a directed edge or a bi-directed edge, implies
non-ancestorship. The second condition is a technical one, but the original motivation is the familiar
pairwise Markov property of DAGs: if two vertices are not adjacent, then they are d-separated by
some set of other vertices. The notion of d-separation carries over to mixed graphs in a straight-
forward way, as we will see shortly. But in general an ancestral graph does not need to satisfy the
pairwise Markov property, or what is called maximality here. A sufficient and necessary condition
for maximality turns out to be precisely the second clause in the above definition, as proved by
Richardson and Spirtes (2002). So although the graph in Figure 1(a) is ancestral, it is not maximal
because there is an inducing path between C and D (i.e., 〈C,A,B,D〉), but C and D are not adjacent.
However, each non-maximal ancestral graph has a unique supergraph that is ancestral and maximal.
For example, Figure 1(b) is the unique MAG that is also a supergraph of Figure 1(a); the former has
an extra bi-directed edge between C and D.

It is worth noting that both conditions in Definition 1 are obviously met by a DAG. Hence,
syntactically a DAG is also a MAG, one without bi-directed edges.

An important notion in directed graphical models is that of d-separation, which captures exactly
the conditional independence relations entailed by a DAG according to the Markov condition. It
is straightforward to extend the notion to mixed graphs, which, following Richardson and Spirtes
(2002), we call m-separation.

Definition 2 (m-separation) In a mixed graph, a path p between vertices X and Y is active (or
m-connecting) relative to a (possibly empty) set of vertices Z (X ,Y /∈ Z) if

i. every non-collider on p is not a member of Z;

ii. every collider on p is an ancestor of some member of Z.

X and Y are said to be m-separated by Z if there is no active path between X and Y relative to
Z.

Two disjoint sets of variables X and Y are m-separated by Z if every variable in X is m-
separated from every variable in Y by Z.

In DAGs, obviously, m-separation reduces to d-separation. The (global) Markov property of ances-
tral graphical models is defined by m-separation.

A nice property of MAGs is that they can represent the marginal independence models of DAGs
in the following sense: given any DAG G over V = O∪L—where O denotes the set of observed
variables, and L denotes the set of latent variables—there is a MAG over O alone such that for any
disjoint X,Y,Z⊆O, X and Y are d-separated by Z in G (and hence entailed by G to be independent
conditional on Z) if and only if they are m-separated by Z in the MAG (and hence entailed by the
MAG to be independent conditional on Z). The following construction gives us such a MAG:

Input: a DAG G over 〈O,L〉
Output: a MAG MG over O

1. for each pair of variables A,B ∈ O, A and B are adjacent in MG if and only if there is an
inducing path between them relative to L in G ;

1442

CAUSAL REASONING WITH ANCESTRAL GRAPHS

2. for each pair of adjacent variables A,B in MG , orient the edge as A→ B in MG if A is an
ancestor of B in G ; orient it as A← B in MG if B is an ancestor of A in G ; orient it as A↔ B
in MG otherwise.

It can be shown that MG is indeed a MAG and represents the marginal independence model over O
(Richardson and Spirtes, 2002; also see Lemma 20 below). More importantly, MG also retains the
ancestral relationships—and hence causal relationships under the standard interpretation—among
O. So, if G is the causal DAG for 〈O,L〉, it is fair to call MG the causal MAG for O. Henceforth
when we speak of a MAG over O representing a DAG over 〈O,L〉, we mean that the MAG is the
output of the above construction procedure applied to the DAG.

Different causal DAGs may correspond to the same causal MAG. So essentially a MAG rep-
resents a set of DAGs that have the exact same d-separation structures and ancestral relationships
among the observed variables. A causal MAG thus carries uncertainty about what the true causal
DAG is, but also reveals features that must be satisfied by the underlying causal DAG.

There is then a natural causal interpretation of the edges in MAGs, derivative from the causal
interpretation of DAGs. A directed edge from A to B in a MAG means that A is a cause of B (which
is a shorthand way of saying that there is a causal pathway from A to B in the underlying DAG);
a bi-directed edge between A and B means that A is not a cause of B and B is not a cause of A,
which implies that there is a latent common cause of A and B (i.e., there is a latent variable L in the
underlying DAG such that there is a directed path from L to A and a directed path from L to B6).

We borrow a simple example from Spirtes et al. (1993) to illustrate various concepts and results
in this paper. Suppose we are able to observe the following variables: Income (I), Parents’ smoking
habits (PSH), Smoking (S), Genotype (G) and Lung cancer (L). The data, for all we know, are
generated according to an underlying mechanism which might involve unobserved common causes.
Suppose, unknown to us, the structure of the causal mechanism is the one in Figure 2, where Pro-
fession is an unmeasured common cause of Income and Smoking.7

Income Smoking Lung Cancer

Genotype

Profession

Parents’ smoking habits

Figure 2: A causal DAG with a latent variable.

6. Note that a latent common cause is not necessarily a common direct cause as defined on page 4. The path from L to
A, for example, may include other observed variables.

7. This example is used purely for illustrative purposes, so we will not worry why Profession is not observed but
Genotype is. The exact domains of the variables do not matter either.

1443

ZHANG

The causal MAG that corresponds to the causal DAG is depicted in Figure 3(a)—which syntac-
tically happens to be a DAG in this case. This MAG can represent some other DAGs as well. For
example, it can also represent the DAG with an extra latent common cause of PSH and S.

S LI

PSH G

S LI

PSH G

(a) (b)

Figure 3: Two Markov Equivalent MAGs.

In general a MAG is still not fully testable with observational data. Just as different DAGs can
share the exact same d-separation features and hence entail the exact same conditional independence
constraints, different MAGs can entail the exact same constraints by the m-separation criterion. This
is known as Markov equivalence. Several characterizations of the Markov equivalence between
MAGs are available (Spirtes and Richardson, 1996; Ali et al., 2004; Zhang and Spirtes, 2005; Zhao
et al., 2005). For the purpose of the present paper, it suffices to note that, as is the case with
DAGs, all Markov equivalent MAGs have the same adjacencies and usually some common edge
orientations as well. For example, the two MAGs in Figure 3 are Markov equivalent.

This motivates the following representation of equivalence classes of MAGs. Let partial mixed
graphs denote the class of graphs that can contain four kinds of edges: →,↔, ◦−−◦ and ◦→, and
hence three kinds of end marks for edges: arrowhead (>), tail (−) and circle (◦).

Definition 3 (PAG) Let [M] be the Markov equivalence class of an arbitrary MAG M . The partial
ancestral graph (PAG) for [M], P[M], is a partial mixed graph such that

i. P[M] has the same adjacencies as M (and any member of [M]) does;

ii. A mark of arrowhead is in P[M] if and only if it is shared by all MAGs in [M]; and

iii. A mark of tail is in P[M] if and only if it is shared by all MAGs in [M].8

Basically a PAG represents an equivalence class of MAGs by displaying all common edge marks
shared by all members in the class and displaying circles for those marks that are not common,
much in the same way that a so-called Pattern (a.k.a. a PDAG or an essential graph) represents an
equivalence class of DAGs (see, e.g., Spirtes et al., 1993, chap. 5; Chickering, 1995; Andersson et
al., 1997). For instance, the PAG for our running example is drawn in Figure 4, which displays all
the commonalities among MAGs that are Markov equivalent to the MAGs in Figure 3.

8. This defines what Zhang (2006, pp. 71) calls complete or maximally oriented PAGs. In this paper, we do not consider
PAGs that fail to display all common edge marks in an equivalence class of MAGs (as, e.g., allowed in Spirtes et al.,
1999), so we will simply use ‘PAG’ to mean ‘maximally oriented PAG’.

1444

CAUSAL REASONING WITH ANCESTRAL GRAPHS

S LI

PSH G

Figure 4: The PAG in our five-variable example.

Different PAGs, representing different equivalence classes of MAGs, entail different sets of
conditional independence constraints. Hence a PAG is in principle fully testable by the conditional
independence relations among the observed variables. Assuming the causal Markov condition and
its converse, the causal Faithfulness condition,9 there is a provably correct independence-constraint-
based algorithm to learn a PAG from an oracle of conditional independence relations (Spirtes et
al., 1999; Zhang, 2006, chap. 3).10 Score-based algorithms for learning PAGs are also under
investigation.

Directed paths and ancestors/descendants in a PAG are defined in the same way as in a MAG. In
addition, a path between X and Y , 〈X = V0, ...,Vn = Y 〉, is called a possibly directed path from X to
Y 11 if for every 0 < i≤ n, the edge between Vi−1 and Vi is not into Vi−1. Call X a possible ancestor
of Y (and Y a possible descendant of X) if X = Y or there is a possibly directed path from X to Y in
the PAG.12 For example, in Figure 4, the path 〈I,S,L〉 is a possibly directed path, and I is a possible
ancestor of L. We use PossibleAnP (Y) to denote the set of possible ancestors of Y in P .

In partial mixed graphs two analogues of m-connecting paths will play a role later. Let p be any
path in a partial mixed graph, and W be any (non-endpoint) vertex on p. Let U and V be the two
vertices adjacent to W on p. W is a collider on p if, as before, both the edge between U and W and
the edge between V and W are into W (i.e., have an arrowhead at W , U∗→W ←∗V). W is called a
definite non-collider on p if the edge between U and W or the edge between V and W is out of W

9. We have introduced the causal Markov condition in its factorization form. In terms of d-separation, the causal
Markov condition says that d-separation in a causal DAG implies conditional independence in the (pre-intervention)
population distribution. The causal Faithfulness condition says that d-connection in a causal DAG implies conditional
dependence in the (pre-intervention) population distribution. Given the exact correspondence between d-separation
relations among the observed variables in the causal DAG and m-separation relations in the causal MAG, the two
conditions imply that conditional independence relations among the observed variables correspond exactly to m-
separation in the causal MAG, which forms the basis of constraint-based learning algorithms.

10. It is essentially the FCI algorithm (Spirtes et al., 1999), but with slight modifications (Zhang, 2006, chap. 3). The
implemented FCI algorithm in the Tetrad IV package (http://www.phil.cmu.edu/projects/tetrad/tetrad4.html) is the
modified version. By the way, if we also take into account the possibility of selection bias, then we need to consider
a broader class of MAGs which can contain undirected edges, and the FCI algorithm needs to be augmented with
additional edge inference rules (Zhang, 2006, chap. 4; forthcoming).

11. It is named a potentially directed path in Zhang (2006, pp. 99). The present terminology is more consistent with the
names for other related notions, such as possible ancestor, possibly m-connecting path, etc.

12. The qualifier ’possible/possibly’ is used to indicate that there is some MAG represented by the PAG in which the
corresponding path is directed, and X is an ancestor of Y . This is not hard to establish given the valid procedure for
constructing representative MAGs from a PAG presented in Lemma 4.3.6 of Zhang (2006) or Theorem 2 of Zhang
(forthcoming).

1445

ZHANG

(i.e., has a tail at W , U ←W ∗−−∗V or U ∗−−∗W →V), or both edges have a circle mark at W and
there is no edge between U and V (i.e., U ∗−−◦W ◦−−∗V , where U and V are not adjacent).13 The
first analogue of m-connecting path is the following:

Definition 4 (Definite m-connecting path) In a partial mixed graph, a path p between two ver-
tices X and Y is a definite m-connecting path relative to a (possibly empty) set of vertices Z
(X ,Y /∈ Z) if every non-endpoint vertex on p is either a definite non-collider or a collider and

i. every definite non-collider on p is not a member of Z;

ii. every collider on p is an ancestor of some member of Z.

It is not hard to see that if there is a definite m-connecting path between X and Y given Z in a
PAG, then in every MAG represented by the PAG, the corresponding path is an m-connecting path
between X and Y given Z. For example, in Figure 4 the path 〈I,S,G〉 is definitely m-connecting
given L, and this path is m-connecting given L in every member of the equivalence class. A quite
surprising result is that if there is an m-connecting path between X and Y given Z in a MAG, then
there must be a definite m-connecting path (not necessarily the same path) between X and Y given
Z in its PAG, which we will use in Section 5.

Another analogue of m-connecting path is the following:

Definition 5 (Possibly m-connecting path) In a partial mixed graph, a path p between vertices X
and Y is possibly m-connecting relative to a (possibly empty) set of vertices Z (X ,Y /∈ Z) if

i. every definite non-collider on p is not a member of Z;

ii. every collider on p is a possible ancestor of some member of Z.

Obviously a definite m-connecting path is also a possibly m-connecting path, but not necessarily
vice versa. In particular, on a possibly m-connecting path it is not required that every (non-endpoint)
vertex be of a “definite” status. Figure 5 provides an illustration. The graph on the right is the PAG
for the equivalence class that contains the MAG on the left (in this case, unfortunately, no informa-
tive edge mark is revealed in the PAG). In the PAG, the path 〈X ,Y,Z,W 〉 is a possibly m-connecting
path but not a definite m-connecting path relative to {Y,Z}, because Y and Z are neither collid-
ers nor definite non-colliders on the path. Note that in the MAG, 〈X ,Y,Z,W 〉 is not m-connecting
relative to {Y,Z}. In fact, X and W are m-separated by {Y,Z} in the MAG. So unlike a definite
m-connecting path, a mere possibly m-connecting path in a PAG does not necessarily correspond
to a m-connecting path (or imply the existence of a m-connecting path) in a representative MAG in
the equivalence class.14

As we will see, the main result in Section 4 is formulated in terms of absence of possibly m-
connecting paths (what we will call, for want of a better term, definite m-separation), whereas the

13. ’*’ is used as wildcard that denotes any of the three possible marks: circle, arrowhead, and tail. When the graph is a
PAG for some equivalence class of MAGs, the qualifier ’definite’ is used to indicate that the vertex is a non-collider
on the path in each and every MAG represented by the PAG, even though the circles may correspond to different
marks in different MAGs. The reason why U ∗−−◦W ◦−−∗V is a definite non-collider when U and V are not adjacent
is because if it were a collider, it would be shared by all Markov equivalent MAGs, and hence would be manifest in
the PAG.

14. This case is even more extreme in that in every MAG that belongs to the equivalence class, X and W are m-separated
by Y and Z. So this example can be used to show that the do-calculus developed in Section 4 is not yet complete,
though it is not clear how serious the incompleteness is.

1446

CAUSAL REASONING WITH ANCESTRAL GRAPHS

ZYZY

WX X W

Figure 5: Difference between possible and definite m-connecting paths: in the PAG on the right,
〈X ,Y,Z,W 〉 is a possibly m-connecting path relative to {Y,Z} but not a definite m-
connecting path relative to {Y,Z}. Also note that 〈X ,Y,Z,W 〉 is not m-connecting relative
to {Y,Z} in the MAG on the left, even though the MAG is a member of the equivalence
class represented by the PAG.

main result in Section 5 is formulated in terms of absence of definite m-connecting paths. This
is one important aspect in which the result in Section 5 is better than that in Section 4 (and than
the analogous results presented in Spirtes et al., 1993) regarding the property of invariance under
interventions. We will come back to this point after we present the PAG-based do-calculus.

4. Do-Calculus

Pearl (1995) developed an elegant do-calculus for identifying post-intervention probabilities given
a single causal DAG with (or without) latent variables. To honor the name of the calculus, in this
section we will use Pearl’s ‘do’ operator to denote post-intervention probabilities. Basically, the
notation we used for the post-intervention probability function under an intervention on X, PX:=x(•),
will be written as P(•|do(X = x)).

The calculus contains three inference rules whose antecedents make reference to surgeries on
the given causal DAG. There are two types of graph manipulations:

Definition 6 (Manipulations of DAGs) Given a DAG G and a set of variables X therein,

• the X-lower-manipulation of G deletes all edges in G that are out of variables in X, and
otherwise keeps G as it is. The resulting graph is denoted as GX.

• the X-upper-manipulation of G deletes all edges in G that are into variables in X, and
otherwise keeps G as it is. The resulting graph is denoted as GX .

The following proposition summarizes Pearl’s do-calculus. (Following Pearl, we use lower case
letters to denote generic value settings for the sets of variables denoted by the corresponding upper
case letters. So for simplicity we write P(x) to mean P(X = x), and do(x) to mean do(X = x).)

Proposition 7 (Pearl) Let G be the causal DAG for V, and U,X,Y,W be disjoint subsets of V. The
following rules are sound:

1. if Y and X are d-separated by U∪W in GU, then

P(y|do(u),x,w) = P(y|do(u),w).

1447

ZHANG

2. if Y and X are d-separated by U∪W in GXU, then

P(y|do(u),do(x),w) = P(y|do(u),x,w).

3. if Y and X are d-separated by U∪W in GUX′ , then

P(y|do(u),do(x),w) = P(y|do(u),w)

where X′ = X\AnGU
(W) = X\(∪W∈WAnGU

(W)).

The proposition follows from the intervention principle (Pearl, 1995). The first rule is actually not
independent—it can be derived from the other two rules (Huang and Valtorta, 2006), but it has long
been an official part of the calculus. The soundness of the calculus ensures that any post-intervention
probability that can be reduced via the calculus to an expression that only involves pre-intervention
probabilities of observed variables is identifiable. Recently, the completeness of the calculus was
also established, in the sense that any identifiable post-intervention probability can be so reduced
using the calculus (Huang and Valtorta, 2006; Shpister and Pearl, 2006).

Our goal is to develop a similar calculus when the available causal information is given in a
PAG. A natural idea is to formulate analogous inference rules in terms of (manipulated) PAGs, to
the effect that if a certain rule is applicable given a PAG, the corresponding rule in Pearl’s calculus
will be applicable given the (unknown) true causal DAG. How to guarantee that? Recall that a PAG
represents an equivalence class of MAGs; each MAG, in turn, represents a set of causal DAGs. The
union of all these sets is the set of DAGs represented by the PAG—one of them is the true causal
DAG. So a sure way to get what we want is to formulate analogous rules in terms of PAGs such that
if the rule is applicable given a PAG, then for every DAG represented by the PAG, the corresponding
rule in Pearl’s calculus is applicable.

For this purpose, it is natural to develop the desired calculus in two steps. First, we derive an
analogous do-calculus based on MAGs, such that if a rule is applicable given a MAG, then for every
DAG represented by the MAG, the corresponding rule in Pearl’s calculus is applicable. Second, we
extend that to a do-calculus based on PAGs, such that if a rule is applicable given a PAG, then for
every MAG in the equivalence class represented by the PAG, the corresponding rule in the MAG-
based calculus is applicable.

Before we define appropriate analogues of graph manipulations on MAGs, it is necessary to
distinguish two kinds of directed edges in a MAG, according to the following criterion.

Definition 8 (Visibility) Given a MAG M , a directed edge A→B in M is visible if there is a vertex
C not adjacent to B, such that either there is an edge between C and A that is into A, or there is a
collider path between C and A that is into A and every vertex on the path is a parent of B. Otherwise
A→ B is said to be invisible.

Figure 6 gives the possible configurations that make a directed edge A→ B visible. The distinc-
tion between visible and invisible directed edges is important because of the following two facts.

Lemma 9 Let G be a DAG over O∪L, and M be the MAG over O that represents the DAG. For
any A,B ∈ O, if A ∈ AnG (B), and there is an inducing path relative to L between A and B that is
into A in G , then there is a directed edge A→ B in M that is invisible.

1448

CAUSAL REASONING WITH ANCESTRAL GRAPHS

A

B

C . . .A

B

C . . .

A

B

CA

B

C

Figure 6: Possible configurations of visibility for A→ B.

Proof See Appendix B.

Taking the contrapositive of Lemma 9 gives us the fact that if A→ B is visible in a MAG, then in
every DAG represented by the MAG, there is no inducing path between A and B relative to the set of
latent variables that is also into A. This implies that for every such DAG G, GA—the graph resulting
from eliminating edges out of A in G—will not contain any inducing path between A and B relative
to the set of latent variables, which means that the MAG that represents GA will not contain any
edge between A and B. So intuitively, deleting edges out of A in the underlying DAG corresponds
to deleting visible arrows out of A in the MAG.

How about invisible arrows? Here is the relevant fact.

Lemma 10 Let M be any MAG over a set of variables O, and A→ B be any directed edge in M .
If A→ B is invisible in M , then there is a DAG whose MAG is M in which A and B share a latent
parent, that is, there is a latent variable LAB in the DAG such that A← LAB→ B is a subgraph of
the DAG.

Proof See Appendix B.

Obviously A ← LAB → B is an inducing path between A and B relative to the set of latent
variables. So if A→ B in a MAG is invisible, at least for some DAG G represented by the MAG—
and for all we know, this DAG may well be the true causal DAG—GA contains A← LAB→ B, and
hence corresponds to a MAG in which A↔ B appears.

Finally, for either A↔ B or A→ B in a MAG, it is not hard to show that for every DAG rep-
resented by the MAG, there is no inducing path in the DAG between A and B relative to the set of
latent variables that is also out of B (since otherwise B would be an ancestor of A, violating the defi-
nition of ancestral graphs). So deleting edges into B in the underlying DAG corresponds to deleting
edges into B in the MAG. These considerations motivate the following definition.

Definition 11 (Manipulations of MAGs) Given a MAG M and a set of variables X therein,

• the X-lower-manipulation of M deletes all those edges that are visible in M and are out
of variables in X, replaces all those edges that are out of variables in X but are invisible in
M with bi-directed edges, and otherwise keeps M as it is. The resulting graph is denoted as
MX.

1449

ZHANG

• the X-upper-manipulation of M deletes all those edges in M that are into variables in X,
and otherwise keeps M as it is. The resulting graph is denoted as MX .

We stipulate that lower-manipulation has a higher priority than upper-manipulation, so that MYX
(or MXY) denotes the graph resulting from applying the X-upper-manipulation to the Y-lower-
manipulated graph of M .

A couple of comments are in order. First, unlike the case of DAGs, the lower-manipulation for
MAGs may introduce new edges, that is, replacing invisible directed edges with bi-directed edges.
Again, the reason we do this is that an invisible directed edge from A to B allows the possibility of
a latent common parent of A and B in the underlying DAG. If so, the A-lower-manipulated DAG
will correspond to a MAG in which there is a bi-directed edge between A and B. Second, because
of the possibility of introducing new bi-directed edges, we need the priority stipulation that lower-
manipulation is to be done before upper-manipulation. The stipulation is not necessary for DAGs,
because no new edges would be introduced in the lower-manipulation of DAGs, and hence the order
does not matter.

Ideally, if M is the MAG of a DAG G , we would like MYX to be the MAG of GYX. But this
is not always possible, as two DAGs represented by the same MAG before a manipulation may
correspond to different MAGs after the manipulation. But we still have the following fact:

Lemma 12 Let G be a DAG over O∪L, and M be the MAG of G over O. Let X and Y be two
possibly empty subsets of O, and MGYX

be the MAG of GYX. For any A,B ∈O and C⊆O that does

not contain A or B, if there is an m-connecting path between A and B given C in MGYX
, then there

is an m-connecting path between A and B given C in MYX.

Proof See Appendix B.

Recall that a graphical model is called an independence map of another if any independence
implied by the former is also implied by the latter (Chickering, 2002). So another way of putting
Lemma 12 is that MYX is an independence map of MGYX

, which we write as MGYX
≤MYX. The

diagram in Figure 7 visualizes what is going on.

G
mc

- M

GYX

gm

?

mc
- MGYX

≤ MYX

mm

?

Figure 7: Illustration of Lemma 12: mc refers to MAG construction introduced in Section 3; gm
refers to DAG manipulation; and mm refers to MAG manipulation.

1450

CAUSAL REASONING WITH ANCESTRAL GRAPHS

Corollary 13 Let M be a MAG over O, and X and Y be two subsets of O. For any A,B ∈ O and
C ⊆ O that does not contain A or B, if A and B are m-separated by C in MYX, then A and B are
d-separated by C in GYX for every G represented by M .

Proof By Lemma 12, if A and B are m-separated by C in MYX, they are also m-separated by C in
MGYX

, for every G represented by M , which in turn implies that A and B are d-separated by C in
GYX for every G represented by M , because d-separation relations among O in a DAG correspond
exactly to m-separation relations in its MAG.

The converse of Corollary 13, however, is not true in general. To give the simplest example,
consider the MAG M in Figure 8(a): X ← Y → Z (which happens to be a DAG syntactically). The
two DAGs, G1 in 8(b) and G2 in 8(c), are both represented by M . By the definition of lower-
manipulation, MY is the graph X ↔ Y ↔ Z. On the other hand, G1Y is X ← L1→ Y Z; and G2Y

is X Y ← L2→ Z. Obviously, the MAG of G1Y is X↔Y Z, and the MAG of G2Y is X Y ↔ Z,
both of which are proper subgraphs of MY . So an m-separation relation in MY —for example, X and
Z are m-separated by the empty set—corresponds to a d-separation relation in both G1Y and G2Y ,
in accord with Corollary 13.

By contrast, the converse of Corollary 13 fails for M . It can be checked that for every G
represented by M , X and Z are d-separated by Y in GY , as evidenced by G1Y and G2Y . But X and
Z are not m-separated by Y in MY .

L1

X Z

(b)

Y X ZY

L2

(c)

X Y Z

(a)

Figure 8: A counterexample to the converse of Corollary 13.

However, Definition 11 is not to be blamed for this limitation. In this simple example, one can
easily enumerate all possible directed mixed graphs over X ,Y,Z and see that for none of them do
both Corollary 13 and its converse hold. Intuitively, this is because the MAG in Figure 8(a) implies
that either 〈X ,Y 〉 does not have a common latent parent or 〈Y,Z〉 does not have a common latent
parent in the underlying DAG. So under the Y -lower-manipulation of the underlying DAG, for all
we know, either 〈X ,Y 〉 or 〈Y,Z〉 will become unconnected. But this disjunctive information cannot
be precisely represented by a single graph.

More generally, no matter how we define MYX, as long as it is a single graph, the converse of
Corollary 13 will not hold in general, unless Corollary 13 itself fails. MYX, as a single graph, can
only aim to be a supergraph (up to Markov equivalence) of MGYX

for every G represented by M
(which makes Corollary 13 true). To this end, Definition 11 is ‘minimal’ in the following sense: two

1451

ZHANG

variables are adjacent in MYX if and only if there exists a DAG G represented by M such that the
two variables are adjacent in MGYX

. In this regard, MYX does not have more edges than necessary.
One can, for example, check this fact for the simple case in Figure 8.

We are now ready to state the intermediate theorem on MAG-based do-calculus.

Theorem 14 (do-calculus given a MAG) Let M be the causal MAG over O, and U,X, Y, W be
disjoint subsets of O. The following rules are valid, in the sense that if the antecedent of the rule
holds, then the consequent holds no matter which DAG represented by M is the true causal DAG.

1. if Y and X are m-separated by U∪W in MU, then

P(y|do(u),x,w) = P(y|do(u),w).

2. if Y and X are m-separated by U∪W in MXU, then

P(y|do(u),do(x),w) = P(y|do(u),x,w).

3. if Y and X are m-separated by U∪W in MUX′ , then

P(y|do(u),do(x),w) = P(y|do(u),w)

where X′ = X\AnMU
(W).

Proof This readily follows from Proposition 7, Corollary 13, and the fact that for every G repre-
sented by M , AnGU

(W)∩O = AnMU
(W).

As already noted, the true causal MAG is not uniquely recoverable from the pre-intervention
distribution, thanks to Markov equivalence. So the main value of Theorem 14 is to facilitate the
development of a PAG-based do-calculus. However, it is worth noting that when supplemented with
some background causal knowledge, such as knowledge of the form that some variable is not a
cause of another variable, it is in principle possible to determine that the true causal MAG belongs
to a proper subset of the full equivalence class represented by the PAG. Depending on how strong
the background knowledge is, the subset could be as big as the full equivalence class or as small as
a singleton. In this sense, Theorem 14 and Theorem 17 below may be viewed as two extreme cases
of a more general do-calculus based on a subset of Markov equivalent MAGs.

To extend the calculus to PAGs, we need to define manipulations on PAGs. They are essentially
the same as the manipulations of MAGs. The definition of visibility still makes sense in PAGs,
except that we will call a directed edge in a PAG definitely visible if it satisfies the condition for
visibility in Definition 8, in order to emphasize that this edge is visible in all MAGs in the equiv-
alence class. Despite the extreme similarity to manipulations on MAGs, let us still write down the
definition of PAG manipulations for easy reference.

Definition 15 (Manipulations of PAGs) Given a PAG P and a set of variables X therein,

• the X-lower-manipulation of P deletes all those edges that are definitely visible in P and
are out of variables in X, replaces all those edges that are out of variables in X but are not
definitely visible in P with bi-directed edges, and otherwise keeps P as it is. The resulting
graph is denoted as PX.

1452

CAUSAL REASONING WITH ANCESTRAL GRAPHS

• the X-upper-manipulation of P deletes all those edges in P that are into variables in X, and
otherwise keeps P as it is. The resulting graph is denoted as PX .

We stipulate that lower-manipulation has a higher priority than upper-manipulation, so that PYX
(or PXY) denotes the graph resulting from applying the X-upper-manipulation to the Y-lower-
manipulated graph of P .

We should emphasize that except in rare situations, PYX is not a PAG any more (i.e., not a PAG
for any Markov equivalence class of MAGs). But from PYX we still gain information about m-
separation in MYX, where M is a MAG that belongs to the Markov equivalence class represented
by P . Here is a simple connection. Given a MAG M and the PAG P that represents [M], a trivial
fact is that a m-connecting path in M is also a possibly m-connecting path in P . This is also true
for MYX and PYX.

Lemma 16 Let M be a MAG over O, and P be the PAG for [M]. Let X and Y be two subsets of
O. For any A,B ∈ O and C ⊆ O that does not contain A or B, if a path p between A and B is m-
connecting given C in MYX, then p, the same sequence of variables, forms a possibly m-connecting

path between A and B given C in PYX.15

Proof See Appendix B.

If there is no possibly m-connecting path between A and B given C in a partial mixed graph, we
say that A and B are definitely m-separated by C in the graph. A do-calculus follows:

Theorem 17 (do-calculus given a PAG) Let P be the causal PAG for O, and U,X, Y,W be disjoint
subsets of O. The following rules are valid:

1. if Y and X are definitely m-separated by U∪W in PU, then

P(y|do(u),x,w) = P(y|do(u),w).

2. if Y and X are definitely m-separated by U∪W in PXU, then

P(y|do(u),do(x),w) = P(y|do(u),x,w).

3. if Y and X are definitely m-separated by U∪W in PUX′ , then

P(y|do(u),do(x),w) = P(y|do(u),w)

where X′ = X\PossibleAnPU
(W).

15. For our purpose, what we need is the obvious consequence of the lemma that if there is an m-connecting path in
MYX, then there is a possibly m-connecting path in PYX. We suspect that a stronger result might hold as well: if

there is an m-connecting path in MYX, then there is a definite m-connecting path in PYX. We can’t prove or disprove
the stronger result at the moment.

1453

ZHANG

Proof It follows from Lemma 16 and Theorem 14. The only caveat is that in general AnMU
(W) 6=

PossibleAnPU
(W) for an arbitrary M represented by P . But it is always the case that AnMU

(W)⊆

PossibleAnPU
(W), which means that X\AnMU

(W) ⊇ X\PossibleAnPU
(W) for every M repre-

sented by P . So it is possible that for rule (3), PUX′ leaves more edges in than necessary, but it does
not affect the validity of rule (3).

The possibility that PUX′ leaves more edges in than necessary is one of three aspects in which our
do-calculus may be “incomplete” in the following sense: it is possible that a rule in the PAG-based
do-calculus is not applicable, but for every DAG compatible with the given PAG, the corresponding
rule in Pearl’s DAG-based calculus is applicable. The other two aspects are already noted: (1) the
calculus is formulated in terms of the absence of possibly m-connecting paths (cf. Footnote 14,
and more on this in the next section); and (2) the MAG-based do-calculus is based on Corollary 13
whose converse does not hold. Therefore, the PAG-based do-calculus as currently formulated may
be further improved.

S L S L

G
PSH PSH

II

G

(b)(a)

Figure 9: PAG Surgery: PS and PS.

That said, let us illustrate the utility of the do-calculus with the simple example used in Section
3. Given the PAG in Figure 4 we can infer that P(L|do(S),G) = P(L|S,G) by rule 2, because L and
S are definitely m-separated by {G} in PS (Figure 9(a)); and P(G|do(S)) = P(G) by rule 3, because
G and S are definitely m-separated in PS (Figure 9(b)). It follows that

P(L|do(S)) = ∑
G

P(L,G|do(S))

= ∑
G

P(L|do(S),G)P(G|do(S))

= ∑
G

P(L|S,G)P(G).

By contrast, it is not valid in the do-calculus that P(L|do(G),S) = P(L|G,S) because L and G
are not definitely m-separated by {S} in PG, which is depicted in Figure 10. (Notice the bi-directed
edge between L and G.)

5. Invariance Under Interventions

We now develop stronger results for a key component of do-calculus, the property of invariance
under interventions, first systematically studied in Spirtes et al. (1993). The idea is simple. A

1454

CAUSAL REASONING WITH ANCESTRAL GRAPHS

S L

G
PSH

I

Figure 10: PAG Surgery: PG.

conditional probability P(Y = y|Z = z) is said to be invariant under an intervention X := x—or
do(X = x)—if PX:=x(y|z) = P(y|z).16 This concept (under the name of ‘observability’) plays an im-
portant role in some interesting theoretical work on observational studies (e.g., Pratt and Schlaifer,
1988; for a good review see Winship and Morgan, 1999), and also forms the basis of the prediction
algorithm presented in Spirtes et al. (1993), which seeks to identify a post-intervention probability
by searching for an expression in terms of invariant probabilities.

It is also the corner stone of Pearl’s do-calculus. To see this, let us take a closer look at the second
and third rules in the do-calculus. The second rule of the calculus gives a graphical condition for
when we can conclude

P(y|do(u),do(x),w) = P(y|do(u),x,w).

If we take U to be the empty set and write the above equation in the subscript notation, we get

PX:=x(y|w) = P(y|x,w).

Since PX:=x(X = x) = 1, thanks to the supposed effectiveness of the intervention, we have

PX:=x(y|w) = PX:=x(y|x,w).

So a special case of the second rule is a condition for PX:=x(y|x,w) = P(y|x,w), that is, for when
P(y|x,w) is invariant under the intervention X := x. In fact, the second rule is nothing but a gener-
alization of this condition to tell when a post-intervention probability Pu(y|x,w) would be invariant
under a further intervention X := x.

The third rule is more obviously about invariance. It is a generalization of the condition for
PX:=x(y|w) = P(y|w), that is, for when P(y|w) is invariant under the intervention X := x. The
difference between rule 2 and rule 3 is that rule 2 is about invariance of P(y|z) under an intervention
on X in case X ⊆ Z (= X∪W), whereas rule 3 is about invariance of P(y|z) under an intervention
on X in case X and Z (= W) are disjoint. As we mentioned earlier, the first rule is not essential, so
the do-calculus is in effect a generalization of conditions for invariance.

We now focus on this key component of do-calculus, and present better graphical conditions for
judging invariance given a PAG than those that are implied by the PAG-based do-calculus presented
in the last section. The conditions for invariance implied by Pearl’s (DAG-based) do-calculus can

16. Here we allow that X and Z have a non-empty intersection, and assume that the conditioning operation is applied
to the post-intervention population (i.e., intervening comes before conditioning). As a result, when we speak of
PX:=x(y|z), we implicitly assume that x and z are consistent regarding the values for variables in X∩Z, for otherwise
the quantity is undefined.

1455

ZHANG

be equivalently formulated without referring to manipulated graphs, as given in Spirtes et al. (1993,
Theorem 7.1) before the do-calculus was invented. In this section we develop corresponding condi-
tions in terms of PAGs. The conditions will be not only sufficient in the sense that if the conditions
are satisfied, then every DAG compatible with the given PAG entails invariance, but also necessary
in the sense that if the conditions fail, then there is at least one DAG compatible with the given PAG
that does not entail invariance. In this aspect, the conditions are also superior to earlier results on
invariance given an equivalence class of DAGs due to Spirtes et al. (1993, Theorems 7.3 and 7.4).

We first state the conditions for judging invariance given a DAG, originally presented in Spirtes
et al. (1993, Theorem 7.1).

Proposition 18 (Spirtes, Glymour, Scheines) Let G be the causal DAG for O∪L, and X,Y,Z⊆O
be three sets of variables such that X∩Y = Y∩Z = Ø (but X and Z can overlap). P(y|z) is invariant
under an intervention on X if

(1) for every X ∈ X∩Z, there is no d-connecting path between X and any member of Y given
Z\{X} that is into X;

(2) for every X ∈X∩ (AnG (Z)\Z), there is no d-connecting path between X and any member of
Y given Z; and

(3) for every X ∈ X\AnG (Z), there is no d-connecting path between X and any member of Y
given Z that is out of X.17

Remark: Because Z⊆AnG (Z), X∩Z,X∩ (AnG (Z)\Z) and X\AnG (Z) form a partition of X. So
for each member of X, only one of the conditions is relevant.

The proposition is an equivalent formulation of Theorem 7.1 in Spirtes et al. (1993). It is
not hard to check that the proposition follows from rules 2 and 3 in the DAG-based do-calculus
(Proposition 7); the talk of d-separation in manipulated graphs is replaced by the talk of absence of
d-connecting paths of certain orientations in the original graph. Conversely, the proposition implies
the special case of rules 2 and 3 where the background intervention do(U) is empty. Specifically,
clause (1) in the proposition corresponds to rule 2 in the do-calculus; clauses (2) and (3) correspond
to rule 3 in the do-calculus.

Spirtes et al. (1993, pp. 164-5) argued that these conditions are also “almost necessary” for
invariance. What they meant is that if the conditions are not satisfied, then the causal structure does
not entail the invariance, although there may exist some particular distribution compatible with the
causal structure such that P(y|z) is invariant under some particular intervention on X. From now on
when we speak of invariance entailed by the causal DAG, we mean that the conditions in Proposition
18 are satisfied—or equivalently, that the invariance follows from an application of rule 2 or rule 3 in
the DAG-based do-calculus.18 Our purpose is to demonstrate that there are corresponding graphical

17. It is not hard to see that (3) is equivalent to saying that for every X ∈ X\AnG (Z), there is no directed path from X to
any member of Y. Lemma 23 below is an immediate corollary of this equivalent formulation.

18. This stipulation is of course not intended to be a definition of the notion of structurally entailed invariance. A
proper definition would be to the effect that for every distribution compatible with the causal structure, P(y|z) is
invariant under any intervention of X. The argument given by Spirtes et al. (1993, pp. 164-5) for (their equivalent
formulation of) Proposition 18 suggests that the conditions are sufficient and necessary for structurally entailed
invariance. Their argument uses the device of what they call policy variables, extra variables introduced into the

1456

CAUSAL REASONING WITH ANCESTRAL GRAPHS

conditions relative to a PAG that are sufficient and necessary for the conditions in Proposition 18 to
hold for each and every DAG compatible with the PAG.

Once again, we develop the conditions in two steps: first to MAGs and then to PAGs. In the
first step, our goal is to find sufficient and necessary conditions for invariance entailed by a MAG,
as defined below:

Definition 19 (Invariance entailed by a MAG) Let M be a causal MAG over O, and X, Y, Z ⊆
O be three sets of variables such that X∩Y = Y∩Z = Ø, P(y|z) is entailed to be invariant under
interventions on X given M if for every DAG G(O,L) represented by M , P(y|z) is entailed to be
invariant under interventions on X given G (i.e., the conditions in Proposition 18 are satisfied).

The question is how to judge invariance entailed by a MAG without doing the intractable job
of checking the conditions in Proposition 18 for each and every compatible DAG. The next few
lemmas, Lemmas 20-23, state useful connections between d-connecting paths in a DAG and m-
connecting paths in the corresponding MAG. Lemma 20 records the important result due to Richard-
son and Spirtes (2002) that d-separation relations among observed variables in a DAG with latent
variables correspond exactly to m-separation relations in its MAG.

Lemma 20 Let G be any DAG over O∪L, and M be the MAG of G over O. For any A,B ∈O and
C⊆O that does not contain A or B, there is a path d-connecting A and B given C in G if and only
if there is a path m-connecting A and B given C in M .

Proof This is a special case of Lemma 17 and Lemma 18 in Spirtes and Richardson (1996), and
also a special case of Theorem 4.18 in Richardson and Spirtes (2002).

Given Lemma 20, we know how to tell whether clause (2) of Proposition 18 holds in all DAGs
compatible with a given MAG. For the other two conditions in Proposition 18, we need to take into
account the orientations of d-connecting paths.

Lemma 21 Let G be any DAG over O∪L, and M be the MAG of G over O. For any A,B ∈O and
C ⊆ O that does not contain A or B, if there is a path d-connecting A and B given C in G that is
into A, then there is a path m-connecting A and B given C in M that is either into A or contains an
invisible edge out of A.

Proof See Appendix B.

Lemma 22 Let M be any MAG over O. For any A,B ∈O and C⊆O that does not contain A or B,
if there is a path m-connecting A and B given C in M that is either into A or contains an invisible
edge out of A, then there exists a DAG G over O∪L (for some extra variables L) whose MAG is
M , such that in G there is a path d-connecting A and B given C that is into A.

causal DAG to represent interventions. Given the causal DAG G , a policy variable for a variable X is an (extra) parent
of X but otherwise not adjacent to any other variables in G . Interventions can then be simulated by conditioning on
the intervention variables, and invariance can be reformulated as conditional independence involving intervention
variables. The conditions in Proposition 18 are equivalent to saying that the variables in Y are d-separated from
the policy variables for X by Z (in the graph augmented by the policy variables). It thus seems plausible that these
conditions are sufficient and necessary for structurally entailed invariance, given that d-separation is a sufficient
and necessary condition for structurally entailed conditional independence (Geiger et al., 1990; Meek, 1995b). But
Spirtes et al. did not give a rigorous proof for necessity. As an anonymous reviewer points out, the rigorous proof, if
any, would need to be carefully made, and in particular, one should be careful in treating policy variables as random
variables. We will not take on this task here.

1457

ZHANG

Proof See Appendix B.

Obviously these two lemmas are related to adapting clause (1) in Proposition 18 to MAGs. The
next lemma is related to clause (3).

Lemma 23 Let G be any DAG over O∪L, and M be the MAG of G over O. For any A,B ∈ O
and C⊆O that does not contain B or any descendant of A in G (or in M , since G and M have the
same ancestral relations among variables in O), there is a path d-connecting A and B given C in G
that is out of A if and only if there is a path m-connecting A and B given C in M that is out of A.

Proof See Appendix B.

Given these lemmas, the conditions in Proposition 18 are readily translated into the following
conditions for invariance given a MAG.

Theorem 24 Suppose M is the causal MAG over a set of variables O. For any X,Y,Z ⊆ O,
X∩Y = Y∩Z = Ø, P(y|z) is entailed to be invariant under interventions on X given M if and only
if

(1) for every X ∈ X∩Z, there is no m-connecting path between X and any member of Y given
Z\{X} that is into X or contains an invisible edge out of X;

(2) for every X ∈ X∩ (AnM (Z)\Z), there is no m-connecting path between X and any member
of Y given Z; and

(3) for every X ∈ X\AnM (Z), there is no m-connecting path between X and any member of Y
given Z that is out of X.

Proof Given Lemma 21, if (1) holds, then for every DAG represented by M , the first condition
in Proposition 18 holds. Given Lemma 20 and the fact that M and all DAGs represented by M
have the exact same ancestral relations among O, if (2) holds, the second condition in Proposition
18 holds for every DAG represented by M . Moreover, given Lemma 23, if (3) holds, the third
condition in Proposition 18 holds for every DAG represented by M . So (1), (2) and (3) together
imply that P(y|z) is invariant under interventions on X given M .

Conversely, if (1) fails, then by Lemma 22, there is a DAG represented by M in which the first
condition in Proposition 18 fails. Likewise with conditions (2) and (3), in light of Lemmas 20 and
23 and the fact that M and a DAG represented by M have the exact same ancestral relations among
O. So (1), (2) and (3) are also necessary for P(y|z) to be entailed to be invariant under interventions
on X given M .

For example, given the MAG in Figure 3(a), P(L|G,S) is invariant under interventions on S,
because the only m-connecting path between L and S given G is 〈L,S〉, which contains a visible
directed edge out of L, and so the relevant clause in Theorem 24, clause (1), is satisfied. By contrast,
P(L|G,S) is not entailed to be invariant under interventions on G given the MAG—in the sense that
there exists a causal DAG compatible with the MAG given which P(L|G,S) is not entailed to be
invariant under interventions on G—because clause (1) is not satisfied.

In a similar fashion, we can extend the result to invariance entailed by a PAG. Definition first:

1458

CAUSAL REASONING WITH ANCESTRAL GRAPHS

Definition 25 (Invariance entailed by a PAG) Let P be a PAG over O, and X,Y,Z ⊆ O be three
sets of variables such that X∩Y = Y∩Z = Ø, P(y|z) is entailed to be invariant under interven-
tions on X given P if for every MAG M in the Markov equivalence class represented by P , P(y|z)
is entailed to be invariant under interventions on X given M .

We need a few lemmas that state connections between m-connecting paths in a MAG and def-
inite m-connecting paths (as opposed to mere possibly m-connecting paths) in its PAG. By the
definition of definite m-connecting paths (Definition 4), definite m-connection in a PAG implies
m-connection in every MAG represented by the PAG. It is not obvious, however, that m-connection
in a MAG will always be revealed as definite m-connection in its PAG. Fortunately, this turns out
to be true. However, the proof is highly involved, and relies on many results about the properties of
PAGs and the transformation between PAGs and MAGs presented in Zhang (2006, chapters 3-4),
which would take up too much space and might distract readers from the main points of the present
paper. So we will simply state the fact here, and refer interested readers to Zhang (2006, chap. 5,
Lemma 5.1.7) for the proof.

Lemma 26 Let M be a MAG over O, and P be the PAG that represents [M]. For any A,B ∈ O
and C ⊆ O that does not contain A or B, if there is a path m-connecting A and B given C in M ,
then there is a path definitely m-connecting A and B given C in P . Furthermore, if there is an
m-connecting path in M that is either into A or out of A with an invisible directed edge, then there
is a definite m-connecting path in P that does not start with a definitely visible edge out of A.

Proof See the proof of Lemma 5.1.7 in Zhang (2006, pp. 207).

The converse to the second part of Lemma 26 is also true.

Lemma 27 Let P be a PAG over O. For any A,B ∈ O and C ⊆ O that does not contain A or B,
if there is a path definitely m-connecting A and B given C in P that does not start with a definitely
visible edge out of A, then there exists a MAG M in the equivalence class represented by P in which
there is a path m-connecting A and B given C that is either into A or includes an invisible directed
edge out of A.

Proof See Appendix B.

Lemmas 26 and 27 are useful for establishing conditions analogous to clauses (1) and (2) in
Theorem 24. For clause (3), we need two more lemmas.

Lemma 28 Let M be a MAG over O, and P be the PAG that represents [M]. For any A,B∈O and
C⊆O that does not contain B or any descendant of A in M , if there is a path m-connecting A and
B given C in M that is out of A, then there is a path definitely m-connecting A and B given C in P
that is not into A (i.e., the edge incident to A on the path is either A◦−−◦, or A◦→, or A→).

Proof See Appendix B.

Lemma 29 Let P be a PAG over O. For any A,B ∈ O and C ⊆ O that does not contain A or B, if
there is a path definitely m-connecting A and B given C in P that is not into A, then there exists a
MAG M represented by P in which there is a path m-connecting A and B given C that is out of A.

1459

ZHANG

Proof See Appendix B.

The main theorem follows.

Theorem 30 Suppose P is the causal PAG over a set of variables O. For any X,Y,Z⊆O such that
X∩Y = Y∩Z = Ø, P(y|z) is entailed to be invariant under interventions on X given P if and only
if

(1) for every X ∈ X∩Z, every definite m-connecting path, if any, between X and any member of
Y given Z\{X} is out of X with a definitely visible edge;

(2) for every X ∈ X∩ (PossibleAnP (Z)\Z), there is no definite m-connecting path between X
and any member of Y given Z; and

(3) for every X ∈ X\PossibleAnP (Z), every definite m-connecting path, if any, between X and
any member of Y given Z is into X.

Proof We show that (1), (2) and (3) are sufficient and necessary for the corresponding conditions
in Theorem 24 to hold for all MAGs represented by P . It follows from Lemma 26 that if (1) holds,
then the first condition in Theorem 24 holds for all MAGs represented by P . Note moreover that
for every MAG M represented by P , AnM (Z) ⊆ PossibleAnP (Z). It again follows from Lemma
26 that if (2) holds, then the second condition in Theorem 24 holds for all MAGs represented by P .
Finally, it follows from Lemma 28 (and Lemma 26) that if (3) holds, the third condition in Theorem
24 holds for all MAGs represented by P . Hence (1), (2) and (3) are sufficient.

Conversely, if (1) fails, then by Lemma 27, there exists a MAG represented by P for which the
first condition in Theorem 24 fails.

To show the necessity of (2), we need the fact mentioned in Footnote 11 that if X is a possible
ancestor of a vertex Z ∈ Z in P , then there exists a MAG represented by P , in which X is an
ancestor of Z. So if (2) fails, that is, there is a definite m-connecting path between a variable
X ∈ X∩ (PossibleAnP (Z)\Z) and a member of Y given Z in P , then there exists a MAG M
represented by P in which X ∈X∩(AnM (Z)\Z), and there is an m-connecting path between X and
a member of Y given Z, which violates clause (2) of Theorem 24.

Lastly, if (3) fails, that is, there is a definite m-connecting path between a variable X ∈
X\PossibleAnP (Z) and a member of Y given Z that is not into X , then it follows from Lemma
29 that there exists a MAG M represented by P in which there is an m-connecting path between X
and a member of Y given Z that is out of X . Moreover, since X ∈ X\PossibleAnP (Z), X cannot be
an ancestor of Z in M , that is, X ∈ X\AnM (Z). So M fails clause (3) of Theorem 24. Therefore,
the conditions are also necessary.

For a simple illustration, consider again the PAG in Figure 4. Given the PAG, it can be inferred
that P(L|G,S) is invariant under interventions on I, because there is no definite m-connecting path
between L and I given {G,S}, satisfying the relevant clause—clause (2)—in Theorem 30. P(L|G,S)
is also invariant under interventions on S because the only definitely m-connecting path between L
and S given {G} is S→ L which contains a definitely visible edge out of S, satisfying the relevant
clause—clause (1)—in Theorem 30.

1460

CAUSAL REASONING WITH ANCESTRAL GRAPHS

On the other hand, for example, P(S) is not entailed to be invariant under interventions on I.
Note that given the MAG of Figure 3(b), P(S) is indeed entailed to be invariant under interven-
tions on I, but this invariance is not unanimously implied in the equivalence class. Given some
other MAGs in the class, such as the one in Figure 3(a), P(S) is not entailed to be invariant under
interventions on I.

As briefly noted in the last section, the PAG-based do-calculus in its current form is not com-
plete. We mentioned three issues that might be responsible for this (cf. the comments right after
Theorem 17), but only one of them we are sure leads to counterexamples—examples in which a
rule in the DAG-based calculus is applicable for all DAGs compatible with the given PAG, but
the corresponding rule in the PAG-based calculus is not applicable. It is the fact that the calcu-
lus is formulated in terms of absence of possibly m-connecting paths. Consider the example we
used to illustrate the difference between definite and possibly m-connecting paths in Section 3.
Given the PAG in Figure 5, we cannot apply rule 2 of the PAG-based do-calculus to conclude that
P(W |do(X),Y,Z) = P(W |Y,Z), because there is a possibly m-connecting path between X and W
relative to {Y,Z} in the PAG (note that since X ∈ PossibleAn({Y,Z}), the rule does not require
manipulating the graph). However, it can be shown that for every DAG compatible with the PAG,
X and W are d-separated by {Y,Z} in either the X-upper-manipulation of the DAG or in the DAG
itself. So rule 2 of the DAG-based do-calculus is actually applicable given any DAG compatible
with the PAG.

Although we suspect that such counterexamples may not be encountered often in practice, it is
at least theoretically interesting to handle them. Our results in this section provide an improvement
in regard to the important special case of invariance. That is, the conditions given in Theorem 30
are complete for deriving statements of invariance, in the following sense: if the conditions therein
fail relative to a PAG, then there exists a DAG represented by the PAG given which the conditions in
Proposition 18 do not hold. The example in Figure 5 is not a counterexample to the completeness of
Theorem 30. Unlike the do-calculus presented in Theorem 17, Theorem 30 implies that P(W |Y,Z)
is entailed to be invariant under interventions on X given the PAG (and hence we can conclude that
P(W |do(X),Y,Z) = P(W |Y,Z)), because there is no definite m-connecting path between X and W
relative to {Y,Z} in the PAG. Whether it is valid to formulate the PAG-based do-calculus in terms
of definite m-connecting paths is an open question at this point (cf. Footnote 15).19

Theorem 30 is in style very similar to Theorems 7.3 and 7.4 in Spirtes et al. (1993). The
latter are formulated with respect to a partially oriented inducing path graph (POIPG). We include
in Appendix A a description of the inducing path graphs (IPGs) as well as their relationship to
ancestral graphs. As shown there, syntactically the class of ancestral graphs is a proper subclass of
the class of inducing path graphs. In consequence a PAG in general reveals more qualitative causal
information than a POIPG. In addition, it seems MAGs are easier to parameterize than IPGs. (For a
linear parametrization of MAGs, see Richardson and Spirtes, 2002.)

Apart from the advantages of working with MAGs and PAGs over IPGs and POIPGs, our The-
orem 30 is superior to Spirtes et al.’s theorems in that our theorem is formulated in terms of definite
m-connecting paths, whereas theirs, like the results in the last section, are formulated in terms of

19. Here is another way to view the open problem. As explained earlier, do-calculus is essentially a generalization of the
invariance conditions. Not only does it address the question of when (y|z) is invariant under an intervention X := x,
it also addresses the more general question of when a post-intervention probability Pu(y|z) would be invariant under
a further intervention X := x. Our results in this section do not cover the latter question. To generalize the results in
terms of definite m-connecting paths to address the latter question is parallel to improving the do-calculus.

1461

ZHANG

possibly m-connecting paths. As a result, their conditions are only sufficient but not necessary. Re-
garding the case in Figure 5, for example, their theorems do not imply that P(W |Y,Z) is entailed
to be invariant under interventions on X , due to the presence of the possibly m-connecting path in
the graph (which in this case is also the POIPG). Furthermore, since definite m-connecting paths
are special cases of possibly m-connecting paths, there are more possibly m-connecting paths than
definite m-connecting paths to check in a PAG. This may turn out to be a computational advantage
for our theorem.

6. Conclusion

Causal reasoning about consequences of interventions has received rigorous and interesting treat-
ments in the framework of causal Bayesian networks. Much of the work assumes that the structure
of the causal Bayesian network, represented by a directed acyclic graph, is fully given. In this paper
we have provided some results about causal reasoning under weaker causal assumptions, repre-
sented by a maximal ancestral graph or a partial ancestral graph, the latter of which is fully testable
with observational data (assuming the causal Faithfulness condition).

Theorem 17 in Section 4 gives us a do-calculus under testable causal assumptions, represented
by a PAG. The idea is that when any rule in the calculus is applicable given the PAG, the correspond-
ing rule in Pearl’s original do-calculus is applicable relative to each and every DAG compatible with
the PAG. The converse, however, is not true; it is not the case that whenever all DAGs compatible
with the PAG sanction the application of a certain rule in the do-calculus, the corresponding rule in
the PAG-based calculus is also applicable. An interesting project is to either improve the calculus,
or to investigate more closely the extent to which the current version is not complete.

As a first step towards improvement, we examined in Section 5 an important special case of the
do-calculus—the graphical conditions for invariance under interventions—and presented sufficient
and necessary conditions for invariance given a PAG. These conditions are very similar but also
superior to the analogous results proved by Spirtes et al. (1993). In the latter work, there is also an
algorithm (named Prediction Algorithm) for identifying post-intervention probabilities based on the
conditions for invariance. The results in this paper can certainly be used to improve that algorithm.

The search for a syntactic derivation in the do-calculus to identify a post-intervention probabil-
ity is no minor computational task. For this reason, it is worth deriving handy graphical criteria for
identifiability from the do-calculus. Since invariant quantities are the most basic identifiable quan-
tities, the condition for invariance is the most basic among such graphical criteria. Other graphical
criteria in the literature, including the well known “back door criterion” and “front door criterion”,
should be extendible to PAGs in the same way as we did for invariance. On the other hand, a novel
approach to identification has been developed recently by Tian and Pearl (2004), which proves
computationally attractive. To adapt that approach to ancestral graphs is probably a worthy project.

Acknowledgments

I am grateful to Clark Glymour, Thomas Richardson, and Peter Spirtes for their helpful comments
on the part of my dissertation this paper is based on. Thanks also to three anonymous referees
for helping improve the paper significantly. One of them, especially, made extremely detailed and
helpful suggestions.

1462

CAUSAL REASONING WITH ANCESTRAL GRAPHS

Appendix A. Inducing Path Graphs

The theory of invariance under interventions developed in this paper is largely parallel to that de-
veloped in Spirtes et al. (1993). Their theory is based on a graphical representation called inducing
path graphs. This graphical object is not given an independent syntactic definition, but defined via a
construction relative to a DAG (with latent variables). It is clear from the construction that this rep-
resentation is closely related to MAGs. In this appendix we specify the exact relationship between
them. In particular, we justify an independent syntactic definition of inducing path graphs, which
makes it clear that syntactically the class of MAGs is a subclass of inducing path graphs.

An inducing path graph (IPG) is a directed mixed graph, defined relative to a DAG, through the
following construction:

Input: a DAG G over 〈O,L〉
Output: an IPG IG over O

1. for each pair of variables A,B ∈ O, A and B are adjacent in IG if and only if there is an
inducing path between them relative to L in G ;

2. for each pair of adjacent vertices A,B in IG , mark the A-end of the edge as an arrowhead if
there is an inducing path between A and B that is into A, otherwise mark the A-end of the edge
as a tail.

It can be shown that the construction outputs a mixed graph IG in which the set of m-separation
relations matches exactly the set of d-separation relations among O in the original DAG G (Spirtes
and Verma, 1992). Furthermore, IG encodes information about inducing paths in the original graph,
which in turn implies features of the original DAG that bear causal significance. Specifically, we
have two useful facts: (i) if there is an inducing path between A and B relative to L that is out of A,
then A is an ancestor of B in G ; (ii) if there is an inducing path between A and B relative to L that
is into both A and B, then A and B have a common ancestor in L unmediated by any other observed
variable.20 So IG , just like the MAG for G , represents both the conditional independence relations
and (features of) the causal structure among the observed variables O. Since the above construction
produces a unique graph given a DAG G , it is fair to call IG the IPG for G .

Therefore a directed mixed graph over a set of variables is an IPG if it is the IPG for some DAG.
We now show that a directed mixed graph is an IPG if and only if it is maximal and does not contain
a directed cycle.

Theorem 31 For any directed mixed graph I over a set of variables O, there exists a DAG G over
O and possibly some extra variables L such that I = IG —that is, I is the IPG for G—if and only if

(i1) There is no directed cycle in I ; and

(i2) I is maximal (i.e., there is no inducing path between two non-adjacent variables).

Proof We first show that the conditions are necessary (only if). Suppose there exists a DAG G(O,L)
whose IPG is I . In other words, I is the output of the IPG construction procedure given G . If there
is any directed cycle in I , say c = 〈O1, . . . ,On,O1〉, then between any pair of adjacent nodes in the
cycle, Oi and Oi+1 (1≤ i≤ n and On+1 = O1), there is an inducing path between them in G relative

20. For more details of the causal interpretation of IPGs, see Spirtes et al. (1993, pp. 130-138).

1463

ZHANG

to L, which, by one of the facts mentioned earlier, implies that Oi is an ancestor of Oi+1 in G . Thus
there would be a directed cycle in G as well, a contradiction. Therefore there is no directed cycle in
I . To show that it is also maximal, consider any two non-adjacent nodes A and B in I . We show that
there is no inducing path in I between A and B. Otherwise let p = 〈A,O1, . . . ,On,B〉 be an inducing
path. By the construction, there is an inducing path relative to L in G between A and O1 that is
into O1, and an inducing path relative to L in G between B and On that is into On, and for every
1≤ i≤ i−1, there is an inducing path relative to L in G between Oi and Oi+1 that is into both. By
Lemma 32 in Appendix B, it follows that there is an inducing path between A and B relative to L in
G , and so A and B should be adjacent in I , a contradiction. Therefore I is also maximal.

Next we demonstrate sufficiency (if). If the two conditions hold, construct a DAG G as follows:
retain all the directed edges in I , and for each bi-directed edge A↔ B in I , introduce a latent
variable LAB in G and replace A↔ B with A← LAB→ B.21 It is easy to see that the resulting graph
G is a DAG, as in I there is no directed cycle. We show that I = IG , the IPG for G . For any pair of
variables A and B in I , there are four cases to consider:

Case 1: A→ B is in I . Then A→ B is also in G , so A and B are adjacent in IG . In IG , the
edge between A and B is not A← B, because otherwise B would have to be an ancestor of A in G ,
a contradiction. The edge is not A↔ B either, because otherwise there would have to be a latent
variable that is a parent of both A and B, which by the construction of G is not the case. So A→ B
is also in IG .

Case 2: A← B is in I . By the same argument as in Case 1, A← B is also in IG .
Case 3: A↔ B is in I . Then there is a LAB such that A← LAB → B is in G . Then obviously

〈A,LAB,B〉 is an inducing path relative to L in G that is into both A and B, and hence A↔ B is also
in IG .

Case 4: A and B are not adjacent in I . We show that they are not adjacent in IG either. For this,
we only need to show that there is no inducing path between A and B relative to L in G . Suppose
otherwise that there is such an inducing path p between A and B in G . Let 〈A,O1, . . . ,On,B〉 be the
sub-sequence of p consisting of all observed variables on p. By the definition of inducing path, all
Oi’s (1≤ i≤ n) are colliders on p and are ancestors of either A or B. By the construction of G , it is
easy to see that Oi’s are also ancestors of either A or B in I . It is also easy to see that either A→O1

or A← LAO1 → O1 appears in G , which implies that there is an edge between A and O1 that is into
O1 in I . Likewise, there is an edge between On and B that is into On in I , and there is an edge
between Oi and Oi+1 that is into both in I for all 1≤ i≤ n−1. So 〈A,O1, . . . ,On,B〉 constitutes an
inducing path between A and B in I , which contradicts the assumption that I is maximal. So there
is no inducing path between A and B relative to L in G , which means that A and B are not adjacent
in IG .

Therefore I = IG , the IPG for G .

Given this theorem, it is clear that we can define IPGs in terms of (i1) and (i2). So a MAG is also
an IPG, but an IPG is not necessarily a MAG, as the former may contain an almost directed cycle.
The simplest IPG which is not a MAG is shown in Figure 11.

Spirtes et al. (1993) uses partially oriented inducing path graphs (POIPGs) to represent Markov
equivalence classes of IPGs. The idea is exactly the same as PAGs. A (complete) POIPG displays
(all) common marks in a Markov equivalence class of IPGs. An obvious fact is that given a set of
conditional independence facts that admits a faithful representation by a MAG, the Markov equiva-

21. This is named canonical DAG in Richardson and Spirtes (2002).

1464

CAUSAL REASONING WITH ANCESTRAL GRAPHS

O1

O3O2

Figure 11: A simplest IPG that is not a MAG

lence class of MAGs is included in the Markov equivalence class of IPGs. It follows that the POIPG
cannot contain more informative marks than the PAG, but may contain fewer. So a PAG usually
reveals more qualitative causal information than a POIPG does.

Appendix B. Proofs of the Lemmas

In proving some of the lemmas, we will use the following fact, which was proved in, for example,
Spirtes et al. (1999, pp. 243):

Lemma 32 Let G(O,L) be a DAG, and 〈V0, . . . ,Vn〉 be a sequence of distinct variables in O. If (1)
for all 0 ≤ i ≤ n− 1, there is an inducing path in G between Vi and Vi+1 relative to L that is into
Vi unless possibly i = 0 and is into Vi+1 unless possibly i = n− 1; and (2) for all 1 ≤ i ≤ n− 1,
Vi is an ancestor of either V0 or Vn in G; then there is a subpath s of the concatenation of those
inducing paths that is an inducing path between V0 and Vn relative to L in G . Furthermore, if the
said inducing path between V0 and V1 is into V0, then s is into V0, and if the said inducing path
between Vn−1 and Vn is into Vn, then s is into Vn.

Proof This is a special case of Lemma 10 in Spirtes et al. (1999, pp. 243). See their paper for a
detailed proof. (One may think that the concatenation itself would be an inducing path between V0

and Vn. This is almost correct, except that the concatenation may contain the same vertex multiple
times. So in general it is a subsequence of the concatenation that constitutes an inducing path be-
tween V0 and Vn.)

Lemma 32 gives a way to argue for the presence of an inducing path between two variables in a
DAG, and hence is very useful for demonstrating that two variables are adjacent in the correspond-
ing MAG. We will see several applications of this lemma in the subsequent proofs.

Proof of Lemma 9
Proof Since there is an inducing path between A and B relative to L in G , A and B are adjacent in
M . Furthermore, since A ∈ AnG (B), the edge between A and B in M is A→ B. We now show that
it is invisible in M . To show this, it suffices to show that for any C, if in M there is an edge between
C and A that is into A or there is a collider path between C and A that is into A and every vertex on
the path is a parent of B, then C is adjacent to B, which means that the condition for visibility cannot
be met.

1465

ZHANG

Let u be an inducing path between A and B relative to L in G that is into A. For any C, we
consider the two possible cases separately:

Case 1: There is an edge between C and A in M that is into A. Then, by the way M is
constructed from G , there must be an inducing path u′ in G between A and C relative to L. Moreover,
u′ is into A, for otherwise A would be an ancestor of C, so that the edge between A and C in M would
be out of A. Given u, u′ and the fact that A ∈ AnG (B), we can apply Lemma 32 to conclude that
there is an inducing path between C and B relative to L in G , which means C and B are adjacent in
M .

Case 2: There is a collider path p in M between C and A that is into A and every non-endpoint
vertex on the path is a parent of B. For every pair of adjacent vertices 〈Vi,Vi+1〉 on p, the edge is
Vi↔Vi+1 if Vi 6= C, and otherwise either C↔Vi+1 or C→Vi+1. It follows that there is an inducing
path in G between Vi and Vi+1 relative to L such that the path is into Vi+1, and is into Vi unless
possibly Vi = C. Given these inducing paths and the fact that every variable other than C on p is an
ancestor of B, we can apply Lemma 32 to conclude that there is an inducing path between C and B
relative to L in G , which means C and B are adjacent in M .

Therefore, the edge A→ B is invisible in M .

Proof of Lemma 10
Proof Construct a DAG from M as follows:

1. Leave every directed edge in M as it is. Introduce a latent variable LAB and add A← LAB→ B
to the graph.

2. for every bi-directed edge Z↔W in M , delete the bi-directed edge. Introduce a latent vari-
able LZW and add Z← LZW →W to the graph.

The resulting graph we denote by G , a DAG over (O,L), where L = {LAB}∪ {LZW |Z ↔W is in
M }. Obviously G is a DAG in which A and B share a latent parent. We need to show that M = MG ,
that is, M is the MAG of G . For any pair of variables X and Y , there are four cases to consider:

Case 1: X→Y is in M . Since G retains all directed edges in M , X→Y is also in G , and hence
is also in MG .

Case 2: X ← Y is in M . Same as Case 1.
Case 3: X ↔ Y is in M . Then there is a latent variable LXY in G such that X ← LXY → Y

appears in G . Since X ← LXY → Y is an inducing path between X and Y relative to L in G , X and
Y are adjacent in MG . Furthermore, it is easy to see that the construction of G does not create any
directed path from X to Y or from Y to X . So X is not an ancestor of Y and Y is not an ancestor of
X in G . It follows that in MG the edge between X and Y is X ↔ Y .

Case 4: X and Y are not adjacent in M . We show that in G there is no inducing path between X
and Y relative to L. Suppose otherwise that there is one. Let p be an inducing path between X and
Y relative to L in G that includes a minimal number of observed variables. Let 〈X ,O1, . . . ,On,Y 〉 be
the sub-sequence of p consisting of all observed variables on p. By the definition of inducing path,
all Oi’s (1≤ i≤ n) are colliders on p and are ancestors of either X or Y in G . Since the construction
of G does not create any new directed path from an observed variable to another observed variable,
Oi’s are also ancestors of either X or Y in M . Since O1 is a collider on p, either X → O1 or
X ← LXO1 → O1 appears in G . Either way there is an edge between X and O1 that is into O1 in M .
Likewise, there is an edge between On and Y that is into On in M .

1466

CAUSAL REASONING WITH ANCESTRAL GRAPHS

Moreover, for all 1≤ i≤ n−1, the path p in G contains Oi← LOiOi+1 → Oi+1, because all Oi’s
are colliders on p. Thus in M there is an edge between Oi and Oi+1. Regarding these edges, by
construction of the MAG, either all of them are bi-directed, or one of them is A→ B and others are
bi-directed. In the former case, 〈X ,O1, . . . ,On,Y 〉 constitutes an inducing path between X and Y in
M , which contradicts the maximality of M . In the latter case, without loss of generality, suppose
〈A,B〉 = 〈Ok,Ok+1〉. Then 〈X ,O1, ...,Ok = A〉 is a collider path into A in M . We now show by
induction that for all 1≤ i≤ k−1, Oi is a parent of B in M .

Consider Ok−1 in the base case. Ok−1 is adjacent to B, for otherwise A→ B would be visible
in M because there is an edge between Ok−1 and A that is into A. The edge between Ok−1 and B
is not Ok−1← B, for otherwise there would be A→ B→ Ok−1 and yet an edge between Ok−1 and
A that is into A in M , which contradicts the fact that M is ancestral. The edge between them is
not Ok−1↔ B, for otherwise there would be an inducing path between X and Y relative to L in G
that includes fewer observed variables than p does, which contradicts our choice of p. So Ok−1 is a
parent of B in M .

In the inductive step, suppose for all 1 < m + 1 ≤ j ≤ k− 1, O j is a parent of B in M , and we
need to show that Om is also a parent of B in M . The argument is essentially the same as in the base
case. Specifically, Om and B are adjacent because otherwise it follows from the inductive hypothesis
that A→ B is visible. The edge is not Om← B on pain of making M non-ancestral; and the edge
is not Om↔ B on pain of creating an inducing path that includes fewer observed variables than p
does. So Om is also a parent of B.

Now we have shown that for all 1 ≤ i ≤ k− 1, Oi is a parent of B in M . It follows that X
is adjacent to B, for otherwise A→ B would be visible. Again, the edge is not X ← B on pain of
making M non-ancestral. So the edge between X and B in M is into B, but then there is an inducing
path between X and Y relative to L in G that includes fewer observed variables than p does, which
is a contradiction with our choice of p.

So our initial supposition is false. There is no inducing path between X and Y relative to L in
G , and hence X and Y are not adjacent in MG .

Therefore M = MG .

Proof of Lemma 12
Proof Recall the diagram in Figure 7:

G
mc

- M

GYX

gm

?

mc
- MGYX

≤ MYX

mm

?

What we need to show is that MYX is an I-map of MGYX
, or in other words, whatever m-separation

relation is true in the former is also true in the latter. To show this, it suffices to show that MYX is
Markov equivalent to a supergraph of MGYX

.

1467

ZHANG

For that purpose, we first establish two facts: (1) every directed edge in MGYX
is also in MYX;

and (2) for every bi-directed edge S↔ T in MGYX
, S and T are also adjacent in MYX; and the edge

between S and T is either a bi-directed edge or an invisible directed edge in MYX.
(1) is relatively easy to show. Note that for any P→ Q in MGYX

, P /∈ Y, for otherwise P would
not be an ancestor of Q in GYX, and hence would not be a parent of Q in MGYX

; and likewise Q /∈X,
for otherwise Q would not be a descendant of P in GYX, and hence would not be a child of P in
MGYX

. Furthermore, because GYX is a subgraph of G , any inducing path between P and Q relative
to L in GYX is also present in G , and any directed path from P to Q in the former is also present in
the latter. This entails that P→ Q is also in M , the MAG of G . Since P /∈ Y and Q /∈ X, P→ Q is
also present in MYX. So (1) is true.

(2) is less obvious. First of all, note that if S↔ T is in MGYX
, then there is an inducing path

between S and T relative to L in GYX that is into both S and T . This implies that S,T /∈ X, and
moreover there is also an inducing path between S and T relative to L in G that is into both S and
T . Hence there is an edge between S and T in M , the MAG of G . The edge in M is either S↔ T
or, by Lemma 9, an invisible directed edge (S← T or S→ T).

Because S,T /∈ X, if S↔ T appears in M , it also appears in MYX. If, on the other hand, the
edge between S and T in M is directed, suppose without loss of generality that it is S→ T . Either
S ∈Y, in which case we have S↔ T in MYX, because S→ T is invisible in M ; or S /∈Y, and S→ T
remains in MYX. In the latter case we need to show that S→ T is still invisible in MYX. Suppose
for the sake of contradiction that S→ T is visible in MYX, that there is a vertex R not adjacent to T ,
such that either R∗→ S is in MYX or there is a collider path c in MYX between R and S that is into
S on which every collider is a parent of T . We show that S→ T is also visible in M . Consider the
two possible cases separately:

Case 1: R∗→ S is in MYX. If the edge is R→ S, it is also in M , because manipulations of a
MAG do not create new directed edges. We now show that R and T are not adjacent in M . Suppose
otherwise. The edge between R and T has to be R→ T in M . Note that R /∈ Y for otherwise
R→ S would be deleted or changed into a bi-directed edge; and we have already shown that T /∈X.
It follows that R→ T would be present in MYX as well, a contradiction. Hence R and T are not
adjacent in M , and so the edge S→ T is also visible in M .

Suppose, on the other hand, the edge between R and S in MYX is R↔ S. In M the edge is either
(i) R↔ S, or (ii) R→ S. (It can’t be R← S because then S ∈ Y and the edge S→ T would not
remain in MYX.)

If (i) is the case, we argue that R and T are not adjacent in M . Since R↔ S→ T is in M , if R
and T are adjacent, it has to be R↔ T or R→ T . In the former case, R↔ T would still be present in
MYX (because obviously R,T /∈ X), which is a contradiction. In the latter case, R→ T is invisible
in M , for otherwise it is easy to see that S→ T would also be visible. So either R→ T remains in
MYX (if R /∈ Y), or it turns into R↔ T (if R ∈ Y). In either case R and T would still be adjacent in
MYX, a contradiction. Hence R and T are not adjacent in M , and so the edge S→ T is also visible
in M .

If (ii) is the case, then either R and T are not adjacent in M , in which case S→ T is also visible
in M ; or R and T are adjacent in M , in which case we now show that S→ T is still visible. The edge
between R and T in M has to be R→ T (in view of R→ S→ T). Since R and T are not adjacent in
MYX, and R→ S is turned into R↔ S in MYX, by the definition of lower-manipulation (Definition
11), R→ T is visible but R→ S is invisible in M . Because R→ T is visible, by definition, there is
a vertex Q not adjacent to T such that Q∗→ R is in M or there is a collider path in M between Q

1468

CAUSAL REASONING WITH ANCESTRAL GRAPHS

and R that is into R on which every collider is a parent of T . But R→ S is not visible, from which
we can derive that S→ T is visible in M . Here is a sketch of the argument. If Q∗→ R is in M , then
Q and S must be adjacent (since otherwise R→ S would be visible). It is then easy to derive that
the edge between Q and S must be into S, which makes S→ T visible. On the other hand, suppose
there is a collider path c into R on which every collider is a parent of T . Then if there is a collider P
on c such that P↔ S is in M , we immediately get a collider path between Q and S that is into S on
which every collider is a parent of T . This path makes S→ T visible. Finally, if no collider on the
path is a spouse of S, it is not hard to show that in order for R→ S to be invisible, there has to be an
edge between Q and S that is into S, which again makes S→ T visible.

Case 2: There is a collider path c in MYX between R and S that is into S on which every collider is
a parent of T . We claim that every arrowhead on c, except possibly one at R, is also in M . Because
if an arrowhead is added at a vertex Q (which could be S) on c by the lower-manipulation, then
Q ∈ Y, but then the edge Q→ T would not remain in MYX, a contradiction. So c is also a collider
path in M that is into S. Furthermore, no new directed edges are introduced by lower-manipulation
or upper-manipulation, so every collider on c is still a parent of T in M .

It follows that if R and T are not adjacent in M , then S→ T is visible in M . On the other hand,
if R and T are adjacent in M , it is either R↔ T or R→ T . Note that this edge is deleted in MYX.
This implies that it is not R↔ T in M : otherwise, the edge incident to R on c has to be bi-directed
as well (since otherwise M is not ancestral), and hence if R↔ T is deleted, either the edge incident
to R on c or the edge S→ T should be deleted in MYX, which is a contradiction. So the edge is
R→ T in M . Since T /∈ X (for otherwise S→ T would be deleted), R ∈ Y, and R→ T is visible in
M . But then it is easy to see that S→ T is also visible in M .

To summarize, we have shown that if S→ T is visible in MYX, it is also visible in M . Since
it is not visible in M , it is invisible in MYX as well. Thus the edge between S and T is either a
bi-directed edge or an invisible directed edge in MYX. Hence we have established (2).

The strategy to complete the proof is to show that MYX can be transformed into a supergraph
of MGYX

via a sequence of equivalence-preserving mark changes (Zhang and Spirtes, 2005; Tian,
2005). By (1) and (2), if MYX is not yet a supergraph of MGYX

, it is because some bi-directed edges
in MGYX

correspond to directed edges in MYX. For any such directed edge P→ Q in MYX (with
P↔ Q in MGYX

), (2) implies that P→ Q is invisible. It is then not hard to check that conditions in

Lemma 1 of Zhang and Spirtes (2005)22 hold for P→ Q in MYX, and thus it can be changed into
P↔ Q while preserving Markov equivalence. Furthermore, making this change will not make any
other such directed edge in MYX visible. It follows that MYX can be transformed into a Markov
equivalent graph that is a supergraph of MGYX

. (We skip the details as they involve conditions for
Markov equivalence we didn’t have enough space to cover.)

Denote the supergraph by I . It follows that if there is an m-connecting path between A and B
given C in MGYX

, the path is also m-connecting in I , the supergraph of MGYX
. Because MYX and I

are Markov equivalent, there is also an m-connecting path between A and B given C in MYX.

22. Here is the Lemma: Let M be a MAG, and A→ B a directed edge in M . Let M ′ be the graph identical to M except
that the edge between A and B is A↔ B in M ′. (In other words, M ′ is the result of simply changing A→ B into
A↔ B in M .) M ′ is a MAG and Markov equivalent to M if and only if
(t1) there is no directed path from A to B other than A→ B in M ;
(t2)] For every C→ A in M , C→ B is also in M ; and for every D↔ A in M , either D→ B or D↔ B is in M ; and
(t3) there is no discriminating path for A on which B is the endpoint adjacent to A in M .

1469

ZHANG

Proof of Lemma 16
Proof It is not hard to check that for any two variables P,Q ∈ O, if P and Q are adjacent in MYX,
then they are adjacent in PYX (though the converse is not necessarily true, because an edge not defi-
nitely visible in P may still be visible in M). Furthermore, when they are adjacent in both MYX and
PYX, every non-circle mark on the edge in PYX is “sound” in that the mark also appears in MYX.
The lemma obviously follows.

Proof of Lemma 21
Proof Spirtes and Richardson (1996), in proving their Lemma 18, gave a construction of an m-
connecting path in M from a d-connecting path in G . We describe the construction below.23

Let p be a minimal d-connecting path between A and B relative to C in G that is into A, minimal
in the sense that no other d-connecting path between A and B relative to C that is into A is composed
of fewer variables than p is.24 Construct a sequence of variables in O in three steps.

Step 1: Form a sequence T of variables on p as follows. T[0] = A, and T[n+1] is chosen to be
the first vertex after T[n] on p that is either in O or a (latent) collider on p, until B is included in T.

Step 2: Form a sequence S0 of variables in O of the same length as T, which we assume contains
m variables. For each 0≤ n≤ m−1, if T[n] is in O, then S0[n] = T[n]; otherwise T[n] is a (latent)
collider on p, which, by the fact that p is d-connecting given C, implies that there is a directed path
from T[n] to a member of C. So in this case, S0[n] is chosen to be the first observed variable on a
directed path from T[n] to a member of C.

Step 3: Run the following iterative procedure:

k:=0

Repeat

If in Sk there is a triple of vertices 〈Sk[i− 1],Sk[i],Sk[i + 1]〉 such that (1) there is an
inducing path between Sk[i−1] and Sk[i] relative to L in G that is into Sk[i]; (2) there is
an inducing path between Sk[i] and Sk[i+1] relative to L in G that is into Sk[i]; and (3)
Sk[i] is in C and is an ancestor of either Sk[i−1] or Sk[i+1]; then let sequence Sk+1 be
Sk with Sk[i] being removed;

k := k+1

Until there is no such triple of vertices in the sequence Sk.

Let SK denote the final outcome of the above three steps. Spirtes and Richardson (1996), in
their Lemma 18, showed that SK constitutes an m-connecting path between A and B relative to C in
M . We refer the reader to their paper for the detailed proof of this fact. What is left for us to show
here is that the path constituted by SK in M is either into A or out of A with an invisible edge.

In other words, we need to show that if the edge between A = SK [0] and SK [1] in M is A→ SK [1],
then this edge is invisible. Given Lemma 9, it suffices to show that there is an inducing path between

23. Their lemma addresses the more general case in which there may also be selection variables. The construction given
here is an adaptation of theirs to fit our case.

24. In Spirtes and Richardson (1996), minimality means more than that the d-connecting path is a shortest one, but for
this proof one only need to choose a shortest path.

1470

CAUSAL REASONING WITH ANCESTRAL GRAPHS

A and SK [1] relative to L in G that is into A. This is not hard to show. In fact, we can show by
induction that for all 0 ≤ k ≤ K, there is in G an inducing path between A and Sk[1] relative to L
that is into A.

In the base case, notice that either (i) S0[1] is an observed variable on p such that every variable
between A and S0[1] on p, if any, belongs to L and is a non-collider on p, or (ii) S0[1] is the first
observed variable on a directed path d starting from T[1] such that T[1] belongs to L, lies on p and
every variable between A and T[1] on p, if any, belongs to L and is a non-collider on p. In case
(i), p(A,S0[1]) is an inducing path relative to L, which is into A, because p is into A. In case (ii),
consider p(A,T[1]) and d(T[1],S0[1]). Let W be the variable nearest to A on p(A,T[1]) that is also
on d(T[1],S0[1]). (W exists because p(A,T[1]) and d(T[1],S0[1]) at least intersect at T[1].) Then
it is easy to see that a concatenation of p(A,W) and d(W,S0[1]) forms an inducing path between A
and S0[1] relative to L in G , which is into A because p is into A.

Now the inductive step. Suppose there is in G an inducing path between A and Sk[1] relative
to L that is into A. Consider Sk+1[1]. If Sk+1[1] = Sk[1], it is trivial that there is an inducing path
between A and Sk+1[1] that is into A. Otherwise, Sk[1] was removed in forming Sk+1. But given
the three conditions for removing Sk[1] in Step 3 above, we can apply Lemma 32 (together with
the inductive hypothesis) to conclude that there is an inducing path between A and Sk+1[1] = Sk[2]
relative to L in G that is into A. This concludes our argument.

Proof of Lemma 22
Proof This lemma is fairly obvious given Lemma 10. Let u be the path m-connecting A and B given
C in M . Let D (which could be B) be the vertex next to A on u. Construct a DAG G from M in the
usual way: keep all the directed edges, replacing each bi-directed edge X ↔ Y with X ← LXY → Y .
Furthermore, if the edge between A and D is A→ D, it is invisible, so we can add A← LAD→ D to
the DAG. Then G is a DAG represented by M . It is easy to check that there is a d-connecting path
in G between A and B given C that is into A.

Proof of Lemma 23
Proof Note that because A is not an ancestor of any member of C, if there is a path out of A d-
connecting A and B given C in G , the path must be a directed path from A to B. For otherwise there
would be a collider on the path that is also a descendant of A, which implies that A is an ancestor of
some member of C. The sub-sequence of that path consisting of observed variables then constitutes
a directed path from A to B in M , which is of course out of A and also m-connecting given C in M .
The converse is as easy to show.

Proof of Lemma 27
Proof A path definitely m-connecting A and B given C in P is m-connecting in every MAG repre-
sented by P , which is an immediate consequence of the definition of PAG. Let D be the vertex next
to A on the definite m-connecting path in P between A and B given C. All we need to show is that
if the edge between A and D is not a definitely visible edge A→ D in P , then there exists a MAG
represented by P in which the edge between A and D is not a visible edge out of A.

Obviously if the edge in P is not A→D, there exists a MAG represented in P in which the edge
is not A→ D, which follows from the fact that P , by definition, displays all edge marks that are
shared by all MAGs in the equivalence class.

1471

ZHANG

So we only need to consider the case where the edge in P is A→ D, but it is not definitely
visible. Now we need to use a fact proved in Lemma 3.3.4 of Zhang (2006, pp. 80): that we
can turn P into a MAG by first changing every ◦→ edge in P into a directed edge →, and then
orienting the circle component—the subgraph of P that consists of ◦−−◦ edges—into a DAG with
no unshielded colliders.25 Moreover, it is not hard to show, using the result in Meek (1995a), that
we can orient the circle component—a chordal graph—into a DAG free of unshielded colliders in
which every edge incident to A is oriented out of A.

Let the resulting MAG be M . We show that A→ D is invisible in M . Suppose for the sake of
contradiction that it is visible in M . Then there exists in M a vertex E not adjacent to D such that
either E∗→ A or there is a collider path between E and A that is into A and every collider on the path
is a parent of D. In the former case, since A→ D is not definitely visible in P , the edge between E
and A is not into A in P , but then that edge will not be oriented as into A by our construction of M .
So the former case is impossible.

In the latter case, denote the collider path by 〈E,E1, ...,Em,A〉. Obviously every edge on
〈E1, ...,Em,A〉 is bi-directed, and so also occurs in P (because our construction of M does not
introduce extra bi-directed edges). There are then two cases to consider:

Case 1: The edge between E and E1 is also into E1 in P . Then the collider path appears in
P . We don’t have space to go into the details here, but there is an orientation rule in constructing
PAGs that makes use of a construct called “discriminating path” (e.g., Spirtes et al., 1999; Zhang,
forthcoming), which would imply that if the collider path appears in P , and every Ei (1≤ i≤ m) is
a parent of D in a representative MAG M , then every Ei is also a parent of D in P . It follows that
A→ D is definitely visible in P , a contradiction.

Case 2: The edge between E and E1 is not into E1 in P , but is oriented as into E1 in M . This is
possible only if the edge is E ◦−−◦E1 in P . But we also have E1↔ E2 (E2 could be A) in P , which,
by Lemma 3.3.1 in Zhang (2006, pp. 77), implies that E ↔ E2 is in P . Then 〈E,E2, . . . ,A〉 makes
A→ D definitely visible in P , which is a contradiction.

Proof of Lemma 28
Proof Note that since A does not have a descendant in C, an m-connecting path out of A given C
in M has to be a directed path from A to B such that every vertex on the path is not in C. Then
a shortest such path has to be uncovered,26 and so will correspond to a definite m-connecting path
between A and B given C in P (on which every vertex is a definite non-collider). This path is not
into A in P because P is the PAG for M in which the path is out of A.

Proof of Lemma 29
Proof Let D be the vertex next to A on the definite m-connecting path in P . Since the edge between
A and D is not into A in P , there exists a MAG represented by P in which the edge is out of A
(which follows from the definition of PAG). Such a MAG obviously satisfies the lemma.

25. A triple of vertices 〈X ,Y,Z〉 in a graph is called an unshielded triple if there is an edge between X and Y , an edge
between Y and Z, but no edge between X and Z. It is an unshielded collider if both the edge between X and Y and
the edge between Z and Y are into Y .

26. A path is called uncovered if every consecutive triple on the path is unshielded (cf. Footnote 25).

1472

CAUSAL REASONING WITH ANCESTRAL GRAPHS

References

R.A. Ali, T. Richardson, and P. Spirtes. Markov equivalence for ancestral graphs. Technical Report
466, Department of Statistics, University of Washington, 2004.

S. Andersson, D. Madigan, and M. Pearlman. A characterization of Markov equivalence classes of
acyclic digraphs. The Annals of Statistics 25(2):505-541, 1997.

D.M. Chickering. A transformational characterization of equivalent Bayesian network structures.
In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, pages 87-98,
Morgan Kaufmann, 1995.

D.M. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning
Research 3:507-554, 2002.

D. Geiger, T. Verma, and J. Pearl. Identifying independence in Bayesian networks. Networks 20,
pages 507-534, 1990.

Y. Huang and M. Valtorta. Pearl’s calculus of intervention is complete. In Proceedings of 22nd
Conference on Uncertainty in Artificial Intelligence, pages 217-224, AUAI Press, 2006.

C. Meek. Causal inference and causal explanation with background knowledge. In Proceedings
of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 403-411, Morgan
Kaufmann, 1995a.

C. Meek. Strong completeness and faithfulness in Bayesian networks, In Proceedings of the
Eleventh Conference on Uncertainty in Artificial Intelligence, pages 411-418, Morgan Kaufmann,
1995b.

J. Pearl. Causal diagrams for empirical research. Biometrika 82:669-710, 1995.

J. Pearl. Graphs, causality and structural equation models. Sociological Methods and Research
27:226-284, 1998.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge,
UK, 2000.

J.W. Pratt and R. Schlaifer. On the interpretation and observation of laws. Journal of Econometrics
39:23-52, 1988.

T. Richardson and P. Spirtes. Ancestral graph Markov models. The Annals of Statistics 30(4):962-
1030, 2002.

T. Richardson and P. Spirtes. Causal inference via ancestral graph models. In P. Green, N. Hjort,
and S. Richardson, editors, Highly Structured Stochastic Systems. Oxford University Press, USA,
2003.

J. Robins. A new approach to causal inference in mortality studies with sustained exposure
periods—applications to control of the healthy worker survivor effect. Mathematical Modeling
7:1393-1512, 1986.

1473

ZHANG

S. Shimizu, P.O. Hoyer, A. Hyvarinen, and A. Kerminen. A linear non-Gaussian acyclic model for
causal discovery. Journal of Machine Learning Research 7:2003-30, 2006.

I. Shpitser and J. Pearl. Identification of conditional interventional distributions. In Proceedings of
22nd Conference on Uncertainty in Artificial Intelligence, pages 437-444, AUAI Press, 2006.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. Springer-Verlag., New
York, 1993. (2nd ed., MIT Press, Cambridge, MA, 2000.)

P. Spirtes, C. Meek, and T. Richardson. An algorithm for causal inference in the presence of latent
variables and selection bias. In C. Glymour and G.F. Cooper, editors, Computation, Causation,
and Discovery. MIT Press, Cambridge, MA, 1999.

P. Spirtes and T. Richardson. A polynomial time algorithm for determining DAG equiv-
alence in the presence of latent variables and selection bias. In Proceedings of
the 6th International Workshop on Artificial Intelligence and Statistics, 1996. URL
http://citeseer.ist.psu.edu/spirtes97polynomial.html.

P. Spirtes and T. Verma. Equivalence of causal models with latent variables. Technical Report Phil-
36, Department of Philosophy, Carnegie Mellon University, 1992.

J. Tian and J. Pearl. On the identification of causal effects. Technical Report, Department of Com-
puter Science, Iowa State University, 2004.

J. Tian. Generating Markov equivalent maximal ancestral graphs by single edge replacement. In
Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, pages 591-598,
AUAI Press, 2005.

C. Winship and L.S. Morgan. The estimation of causal effects from observational data. Annual
Review of Sociology 25:659-706, 1999.

J. Zhang and P.Spirtes. A transformational characterization of Markov equivalence for directed
acyclic graphs with latent variables. In Proceedings of the 21st Conference on Uncertainty in
Artificial Intelligence, pages 667-674, AUAI Press, 2005.

J. Zhang. Causal Inference and Reasoning in Causally Insufficient Systems. PhD
dissertation, Department of Philosophy, Carnegie Mellon University, 2006. URL
www.hss.caltech.edu/∼jiji/dissertation.pdf.

J. Zhang. On the completeness of orientation rules for causal discovery in the presence of latent
confounders and selection bias. Artificial Intelligence, forthcoming.

H. Zhao, Z. Zheng, and B. Liu. On the Markov equivalence of maximal ancestral graphs. Science in
China (Mathematics), 48(4):548-562, 2005.

1474

Journal of Machine Learning Research 9 (2008) 1475-1533 Submitted 5/06; Revised 10/07; Published 7/08

Incremental Identification of Qualitative Models of Biological Systems
using Inductive Logic Programming

Ashwin Srinivasan∗ ASHWIN.SRINIVASAN@IN.IBM.COM

IBM India Research Laboratory
4-C, Institutional Area, Vasant Kunj Phase II
New Delhi 110 070, India

Ross D. King RDK@ABER.AC.UK

Department of Computer Science
University of Wales, Aberystwyth
Ceredigion, Wales, UK

Editor: Stefan Wrobel

Abstract

The use of computational models is increasingly expected to play an important role in predict-
ing the behaviour of biological systems. Models are being sought at different scales of biological
organisation namely: sub-cellular, cellular, tissue, organ, organism and ecosystem; with a view of
identifying how different components are connected together, how they are controlled and how they
behave when functioning as a system. Except for very simple biological processes, system iden-
tification from first principles can be extremely difficult. This has brought into focus automated
techniques for constructing models using data of system behaviour. Such techniques face three
principal issues: (1) The model representation language must be rich enough to capture system be-
haviour; (2) The system identification technique must be powerful enough to identify substantially
complex models; and (3) There may not be sufficient data to obtain both the model’s structure and
precise estimates of all of its parameters. In this paper, we address these issues in the following
ways: (1) Models are represented in an expressive subset of first-order logic. Specifically, they
are expressed as logic programs; (2) System identification is done using techniques developed in
Inductive Logic Programming (ILP). This allows the identification of first-order logic models from
data. Specifically, we employ an incremental approach in which increasingly complex models are
constructed from simpler ones using snapshots of system behaviour; and (3) We restrict ourselves
to “qualitative” models. These are non-parametric: thus, usually less data are required than for
identifying parametric quantitative models. A further advantage is that the data need not be pre-
cise numerical observations (instead, they are abstractions like positive, negative, zero, increasing,
decreasing and so on). We describe incremental construction of qualitative models using a simple
physical system and demonstrate its application to identification of models at four scales of bio-
logical organisation, namely: (a) a predator-prey model at the ecosystem level; (b) a model for the
human lung at the organ level; (c) a model for regulation of glucose by insulin in the human body at
the extra-cellular level; and (d) a model for the glycolysis metabolic pathway at the cellular level.

Keywords: ILP, qualitative system identification, biology

∗. Also at: Department of CSE & Centre for Health Informatics, University of New South Wales, Sydney.

c©2008 Ashwin Srinivasan and Ross D. King.

SRINIVASAN AND KING

1. Introduction

There is a general move in biology from seeking an understanding at the level of individual units
(genes, proteins and so on) to an understanding at the system-level. Identifying single genes, pro-
teins or metabolite levels cannot be expected to yield an answer to systemic behaviour any more
than a list of radio parts could explain its behaviour (a point made in Lazebnik’s humourous and
perceptive article: Lazebnik, 2002). What is needed is an understanding of the function of each
part and, crucially, how these components are connected, how they are controlled and the dynamic
behaviour of the system as a whole. Biology, which for the last decade or so has been pre-occupied
with establishing the “parts-list” is now moving to address these other issues. Besides the obvious
scientific value of understanding whole systems, substantial benefits are expected to follow in clin-
ical medicine. This is concerned with the application of computation and applied mathematics to
improve existing pharmaceutical and medical practices. It is expected that results in systems-level
biology will allow a better understanding of the nature of diseases, leading to a targeted design of
new drugs and drug treatments. The importance of adopting a systemic approach to biology is not
new: there are statements in Darwin’s Origin that clearly anticipate this need. Its relevance in the
modern biological context is summarised in a recent article in Science (W.Bialek and D.Botstein,
2004):

The basic nature and goals of biological research is changing fundamentally. In the
past, biological processes and the underlying genes, proteins, other molecules, and en-
vironmental factors were of necessity studied one by one in relative isolation. In con-
trast, today we are no longer satisfied with studies or answers that place each of these
in a larger context. We now know that there are tens of thousands of genes encoded in
the genome and that simple perturbations such as . . . heat shock, alter the expression of
thousands of them . . . New goals are in sight, namely robust mathematical models and
computer simulations that faithfully predict the behaviour of entire biological systems.

Some substantial research effort is being expended in trying to achieve these goals. The Physiome
Project for example (see http://www.physiome.org/) lists its principal aim as being “to under-
stand and describe the human organism, its physiology and pathophysiology quantitatively.” This it
hopes to achieve by using models at different levels (molecular to organ) that “include everything
from diagrammatic schema suggesting relationships to fully quantitative computational models.”
Similarly, the United Kingdom’s main research funding body in biology (the BBSRC) has invested
over 15 million pounds in centres for integative systems biology: “the aim is to support research in
such a way that all the components of the system under study can be researched at all relevant levels
of biological organisation. It necessitates being able to to handle large experimental data sets and
having the expertise and capacity to manipulate these and combine them with the theoretical base to
develop new predictive and holistic models of how living systems function.” (see Bioscience for So-
ciety: A Ten Year Vision, January 2003 at
http://www.bbsrc.ac.uk/about/plans reports/vision.html).

In the physical sciences, the principal means of understanding complex systems has been through
the use of mathematical models. This same approach is adopted in the field of mathematical biol-
ogy. Following the pioneering work of Alan Turing (Turing, 1952) and Hodgkin and Huxley (1952)
differential equations are now used to model a wide range of transport, reaction and conservation
phenomena (Murray, 1993). However, while identification of models of physical systems can often

1476

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

proceed from first principles (for example, balance equations, energy conservation and so on), the
complexity of biological systems often force a much more experimental approach. The modeller
selects those physical processes believed to be important, constructs a model and checks if solu-
tions match the observed data. If not, the procedure is repeated until an adequate model is found.
For example, a first attempt at modelling oxygen transport to red blood cells may consider a model
that accounted for convection, diffusion and chemical reaction (these are the principal physical pro-
cesses involved). In fact, convection makes a negligible contribution and reaction is only important
for sick lungs. Once it is known that only the diffusion term is important, a parametric equation can
be found relatively easily.

Broadly speaking, system identification can be viewed as “the field of modelling dynamic sys-
tems from experimental data” (Soderstrom and Stoica, 1989). We can distinguish here between:
(a) classical system identification techniques, developed by control engineers and econometricians;
and (b) machine learning techniques for system identification, developed by computer scientists.
While the kinds of models identified by the two kinds of techniques are different, neither provides
a foolproof method that can be employed without user interaction.

Classical system identification has concentrated on models largely constrained to be either ordi-
nary differential equations (ODEs) or linear difference equations of some order. With this constraint
on model structure, the input-output behaviour of the system is observed over a time interval and
some statistical method is used to estimate parameters in the model. In its most general formula-
tion, system identification proceeds by repeated estimation of both structure and parameters until
an acceptable model is found. In practice, a small set of structures are given a priori and the proce-
dure reduces to one of parameter estimation. Classical techniques have been used to identify linear
time-invariant models for purposes of extracting control strategies (in engineering) or time-series
predictions (in economics).

In this paper we are concerned instead with using machine learning techniques for system iden-
tification. Specifically, our interest is in methods that: (a) are not restricted to specific model struc-
tures; and (b) allow the incorporation of domain knowledge both to specify constraints on acceptable
model structures and to direct the search through the space of acceptable structures. We believe both
these features to be necessary in any empirical approach for identifying biological systems from
data. Of the machine learning methods available that are capable of satisfying these requirements,
those developed under the framework of Inductive Logic Programming (ILP) are amongst the most
powerful. There are two reasons for this. First, the rich logic-based formalism used by ILP methods
allows them to represent and identify a wide variety of relational descriptions. Second, ILP meth-
ods are unusual in that they make explicit provisions for the incorporation of domain knowledge to
guide the model identification process. This includes mechanisms for the requirement in (b) above.

One question that is often raised in the context of ILP is that of efficiency. In the context
here, this translates to asking if ILP methods are efficient enough to identify significantly complex
biological models? As long as it is reasonable to identify such models in an incremental manner,
we believe the answer to this question is “yes” and demonstrate this with the identification of four
fairly complex systems at different scales of biological organisation (a predator-prey model at the
ecosystem level; a model for the human lung at the organ level; a model for glucose regulation at
the extra-cellular level; and the glycolysis metabolic pathway at the cellular level).

A second issue, unrelated to the use of ILP, but relevant to the empirical system identification
task is the quantity and quality of data available. The identification of both the structure and pa-
rameter of quantitative models (like ODEs) requires a substantial amount of good quality numerical

1477

SRINIVASAN AND KING

data. While substantial amounts of quantitative data are being generated at some lower levels of
biological organisation (a prominent example is provided by the use of DNA microarray data to es-
timate mRNA levels in a cell), quality is still variable: it is possible, for example to get very different
expression profiles for the same tissue using different microarray technologies (Kuo et al., 2002).
At higher levels (for example, at the organ or ecosystem level), data are sparse, although of perhaps
better quality. In all cases, we believe it to be substantially easier and more reliable to obtain data
that are of a qualitative nature. For example, it may be relatively easier to decide whether certain
metabolites are present or absent in a cell, whether their levels have been increasing or decreasing
and so on, rather than obtain precise measurements of the metabolites. In this paper, we will be
concerned exclusively with system identification from such qualitative data. The resulting models
are non-parametric: that is, parameter estimation is not required and data are only needed to identify
the model structure. Clearly, these qualitative models cannot be treated as being equivalent to their
quantitative counterparts. Nevertheless, they can be used to simulate possible system behaviours
and may be much more understandable to a non-mathematical biologist than a quantitative model
like a differential equation.

The rest of the paper is organised as follows. Section 2 describes an established approach to
qualitative reasoning about dynamic systems. This involves the use of qualitative constraints which
form the building blocks of qualitative models (these models include abstractions of ordinary dif-
ferential equations). Section 3 describes informally the the basics of an ILP system used to identify
qualitative models. This includes a variant that performs an incremental identification of increas-
ingly complex models. Section 5.1 demonstrates this form of identification using a model physical
system. The application to biological systems is in Section 6. Section 7 examines the automatic
identification of stages for the incremental learner. Section 8 concludes the paper. Appendix A
provides details of the ILP system used for incremental system identification. Appendix B provides
details of the procedure for multi-stage decomposition.

2. Constraint-Based Qualitative Reasoning

Figure 1 (slightly modified from Bratko, 2001) shows four different qualitative abstractions of some
numerical statements: (a) numbers are represented by intervals (marked by some distinguished
values like zero,end, inf and so on); (b) derivatives are represented by directions of change (like
inc); (c) functions are represented by monotonic relations (like MPLUS denoting “monotonically
increasing”); and (d) entire sequences of behaviour are represented by qualitative statements that
specify a qualitative values and directions of change.

Reasoning with qualitative abstractions requires a calculus: we propose to use the constraint-
based formulation used in the qualitative simulation program QSIM (Kuipers, 1994) (here we pro-
vide an informal description along the lines described by Bratko 2001). In this, variables take
qualitative values from domains. Domains are defined by a name and some ordered set of distin-
guished values called landmarks. For example, the variable Amount in Fig. 1 could be from the
domain level with landmarks min f ,0, in f . A qualitative state of a variable is usually denoted by
Domain : QVal where QVal is represented as a 〈Qmag,Qdir〉 pair, sometimes written Qmag/Qdir.
Qdir is the qualitative rate of change of the variable, which has a fixed, three-valued resolution (the
three quantities being inc, for increasing; dec, for decreasing; and std, for steady). For example,
the qualitative state of the variable Amount could be level : 0...in f /inc (compare with (d) in Fig. 1).

1478

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

Quantitative Statement Qualitative Statement
(a) Level(3.2 s) = 2.6 cm Level(t1) = zero...in f
(b) d

dt Level(3.2 s) = 0.12 m/s DERIV(Level(t1)) = std
(c) Amount = Level ×Level MPLUS(Level,Amount)

(d) Time Amount
0.0 0.00 Amount(zero...end) =
0.1 0.02 zero...in f /inc
.
.

159.3 62.53

Figure 1: Qualitative abstractions of numerical data (from Bratko, 2001).

The qualitative state of a system is simply a list of the qualitative states of the system’s variables
and a qualitative behaviour is a list of consecutive qualitative states.

Reasoning is accomplished using constraints. In this approach, pioneered by Kuipers (1994),
there are four principal constraints: ADD(A,B,C), for addition of qualitative variables A and B to give
C;1 MULT(A,B,C), to denote A × B = C; MINUS(A,B), for sign inversion A = −B; and DERIV(A,B),
to denote that B is the a derivative of A. In this paper, we will also use SUB(A,B,C) to denote A −
B = C. In addition to these, two functional constraints are also used: MPLUS(A,B), to denote that
when A increases then B increases as well; and MMINUS(A,B), to denote that when A increases then
B decreases. We will henceforth refer to these constraints as “the QSIM constraints”.

Figure 2 shows a qualitative model for a simple physical system, expressed in terms of the QSIM
constraints. A qualitative behaviour of this system—that is, a sequence of qualitative states of the
system variables La, Lb and Fab that satisfy the model’s constraints—is shown in Fig. 3

A number of advantages have been proposed for using qualitative models. First, in some cases
they may be more appropriate than quantitative models. This is particularly so if quantitative mea-
surements are either difficult to obtain or are noisy and what is of interest are the essential properties
of the system. Second, the models are quite comprehensible. Both these features are particularly
relevant to the modelling of biological systems. There is an additional advantage for automatic
system identification of the kind we propose here. Since qualitative models are non-parametric all
computational effort is focussed on identifying the model structure. This typically requires data of
both less precision and quantity than that required for identification of quantitative models.

1. Constraints apply to the qualitative states of A, B and C. Recall that these are of the form Domain : Qmag/Qdir.
Thus, the ADD constraint ensures that both magnitudes and directions of change are consistent. Thus ADD(level :
0/inc, level : 0...in f /std, level : in f /inc) is true, but ADD(level : 0...in f /inc, level : in f /std, level : 0...in f /inc) is
not (0...in f + in f 6= 0...in f). Similarly, ADD(level : 0...in f /inc, level : 0...in f /std, level : 0...in f /inc) is true, but
ADD(level : 0...in f /inc, level : 0...in f /std, level : 0...in f /std) is not (inc+std 6= std). It should also be apparent, that
while quantitative addition is functional (the sum of a pair of numbers is a unique number) , qualitative addition ones
is relational (that is, for a pair of qualitative states for A and B, ADD may be true for more than one qualitative state for
C). Similar remarks apply to the other constraints.

1479

SRINIVASAN AND KING

d
dt

d
dt

La

Lb

Fab

BA
Diagrammatic Model:

+

La

FabFba

Lb Diff

M+

Qualitative Model:

DERIV(La,Fba)
DERIV(Lb,Fab)
ADD(Lb,Diff,La)
MPLUS(Diff,Fab)
MINUS(Fab,Fba)

Figure 2: The U-tube and its qualitative model. There are three (measurable) system variables: the
water-level in arm A (La); the water-level in arm B (Lb); and the flow of water from
A to B (Fab). The diagrammatic model shows the system components involved (two
differentiators, an adder, an inverter, and a monotonic function generator) and their inter-
connections. The qualitative model expresses the same information as a conjunction of
constraints (here, we have used the QSIM constraints described in the paper).

La Lb Fab

level : 0/std level : 0/std f low : 0/std
level : 0/inc level : 0...in f /dec f low : min f ...0/inc
level : 0...in f /dec level : 0/inc f low : 0...in f /dec
level : 0...in f /dec level : 0...in f /inc f low : 0...in f /dec
level : 0...in f /std level : 0...in f /std f low : 0/std
level : 0...in f /inc level : 0...in f /dec f low : min f ...0/inc

Figure 3: A qualitative behaviour of the U-tube that is consistent with the qualitative model in
Fig. 2. The rows are example states of the qualitative variables and have no implied
ordering.

3. Model Identification using Inductive Logic Programming

Given correct definitions for the QSIM constraints, it is our aim in this paper to identify qualitative
models such as that shown in Fig. 2, given qualitative states such as those shown in Fig. 3. Since
the QSIM constraints are relational, automatic identification of such models clearly requires that
the system identification method be able postulate and test relational models. Perhaps the most
powerful framework for learning such models is that provided by Inductive Logic Programming
(ILP, see Muggleton and Raedt, 1994). ILP is concerned with extracting models in an extremely
expressive subset of first-order logic and reasonably efficient implementations have been developed.

To a good first approximation, the basic task addressed by an ILP system can be viewed as
a discrete optimisation problem of finding the lowest cost elements amongst a finite set of alter-
natives. Many ILP systems solve this problem by employing a procedure that searches through a

1480

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

directed acyclic graph representation of possible models. In this representation, a pair of models are
connected in the graph if one can be transformed into another by an operation called “refinement”.
Figure 4 shows some parts of a graph for the U-tube in which a model is refined to another by the
addition of a qualitative constraint. An optimal search procedure (branch-and-bound, for example)
traverses this graph in some order, at all times keeping the cost of the best nodes so far. Whenever a
node is reached where it is certain that it and all its descendents have a cost higher than that of the
best nodes, then the node and its descendents are removed from the search. A portion of the search
tree commencing at /0 for one such search is shown in Fig. 5.

DERIV(La,Fab)

DERIV(Lb,Fba)

DERIV(La,Fab)

ADD(Lb,Diff,La)

ADD(Lb,Diff,La)

DERIV(La,Fab)

DERIV(Lb,Fba)

DERIV(La,Fab)

DERIV(Lb,Fba)

ADD(Lb,Diff,La)

MPLUS(Diff,Fab)

MPLUS(Diff,Fab)

DERIV(La,Fab)

ADD(Lb,Diff,La)

DERIV(La,Fab)

DERIV(Lb,Fba)

MINUS(Fab,Fba)

ADD(Lb,Diff,La)

DERIV(La,Fab)

DERIV(Lb,Fba)

MINUS(Fab,Fba)

MPLUS(Diff,Fab)

DERIV(La,Fab)

DERIV(Lb,Fba)

MINUS(Fab,Fba)

MPLUS(Diff,Fab)

DERIV(La,Fab)

DERIV(Lb,Fba)

ADD(Lb,Diff,La)

MINUS(Fab,Fba)

Φ

ADD(Lb,Diff,La)DERIV(Lb,Fba)MPLUS(Diff,Fab)

DERIV(La,Fab)

MPLUS(Diff,Fab) ADD(Lb,Diff,La)

MINUS(Fab,Fba)ADD(Lb,Diff,La)

...

...
...

...

...

... ...

DERIV(La,Fab) ADD(Diff,Lb,La)MINUS(Fab,Fba)

DERIV(Lb,Fba)

Figure 4: Portions of a refinement graph of models for the U-tube.

Enumerative procedures like branch-and-bound works best if the cost function is monotonic.
That is, the score of each node in the search tree is at least as bad as all its descendents (this allows
the nodes and its descendents to be removed from the search). The procedure is optimal in the sense
that it is guaranteed to find the best solution(s). However in the worst case, it may require examining
the entire search space.

Actually, there is more to an ILP system than search. The principal components of such systems
are:

1481

SRINIVASAN AND KING

ADD(Lb,Diff,La)DERIV(Lb,Fba) MINUS(Fab,Fba)DERIV(La,Fab)MPLUS(Diff,Fab)

MPLUS(Diff,Fab)
DERIV(Lb,Fba)

MPLUS(Diff,Fab)
ADD(Lb,Diff,La)

MINUS(Fab,Fba)
MPLUS(Diff,Fab)

DERIV(La,Fab)
MPLUS(Diff,Fab)

MPLUS(Diff,Fab)
DERIV(La,Fab)
DERIV(Lb,Fba)

MPLUS(Diff,Fab)
DERIV(La,Fab)
ADD(Lb,Diff,La)

MPLUS(Diff,Fab)
DERIV(La,Fab)
MINUS(Fab,Fba)

MPLUS(Diff,Fab)
DERIV(La,Fab)
DERIV(Lb,Fba)
ADD(Lb,Diff,La)

MPLUS(Diff,Fab)
DERIV(La,Fab)
DERIV(Lb,Fba)
MINUS(Fab,Fba)

ADD(Lb,Diff,La)
MINUS(Fab,Fba)

DERIV(Lb,Fba)
DERIV(La,Fab)
MPLUS(Diff,Fab)

Φ

Figure 5: Portions of the search tree explored when searching for models for the U-tube. The search
starts from /0.

1. Background knowledge B. These are statements, usually written in some formal language
that specify domain-specific information. We will include in this domain-specific constraints
on the kinds of models that are acceptable (or unacceptable, if easier); and directions to the
search procedure that allow the system to avoid useless search paths. Examples of these for
qualitative model identification are:

(a) Definitions for qualitative constraints like DERIV, MPLUS, ADD and so on, along with
appropriate dimensionality checks etc. to ensure their correct usage.

(b) A constraint specifying that models must not contain relations that are redundant. For
example, the relation ADD(Diff,Lb,La) is redundant if the model already has
ADD(Lb,Diff,La) (that is, ADD is commutative). The model must respect dimensional

1482

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

constraints. This prevents relations like ADD(Lb,Fab,La) from appearing in the model
(Fab being a flow has different units of measurement to the level Lb).

(c) A directive that the search need not examine models that explain below some proportion
of the observed behaviours (more on “explain” in a moment).

2. Examples E. These are the observed data. For qualitative model identification, these would
be qualitative observations of system behaviour of the form shown in Fig. 3. ILP systems
also accept counter-examples of system behaviour. Since this is difficult to obtain for the
problems we are concerned with, we do not pursue this further here. Given a set of examples,
H is said to explain an observation e if H is consistent with B and e logically follows from B
and H (see Appendix A for a precise mathematical formulation). For example, given correct
definitions for the qualitative constraints DERIV, MPLUS, ADD and MINUS as background knowl-
edge, the qualitative model described by the conjunction DERIV(La,Fab) ∧ DERIV(Lb,Fba)
∧ ADD(Lb,Diff,La) ∧ MPLUS(Diff,Fab) ∧ MINUS(Fab,Fba) is an explanation of the ex-
amples in Fig. 3.

3. Refinement operator ρ. This function defines the set of descendents for each node in the
refinement graph. With most ILP systems, the set of descendents of a node are (minimal)
generalisations or specialisations of the node. Roughly speaking, for qualitative models, gen-
eralisations correspond either: to removing one or more qualitative components from the dia-
grammatic model; or to “disconnecting” qualitative components from each other. Conversely,
specialisations correspond to adding new components or connecting existing components.

4. Cost function f . This is a real-valued function for each node in the refinement graph. As
mentioned earlier, monotonic cost functions are of some importance. A simple cost function
satisfying this property in Fig. 4 is f (H) =−P, where P is the number of examples explained
by model H. If every element H ′ of ρ(H) contains at least one additional constraint, it can be
shown that number of examples explained by H ′ (and recursively, all its descendents) would
be at most P. It follows therefore that the cost of H is no worse than any of its descendents.
In practice such a cost function is too simple to be of use (the search would trivially return
the most general model), and modifications are made either to: (a) incorporate a trade-off
between the explanatory power of the model and its complexity (Muggleton, 1996); or (b)
include additional constraints in the background knowledge that prevent the selection of trivial
models.

A description of an ILP implementation that uses these components can be found in Section A.2.

4. Identification of Qualitative Models

We refer the reader to Coghill et al. (2005) for an extended review of the literature on learning
qualitative models. Briefly, Bratko and colleagues (Bratko et al., 1989; Mozetic, 1987) appear to
have the been the first to use qualitative reasoning to build a static model for the electric activity
of the heart. Coiera’s GENMODEL (Coiera, 1989a,b) was the first machine learning system that
constructed qualitative models for dynamic systems. A special-purpose ILP system, GENMODEL

(and an updated version in Hau and Coiera, 1997) is restricted to finding qualitative relationships
amongst the observed variables only (that is, no intermediate, or hidden, variables are hypothesised).

1483

SRINIVASAN AND KING

Model-identification systems that allowed intermediate variables were developed independently by
Richards et al. (1992) and Bratko et al. (1992). Both use general-purpose ILP learners (although
in different ways) and the principal advantages and shortcomings of these approaches and a later
program called QSI (Say and Kuru, 1996) have been documented elsewhere (Coghill et al., 2005).

More recently, the QOPH system for identifying qualitative models exploited the possibility
of providing the ILP system ALEPH with a special-purpose refinement operator (Coghill et al.,
2002). This operator, with certain “built-in” constraints on acceptable qualitative models, is used
by ALEPH to search the space of possible models. Extensive experiments are reported by Coghill
et al. (2002) on the reconstruction of some model physical systems. While the results are promising,
the scalability of the approach is unclear, since: (a) Model identification is assumed to be possible
in a single step. Some simple complexity arguments (see Section A.2) suggest that the complexity
of this task grows exponentially with the number of constraints in the model (this is the primary
motivation for the incremental approach described in the next section); and (b) The special-purpose
refinement operator is difficult to modify and its properties are difficult to analyse. Although not
using a general-purpose ILP system, Suc and colleagues have proposed a hybrid approach of com-
bining a logic-based qualitative learner followed by numeric modelling to construct quantitative
models of systems (Suc et al., 2003). The approach, called Q2-learning, first constructs “qualitative
model trees”. These are like decision trees, with monotonic QSIM constraints in the leaves. These
constraints are then used to direct the construction of quantitative models (usually linear models).
The success of this approach depends on the availability and quality of numeric data and the sys-
tem being modelled by a composition of quantitative models (for example, like piecewise linear
models).

The advantages of using of a purely qualitative representation for modelling metabolic pathways
has been recently advocated (King et al., 2005). In that paper, a special-purpose system is used
to generate possible models for the glycolysis pathway. The approach we propose here differs
from that in two principal ways. First, it is a general approach as opposed to a specialised one for
metabolic pathways. Second, the complexity of the implementation by King and his co-workers
is of the same order as QOPH implementation. The incremental approach described in the next
section will usually be significantly more efficient.

5. Incremental Model Identification with ILP

Modern ILP systems are largely “one-shot” model constructors. That is, given B,E,ρ and f , they
attempt to identify models with the lowest cost in a single search. While this approach has been rea-
sonably successful in the identification of small to medium-sized models (for example, qualitative
models containing no more than 4 to 5 constraints), it is unclear whether the approach can scale up
to the identification of substantially complex models. For example, the worst-case bound in Remark
2 in Section A.2 grows exponentially in the number of qualitative constraints in the model.

An obvious approach to control this increase in complexity is to decompose system identifica-
tion into a series of stages, with the final model being some composition of models obtained at each
stage. In this paper we use a simple incremental composition in which models identified at any
stage are modified at the next stage. That is, one or more models are identified for the first stage
(these are all the models consistent with the background knowledge and have the lowest cost). Each
of these are then used to give models for the next stage and so on. This is easily achieved by starting
the search at each stage at nodes in the refinement graph corresponding to the models found at the

1484

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

previous stage. Formally the incremental learner is principally provided with: (a) an initial set of
models H0; (b) a sequence of pairs (Bi,Ei) corresponding to the background knowledge and exam-
ples for each stage i (the Bi and Ei do not all have to be different); (c) a general-purpose refinement
operator ρ for all stages; and (d) a cost function f for all stages. The task of the incremental learner
is to construct a set of models from this data (see Fig. 6 and Appendix A).

H i−1
H i

B i E i

L

ρ f

(a)

B2 E2 ρ f

L

B1 E1 ρ f

L

Bn En ρ f

LH H
0 n

(b)

Figure 6: Incremental model identification with ILP. The basic element shown in (a) consists of an
ILP learner L that takes as input a set of models, background knowledge, examples, a
refinement operator ρ and a cost function f . In (b), this basic unit is repeatedly used to
construct a model in n stages. “One-shot” model identification by normal ILP systems is
a special case of this process, with n = 1 and H0 = { /0} (here /0 denotes the empty model).

The actual implementation in Section A.2 contains some additional aspects which are not shown
in Fig. 6 (and similar figures in Section 6) for simplicity:

1. A refinement operator that performs both generalisations and specialisations can completely
revise models found at a previous stage. However, this is computationally expensive. In-
stead, we use a refinement operator ρA that is restricted to performing specialisations only
(for qualitative models, this amounts to adding qualitative constraints and connecting exist-
ing qualitative components). To correct partially for this shortcoming, models are subject to
a limited generalisation before submission to any L. For qualitative models, this translates
to retaining the qualitative components found at the previous stage but disconnecting some
or all components, respecting any constraints provided on the usage of the components (in
ILP terminology, this amounts to removing variable co-references, respecting any language
constraints provided). This allows the incremental procedure to perform a particular kind of
revision of models found at the previous stage;

2. Logically redundant models produced by any L are removed and a subset of the result is
selected randomly;

1485

SRINIVASAN AND KING

3. A cost function fBayes described in Muggleton (1996) is used. For qualitative models, this per-
forms a trade-off between the likelihood of a qualitative model and its complexity (a quantity
related to the number of constraints in the model); and

4. An upper-bound is provided on the amount of search to be conducted by any L.

B i E i

H i−1 H i
L

ρ f

G S

A Bayes

Figure 7: A more accurate representation of the implementation of the basic element used in this
paper. Here G performs a limited generalisation of the input models, and can be eliminated
for refinement operators that perform both generalisations and specialisations. S performs
a random selection of the output models and can be eliminated if all models produced by
L are sent to the next stage. ρA is a refinement operator that performs specialisations
only; and fBayes is a Bayesian cost function. For simplicity, we will not show G and S in
subsequent figures.

A more accurate representation of the basic element of the incremental learner, as implemented
by the procedures in Section A.2, is shown in Fig. 7. With these implementation choices it can
be shown that, for identification of qualitative models, the size of the search space of such an in-
cremental procedure is dominated by maximum number of additional qualitative constraints that
need to be identified at any one of the stages (see Section A.2 for the details). The savings over a
non-incremental approach can be substantial, but two points are worthy of re-emphasis:

1. The incremental approach requires that a domain-specific decomposition into stages should
be possible (by providing background knowledge and observational data for each stage); and

2. We can only guarantee correctness of the incremental approach to the extent that any model
identified for a stage will logically entail the observations for that stage (given the background
knowledge). The approach cannot, however, provably identify the lowest cost model in the
search space. This follows naturally from the fact only lowest cost models are retained at the
end of each stage: unless the cost function exhibits a form of monotonocity with stages (or we
are simply constructing models in a single-stage), this is tantamount to using a greedy search,
which is known to be sub-optimal.

These caveats aside, the incremental approach can be used either: (a) as a “single-shot” model
constructor; or (b) to refine approximate models; or (c) to build increasingly larger models using
sub-components of smaller ones. In the next section, we illustrate (c) using a model physical system.

1486

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

5.1 Incremental Qualitative Model Identification: An Example

We consider identifying the qualitative model of the coupled-tanks system shown in Fig. 8. The
measurable system variables are these: the input, InflowA, that pours into the top of tank A; the
output, OutflowB, that pours out of the base of tank B; the flow of water from A to B, Fab; and the
water-levels La and Lb.

Qualitative Model:

,

ADD(NetflowB,OutflowB,Fab)
ADD(Fab,NetflowA,InflowA)

MPLUS(Lb,OutflowB)
MPLUS(Diff,Fab)
ADD(Lb,Diff,La)
DERIV(Lb,NetflowB)
DERIV(La,NetflowA)

InflowA

A

LbLa

Fab

OutflowB

B

Figure 8: A system comprised of two coupled tanks and its qualitative model.

The coupled tanks system consists of two tanks connected together. This allows us to decompose
the identification of this model into two stages. In the first stage, we focus on identifying a model
for tank B, using the single tank system in Fig. 10 (often called the “bathtub” system in qualitative
modelling literature). Any consistent models identified for the single tank system are then extended
to return final models for the coupled tanks system (see Fig. 9).

B1 E1 B2 E2 ρ f

L

Coupled tank observations
(with data from Tank A ignored)

Coupled tank observations
(with data from both tanks)

QSIM constraints

Coupled tank model constraints
General model constraints

Mode declarations

QSIM constraints

Single tank model constraints
General model constraints

Mode declarations

{φ}

ρ f

L Single Tank
Models

Coupled Tank
Models

A ABayes Bayes

Figure 9: Incremental model identification for the coupled tanks system. Models are first identified
by L for a single tank system. These are then refined by L to models for the coupled
tank system. The term “mode declarations” is used in the sense described in Muggleton
(1995) and refer to statements that provide domain and connectivity information for the
qualitative variables.

1487

SRINIVASAN AND KING

We note in passing that the final model for the coupled tanks is not simply a conjunction of two
single tank models. This conjunction would not capture the fact that the flow from tank A to B is
related to the difference in levels of fluid in A and B. The conjunction of the two models is, in fact,
an appropriate model for the system of cascaded tanks shown in Fig. 11.

Qualitative Model:

Outflow

L

Inflow

DERIV(L,Netflow)

ADD(Outflow,Netflow,Inflow)
MPLUS(L,Outflow)

Figure 10: A single tank system with an input and output. The system variables are Inflow,
Outlflow and , L.

Qualitative Model:

InflowA

,

DERIV(La,NetflowA)

A

B

OutflowB

Lb

La

OutflowA
MPLUS(La,Fab)
ADD(OutflowA,NetflowA,InflowA)

DERIV(Lb,NetflowB)
MPLUS(Lb,OutflowB)
ADD(NetflowB,OutflowB,OutflowA)

Figure 11: A system comprised of two cascaded tanks. The qualitative model is simply a conjunc-
tion of two single tank models.

We elaborate further on the elements in Fig. 9:

1. Background knowledge. This is comprised of the following components:

(a) Correct definitions of the QSIM constraints. Our definitions are based on those in Bratko
(2001);

(b) A set of general constraints on “well-posed” qualitative models. We describe these in
more detail below;

1488

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

(c) Stage-specific constraints on the models constructed. This consists of specifying the
number of qualitative constraints in the final model for each stage. This is 3 for Stage 1
(the single tank model) and 7 for Stage 2 (the coupled tanks model); and

(d) Stage-specific “mode” declarations similar to the description in Muggleton (1995) that
provide domain and connectivity information for the qualitative variables (see Fig. 12);

2. Examples. These are in the form of qualitative states for the system variables. Recall that
for the coupled tanks system these are: La, Lb, InflowA, Fab and OutflowB (see Fig. 8).
Clearly, flows and levels cannot be negative: we are further only interested in a system with
a steady, non-negative input flow. That is, the only valid qualitative state for InflowA is
f low : 0...in f /std. OutflowB, on the other hand, can be any one of f low : 0/std, f low : 0/inc,
f low : 0...in f /std, f low : 0...in f /inc, f low : 0...in f /dec. The level of water La or Lb for the
system can similarly assume any of the following qualitative states: level : 0/std, level : 0/inc,
level : 0...in f /std, level : 0...in f /inc, level : 0...in f /dec. Examples for Stage 1 ignore the
values observed for levels and flows for Tank A (that is, La and InflowA are ignored: this can
be easily specified using the mode declarations). Some observations for Stage 1 are shown in
Fig. 13. Examples for Stage 2 contain the qualitative states of all the system variables.

3. Refinement operator and cost function. These are the operator ρA and fBayes described earlier.

5.2 General Constraints on “Well-posed” Models

In Coghill et al. (2005), the term “well-posed” qualitative models is used to denote those models
that satisfy a number of domain-independent constraints. We use the the following constraints from
that report:2

1. Size. A well-posed model must be of a particular size (measured by the number of qualitative
constraints).

2. Completeness. The model must contain all the measured variables.

3. Language. The number of instances of any qualitative constraint in a well-posed model should
be below some prescribed number.

4. Sufficiency. The model must adequately explain the observed data. By “adequate”, we intend
to acknowledge here that due to noise in the measurements, not all observations may be
logical consequences of the model.3 The percentage of observations that must be explainable
in this sense is a user-defined value.

5. Redundant. The model must not contain relations that are redundant. For example, the rela-
tion ADD(Inflow,Outflow,X) is redundant if the model already has ADD(Outflow,Inflow,X).

2. This list excludes two constraints from the report: the “Determinate” constraint can be effectively enforced by the
“Size” constraint. The “Connected” constraint that requires all intermediate variables should appear in at least two
qualitative constraints is enforced by the more general “Irrelevant variables” constraint here. All the constraints are
assumed to be encoded in the background knowledge for any given stage.

3. Strictly speaking, the model in conjunction with the background knowledge.

1489

SRINIVASAN AND KING

Modes:
DERIV(+level,-flow)
ADD(+level,+level,-level) ADD(+level,-level,+level)
ADD(+flow,+flow,-flow) ADD(+flow,-flow,+flow)
MPLUS(+level,-level) MPLUS(+level,-flow)
MPLUS(+flow,-flow) MPLUS(+flow,-level)
MMINUS(+level,-level) MMINUS(+level,-flow)
MMINUS(+flow,-flow) MMINUS(+flow,-level)
MINUS(+level,+level) MINUS(+flow,+flow)

A legal model:
MPLUS(L,Outflow)
DERIV(L,Netflow)
ADD(Outflow,Netflow,Inflow)

Two illegal models:
MPLUS(L,Outflow)
DERIV(L,Netflow)
ADD(Outflow,L,Inflow)
(ADD cannot add flows to levels)

MPLUS(L,Outflow)
ADD(Netflow,Outflow,Inflow)
DERIV(L,Netflow)
(ADD needs Netflow to be known)

Figure 12: Example “mode” declarations for the qualitative constraints. For example, the mode
declaration ADD(+level,+level,-level) states that given values from domain “level”
for the the first two arguments, ADD computes a value for the third argument (also from
domain “level”). This is thus a simple form of dimensionality check. This prevents the
ILP system from constructing model M2 (in which a variable from a “flow” domain is
added to one from a “level” domain).

Fab OutflowB Lb

f low : 0...in f /std f low : 0/std level : 0/inc
f low : 0...in f /std f low : 0...in f /inc level : 0...in f /inc
f low : 0...in f /std f low : 0...in f /dec level : 0...in f /dec
f low : 0...in f /std f low : 0...in f /std level : 0...in f /std

Figure 13: Some example observations of the relevant system variables for identification of a single
tank model. No ordering is implied amongst these observations.

6. Contradictory. The model must not contain relations that are contradictory given other rela-
tions present in the model.

7. Dimensional. The model must contain relations that respect the dimensionality of the vari-
ables involved (this prevents, for example, constraints like ADD(Inflow,L,...) from ap-
pearing in models for the single-tank system).

8. Single. Well-posed models should not contain two or more disjoint sub-models.

1490

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

9. Causal. The model must be causally ordered (Iwasaki and Simon, 1986). In a simple sense,
this requires a variable that appears on the right-hand side of a (qualitative) arithmetic con-
traint should have appeared on the left-hand side of a constraint earlier in the sequence.

The following constraints on the qualitative variables were also used. These are ad-hoc, but were
nevertheless found to be extremely effective in constraining the space of possible models:

10. New variables. A well-posed model can contain no more than some prescribed number of
new, or “hidden”, variables. Increasing this number usually increases the value of b in Remark
3 (this is equal to 1 for the single tank model: the hidden variable is Netflow).

11. Irrelevant variables. Variables in one constraint that are never used by another constraint are
taken to be irrelevant. A well-posed model can contain no more than some prescribed number
of irrelevant variables (this is equal to 0 for the single tank model).

12. Distinct variables. All variables in any constraint are distinct.

13. Dynamic variables. Well-posed models must include DERIV constraints for any pre-specified
“dynamic” variables (these are variables that are known to change with time).

With these inputs, we summarise the results of using incremental model construction to identify
a model for the coupled tanks system. Model construction proceeds in two stages. In the first stage,
we attempt to identify a single tank model, by ignoring observations for levels and flows in tank A.
Figure 14 shows the well-posed models identified by the system. The model with the lowest cost
is extended in an attempt to identify a model for the coupled tanks system. Recall that the models
selected from Stage 1 are subject to a limited form of generalisation before attempting to identify a
model in Stage 2. The result of this generalisation step is shown in Figure 15. Each of these models
are extended in Stage 2 to construct final models for the coupled tanks system: the results are in
Fig. 16 (the fourth one is the correct model for the system).

Model No. Model Cost
1 MPLUS(Lb,OutflowB) −9.13

SUB(Fab,OutflowB,NetflowB)
DERIV(Lb,NetflowB)

2 SUB(OutflowB,Fab,NetflowB) −5.37
MMINUS(Lb,E)
DERIV(E,NetflowB)

3 SUB(Fab,OutflowB,NetflowB) −5.37
MPLUS(Lb,E)
DERIV(E,NetflowB)

4 SUB(Fab,OutflowB,NetflowB) −5.37
DERIV(Lb,E)
MPLUS(NetflowB,E)

5 SUB(Fab,OutflowB,NetflowB) −5.37
DERIV(Lb,E)
MMINUS(NetflowB,E)

Figure 14: Well-posed models for the single tank system identified by the first stage of incremental
learning. Only the lowest cost model is returned: the rest are shown here for illustrative
reasons.

1491

SRINIVASAN AND KING

Model No. Model Model No. Model

1 MPLUS(Lb,OutflowB) 2 MPLUS(Lb,OutflowB)
SUB(Fab,OutflowB,NetflowB) SUB(Fab,OutflowB,NetflowB)
DERIV(Lb,NetflowB) DERIV(Lb,G)

3 MPLUS(Lb,F) 4 MPLUS(Lb,F)
SUB(Fab,OutflowB,NetflowB) SUB(Fab,OutflowB,NetflowB)
DERIV(Lb,NetflowB) DERIV(Lb,H)

5 MPLUS(Lb,F)
SUB(Fab,F,NetFlowB)
DERIV(Lb,NetFlowB)

Figure 15: Generalisations of the lowest cost model for the single tank system. These models are
extended to identify models for the coupled tank system.

Model No. Model Model No. Model

1 MPLUS(Lb,OutflowB) 2 MPLUS(Lb,OutflowB)
SUB(Fab,OutflowB,NetflowB) SUB(Fab,OutflowB,NetflowB)
DERIV(Lb,NetflowB) DERIV(Lb,NetflowB)
SUB(InflowA,Fab,NetflowA) SUB(InflowA,Fab,NetflowA)
DERIV(La,NetflowA) DERIV(La,NetflowA)
ADD(OutflowB,NetflowA,H) ADD(NetflowB,NetflowA,H)
ADD(NetflowB,H,InflowA) ADD(OutflowB,H,InflowA)

3 MPLUS(Lb,OutflowB) 4 MPLUS(Lb,OutflowB)
SUB(Fab,OutflowB,NetflowB) SUB(Fab,OutflowB,NetflowB)
DERIV(Lb,NetflowB) DERIV(Lb,NetflowB)
SUB(InflowA,Fab,NetflowA) SUB(InflowA,Fab,NetflowA)
DERIV(La,NetflowA) DERIV(La,NetflowA)
MPLUS(InflowA,H) MPLUS(Fab,Diff)
MMINUS(InflowA,H) ADD(Lb,Diff,La)

5 MPLUS(Lb,OutflowB)
SUB(Fab,OutflowB,NetflowB)
DERIV(Lb,NetflowB)
SUB(InflowA,Fab,NetflowA)
DERIV(La,NetflowA)
MPLUS(NetflowB,Diff)
ADD(Lb,Diff,La)

Figure 16: Well-posed models identified for the coupled tank system. These were obtained by
extending the lowest-cost model obtained for the single tank system in Fig. 14 (these
are the first three constraints in all the models here). All models shown here have equal
(lowest) cost. Model 4 is the target model

The coupled tank system identification task can clearly be decomposed into two stages: the
identification of the single tank system consisting of 3 qualitative constraints, followed by its ex-
tension by 4 further constraints. It is instructive to illustrate the gain in efficiency from using the
incremental procedure. Figure 17 shows the comparative effects of: (1) No decomposition. We

1492

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

attempt to identify all seven constraints in a single stage (this is the “one-shot” approach); and (2)
Correct decomposition. The single tank model is identified in Stage 1, and then extended to the
coupled tank model in Stage 2. This resulted in the models in Figs. 14 and 16.

Figures 16 and 17 illustrate two points we wish to draw attention to about the procedure we
have employed, namely:

1. The result may not be a unique model. For the identification of biological systems about
which little is known, we do not see this as being a hindrance; and in many cases may even
be preferable. New experiments could be proposed to discriminate between the models.

2. Decomposition can significantly increase the efficiency of system identification. No great
significance should also be attached to the fact that the correct model is identified even
with inappropriate decompositions—recall that the greedy search procedure employed is sub-
optimal—although the robustness demonstrated is heartening, since in practice we may not
be in a position to know the correct decomposition.

Decomposition Correct Model Time Taken
Identified?

None Yes > 5 days
Correct Yes 2037 seconds

Figure 17: The effect of decomposition on system identification. The ILP system without decom-
position was halted after 5 days of execution.

Finally, while most of the constraints 1–9 on well-posed models are motivated by some well-
understood principles underlying qualitative reasoning, the constraints 10–13 on qualitative vari-
ables are not. Figure 18 provides some empirical justification for the use of these constraints, by
illustrating the proportion of a (uniform) random sample of 10,000 models, all of which satisfy
constraints 1–9, but fail these constraints. Based on this proportion constraint 13 has the single
strongest effect, followed by 12, 11, and 10.

6. Applications to Biological Systems

In this section we demonstrate the application of the incremental technique described to biological
system identification. The demonstrations here serve a dual purpose. First, they are intended to
illustrate the ability of a general-purpose ILP system to identify qualitative models for biological
systems at significantly different scales of organisation. For this, we have elected to examine mod-
elling problems at the ecosystem, organ, extra-cellular and cellular levels. Second, we intend to
demonstrate the ability of the incremental approach proposed to construct models in three different
ways: in a single stage without providing any initial model (thus acting as a ”one-shot” system
identifier); in a single stage by refining an approximate model provided; and in multiple stages. In
all cases, the ILP system will use the refinement operator and cost function described in Appendix
A. The background knowledge will also largely be the same, consisting of definitions for qualitative
constraints. All tasks are of a re-constructive nature and examples are observations generated using

1493

SRINIVASAN AND KING

Constraint Description Estimate of Proportion of Models
Eliminated

10. New variables New variables = 1 33.07%
New variables = 2 8.84%

11. Irrelevant variables Irrelevant variables = 0 73.81%
Irrelevant variables = 1 33.15%

12. Distinct variables Distinct variables = true 98.52%
Distinct variables = false 0.00 %

13. Dynamic variables Dynamic variables = true 100.00%
Dynamic variables = false 0.00 %

Figure 18: Estimates of the reduction in the search space by the constraints introduced on qualita-
tive variables. The last column represents the proportion of 10,000 models that satisfy
the constraints 1–9 described in Coghill et al. (2005) but fail the corresponding con-
straint in the second column.

the target qualitative model. The goal in each case is to examine if this target model is amongst the
models identified by the ILP system. More details can be found in Section A.3.

6.1 Ecosystem-Level System Identification

In this section we consider a problem in modelling the dynamics of populations. Specifically we are
concerned with identification of a predator-prey model, following the description in Todorovski and
Džeroski (2001), which in turn is based on mathematical models developed for the same problem
in Murray (1993).

The ecosystem considered is a simple one consisting of populations of predator and prey
species—foxes and rabbits, say—that interact in the following manner. Assume that foxes only
eat rabbits and that rabbits only eat grass, of which there is an unlimited supply. If the rabbit popu-
lation is large, the fox population grows. In turn, many rabbits are eaten, resulting in a fall in their
numbers. A smaller number of rabbits causes more foxes to die of starvation. Fewer foxes then
causes an increase in the rabbit population, which leads to the entire cycle being repeated. This kind
of oscillatory behaviour of the two populations is shown in Fig. 19(a). The dynamics of the popu-
lations can be modelled using the Lotka-Volterra model, a variant of which is shown in Fig. 19(b).
Under certain simplifying assumptions described, the qualitative model is in Fig. 19(c).

We examine reconstructing the model in Fig. 19(c) by using the incremental ILP system as a
single-shot model constructor. For this, the ILP system is provided with: (a) the same background
knowledge as in Section 5.1; (b) example observations of system behaviour generated using the
target model in Fig. 19(c); and (c) the refinement operator and the Bayesian cost function described
in Appendix A. The incremental search procedure commences with an empty model (by convention,
denoted by /0) as the initial hypothesis (see Fig. 20).

The results are shown in Fig.21. Model 1 is the target model. All models were constructed in a
single-stage containing 6 qualitative constraints, in approximately 65 seconds of processor time.

1494

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

Prey (N)

Predator (P)

Time

Population

(a)

dN
dt

= g(N)− c(P)

dP
dt

= c(P)−d(P)

(b)

M+
d
dt

d
dt M+

− +

N

Qualitative Model:

DERIV(N,Ndot)

MPLUS(N,G) ,
MPLUS(P,D)
SUB(G,Pdot,P1)
ADD(P1,D,Ndot)

Diagrammatic Model:

P

DERIV(P,Pdot)

(c)

Figure 19: Modelling predator-prey populations. The changes in populations are shown graphically
in (a). There are two system variables: the predator population (P) and the prey popu-
lation (N). At any given point in time, these variables satisfy the differential equation
model in (b). This is a general form of the Lotka-Volterra model for population dynam-
ics. The terms in the model are as follows: g(N) represents the growth-rate of the of
the prey in the absence of predators; c(P) is the consumption rate of the predators; and
d(P) is the decay-rate of the predators. Under the simple assumptions of g(N) ∝ N and
d(P) ∝ P, the corresponding qualitative model is in (c).

1495

SRINIVASAN AND KING

QSIM constraints

Predator−prey model constraints
General model constraints

Mode declarations

{φ}

ρ f

L Predator−prey
Models

A Bayes

Predator−prey observations

B E

Figure 20: Incremental model identification of predator prey models.

Model No. Model Model No. Model

1 DERIV(P,Pdot) 2 DERIV(P,Pdot)
DERIV(N,Ndot) DERIV(N,Ndot)
ADD(Pdot,Ndot,E) ADD(Pdot,Ndot,E)
MPLUS(P,F) MPLUS(P,F)
SUB(E,F,G) SUB(E,F,G)
MPLUS(N,G) MMINUS(N,G)

3 DERIV(P,Pdot) 4 DERIV(P,Pdot)
DERIV(N,Ndot) DERIV(N,Ndot)
ADD(Pdot,Ndot,E) ADD(Pdot,Ndot,E)
MPLUS(N,F) MMINUS(P,F)
SUB(E,F,G) SUB(E,F,G)
MMINUS(P,G) MMINUS(N,G)

5 DERIV(P,Pdot)
DERIV(N,Ndot)
ADD(Pdot,Ndot,E)
MPLUS(N,F)
SUB(F,E,G)
MINUS(P,G)

Figure 21: Predator-prey models identified. The target model in Fig. 19(c) is Model 1.

6.2 Organ-Level System Identification

In this section we consider identification of a qualitative model for the human lung. The primary
function of the lung is to act as a gas-exchanger. Exchange of gases across a barrier occurs simply
because of a difference in pressures. The pulmonary artery carrying blood from the heart contains
low concentrations of oxygen and high concentrations of carbon dioxide (at a constant tempera-
ture, the concentrations of the gases are proportional to their partial pressures). Oxygen diffuses
across the barrier into the blood (and carbon dioxide diffuses into the lung), where is carried by
haemoglobin molecules in the pulmonary vein to the heart. This oxygenated blood is then pumped
by the heart to the rest of the body using the arterial network. A model of the lung acting in this man-

1496

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

ner is shown in Fig. 22. The model is constructed using partial pressures of a measurable “marker”
gas. A simplification of the model in Fig. 22(c) results from ignoring the blood vessels and treating
the lung as a simple gas chamber as shown in Fig. 23(a). The resulting differential equation model
is in Fig. 23(b) and the qualitative model is in Fig. 23(c).

We examine reconstructing a model for the lung by providing the ILP system with the approx-
imate model Fig. 23(c): we are interested in investigating whether the ILP system can refine this
to the model in Fig. 22(d). The ILP system is provided with: (a) the same background knowledge
as in Section 5.1, with additional mode declarations needed for the MULT constraint; (b) example
observations of system behaviour generated using the target model in Fig. 22(d); (c) the usual re-
finement operator and cost function. The incremental search is provided with an intial hypothesis
consisting of an approximate model for the lung: MULT(Va,Pa,F), MULT(Vid,Pi,G), DERIV(F,G)
(see Fig. 24).4

The results, shown in Fig.25, were obtained in 528 seconds of processor time. We note here that
model identification required a generalisation of the approximate model provided (DERIV(F,G) is
changed to DERIV(F,H)). Model 2 is the correct model.

6.3 Extra-Cellular System Identification

We use glucose-insulin balance in the human body as a third test case for incremental system iden-
tification by ILP. Hormones are chemical messengers, usually small proteins, that play a regulatory
role in an organism. Of these, the best known is probably insulin, the first protein whose structure
was determined (the amino acid sequence, or primary structure, was determined in 1953 by Sanger
and Tuppy). The role of insulin is primarily in maintaining the balance of glucose in the blood.
Glucose is used as a source of energy by the central nervous system and by the muscles, and as a
source of fat by adipose tissue and the liver, that stores it in the form of a starch called glycogen
(see Fig. 26a). If the concentration of glucose in the blood rises too high (usually after digestion of
food in the small intestine) then specialised cells in the pancreas are stimulated to produce insulin,
by a process involving glycolysis (which we consider in the next section). The presence of insulin
signals muscles, fat tissue and the liver to consume glucose, thus lowering it content in the blood.
This lower amount of glucose in turn inhibits the production of insulin, and sugar levels rise again
until a balance is achieved. This feedback process is not dissimilar to the functioning of a thermo-
stat to maintain a constant temperature in a house. A model of this regulatory mechanism is shown
in Fig. 26(b). The model is from Clancy and Kuipers (1994), and is based on a compartmental
differential equation model developed by Ironi and Stefanneli (Ironi and Stefanelli, 1994).

Our goal is to reconstruct the qualitative model in Fig. 26(b) using by starting from the empty
model. We examine identification of the full model in two stages: the first stage being concerned
with identifying the insulin component (the first three constraints in the qualitative model) and the
second, the glucose component (the remaining six constraints in the model). As before, the ILP sys-
tem is equipped with: (a) QSIM relations and their definitions along with additional model-specific
constraints; (b) example observatons of system behaviour using the target model in Fig. 26(b); and

4. This is provided a priori. In this paper, we do not address how such an hypothesis could have been reached: one
possible means could be using the kind of simplified reasoning shown in Fig. 23. There is, of course, nothing
preventing the incremental learner described here to start from the empty model /0 and construct increasingly better
approximations. This would, however, require observational data: something we cannot obtain for the lung model in
Fig. 23 (it is impossible to ignore the blood vessels in real-life).

1497

SRINIVASAN AND KING

Ci

Va

Par Pv

Blood

Gas

Vid (rate at which air is taken in)

(partial pressure of marker gas in inspired air)

LUNG

(volume of the lung)
Pa

(partial pressure of marker
gas in the lung)

(partial pressure of marker
gas in the pulmonary artery)

(partial pressure of marker
gas in the pulmonary vein)

PULMONARY ARTERY PULMONARY VEIN

θ PD
(rate of flow of blood)

(a)

d
dt

(Va Pa) = (Vid Pi)− (λ θPD (Par−Pv))

(b)

d
dt

(Va Pa) = (Vid Pi)− (λ θPD (Pa−Pv))

(c)

*

M+

+

*

Vid Pi

M+

+

d
dt

Pa Va

Pv

X

Z3

Z2

Y

Z1Z

Qualitative Model:

MULT(Pa,Va,X)
MULT(Vid,Pi,Y)
MPLUS(Pa,Z) ,
ADD(Z,Z1,Y)
MPLUS(Pv,Z2)
ADD(Z1,Z2,Z3)
DERIV(X,Z3)

Diagrammatic Model:

(d)

Figure 22: A model for the human lung. In this model, the marker gas is nitrous oxide. There are
seven system variables: the rate of inspiration (Vid); the concentrations of the marker
gas in the inspired air (Ci, which is taken to be proportional to the partial pressure Pi)
and in the lung (Ca, proportional to the pressure Pa); the volume of the lung cavity (Va);
the rate of flow of blood θPD; and the partial pressures in the artery Par and the vein
Pv. On each inspiration, the variables satisfy the differential equation (b). The equation
(c) represents the same quantitative model with the assumption that Pa = Par, which is
reasonable when air is breathed in. The corresponding qualitative model is in (d).

1498

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

Ci

Va

Vid (rate at which air is taken in)

(concentration of marker gas in inspired air)

LUNG

(volume of the lung)
Ca

(concentration of marker
gas in the lung)

(a)

d
dt

(Va Pa) = (Vid Pi)

(b)

d
dt

*

*

Diagrammatic Model:

Pi

Pa Va

X

Y

Vid

Qualitative Model:

MULT(Va,Pa,X)
MULT(Vid,Pi,Y)
DERIV(X,Y) ,

(c)

Figure 23: A simplified model of the lung. Ignoring the blood vessels altogether effectively views
the lung as the simple gas chamber shown in (a). The resulting quantiative model is in
(b) and the corresponding qualitative model is in (c).

1499

SRINIVASAN AND KING

QSIM constraints

Lung model constraints
General model constraints

Mode declarations

ρ f

L
Models

A Bayes

Lung observations

B E

Model
Approximate Lung Lung

Figure 24: Incremental model identification of lung models.

Model No. Model Model No. Model

1 MULT(Va,Pa,F) 2 MULT(Va,Pa,F)
MULT(Vid,Pi,G) MULT(Vid,Pi,G)
DERIV(F,H) DERIV(F,H)
SUB(Pv,Pa,J) SUB(Pv,Pa,J)
SUB(H,G,I) SUB(H,G,I)
MPLUS(I,J) MMINUS(I,J)

3 MULT(Va,Pa,F) 4 MULT(Va,Pa,F)
MULT(Vid,Pi,G) MULT(Vid,Pi,G)
DERIV(F,H) DERIV(F,H)
SUB(Pv,Pa,I) SUB(Pv,Pa,I)
SUB(H,I,J) SUB(H,I,J)
MPLUS(J,G) MMINUS(J,G)

Figure 25: Lung models identified, given the approximate model MULT(Va,Pa,F),
MULT(Vid,Pi,G), DERIV(F,G). The target model in Fig. 22(d) is Model 2.

(c) the refinement operator ρA and cost function fBayes. The full system identification process is
shown in Fig. 27.

Little difficulty was encountered in identifying the correct constraints for the insulin stage in
no more than 1 second of processor time. However, we found it substantially harder to identify
the correct constraints for the glucose stage. The principal problems were: (a) a large number of
models—over 40, including the one sought—were consistent with the constraints provided; and (b)
model evaluation in some cases was extremely slow. We have found two additional constraints to
be very useful in reducing the number of models. First, we prevent additions of exogeneous and
plasma levels of the same substances (for example, additions of Iin and I, or Gin and G). Some
plausible justification of this is possible, on the grounds that the two levels are closely related to
each other. Second, we prevent monotonic functions of exogeneous inputs Gin and In, requiring
these to be approximated by functions of their counterparts in the blood (that is, G and I). In addition,

1500

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

Small Intestine

Glucose

Glucose

Central Nervous System

Insulin

Glucose

Glucose

Glucose

Food

Pancreas Fat Tissue

Muscles

Liver

(a)

d
dtM+

+

S+

M+

S+

+

d
dt

+

DIIout

Iin

I

G

Gx

Ig

DG

Gout

Gin

Qualitative Model:

DERIV(G,DG)
SPLUS(G,Iin)
MPLUS(G,Gx)
SPLUS(I,Ig)

MPLUS(I,Iout)
DERIV(I,DI)

SUB(Iin,Iout,DI)

ADD(Gx,Ig,Gout)
SUB(Gin,Gout,DG)

Diagrammatic Model:

(b)

Figure 26: Glucose regulation in the blood, shown pictorially in (a), and modelled qualitatively in
(b). In the model, Gin refers to the glucose intake (in the form of food) and Iin, the
insulin produced by the pancreas. G and I are the glucose and insulin levels in the blood.
Gx is the insulin-independent consumption of glucose by the central nervous system and
Ig the insulin-dependent consumption of glucose by the muscles, fat tissue and the liver.
The qualitative model in Clancy and Kuipers (1994) utilises a sigmoid function SPLUS.
For the model here, we use the standard MPLUS function, which is consistent with the
original formulation in Ironi and Stefanelli (1994)

.

1501

SRINIVASAN AND KING

B1 E1 B2 E2

{φ}

ρ f

L
Models

A Bayes

Models

A Bayesρ f

L

QSIM constraints

Insulin model constraints
General model constraints

 Glucose−Insulin Insulin Stage

Glucose stage observationsInsulin stage observations

QSIM constraints

Glucose model constraints
General model constraints

Mode declarations Mode declarations

Figure 27: Incremental model identification of models for glucose regulation.

substantially more restrictive mode declarations than in other cases were needed to restrict the search
space. Further, we restrict the search to occupy no more than 10,000 seconds of processor time. With
these ad hoc constraints in place, we are able to repeat model identification using the two stages.
The correct insulin model is obtained as before and the results after the glucose stage are shown
in Fig.28. Model 3 is equivalent to the target model, given the equivalence of SPLUS and MPLUS in
experiments here.

6.4 Cell-Level System Identification

We use the glycolysis pathway as the final test case for incremental system identification by ILP.
Glycolysis is the archetypal pathway. It was historically one of the first to be unravelled, with Otto
Meyerhof winning the Nobel prize for discovering key steps in it. Specifically, Meyerhof and col-
leagues “. . . were unusually accomplished in breaking down glycolysis into its many separate com-
ponents, analysing each step separately, then reassembling the constituent parts within an overall
system.”5 Glycolysis still presents a challenge to model accurately. The special interest here is that
it is significantly different in nature to the models considered so far in the paper, which have all been
abstractions of ordinary differential equations. We examine now how the qualitative representation
language could be used to develop other kinds of models.

Our qualitative model for glycolysis uses 15 metabolites, namely: pyruvate (pv), glucose (glc),
phosphoenolpyruvate (pep), fructose 6-phosphate (f6p), glucose 6-phosphate (g6p), dihydroxyace-
tone phosphate (dhap), 3-phosphoglycerate (3pg), 1,3-bisphos phoglycerate (1,3bpg), fructose 1,6-
biphosphate (f16bp), 2-phosphoglycerate (2pg), glyceraldehyde 3-phosphate (g3p), ADP (adp),
ATP (atp), NAD (nad), and NADH (nadh). We have not included H+, H2O, or Orthophosphate
as they are assumed to be ubiquitous. The set of reactions in the pathway are shown in Fig. 29.

We will use the following simple qualitative model for enzymes and metabolites. Metabolites
are qualitative variables, whose domains are defined by the name of the metabolite and the land-
marks 0 and in f . Qualitative states of the metabolites are restricted to 0/std,0...in f /std, 0...in f /inc,
0...in f /dec. A “qualitative cell-state” is given by the qualitative states of the metabolites of inter-
est in the cell. Enzymes are associated with “qualitative reactions”, which result in a qualitative

5. See URL http://nobelprize.org/physics/articles/states/otto-meyerhof.html.

1502

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

Model No. Model Model No. Model

1 DERIV(I,DI) 2 DERIV(I,DI)
MPLUS(I,Iout) MPLUS(I,Iout)
SUB(Iin,Iout,DI) SUB(Iin,Iout,DI)
DERIV(G,DG) DERIV(G,DG)
MPLUS(G,Iin) MPLUS(G,Iin)
SPLUS(G,Gx) SPLUS(G,Gx)
ADD(I,Gx,I1) ADD(Iout,Gx,I1)
SPLUS(I1,J) SPLUS(I1,J)
SUB(Gin,J,DG) SUB(Gin,J,DG)

3 DERIV(I,DI) 4 DERIV(I,DI)
MPLUS(I,Iout) MPLUS(I,Iout)
SUB(Iin,Iout,DI) SUB(Iin,Iout,DI)
DERIV(G,DG) DERIV(G,DG)
MPLUS(G,Iin) MPLUS(G,Iin)
SPLUS(G,Gx) SPLUS(G,Gx)
SPLUS(I,Ig) MMINUS(I,Ig)
ADD(Gx,Ig,Gout) ADD(Gin,Ig,J)
SUB(Gin,Gout,DG) SUB(J,Gx,DG)

5 DERIV(I,DI)
DERIV(I,Iout)
SUB(Iin,Iout,DI)
DERIV(G,DG)
MPLUS(G,Iin)
SPLUS(I,Ig)
ADD(G,Ig,G1)
SPLUS(G1,Gout)
SUB(Gin,Gout,DG)

Figure 28: Models for glucose-insulin regulation. The target model is Model 3.

decrease in the amounts of the reactants and a qualitative increase in the amounts of the products.
Examples of each of these are in Fig. 30.

We are interested here in finding a sequence of qualitative reactions that are consistent with the
qualitative cell-states before and after glycolysis. For this, we introduce a PATHWAY relation which,
for a given sequence of qualitative reactions, holds for pairs of qualitative cell-states 〈Be f ore,A f ter〉
such that the qualitative state of each metabolite in Be f ore can be transformed into its state in A f ter
by the qualitative reactions. With this relation, the 3 stage glycolysis process can be modelled as
shown in Fig. 31. The reader will note that in this model, reactions proceed sequentially. Of course,
biologically speaking, this is not how things happen: reactions that can proceed, do so concurrently.
While this can be modelled using a slightly different definition for the PATHWAY relation, the model
used here is simpler. There are also good historical reasons to adopt this simpler approach. Gly-
colsis, as the quote above makes clear, and indeed most other pathways have been uncovered by
first experimentally separating them into constituent parts (the qualitative modelling of pathways
in (King et al., 2005) did not make this assumption, making the resulting models both difficult to
identify—all reactions had to be identified in one-shot—and inefficient to execute).

We examine reconstructing a model for the glycolysis pathway in 3 stages (priming, splitting
and phosphorylation). At each stage, the ILP system is provided with: (a) the same background
knowledge as in Section 5.1, with additional definitions for the PATHWAY and associated relations.
For efficiency, we include three restrictions in the definition of the PATHWAY relation, namely: no

1503

SRINIVASAN AND KING

1. (Hexokinase): glucose + ATP ⇔ glucose 6-phosphate + ADP.
2. (Phosphoglucose isomerase): glucose 6-phosphate ⇔ fructose 6-phosphate.
3. (Phosphofructokinase): fructose 6-phosphate + ATP

⇔ fructose 1,6-biphosphate + ADP.
4. (Aldolase): fructose 1,6-biphosphate

⇔ dihydroxyacetone phosphate + glyceraldehyde 3-phosphate.
5. (Triose phosphate isomerase): dihydroxyacetone phosphate

⇔ glyceraldehyde 3-phosphate.
6. (Glyceraldehyde 3-phosphate dehydrogenase):

glyceraldehyde 3-phosphate + NAD ⇔ 1,3-bisphosphoglycerate + NADH.
7. (Phosphoglycerate kinase): 1,3-bisphosphoglycerate + ADP

⇔ 3-phosphoglycerate + ATP.
8. (Phosphoglycerate mutase): 3-phosphoglycerate ⇔ 2-phosglycerate.
9. (Enolase): 2-phosphoglycerate ⇔ phospoenolpyruvate.

10. (Pyruvate kinase): phospoenolpyruvate + ADP ⇔ pyruvate + ATP.

Figure 29: The reactions comprising the glycolysis pathway. The reactions that consume ATP and
NADH are not explicitly included. Glycolysis proceeds in three stages: primary (re-
actions 1–3), splitting (reactions 4 and 5) and phosphorylation (reactions 6–10). The
enzymes involved are in parentheses.

Qualitative states of some metabolites
at p : 0...in f/std, dhap : 0/std, nad : 0...in f/dec

A qualitative cell-state
{ad p : 0/std,at p : 0...in f/std, f 16bp : 0/std, f 6p : 0/std,g6p : 0/std,glc : 0...in f/std}

A qualitative reaction
glc+at p g6p+ad p

Some cell-states consistent with glc+at p g6p+ad p
Before: {ad p : 0/std,at p : 0...in f/std, f 16bp : 0/std, f 6p : 0/std,g6p : 0/std,glc : 0...in f/std}
After: {ad p : 0...in f/inc,at p : 0...in f/dec, f 16bp : 0/std, f 6p : 0/std,g6p : 0...in f/inc,glc : 0...in f/dec}
After: {ad p : 0...in f/inc,at p : 0/std, f 16bp : 0/std, f 6p : 0/std,g6p : 0...in f/inc,glc : 0...in f/dec}

Figure 30: Examples of the qualitative representation used for metabolites, cell-states and chemical
reactions. In this, a qualitative reaction causes a qualitative decrease in the reactants
and a qualitative increase in the products. The non-determinate nature of qualitative
arithmetic means that a cell can be in one of several different states after a reaction.

more than 5 reactions are allowed in a pathway; reactions must use all the metabolites; and reactions
have to satisfy some basic constraints of chemical feasibility.6 In addition, the background knowl-
edge contains an additional constraint that ensures that the model proposed is of the sequential form
shown; (b) examples of system behaviour generated using the target model; and (c) the usual re-
finement operator and cost function. The incremental search procedure commences with the empty
model /0 as the initial hypothesis (see Fig. 32).

6. The obvious constraint is that products cannot contain elements not available in the reactants. A more sophisticated
test estimates the number of chemical bonds broken, and restricts this to at most three: reactions that break more
bonds are taken to require an infeasibly large amount of energy, and to be too complex even for an enzyme to
manage.

1504

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

GLYCOLYSIS(Be f ore,A f ter) if
PATHWAY(Be f ore,S1,〈at p+glc ad p+g6p,g6p f 6p,at p+ f 6p ad p+ f 16bp〉)
PATHWAY(S1,S2,〈 f 16bp dhap+g3p,dhap g3p〉)
PATHWAY(S2,A f ter,〈g3p+nad 1,3bpg+nadh,1,3bpg+ad p 3pg+at p,

3pg 2pg,2pg pep,ad p+ pep at p+ pv〉)

where:
PATHWAY(S,F,〈R1,R2, . . .Rn〉)

i = 0, S0 = S
for i = 1 . . .n

QREACTION(Si−1,Ri,Si)
F = Sn

QREACTION(State,R,NewState)
QDECREASE(State,Reactants(R),S)
QINCREASE(S,Products(R),NewState)

Figure 31: A qualitative model for glycolysis. Pathways consist of qualitative reactions, each of
which result in a qualitative decrease in the reactants and a qualitative increase in the
products. The non-determinacy of qualitative arithmetic means that a qualitative re-
action acting on a cell-state could result in one of several new cell-states (since there
would be several ways to decrease or increase the qualitative values of metabolites).
The system identification task is to find the definition for GLYCOLYSIS given definitions
for PATHWAY, QREACTION, QDECREASE and QINCREASE.

B1 E1 B2 E2 B3 E3

{φ}

ρ f

L
Models

A Bayes

Models

A Bayesρ f

L Glycolysis
Models

A Bayes

QSIM constraints

Priming model constraints
General model constraints

Splitting StagePriming Stage

Splitting stage observationsPriming stage observations

ρ f

L

Feasible reactions constraints
PATHWAY definition
Mode declarations

QSIM constraints

Splitting model constraints
General model constraints

Feasible reactions constraints

Mode declarations

Phosphorylation stage
observations

QSIM constraints

Phosphorylation model constraints
General model constraints

Feasible reactions constraints
PATHWAY definition

Mode declarations
PATHWAY definition

Figure 32: Incremental model identification of models for glycolysis.

The results are shown in Fig. 33. We note here that model identification at Stages 2 and 3
requires a generalisation of the model identified earlier (this removes the co-references to the A f ter
variable). The different stages were obtained in 6 seconds (Stage1), 135 seconds (Stage 2) and 5296
seconds (Stage 3).

1505

SRINIVASAN AND KING

Stage Model No. Model
1 1 GLYCOLYSIS(Be f ore,A f ter) if

PATHWAY((Be f ore,A f ter,〈at p+glc ad p+g6p,g6p f 6p,
at p+ f 6p ad p+ f 16bp〉)

2 1 GLYCOLYSIS(Be f ore,A f ter) if
PATHWAY((Be f ore,S1,〈at p+glc ad p+g6p,g6p f 6p,

at p+ f 6p ad p+ f 16bp〉)
PATHWAY(S1,A f ter,〈 f 16bp dhap+g3p,dhap g3p〉)

3 1 GLYCOLYSIS(Be f ore,A f ter) if
PATHWAY((Be f ore,S1,〈at p+glc ad p+g6p,g6p f 6p,

at p+ f 6p ad p+ f 16bp〉)
PATHWAY(S1,S2,〈 f 16bp dhap+g3p,dhap g3p〉)
PATHWAY(S2,A f ter,〈g3p+nad 1,3bpg+nadh,1,3bpg 3pg,

3pg 2pg,2pg pep,ad p+ pep at p+ pv〉)
2 GLYCOLYSIS(Be f ore,A f ter) if

PATHWAY((Be f ore,S1,〈at p+glc ad p+g6p,g6p f 6p,
at p+ f 6p ad p+ f 16bp〉)

PATHWAY(S1,S2,〈 f 16bp dhap+g3p,dhap g3p〉)
PATHWAY(S2,A f ter,〈g3p+nad 1,3bpg+nadh,1,3bpg+ad p 3pg+at p,

3pg 2pg,2pg pep,ad p+ pep at p+ pv〉)

Figure 33: Glycolysis models identified. The target model is Model 2 in Stage 3. The difference
in the two models identified in Stage 3 arise in the seventh equation (the second in
the last PATHWAY constraint). Model 1 proposes 1,3bpg 3pg and Model 2 proposes
1,3bpg+ad p 3pg+at p.

7. Decomposition as Search

So far, we have taken the position that the incremental learner will be provided with a decomposition
of the system to be identified. While this may be entirely reasonable when we have access to appro-
priate expertise—a biologist specialising in the kind of systems we are modelling for example—it is
of some interest to examine whether a suitable decomposition can be identified automatically. That
is, given observations for some system variables, can we automatically decompose the learning task
into one that uses a n-stage incremental learner of the form shown in Fig. 6.

Decomposition of complex systems has been studied extensively in econometrics, ever since the
pioneering work of Simon and Ando (1961). In this, decomposability of a system is a property of
the system by which some subsets of variables (usually non-intersecting) have a greater interaction
with each other than other subsets. These subsets define sub-systems into which the larger system
can be decomposed. Simon and Ando study the formal properties of linear dynamical systems of
the form x(t + 1) = Ax(t), where A is some linear operator and the applicability of their results
to evolutionary systems has been studied by Shpak et al. (2004a,b). Concerned as we are with a
logical representation of a system, our problem is related more to the decomposition of Boolean
functions. Most modern work on this stems from that of Ashenhurst (1957) and Curtis (1962). In
this, a function f of n variables, denoted here by the set S, is decomposed into Boolean functions
h and g, such that f (X) = h(A,g(B)), where A,B ⊂ S and A∪B = S. The techniques are devised
for propositional logic, and it is not evident how they could be used to address the decomposition
task here. Nevertheless, at least one important principle is directly applicable: both the Ashenhurst
and Curtis formulations are essentially procedures that look for suitable decompositions by exam-
ining all possible partitions of S. In general though, finding the optimal decomposition of Boolean

1506

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

functions is computationally hard (see, for example, Boros et al., 1994), and some form of heuristic
search is inevitable. This is the basis of the work of Paulson and Wand (1992), who examine the
decomposition of a system specified by state variables. Decomposition here means discovering both
a partitioning into non-disjoint subsets of system variables, and an assignment of variables in each
subset as being “input” or “output”. Each subset constitutes a subsystem, and a pair of subsystems
are related if an output variable of one is an input variable of another. The final decomposition is
the result of a heuristic search process guided by: a set of constraints characterising “good decom-
positions”, a set of rules for enumerating candidate decompositions, and a method of scoring each
candidate based on the complexity of the resulting subsystems.

Unlike Paulson and Wand’s procedure, we require that related subsystems share models (rather
than system variables). Nevertheless, we are able to draw on their basic premise of decomposition
being the result of a heuristic search process. Specifically, we use a randomised local search proce-
dure that identifies each stage of the decomposition using a randomised local search procedure that
executes the following steps: (a) A subset of system variables is selected randomly from candidate
subsets for this decomposition; (b) A model is constructed using this set and its cost determined; (c)
All possible “local moves” are constructed. These result in new subsets obtained by adding a system
variable not in the original set and by removing a system variable included in the original set; (d)
The best local move (the new subset having a model with least cost) is selected and Steps (c)–(d)
repeated (the number of repetitions denoted by M). The procedure halts after some fixed number of
such iterations, and the best scoring subset is returned. Actually, Steps (a)–(d) are repeated several
times (denoted by R) with each repetition starting with a different random subset in Step (a). The
best scoring subset across all repetitions is returned and the the entire procedure repeated for the
next stage. The reader will recognise the procedure as the GSAT algorithm (Selman et al., 1992)
adapted to the problem of automatic decomposition. As with all such procedures, the goal is to
obtain an efficient (but sub-optimal) solution to an inherently intractable problem (see Appendix B
for details). Needless to say that with this, as with the Paulson and Wand work, automatic decom-
position is only worthwhile provided the additional computational burden imposed by searching
for the decomposition is less than that of attempting to find the complete model using a one-shot
(single-stage) learner.

We apply the procedure to the task of decomposing the coupled tanks system. The reader will
recall that this system (shown in Fig 8) is specified by 5 system variables: InflowA, OutflowB,
Fab, La and Lb. The automatic decomposition task is as follows: given values for the 5 system
variables, identify the single tank “subsystem” specified by OutflowB, Fab and Lb and then identify
the the final model using the single tank submodel and the remaining system variables. Figure 34
summarises the result of employing the randomised local search procedure just described to identify
the correct decomposition.

It is evident that for such a small problem, we will quickly explore all of the search space as R
and M are increased. Nevertheless, the tabulation shows that very small values of R and M yield
variable results. The extent to which the success with moderate values of R and M can be replicated
on larger, real systems remains a topic for future research. In Appendix B, we are able to offer
some insight by considering artificial problems created by random decompositions of larger sets
of variables. These experiments suggest that a 2-stage decomposition of a system like the coupled
tanks would require R and M values of approximately 5.

We turn now to the automatic decomposition of the first multi-stage biological system con-
sidered in this paper. The glucose-insulin system is comprised of 4 independent system variables

1507

SRINIVASAN AND KING

R M
1 2 3

1 0.27 0.70 0.40
2 0.50 0.60 0.90
3 0.40 0.90 1.00

Figure 34: Probability estimates of identifying the correct decomposition of the coupled tanks sys-
tem, using the randomised local search procedure described in Appendix B. Here R
denotes the number of restarts of the randomised procedure and M the number of it-
erations of local moves. Each entry is is the probability of identifying correctly the
single-tank model, followed by the correct coupled tanks model, with the correspond-
ing values of R,M. Probability estimates required for each stage are obtained from 10
repeats of the randomised procedure.

(Gin, G, Iin, I), and requires a 2-stage decomposition. Once again, using the experiments on syn-
thetic problems as a guide, we are able to obtain a correct decomposition for this system using
low values of R and M (5 in this case). Unfortunately, the decomposition procedure we have just
described cannot be used to obtain a decomposition for the glycolysis problem. Here, system vari-
ables (metabolites) are re-used across the different stages, which violates a key assumption of the
approach (simply speaking, variables used in a stage cannot be re-used at a later stage). This vio-
lation makes the search vastly harder, putting in perspective the achievement of Meyerhof and his
colleagues.

8. Concluding Remarks

The focus in biology has, until recently, been mainly on individual units. Molecular biology, for
example, has mainly focussed on individual molecules and on their properties as isolated entities
or as complexes in very simple model systems. However, biological molecules in living systems
participate in very complex networks, including regulatory networks for gene expression, intracel-
lular metabolic networks and both intra- and inter-cellular communication networks. Such networks
are involved in the maintenance (homeostasis) as well as the differentiation of cellular systems of
which we have a very incomplete understanding. Nevertheless, the progress of molecular biology
has made possible the detailed description of the components that constitute living systems, notably
genes and proteins. Large scale genome sequencing means that we can (at least in principle) delim-
neate all macromolecular components of a given cellular system. Microarray experiments as well
as large scale proteomics will soon give us large amounts of experimental data on gene regulation,
molecular interactions and cellular networks. The challenge now becomes to understand how these
individual components integrate to complex systems and the function and evolution of these sys-
tems, thus scaling up from molecular biology to “systems” biology that provides an understanding
at different levels of biological organisation.

Our experience in the physical sciences suggests that the only tractable way of understanding
complex systems is through the use of mathematical models. However, biological systems are usu-
ally far more complex than physical or human-engineered ones and progress in determining func-
tionality will be crucially dependent on the development of mathematical, and computational tech-

1508

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

niques specially devised for biological data analysis, modelling and simulation. In this paper, we
argue that a qualitative representation of values, along with a powerful machine-learning approach
like ILP, provides a useful tool for system-identification at different levels of biological organisa-
tion. We have sought to back this claim by demonstrating the use of a general-purpose ILP system to
identify models for systems at three disparate levels of biological organisation, namely, ecosystem,
organ and cellular. The results are promising, with the target model being amongst a small set of
answers returned in each case. While the applications presented have been re-construction of known
models, this is clearly not the use we envisage for the approach. Specifically, we expect its principal
utility will be in situations where there is some quantitative data of variable quality and quantity, and
not much is known about a suitable mathematical model. In these circumstances, the data can be
converted to a qualitative representation (in the manner described by Hau and Coiera, 1997) and one
or more qualitative models identified. These can then form the basis of understanding the system
better and could even be used to direct the construction of quantitative model. For example, they
could form the basis of the grammars required for an automated technique such as the one described
in Todorovski et al. (2000) (in some sense, this is like extending the Q2-learning framework in Suc
et al. (2003) to the discovery of mathematical models). An additional feature of our work here is
that the approach is an incremental one, that seeks to construct the final model in stages. The value
of decomposition as an aid to understanding complex systems has long been recognised: Courtois
(1985) describes some general principles that motivate the need for such an approach. We believe
that when attempting to construct large models with ILP, some form of structured induction (in the
sense intended in Shapiro, 1987) would be required. The decomposition into a sequence of stages
is an example of such a structuring.

The work presented here has a number of limitations. There are limitations to the power of the
qualitative representation used: (1) they can only provide clues to the precise mathematical struc-
ture. This may be sufficient for common-sense reasoning about a system, but is clearly insufficient
for a complete understanding; (2) simulations with qualitative models can contain spurious behavi-
ous; and (3) abstractions appear to be largely restricted to ODE models. It has been suggested that
the use of “multivariate constraints” (Wellman, 1991) may allow abstractions of PDE models, but
little has been done on that front.

An important limitation of the incremental approach is that the user needs to provide an adequate
decomposition of the system-identification task into stages along with the number of constraints in
the model for each stage. The latter restriction can be relaxed by providing an upper-bound on
the number of constraints. We have described a randomised procedure that attempts to construct a
suitable decomposition automatically. The results are encouraging, but the procedure still involves
constructing many models and its performance on real problems requires further investigation. The
randomised procedure itself is an adaptation of the GSAT algorithm of Selman and colleagues.
Minor modifications of this yield procedures akin to WalkSat (Selman et al., 1994) and simulated
annealing. Both may yield better algorithms for automatic decomposition than the one here; as
would modifications that would allow estimation of model performance without actually requiring
their explicit construction.

In the implementation of the incremental learner, the primary limitation of the greedy strategy
adopted means that we cannot prove that the models returned are the best possible. A further
limitation is the use of a refinement operator that can only perform a restricted kind of refinement
of models found at a previous stage: this was done solely to keep the space of possible models
within manageable limits (in effect, a limited form of theory-revision is performed). A refinement

1509

SRINIVASAN AND KING

operator that performs both generalisations and specialisations could be used, but the computational
cost would be substantial.

Finally, applications of the approach have been restricted to re-construction of known target
models using simulated data. Clearly, it remains to be shown that similar success can be achieved
with real experimental data.

These limitations notwithstanding, we believe the combination of a qualitative representation
and an incremental ILP approach to be particularly well-suited to the identifying systems at different
levels of biological organisation, for the following reasons: (1) The qualitative representation over-
comes some inherent limitations in the data—specifically, noise and sparsity—which make quanti-
tative modelling difficult; (2) Qualitative models provide the correct level of comprehensibility for
the non mathematically-minded biologist; and (3) Models of interest usually involve the relation-
ship between a number of different components. Currently, ILP provides the most powerful—and
in many cases, the only—framework for identifying such relations, but its use is often hampered by
concerns of efficiency. The incremental approach we have described provides one way of overcom-
ing these concerns.

Acknowledgments

The authors would like to thank George Coghill for helping us understand the constraints defin-
ing well-posed qualitative models and pointing out an important practical flaw in an early attempt at
constructing the lung model. David Gavaghan, of the Computing Laboratory, Oxford helped us with
quantitative models for the human lung. Binesh Mangar attempted to construct some of the quali-
tative models for the coupled tanks and the lung during the course of his M.Sc. at Oxford. Simon
Garrett performed extensive experiments with a one-shot ILP model constructor for model physical
systems and with a different representation for glycolysis. The results from those experiments were
very helpful in motivating the approach described here. Thanks are also due to Ravi Kothari, of the
IRL, who drew our attention to the work of Ashenhurst on the decomposition of switching func-
tions. The authors would like to dedicate this paper to the memory of Donald Michie, who died as
this paper was being written. He taught us much of what we know in science and machine learning
and his guiding hand is greatly missed.

Appendix A. ILP Details

We now describe the specification and implementation details relevant to the ILP system used in the
paper.

A.1 Specification

In this paper, we closely follow the specification provided by Muggleton (1994) for an ILP system
designed to construct models (usually called hypotheses in the ILP literature) given background
knowledge B and observations (usually called examples in the ILP literature) E In this specification
an ILP algorithm is one that satisfies the following requirements (reproduced with minor changes
from Srinivasan and Kothari, 2005):

Given:

1510

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

R1. B ∈ B: background knowledge encoded as statements in logic. This includes I: a set of
constraints that should not be violated by an acceptable hypothesis.

R2. E ∈ E : a finite set of examples = E+∪E− where:

E+ = {e1,e2, . . .} is a set of definite clauses (these are the positive examples);

E− = { f1, f2 . . .} is an optional set of Horn clauses (these are the negative exam-
ples); and

B 6|= E+

Find:

R3. H ∈ H : a hypothesis such that the following conditions are met:

Sufficiency. This consists of:

S1. B∪H |= E+

Consistency. This consists of:

C1. B∪H 6|=�; and

C2. B∪H ∪E− 6|=�

The requirement C1 ensures that H does not violate any of the constraints I in B. The require-
ment C2 is intended to ensure that H does not contain any over-general clauses. Often, implementa-
tions do not require clauses to meet this requirement, as some members of E− are taken to be noisy.
This specification is then refined to allow theories to be inconsistent with some negative examples.
We will use the phrase “H explains E, given B” to denote that at least S1 and C1 are met. An
“acceptable H” is any H that explains E, given B.

The specification does not state how acceptable H’s are to be constructed, or, if several H’s
explain the E, then which of them are to be selected. For this, we introduce the following functions:

• A “downward” refinement operator ρ : H → 2H s.t. ρ(h) ⊆ {h′|h |= h′}. Given a h ∈ H , this
function returns a subset of the elements of H that are implied by h.

• A cost function f : H ×B ×E → ℜ. Given a h ∈ H , B ∈ B and E ∈ E , this function returns
an evaluation of h;

Let ρ1(h) = ρ(h); ρn(h) = {h′′| ∃h′ ∈ ρn−1(h) s.t. h′′ ∈ ρ1
A(h′)},(n≥ 2); and ρ∗(h) = ρ1(h)∪ρ2(h)∪

. . .. With some abuse of notation, let ρ1({h1,h2, . . .}) = ρ1(h1)∪ ρ1(h2)∪ . . .; ρn({h1,h2, . . .}) =
ρn(h1)∪ρn(h2)∪ . . .; and ρ∗({h1,h2, . . .}) = ρ1({h1,h2, . . .})∪ρ2({h1,h2, . . .})∪ . . .

Then, given an initial set of hypotheses H0 ⊆ H we specify a particular kind of ILP algorithm
L(B,E,H0,ρ, f) by modifying the requirement R3 above to:

R3′. H = L(B,E,H0,ρ, f)⊆ ρ∗(H0): a set of hypotheses such that for each h ∈ H the following are
met:

Sufficiency. This consists of:

S1. B∪h |= E+

Consistency. This consists of:

C1. B∪h 6|=�; and

1511

SRINIVASAN AND KING

C2. B∪h∪E− 6|=�

Minimal Cost. This consists of:

F1. For all h′ ∈ ρ∗(H0) f (h′,B,E) ≥ f (h,B,E)

We are now in a position to specify an incremental ILP system that uses the algorithm L. Given
a finite sequence 〈S1,S2, . . . ,Sk〉 (k ≥ 1), where each Si consists of the tuple (Bi,Ei), (Bi ∈ B and
Ei ∈ E); H0 ⊆ H ; a downward refinement operator ρ; and a cost function f , find Hk, where Hi =
L(Bi,Ei,Hi−1,ρ, f) (1 ≤ i ≤ k).

A.2 Implementation

The basic task of addressed by L described in the previous section can be viewed as a discrete
optimisation problem. In general terms, this is posed as follows: given a finite discrete set S and
a cost-function f : S → ℜ, find a subset H ⊆ S such that H = {s|s ∈ S and f (s) = minsi∈S f (si)}.
An optimal algorithm for solving such problems is the “branch-and-bound” algorithm, shown in
Fig. 35 (the correctness, complexity and optimality properties of this algorithm can be found in Pa-
padimitriou and Steiglitz, 1982). A specific variant of this algorithm is available within the software
environment comprising ALEPH (Srinivasan, 1999). The modified procedure is in Fig. 36. The
principal differences from Fig. 35 are:

1. The procedure is given a set of starting points H0, instead of a single one (i in Fig. 35);

2. A limitation on the number of nodes explored (n in Fig. 36);

3. The use of a boolean function acceptable : H ×B×E →{FALSE,TRUE}. acceptable(k,B,E)
is T RUE if and only if k satisfies requirements S1 and C1 in Section A.1 (given B and E);

4. Inclusion of background knowledge and examples (B and E in Fig. 36). These are arguments
to both the refinement operator ρ (the reason for this will become apparent shortly) and the
cost function f .

We now describe an implementation for an incremental procedure for model identification that
assumes that the task has been decomposed into a finite sequence of stages 〈S1,S2, . . . ,Sk〉 (k ≥
1). Each Si consists of the tuple (Bi,Ei), where Bi and Ei refer to the background knowledge and
examples relevant to stage i. With this decomposition in place, Fig. 37 shows a simple greedy
implementation used to identify the final models.
Finally, we turn to some points concerning the implementation used in this paper:

• Qualitative models are represented as definite clauses. Given a definite clause C, the qualita-
tive constraints in the model (the size of the model) are obtained by counting the number of
qualitative constraints in C. This will also be called the “size of C”.

• Constraints, such as the restrictions to well-posed models, are assumed to be encoded in the
background knowledge;

• acceptable(C,B,E) is T RUE for any qualitative model C that is consistent with the con-
straints in B, given E.

1512

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

bb(i,ρ, f) : Given an initial element i from a discrete set S; a successor function ρ : S → 2S; and a cost function f : S → ℜ, return H ⊆ S
such that H contains the set of cost-minimal models. That is for all hi, j ∈ H, f (hi) = f (h j) = fmin and for all s′ ∈ S\H f (s′) >
fmin.

1. Active := 〈(i,−∞)〉.

2. worst := ∞

3. selected := /0

4. while Active 6= 〈〉

5. begin

(a) remove element (k,costk) from Active

(b) if costk < worst

(c) begin

i. worst := costk
ii. selected := {k}

iii. let Prune1 ⊆ Active s.t. for each j ∈ Prune1, f (j) > worst where f (j) is the lowest cost possible from j or
its successors

iv. remove elements of Prune1 from Active

(d) end

(e) elseif costk = worst

i. selected := selected ∪{k}

(f) Branch := ρ(k)

(g) let Prune2 ⊆ Branch s.t. for each j ∈ Prune2, fmin(j) > best where fmin(j) is the lowest cost possible from j or
its successors

(h) Bound := Branch\Prune2

(i) for x ∈ Bound

i. add (x, f (x)) to Active

6. end

7. return selected

Figure 35: A basic branch-and-bound algorithm. The type of Active determines specialised vari-
ants: if Active is a stack (elements are added and removed from the front) then depth-first
branch-and-bound results; if Active is a queue (elements added to the end and removed
from the front) then breadth-first branch-and-bound results; if Active is a prioritised
queue then best-first branch-and-bound results.

• Active is a prioritised queue sorted by f ;

• The successor function used is ρA. This is defined as follows. Let S be the size of an accept-
able model and C be a qualitative model of size S′ with n = S−S′. We assume B constains a
set of mode declarations in the form described in Muggleton (1995). Then, given a definite
clause C, obtain a definite C′ ∈ ρA(C,B,E) where ρA = ρn

A = 〈D′| ∃D∈ ρn−1
A (C,B,E) s.t. D′ ∈

ρ1
A(D,B,E)〉,(n ≥ 2). C′ ∈ ρ1

A(C,B,E) is obtained by adding a literal L to C, such that:

– Each argument with mode +t in L is substituted with any input variable of type t that
appears in the positive literal in C or with any variable of type t that occurs in a negative
literal in C;

– Each argument with mode −t in L is substituted with of any variable of C of type t that
appears before that argument or by a new variable of type t;

1513

SRINIVASAN AND KING

bbA(B,E,H0,ρ, f ,n) : Given background knowledge B ∈ B; examples E ∈ E ; a set of initial elements H0 from a discrete set of possible
hypotheses H ; a successor function ρ : H ×B ×E → 2H ; a cost function f : H ×B ×E → ℜ; and a maximum number of
nodes n ∈ N (n ≥ 0) to be explored, return H ⊆ H such that H contains the set of cost-minimal models of the models explored.

1. Active = 〈〉

2. for i ∈ H0

(a) add (i,−∞) to Active

3. worst := ∞

4. selected := /0

5. explored := 0

6. while (explored < n and Active 6= 〈〉)

7. begin

(a) remove element (k,costk) from Active

(b) increment explored

(c) if acceptable(k,B,E)

(d) begin

i. if costk < worst

ii. begin

A. worst := cost

B. selected := {k}

C. let Prune1 ⊆ Active s.t. for each j ∈ Prune1, f (j,B,E) > worst where f (j,B,E) is the lowest cost
possible from j or its successors

D. remove elements of Prune1 from Active

iii. end

iv. elseif costk = worst

A. selected := selected ∪{k}

(e) end

(f) Branch := ρ(k,B,E)

(g) let Prune2 ⊆ Branch s.t. for each j ∈ Prune2, f (j,B,E) > worst where f (j,B,E) is the lowest cost possible from
j or its successors

(h) Bound := Branch\Prune2

(i) for x ∈ Bound

i. add (x, f (x,B,E)) to Active

8. end

9. return selected

Figure 36: A variant of the basic branch-and-bound algorithm, implemented within the ALEPH

system. Here B and E are sets of logic programs; and N the set of natural numbers.

– Each argument with mode #t in L is substituted with a ground term of type t. This
assumes the availability of a generator of elements of the Herbrand universe of terms;
and

– acceptable(C′,B,E) is T RUE.

The following properties of ρ1
A (and, in turn to ρA) can be shown to hold (Riguzzi, 2005):

– It is locally finite. That is, ρ1
A(C,B,E) is finite and computable (assuming the constraints

in B are computable);

1514

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

incsearch(S,HI ,ρ, f ,n,m) : Given a sequence of stages S = 〈(B1,E1),(B2,E2), . . . ,(Bk,Ek)〉, (1 ≤ k < ∞) where Bi ∈ B; Ei ∈ E ; a
set of initial elements HI from a discrete set of possible hypotheses H ; a successor function ρ : H ×B ×E → 2H ; and a cost
function f : H ×B ×E → ℜ; a maximum number of nodes n ∈ N (n ≥ 0) to be explored at each stage; and a maximum number
of models m ∈ N (m ≥ 0) to be returned at each stage; and return H ⊆ H

1. H0 := randomselect(m, I)

2. i := 1

3. while (i ≤ k)

4. begin

(a) H ′
i−1 := {h′|h ∈ Hi−1 and h′ = generalise(h)}

(b) H ′
i := {h′|h′ = bbA(Bi,Ei,H ′

i−1,ρ, f ,n)}

(c) H ′′
i := nonredundant(Bi,H ′

i)

(d) Hi := randomselect(m,H ′′
i)

(e) increment i

5. end

6. return Hk

Figure 37: A simple incremental procedure for system identification. Given a decomposition into k
stages, the best models found at each stage are refined further.

– It is weakly complete. That is, any clause containing n literals can be obtained in n
refinement steps from the empty clause;

– It is not proper. That is, C′ can be equivalent to C;

– It is not optimal. That is, C′ can be obtained multiply by refining different clauses.

In addition, it is clear by definition that given a qualitative model C, accep table(C ′,B,E) is
T RUE for any model C′ ∈ ρ1

A(C,B,E). In turn, it follows that acceptable(C′,B,E) is T RUE
for any C′ ∈ ρA(C,B,E).

• The cost function used is fBayes(C,B,E) = −P(C|B,E) where P(C|B,E) is the Bayesian pos-
terior probability estimate of clause C, given background knowledge B and positive examples
E. Finding the model with the maximal posterior probability (that is, lowest cost) involves
maximising the function (McCreath, 1999):

Q(C) = logDH (C)+ p log
1

g(C)

where DH is a prior probability measure over the space of possible models; p = |E|, the
number of positive examples; and g is the generality of a model. We use the approach used
in the the ILP system C-Progol to obtain values for these two functions. That is, the prior
probability is related to the complexity of models (more complex models are taken to be less
probable, a priori); and the generality of a model is estimated using the number of random
examples entailed by the model (the details of this are in Muggleton, 1996);

• The function randomselect(m,H) in Fig. 37 randomly selects (without replacement) m ele-
ments of the set H (or all the elements of H if its cardinality is less than m);

1515

SRINIVASAN AND KING

• For all stages i in Fig. 37, the bbA constructs no more than n models for each stage. Here we
restrict n to 1000;

• For all stages i in Fig. 37, no more than m of the lowest-cost models are returned; Here we
restrict m to 1000;

• The function generalise in Fig. 37 is restricted to “splitting” variable co-references apart (see
Definition 27 and Lemma 31 in Muggleton (1995) and Remark 4 below for more on this);
and

• The function nonredundant in Fig. 37 returns a set of non-redundant models. Given back-
ground knowledge B and a set of models S encoded as definite clauses, a model C1 ∈ S is
redundant, iff for S1 = S−{C1}, B∪ S ≡ B∪ S1. It can be shown that this entails checking
that B∪ S1 |= C1. nonredundant(B,H) returns all elements C ∈ H which do not satisfy this
redundancy check.

We now report on some properties of the various procedures described. It is evident that incsearch in
Fig. 37 performs the same function as a non-incremental (single-shot) ILP system if k = 1, HI = { /0}
(that is, HI consists of the empty model) and m ≥ n.

Remark 1 Termination, correctness and sub-optimality Termination of bbA follows trivially if
the number of nodes searched (n) is finite; and calls to acceptable and f terminate. It is also
easy to see that the conditional statement on Step 7c ensures that, for all models k ∈ selected,
acceptable(k,B,E) is T RUE. All models returned by bbA are correct in this sense. Since models
returned by incsearch on any iteration i are a subset of the models returned by bbA, it follows that
all models returned by incsearch are also correct. The branch-and-bound procedure is known to
be optimal, in that can identify the lowest cost models in the search space H . However, bbA with
ρ = ρA is optimal if and only if n ≥ |H | and HI = { /0}. It follows that incsearch with ρ = ρA is only
optimal if and only if k = 1, HI = { /0}, n ≥ |H |, and m ≥ n.

Although a general statements about search complexity can be made, the following remarks refer
specifically to the search for qualitative models.

Remark 2 Search space for qualitative models. Let the number of qualitative constraints in
acceptable models be restricted to some size d. Given element a single starting element i size di, the
task of bbA (we will assume n to be large) is to return all models of size d. This is done by examining
all models returned by ρA that adds d−di constraints to i. In the worst case, each i = /0 and ρA has
to return all models of size d. If the maximum recall number of any mode declaration be bound by
some constant b, then there are at most b extensions of size 1, b2 extensions of size 2 and so on, up to
bd models of size d. That is, given a model i, the number of acceptable models of size d constructed
by ρA is at most bd .

We now consider an incremental procedure that simply selects some of the best qualitative models
found at a stage for refinement at the next stage. It follows that the size of the search space depends
principally on the maximum number of qualitative constraints added at any stage.

1516

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

Remark 3 Incremental search space for qualitative models. (simple case). Assume as before
that the target model is restricted to d constraints and the maximum recall of any mode declaration
is b. Assume further that model identification can be decomposed into k ≥ 1 stages, with each stage
resulting in models with d1,d2, . . . ,dk constraints (we will assume that all models in the initial set
HI have d0 ≥ 0 constraints and that di+1 ≥ di). At each stage i, a model is constructed by addition
of d+

i = di − di−1 constraints to a model selected at stage i− 1. For each model selected at stage

i−1, we know from Remark 2 that bbA constructs at most bd+
i−1 acceptable models. Since no more

than m are selected at stage i−1, the total number of models constructed at stage i is mbd+
i−1 . The

total number of models constructed by the entire procedure is no more than ∑k
i=1 mbd+

i . That is, the
total number of models constructed is O(bd+

max) where d+
max = max(d+

1 ,d+
2 , . . . ,d+

k).

Models at a stage may not consist of a simple addition of constraints to those found earlier
and we consider generalising models by splitting variables, before adding constraints (as shown
in Fig. 37). For qualitative models, this translates to retaining the qualitative components found
at the previous stage but disconnecting connections between some or all pairs whose outputs are
connected together. While a general analysis will require a detailed description of the variable
splitting procedure, a less detailed calculation is possible for the kinds of qualitative models sought
here. The simplification results primarily from the “Distinct variables” restriction on well-posed
models.

Remark 4 Incremental search space for qualitative models (limited generalisation). Assume
as before that the target model is restricted to d constraints and the maximum recall of any mode
declaration is b. Assume further that model identification can be decomposed into k ≥ 1 stages, with
each stage resulting in models with d1,d2, . . . ,dk = d constraints (we will assume that all models
in the initial set HI have d0 ≥ 0 constraints and that di+1 ≥ di). We will now examine the effect of
allowing generalisation by variable splitting only. For a model M selected at stage i, it is evident
that if all variables in a constraint are distinct, then there can be at most ni = max(di − 1,0) co-
references to any one variable v in M. Let the set of positions with co-references to a variable v
be Ev. Variable splitting essentially renames variables at some or all of these positions into new
ones. This is tantamount to partitioning the set Ev into equivalence classes, with positions in each
equivalence class having the same variable; and each such partitioning giving rise to a model M ′

that is more general than m (in the sense that M ′ θ-subsumes Plotkin, 1970). The nth Bell number
B(n) gives the number of ways in which a set of size n can be partitioned into equivalence classes.7

Thus, the number of models resulting from splitting variable co-references to a variable v in a
model M from stage i is at most B(ni). If the maximum number of variables in any qualitative
constraint is bounded by A, then there can be at most si = Adi splittable variables in any model M
from stage i. Therefore the number of models after generalisation of any M from stage i is at most
G(i) = Bsi(ni) Since there are no more than m models at any stage i, the total number of models after
generalisation is no more than mG(i). Recall each of these is then specialised by bbA to construct
a model for stage i + 1. The total number of models constructed by the entire procedure is thus no
more than ∑k

i=1 mG(i−1) bd+
i .

7. The nth Bell number is equal to ∑n
k=0 S(k)

n . S(k)
n , or Stirling numbers of the second kind, describe the way a set

of n elements can be partitioned into k disjoint, non-empty subsets. These can be computed using the formula

S(k)
n = S(k−1)

n−1 + kS(k)
n−1 (with S(1)

n = 1).

1517

SRINIVASAN AND KING

In general, it is evident that variable splitting is not the only form of generalisation that may be
needed: components found at a previous stage may have to be discarded entirely before constructing
a model for the current stage. It is evident that allowing this form of generalisation will significantly
increase the worst-case search complexity.

Remark 5 Incremental search space for qualitative models (general case). Assume as before
that the target model is restricted to d constraints and the maximum recall of any mode declaration
is b. Assume further that model identification can be decomposed into k ≥ 1 stages, with each stage
resulting in models with d1,d2, . . . ,dk constraints (we will assume that all models in the initial set
HI have d0 ≥ 0 constraints and that di+1 ≥ di). From Remark 4 above, we know that the number of
models after generalisation by splitting variables at stage i is mG(i), each with di constraints. Each
of these models can be generalised further by dropping one or more constraints. This results in a
total of mG(i)2di models, each of which is then specialised by bbA to construct a model for stage
i + 1. In the worst case, all the constraints found in each of the models at stage i are removed by
the generalisation step and the specialisation step at stage i + 1 has to construct models with i + 1
constraints in each case. The total number of models constructed by the entire procedure is thus no
more than ∑k

i=1 mG(i−1)2di−1 bdi .

A.3 Application

In all cases, the application tasks are of a re-constructive nature. That is, a known target model for
each stage of the incremental process is used to generate examples for that stage. These, along with
the background knowledge and a set of random examples for the stage are given to the learner. (the
random examples are needed for the Bayesian calculation described in the previous section) We
then check to see if the target model is amongst the results returned by the learner. All experiments
were conducted on a laptop equipped with a 1.5 GHz Intel Pentium M Processor and 768 MB of
main memory. Examples are restricted to a random sample of no more than 500 observations of
system behaviour and no more than 500 random observations (these are needed for the Bayesian
cost calculations). Incremental construction of models was accomplished using ALEPH version 5,
with the YAP compiler (version 5.0.1).

We describe here the background knowledge and examples relevant to each of the application
tasks presented in the paper. Common to all tasks are definitions of the QSIM constraints. The
definitions we use are based on those in Bratko (2001) and are available on request from the first
author. In the following sections we describe the encoding of the examples, the mode declarations
and the values of the main parameters used for each application task. The principal parameters for
system identification are these: (1) The number of constraints in the model (the “size” constraint
described in Section 5.1 on well-posed models); (2) Upper bound on the number of occurrences
of any kind of constraint (the “language” constraint described in Section 5.1); (3) Upper bound on
the the number of nodes to be seached (n in the incsearch procedure); (4) Upper bound on the the
number of models to be selected from a stage (m in the incsearch procedure); (5) Upper bound on
the number of new variables in any model (constraint 10 described in Section 5.1); (6) Upper bound
on the number of irrelevant variables in any model (constraint 11 in Section 5.1).

A.3.1 THE TANK MODELS

System variables for the coupled tanks system are La, Lb, InflowA, Fab and OutflowB. Examples
for both the coupled tanks and single tank system are encoded using a state/5 predicate (the argu-

1518

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

state(l:0/inc,l:0/std,f:0...inf/std,f:0/inc,f:0/std).
state(l:0/inc,l:0...inf/dec,f:0...inf/std,f:minf...0/inc,f:0...inf/dec).
state(l:0...inf/dec,l:0/inc,f:0...inf/std,f:0...inf/dec,f:0/inc).
state(l:0...inf/dec,l:0...inf/dec,f:0...inf/std,f:0...inf/dec,f:0...inf/dec).
state(l:0...inf/dec,l:0...inf/dec,f:0...inf/std,f:0...inf/inc,f:0...inf/dec).

Figure 38: Example observations from the coupled tank system.

ADD(+level,+level,-level) SUB(+level,+level,-level)
ADD(+flow,+flow,-flow) SUB(+flow,+flow,-flow)

MPLUS(+level,-level) MPLUS(+level,-flow)
MPLUS(+flow,-flow) MPLUS(+flow,-level)

MMINUS(+level,-level) MMINUS(+level,-flow)
MMINUS(+flow,-flow) MMINUS(+flow,-level)

MINUS(+level,+level) MINUS(+flow,+flow)

DERIV(+level,-flow)

Figure 39: Mode declarations used for identifying the tank system.

ments refer to the system variables La–OutflowB, in the order just listed). Some of the observations
are shown in Fig. 38 (the syntax used is in the Prolog language):
22 observations are generated in all using the correct model for the coupled tank system. For the first
stage of learning—the single tank system—observations made for Tank A (that is, La and InflowA)
are ignored. This is achieved using the following mode declaration for state/5 (here, the “ ” denotes
that the corresponding argument is to be ignored):

STATE(_,+level,_,+flow,+flow)

In contrast, the mode declaration for state/5 for the coupled tank system is as follows:

STATE(+level,+level,+flow,+flow,+flow)

Mode declarations for the QSIM constraints for both single and coupled tanks are shown in Fig. 39.
The values of the principal parameters for the two stages are shown in the tabulation below.

Parameter Stage 1 Stage 2
(single tank) (coupled tanks)

Size 3 7
Language 2 2
n 1000 1000
m 1000 1000
Newvars 3 3
Irrelev 0 0

1519

SRINIVASAN AND KING

state(p:0...inf/dec,n:0...inf/inc).
state(p:0...inf/std,n:0...inf/inc).
state(p:0...inf/inc,n:0...inf/dec).

Figure 40: Example observations from the predator-prey system.

ADD(+qval,+qval,-qval) SUB(+qval,+qval,-qval)

MPLUS(+predator,-qval) MPLUS(+prey,-qval)
MPLUS(+qval,-qval) MPLUS(+predator,+prey)

MMINUS(+predator,-qval) MMINUS(+prey,-qval)
MMINUS(+qval,-qval) MMINUS(+predator,+prey)

MINUS(+predator,+qval) MINUS(+prey,+qval)
MINUS(+predator,+prey) MINUS(+qval,+qval)

DERIV(+predator,-qval)
DERIV(+prey,-qval)

Figure 41: Mode declarations used for identifying the predator-prey system.

A.3.2 THE PREDATOR-PREY MODELS

System variables for the predator-prey system are the predator population P and the prey population
N. Examples for the system are encoded using a state/2 predicate (the arguments of which are P and
N). Some of the observations are shown in Fig. 40.
5 observations of system behaviour are obtained using the target model. The mode declaration for
the state/2 predicate is

STATE(+predator,+prey)

Mode declarations for the QSIM constraints are shown in Fig. 41.
The values of principal parameters are shown in the tabulation below.

Parameter Value
Size 6
Language 2
n 1000
m 1000
Newvars 5
Irrelev 0

A.3.3 THE LUNG MODELS

System variables for identifying the human lung model are Pa, Va, Pi, Vid and Pv. Examples for
the system are encoded using a state/5 predicate (the arguments of which are Pa–Pv in the order
just listed). Some of the observations are shown in Fig. 42.
500 observations of system behaviour are obtained using the target model. The mode declaration
for the state/5 predicate is:

1520

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

state(p:0/std,v:0/inc,p:0...inf/inc,f:0/inc,p:0/inc).
state(p:0/std,v:0...inf/dec,p:0/std,f:0...inf/dec,p:0/std).
state(p:0/std,v:0...inf/dec,p:0/inc,f:0/inc,p:0/inc).
state(p:0/std,v:0...inf/dec,p:0/inc,f:0...inf/std,p:0/inc).
state(p:0/std,v:0...inf/dec,p:0/inc,f:0...inf/inc,p:0/std).

Figure 42: Example observations from the lung system.

ADD(+press,+press,-press) SUB(+press,+press,-press)
ADD(+vol,+vol,-vol) SUB(+vol,+vol,-vol)
ADD(+volrate,+volrate,-volrate) SUB(+volrate,+volrate,-volrate)
ADD(+qval,+qval,-qval) SUB(+qval,+qval,-qval)

MPLUS(+press,-press) MPLUS(+press,-vol)
MPLUS(+press,-volrate) MPLUS(+press,-qval)
MPLUS(+vol,-vol) MPLUS(+vol,-volrate)
MPLUS(+vol,-qval) MPLUS(+qval,-volrate)
MPLUS(+qval,-qval)

MMINUS(+press,-press) MMINUS(+press,-vol)
MMINUS(+press,-volrate) MMINUS(+press,-qval)
MMINUS(+vol,-vol) MMINUS(+vol,-volrate)
MMINUS(+vol,-qval) MMINUS(+qval,-volrate)
MMINUS(+qval,-qval)

MINUS(+press,+press) MINUS(+vol,+vol)
MINUS(+volrate,+volrate) MINUS(+qval,+qval)

MULT(+press,+press,-qval) MULT(+press,+vol,-qval)
MULT(+press,+volrate,-qval) MULT(+press,+qval,-qval)
MULT(+vol,+vol,-qval) MULT(+vol,+volrate,-qval)
MULT(+vol,+qval,-qval) MULT(+qval,+volrate,-qval)
MULT(+qval,+qval,-qval)

DERIV(+qval,-qval)

Figure 43: Mode declarations used to identify the lung system.

STATE(+press,+vol,+press,+volrate,+press)

Mode declarations for the QSIM constraints are shown in Fig. 43.
The values of principal parameters are shown in the tabulation below.

Parameter Value
Size 7
Language 2
n 1000
m 1000
Newvars 6
Irrelev 0

1521

SRINIVASAN AND KING

state(l:0...inf/dec,l:0...inf/inc,f:0...inf/dec,l:0...inf/inc,l:0...inf/std,f:0/inc).
state(l:0...inf/dec,l:0...inf/inc,f:0...inf/dec,l:0...inf/inc,l:0...inf/inc,f:0...inf/dec).
state(l:0...inf/dec,l:0...inf/inc,f:0...inf/dec,l:0...inf/inc,l:0...inf/inc,f:0...inf/inc).
state(l:0...inf/std,l:0...inf/std,f:0/std,l:0...inf/std,l:0...inf/std,f:0/std).
state(l:0...inf/dec,l:0...inf/dec,f:0...inf/std,f:0...inf/inc,f:0...inf/dec).

Figure 44: Example observations from the glucose-insulin regulatory system.

ADD(+glevel,+glevel,-glevel) SUB(+ilevel,+ilevel,+iflow)
ADD(+ilevel,+ilevel,-ilevel) SUB(+glevel,+glevel,+gflow)

MPLUS(+glevel,-glevel) MPLUS(+glevel,-ilevel)
MPLUS(+ilevel,-glevel) MPLUS(+ilevel,-ilevel)

SPLUS(+glevel,-glevel) SPLUS(+glevel,-ilevel)
SPLUS(+ilevel,-glevel) SPLUS(+ilevel,-ilevel)

MMINUS(+glevel,-glevel) MMINUS(+glevel,-ilevel)
MMINUS(+ilevel,-glevel) MMINUS(+ilevel,-ilevel)

SMINUS(+glevel,-glevel) SMINUS(+glevel,-ilevel)
SMINUS(+ilevel,-glevel) SMINUS(+ilevel,-ilevel)

MINUS(+glevel,+glevel) MINUS(+ilevel,+ilevel)

DERIV(+glevel,+gflow) DERIV(+ilevel,+iflow)

Figure 45: Mode declarations used for identifying the glucose-insulin models.

A.3.4 THE GLUCOSE-INSULIN MODELS

System variables for the glucose-insulin models are Gin, G, DG, Iin, I, and DI. Of these DG and DI
are dependent on the glucose and insulin variables and could have been inferred from them. Exam-
ples for both the insulin and glucose stages are encoded using a state/6 predicate (the arguments
refer to the system variables Gin–DI, in the order just listed). Some of the observations are shown
in Fig. 44 (the syntax used is in the Prolog language):
24 observations are generated in all using the correct model for glucose-insulin regulation. For the
first stage of learning—the insulin stage—observations relevant to glucose (that is, Gin, G and DG)
are ignored. This is achieved using the following mode declaration for state/6 (here, the “ ” denotes
that the corresponding argument is to be ignored):

STATE(_,_,_,+ilevel,+ilevel,+iflow)

In contrast, the mode declaration for state/6 for the glucose stage is as follows:

STATE(+glevel,+glevel,+gflow,+ilevel,+ilevel,+iflow)

Mode declarations for the QSIM constraints for both insulin and glucose stages are shown in Fig. 45.
The values of the principal parameters for the two stages are shown in the tabulation below.

1522

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

glycolysis([adp:0/std,atp:0...inf/std,f16bp:0/std,f6p:0/std,g6p:0/std,glc:0...inf/std],
[adp:0...inf/inc,atp:0...inf/dec,f16bp:0...inf/inc,f6p:0/std,g6p:0/std,glc:0...inf/dec]).

glycolysis([adp:0/std,atp:0...inf/std,f16bp:0/std,f6p:0/std,g6p:0/std,glc:0...inf/std],
[adp:0...inf/inc,atp:0...inf/dec,f16bp:0...inf/inc,f6p:0...inf/dec,g6p:0/std,glc:0...inf/dec]).

glycolysis([adp:0/std,atp:0...inf/std,f16bp:0/std,f6p:0/std,g6p:0/std,glc:0...inf/std],
[adp:0...inf/inc,atp:0...inf/dec,f16bp:0...inf/inc,f6p:0...inf/std,g6p:0/std,glc:0...inf/dec]).

glycolysis([adp:0/std,atp:0...inf/std,f16bp:0/std,f6p:0/std,g6p:0/std,glc:0...inf/std],
[adp:0...inf/inc,atp:0...inf/dec,f16bp:0...inf/inc,f6p:0...inf/inc,g6p:0/std,glc:0...inf/dec]).

glycolysis([adp:0/std,atp:0...inf/std,f16bp:0/std,f6p:0/std,g6p:0/std,glc:0...inf/std],
[adp:0...inf/inc,atp:0...inf/dec,f16bp:0...inf/inc,f6p:0/std,g6p:0...inf/dec,glc:0...inf/dec]).

Figure 46: Example observations from the priming stage of glycolysis.

Parameter Stage 1 Stage 2
(insulin) (glucose)

Size 3 9
Language 2 2
n 1000 1000
m 1000 1000
Newvars 5 5
Irrelev 0 0

A.3.5 THE GLYCOLYSIS MODELS

System variables for identifying models at any stage of glycolysis are cell-states before and after
the stage. Examples for a stage are encoded using a glycolysis/2 predicate (the arguments of which
are the cell-state before and after the reactions involved in that stage). Some of the observations for
the first stage (priming) are shown in Fig. 46.
500 observations of system behaviour are obtained using the target models for each stage. The mode
declaration for the glycolysis/2 predicate is:

GLYCOLYSIS(+cellstate,-cellstate)

Although QSIM constraints form the basis of qualitative reactions, the models constructed use a
pathway/3 predicate. The mode declaration for this predicate is simply:

PATHWAY(+cellstate,#qreactions,-cellstate)

(Here the ”#” indicates that a corresponding argument is a ground term: in this case a sequence of
qualitative reactions).

The values of principal parameters for the three stages are shown in the tabulation below.

Parameter Stage 1 Stage 2 Stage 3
(priming) (splitting) (phosphorylation)

Size 1 2 3
Language 3 3 3
n 1000 1000 1000
m 1000 1000 1000
Newvars 3 3 3
Irrelev 0 0 0

1523

SRINIVASAN AND KING

System Variables Search Space
4 15
5 181
6 2163
7 27133
8 364395
9 5272861

10 82289163

Figure 47: Number of partition-sequences to be searched for a given number of system variables.

Appendix B. Automatic Decomposition

We present here a specification for the problem of automatic decomposition addressed in the latter
half of the paper, along with implementation details of a search procedure that identifies an accept-
able decomposition.

B.1 Specification

We will assume that we are looking to decompose a system specified by a set of qualitative system
variables. The problem can be specified as follows. Given a non-empty set S of system variables,
consider first the notion of a “partition-sequence” (S1,S2, . . . ,Sn), in which Si ⊂ S, and S1,S2 . . .Sn

form a partition of S. Given a set E of observed values for the system variables S, background knowl-
edge B, a refinement operator ρ, a cost function f , and a partition-sequence P = (S1,S2, . . . ,Sn), we
are able to construct a n-stage incremental learner of the form shown in Fig. 6(b) that returns a set
of models Hn = L(B,En,ρ, f ,Hn−1) with minimal cost, where H0 = { /0} and at each stage i, Ei are
the values observed for variables S1∪S2 · · ·Si. Let us assume that we are also able to obtain the cost
of Hn, which, for reasons that will become obvious immediately, we call CP. With automatic system
decomposition, we are concerned with a procedure that returns an optimal partition-sequence P∗

such that, of all possible partition sequences P, CP∗ ≤ CP (that is, P∗ yields models with the least
cost).

Remark 6 Search space for decompositions. We are able to provide some details on the combi-
natorics of the search for decompositions. Recall that the number of partitions of a set of n elements

into exactly k non-empty blocks is given by S(k)
n (Stirling’s number of the second kind). For each

such partition, a valid answer is given by an ordering of the blocks into some sequence. The number

of k-length partition-sequences is thus D(k)
n = k!S(k)

n . We have an additional constraint that requires
the first block in any partition-sequence to contain at least 2 elements. This means that we are only
interested in partition-sequences of length 1,2, . . . ,n− 2. The total number of partition-sequences

to be considered is therefore D(1)
n + D(2)

n + · · ·+ D(n−2)
n . This is at most (n− 2)D(n−2)

n . Of course,
models have be constructed with each element of any partition-sequence. The complexity of this has
be estimated in the previous section.

Fig. 47 tabulates the size of the search space for some values of n (the number of system variables),
showing how an addition of a system variable increases the size of the search space by an order of
magnitude (the number appears always to be greater than 10n−3).

1524

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

B.2 Implementation

Figure 48 shows a GSAT-like randomised local search procedure that identifies a partition-sequence
based on a greedy selection of elements. In experiments for the paper we have made one modifi-
cation to this procedure, which we have not shown in the figure for simplicity. In Fig. 48 variable
subsets are compared simply on costs. If a pair of variable subsets V1 and V2 have the same cost,
we further examine the following. For each of V1,2 we obtain a best-case estimate of the length of
the final partition-sequence. The subset with the shorter length is preferred. If these lengths are also
the same, then the subset with fewer variables is preferred (on the assumption that the resulting ILP
model would be simpler). In addition, of course, we will use ρ = ρA and f = fBayes.

Remark 7 Space searched by rls. Let |S| = n. The procedure contains 3 loops in Steps 4, 4f,
and 4(f)viii The loop in Step 4(f)viii iterates at most M times. On each iteration, there are at most
n local moves from any subset. Therefore, at most Mn subsets are examined by the loop in Step
4(f)viii. This is called no more than R times by the loop in Step 4f, resulting in at most MRn subsets.
The outermost loop in Step 4 can iterate no more than n times, which means the number of subsets
examined are at most MRn2.

B.3 Application

We consider first 3 artificial problems obtained by a random decomposition of a set of 10 variables
into 2, 3 and 4 stages. For each problem and stage, the “correct” variable subset is assigned the least
cost possible. All other subsets are assigned costs randomly. The task is to find the correct variable
subset at each stage for each of the 3 problems.8 The search space has approximately 108 elements
(in contrast to the coupled tanks problem, which has about 102). Figures 49 summarises the results
of attempting to identify the correct decompositions for each of the 3 problems.

More generally, we examine the values of R and M needed for identifying the correct decomposi-
tion.9 The values required using artificial problem sets of the kind just described, with n = 4,5,6,8,
and 10 variables with k = 2,3, and 4 stages are shown in Fig. 50. The probability of obtaining the
correct decomposition are shown in Fig. 51.

From these results, it is evident that both an increase in the number of variables or the number
of stages usually requires an increase in the values of R and M (Fig. 50a), and that as the values of
R and M are increased, the probability of obtaining the correct decomposition increases (Fig. 50b).
Both these observations may be evident to the reader since an increase in either the number of
variables or stages makes the search space larger. Increasing R and M then allows a more extensive
search. A further characteristic of the automatic decomposition problem that may not be as obvious
is this: since the number of variables left at each stage less than at the previous stage, we should,
in principle, be able to achieve the same performance by starting with high values of R and M
and progressively reducing their values after each stage. We do not explore this further, as such a
progressive reduction is not a feature of the procedure here.

8. The procedure in the previous section has to be modified slightly, since there is no need to construct models using an
ILP learner for these problems.

9. We note that the experiments are concerned with exact identification of the correct decomposition. Approximate
identification, not addressed here, would yield higher probabilities.

1525

SRINIVASAN AND KING

rls(S,B,E,ρ, f ,R,M) : Given a non-empty set of system variables S; background knowledge B; a set of values for the system variables
E; a refinement operator ρ; a cost function f ; an upper bound on the number of restarts R; and an upper bound on the depth of
local moves M, returns a partition-sequence (S1,S2, . . . ,Sk), in which each Si results in the lowest cost model at stage i, given
models constructed for Si−1.

1. i = 0

2. Hi = { /0}, Si = /0

3. VarsLe f t = S

4. while VarsLe f t 6= /0 do

(a) Increment i

(b) VarsUsed = S0 ∪S1 · · ·Si−1

(c) bestcost = ∞
(d) VarsSelected = VarsLe f t

(e) r = 0

(f) while r < R do

i. VarsAvail = VarsLe f t \VarsUsed

ii. Randomly select V ⊂VarsAvail

iii. Let c be the cost of the models returned by an incremental learner constructed using Hi−1, B, E, VarsUsed∪
V , ρ, f

iv. if c < bestcost then

A. bestcost = c

B. VarsSelected = V

v. endif

vi. bestlocal = V

vii. m = 0

viii. while m < M do

A. Let L be the set of all variable subsets constituting local moves from bestlocal

B. Let V ′ be the element of L resulting in the least cost c′ using an incremental learner constructed using
Hi−1, B, E, VarsUsed ∪V ′, ρ, f

C. bestlocal = V ′

ix. if c′ < bestcost then

A. bestcost = c′

B. VarsSelected = V ′

x. endif

xi. Increment m

xii. endwhile

(g) Increment r

(h) endwhile

5. Si = VarsSelected

6. VarsLe f t = VarsLe f t \VarsSelected

7. endwhile

return (S1,S2, . . . ,Si)

Figure 48: A randomised local search procedure for decomposing a set of system variables into a
partition-sequence from which an incremental ILP learner can be constructed.

1526

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

R M
3 10 25 50

3 0.00 0.15 0.12 0.10
10 0.30 0.48 0.64 0.64
25 0.30 0.80 0.90 0.90
50 0.50 0.80 1.00 1.00

(a) 2-stage decomposition ({4,6,8,9,10},{1,2,3,5,7})

R M
3 10 25 50

3 0.03 0.18 0.18 0.10
10 0.20 0.30 0.60 0.60
25 0.60 0.60 0.80 0.90
50 0.80 1.00 0.90 1.00

(a) 3-stage decomposition ({1,5,6,8,10},{4,9},{2,3,7})

R M
3 10 25 50

3 0.03 0.00 0.00 0.00
10 0.00 0.18 0.04 0.32
25 0.25 0.0.36 0.40 0.40
50 0.18 0.63 0.72 0.64

(a) 4-stage decomposition ({2,3,4},{10},{6,7,8,9},{1,5})

Figure 49: Probability estimates of identifying the correct decomposition using the randomised lo-
cal search procedure on artificial problems with a set of 10 variables S = {1,2, . . . ,10}.
The decompositions to be identified are shown as sequences (S1,S2, . . . ,Sk) where
Si ⊂ S, Si ∩ S j = /0 and k represents the number of stages. The probability estimates
required for each stage are obtained from 30 trials of using the randomised procedure.

1527

SRINIVASAN AND KING

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12

R
,M

No. of Variables (n)

k=2
k=3
k=4

Figure 50: (a) R,M estimates for identification of the correct decomposition of a set of n variables
into k stages.

1528

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

Pr
(C

or
re

ct
 D

ec
om

po
si

tio
n)

R,M

n,k=4,2
n,k=4,3
n,k=6,2
n,k=6,3
n,k=6,4
n,k=8,2
n,k=8,3
n,k=8,4

n,k=10,2
n,k=10,3
n,k=10,4

Figure 51: Probability of identifying the correct decomposition for specific values of n,k as a func-
tion of R,M.

1529

SRINIVASAN AND KING

References

R.L. Ashenhurst. The decomposition of switching functions. In Proceedings of an International
Symposium on the Theory of Switching, pages 74–116. Harvard University, 1957. (The earliest
report with this title by the author is in a Bell Telephone Labs Report No. BL-1(11), in 1952.).

E. Boros, V. Gurvich, P.F. Hammer, T. Ibaraki, and A. Kogan. Decomposition of partially defined
Boolean functions. Technical Report 94-9, DIMACS, March 1994.

I. Bratko. Prolog Programming for Artificial Intelligence. Addison-Wesley (3rd edition), London,
2001.

I. Bratko, I. Mozetic, and N. Lavrac. Kardio: A Study in Deep and Qualitative Knowledge for
Expert Systems. MIT Press, Cambridge, 1989.

I. Bratko, S. Muggleton, and A. Varsek. Learning qualitative models of dynamic systems. In
S. Muggleton, editor, Inductive Logic Programming, pages 437–452. Academic Press, London,
1992.

D.J. Clancy and B. Kuipers. Model decomposition and simulation. In Proceedings of the Eighth
International Workshop on Qualitative Physics about Physical Systems (QR-94), Nara, Japan,
1994.

G.M. Coghill, S.M. Garrett, and R.D. King. Learning qualitative models in the presence of noise.
In Proceedings of the QR’02 Workshop on Qualitative Reasoning, Sitges, Spain, 2002.

G.M. Coghill, S.M. Garrett, A. Srinivasan, and R.D. King. Qualitative system identification from
imperfect data. Technical Report AUCS/TR0501, University of Aberdeen, Aberdeen, 2005.

E. W. Coiera. Generating qualitative models from example behaviours. Technical Report 8901,
University of New South Wales, Deptartment of Computer Science, May 1989a.

E. W. Coiera. Learning qualitative models from example behaviours. In Proc. Third Workshop on
Qualitative Physics, pages 45–51, Stanford, August 1989b.

P.-J. Courtois. On time and space decomposition of complex structures. Communications of the
ACM, 28(6):590–603, June 1985.

H.A. Curtis. A New Approach to the Design of Switching Circuits. Van Nostrand, Princeton, NJ.,
1962.

D. Hau and E. Coiera. Learning qualitative models of dynamic systems. Machine Learning Journal,
26:177–211, 1997. Special Issue on ILP.

A. L. Hodgkin and A. F. Huxley. A quatitative description of membrane current and its application
to conduction and excitation in nerve. Journal of Physiology, 117:500–544, 1952.

L. Ironi and M. Stefanelli. In Proceedings of the Eighth International Workshop on Qualitative
Physics about Physical Systems (QR-94), Nara, Japan, 1994.

1530

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

Y. Iwasaki and H. A. Simon. Causality in device behavior. Artificial Intelligence, 29:3–32, 1986.
See also De Kleer and Brown’s rebuttal and Iwasaki and Simon’s reply to their rebuttal in the
same volume of this journal.

R.D. King, S.M. Garrett, and G.M. Coghill. On the use of qualitative reasoning to simulate and
identify metabolic pathways. Bioinformatics, 21:2017–2026, 2005.

B. Kuipers. Qualitative Reasoning. MIT Press, 1994.

W.P. Kuo, T-K. Jenssen, A.J. Butte, L. Ohne-Machado, and I.S. Kohane. Analysis of matched
mRNA measurements from two different microarray technologies. Bioinformatics, 18(2):405–
412, 2002.

Y. Lazebnik. Can a biologist fix a radio? Or, what I learned while studying apoptosis. Cancer Cell,
2:179–182, 2002.

E. McCreath. Induction in First Order Logic from Noisy Training Examples and Fixed Example
Sizes. University of New South Wales (PhD. Thesis), Sydney, 1999.

I. Mozetic. Learning of qualitative models. In I. Bratko and Nada Lavrac, editors, Progress in
Machine Learning: Proceedings of EWSL ’87: 2nd European Working Session on Learning,
pages 201–217. Sigma Press, 1987.

S. Muggleton. Inductive logic programming: derivations, successes and shortcomings. SIGART
Bulletin, 5(1):5–11, 1994.

S. Muggleton. Inverse entailment and Progol. New Gen. Comput., 13:245–286, 1995.

S. Muggleton. Learning from positive data. In Proceedings of the Sixth Inductive Logic Program-
ming Workshop, LNAI, pages 358–376, Berlin, 1996. Springer-Verlag.

S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of
Logic Programming, 19,20:629–679, 1994.

J. D. Murray. Mathematical Biology. Springer, Berlin, 1993. Vol. 19, Biomathematics Texts Series,
2nd edition.

C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimisation. Prentice-Hall, Edgewood-Cliffs,
NJ, 1982.

D. Paulson and Y. Wand. An automated approach to information systems decomposition. IEEE
Transactions on Software Engineering, 18:174–189, 1992.

G.D. Plotkin. A note on inductive generalisation. In B. Meltzer and D. Michie, editors, Machine
Intelligence 5, pages 153–163. Elsevier North Holland, New York, 1970.

B. L. Richards, I. Kraan, and B. J. Kuipers. Automatic abduction of qualitative models. In Proceed-
ings of the Tenth National Conference on Artificial Intelligence (AAAI’92), pages 723–728, San
Jose, CA, July 1992.

1531

SRINIVASAN AND KING

F. Riguzzi. Two results regarding refinement operators. Technical Report TUM-I0510, Technische
Universität Müenchen, Munich, 2005.

A. C. C. Say and S. Kuru. Qualitative system identification: deriving structure from behavior.
Artificial Intelligence, 83:75–141, 1996.

B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search. In Proceedings of
the Twelfth National Conference on Artificial Intelligence. AAAI Press, 1994.

B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability problems. In
Proceedings of the Tenth National Conference on Artificial Intelligence, pages 440–446. AAAI
Press, 1992.

A.D. Shapiro. Structured Induction in Expert Systems. Addison-Wesley, Wokingham, 1987.

M. Shpak, P.F. Stadler, G.P. Wagner, and L. Altenberg. Simon-Ando decomposability and fitness
landscapes. Theory in Biosciences, 2004a.

M. Shpak, P.F. Stadler, G.P. Wagner, and J. Hermisson. Aggregation of variables and system de-
composition: applications to fitness landscapes. Theory in Biosciences, 2004b.

H. A. Simon and A. Ando. Aggregation of variables in dynamic systems. Econometrica, 29:111–
138, 1961.

T. Soderstrom and P. Stoica. System Identification. Prentice Hall, 1989.

A. Srinivasan. The Aleph manual. Available at http://www.comlab.ox.ac.uk/oucl/ re-
search/areas/machlearn/Aleph/, 1999.

A. Srinivasan and R. Kothari. A study of applying dimensionality reduction to restrict the size of
a hypothesis space. In Proceedings of the Fifteenth International Conference on Inductive Logic
Programming (ILP2005), LNAI 3625, pages 348–365, Berlin, 2005. Springer.

D. Suc, D. Vladusic, and I. Bratko. Qualitatively faithful quantitative prediction. In Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence, pages 1052–1057.
Morgan Kaufmann, 2003.

L. Todorovski and S. Džeroski. Using domain knowledge on population dynamics modelling for
equation discovery. In Proceedings of the Twelfth European Conference on Machine Learning,
pages 478–490. Springer (LNCS 2167), 2001.

L. Todorovski, S. Dzeroski, A. Srinivasan, J. Whiteley, and D. Gavaghan. Discovering the structure
of partial differential equations from example behavior. In Proceedings of the Seventeenth Inter-
national Conference on Machine Learning, San Francisco, CA, 2000. Morgan Kaufmann. URL
ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Papers/AS/pde.ps.gz.

A.M. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal
Society B (London), 237:37–72, 1952.

W.Bialek and D.Botstein. Science, 2004.

1532

IDENTIFYING QUALITATIVE MODELS OF BIOLOGICAL SYSTEMS

M. P. Wellman. Qualitative simulation with multivariate constraints. In Proc. of the Second Inter-
national Conference on Principles of Knowledge Representation and Reasoning, pages 547–557,
1991.

1533

Journal of Machine Learning Research 9 (2008) 1535-1558 Submitted 12/07; Revised 6/08; Published 7/08

Learning to Combine Motor Primitives Via Greedy Additive
Regression

Manu Chhabra MCHHABRA@CS.ROCHESTER.EDU

Department of Computer Science
University of Rochester
Rochester, NY 14627, USA

Robert A. Jacobs ROBBIE@BCS.ROCHESTER.EDU

Department of Brain & Cognitive Sciences
University of Rochester
Rochester, NY 14627, USA

Editor: Peter Dayan

Abstract

The computational complexities arising in motor control can be ameliorated through the use of a
library of motor synergies. We present a new model, referred to as the Greedy Additive Regression
(GAR) model, for learning a library of torque sequences, and for learning the coefficients of a
linear combination of sequences minimizing a cost function. From the perspective of numerical
optimization, the GAR model is interesting because it creates a library of “local features”—each
sequence in the library is a solution to a single training task—and learns to combine these sequences
using a local optimization procedure, namely, additive regression. We speculate that learners with
local representational primitives and local optimization procedures will show good performance on
nonlinear tasks. The GAR model is also interesting from the perspective of motor control because
it outperforms several competing models. Results using a simulated two-joint arm suggest that the
GAR model consistently shows excellent performance in the sense that it rapidly learns to perform
novel, complex motor tasks. Moreover, its library is overcomplete and sparse, meaning that only a
small fraction of the stored torque sequences are used when learning a new movement. The library
is also robust in the sense that, after an initial training period, nearly all novel movements can be
learned as additive combinations of sequences in the library, and in the sense that it shows good
generalization when an arm’s dynamics are altered between training and test conditions, such as
when a payload is added to the arm. Lastly, the GAR model works well regardless of whether
motor tasks are specified in joint space or Cartesian space. We conclude that learning techniques
using local primitives and optimization procedures are viable and potentially important methods for
motor control and possibly other domains, and that these techniques deserve further examination
by the artificial intelligence and cognitive science communities.

Keywords: additive regression, motor primitives, sparse representations

1. Introduction

To appreciate why motor control is difficult, it is useful to quantify its computational complexity.
Consider, for example, an agent whose goal is to apply torques to each joint of a two-joint arm so
that the endpoint of the arm moves from an initial location to a target location in 100 time steps.
Also suppose that torques are discretized to one of ten possible values. In this case, the agent needs

c©2008 Manu Chhabra and Robert A. Jacobs.

CHHABRA AND JACOBS

to choose one sequence of torques from a set of 10200 possible sequences. Searching this set of
possible sequences is clearly a computationally intractable problem.

To ameliorate the computational challenges arising in motor control, it has been hypothesized
that biological organisms use “motor synergies” (Bernstein, 1967). A motor synergy is a depen-
dency among the dimensions or parameters of a motor system. For example, a coupling of the
torques applied at the shoulder and elbow joints would be a motor synergy. Motor synergies are
useful because they reduce the number of parameters that must be independently controlled, thereby
making motor control significantly easier (Bernstein, 1967). Moreover, synergies are often regarded
as “motor primitives”. For our current purposes, we focus here on frameworks in which an agent
with a library of motor synergies quickly learns to perform complex motor tasks by linearly com-
bining its synergies. This idea has motivated a great deal of neuroscientific research. For example,
Mussa-Ivaldi, Giszter, and Bizzi (1994) identified frogs’ motor synergies by stimulating sites in the
frogs’ spinal cords. Importantly, these authors verified that stimulation of two sites leads to the
vector summation of the forces generated by stimulating each site separately.

The idea of characterizing complex movements as linear combinations of motor synergies has
also been influential in the fields of artificial intelligence and cognitive science. In these fields, an
important research question is how to build an agent with a useful set of synergies or, alternatively,
how an agent can learn a useful set of synergies. Approaches to these issues are typically based
on techniques from the machine learning literature. Some researchers have developed theories mo-
tivated by kernel-based techniques. For example, Thoroughman and Shadmehr (2000) studied the
errors in people’s reaching movements and concluded that humans learn the dynamics of reaching
movements by combining primitives that have Gaussian-like tuning functions. Other researchers
have speculated that motor primitives can be learned using dimensionality-reduction techniques.
For example, Sanger (1995) analyzed people’s cursive handwriting using principal component anal-
ysis (PCA) to discover their motor synergies. He showed that linear combinations of these syner-
gies closely reconstructed human handwriting. Other examples using dimensionality-reduction to
learn motor primitives include Chhabra and Jacobs (2006), d’Avella, Saltiel, and Bizzi (2003), Fod,
Matarić, and Jenkins (2002), Jenkins and Matarić (2004), Safanova, Hodgins, and Pollard (2004),
Sanger (1994), and Todorov and Ghahramani (2003, 2004).1

The fact that novel motor tasks can often be performed by linearly combining motor synergies is
a surprising result. To see why this result is unexpected, consider the case in which an agent needs
to control a two-joint arm to perform a motor task. Suppose that a task is defined as a sequence
of desired joint angles (i.e., desired angles for the shoulder and elbow joints at each time step of
a movement), that a cost function is defined as the sum of squared error between the desired and
actual joint angles, and that the agent has a library of motor synergies where a synergy is a sequence
of torques (i.e., torques for the shoulder and elbow joints at each time step of a movement). The
agent attempts to perform the motor task by finding a set of coefficients for a linear combination
of synergies minimizing the cost function. (This optimization might be performed, for example,
using a gradient descent procedure, known as policy gradient, in which an agent uses the gradient
of the cost function with respect to the coefficients, Sutton, McAllester, Singh, and Mansour, 1999;

1. Our review focuses on frameworks in which complex movements are expressed as linear combinations of motor
primitives. There are, of course, frameworks that use motor primitives in other ways. A reader interested in this
topic may want to see Bentivegna (2004), Ijspeert, Nakanishi, and Schaal (2003), Lau and Kuffner (2005), Lee,
Chai, Reitsma, Hodgins, and Pollard (2002), Peters and Schaal (2006), and Stolle and Atkeson (2006), among other
articles.

1536

LEARNING TO COMBINE MOTOR PRIMITIVES

Williams, 1992.) Should we expect that a good set of linear coefficients—a set that leads to a near-
zero value of the cost function—will exist and, if so, be easy to find? We believe that the answer
is no. Recall that synergies are defined in terms of torques, the agent linearly combines synergies,
the cost function is defined in terms of joint angles, and there is a nonlinear relationship between
torques and joint angles. Finding a good set of linear coefficients should be a difficult optimization
problem because the nonlinear function relating coefficient values to values of the cost function
will contain many local minima. As a matter of terminology, we refer to this as the “Motor Basis
Optimization Problem”.

The Motor Basis Optimization Problem motivates the need to think about good ways of con-
structing a library of synergies, and good ways of learning to linearly combine the synergies to
perform novel motor tasks. In this paper, we propose a new learning model that learns a sparse
and overcomplete representation of the space of potentially useful motor commands, and learns to
linearly combine elements of this representation using a “greedy additive regression” procedure.
At a high level of abstraction, our procedure closely resembles the use of greedy additive schemes
for feature selection in recent machine learning systems (e.g., Perkins, Lacker, and Theiler, 2003;
Viola and Jones, 2004). For example, Viola and Jones (2004) used AdaBoost (Freund and Schapire,
1997; Schapire, 1990) to create a fast and robust classifier for detecting faces in visual images. They
started by creating a large library of image feature detectors. They then constructed a classifier in an
additive manner. At each iteration, a new classifier was created by adding a feature detector to the
old classifier. The feature detector that was added was the one whose use reduced the error of the
old classifier by the largest amount. The end result after several iterations was a successful classifier
with a sparse representation in the sense that it used relatively few feature detectors from the library.

This paper introduces a new learning model for motor control referred to as the Greedy Additive
Regression (GAR) model. The GAR model maintains a library of torque sequences (i.e., motor
synergies). If possible, the GAR model learns new movements by additively combining sequences
in this library. If not possible, new movements are learned by other means (e.g., via feedback error
learning). The torque sequences for these new movements are then added to the library. (Unlike
Viola and Jones, we do not construct a library of primitives by hand. Instead, we learn the primitives
in this library using the set of training tasks.)

We present results comparing the performances of the GAR model with those of another model,
referred to as the PCA model, that can be regarded as a generic example from a large class of ap-
proaches commonly used in the artificial intelligence and cognitive science literatures. The PCA
model learns a library of motor primitives using PCA, and finds coefficients for linearly combining
the primitives using gradient descent. Whereas the PCA model often yields poor results, the GAR
model consistently shows excellent performance. We find that the acquisition of new movements
by the GAR model is rapid when the library is used. Moreover, the library is overcomplete and also
sparse, meaning that only a small fraction of the stored torque sequences are used when learning
a novel movement. The library is also robust in at least two different ways. First, after an initial
training period, nearly all novel movements can be learned as additive combinations of sequences in
the library. Consequently, learning from scratch via, for example, feedback error learning becomes
rarer over time. Second, the library is also robust in the sense that it shows good generalization
when an arm’s dynamics are altered between training and testing conditions. If, for example, an
arm is suddenly required to carry a payload during testing, torque sequences in the library can still
be additively combined to rapidly learn new movements with this altered arm. We also demonstrate
that the model works well regardless of whether motor tasks are specified in joint space or Cartesian

1537

CHHABRA AND JACOBS

space. Based on these results, we believe that the GAR model contains several desirable properties,
including a library which maintains a sparse and overcomplete representation of the space of poten-
tially useful motor commands, and an additive regression optimization procedure which is fast and
robust.

This article is organized as follows. Section 2 describes the two-joint arm that we simulated,
and Section 3 describes the motor tasks that we used. Section 4 describes the Greedy Additive
Regression model. Section 5 reports the simulation results comparing the performances of the GAR
and PCA models under a variety of conditions. In Section 6, we briefly consider the performances
of these models when the system to be controlled is a linear system with redundancy. Section 7
states our conclusions and directions for future research.

2. Simulated Two-Joint Arm

We simulated a two-joint arm that coarsely resembles a human arm (Li and Todorov, 2004). The
arm can be written as a second-order nonlinear dynamical system (Hollerbach and Flash, 1982):

M (θ)θ̈+C (θ, θ̇)+B θ̇ = τ

where τ is a vector of torques, θ, θ̇, and θ̈ are vectors of joint angle positions, velocities, and accel-
erations, respectively, M (θ) is an inertial matrix, C (θ, θ̇) is a vector of Coriolis forces, and B is a
joint friction matrix. The mathematical forms of these variables are as follows:

M (θ) =

(

a1 +2a2 cosθ2 a3 +a2 cosθ2,
a3 +a2 cosθ2 a3

)

,

C (θ, θ̇) =

(

−θ̇2(2θ̇1 + θ̇2),

θ̇1
2

)

a2 sinθ2,

B(θ) =

(

b11 b12,
b21 b22

)

,

a1 = I1 + I2 +m2l2
1 ,

a2 = m2l1s2,

a3 = I2

where I1 and I2 are the moments of inertia of the two links, m1 and m2 are the masses of the two
links, and s1 and s2 are the distances from the joints to the links’ center of masses. We used the
same parameter values for the arm as Li and Todorov (2004). These values are given in Table 1.

3. Motor Tasks

A motor task is to apply torques to the arm so that it follows a desired trajectory defined in joint
space. A desired trajectory is specified by a sequence of joint angles written as a 2× 50 matrix of
2 joint angles over 50 time steps, where each time step corresponds to 7 ms of simulation. This
trajectory is created in several stages (see Figure 1). First, we generate a trajectory in Cartesian
space. To generate this trajectory, an initial position for the end-effector of the arm is chosen by
randomly sampling each joint angle from a uniform distribution between 0 and π/2. Then a final
position for the end-effector is chosen as the end point of a vector v of length d at an angle ψ starting

1538

LEARNING TO COMBINE MOTOR PRIMITIVES

Constant Value Constant Value
b11 0.05 kgm2s−1 b22 0.05 kgm2s−1

b21 0.025 kgm2s−1 b12 0.025 kgm2s−1

m1 1.4 kg m2 1.0 kg
l1 0.30 m l2 0.33 m
s1 0.11 m s2 0.16 m
I1 0.025 kgm2 I2 0.045 kgm2

Table 1: Values of constants used in the simulation of a two-joint arm.

Figure 1: Schematic drawing depicting how a motor task is generated.

at the end-effector’s initial position, where d and ψ are chosen uniformly at random between 10 cm
and 30 cm, and between 0 and 2π, respectively. Next, two via points are chosen at distances d1

and d2 perpendicularly away from the vector v at locations d/3 and 2d/3. Both d1 and d2 are
drawn uniformly at random between -10 cm and 10 cm. Finally, a trajectory is generated by fitting
a smooth cubic spline between the initial position, the two via points, and the final position. The
Cartesian-space trajectory is converted to a joint-space trajectory by solving the robot arm’s inverse-
kinematics using the MATLAB robotics toolbox (Corke, 1996). The duration of movement is set to
350 ms, and the resulting joint-space trajectory is sampled at 7 ms intervals to get the 2×50 matrix
defining a desired trajectory.

Given a desired joint-space trajectory, a motor task is to apply a time-varying torque to the arm
so that the arm follows the desired trajectory. Torques are sampled every 7 ms, meaning that torques
can be written as a 2×50 matrix. The cost function corresponding to the motor task is the sum of

1539

CHHABRA AND JACOBS

Figure 2: A schematic description of the Greedy Additive Regression(GAR) model. A desired
trajectory θ∗ is given as an input to the model. An additive regression algorithm is then
used to construct a torque sequence by linearly combining sequences from the library. If
this algorithm fails to find a linear combination yielding good performance, the model
acquires a new torque sequence by other means (e.g., via feedback error learning), and
then adds this new sequence to the library.

squared error between the desired and actual joint positions:

J =
50

∑
t=1

2

∑
i=1

(θ∗i (t)−θi(t))
2 (1)

where θ∗i (t) and θi(t) are the desired and actual angles of joint i at time t, respectively.
The motor tasks defined here are more complex than tasks often used in the literature in at least

two respects. First, the desired Cartesian-space trajectories used here are typically highly curved,
as opposed to straight-line reaching movements which are commonly used in experimental and
computational studies of motor control. Second, our tasks specify desired joint angles at every time
step. These tasks are more constrained than tasks that specify initial and final desired joint angles
but allow an arm to have any joint angles at intermediate time steps.

4. The Greedy Additive Regression Model

We propose a model of motor learning called the Greedy Additive Regression (GAR) model. This
model rapidly learns new motor tasks using a library of torque sequences. A schematic description
of the model is given in Figure 2.

When a new motor task arrives, the model first checks whether a linear combination of se-
quences from the library achieves good performance on this task. Good performance is defined as
a cost J less than ε (we set ε = 0.05 in our simulations). A potentially good linear combination is
found via the additive regression algorithm which is described below. If a linear combination with
good performance can be found, then this linear combination is used and nothing else needs to be
done. If, however, such a linear combination is not found, then the model needs to learn a new
torque sequence by other means. In the simulations reported in Section 5, we used feedback error
learning to learn this new torque sequence (Kawato, Furukawa and Suzuki, 1987; see also Atkeson

1540

LEARNING TO COMBINE MOTOR PRIMITIVES

and Reinkensmeyer, 1990, and Miller, Glanz, and Kraft, 1987).2 The new torque sequence is then
added to the library. Because a library has a fixed size of K, the addition of a new sequence may
require the removal of an old sequence. Intuitively, the model removes the torque sequence that has
been least used during the motor tasks that it has performed. Let n be an index over motor tasks, k
be an index over sequences in the library, and |ρk(n)| be the absolute value of the linear coefficient
ρk(n) assigned to sequence k on task n by the additive regression algorithm. The percent of the
model’s “total activation” that sequence j accounts for, denoted a j, is defined as:

a j =
∑n |ρ j(n)|

∑n ∑k |ρk(n)|
×100.

A sequence with large coefficients (based on magnitude, not sign) on many tasks would account for
a large percent of the model’s total activation, whereas a sequence with near-zero coefficients would
account for a small percent. The model removes the torque sequence that accounts for the smallest
percent of its total activation.

To complete the description of the GAR model, we need to describe the additive regression
algorithm for finding potentially good linear combinations of torque sequences from the library for
a motor task. As mentioned above, this algorithm is motivated by recent machine learning systems
that have used greedy additive procedures for feature selection (Perkins, Lacker, and Theiler, 2003;
Viola and Jones, 2004).

The additive regression algorithm is an iterative procedure. At iteration t, the algorithm main-
tains an aggregate torque sequence F (t) to perform a motor task such that:

F(t) =
t

∑
j=1

ρ j f j (2)

where f j is a sequence in the library and ρ j is its corresponding coefficient. Note that the aggre-
gate sequence F (t) is a weighted sum of t sequences from the library, but these sequences are not
necessarily distinct. It is possible that the same sequence appears more than once in the summation
in Equation 2. At each iteration of the algorithm, a sequence from the library is selected (with re-
placement), and a weighted version of this sequence is added to F (t) in order to create F (t+1). That
is,

F(t+1) = F(t) +ρt+1 ft+1 (3)

where ft+1 is the library sequence selected to be added and ρt+1 is its corresponding coefficient.
How does the algorithm choose ft+1 and ρt+1? Each torque sequence in the library is associated

with a trajectory of joint angles. For computational convenience, the algorithm sets this trajectory to

2. In brief, feedback error learning proceeds as follows. An adaptive feedforward controller is used in conjunction with
a fixed feedback controller. At each moment in time, the feedforward controller receives the desired joint positions,
velocities, and accelerations, and produces a feedforward torque vector. The feedback controller receives the current
and desired joint positions and velocities and produces a feedback torque vector. The sum of the feedforward and
feedback torque vectors is applied to the arm, and the resulting joint accelerations are observed. During the learning
portion of the time step, the inputs to the feedforward controller are set to the current joint positions, velocities, and
accelerations, and the target output is set to the torque vector that was applied to the arm. This controller’s parameters
are then adapted so that it better approximates the mapping from the inputs to the target output in the future. Early in
training, the outputs of the feedforward controller are near zero and most of the torques are supplied by the feedback
controller. As training progresses, the feedforward controller better approximates the arm’s inverse dynamics, and it
supplies most of the torques. Feedback error learning is an attractive learning procedure because it is unsupervised;
it does not require an external teacher but only a simple feedback controller.

1541

CHHABRA AND JACOBS

a “prototypical” trajectory in the following sense. The position of the arm is initialized so that each
joint angle is at its average initial value (i.e., each joint angle is initialized to π/4). The joint-angle
trajectory associated with a torque sequence is then found by applying the sequence to the arm. A
sequence is evaluated by correlating its joint-angle trajectory with ∂J/∂F (t), the gradient of the cost
function J with respect to the current aggregate torque sequence. This gradient indicates how the
aggregate sequence should be modified so as to reduce the cost. In our simulations, it was obtained
by numerically computing the partial derivative of the cost function with respect to each element
of the aggregate sequence F (t).3 The torque sequence whose trajectory is maximally correlated
with this gradient, denoted ft+1, is selected. To find the best coefficient ρt+1 corresponding to this
sequence, the algorithm performs a line search, meaning that the algorithm searches for the value of
ρt+1 that minimizes the cost J(F (t) + ρt+1 ft+1) (we implemented a golden section line search; see
Press, Teukolsky, Vetterling, and Flannery, 1992, for details). F (t+1) is then generated according to
Equation 3, and the optimization proceeds to the next iteration. This process is continued until the
value of the cost function converges (see Algorithm 1).

There are several possible perspectives on the additive regression algorithm. The idea of greed-
ily selecting the next primitive from a library has also been explored in the feature selection lit-
erature. For example, Perkins, Lacker, and Theiler (2003) used a gradient-based heuristic at each
iteration of their learning procedure to select the best feature from a set of features to add to a clas-
sifier. Our work differs from their work in many details because the domain of motor control forces
us to confront the complexities inherent in learning to control a dynamical system (see also Tassa,
Erez, and Smart, 2008). In addition, an appealing aspect of our work is that we use the solutions
from prior tasks to create a library of primitives. We find that this practice leads to an overcomplete
representation of the control space. Overcomplete representations have been shown to be useful in
a wide range of applications (e.g., Lewicki and Sejnowski, 2000; Smith and Lewicki, 2006). In
addition, the additive regression algorithm can be seen as performing gradient descent where the
direction of the gradient at each iteration is projected onto the library sequence whose trajectory is
maximally correlated with this gradient. The algorithm then minimizes the cost function by opti-
mizing the coefficient corresponding to this sequence. The algorithm can also be seen as performing
a type of “functional gradient descent” via boosting (readers interested in this perspective should
see Bühlmann, 2003, or Friedman, 2001). Lastly, the algorithm can be seen as using “matching
pursuit” to identify the next library sequence to add to the aggregate sequence at each iteration (see
Mallat and Zhang, 1993, for details).

5. Simulation Results

This section reports a number of results using the GAR model. We compare the performances of
the GAR model with those of another model, referred to as the PCA model, that can be regarded as
a generic example from a large class of approaches commonly used in the artificial intelligence and
cognitive science literatures. The PCA model performs dimensionality-reduction via PCA to learn
a library of motor primitives. When given a novel motor task, the PCA model learns to perform the

3. F(t) is a 2× 50 matrix. The partial derivative of the cost function with respect to element (j,k) of F (t) was com-

puted by evaluating the cost of F (t)
+ and F(t)

− , where F(t)
+ is the same as F(t) except that its (j,k)th element is set to

F(t)(j,k)+ δ (similarly, F (t)
− is set to F(t)(j,k)− δ; we set δ = 0.01.) The partial derivative was then approximated

by J(F (t)
+)−J(F (t)

−)
2δ .

1542

LEARNING TO COMBINE MOTOR PRIMITIVES

input : A desired trajectory θ∗
assume : A library L = {(f k,θk)} of torque sequences and their corresponding trajectories
output : An aggregate torque sequence F that minimizes cost J
t← 0; F ← 0;
repeat

t← t +1
numerically compute5J = ∂J

∂F
From the library L , pick a sequence f k such that5J and θk are maximally correlated
ft+1← f k

do a line search to find ρt+1 that minimizes J(F +ρt+1 ft+1)
F ← F +ρt+1 ft+1

until J converges
output F

Algorithm 1: Additive regression algorithm for finding a linear combination of torque se-
quences from the library.

task using a policy gradient optimization procedure (Sutton, McAllester, Singh, and Mansour, 1999;
Williams 1992) to learn a set of coefficients for linearly combining the motor primitives. (We regard
the PCA model as generic because we regard PCA and gradient descent as generic dimensionality-
reduction and optimization procedures, respectively.)

5.1 GAR versus PCA

In the PCA model, the library of motor synergies was created as follows. We first generated 3000
motor tasks as described in Section 3, and then used feedback error learning to learn a torque
sequence for each task. This gave us 3000 sequences, each defined by a matrix of size 2×50. We
re-stacked the rows of each matrix to form a vector of size 1× 100. This gave us 3000 vectors
(or data points) lying in a 100-dimensional space. We then performed dimensionality reduction
via PCA. The 100 principal components accounted for all the variance in the data and, thus, these
components were used as the library for the PCA model. We refer to these components as PCA
sequences.

To learn to perform a novel motor task from a test set, the PCA model searched for good linear
combinations of the PCA sequences. This search was conducted using a policy gradient proce-
dure (Sutton, McAllester, Singh, and Mansour, 1999; Williams 1992). The linear coefficients were
initialized to random values. At each iteration of the procedure, the gradient of the cost function
with respect to the coefficients was numerically computed, and a line search in the direction of
the gradient was performed (a golden section search method was implemented; see Press, Teukol-
sky, Vetterling, and Flannery, 1992, for details). This process was repeated until the cost function
converged.

The GAR model was implemented as follows. Its library of torque sequences was created by
running the model on 3000 motor tasks. The model’s library size was set to 100. The sequences
in this library at the end of training are referred to as GAR sequences. To learn to perform a novel
motor task from a test set, the GAR model learned to linearly combine the GAR sequences using
the additive regression algorithm described above.

The PCA and GAR models are two possible combinations of ways of creating libraries—one can
create libraries of either PCA or GAR sequences—and ways of linearly combining sequences from

1543

CHHABRA AND JACOBS

0

0.1

0.2

R
M

S
E

GAR: GAR Sequences
PCA: PCA Sequences
AR: Additive Regression
PG: Policy Gradient

GAR
 AR

PCA
 PG

PCA
 AR

GAR
 PG

Figure 3: Average root mean squared errors of four systems on a test set of 100 novel motor tasks
(the error bars show the standard errors of the means). The four systems use: (i) GAR
sequences with additive regression (GAR model); (ii) PCA sequences with policy gradi-
ent (PCA model); (iii) PCA sequences with additive regression; and (iv) GAR sequences
with policy gradient.

a library—one can learn linear coefficients through policy gradient or additive regression. The PCA
model combines PCA sequences with policy gradient, whereas the GAR model combines GAR
sequences with additive regression. For the sake of completeness, we also studied the remaining
two combinations, namely, the combination of PCA sequences with additive regression and the
combination of GAR sequences with policy gradient.

The results are shown in Figure 3. The horizontal axis gives a system’s combination of library
sequences and optimization technique. The vertical axis gives a system’s average root mean squared
error (RMSE where the error is between the desired and actual joint angles) on a test set of 100 novel
motor tasks. Clearly, the GAR model (leftmost bar in figure) performed better than the PCA model
(second bar from left). To further illustrate this point, the solid line in Figure 4 shows the Cartesian-
space desired trajectory for a sample test task. The dashed line shows the trajectory achieved by
the GAR model, and the dotted line shows the trajectory achieved by the PCA model. Whereas
the GAR model found a curved trajectory that closely approximated the desired trajectory, the PCA
model converged to a relatively straight-line movement which coarsely approximated the desired
trajectory. Our simulation results suggest that this is a common outcome for the PCA model. It
appears that the PCA model (and perhaps any system that uses policy gradient; see Figure 3) is
prone to finding poor local minima of the error surface.

In addition to showing that the GAR model outperformed the PCA model, Figure 3 also shows
that the GAR model outperformed the other systems considered here. Overall, the results are in-
teresting because they suggest that it is not enough to choose a good library—consider that the
system using GAR sequences with policy gradient performed poorly—and that it is also not enough
to use a good optimization procedure—the system using PCA sequences with additive regression

1544

LEARNING TO COMBINE MOTOR PRIMITIVES

−0.2 −0.1 0 0.1 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

X

Y

Figure 4: The solid line shows the Cartesian-space desired trajectory for a sample test task. The
dashed line shows the trajectory achieved by the GAR model, and the dotted line shows
the trajectory achieved by the PCA model.

performed poorly too. Instead, to achieve good performance it is necessary to consider the rep-
resentational primitives and the optimization procedure as a pair. Representational primitives and
optimization procedures are effective if a given procedure is able to find good solutions when the
search space is based on these primitives.

Why does the GAR model work so well? Our results suggest that its due to its combination
of “local” representational primitives (the GAR sequences) and a “local” optimization procedure
(additive regression). To appreciate the coupling between representational primitives and optimiza-
tion procedures, its important to keep in mind the differences between GAR and PCA sequences,
and the differences between additive regression and gradient descent optimization procedures. Each
individual GAR sequence is a solution to some task in the training set, whereas an individual PCA
sequence is not necessarily a solution to a task but, rather, reflects properties of many tasks. In this
sense, a GAR sequence can be regarded as a “local feature,” and a PCA sequence can be regarded
as a “global feature.” Similarly, additive regression can be considered as a local optimization proce-
dure because it adds at most one new feature to its linear combination at each iteration and because,
at convergence, its linear combination tends to contain relatively few features. In contrast, gradi-
ent descent is a global optimization procedure because it finds linear combinations of all possible
features. Because some features can have opposite effects, global optimization procedures lead to
interference. Interference can be avoided by using a local optimization method. Local optimization
methods have been shown to be effective in motor control in previous research. For example, Atke-
son, Moore, and Schaal (1997) stored all previous experiences on control tasks in memory, and used
a relatively local regression scheme (where locality was specified in terms of both space and time)
to compute control signals for new tasks. They showed that their local learning method performed
well, and also ameliorated the problem of global interference from features with opposing effects.

1545

CHHABRA AND JACOBS

For linear systems and quadratic cost functions, we predict that the use of GAR versus PCA
sequences, or additive regression versus gradient descent optimization procedures, should not matter
much. Indeed, simulations on a linear system in Section 6 show that all four library/algorithm
combinations work equally well. This is because a linear combination of either GAR or PCA
sequences is, by linearity, a solution to some task. When searching for a good linear combination,
a learner is searching among a set of task solutions for the particular solution which yields good
performance on the current target task. This remains true regardless of whether a learner uses GAR
or PCA sequences, or additive regression or gradient descent optimization procedures.

For nonlinear systems, however, this is not necessarily the case. With nonlinear systems, our
results show that a learner using local primitives (which are task solutions) and local optimization
procedures is preferable. This is because, when searching for a good linear combination, the local
optimization procedure searches a set of combinations which are relatively close to solutions for
some task. In the context of the GAR model, for example, we conjecture that each iteration of the
additive regression procedure finds a linear combination of GAR sequences (again, each sequence is
a solution to a task in the training set) which is itself close to a solution for some task due to the local
nature of its search. In contrast, a global optimization procedure, such as gradient descent, would
search among linear combinations which are far from any task solution. Finally, our results are
consistent with empirical findings in the machine learning literature showing that additive schemes
outperform gradient descent when searching for good linear combinations of features for novel
classification tasks (Friedman, 2001; Perkins, Lacker, and Theiler, 2003; Viola and Jones, 2004).4

5.2 Visualizing Torque Sequences

The library of a GAR model is created on the basis of a wide variety of motor tasks. The torque
sequences in the library should, therefore, be “representative” of the tasks they encode. Our goal
here is to examine these sequences.

We trained a GAR model with 3000 training tasks using a library of size 100. We then ordered
the sequences in the library by the percent of the model’s total activation that a sequence accounted
for. Figure 5 shows the Cartesian-space trajectories generated by the top three sequences. To gen-
erate these trajectories, the shoulder and elbow joint angles of the arm were initialized to π/4 and
π/2 respectively. Each torque sequence was then applied to the arm, first with a coefficient of 1 and
then with a coefficient of -1. Note that the trajectories span a wide range of directions. Several of
the trajectories are highly curved, whereas others are closer to straight lines. This range is a result
of the diverse set of tasks used to create the sequences. This graph illustrates that, even though the
sequences are added to the library in an arbitrary order, the important sequences that remain in the
library are representative of the motor tasks.

5.3 The GAR Model with Libraries of Different Sizes

Above we set the size of the library used by the GAR model to 100. Here we compare the model’s
performances with libraries of different sizes. If the size, denoted K, is too small, then torque
sequences that are often useful for learning novel motor tasks might be removed. In contrast, if K
is too big, then the library will contain many sequences which are nearly never used. Consequently,
there ought to be an optimal value for K. We implemented the GAR model as described above

4. We thank an anonymous reviewer whose suggestions inspired these comments.

1546

LEARNING TO COMBINE MOTOR PRIMITIVES

−0.4 −0.2 0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

X

Y

Figure 5: Cartesian-space trajectories generated by the three torque sequences that accounted for
the largest percent of a GAR model’s total activation. These trajectories were generated
by initializing the shoulder and elbow joint angles of the arm to π/4 and π/2 respectively,
and then applying the sequences to the arm with coefficients of 1 and -1.

using 3000 motor tasks. Three versions of the GAR model were used where the versions differed in
the sizes of their libraries.

The results are shown in Figures 6 and 7. In Figure 6, the horizontal axis shows the number of
motor tasks, and the vertical axis shows the percent of tasks in which a version of the GAR model
needed to learn a torque sequence via feedback error learning. The latter value was obtained as
follows. The motor tasks were divided into 60 blocks of 50 trials each. The percents for the blocks
were then smoothed using a moving window of width 5. Results are reported for versions of the
GAR model with library sizes of 50, 100, and 200. Early in training, a library has relatively few
sequences, and feedback error learning must often be used. As training progresses, the library has
many more useful sequences, and most novel motor tasks can be performed by linearly combining
sequences from the library. In this case, feedback error learning is infrequently used. A comparison
of the versions with different library sizes shows that the version with a library size of 50 used
feedback error learning more often than versions with library sizes of 100 or 200. This suggests that
a library size of 50 is too small.

From top to bottom, the three graphs in Figure 7 correspond to versions of the GAR model with
library sizes of 50, 100, and 200. The sequences in a library are ordered according to the percent
of a model’s total activation that a sequence accounted for. The horizontal axis of each graph in
Figure 7 plots the sequence number, and the vertical axis plots the percent of total activation that
a sequence accounted for. The versions with libraries of size 100 and 200 show similar patterns of
activation. In both cases, approximately the top 50 sequences accounted for nearly all the activation.
The remaining sequences were rarely used. In contrast, the version with a library of size 50 had a
different pattern of activation. Roughly all of the sequences in this library contributed to the model’s
total activation. We measured the average task error for each model (based on Equation 1) using

1547

CHHABRA AND JACOBS

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

Number of Tasks

F
ee

db
ac

k
co

nt
ro

l c
al

ls
 (

pe
rc

en
ta

ge
)

K=50
K=100
K=200

Figure 6: The horizontal axis shows the number of motor tasks, and the vertical axis shows the
percent of tasks in which a version of the GAR model needed to learn a torque sequence
via feedback error learning. The three curves in the figure correspond to versions of the
GAR model with library sizes of 50, 100, and 200.

the last 1000 motor tasks. When K = 50, the average task error was 0.0925; when K = 100, the
error was 0.0723; and when K = 200, the error was 0.0744. The corresponding standard error of
the means were 0.010, 0.012, and 0.009. It seems that K = 100 is most efficient in the sense that it
yielded good performance with a memory of moderate size. Furthermore, the version with K = 100
has the property that its use of sequences was relatively sparse. The top 10, 20, and 30 sequences
accounted for 60, 78, and 88 percent of the version’s total activation, respectively. Clearly, only a
small fraction of the stored sequences tended to be used when learning a novel task.

5.4 GAR versus PCA in the Presence of Altered Dynamics

People are robust to changes in their arms’ dynamics. For example, people can make accurate and
smooth arm movements regardless of whether they carry no payload, a light payload, or a heavy
payload. In this subsection, we compare the performances of the GAR and PCA models when they
were trained without a payload, but a payload was added to the simulated arm during test trials.

The libraries for the GAR model (with a library of size 100) and the PCA model were created
as described above with an arm that did not carry a payload. These models were then tested when
the arm did carry a payload. Test trials were conducted as described above; that is, for each test
task, a linear combination of torque sequences in a library was found via the additive regression
algorithm for the GAR model, and via policy gradient for the PCA model. A set of 100 novel test
tasks was generated. Models were evaluated on this set four times, once for each possible payload
(payloads of 0, 1, 3, and 5 kg were used). Payloads were added to an arm by increasing the mass of
the arm’s elbow-wrist link (m2 in Table 1). For the sake of completeness, we also tried the other two

1548

LEARNING TO COMBINE MOTOR PRIMITIVES

0 50 100 150 200
0

10

20

0 50 100 150 200
0

10

20

P
er

ce
nt

 o
f t

ot
al

 a
ct

iv
at

io
n

0 50 100 150 200
0

10

20

Torque sequence number

K=50

K=200

K=100

Figure 7: From top to bottom, the three graphs correspond to versions of the GAR model with
library sizes of 50, 100, and 200. The sequences in a library are ordered according to the
percent of a model’s total activation that a sequence accounted for. The horizontal axis
of each graph plots the sequence number, and the vertical axis plots the percent of total
activation.

combinations of libraries with optimization algorithms, namely, the GAR sequences with policy
gradient, and the PCA sequences with additive regression.

The results are shown in Figure 8. The vertical axis plots the average RMSE for each model for
each payload. (The results for a payload of 0 are identical to those in Figure 3). For each payload,
there are four bars corresponding to the four library/algorithm combinations. The performances of
the PCA model degraded rapidly as the payload increased (2nd bar in each set of bars). In contrast,
the performances of the GAR model were robust (1st bar in each set). We regard this successful
generalization as a highly surprising result. It clearly demonstrates that the GAR model develops
a useful library of torque sequences, and that the additive regression algorithm is a powerful opti-
mization procedure for finding good linear combinations, even under test conditions that are very
different from training conditions.

Why did the GAR model generalize so successfully? To address this question, we performed an
additional analysis. The idea behind this analysis is to evaluate whether the GAR model generates
similar libraries for different payloads. If this is the case, then additive regression should work well
for tasks with novel payloads, even when using a library of GAR sequences constructed from zero-
payload trials. We first generated a library of 100 GAR sequences using a training set of 3000 tasks
where the simulated arm did not contain a payload. We then generated libraries for each non-zero
payload using the same set of tasks. We compared each non-zero payload library to the zero-payload
library. For each GAR sequence in a non-zero payload library, we found the sequence in the zero-
payload library that was maximally correlated with this GAR sequence. For each non-zero payload,
the average value of this maximum correlation is reported in Table 2. The GAR model successfully
generalized from zero payloads to non-zero payloads because these correlations are large. The

1549

CHHABRA AND JACOBS

0

0.1

0.2

Load (kg)

R
M

S
E

GAR+AR

GAR+PG
PCA+AR
PCA+PG

0 1 3 5

Figure 8: Average RMSEs of the GAR and PCA models on the test tasks when the arm carried
different payloads.

Payload (kg) Average maximum correlation Standard error
1 0.84 0.08
3 0.81 0.04
5 0.73 0.06

Table 2: Average maximum correlation of the zero-payload library with the libraries built using
non-zero payloads (see text for details).

other systems we evaluated were not able to take advantage of the similarities between solutions for
zero-payload and non-zero payload tasks.

5.5 Motor Tasks Specified in Cartesian Space

In this subsection, we consider learning sequences for motor tasks when the desired trajectories are
specified in Cartesian space instead of joint space. Using Cartesian trajectories adds an additional
level of complexity. In addition to modeling the arm’s inverse dynamics (a mapping from desired
joint coordinates to torques), a system also needs to model the arm’s inverse kinematics (a map-
ping from desired Cartesian coordinates to joint coordinates). An appealing feature of Cartesian
trajectories is that they can be easily planned based on visuospatial information.

The cost function for this simulation is the sum of squared error between desired and actual
positions of the arm’s end-effector in Cartesian space:

J =
50

∑
t=1

(r∗x(t)− rx(t))
2 +(r∗y(t)− ry(t))

2

1550

LEARNING TO COMBINE MOTOR PRIMITIVES

0 10 20 30 40

0

0.2

0.4

0.6

0.8

Number of iterations

T
as

k
E

rr
or

Figure 9: Results when motor tasks were specified in Cartesian space. The horizontal axis plots the
number of iterations used by the GAR model, and the vertical axis show the average task
error at each iteration.

where (r∗x(t),r
∗
y(t)) is the desired (x,y)-coordinates of the arm’s end-effector in Cartesian space at

time t, and (rx(t),ry(t)) is the actual coordinates. The GAR model was trained using 3000 motor
tasks with a library of size 100. The library was constructed in the same way as before. An error
threshold of ε = 0.02 was used to determine if a linear combination of torque sequences from the
library provided a “good” aggregate sequence for a task (note that this is different from a threshold
of ε = 0.05 used in previous simulations because the cost function is in different units now). We
then created a test set of 100 tasks, and used the additive regression algorithm to learn a set of linear
coefficients for each test task.

The results are shown in Figure 9. The horizontal axis plots the number of iterations used by
the additive regression algorithm, and the vertical axis shows the average task error (Equation 8) at
each iteration. Note that this error declined rapidly to a near-zero value. This outcome indicates that
the GAR model has wide applicability in the sense that it is effective regardless of whether motor
tasks are specified in joint space or Cartesian space.

6. GAR Model Applied to a Redundant and Unstable System

Until now, our simulations used a robotic arm. This section reports simulation results with a spring-
mass system. In contrast to the robotic arm, this system allows us to evaluate different learners
when the system to be controlled has linear dynamics, redundancy (three control signals move the
system in a two-dimensional space), and is inherently unstable (zero or random control signals lead
to divergent behavior). The system is schematically illustrated in Figure 10.

The spring-mass system has three elastic spring-like sticks that produce an opposing force when
stretched or compressed. Stick 1 has resting length of l and connects the ground to point mass m1.
Stick 2 also has a resting length of l and connects m1 to point mass m2. Stick 3 has a resting length

1551

CHHABRA AND JACOBS

Desired Trajectory

gravity

x2

m1

m2

x3

x1

Figure 10: Schematic description of the spring-mass system used for the simulations.

of 2l and connects the ground to point mass m2. All sticks have second-order linear dynamics. The
dynamics of this system are governed by the following set of equations:

f1 = (l− x1)k1 +b1ẋ1 +h1u1,

f2 = (l− x2)k2 +b2ẋ2 +h2u2,

f3 = (2l− x1)k3 +b3ẋ3 +h3u3,

x3 = x1 + x2,

ẍ1 = (f1− f2−mg)/m,

ẍ2 = (2 f2 + f3− f1)/m

where x1, x2, and x3 are the current lengths of the sticks, f1, f2, and f3 are the forces applied by
the sticks due to elasticity, and the point masses m1 and m2 have the same weight m. Because the
damping coefficients b1, b2, and b3 were set to zero, the system exhibits a positive feedback effect
which causes its behavior to diverge (this can be seen by setting the control signals u1, u2, and u3 to
zero). The constraint x3 = x1 + x2 makes the system redundant as there are three inputs, u1, u2 and
u3, and only two free variables, x1 and x2. The parameter values are given in Table 3.

For this system, a task was defined by the desired trajectory for mass m2 over a course of T = 2.5
seconds. A desired trajectory was generated as follows. First, four sine waves were generated with
random frequencies ω1, ω2, ω3, and ω4, where ωi was picked uniformly at random from the interval
[0.03,0.3]. The desired trajectory x∗t was generated by x∗t = sin(ω1t)sin(ω2t) + sin(ω3t)sin(ω4t).

1552

LEARNING TO COMBINE MOTOR PRIMITIVES

Constant Value Constant Value Constant Value
k1 20 kgm2s−1 k2 20 kgm2s−1 k3 40 kgm2s−1

b1 0.0 kgm2s−1 b2 0.0 kgm2s−1 b3 0.0 kgm2s−1

h1 10 kgms−2 h2 10 kgms−2 h3 20 kgms−2

l 0.50 m m 0.5 kg g 10 ms−2

Table 3: Values of constants used in the simulations of the spring-mass system.

Performance errors were quantified using a quadratic cost function:

c(x3;x∗) =
Z T

0
(x∗t − x3,t)

2dt

where x3,t is the position of mass m2 at time t. Because this is a linear system with a quadratic cost
function, the sequence of optimal (feedforward) control signals for a task can be computed using
standard optimal control techniques. In our simulations, we discretized the system in time steps of
size 0.025 seconds and integrated the system using a first-order Runge-Kutta method.

We created libraries of sequences as follows. We first generated a training set of 1000 tasks.
For each task, we also computed the optimal sequence of control signals. Using these optimal
sequences as data items, we created a library of PCA sequences by extracting the top thirty principal
components based on these data items. We created a library of thirty GAR sequences using the
additive regression procedure described above, with the exception that an optimal sequence (as
opposed to a sequence found via feedback error learning) was added to the library when a good
linear combination of library sequences could not be found.

As above, we compare the performances of four learning systems comprising all four combina-
tions of representational primitives (PCA and GAR sequences) and optimization procedures (policy
gradient and additive regression). The results on 100 test tasks are shown in Figure 11 (the leftmost
bar in this figure gives the average RMSE using optimal control sequences). Note that all four learn-
ers performed nearly optimally. This is unsurprising as the quadratic error surface contains a single
(global) minimum, and any reasonable optimization procedure will find this minimum. Also note
that all four learners showed similar levels of performance (the differences in their performances
are not statistically significant). This result is consistent with our predictions for linear systems with
quadratic cost functions (see Section 5.1).

Although the learners showed similar levels of performance, a main point of this section is that
they are not equivalent in terms of processing time. To quantify processing time, we examined the
number of calls each learner made to the simulator of the spring-mass system. This simulator must
be called each time a gradient is computed. On average, the learner using GAR sequences and
additive regression made 49 calls, the learner using PCA sequences and policy gradient made 3879
calls, the learner using PCA sequences and additive regression made 62 calls, and the learner using
GAR sequences and policy gradient made 3422 calls. Clearly, the additive regression algorithm is
efficient in the sense that it made significantly fewer calls to the spring-mass simulator, irrespective
of the library used.

1553

CHHABRA AND JACOBS

0

0.06

0.12

R
M

S
E

Optimal GAR
 AR

PCA
 PG

PCA
 AR

GAR
 PG

Figure 11: Results with the spring-mass system. The vertical axis shows the average RMSE on
a test set with 100 tasks. The horizontal axis shows the learning system: (i) Optimal:
optimal control signals; (ii) GAR+AR: GAR sequences with additive regression; (iii)
PCA+PG: PCA sequences with policy gradient; (iv) PCA+AR: PCA sequences with
additive regression; and (v) GAR+PG: GAR sequences with policy gradient.

1554

LEARNING TO COMBINE MOTOR PRIMITIVES

7. Conclusions

In summary, the computational complexities arising in motor control can be ameliorated through
the use of a library of motor synergies. We presented a new model, referred to as the Greedy
Additive Regression (GAR) model, for learning a library of torque sequences, and for learning the
coefficients of a linear combination of library sequences minimizing a cost function. Results using
a simulated two-joint arm suggest that the GAR model consistently shows excellent performance
in the sense that it rapidly learns to perform novel, complex motor tasks. Moreover, its library
is overcomplete and sparse, meaning that only a small fraction of the stored torque sequences are
used when learning a new movement. The library is also robust in the sense that, after an initial
training period, nearly all novel movements can be learned as additive combinations of sequences
in the library, and in the sense that it shows good generalization when an arm’s dynamics are altered
between training and test conditions, such as when a payload is added to the arm. Additionally,
we showed that the GAR model works well regardless of whether motor tasks are specified in joint
space or Cartesian space.

The GAR model appears to consistently outperform the PCA model, as described above. A
comparison of these two models suggests why this is the case. The GAR model uses a library of
local features—each sequence in its library is a solution to a single task from the training set—and a
local optimization procedure, namely, additive regression. In contrast, the PCA model uses a library
of global features—each item in its library reflects properties of all tasks in the training set—and
policy gradient which is a global optimization procedure because it seeks good combinations of all
items in its library. We conjecture that the local versus global nature of the GAR versus PCA models
accounts for the performance advantages of the GAR model on nonlinear tasks. This account is
consistent with other empirical findings in the machine learning literature (Friedman, 2001; Perkins,
Lacker, and Theiler, 2003; Viola and Jones, 2004). Future work will need to provide a theoretical
underpinning for this intuitive conjecture. The GAR and PCA models represent two ends of a
local/global continuum. Future work should also study models that lie at intermediate points along
this continuum, such as models that form linear combinations by adding a small number of features
at each iteration, instead of the addition of a single feature as in the GAR model.

We have focused here on defining and evaluating the GAR model from a machine learning
perspective. Future research will need to focus on the implications of the model for our under-
standing of motor control in biological organisms, the theoretical foundations of the model, and
further empirical evaluations. In regard to our understanding of biological motor control, it would
be interesting to know whether sets of motor synergies used by biological organisms are sparse and
overcomplete as suggested by the GAR model, or are full-distributed and non-redundant as sug-
gested by the PCA model. If they are sparse and overcomplete, then the computational advantages
of the GAR model may help us understand why organisms have evolved or developed to use this
type of representation. In regard to theoretical foundations, the engineering community is often
reluctant to adopt new adaptive procedures for control unless these procedures have proven stability
and performance guarantees. At the moment, no such guarantees exist for the GAR model. Future
work will need to address these issues. In regard to empirical evaluations, future research will need
to evaluate the GAR model with larger and more complex motor systems and motor tasks.

1555

CHHABRA AND JACOBS

Acknowledgments

We thank two anonymous reviewers for their helpful comments on an earlier version of this manuscript.
This work was supported by AFOSR research grant FA9550-06-1-0492.

References

C. G. Atkeson and D. J. Reinkensmeyer. Using associative content-addressable memories to control
robots. In W. T. Miller III, R. S. Sutton, and P. J. Werbos, editors,, Neural Networks for Control.
MIT Press, 1990.

C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning for control. Artificial
Intelligence Review, 11:75-113, 1997.

D. C. Bentivegna. Learning from Observation Using Primitives. Ph.D. dissertation, Georgia Insti-
tute of Technology, 2004.

N. Bernstein. The Coordination and Regulation of Movements. Pergamon Press, 1967.

P. Bühlmann. Boosting methods: Why they can be useful for high-dimensional data. In Proceedings
of the 3rd International Workshop on Distributed Statistical Computing (DSC), 2003.

M. Chhabra and R. A. Jacobs. Properties of synergies arising from a theory of optimal motor
behavior. Neural Computation, 18:2320-2342, 2006.

P. Corke. A robotics toolbox for MATLAB. IEEE Robotics and Automation Magazine, 3:24-32,
1996.

A. d’Avella, P. Saltiel, and E. Bizzi. Combinations of muscle synergies in the construction of a
natural motor behavior. Nature Neuroscience, 6:300-308, 2003.

A. Fod, M. J. Matarić, and O. C. Jenkins. Automated derivation of primitives for movement classi-
fication. Autonomous Robots, 12:39-54, 2002.

Y. Freund and R. E. Schapire. A decision- theoretic generalization of on-line learning and an appli-
cation to boosting. Journal of Computer and System Sciences, 55:119-139, 1997.

J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics,
29:1189-1232, 2001.

J. M. Hollerbach and T. Flash. Dynamic interactions between limb segments during planar arm
movement. Biological Cybernetics, 44:67-77, 1982.

A. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning motor primitives.
In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing
Systems 15. MIT Press, 2003.

O. C. Jenkins and M. J. Matarić. A spatio-temporal extension to Isomap nonlinear dimension re-
duction. In Proceedings of the 21st International Conference on Machine Learning, 2004.

1556

LEARNING TO COMBINE MOTOR PRIMITIVES

M. Kawato, K. Furukawa, and R. Suzuki. Hierarchical neural-network model for control and learn-
ing of voluntary movement. Biological Cybernetics, 57:169-185, 1987.

M. Lau and J. J. Kuffner. Behavior planning for character animation. In Proceedings of the 2005
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2005.

J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard. Interactive control of avatars
animated with human motion data. ACM Transactions on Graphics (SIGGRAPH), 21:491-500,
2002.

M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neural Computation,
12:337-365, 2000.

W. Li and E. Todorov. Iterative linear-quadratic regulator design for nonlinear biological move-
ment systems. In Proceedings of the First International Conference on Informatics in Control,
Automation, and Robotics, 2004.

S. Mallat and Z. Zhang. Matching pursuit with time-frequency dictionaries. IEEE Transactions on
Signal Processing, 41:3397-3415, 1993.

T. W. Miller III, F. H. Glanz, and L. G. Kraft. Application of a general learning algorithm to the
control of robotic manipulators. International Journal of Robotic Research, 6:84-98, 1987.

F. A. Mussa-Ivaldi, S. F. Giszter, and E. Bizzi. Linear combination of primitives in vertebrate motor
control. Proceedings of the National Academy of Sciences USA, 91:7534-7538, 1994.

S. Perkins, K. Lacker, and J. Theiler. Grafting: Fast, incremental feature selection by gradient
descent in function space. Journal of Machine Learning Research, 3:1333-1356, 2003.

J. Peters and S. Schaal. Reinforcement learning for parameterized motor primitives. In Proceedings
of the International Joint Conference on Neural Networks, 2006.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art
of Scientific Computing. Cambridge University Press, 1992.

A. Safanova, J. K. Hodgins, and N. S. Pollard. Synthesizing physically realistic human motion
in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics (SIGGRAPH),
23:514-521, 2004.

T. D. Sanger. Optimal unsupervised motor learning for dimensionality reduction of nonlinear con-
trol systems. IEEE Transactions on Neural Networks, 5:965-973, 1994.

T. D. Sanger. Optimal movement primitives. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors,
Advances in Neural Information Processing Systems 7. MIT Press, 1995.

R. E. Schapire. The strength of weak learnability. Machine Learning, 5:197-227, 1990.

E. C. Smith and M. S. Lewicki. Efficient auditory coding. Nature, 439:978-982, 2006.

M. Stolle and C. G. Atkeson. Policies based on trajectory libraries. In Proceedings of the Interna-
tional Conference on Robotics and Automation (ICRA), 2006.

1557

CHHABRA AND JACOBS

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors,
Advances in Neural Information Processing Systems 12. MIT Press, 1999.

Y. Tassa, T. Erez, and W. Smart. Receding horizon differential dynamic programming. In J. C.
Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing
Systems 20. MIT Press, 2008.

K. A. Thoroughman and R. Shadmehr. Learning of action through adaptive combination of motor
primitives. Nature, 407:742-747, 2000.

E. Todorov and Z. Ghahramani. Unsupervised learning of sensory-motor primitives. In Proceedings
of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, 2003.

E. Todorov and Z. Ghahramani. Analysis of the synergies underlying complex hand manipula-
tion. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, 2004.

P. Viola and M. Jones. Robust real-time face detection. International Journal of Computer Vision,
57:137-154, 2004.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229-256, 1992.

1558

Journal of Machine Learning Research 9 (2008) 1559-1582 Submitted 10/07; Revised 2/08; Published 7/08

Aggregation of SVM Classifiers Using Sobolev Spaces

Sébastien Loustau LOUSTAU@CMI.UNIV-MRS.FR

Laboratoire d’Analyse, Topologie et Probabilités (UMR CNRS 6632)
Université Aix-Marseille 1
CMI-39 rue Joliot-Curie 13453 Marseille, France

Editor: John Shawe-Taylor

Abstract
This paper investigates statistical performances of Support Vector Machines (SVM) and considers
the problem of adaptation to the margin parameter and to complexity. In particular we provide a
classifier with no tuning parameter. It is a combination of SVM classifiers.

Our contribution is two-fold: (1) we propose learning rates for SVM using Sobolev spaces
and build a numerically realizable aggregate that converges with same rate; (2) we present practi-
cal experiments of this method of aggregation for SVM using both Sobolev spaces and Gaussian
kernels.
Keywords: classification, support vector machines, learning rates, approximation, aggregation of
classifiers

1. Introduction

We consider the binary classification setting. Let X ×{−1,1} be a measurable space endowed
with P an unknown probability distribution on X ×{−1,1}. Let Dn = {(Xi,Yi), i = 1, . . .n} be n
realizations of a random variable (X ,Y) with law P (in the sequel we also write PX for the marginal
distribution of X). Given this training set Dn, the goal of Learning is to predict class Y of new
observation X . In other words, a classification algorithm builds a decision rule from X to {−1,1}
or more generally a function f from X to R where the sign of f (x) determines the class of an input
x.

The efficiency of a classifier is measured by the generalization error

R(f) := P(sign(f (X)) 6= Y),

where sign(y) denotes the sign of y ∈ R with the convention sign(0) = 1. A well-known minimizer
over all measurable functions of the generalization error is called the Bayes rule, defined by

f ∗(x) := sign(2η(x)−1)

where η(x) := P(Y = 1|X = x) for all x ∈ X . Unfortunately, the dependence of f ∗ on the unknown
conditional probability function η makes it uncomputable in practice.

A natural way to overcome this difficulty is to provide an empirical decision rule or classifier
based on the data Dn. It has to mimic the Bayes. The way one measures the efficiency of a classifier
f̂n := f̂n(Dn) is via its excess risk:

R(f̂n, f ∗) := R(f̂n)−R(f ∗), (1)

c©2008 Sébastien Loustau.

LOUSTAU

where here R(f̂n) := P(sign(f̂n(X)) 6=Y |Dn). Given P, we hence say that a classifier f̂n is consistent
if the expectation of (1) with respect to P⊗n (the distribution of the training set) goes to zero as n
goes to infinity. Finally, we can look for a way of quantifying this convergence. A classifier f̂n

learns with rate (ψn)n∈N if there exists an absolute constant C > 0 such that for all integer n,

ER(f̂n, f ∗) ≤Cψn, (2)

where in the sequel E is the expectation with respect to P⊗n. Of course (2) ensures consistency of
f̂n whenever (ψn) goes to zero with n.

It has been shown in Devroye (1982) that no classifier can learn with a given rate for all distri-
butions P. However several authors propose different rates reached by restricting the class of joint
distributions. Pionneering works of Vapnik (Vapnik and Chervonenkis, 1971, 1974) investigate the
statistical procedure called Empirical Risk Minimization (ERM). The ERM estimator consists in
searching for a classifier that minimizes the empirical risk

Rn(f) =
1
n

n

∑
i=1

1I{sign(f (Xi))6=Yi}, (3)

over a class of prediction rules F , where 1IA denotes the indicator function of the set A. If we
suppose that the class of decision rules F has finite VC dimension, ERM reaches the parametric
rate n−

1
2 in (2) when f ∗ belongs to the class F . Moreover, if P is noise-free (i.e., R(f ∗) = 0), the

rate becomes n−1. This is a fast rate.
More recently, Tsybakov (2004) describes intermediate situations using a margin assumption.

This assumption adds a control on the behavior of the conditional probability function η at the level
1
2 (see (10) below). Under this condition, Tsybakov (2004) gets minimax fast rates of convergence
for classification with ERM estimators over a class F with controlled complexity (in terms of en-
tropy). These rates depend on two parameters : the margin parameter and the complexity of the
class of candidates f ∗ (see also Massart and Nédélec, 2006). Another study of the behavior of ERM
is presented in Bartlett and Mendelson (2006).

It is well known, however, that minimizing (3) is computationally intractable for many non
trivial classes of functions (Arora et al., 1997). It comes from the non convexity of the functional
(3). It suggests that we must use a convex surrogate Φ for the loss. The main idea is to minimize an
empirical Φ-risk

AΦ
n (f) =

1
n

n

∑
i=1

Φ(Yi f (Xi)),

over a class F of real-valued functions. Then f̂n = sign(F̂n) where F̂n ∈ Argmin f∈F AΦ
n (f) has a

small excess risk. Recently a number of methods have been proposed, such as boosting (Freund,
1995) or Support Vector Machines. The statistical consequences of choosing a convex surrogate is
well treated by Zhang (2004) and Bartlett et al. (2006). In this paper it is proposed to use the hinge
loss Φ(v) = (1− v)+ (where (·)+ denotes the positive part) as surrogate, that is, to focus on the
SVM algorithm.

SVM was first proposed by Boser et al. (1992) for pattern recognition. It consists in minimizing
a regularized empirical Φ-risk over a Reproducing Kernel Hilbert Space (RKHS for short in the
sequel). Given a training set Dn, the SVM optimization problem without offset can be written:

min
f∈HK

(
1
n

n

∑
i=1

l(Yi, f (Xi))+αn‖ f‖2
K

)
, (4)

1560

AGGREGATION OF SVM

where in the sequel:

1. The functional l is called the hinge loss and is now written l(y, f (x)) = (1− y f (x))+. The
first term of the minimization (4) is then the empirical Φ-risk AΦ

n for Φ(v) = (1− v)+.

2. The space HK is a RKHS with reproducing kernel K. Under some mild conditions over K, it
consists of continuous functions from X to R or C with the reproducing property:

∀ f ∈ HK ,∀x ∈ X , f (x) =< K(x, ·), f >HK
.

Recall that every positive definite kernel has an essentially unique RKHS (Aronszajn, 1950).

3. The sequence αn is a decreasing sequence that depends on n. This smoothing parameter has
to be determined explicitly. Such a problem will be studied in this work.

4. The norm ‖.‖K is the norm associated to the inner product in the Hilbert space HK .

For a survey on this kernel method we refer to Cristianini and Shawe-Taylor (2000).
This algorithm is at the heart of many theoretical considerations. However, its good practical

performances are not yet completely understood. The study of statistical consistency of the algo-
rithm and approximation properties of kernels can be found in Steinwart (2001) or more recently
in Steinwart (2005). Blanchard et al. (2006) propose a model selection point of view for SVM. Fi-
nally, several authors provide learning rates to the Bayes for SVM (Wu and Zhou, 2006; Wu et al.,
2007; Steinwart and Scovel, 2007, 2005). In these papers, both approximation power of kernels and
estimation results are presented. Wu and Zhou (2006) state slow rates (logarithmic with the sample
size) for SVM using a Gaussian kernel with fixed width. It holds under no margin assumption for
Bayes rule with a given regularity. Steinwart and Scovel (2007) give, under a margin assumption,
fast rates for SVM using a decreasing width (which depends on the sample size). An additional
geometric hypothesis over the joint distribution is necessary to get a control of the approximation
using Gaussian kernels.

These results focus on SVM using Gaussian kernels. The goal of this work is to clarify both
practical and theoretical performances of the algorithm using two different classes of kernels. In a
first theoretical part, we consider a family of kernels generating Sobolev spaces as RKHS. It gives
an alternative to the extensively studied Gaussian kernels. We quantify the approximation power
of these kernels. It depends on the regularity of the Bayes prediction rule in terms of Besov space.
Then under the margin assumption, we give learning rates of convergence for SVM using Sobolev
spaces. It holds by choosing optimally the tuning parameter αn in (4). This choice strongly depends
on the regularity assumption over the Bayes and the margin assumption. As a result, it is non-
adaptive. Then we turn out into more practical considerations. Following Lecué (2007a), we give a
procedure to construct directly from the data a classifier with similar statistical performances. It uses
a method called aggregation with exponential weights. Finally, we show practical performances of
this aggregate and compare it with a similar classifier using Gaussian kernels and results of Steinwart
and Scovel (2007).

The paper is organized as follows. In Section 2, we give statistical performances of SVM using
Sobolev spaces. Section 3 presents the adaptive procedure of aggregation and show the perfor-
mances of the data-dependent aggregate. This procedure does not damage the learning rates stated
in Section 2. We show practical experiments in Section 4 and conclude in Section 5 with a discus-
sion. Section 6 is devoted to the proofs.

1561

LOUSTAU

2. Statistical Performances

As a regularization procedure, minimization (4) generates two types of errors: the estimation error
and the approximation error. The use of a finite sample size produces the estimation error. The
approximation error can be seen as the distance between the hypothesis space and the Bayes decision
rule. It comes from the use of a RKHS of continuous functions in the minimization whereas the
Bayes is not continuous. The first one is random and depends on the fluctuation of the training set.
The second one is deterministic and depends on the size of the RKHS. We can see coarsely that
these errors are antagonist. Theorem 7 gives a choice of the regularization parameter αn that makes
the trade-off between these two errors.

For the estimation error, we will state an oracle-type inequality of the form :

ERl(f̂n, f ∗) ≤C inf
f∈HK

(
Rl(f , f ∗)+αn‖ f‖2

K

)
+ εn, (5)

where Rl(f , f ∗) := EPl(Y, f (X))−EPl(Y, f ∗(X)) is the excess l-risk of f . The term εn must be a
residual term and satisfies:

εn ≤C′ inf
f∈HK

(
Rl(f , f ∗)+αn‖ f‖2

K

)
,

where C′ > 0. Inequality (5) deals with the estimation error. It depends on the complexity of the
class of functions HK and the difficulty of the problem.

Hence it remains to control the infimum in the right hand side (RHS for short) of (5). Steinwart
and Scovel (2007) define the approximation error function as:

a(αn) := inf
f∈HK

(
Rl(f , f ∗)+αn‖ f‖2

K

)
. (6)

This function represents the theoretical version of the empirical minimization (4). It depends on the
chosen HK and the behaviour of αn as a function of n.

Using this approach, Steinwart and Scovel (2007) study the statistical performances of SVM
minimization (4) with the parametric family of Gaussian kernels. For σ ∈R, we define the Gaussian
kernel Kσ(x,y) = exp

(
−σ2‖x− y‖2

)
on the closed unit ball of R

d (denoted X). The parameter σ−1

is called the width of the Gaussian kernel. In this paper, under a margin assumption and a geometric
assumption over the distribution, they state fast learning rates for SVM. These rates hold under
some specific choices of tuning parameters recalled in Sect. 4. Following Lecué (2007a), we will
use this result and more precisely these choices of tuning parameters to implement the aggregate
using Gaussian kernels.

2.1 Sobolev Smooth Kernels

We propose to deal with other class of kernels than the Gaussian kernels. First we need to introduce
some notations. Let us consider the set of complex-valued and integrable (resp. square-integrable)
functions on R

d denoted as L1(Rd) (resp. L2(Rd)). On this set, we define the Fourier transform of
f to be:

f̂ (ω) =
1

(2π)d/2

Z

Rd
f (t)e−iω.tdt,∀ω ∈ R

d ,

1562

AGGREGATION OF SVM

where x.y denotes the usual scalar product of R
d between two points x,y ∈ R

d .
After the usual extension from L1(Rd) to L2(Rd) with Plancherel, this operator is an isometry

on L2(Rd). It allows us to define, for any s ∈ R
+, the Sobolev space W 2

s (often called fractional
Sobolev space) as the following subspace of L2(Rd) (Malliavin, 1974):

W 2
s := { f ∈ L2(Rd) : ‖ f‖2

s =
Z

Rd
| f̂ (ω)|2(1+‖ω‖2)sdω < ∞}. (7)

We refer to Triebel (1992) or Adams (1975) for a large study of this well-known functional space.
With such a norm, W 2

s is a Hilbert space endowed with the inner product defined as:

< f ,g >s=
Z

Rd
f̂ (ω)ĝ(ω)(1+‖ω‖2)sdω,

where z is the complex conjugate of z in C. Moreover it is a Hilbert space of continuous functions
for any s > d

2 (due to the embedding between W 2
s and C(Rd) for any s > d

2). It can be seen as a
RKHS.

In this framework, a kernel is a symmetric and positive definite function K : R
d ×R

d 7→ C. For
r ∈ R

+, a kernel Kr will be called Sobolev smooth kernel with exponent r > d if the associated
RKHS HKr is such that

HKr = W 2
r
2
,

where W 2
r
2

is defined in (7). The restriction r > d ensures that the RKHS consists of continuous

functions from R
d to C. Corollary 2 provides a way of constructing such a kernel.

We say that a kernel K is a translation invariant kernel (or RBF kernel), if for all x,y ∈ R
d ,

K(x,y) = Φ(x− y) (8)

for a given Φ : R
d 7→C. Function Φ is often called RB function for Radial Basis function. The most

popular example of translation invariant kernel is the Gaussian kernel Kσ(x,y) = exp(−σ2‖x−y‖2).
This kernel is not a Sobolev smooth kernel (see below).

Under suitable assumptions on Φ, the following theorem gives a Fourier representation of a
RKHS associated to a translation invariant kernel. The proof is given in Section 6.

Theorem 1 Let K : R
d ×R

d 7→ C be a translation invariant kernel where in (8) Φ belongs to
L1(Rd)∩L2(Rd) and such that Φ̂ is integrable. Then the RKHS associated to K can be written

HK = { f ∈ L2(Rd) : ‖ f‖2
K =

1

(2π)d/2

Z

S

| f̂ (ω)|2

Φ̂(ω)
dω < ∞ and f̂ = 0 on R

d\S}

with the inner product

< f ,g >K=
1

(2π)d/2

Z

S

f̂ (ω)ĝ(ω)

Φ̂(ω)
dω,

where S := {ω ∈ R
d : Φ̂(ω) 6= 0} is the support of Φ̂.

Sufficient conditions to have a Sobolev smooth kernel are:

1563

LOUSTAU

Corollary 2 Let K satisfying assumptions of Theorem 1. Suppose moreover that there exist con-
stants C,c > 0 and a real number s > d

2 such that

Φ̂(ω) =
C

(c+‖ω‖2)s ,∀ω ∈ R
d . (9)

Then K is a Sobolev smooth kernel with exponent r = 2s > d.

In Section 5 we propose an example of Sobolev smooth kernel and use it into the SVM procedure.

Remark 3 (Gaussian kernels are not Sobolev smooth) Theorem 1 can be used to define Gaus-
sian kernels in terms of Fourier transform. Indeed, the Gaussian kernel defined above is a transla-
tion invariant kernel with RB function Φ(x) = exp(−σ2‖x‖2). Its Fourier transform is given by

Φ̂(ω) =
1

(
√

2σ)d
exp(−‖ω‖2

4σ2).

Then Φ satisfies assumptions of Theorem 1. The Fourier representation of Hσ is given by:

Hσ = { f ∈ L2(Rd) :
Z

Rd
| f̂ (ω)|2σd exp(

‖ω‖2

4σ2)dω < ∞}.

From definition (7), it is clear that Hσ is not a Sobolev space. This integral representation of a
Gaussian RKHS illustrates the smoothness of functions f ∈ Hσ. Indeed we can see trivially that
Hσ ⊂ HKr for any fixed σ,r > 0 (because the Fourier transform of Φ is rapidly decreasing in this
case). Moreover the parameter σ can be seen as a regularization parameter : the fewer is σ, the
smoother are the functions in Hσ. More precisely, σ < σ′ entails Hσ ⊂ Hσ′ .

2.2 Approximation Efficiency of Sobolev Smooth Kernels

Here we are interested in approximation properties of HKr . We aim at bounding the approximation
function a(αn) defined in (6) for the procedure (4). The best case appears when f ∗ ∈ HK . Then we
get coarsely a(αn) ≤ Cαn where C is an absolute constant. This case is not realizable considering
a continuous RKHS since the Bayes classifier is not. In this paper, we get a control of the approx-
imation function when f ∗ does not belong to the RKHS. Theorem 4 provides such a result using a
Sobolev smooth kernel.

Theorem 4 Consider the approximation function a(αn) defined in (6), with Sobolev smooth kernel
Kr such that r > 2s > 0. Suppose PX satisfies dPX

dx ≤C0.
Then if f ∗ ∈ B2

s,∞(Rd), we have:

a(αn) ≤C
r−2s
r−s

0 ‖ f ∗‖
r

r−s
s2∞α

s
r−s
n ,

where ‖.‖s2∞ defines the norm in the Besov space B2
s,∞(Rd).

The proof is detailed in Section 6 where we define explicitly Besov spaces B 2
s,∞(Rd).

1564

AGGREGATION OF SVM

Remark 5 (BAYES REGULARITY) Here we get a control of the approximation function under an
assumption on the smoothness of the Bayes classifier. Of course large values of s are not possible
because f ∗(x) = sign(2η(x)−1) is not even continuous (except for the trivial case η(x) < 1

2 a.s. or
η(x) > 1

2). More precisely, the Besov space B p
s,q(Rd) is included in the space of continuous functions

for s > d
p and q > 1. Here p = 2 then parameter s must satisfy s < d

2 to have f ∗ ∈ B2
s,∞(Rd). In

Remark 10 we give an example of Bayes rule verifying this smoothness assumption.

Remark 6 (COMPARISON WITH STEINWART AND SCOVEL, 2007) Steinwart and Scovel (2007)
propose a same type of result using Gaussian kernels. Under a geometric assumption over the
distribution, they get

a(αn) ≤Cα
γ

γ+1
n ,

where γ is the geometric noise exponent. Here we propose a same type of result under a regularity
assumption over the possible f ∗. Theorem 17 in Section 6 shows that this result can be generalized
to any other kernel, using interpolation spaces.

2.3 Learning Rates

In this work, we restrict the class of considered distributions P. We add a control on the local slope
of the conditional probability function η at the level 1

2 . This margin assumption (we often call
|η− 1

2 | the margin) is originally due to Mammen and Tsybakov (1999) for discriminant analysis.
We will use throughout this paper the following formulation: we say that P has margin parameter
q > 0 if there exists a constant c0 > 0 such that

P(|2η(X)−1| ≤ t) ≤ c0tq, (10)

for all sufficiently small t.
According to Boucheron et al. (2005), this hypothesis is equivalent to the low noise or margin

assumption in Tsybakov (2004). Best situation for learning appears when the conditional probability
makes a jump at the level 1

2 . Hence (10) holds true for any positive q. It corresponds to a margin
parameter q = +∞, that is, κ = 1 in the sense of Tsybakov (2004).

Finally, last step of modelling consists in clipping the solution of minimization (4). For any
classifier f̂ , we hence define the clipped version f̂ C with values in [−1,1] by

f̂ C(x) =

−1 for x : f̂ (x) < −1,

f (x) for x : f̂ (x) ∈ [−1,1],

1 for x : f̂ (x) > 1.

This operation does not modify the classification property of f̂ since sign(f̂) = sign(f̂ C). It produces
classifiers with bounded norm ‖.‖∞. It appears in several works (Bartlett, 1998; Steinwart et al.,
2007). We stress that the clip does not modify the algorithm. It is done after the training as a part of
the theoretical study of the algorithm. We are now on time to state the main result of this section.

1565

LOUSTAU

Theorem 7 Let P be a distribution over R
d ×{−1,1} such that PX satisfies dPX

dx ≤ C0 and (10)
holds for q ∈ [0,+∞]. Let s > 0 and suppose f ∗ ∈ B2

s,∞(Rd).
Consider the SVM minimization (4) with Sobolev smooth kernel Kr, with r > 2s∨d, built on the

i.i.d. sequence (Xi,Yi), i = 1 . . .n according to P.
If we choose αn such that

αn ∼ n−
r(r−s)(q+1)

s(r(q+2)−d)+d(r−s)(q+1) , (11)

then there exists a constant C which depends on r,s,d,c0,q and C0 such that

ER(f̂ C
n , f ∗) ≤Cn−γ(q,s),

where

γ(q,s) =
rs(q+1)

s(r(q+2)−d)+d(r− s)(q+1)
. (12)

The proof of this theorem is given in Section 6.

Remark 8 (FAST RATES) Rate (12) is a fast rate (i.e., faster than n− 1
2) if rs(q+1)

s(r(q+2)−d)+d(r−s)(q+1) > 1
2 .

In particular, for q = +∞, it corresponds to s > rd
r+d . The presence of fast rates depends on the

regularity of the Bayes classifier. Unfortunately the behaviour of f ∗ (see Remark 4) entails s < d
2 .

As a result, sr
sr+d(r−s) < 1

2 and fast rates can not be reached.

Remark 9 (COMPARISON WITH STEINWART AND SCOVEL, 2007) This theorem gives perfor-
mances of SVM using a fixed kernel. On the contrary, according to Steinwart and Scovel (2007), the
bandwidth of the kernel has to be chosen as a function of n. Nevertheless, rates of convergences are
fast for sufficiently large geometric noise parameter. Here we cannot get fast rates for reasonable
assumption over f ∗.

Remark 10 (OPTIMAL SMOOTHING PARAMETER) Theorem 7 provides a particular choice of αn

to reach rates (12). Other definitions for the sequence αn give other rates of convergence. We
only mention the best possible rates. It holds for a regularization parameter optimizing the sta-
tistical performances. Indeed, αn in (11) makes the balance between the estimation error and the
approximation error.

Remark 11 (EXAMPLE) Consider the one-dimensional case where X = R. Suppose f ∗ is such
that:

card{x ∈ R : f ∗ jumps at x} = N < ∞. (13)

It means that the Bayes rule changes only a finite number of times over the real line. Using standard
analysis, we get

‖ f ∗‖TV =
Z

R

|D f ∗(x)|dx = 2N

where D f ∗ is the generalized derivative of f ∗. Moreover, for any f , | f̂ (ω)| ≤ ‖ f‖V T /|ω|. Then f ∗

belongs to Ws,2 only for s < 1/2. Finally, with basic properties of Besov spaces (Triebel, 1992), we
have Ws,2 = B2

s,2 ⊂ B2
s,∞.

1566

AGGREGATION OF SVM

Consequently, f ∗ verifying (13) belongs to B2
s,∞ for any s < 1

2 . If we consider a margin parameter
q = +∞, we hence cannot reach the rate of convergence

n−
r

3r−1

which corresponds to a regularity s = 1
2 in the Besov space. Then the SVM using Sobolev smooth

kernel HKr with r > 1 cannot learn with fast rate in this simple case.

3. Aggregation

Theorem 7 provides the optimal value of αn to reach rates of convergence (12) in the context of
Sobolev spaces. It holds under two ad-hoc assumptions: a margin assumption over the distribution
and a regularity assumption over the Bayes rule. Hence the choice of the smoothing parameter
depends on two unknown parameters: the margin parameter q and the exponent s in the Besov
space. Consequently the classifier f̂n of Theorem 7 cannot be constructed from the data. It is called
non-adaptive.

The goal of this section is to overcome this difficulty. We propose a classifier that adapts auto-
matically both to the margin and to regularity. In other words, we will build a decision rule from Dn

which does not depend on the unknown parameters s and q. Moreover, Theorem 12 shows that this
procedure of adaptation will not damage the learning rates of Theorem 7.

We use a technique called aggregation (Nemirovski, 1998; Yang, 2000). We apply the method
presented in Lecué (2007a) to our framework of Sobolev smooth kernel. It consists of splitting the
data into two parts : the first part in used to construct a family of classifiers. The second part is
used to make a convex combination of these classifiers. We obtain an adaptive decision rule which
mimics the best one over the family. Let us first describe the method.

Denote D1
n1

(resp. D2
n2

) the first subsample of size n1 (resp. second subsample of size n2) with
n1 + n2 = n. The choice of n1 and n2 will be discussed later. We construct a set of classifiers
(f̂ α

n1
)α∈G(n2) defined by f̂ α

n1
= sign

(
F̂α

n1

)
where

F̂α
n1

:= arg min
f∈HKr

(
1
n1

n1

∑
i=1

l(Yi, f (Xi))+α‖ f‖2
K

)
.

The grid G(n2) is defined by

G(n2) :=

{
αk = n−φk

2 : φk =
1
2

+ k∆−1,k = 0, . . . ,b(2r−d)∆
2d

c
}

,

with ∆ = nb
2 for some b > 0. We hence have

⌊
(2r−d)∆

2d

⌋
+1 classifiers to aggregate.

The procedure of aggregation uses the second subsample D2
n2

to construct a convex combination
with exponential weights. Namely, the aggregate f̃n is defined by

f̃n = ∑
α∈G(n2)

ω(n)
α f̂ α

n1
, (14)

where

ω(n)
α =

exp
(
∑n

i=n1+1Yi f̂ α
n1

(Xi)
)

∑α′∈G(n2) exp
(
∑n

i=n1+1Yi f̂ α′
n1

(Xi)
) .

We hence have the following result.

1567

LOUSTAU

Theorem 12 Consider the classifier f̃n defined in (14) where n2 = da n
logne for a > 0. Let K a

compact of (0,∞)2. Then there exists a constant C which depends on r,d,c0,K,a,b,L and C0 such
that for all (q,s) ∈ K

sup
P∈Qq,s

ER(f̃n, f ∗) ≤Cn−γ(q,s),

where

γ(q,s) =
rs(q+1)

s(r(q+2)−d)+d(r− s)(q+1)

and Qq,s is the set of distributions P satisfying dPX
dx < C0, (10) with parameter q and such that

f ∗ ∈ B2
s,∞(Rd ,L) = { f ∈ B2

s,∞(Rd) : ‖ f‖ ≤ L}.

Remark 13 Same rates as in Theorem 7 are attained. Here we deal with an implementable classi-
fier. In Section 5 we sum up practical performances of this aggregate.

Remark 14 Instead of aggregating a power of n classifiers, only logn classifiers are enough to
obtain this result. Lecué (2007b) states an oracle inequality such as (22) without any restriction on
the number of estimators to aggregate.

Remark 15 (AVERAGE OF AGGREGATES) This method supposes, for a given n1 and n2, an arbi-
trary choice for the subsample D1

n1
and D2

n2
. However we can use different splits of the training set.

We get an average of aggregates, namely

f n =
1
M

M

∑
k=1

f̃ k
n .

It does not depend on a particular split. Each f̃ k
n is defined in (14) for the split number k. With

(Lecué, 2007a, Theorem 2.4), this average satisfies the oracle inequality (22). Then Theorem 12
holds for f n for any family of M splits, for M ≤ C n1

n .

4. Practical Experiments

We now propose experiments illustrating performances of the aggregate of Section 3. We study
SVM classifiers using both Sobolev spaces and Gaussian kernels. The aggregates were implemented
in R using the free library kernlab. It contains implementations of support vector machines. For a
description of this package for kernel-based learning methods in R, we refer to Karatzoglou et al.
(2007). We use real world data sets from benchmark repository1 used by Rätsch et al. (1998). We
consider 9 data sets called ”Banana”, ”Titanic”, ”Thyroid”, ”Diabetes”, ”Breast-Cancer”, ”Flare-
solar”, ”Heart”, ”Image” and ”Waveform”. These data sets are explained in Table 1. For each data
set, we have several realizations of training and test set. The dimension of the input space is denoted
by d whereas the number of observations for the training set is n. It follows the notations used in
the previous sections. On each realization, we train and test our classifiers. The results presented in
Table 2,3,4 show the average test errors over these realizations and the standard deviations.

1. Data sets are available online at this address http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.

1568

AGGREGATION OF SVM

Data Set d n test sample realizations
Banana 2 400 4900 100
Titanic 3 150 2051 100
Thyroid 5 140 75 100
Diabetis 8 468 300 100

Breast-cancer 9 200 77 100
Flare-solar 9 666 400 100

Heart 13 170 100 100
Image 18 1300 1010 20

Waveform 21 400 4600 100

Table 1: Description of the data sets

4.1 SVM Using Sobolev Smooth Kernel

The first step is to pick up a Sobolev smooth kernel. Consider the following class of RBF kernels,
with Radial Basis function Φ:

K(x,y) = Φ(x− y) = exp(−σ‖x− y‖) ,∀σ ∈ R. (15)

For a given σ, this kernel is called a Laplacian kernel. It is clear that Φ ∈ L1(Rd)∩L2(Rd). Recall
the Fourier transform of Φ : R

d 7→ R (see Williamson et al., 2001):

Φ̂(ω) = 2
d
2 π− 1

2 Γ(
d
2

+1)
σ

(σ2 +‖ω‖2)
d+1

2

, ∀ω ∈ R
d ,

where Γ(x) =
R

R+ e−ttx−1dt is the Gamma function.
With Corollary 2, for any fixed σ, the Laplacian kernel defined in (15) is a Sobolev smooth

kernel with exponent r = d + 1. It satisfies assumptions of Theorem 7 and can be used in the
implementation of the algorithm.

It is worth noticing that the parameter σ is constant. If we take a significantly small value for σ,
as σ = n−u, u > 0, (9) holds for C and c depending on n. Thus Corollary 2 does not hold. To avoid
this problem, we choose in our aggregation step using this class of kernels a constant σ = 5. In the
sequel the Laplacian kernel used is precisely K(x,y) = exp(−5‖x− y‖).

Table 2 shows the first experiments. For each realization of training set, we use previous section
to build

• the set of classifiers (f̂ α
n1

) for α belonging to G(n2);

• exponential weights ω(n)
α to deduce aggregate f̃n.

Recall the definition of G(n2) in this case:

G(n2) :=

{
αk = n−φk

2 : φk =
1
2

+ k∆−1,k = 0, . . . ,b(2r−d)∆
2d

c
}

,

where ∆ = nb
2. We take b = 1 in the construction. Instead of a step ∆ = nb

2, it is possible to take
only ∆ = logn2 (see Remark 14) . The value of b governs the size of the grid. The cardinal is

1569

LOUSTAU

given in Table 2 for each data set. Note that growing b does not improve significantly the perfor-
mances whereas it adds computing time. Indeed, whatever b, G(n2) is contained in this case into

[n
− d+1

d
2 ,n

− 1
2

2]. This location is motivated by Theorem 7, namely equation (11).The value of b only
deals with the distance between each point of G(n2). It does not change the location of the grid.

Table 2 relates the average test errors and the standard deviations. We first collect the perfor-
mances of the family of weak estimators (f̂ α

n1
),α ∈ G(n2). We mention in order the performances

of the worst estimator, the mean over the family and the best over the family. It gives an idea of
the estimators to aggregate. Then the performances of the aggregate using exponential weights are
given in the last column.

Data Set cardG(n2) max mean min Laplace Aggregate
Banana 102 11.41±0.58 11.33± 0.57 11.12±0.59 11.31± 0.57
Titanic 38 22.80±1.16 22.80±1.14 22.77±1.13 22.77±1.13
Thyroid 31 5.97±2.61 5.45±2.56 4.77±2.63 5.45±2.68
Diabetis 72 29.56±2.03 28.40±2.00 27.33±1.96 28.34±2.27

Breast-cancer 35 35.10±5.34 33.26±5.06 31.49±5.05 32.74±5.16
Flare-solar 95 35.97±1.94 35.68±1.90 35.52±1.90 35.69±1.93

Heart 29 22.38±3.97 22.11±3.98 21.76±3.99 22.12±3.98
Image 152 4.35±0.87 4.06±0.74 3.79±0.74 3.95±0.74

Waveform 56 14.51±0.70 14.16±0.67 13.78±0.65 14.12±0.72

Table 2: Performances using Laplacian kernel

Note that the amplitude in the family is not very important. It may be explain by its construction.
Indeed, G(n2) is motivated by Theorem 7, which gives the location of the grid (see above). This
family has a mathematical justification. The test errors of the aggregate are located between the
average over the family and the oracle of the family.

A temperature parameter usually appears in aggregation methods. It governs the variations of
values ω(n)

α , for α ∈ G(n2). In Table 2 the weak classifiers have almost the same performances. This
could explain why no temperature parameter is needed here.

4.2 SVM Using Gaussian Kernels

Here we focus on the parametric class of Gaussian kernels Kσ(x,y) = exp
(
−σ2‖x− y‖2

)
, for σ∈R.

We build an aggregate made of a convex combination of Gaussian SVM classifiers. In this case,
the construction is not exactly the same. It comes from Steinwart and Scovel (2007). In this paper,
they introduce a geometric noise assumption. This hypothesis deals with the concentration of the
measure |2η− 1|PX near the decision boundary. It allows to control the approximation function
(6). According to Steinwart and Scovel (2007), suppose that the probability distribution P has a
geometric noise γ > 0 and assumption (10) holds with margin parameter q > 0. Then if we choose

αn =

n−
γ+1
2γ+1 if γ ≤ q+2

2q ,

n−
2(γ+1)(q+1)

2γ(q+2)+3q+4 , otherwise

1570

AGGREGATION OF SVM

the solution of (4) using a Gaussian kernel Kσ with σ = α
− 1

(γ+1)d
n learns with rates

{
n−

γ
2γ+1 +ε if γ ≤ q+2

2q ,

n−
2γ(q+1)

2γ(q+2)+3q+4 +ε otherwise,

for all ε > 0.
We can see that the variance of the Gaussian kernels is not fixed. It has to be chosen as a function

of the geometric noise exponent. As a result, parameter σ must be considered in the aggregation
procedure, as the smoothing parameter α. It gives a two-dimensional grid of Gaussian SVM of the
following form (Lecué, 2007a):

N (n2) =
{
(σn2,φ,αn2,ψ) = (nφ/d

2 ,n−ψ
2) : (φ,ψ) ∈ M (n2)

}

where

M (n2) =

{
(φn2,p1 ,ψn2,p2) =

(
p1

2∆
,

p2

∆
+

1
2

)
: p1 = 1, . . . ,2b∆c; p2 = 1, . . . ,b∆/2c

}
,

for ∆ = nb
2. Thus we have more classifiers to aggregate and needs more time to run. As a conse-

quence, we choose constant b = 0.5 in our experiments. Such as the Sobolev case, the number of
classifiers to aggregate is mentioned in Table 3 for each data set.

Table 3 relates the generalization performances of the classifiers over the test samples. We first
give the performances of the family of Gaussian SVM (namely the worst, the mean and the oracle
over the family). The performances of the aggregate using exponential weights are given in the last
column.

Data Set cardN (n2) max mean min gaussian aggregate
Banana 100 17.29± 3.08 12.27±0.89 10.85±0.63 11.43±0.84
Titanic 36 23.15±1.30 22.81±1.00 22.49±0.78 22.57±0.79
Thyroid 36 8.19±2.63 6.76±2.72 5.59±2.94 6.31±2.97
Diabetis 100 29.82±1.98 28.19±1.84 26.39±1.85 27.80±2.06

Breast-cancer 42 34.83±5.12 32.76±4.82 30.48±4.61 32.13±4.77
Flare-solar 144 39.06±1.92 36.01±1.54 34.09±1.69 34.87±1.82

Heart 42 23.1±3.80 22.60±3.71 21.99±3.59 22.62±3.77
Image 256 7.79±1.00 6.33±0.83 5.30±0.73 5.66±0.74

Waveform 100 15.41±0.80 15.08±0.78 14.72±0.77 15.04±0.79

Table 3: Performances using Gaussian kernels

In this case the generalization errors in the family are more disparate. It comes from a two-
dimensional grid of parameters. The performances of the Gaussian aggregate, as above, are located
between the average of weak estimators and the best among the family.

4.3 Comparison With Rätsch et al. (1998)

Table 4 combines the performances of the aggregates using Laplacian kernel and Gaussian kernels.
The errors are comparable. Gaussian kernels and Laplacian kernel lead to similar performances.
Then we mention the generalization errors of Rätsch et al. (1998).

1571

LOUSTAU

Rätsch et al. (1998) proposes generalizations of the original Adaboost algorithm. However, ex-
tensive simulations are presented like experimental results for SVM using Gaussian kernels. The
choice of the parameters (αn,σ) are done by 5-fold-cross validation thanks to several training data
sets. This approach has not any mathematical justification. Moreover their mathematical program-
ming problems are distributed over 30 computers. We only use last column to have an idea of
reasonable average test errors for these data sets.

Data Set Laplace Aggregate Gaussian Aggregate Rätsch et al. (1998)
Banana 11.31± 0.57 11.43±0.84 11.53±0.66
Titanic 22.77±1.13 22.57±0.79 22.42±1.02
Thyroid 5.45±2.68 6.31±2.97 4.80±2.19
Diabetis 28.34±2.27 27.80±2.06 23.53±1.76

Breast-cancer 32.74±5.16 32.13±4.77 26.04±4.74
Flare-solar 35.69±1.93 34.87±1.82 32.43±1.82

Heart 22.12±3.98 22.62±3.77 15.95±3.26
Image 3.95±0.74 5.66±0.74 2.96±0.6

Waveform 14.12±0.72 15.04±0.79 9.88±0.83

Table 4: Comparison with Rätsch et al. (1998).

Table 4 illustrates good resistance of our aggregates when the dimension is not too large. Nev-
ertheless, in the last columns, our estimators fail. This may have a theoretical explanation. In
Theorem 7 and 12, a constant C appears in the upper bounds. This constant in front of the rates of
convergence depends on the dimension of the input space. Increasing d grows this constant C and
may affect the performances. Moreover, the choice of the parameters in Rätsch et al. (1998) are
done with several training sets. In our approach, for each realization of a training set, we construct
an adaptive classifier using n observations. The amount of information used is not the same. It may
also explain this difference.

5. Conclusion

This paper gives some insights into SVM algorithm, from both theoretical and practical point of
view. We have tackled several important questions such as its statistical performances, the role of
the kernel and the choice of the tuning parameters.

The first part of the paper focuses on the statistical performances of the method. In this study, we
consider Sobolev smooth kernels as an alternative to the Gaussian kernels. It allows us to bring out a
functional class of Bayes rule (namely Besov spaces B 2

s,∞) ensuring good approximation properties
for our hypothesis space. Explicit rates of convergence have been given depending on the margin
and the regularity (Theorem 7). Nevertheless, this result was non-adaptive.

Then it has been necessary to consider the problem of adaptation. The aggregation method
appeared suitable in this context to construct directly from the data a competitive decision rule: it
has the same statistical performances as the non-adaptive classifier (Theorem 12). In this procedure,
we use explicitly the theoretical part to choose the scale of tuning parameters. For completeness,
we have finally implemented the method and gave practical performances over real benchmark data
sets. These practical experiments are to be considered as preliminary. However it shows similar

1572

AGGREGATION OF SVM

performances for SVM using Gaussian or non-Gaussian kernel. Moreover it illustrates rather well
the importance of constructing a classifier with some mathematical background.

6. Proofs

This section contains proofs of the results presented in this paper.

6.1 Proof of Theorem 1 and Corollary 2

We consider a translation invariant kernel K : R
d ×R

d 7→ C with RB function Φ satisfying assump-
tions of Theorem 1. The following lemma will be useful.

Lemma 16 For any y ∈ R
d , consider the function ky : x 7→ K(x,y) defined in R

d . Then we have the
following statements:

1. ky(x) = ĝy(x) where gy(ω) = eiω.yΦ̂(ω).

2. k̂y(ω) = e−iω.yΦ̂(ω).

Proof

1. Φ ∈ L2(Rd) hence the inverse Fourier formula allows us to write :

ky(x) = Φ(x− y) =
1

(2π)d/2

Z

Rd
eiω.(x−y)Φ̂(ω)dω

=
1

(2π)d/2

Z

Rd
e−iω.xeiω.yΦ̂(ω)dω

=
1

(2π)d/2

Z

Rd
e−iω.xgy(ω)dω.

2. Now using 1. one gets

k̂y(ω) =
1

(2π)d/2

Z

Rd
e−iω.xky(x)dx =

1

(2π)d/2

Z

Rd
eiω.xĝy(x)dx.

Gathering with the inverse Fourier transform of gy ∈ L2(Rd), we have

k̂y(ω) = gy(ω) = e−iω.yΦ̂(ω).

Proof (of Theorem 1)
We write

H0 = { f ∈ L2(Rd) :
Z

S

| f̂ (ω)|2

Φ̂(ω)
dω < ∞ and f̂ = 0 on S},

1573

LOUSTAU

with the corresponding norm

‖ f‖H0
:=

√
1

(2π)d/2

Z

S

| f̂ (ω)|2
Φ̂(ω)

dω.

We will show that H0 coincides with HK .
For a given y ∈ R

d , from Lemma 16 it is clear that k̂y(ω) = 0 for ω ∈ R
d\S. Moreover using

again Lemma 16:

Z

S

|k̂y(ω)|2

Φ̂(ω)
dω =

Z

S
Φ̂(ω)dω < ∞

since Φ̂ is integrable. Then ky ∈ H0 for any y ∈ R
d . Now we have to establish that H0 is a Hilbert

space. Following Matache and Matache (2002), we can show that, for any f ∈ H0 :

‖ f̂‖1 ≤
√

(2π)d/2‖Φ̂‖1‖ f‖H0
and ‖ f̂‖2 ≤

√
(2π)d/2‖Φ‖1‖ f‖H0

,

where ‖ · ‖1 and ‖ · ‖2 denote the norms in L1(Rd) and L2(Rd).
Indeed, by Cauchy-Schwarz,

Z

Rd
| f̂ (ω)|dω ≤

√
1

(2π)d/2

Z

S

| f̂ (ω)|2
Φ̂(ω)

dω
√

(2π)d/2
Z

S
Φ̂(ω)dω.

Moreover, since ‖Φ̂‖∞ ≤ ‖Φ‖1,

Z

Rd
| f̂ (ω)|2dω ≤ ‖Φ‖1

Z

S

| f̂ (ω|2

Φ̂(ω)
dω.

Then considering a Cauchy sequence (fn)n∈N in H0 endowed with ‖ ·‖H0
, (f̂n)n∈N will be a Cauchy

sequence in both L1(Rd) and L2(Rd). We conclude with Matache and Matache (2002) that (fn)n is
convergent in H0. Then H0 is complete and becomes a Hilbert space endowed with the following
inner product:

< f ,g >H0
=

1

(2π)d/2

Z

S

f̂ (ω)ĝ(ω)

Φ̂(ω)
dω.

Finally reproducing property holds. Indeed let f ∈ H0. Using again Lemma 16 :

f (x) =
1

(2π)d/2

Z

Rd
eiω.x f̂ (ω)dω =

1

(2π)d/2

Z

S

f̂ (ω)

Φ̂(ω)
k̂x(ω)dω =< f ,kx >H0

.

We have already shown that ∀x ∈ R
d , kx ∈ H0. As a result, the unicity of the RKHS for a given

kernel concludes the proof.

Proof (of Corollary 2)

1574

AGGREGATION OF SVM

First we have trivially that Φ̂ is integrable since s > 1
2 . We can hence apply Theorem 1 to have

HK = { f ∈ L2(Rd) :
Z

Rd
| f̂ (ω)|2(c+‖ω‖2)sdω < ∞},

since the support of Φ̂ is R
d . This expression of the RKHS associated to K corresponds, up to a

constant, to the Sobolev space W 2
s defined in (7). Then K is a Sobolev smooth kernel with exponent

r = 2s.

6.2 Proof of Theorem 4

First introduce the notion of interpolation space (Bennett and Sharpley, 1988). We restrict ourselves
to a description of the real interpolation method. Let (B,‖.‖B) be a Banach space and H a Hilbert
space dense in B. The Peetre’s functional for the couple (B,H) is defined by, for t > 0,

P(f , t,B,H) := inf
{
‖ f0‖B + t‖ f1‖H , f = f0 + f1 such that f0 ∈ B, f1 ∈ H

}
.

For fixed t > 0, the functional P defines a norm in the Banach space B. It is therefore a simple
way to define the interpolation space between B and H entirely in terms of this functional. Given
θ ∈]0,1[and q ∈ [0,∞], the space (B,H)θ,q called interpolation space between B and H consists of
all f ∈ B such that

‖ f‖θ,q :=

(
R +∞

0 t−θqP(f , t,B,H)q dt
t

) 1
q if q < ∞,

sup
t>0

{
t−θP(f , t,B,H)

}
if q = ∞

is finite.
Here we are interested in the case q = ∞ and the following geometric explanation of interpolation

space (Smale and Zhou, 2003, Theorem 3.1):

f ∈ (B,H)θ,∞ =⇒ inf
g∈BH (R)

‖ f −g‖B ≤ ‖ f‖
1

1−θ
θ,∞
(1

R

) θ
1−θ , (16)

where BH (R) :=
{

f ∈ H : ‖ f‖H ≤ R
}

. Hence the interpolation space between B and H satisfies
H ⊂ (B,H)θ,∞ ⊂ B . To be more precise it consists of functions located at a polynomial decreasing
distance in B from a ball in H of radius R as a function of R. It would be useful to control the
approximation error function in our framework.

Theorem 17 Consider a(αn) defined in (6). Suppose the marginal of X is such that dPX
dx ≤C0. Then

if f ∗ ∈ (L2(Rd),HK)θ,∞ we have:

a(αn) ≤ ‖ f ∗‖
2

2−θ
θ,∞ α

θ
2−θ
n .

Proof By the lipschitz property of the hinge loss, we have clearly since dPX
dx ≤C0 :

a(αn) ≤ inf
f∈HK

(
‖ f − f ∗‖L1(PX) +αn‖ f‖2

K

)

≤ inf
R>0

(
C0 inf

f∈BHK
(R)

‖ f − f ∗‖L2(Rd) +αnR2

)
.

1575

LOUSTAU

Now from (16), it follows that if f ∗ ∈ (L2(Rd),HK)θ,∞,

a(αn) ≤ inf
R>0

(
‖ f ∗‖

1
1−θ
θ,∞
(1

R

) θ
1−θ +αnR2

)
.

Optimizing with respect to R leads to the conclusion.

Let introduce Besov spaces B p
s,q(Rd). A Besov space is a collection of functions with common

smoothness, in terms of modulus of continuity. This is a large class of functional spaces, including
in particular the Sobolev spaces defined in (7) (W 2

s = B2
s,2(R

d) for any s > 0) and the Hölder spaces
(Hs = B s

∞,∞(Rd) for any s > 0). For a large study, we refer to Triebel (1992).
Here we restrict ourselves to the spaces B2

s,∞(Rd). For any h ∈ R
d , we write I for the identity

operator, Th for the translation operator (Th(f ,x) = f (x + h)) and ∆r
h := (Th − I)r for the difference

operator. The modulus of continuity of order r of a function f ∈ L2(Rd) is then

ωr(f , t)2 = sup
|h|≤t

‖∆r
h(f)‖L2(Rd).

Then the Besov space B2
s,∞(Rd) consists of all functions f such that the semi-norm

‖ f‖s,∞ = sup
t>0

t−sωr(f , t)2

is finite.
If we add ‖ f‖L2(Rd) to this semi-norm, we obtain the usual norm of B 2

s,∞(Rd).

Lemma 18 Let s > 0 and 0 < θ < 1. Then,

(L2(Rd),W 2
s)θ,∞ = B2

θs,∞(Rd).

A proof is presented by Triebel (1978) in a more general framework.
Proof (of Theorem 4)

From the definition of Sobolev smooth kernels, we have HKr = W 2
r
2
. Hence we obtain with

Lemma 18:

(L2(Rd),HKr)θ,∞ = B2
θr
2 ,∞(Rd).

Applying Theorem 17 with θ = 2s
r , this ends up the proof since PX satisfies dPX

dx < C0.

6.3 Proof of Theorem 7

In order to control the generalization error, we have to state an inequality such as (5). We propose
to use a stochastic oracle inequality from Steinwart et al. (2007). This result takes place under a
margin assumption of the type (10) and a complexity assumption over the used RKHS.

We define the covering numbers of a subset A of a Banach space (E,d) as :

N (A,ε,E) = min{n ≥ 1 : ∃x1, . . .xn ∈ E such that A ⊂ ∪n
i=1Bd(xi,ε)}.

1576

AGGREGATION OF SVM

Furthermore, given a realization T = {(x1,y1), . . .(xn,yn)} of the training set, we denote by L2(TX)
the space of all equivalence classes of functions f : X 7→ R such that the norm

‖ f‖L2(TX) :=

(
1
n

n

∑
i=1

f (xi)
2

)1/2

(17)

is finite. Then we can consider the behaviour of logN (BHK
,ε,L2(TX)) as a complexity measure for

the used RKHS.

Proposition 19 (Steinwart and Scovel, 2007) Let P be a distribution on X ×{−1,1} and HK a
RKHS of continuous functions on X . Suppose

1. There exists q ∈ [0,+∞] and c0 > 0 such that

P(|2η(X)−1| ≤ t) ≤ c0tq, ,∀t > 0.

2. There exist a ≥ 1,0 < p < 1 such that

sup
T∈(X×Y)n

logN
(
BHK

,ε,L2(TX)
)
≤ aε−2p,∀ε > 0. (18)

Then there exist constants c ≥ 1, κ,κ′,κ′′ > 0 such that for all x ≥ 1, the clipped version f̂ C
n of SVM

classifier f̂n satisfies, with probability larger than 1− e−x,

Rl(f̂ C
n , f ∗) ≤ c inf

f∈HK

(
EP (l(f)− l(f ∗))+αn‖ f‖2

K

)
+

κ
nαp

n

+

(
κ

nαp
n

) q+1
q+2−p

+
κ′

n
q+1
q+2

+
κ′′x
n

.

Proof (of Theorem 7)
The hinge loss l(y, f (x)) = (1− y f (x))+ satisfies, for all classifier f̂ (Zhang, 2004):

R(f̂ , f ∗) ≤ Rl(f̂ , f ∗). (19)

Therefore, to control the excess risk of a classifier, it is sufficient to control the RHS of (19).
We apply Proposition 19 for the stochastic part and Theorem 4 for the approximation part of the

analysis.
Recall a standard result for covering numbers of Sobolev spaces (Chen et al., 2004):

logN (BW 2
r
,ε,C(Rd)) ≤ aε−

d
r , (20)

where constant a := a(d). From (17) we have ‖ f‖L2(TX) ≤ ‖ f‖∞ for any f ∈C(Rd), T ∈ (X ×Y)n.
Then (20) holds true for logN (BW 2

r
,ε,L2(TX)) uniformly over T ∈ (X × Y)n. Gathering with

HKr = W 2
r/2, the RKHS HKr satisfies (18) of Proposition 19 with p = d

r . Applying Proposition 19,

there exist c ≥ 1, κ,κ′,κ′′ > 0 such that, for all x ≥ 1, with probability larger than 1− e−x,

Rl(f̂ C
n , f ∗) ≤ c inf

f∈HK

(
Rl(f , f ∗)+αn‖ f‖2

K

)
+

κ

nα
d
r
n

+

(
κ

nα
d
r
n

) q+1
q+2−d/r

+
κ′

n
q+1
q+2

+
κ′′x
n

.

1577

LOUSTAU

Since f ∗ ∈ B2
s,∞(Rd), we get from Theorem 4 that with probability larger than 1− e−x,

Rl(f̂ C
n , f ∗) ≤ cC

r
r−s
0 ‖ f ∗‖

r
r−s
s,∞ α

s
r−s
n +

κ

nα
d
r
n

+

(
κ

nα
d
r
n

) q+1
q+2−d/r

+
κ′

nα
d
r
n

+
κ′′x
n

.

The choice of αn in (11) optimizes the RHS. Integrating with respect to the training set, one leads
to the conclusion.

6.4 Proof of Theorem 12

To prove Theorem 12, we use a general oracle inequality for aggregation. Let us first recall the
general context of aggregation.

Suppose we have M ≥ 2 differents classifiers f1, . . . , fM with values in {−1,1}. The method of
aggregation consists in building a new classifier f̃n from Dn called aggregate which mimics the best
among f1, . . . fM . Our procedure is using exponential weights of the following form:

ω(n)
j =

exp(∑n
i=1Yi f j(Xi))

∑k∈{1...M} exp(∑n
i=1Yi fk(Xi))

.

Then we define the following aggregate:

f̃n =
M

∑
j=1

ω(n)
j f j. (21)

Under the margin assumption (10), we have this oracle inequality:

Theorem 20 (Lecué, 2005) Suppose (10) holds for some q ∈ (0,+∞). Assume we have at least a
polynomial number of classifiers to aggregate (i.e., there exist a ≥ 1, b > 0 such that M ≥ anb).
Then the aggregate defined in (21) satisfies, for all integer n ≥ 1,

ER(f̃n, f ∗) ≤ (1+2log−1/4 M)

(
2 min

k∈{1,...M}
R(fk, f ∗)+Cn−

q+1
q+2 log7/4 M

)
, (22)

where C depends on a,b and the constant c0 appearing in (10).

Proof (of Theorem 12)
Let (q0,s0) ∈ K and consider 0 < qmin < qmax < +∞ and 0 < smin < smax < +∞ such that K ⊂

[qmin,qmax]× [smin,smax]. We consider the function

Φ(q,s) =
r(r− s)(q+1)

s(r(q+2)−d)+(r− s)(q+1)d

defined on [0,+∞[×[0,+∞[with value on [1
2 , r

d]. We denote by

k0 ∈
{

0, . . . ,

⌊
(2r−d)∆

2d

⌋
−1

}

1578

AGGREGATION OF SVM

the integer such that

1
2

+ k0∆−1 ≤ Φ(q0,s0) ≤
1
2

+(k0 +1)∆−1.

Since q 7→ Φ(q,s) continuously increases on R
+, for n greater than a constant depending on b, r, d

and K, there exists q0 ∈
[qmin

2 ,qmax
]

such that q0 ≤ q0 and

Φ(q0,s0) =
1
2

+ k0∆−1. (23)

Now we can apply Theorem 20 for q0. Since ∆ = nb
2, putting M =

⌊
(2r−d)∆

2d

⌋
we have the following

oracle inequality:

EP⊗n2

(
R(f̃n, f ∗)|D1

n1

)
≤ (1+2log−

1
4 M)

(
2 min

α∈G(n2)

(
R(f̂ α

n1
, f ∗)

)
+C1n

− q0+1
q0+2

2 log7/4 M

)
,

where C1 depends on c0, K and b. Hence we have, integrating with respect to D1
n1

,

E
(
R(f̃n, f ∗)

)
≤C2

(
ER(f̂

αk0
n1 , f ∗)+n

− q0+1
q0+2

2 log7/4 n2

)
,

where αk0 = m−φk0 = n−Φ(q0,s0)
2 with (23) and C2 depends on K,b,r,d and c0. Therefore we can

apply Theorem 7 to the classifier f̂ αk
n1

:

EP⊗n1 R(f̂
αk0
n1 , f ∗) ≤Cn

− s0
r−s0

Φ(q0,s0)

1 ,

where C depends on r,d and K. Remark that C does not depend on q0 and s0 since (q0,s0) ∈
[qmin

2 ,qmax]× [smin,smax]. Moreover C is uniformly bounded over (q,s) belonging to a compact in
Theorem 7.

Finally suppose P satisfies (10) for q0. Hence we obtain:

E
(
R(f̃n, f ∗)

)
≤ C3

(
n
− s0

r−s0
Φ(q0,s0)

1 +n
− q0+1

q0+2

2 log
7
4 n2

)

for C3 := C3(K,b,c0,r,C0,d). We have n ≥ n2 ≥ an
logn and n1 ≥ n(2

3 − a
log3). Then for n greater than

a constant depending on βmin, a, and b, there exists C′
3 := C′

3(K,b,c0,r,C0,d) such that

E
(
R(f̃n, f ∗)

)
≤ C3

(
n−

s0
r−s0

Φ(q0,s0) +n−
q0+1
q0+2 log

11
4 n

)

≤ C′
3n−

s0
r−s0

Φ(q0,s0).

The construction of q0 and restrictions on r entail s0
r−s0

|Φ(q0,s0)−Φ(q0,s0)| ≤ ∆−1 = n−b
2 . We lead

to the conclusion since the sequence (nn−b
2)n∈N is convergent.

Acknowledgments

I would like to acknowledge my advisor, Laurent Cavalier, for giving me many ideas and advices
for this work. I’m also grateful to Liva Ralaivola for the experimental part of this work and to the
anonymous referees for interesting remarks.

1579

LOUSTAU

References

R.A. Adams. Sobolev Spaces. Academic Press, 1975.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society,
68:337–404, 1950.

S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima in lattices,
codes, and systems of linear equations. Journal of Computer and System Sciences, 54 (2):317–
331, 1997.

P.L. Bartlett. The sample complexity of pattern classification with neural networks: the size of
the weights is more important than the size of the network. IEEE Transactions on Information
Theory, 44 (2):525–536, 1998.

P.L. Bartlett and S. Mendelson. Empirical minimization. Probability Theory and Related Fields,
135 (3):311–334, 2006.

P.L. Bartlett, M.I. Jordan, and J.D. McAuliffe. Convexity, classification, and risk bounds. J. Amer.
Statist. Assoc., 101 (473):138–156, 2006.

C. Bennett and R. Sharpley. Interpolation of Operators. Academic Press, 1988.

G. Blanchard, O. Bousquet, and P. Massart. Statistical performance of support vector machines. to
appear Annals of Statistics, 2006.

B.E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In Com-
putational Learning Theory, pages 144–152, 1992.

S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: a survey of some recent
advances. ESAIM: Probability and Statistics, 9:323–375, 2005.

D.R. Chen, Q. Wu, Y. Ying, and D.X. Zhou. Support vector machine soft margin classifiers: error
analysis. Journal of Machine Learning Research, 5:1143–1175, 2004.

N. Cristianini and H. Shawe-Taylor. Introduction to Support Vector Machines, and Other Kernel-
Based Learning Methods. Cambridge University Press, 2000.

L. Devroye. Necessary and sufficient conditions for the pointwise convergence of nearest neighbor
regression function estimates. Z. Wahrsch. Vew. Gebiete, 61 (4):467–481, 1982.

Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121 (2):
256–285, 1995.

A. Karatzoglou, A. Smola, and K. Hornik. An S4 package for kernel methods in R. Reference
manual, 2007.

G. Lecué. Simultaneous adaptation to the margin and to complexity in classification. The Annals of
Statistics, 35 (4):1698–1721, 2007a.

G. Lecué. Optimal rates of aggregation in classification under low noise assumption. Bernoulli, 13
(4):1000–1022, 2007b.

1580

AGGREGATION OF SVM

P. Malliavin. Analyse de Fourier-Analyses spectrales. Ecole Polytechnique, 1974.

E. Mammen and A.B. Tsybakov. Smooth discrimination analysis. The Annals of Statistics, 27 (6):
1808–1829, 1999.

P. Massart and E. Nédélec. Risk bounds for statistical learning. The Annals of Statistics, 34 (5):
2326–2366, 2006.

M. Matache and V. Matache. Hilbert spaces induced by Toeplitz covariance kernels. Lecture notes
in Control and Information Sciences, 280:319–334, 2002.

A. Nemirovski. Topics in Nonparametric Statistics. Ecole d’été de Saint-Flour XXVIII, Springer,
N.Y., 1998.

D. Rätsch, T. Onoda, and K.R. Müller. Soft margin for adaboost. Esprit Working Group in Neural
and Computational Learning II, 1998.

S. Smale and D.X. Zhou. Estimating the approximation error in learning theory. Analysis and
Applications, 1 (1):17–41, 2003.

I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal
of Machine Learning Research, 2:67–93, 2001.

I. Steinwart. Consistency of support vector machines and other regularized kernel classifiers. IEEE
Transactions on Information Theory, 51 (1):128–142, 2005.

I. Steinwart and C. Scovel. Fast rates for support vector machines. In Proc. 18th Annu. Conference
on Comput. Learning Theory, volume 3559, pages 279–294, 2005.

I. Steinwart and C. Scovel. Fast rates for support vector machines using Gaussian kernels. The
Annals of Statistics, 35 (2):575–607, 2007.

I. Steinwart, D. Hush, and C. Scovel. An oracle inequality for clipped regularized risk minimizers.
Neural Information Processing Systems, 19:1321–1328, 2007.

H. Triebel. Theory of Functions Spaces II. Birkhauser, 1992.

H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. North-Holland Publish-
ing Company, 1978.

A.B. Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of Statistics,
32 (1):135–166, 2004.

V.N. Vapnik and A.Ya. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and its Applications, 16 (2):264–280, 1971.

V.N. Vapnik and A.Ya. Chervonenkis. Theory of Pattern Recognition. Nauka, Moscow, 1974.

R.C. Williamson, A.J. Smola, and B. Schölkopf. Generalization performance of regularization
networks and support vector machines via entropy numbers of compact operators. IEEE Trans-
actions on Information Theory, 47 (6):2516–2532, 2001.

1581

LOUSTAU

Q. Wu and D.X. Zhou. Analysis of support vector machine classification. J. Comput. Anal. Appl.,
8 (2):99–119, 2006.

Q. Wu, Y. Ying, and D.X. Zhou. Multi-kernel regularized classifiers. Journal of Complexity, 23 (1):
108–134, 2007.

Y. Yang. Mixing strategies for density estimation. The Annals of Statistics, 28 (1):75–87, 2000.

T. Zhang. Statistical behavior and consistency of classification methods based on convex risk mini-
mization. The Annals of Statistics, 32 (1):56–85, 2004.

1582

Journal of Machine Learning Research 9 (2008) 1583-1614 Submitted 9/07; Revised 1/08; Published 7/08

Dynamic Hierarchical Markov Random Fields for Integrated Web
Data Extraction

Jun Zhu JUN-ZHU@MAILS.TSINGHUA.EDU.CN

Department of Computer Science and Technology
Tsinghua University
Beijing, 100084, China

Zaiqing Nie ZNIE@MICROSOFT.COM

Web Search and Mining Group
Microsoft Research Asia
Beijing, 100080, China

Bo Zhang DCSZB@TSINGHUA.EDU.CN

Department of Computer Science and Technology
Tsinghua University
Beijing, 100084, China

Ji-Rong Wen JRWEN@MICROSOFT.COM

Web Search and Mining Group
Microsoft Research Asia
Beijing, 100080, China

Editor: John Lafferty

Abstract
Existing template-independent web data extraction approaches adopt highly ineffective decoupled
strategies—attempting to do data record detection and attribute labeling in two separate phases. In
this paper, we propose an integrated web data extraction paradigm with hierarchical models. The
proposed model is called Dynamic Hierarchical Markov Random Fields (DHMRFs). DHMRFs
take structural uncertainty into consideration and define a joint distribution of both model structure
and class labels. The joint distribution is an exponential family distribution. As a conditional
model, DHMRFs relax the independence assumption as made in directed models. Since exact
inference is intractable, a variational method is developed to learn the model’s parameters and to
find the MAP model structure and label assignments. We apply DHMRFs to a real-world web
data extraction task. Experimental results show that: (1) integrated web data extraction models
can achieve significant improvements on both record detection and attribute labeling compared to
decoupled models; (2) in diverse web data extraction DHMRFs can potentially address the blocky
artifact issue which is suffered by fixed-structured hierarchical models.
Keywords: conditional random fields, dynamic hierarchical Markov random fields, integrated
web data extraction, statistical hierarchical modeling, blocky artifact issue

1. Introduction

The World Wide Web is a vast and rapidly growing repository of information. There are vari-
ous kinds of objects, such as products, people, and conferences, embedded in webpages. Extract-
ing object information is key to object-level search engines like Libra (http://libra.msra.cn/) and

c©2008 Jun Zhu, Zaiqing Nie, Bo Zhang and Ji-Rong Wen.

ZHU, NIE, ZHANG AND WEN

Rexa (http://rexa.info). Recent work has shown that template-independent approaches to extracting
meta-data for the same type of real-world objects are feasible and promising. However, existing
approaches use highly ineffective decoupled strategies—attempting to do data record detection and
attribute labeling in two separate phases. This paper is to first propose an integrated web data ex-
traction paradigm with hierarchical Markov Random Fields, and then address the blocky artifact
issue (Irving et al., 1997) with Dynamic Hierarchical Markov Random Fields.

A Motivating Example: we begin by illustrating the problem with an example, drawn from
an actual application of product information extraction under our Windows Live Product Search
project (http://products.live.com). The goal is to extract meta-data about real-world products from
every product page on the Web. Specifically, for crawled webpages, we first use a classifier to select
product pages and then extract the Name, Image, Price, and Description of each product from the
identified product pages. Our statistical study on 51K randomly crawled webpages shows that about
12.6 percent are product pages. That is, there are about 1 billion product pages within a search index
containing 9 billion crawled webpages. If only half of them are correctly extracted, we will have
a huge collection of meta-data about real-world products that could be used for further knowledge
discovery and data management tasks, such as comparison shopping and user intention detection.

However, how to extract product information from webpages generated by many (maybe tens
of thousands of) different templates is non-trivial. One possible solution is that we first distinguish
webpages generated by different templates, and then build an extractor for each template; this type
of solution is template-dependent. Template-dependent methods are impractical for two reasons.
First, accurately identifying webpages for each template is a far from trivial task because even
webpages from the same website may be generated by dozens of templates. Second, even if we can
distinguish webpages, the learning and maintenance of so many different extractors for different
templates will require substantial efforts.

Fortunately, recent work (Lerman et al., 2004; Zhai and Liu, 2005; Zhu et al., 2005) has shown
the feasibility and promise of template-independent meta-data extraction for the same type of ob-
jects. We can simply combine the existing techniques to build a template-independent extractor for
product pages. Specifically, two types of webpages—list pages and detail pages1—are needed to be
treated by existing extraction methods. List pages are webpages containing several structured data
records, and detail pages are webpages only containing detailed information about a single object.
Figure 1 illustrates these two types of pages. For list pages, we can first use the methods by Zhai
and Liu (2005) Lerman et al. (2004) to detect data records and then use the model by Zhu et al.
(2005) to label the data elements within the detected records. Similarly, for detail pages we can first
use the methods by Song et al. (2004) to identify a main data block of a detail page, and then use
the same model from Zhu et al. (2005) to do attribute labeling for the elements in the main block.

However, it is highly ineffective to use decoupled strategies—attempting to do data record de-
tection and attribute labeling in two separate phases. The reasons for this are:

Error Propagation: as record detection and attribute labeling are two separate phases, the
errors in record detection will be propagated to attribute labeling. Thus, the overall performance is
limited and upper-bounded by that of record detection.

Lack of Semantics in Record Detection: human readers always take into account semantics
of the text to understand webpages. For instance, in Figure 1(a), when claiming a block is a data
record, we use the evidence that it contains a product’s name, image, price, and description. Thus,

1. Our empirical study shows that about 0.35 of product pages are list pages and the rest are detail pages.

1584

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

(a) A list page with two data records. The first record contains 7 elements and the second
contains 8 elements.

(b) A detail page contains one product item.

Figure 1: A sample list page and a detail page.

more effective record detection algorithms should take into account the semantic labels of the text,
but existing methods (Zhai and Liu, 2005; Lerman et al., 2004) do not consider them.

Lack of Mutual Interactions in Attribute Labeling: data records in the same page are strongly
correlated. They always have a similar layout and the elements at the same position of different
records always have similar features and semantic labels. For example, in Figure 1(a) the element
on the top-left of each record is an image. Existing methods (Zhu et al., 2005) do not achieve these
correlations because data records are labeled independently.

1585

ZHU, NIE, ZHANG AND WEN

First-Order Markov Assumption: for webpages, especially detail pages, long-distance depen-
dencies always exist between different attribute elements. This is because there are always many
irrelevant elements or noise elements appearing between the attributes. For example, in Figure 1(b)
there are several noise elements, such as “Add to Cart” and “Select Quantity”, appearing between
the price and description. However, plat models like 2D CRFs (Zhu et al., 2005) cannot incorporate
long-distance dependencies because of their first-order Markov assumption.

To address the above problems, the first part of this paper is to propose an integrated web data
extraction paradigm. Specifically, we take a vision-tree representation of webpages and define both
record detection and attribute labeling as assigning semantic labels to the nodes on the trees. Then,
we can define the integrated web data extraction that performs record detection and attribute labeling
simultaneously. Based on the tree representation, we define a simple integrated web data extraction
model—Hierarchical Conditional Random Fields (HCRFs), whose structures are determined by
vision-trees.

However, for HCRFs, their structures may not be the most appropriate for web data extraction.
This is because when constructing the vision-tree of each webpage, it is unaware of semantic labels.
Thus, they cannot resolve all ambiguities. This will lead to those cases in which some closely related
nodes may be separated significantly and only connected through a remote ancestor node on the tree.
Due to the model’s local Markov assumption, it will lose some useful dependencies and result in low
accuracy. An extreme case is that the attributes of different objects are intertwined. Figure 2 shows
an example where the two neighboring records on the webpage have their attributes intertwined
on the corresponding tree. In this case, fixed-structured hierarchical models are incapable of re-
organizing them correctly. This problem has been generally known as blocky artifact issue in image
processing (Irving et al., 1997).

Thus, effective web data extraction models should have the capability to adapt their structures
during the inference process. The second part of this paper is to generalize Hierarchical Conditional
Random Fields to incorporate structural uncertainty. The general model is called Dynamic Hier-
archical Markov Random Fields (DHMRFs). DHMRFs consist of two parts—structure model and
class label model. Both parts are jointly defined as an exponential family distribution. Compared
to the directed Dynamic Trees (Williams and Adams, 1999) which have been proposed in image
processing to address the blocky artifact issue, our model representation is compact and parameter
sharing is easy. This is because conditional probability tables (CPTs) are used in Dynamic Trees
to represent transition from parent nodes to child nodes. If different CPTs are used for different
nodes, it will easily lead to over-parameterization. Thus, layer-wise CPT sharing is always adopted.
But in the scenario of web data, sharing CPTs can be difficult because the hierarchical structures
are not as regular as the dyadic or quad trees in image processing. Here, different pages can have
quite different depths, and nodes from different pages at the same depth can have very diverse se-
mantics. In contrast, DHMRFs define probability distributions via a set of feature functions and
weights. These feature functions depend much more on observations and their labels than on the
depths of the nodes. Thus, the undirected model is more suitable for diverse web data extraction.
Furthermore, as a conditional model (Lafferty et al., 2001), DHMRFs relax the conditional inde-
pendence assumption among observations as made in directed models. Finally, instead of trees in
which only parent-child dependencies are assumed, DHMRFs consider the triple-wise interactions
among neighboring sibling variables and their parent. These triple-wise dependencies provide more
flexibility in encoding useful features.

1586

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

Figure 2: An intertwined example webpage. Blocks 1 and 3 present information of one product
and blocks 2 and 4 present information of another product. But on the right tree, the
information is not correctly grouped.

In undirected dynamic models, parameter estimation is generally intractable, especially when
there are hidden variables—both structures and inner variables are hidden in our study. We develop
a variational algorithm within the paradigm of contrastive divergence mean field learning (Welling
and Hinton, 2001) to do parameter estimation and to find the MAP assignment of labels and the most
likely model structures. The performance of our models is demonstrated on a web data extraction
task—production information extraction. The results show that: (1) integrated web data extraction
models can significantly improve the performance of both record detection and attribute labeling
compared to decoupled methods; (2) Dynamic Hierarchical Markov Random Fields can (partially)
avoid the blocky artifact issue and achieve high extraction accuracy without tedious manual label-
ing of inner nodes, which is required in the learning of the fixed-structured models; (3) integrated
extraction models can generalize well to unseen templates. Note that the model is general and could
be applied to other fields. We leave further examinations as future work.

The rest of the paper is organized as follows. In the next section, we discuss some background
knowledge on which this work is based. Section 3 presents an integrated web data extraction
paradigm and fixed-structured Hierarchical Conditional Random Fields. Section 4 describes Dy-
namic Hierarchical Markov Random Fields, including an approximate inference algorithm. Section
5 describes implementation details and experimental setup on the task of product information ex-
traction. Section 6 and 7 presents evaluation results. Section 8 brings this paper to a conclusion and
some future research directions are discussed. Finally, we give our acknowledgements.

2. Preliminary Background Knowledge

The background knowledge, on which the following work is based, is from web data extraction and
statistical hierarchical modeling. We introduce these two fields in turn.

2.1 Web Data Extraction

Web data extraction is an information extraction (IE) task that identifies information of interest
from webpages. The difference of web data extraction from traditional IE is that various types of

1587

ZHU, NIE, ZHANG AND WEN

structural dependencies between HTML elements exist. For example, the HTML tag tree is itself
hierarchical and each webpage is displayed as a two-dimensional image to readers. Leveraging
the two-dimensional spatial information to extract web data has been studied (Zhu et al., 2005;
Gatterbauer et al., 2007). This paper is to explore both hierarchical and two-dimensional spatial
information for more effective web data extraction.

Wrapper learning approaches (Muslea et al., 2001; Kushmerick, 2000) are template-dependent.
They take in some manually labeled webpages and learn some extraction rules (or wrappers). Since
the learned wrappers can only be used to extract data from similar pages, maintaining the wrappers
as web sites change will require substantial efforts. Furthermore, in wrapper learning users must
provide explicit information about each template. So it will be expensive to train a system that ex-
tracts data from many web sites. The methods by Embley et al. (1999), Buttler et al. (2001), Chang
and Lui (2001), Crescenzi et al. (2001) and Arasu and Garcia-Molina (2003) are also template-
dependent, but they do not need labeled training data. They produce wrappers from a collection of
similar webpages.

The methods by Zhai and Liu (2005), Lerman et al. (2004) and Gatterbauer et al. (2007) are
template-independent. In work by Lerman et al. (2004), data on list pages are segmented using the
information from their detail pages. The need of detail pages is a limitation because automatically
identifying links that point to detail pages is non-trivial and there are also many pages that do not
have detail pages behind them. Zhai and Liu (2005) proposed to detect data records using string
matching and also some visual features to achieve better performance, but no semantics are consid-
ered. Like the work by Zhu et al. (2005), a general 2D visual model was proposed by Gatterbauer
et al. (2007) to extract web tables. The data extracted by the methods of Zhai and Liu (2005), Ler-
man et al. (2004) and Gatterbauer et al. (2007) have no semantic labels. Our work (Zhu et al., 2005)
is complementary to this and assigns semantic labels to the extracted data.

2.2 Statistical Hierarchical Modeling

Multi-scale or hierarchical statistical modeling has shown great promise in image labeling (Kato
et al., 1993; Li et al., 2000; He et al., 2004; Kumar and Hebert, 2005) and human activity recognition
(Liao et al., 2005). Based on whether data are observed at multiple scales, two scenarios exist in
which hierarchical modeling is appropriate. First, data are observed at different spatial scales and
a model is used to integrate information from the different scales. Second, data are observed only
at the finest scale and a model is used to induce a particular process at that scale. The introduced
intermediate processes or variables can incorporate more complex dependencies to help the target
labeling. Another merit of hierarchical models is that they admit more efficient inference algorithms
compared to flat models (Willsky, 2002).

Traditional hierarchical models always assume that model structures are fixed or can be con-
structed via some deterministic methods, such as sub-sampling of images (Li et al., 2000) and
the minimum spanning tree algorithm (Quattoni et al., 2004) with a proper definition of distance.
However, in many applications this assumption may not hold. For example, fixed models in im-
age processing often lead to the blocky artifact issue, and the similar problem arises in web data
extraction due to the diversity of web data. To address this problem some enhanced models have
been proposed, such as the overlapping tree approach (Irving et al., 1997). Superior performance
is achieved with the improvement of the descriptive component of the model. However, ultimate
solutions should deal with the source of the blockiness—fixed model structures. Based on this intu-

1588

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

ition, Dynamic Trees (Williams and Adams, 1999) have been proposed, which also consist of two
parts—model of structures and model of class labels. However, the difference between DHMRFs
and Dynamic Trees is that DHMRFs are defined as exponential family distributions and thus admit
several advantages as discussed in the introduction.

Incorporating evidence at various scales was examined in a generative manner by Todorovic
and Nechyba (2005). But our model is discriminative and it can relax the independence assump-
tion among evidence as made in generative models. This is the key idea underlying Conditional
Random Fields (Lafferty et al., 2001), which have shown great promise in information extraction
(Culotta et al., 2006; Zhu et al., 2005). Modeling structural uncertainty has also been studied in re-
lational learning (Getoor et al., 2001). Here, we focus on modeling the structural uncertainty within
independently and identically distributed samples.

Finally, the work has partially appeared in the conference papers Zhu et al. (2006) and Zhu et al.
(2007b).

3. Integrated Web Data Extraction

In this section, we formally define the integrated web data extraction and also propose Hierarchical
Conditional Random Fields (HCRFs) to perform that task.

3.1 Vision-Tree Representation

For web data extraction, the first thing is to find a good representation format for webpages. Good
representation can make the extraction task easier and improve extraction accuracy. In most previous
work, tag-tree, which is a natural representation of the tag structure, is commonly used to represent
a webpage. However, as Cai et al. (2004) pointed out, tag-trees tend to reveal presentation structure
rather than content structure, and are often not accurate enough to discriminate different semantic
portions in a webpage. Moreover, since authors use different styles to compose webpages, tag-trees
are often complex and diverse. To overcome these difficulties, Cai et al. (2004) proposed a vision-
based page segmentation (VIPS) approach. VIPS makes use of page layout features such as font,
color, and size to construct a vision-tree for a page. It first extracts all suitable nodes from the tag-
tree and then finds separators between these nodes. Here, separators denote horizontal or vertical
lines in a webpage that visually do not cross any node. Based on these separators, the vision-tree of
the webpage is constructed. Each node on this tree represents a data region in the webpage, which
is called a block. The root block represents the whole page. Each inner block is the aggregation
of all its child blocks. All leaf blocks are atomic units (i.e., elements) and form a flat segmentation
of the webpage. Since vision-tree can effectively keep related content together while separating
semantically different blocks from one another, we use it as our data representation format. Figure
3(a) is a vision-tree for the page in Figure 1(a), where empty circles denote inner blocks and filled
circles denote leaf blocks (elements). For simplicity, we only show a sub-tree which contains the
two data records in Figure 1(a). A detailed example was provided by Cai et al. (2004).

3.2 Record Detection and Attribute Labeling

Based on the definition of vision-tree, we now formally define the concepts of record detection and
attribute labeling.

1589

ZHU, NIE, ZHANG AND WEN

(a) (b) (c)

Figure 3: (a) Partial vision-tree of the webpage in Figure 1(a); (b) An HCRF model with linear-
chain neighborhood between sibling nodes; (c) Another HCRF model with 2D neighbor-
hood between sibling nodes and between nodes that share a grand-parent. Here, filled
circles denote leaf blocks (elements) and the variables associated with them. Each filled
circle corresponds to an element in the page in Figure 1(a) with the same number. Empty
circles represent inner nodes and inner variables. The two gray nodes in each chart denote
the roots of the sub-trees that correspond to the two data records in Figure 1(a).

Definition 3.1 (Record detection): Given a vision-tree, record detection is the task of locating
the root of a minimal subtree that contains the content of a record. For a list page containing multiple
records, all the records need to be identified.

For instance, for the vision-tree in Figure 3(a), the two blocks in gray are detected as data
records. Note that as shown in Figure 2, given a particular vision-tree, we are not guaranteed to find
the root nodes that correspond to data records. This is the very problem to be addressed by Dynamic
Hierarchical Markov Random Fields.

Definition 3.2 (Attribute labeling): For each identified record, attribute labeling is the task of
assigning attribute labels to the leaf blocks (elements) within the record.

We can build a complete model to extract both records and attributes by sequentially combining
existing record detection and attribute labeling algorithms. However, as we have stated, this de-
coupled strategy is highly ineffective. Therefore, we propose an integrated approach that conducts
simultaneous record extraction and attribute labeling.

3.3 Integrated Web Data Extraction

Based on the above definitions, both record detection and attribute labeling are the task of assigning
labels to blocks of the vision-tree for a webpage. Therefore, we can define one probabilistic model
to deal with both tasks. Formally, we define the integrated web data extraction as:

Definition 3.3 (Integrated Web Data Extraction): Given a vision-tree of a page, let x = {x0,x1,
. . . ,xN} be the features of all the blocks and each component xi is a feature vector of one block,
and let y = {y0,y1, . . . ,yN} be one possible label assignment of the corresponding blocks. The goal
of web data extraction is to find a label assignment y? that has the maximum posterior probability
y? = argmaxy p(y|x), and extract data from this assignment.

1590

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

3.4 Hierarchical Conditional Random Fields

In this section, we first introduce some basics of Conditional Random Fields and then propose
Hierarchical Conditional Random Fields for integrated web data extraction.

3.4.1 CONDITIONAL RANDOM FIELDS

Conditional Random Fields (CRFs) (Lafferty et al., 2001) are Markov Random Fields that are glob-
ally conditioned on observations. Let G = (V,E) be an undirected model over a set of random
variables X and Y. X are variables over the observations to be labeled and Y are variables over the
corresponding labels. The random variables Y could have a non-trivial structure, such as a linear-
chain (Lafferty et al., 2001) and a 2D grid (Zhu et al., 2005). Each component Yi has a label space
or the set of possible labels Yi. The conditional distribution of the labels y (an instance of Y) given
the observations x (an instance of X) has the form

p(y|x) =
1

Z(x) ∏
c∈C

φ(y|c,x),

where C is the set of cliques in G; y|c are the components of y associated with the clique c; φ is
a potential function taking non-negative real values; Z(x) = ∑y ∏c∈C φ(y|c,x) is the normalization
factor or partition function in physics. The potential functions are usually expressed in terms of
feature functions fk(y|c,x) and their weights λk:

φ(y|c,x) = exp
{

∑
k

λk fk(y|c,x)
}

.

Although functions fk can take any real value, here we assume they are boolean and take either true
or false.

3.4.2 HIERARCHICAL CONDITIONAL RANDOM FIELDS

Based on the vision-tree representation of the data, a Hierarchical Conditional Random Field (HCRF)
model can be easily constructed. For the page in Figure 1(a) and its corresponding tree in Figure
3(a), an HCRF model is shown in Figure 3(b), where we also use empty circles to denote inner nodes
and use filled circles to denote leaf nodes. For simplicity, only part of the model graph is presented.
Each node on the graph is associated with a random variable Yi. We will use nodes and variables
exchangeably when there is no ambiguity. The observations that are globally conditioned on are
omitted from this graph for simplicity. To make the model simple, we assume that the inner-layer
interactions among sibling variables are sequential, that is, sibling variables are put into a sequence
and only the relationships between neighboring variables are considered. Here, we use the position
information and sequentialize the elements from left to right, top to bottom. For easy explanation
and implementation, we assume that every inner node contains at least two children. Otherwise, we
replace the parent with its single child. This assumption has no affect on the performance because
the parent is identical to its child in this case.

The cliques of the graph in Figure 3(b) are its vertices, edges, and triangles. Let L be the number
of layers indexed from 0 to L−1 starting from the root, and each layer d(0 ≤ d < L) has Nd nodes.
Let sil be an indicator variable to denote the connectivity between node i and node l, where l is at
the direct above layer of i. Let ni j be an indicator variable to denote whether node i and node j are

1591

ZHU, NIE, ZHANG AND WEN

adjacent to each other at the same layer. Then, T = ∪L−1
d=1{(i, j, l) : 0 ≤ i, j < Nd ,0 ≤ l < Nd−1,ni j =

1,sil = 1,and s jl = 1} is the set of triangles in the graph G. Thus, C =V ∪E∪T and the conditional
probability is

p(y|x) =
1

Z(x)
exp

{

∑
v∈V

∑
k

µkgk(y|v,x)+ ∑
e∈E

∑
k

λk fk(y|e,x)+ ∑
t∈T

∑
k

γkhk(y|t ,x)
}

.

Note that we use the same notation Z to denote the normalization factor for both CRFs and HCRFs,
although they are different. We will follow this notation when there is no ambiguity in the rest of
the paper.

Figure 3(c) presents another slightly more complicated HCRF model. In this model, we consider
the two-dimensional inner-layer dependency relationships between sibling nodes. Moreover, we
also consider the two-dimensional interactions between nodes that share a common grant-parent on
the tree. In Figure 3(c), dotted edges are introduced to encode additional dependencies compared
to the model in Figure 3(b). The conditional probability p(y|x) is the same as that of the previous
model but with the dotted edges included in E.

For the model in Figure 3(b), the graph is a chordal graph and its inference can be exactly and
efficiently done with the junction tree algorithm (Cowell et al., 1999). In fact, the complexity of the
junction tree algorithm is linear in terms of the number of maximum cliques (or triangles), which
can be shown to be equivalent to the number of leaf nodes (or elements). For the model in Figure
3(c), however, no exact inference algorithm exists; we have to turn to approximate algorithms.
Since the backbone (without dotted edges) of the model graph is the same as the previous model,
whose inference can be exactly done, piecewise learning (Sutton and McCallum, 2005) should
be a good method. The basic idea of piecewise learning is to partition the graph into a set of
disjointed small pieces. For each piece, exact inference can be efficiently done. Then, a lower
bound of the log-likelihood function can be derived as the combination of the local log-likelihoods
on different pieces. To use piecewise learning, here, we take the backbone as one piece and take
each additional edge (a dotted edge) as one piece. The method by Wainwright et al. (2002) could be
another excellent approximate algorithm in our model. Unlike piecewise learning whose parameter
estimation is still a maximization problem, the parameter estimation by Wainwright et al. (2002)
becomes a constrained saddle point problem.

4. Dynamic Hierarchical Markov Random Fields

In this section, we present the detailed description of Dynamic Hierarchical Markov Random Fields.
An approximate inference algorithm is developed to perform parameter estimation and to find the
maximum a posterior model structure and label assignment.

4.1 Model Description

Suppose we are given a set of N vertices, and each vertex is associated with a set of observations.
Also suppose the vertices are arranged in a layered manner. Then, hierarchical statistical modeling
is a task to construct an appropriate hierarchical model structure and carry out inference about the
labels of given observations. Determining the number of layers and the number of nodes at each
layer is problem specific. We will give an example of web data extraction in the experiment section.
Let S be random variables over hierarchical structures, X be variables over the observations to be
labeled, and Y be variables over the corresponding labels. Each component Yi is assumed to take

1592

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

(a) (b)

Figure 4: (a) The initial setting of DHMRFs with a set of nodes that are arranged in multi-layers.
Filled circles denote leaf nodes or elements and empty circles denote inner blocks of a
webpage; (b) An instance of DHMRFs denoted by S and Y. Vertical edges are selected
by posterior probabilities p(s|x). Dotted lines represent the 2D neighborhood system
between nodes at the same layer.

values from a finite discrete label space Yi. Here, capitalized characters denote random variables and
corresponding lower cases are their instances or configurations, for example, y is a label assignment
and yi ∈ Yi is one component label. A state of the system is the pairing of a model structure and a
label assignment, that is, (s,y). Given observations x, Dynamic Hierarchical Markov Random Fields
(DHMRFs) define a conditional probability distribution p(s,y|x) of structure s and label assignment
y. An example is shown in Figure 4, where the left graph is the initial setting of DHMRFs with a set
of nodes that are arranged in multi-layers and the right is an instance of the dynamic model. Let the
energy of the system being at the state (s,y) be E(s,y,x), then the probability of the system being
at this state is

p(s,y|x) =
1

Z(x)
exp{−E(s,y,x)}.

This is a Boltzmann distribution with the temperature T = 1, and our model is one type of exponen-
tial random graph model (Robins et al., 2006). Since the system consists of two parts, the energy is
also from two parts. We explain them as follows:

Structure Model: Let sil be an indicator variable to denote the connectivity between node i
and another node l, which is at the direct above level. sil equals to 1 if node i connects to node l;
otherwise it is 0. Here, leaf nodes can be at any level except the root node that is taken as a default
node for an entire page. For leaf nodes, no child is allowed. We call the parent-child connection
vertical connection. To retain the computational advantage of tree-structured models, each node
is allowed to have only one parent in a particular structure s. We will use sv to denote the set of
vertical connections. With the aforementioned definitions of L and Nd , we get sv = ∪L−1

d=1{sil : 0 ≤
i < Nd and 0 ≤ l < Nd−1}.

To consider the dependencies between the nodes at the same layer, horizontal connections (i.e.,
connections between nodes at the same level) are incorporated in s. Let ni j be an indicator variable
to denote whether node i and node j are adjacent to each other. Similarly, ni j equals to 1 if node

1593

ZHU, NIE, ZHANG AND WEN

i connects to node j; otherwise, it is 0. Let’s denote the set of horizontal connections by sh, then
sh =∪L−1

d=0{ni j : 0≤ i, j < Nd and i 6= j}. Here, we assume that the variables ni j are independent of sil

and can be determined using some spatial ordering method. This assumption holds in applications
such as web data extraction and image processing. As position information is encoded in each node,
deterministic spatial ordering can decide the neighborhood system among a set of nodes. In theory,
the horizontal neighborhood system can be arbitrary. We consider the 2D cases (Zhu et al., 2005),
that is, each node is horizontally connected to all the nearest surrounding nodes in a 2D plane.

With the structure model, the first part of the energy when the system is at the state (s,y) is

E1(s,y,x) = ∑
k

µk ∑
i jl

sils jlni jgk(i, j, l,x),

where a triple (i, j, l) denotes a particular position in the dynamic model. A position can be a time
interval in time series or a region of space in random fields. Here, i and j are two nodes at the same
layer and l is a node at the direct above layer. gk are feature functions defined on the three nodes at
position (i, j, l), and µk are their weights.

Class Label Model: A sample s from the structure model defines a Hierarchical Conditional
Random Field, which has been defined in Section 3.4.2. Let αy

i be an indicator variable to denote
the variable Yi taking the class label y. Then, the second part of the energy when the system is at the
state (s,y) is

E2(s,y,x) = ∑
k

λk ∑
i jl

sils jlni j ∑
yi,y j,yl

αyi
i αy j

j αyl
l fk(yi,y j,yl,x),

where fk are feature functions defined on the labels yi, y j, and yl at position (i, j, l), and λk are their
weights.

Although conditional models take observations as global conditions, when defining feature func-
tions they need to know the “focused observations” at a particular position. For example, in linear-
chain CRFs (Lafferty et al., 2001) the observation at time t is among the focused observations when
defining feature functions related to the label yt . In general, let t be a position and xt be the set of
focused observations at that position. The mapping function ζ : t → xt defines the focused observa-
tions for each position. In generative models (Todorovic and Nechyba, 2005), the mapping function
is defined to determine the observations generated by the states at a particular position. Moreover,
an additional constraint ∀t 6= s,xt ∩ xs = /0 is also set due to their independence assumption that
observations at different positions are conditionally independent given the states at those positions.
In conditional models, however, there is no such constraint. The mapping function can be determin-
istic or stochastic. We assume it to be deterministic in this paper. Now, all feature functions take an
additional argument ζ, that is, the feature functions are gk(i, j, l,x,ζ) and fk(yi,y j,yl,x,ζ).

Taking E1 and E2 together, we get the joint distribution of s and y

p(s,y|x) =
1

Z(x)
exp

{

∑k µk ∑i jl sils jlni jgk(i, j, l,x,ζ)+

∑k λk ∑i jl sils jlni j ∑yi,y j,yl
αyi

i αy j
j αyl

l fk(yi,y j,yl,x,ζ)

}

,

where Z(x) is the normalization factor or partition function in physics. Note that although names
are similar, Dynamic Hierarchical Markov Random Fields are quite different from Dynamic CRFs
(Sutton et al., 2004), which are dynamic in terms of time, that is, they have repetitive model structure
and parameters over time, and the structure at each time slice is fixed. Here, “Dynamic” means the
model’s structure is dynamically selected.

1594

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

4.2 Parameter Estimation and Labeling

Let Θ = {µ1,µ2, . . . ;λ1,λ2, . . .} denote the whole set of the model’s parameters, and let D =
{(xi,yi

e)}
K
i=1 denote the set of training data, where xi is a sample and yi

e are observed labels. We
consider the general case with both hidden hierarchical structure s and hidden labels yh. For ex-
ample, in web data extraction only the labels of leaf nodes are observable and both the hierarchical
structures and the labels of inner nodes are hidden. So the log-likelihood of the data is incomplete

L(Θ) =
K

∑
i=1

log p(yi
e|x

i) =
K

∑
i=1

log(∑
s,yh

p(s,yh,y
i
e|x

i)).

This function does not have a closed-form solution because of the marginalization taking place
within the logarithm. In the following, we derive a lower bound of the log-likelihood, or equivalently
an upper bound of the negative log-likelihood. Then, contrastive divergence learning (Hinton, 2002)
is applied as an approximation.

Let q(s,yh|ye,x) be an approximation of the true distribution p(s,yh|ye,x). With a little abuse
of notations, we will use q(s,yh) to denote q(s,yh|ye,x). We also ignore the summation operator in
the log-likelihood during the following derivations, as there is no essential difference between one
sample and a set of independently and identically distributed (IID) samples. The optimal approxi-
mation is the distribution that has the minimum Kullback-Leibler divergence between q(s,yh) and
p(s,yh|ye,x). The KL divergence is defined as KL(q||p) = ∑s,yh

q(s,yh) log q(s,yh)
p(s,yh|ye,x) .

Take p(s,yh|ye,x) = p(s,yh,ye|x)/p(ye|x) into the above equation and use the non-negativity
of KL divergence, we get a lower bound of the log-likelihood

log p(ye|x) ≥ ∑
s,yh

q(s,yh)[log p(s,yh,ye|x)− logq(s,yh)].

Equivalently, L(Θ) , ∑s,yh
q(s,yh)[logq(s,yh)− log p(s,yh,ye|x)] is an upper bound of the neg-

ative log-likelihood −L(Θ). By analogy with statistical physics, the upper bound, which is actually
a KL divergence, can be expressed as the difference of two free energies: L(Θ) = F0 −F∞, where
the first term is the free energy when we use data distribution with observable labels clamped to
their values, and the second F∞ =− logZ(x) is the free energy when we use model distribution with
all variables free.

Now, the problem is to minimize the upper bound. The derivatives of L(Θ) with respect to λk

are

∂L(Θ)

∂λk
=

∂
∂λk

〈− log p(s,yh,ye|x)〉q(s,yh)

= −∑
i jl

〈sils jlni j〉q(s,yh) ∑
yi,y j,yl

〈αyi
i αy j

j αyl
l 〉q(s,yh) fk(yi,y j,yl,x,ζ)−

∂F∞

∂λk

= −∑
i jl

ni j〈sils jl〉q(s,yh) ∑
yi,y j,yl

〈αyi
i αy j

j αyl
l 〉q(s,yh) fk(yi,y j,yl,x,ζ)−

∂F∞

∂λk
, (1)

where 〈.〉p is the expectation under the distribution p. The last equality holds because of the
assumption that the neighborhood system between sibling nodes is determined independent of their
parents.

1595

ZHU, NIE, ZHANG AND WEN

Similarly, the derivatives of L(Θ) with respect to µk are

∂L(Θ)

∂µk
= −∑

i jl

ni j〈sils jl〉q(s,yh)
gk(i, j, l,x,ζ)−

∂F∞

∂µk
. (2)

In (1) and (2), the derivatives of the equilibrium free energy F∞ are intractable in the case of
Dynamic Hierarchical Markov Random Fields. However, by viewing the equilibrium distribution
as the distribution of a Markov chain at time t = ∞ starting with data distribution, Markov chain
Monte Carlo (MCMC) method can be used to reconstruct an approximation distribution qi(s,yh,ye)
within several steps. This is the basic idea of contrastive divergence learning (Hinton, 2002). Now,
the upper bound is approximated by

L(Θ)=F0 −F∞

≈F0 −Fi = KL(q0||p)−KL(qi||p) , CFApp
i ,

where q0 = q(s,yh) is optimized with observable labels clamped to their values, and qi(s,yh,ye) is
optimized with all variables free starting with q0. As shown by Hinton (2002), CFApp

i , known as
contrastive divergence, is non-negative. But since Fi ≥ F∞, there is no guarantee that it is still an
upper bound. Some analyses of contrastive divergence learning (Yuille, 2004; Carreira-Perpinan
and Hinton, 2005) have been carried out. In the sequel, we will set i = 1.

Now, the derivatives of CFApp
1 with respect to the model’s parameters are as in (1) and (2) but

with the derivatives of F∞ replaced by

−∑
i jl

ni j〈sils jl〉q1 ∑
yiy jyl

〈αyi
i αy j

j αyl
l 〉q1

fk(yi,y j,yl,x,ζ) and −∑
i jl

ni j〈sils jl〉q1
gk(i, j, l,x,ζ)

respectively.
Generally, stochastic sampling is quite time demanding in constructing q1. In contrast, the

deterministic mean field variant (Welling and Hinton, 2001) is more efficient. An extension to
the combination of a general deterministic variational approximation and contrastive divergence is
studied by Welling and Sutton (2005). The learning procedure consists of two phases—wake phase
and sleep phase. Wake phase is to optimize q0 and sleep phase is to optimize q1. We address the
wake phase first.

Assume q0 can be factorized as q0 = q(s,yh) = q(s)q(yh), and we get

KL(q0||p) = −〈log p(s,yh,ye|x)〉q0
−H(q(s))−H(q(yh)), (3)

where H(p) = −〈log p〉p is the entropy of distribution p. To efficiently optimize q0, more assump-
tions need to be made about the family of distributions of q(s) and q(yh). Here, we adopt the naı̈ve
mean field approximation. The basic idea underlying mean field theory (Jordan et al., 1999) is to
make a distribution a factorized one by introducing additional independence assumptions. This fac-
torized distribution leads to computational tractability. The simplest naı̈ve mean field is to assume
that interacted variables are mutually independent and the joint distribution is the product of single
variable marginal probabilities.

1596

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

Let µil be the probability of node i being connected to node l, and my
i be the probability of

variable Yi being at state y. As we assume variables ni j are determined independent of sil , the mean
field distributions2 are

q(s) = ∏
il

[µil]
sil and q(yh) = ∏

iy
[my

i]
αy

i .

Substitute the above distributions into (3) and keep q(yh) fixed, then we get

KL(q0||p) = −〈log p(s,yh,ye|x)〉q0
−H(q(s))+ c,

where c is a constant. Let the derivative over µil equal zero, and we get

µil ∝ exp

{

∑k µksil ∑ j〈s jl〉q(s)ni jgk(i, j, l,x)+

∑k λksil ∑ j〈s jl〉q(s)ni j ∑y1,y2,y3
〈αy1

i αy2
j αy3

l 〉q(yh) fk(y1,y2,y3,x,ζ)

}

. (4)

Normalization will lead to the desired probabilities µil .
Similarly, keep q(s) fixed and we get

KL(q0||p) = −〈log p(s,yh,ye|x)〉q0
−H(q(yh))+ c′,

where c′ is another constant. Let the derivative over my
i equal zero, and we get

my
i ∝ exp∑

k

λk ∑
jly1y2

ni j〈sils jl〉q(s)〈α
y1
j αy2

l 〉q(yh) fk(y,y1,y2,x,ζ)+

ni j〈s jlsil〉q(s)〈α
y1
j αy2

l 〉q(yh) fk(y1,y,y2,x,ζ)+

n jl〈s jisli〉q(s)〈α
y1
j αy2

l 〉q(yh) fk(y1,y2,y,x,ζ)

. (5)

Note that since sil and αy
i are all indicator variables, their expectations are the marginal prob-

abilities µil and my
i respectively. Also, because of the naı̈ve mean field assumption of q(s) and

q(yh), the expectations of the product of the indicator variables is the product of their corresponding
marginal probabilities, that is, 〈sils jl〉q(s) = µilµ jl , 〈s jisli〉q(s) = µ jiµli, 〈α

y1
j αy2

l 〉q(yh) = my1
j my2

l , and
〈αy1

i αy2
j αy3

l 〉q(yh) = my1
i my2

j my3
l .

Equations (4) and (5) are a set of coupled equations, also known as mean field equations. These
equations are iteratively solved for a fixed point solution. Intuitively, parameters µil are updated
by expected contributions from possible parents and neighbors, and similar for my

i . In (4) and (5),
structure parameters µil depend on class label assignments, and my

i depend on expected structure
connectivity. Thus, model structure selection is integrated with label assignment during the infer-
ence.

Now, we have presented a mean field approximation of the wake phase. To finish the sleep
phase, the same mean field equations are enforced by coordinate descent alternating between ob-
servable variables Ye and hidden variables S and Yh. When first optimizing (5) for Ye, the initial
distribution of hidden variables are set as the optimal distribution at the end of wake phase. Then,
take the optimal distribution of the former step as initial distribution of Ye and optimize (4) and (5)
to get an approximate distribution of hidden variables. For wake phase, initial distributions can be
random and convergence is arrived at. But for sleep phase, a few steps are required to guarantee the
improvement of CFApp

1 .

2. q(s) = q(sh|sv)q(sv). Based on the assumption that sh are deterministic and independent of sv, q(sh|sv) is an indicator
function and takes all the probability one if sh are the allowed connections.

1597

ZHU, NIE, ZHANG AND WEN

Thus, all the terms in (1), (2), (4), and (5) can be calculated. The whole parameter estimation
algorithm is as follows. First, apply (4) and (5) to iteratively compute the marginal probabilities of
both wake and sleep phases. With the marginal probabilities, CF App

1 and its derivatives with respect
to model parameters are calculated. Then, gradient-based optimization algorithms are applied to
update model parameters. Here, we use the limited memory quasi-Newton method (Liu and No-
cedal, 1989). The learning procedure is iterated until the relative change of CF App

1 is below some
threshold. Although no guarantee exists that global optimization will be achieved, empirical studies
show that this algorithm performs well.

For labeling a testing example, Equations (4) and (5) are iteratively solved with all variables
free for a fixed point solution. At the end of convergence, the maximum a posterior model structure
(a tree) is constructed from the probabilities µil by dynamic programming, and the most likely label
assignments are found from the marginal probabilities my

i .

5. Implementation Details and Experimental Setup

Our experiments consist of two parts. The first part is to evaluate the performance of integrated
web data extraction models compared with existing decoupled methods. The second part is to
evaluate Dynamic Hierarchical Markov Random Fields (DHMRFs) compared with fixed-structured
hierarchical models and Dynamic Trees (Williams and Adams, 1999). All the experiments are
carried out on a real-world web data extraction task—production information extraction. In this
section, we present the implementation details and the setup of our experiments. Results will be
reported in the next two sections.

5.1 Features

As conditional models, DHMRFs and HCRFs can incorporate any useful feature for web data ex-
traction. In this section, we present the types of features used in our experiments. As we shall
note some of the features have been used in some existing extraction methods. However, they were
mainly used as heuristic rules.

5.1.1 FEATURES OF ELEMENTS

For each element, we extract both content and visual features as listed in Table 1. All the features can
be obtained through rendering a page. Previous work (Zhai and Liu, 2005; Zhu et al., 2005; Zhao
et al., 2005; Gatterbauer et al., 2007) has shown the effectiveness of visual features for webpage
analysis and information extraction.

5.1.2 FEATURES OF BLOCKS

The features of inner blocks are aggregations of their children’s features. These features can be
extracted via a bottom-up procedure starting from leaf nodes (or elements), such as the number of
the children having a particular feature and the presence of a feature or a simultaneous presence
of several features among the children. We also compute the following distances for each block to
exploit the regularity of similar data records in a page.

Tree Distance Features: if two blocks are visually similar, usually their sub-trees on a vision-
tree are also similar. We define the tree distance of two blocks as a measure of their structure
similarity. The tree distance of two blocks is defined as the edit distance of their corresponding sub-

1598

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

Name Description

Content The Content of a text element
Tag The tag name of an element
Font Size The font size of an element
Font Weight The font weight of an element
Position The coordinates of an element
Height The height of an element’s rectangle
Width The width of an element’s rectangle
Area The area of an element’s rectangle
Image URL The source URL of an image element
Link URL The action URL of an element if it exists
Image Alt-text The alternative text of an image element

Table 1: The content and visual features of each element.

trees. Although the time-complexity of computing this distance could be high, we can substantially
reduce the computation with some heuristics. For example, if the depth difference of two sub-trees
is too large, they are not likely to be similar and this computation is not necessary. Once we have
computed the tree distances, we can use some thresholds to define boolean-valued feature functions.
For example, if the tree distance of two adjacent blocks is not more than 0.2, they are both likely to
be data records.

Shape Distance and Type Distance Features: we also compute the shape distance and type
distance (Zhao et al., 2005) of two blocks to exploit their similarity. For shape distance, we use the
same definition of shape codes and the same calculation method as in the work (Zhao et al., 2005).
To compute the type distance of two blocks, we define the following types for each element:

IMAGE: the element is an image.
JPEG IMAGE: the image element that is also a jpeg picture.
CODED IMAGE: the image element whose source URL contains at least three succeeding

numbers, such as “/products/s thumb/eb04iu 0190893 200t1.jpg”.
TEXT: the element has text content.
LINK TEXT: the text element that contains an action URL.
DOLLAR TEXT: the text element that contains at least one dollar sign.
NOTE TEXT: the text element whose tag is “input”, “select” or “option”.
NULL: the default type of each element.
After defining each element’s type code, a block’s type code is defined as a sequence of the type

codes of its children. As in the work by Zhao et al. (2005), multiple consecutive occurrences of
each type are compressed to one occurrence. The edit distance of type codes is the type distance of
two blocks.

Similar to the use of tree distance, we can easily incorporate shape distance and type distance by
defining boolean-valued feature functions with pre-determined thresholds. Note that our model will
not be sensitive to these thresholds because the defined feature functions are softened by learning a
weight for each of them. Each feature function contributes its weight to the probability only when
it is active. If a feature function is always active, it has no effect on the probability; and if a feature

1599

ZHU, NIE, ZHANG AND WEN

Label Name Semantic Meaning

Con Image Contains product’s image
Con Name Contains product’s name
Con Price Contains product’s price
Con Desc Contains product’s description
Con ImgNam Contains product’s image and name
Con NamPrc Contains product’s name and price
Con ImgPrc Contains product’s image and price
Page Head The head part of a Web page
Page Tail The tail part of a Web page
Nav Bar The navigation bar of a Web page
Data Region Contains only similar data records
Data Record Contains all the target attributes if exist
Info Block Contains one or more data records and some additional information
Note Block Contains no target attributes and are also not meaningful parts of a webpage

Table 2: Label spaces of inner variables for product information extraction.

function appears sparsely in the training set, smoothing techniques can be used to avoid over-fitting.
Here, we use the spherical Gaussian prior to penalize the log-likelihood function during learning.

5.1.3 GLOBAL FEATURES

As described in the introduction, data records in the same webpage are always related. Based on
work by Zhai and Liu (2005), we try to align the elements of two adjacent blocks in the same page
and extract some global features to help attribute labeling.

For two neighboring blocks, we use the partial tree-alignment algorithm (Zhai and Liu, 2005)
to align their elements. An alignment is discarded if most of the elements are not aligned. For
successful alignments, the following feature is extracted.

Repeated elements are less informative: this feature is based on the observation that repeated
elements in different records are more likely to be less useful, while important information such as
the name of a product is not likely to repeat in the same webpage. For example, the “Add to cart”
button appears in both data records as in Figure 1(a), but each record has a unique name. Currently,
we just denote whether an element is repeated in different records. More complex measures like
information entropy can be easily adopted. An example feature function can be defined as: if the
element xi repeatedly appears in the aligned records, it will be more likely to be labeled as Note or
noise.

5.2 Label Spaces

For variables at leaf nodes, we are interested in deciding whether a leaf block (an element) is an
attribute value of the object we want to extract. However, for variables at inner nodes, our interest
shifts to the understanding of whether an inner block is a data record. So, we have two types of
label spaces—leaf label space for variables at leaf nodes and inner label space for variables at inner
nodes. The leaf label space consists of all the attribute names of the object we want to extract. In

1600

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

product information extraction, the leaf label space consists of Name, Image, Price, Description,
and Note. Note is used to describe the data we are not interested in.

The inner label space can be partitioned into an object-type independent part and an object-type
dependent part. We explain how to define these two parts in turn:

Object-type Independent Labels: Since we want to extract data from webpages, the labels
Page Head, Page Tail, Nav Bar, and Info Block are naturally needed to denote different parts of a
webpage. The labels Data Record and Data Region are also required for detecting data records. The
label Note Block is also required to denote blocks that do not contain any meaningful information,
such as the attributes to be extracted and the head, tail or navigation bar of a webpage. All these
labels are general to any web data extraction problem, and they are independent of any specific
object type.

Object-type Dependent Labels: Between data record blocks and leaf blocks, there are inter-
mediate blocks on a vision-tree. So, we must define some intermediate labels between Data Record
and the labels in the leaf label space. These labels are object-type dependent because intermediate
blocks contain some object specific attribute values. A natural method is to use the combinations
of the attributes to define intermediate labels. Of course, if we use all the possible combinations,
the label space could be too large. We can discard unimportant combinations by considering the co-
occurrence frequencies of their corresponding attribute values in the training data. The object-type
dependent labels in product information extraction are listed in Table 2 with the format Con *.

5.3 Data Sets

We set up two general data sets with randomly crawled product webpages. The list data set (LDST)
contains 771 list pages and the detail data set (DDST) contains 450 detail pages. All the pages
are parsed by VIPS and are hierarchically labeled, that is, every block in the parsed vision-trees is
labeled. We use 200 list pages and 150 detail pages to learn the parameters of different models. The
remaining pages (571 list pages and 300 detail pages) are used for testing. For each product item,
we want to extract four attributes—Name, Image, Price, and Description.

For the training data, the detail pages are from 61 web sites and the list pages are from 81 web
sites. The number of web sites that are found in both list and detail training data is 39. Thus, in total
the training pages are taken from 103 different web sites. Totally, 58 unique templates are presented
in the list training pages and 61 unique templates are presented in the detail training pages. For
testing data, Table 3 shows the number of unique web sites where the pages come from and the
number of different templates presented in these data. For example, the pages in LDST are from
167 web sites, of which 78 are found in list training data and 52 are found in detail training data. The
number of web sites that are found in both list and detail training data is 34. Similar interpretation
applies to other numbers in the table. Thus, totally 71 list page web sites and 263 detail page web
sites are not seen in the training data. For templates, 83 list page templates and 208 detail page
templates are not seen the training data. For different templates, the number of documents varies.
In LDST, most of the templates have 2 to 5 documents. In DDST, pages from different web sites
typically have different templates and thus most templates have 1 document.

5.4 Evaluation Metrics

For data record detection, we use the standard Precision, Recall and F1 measure to evaluate the
methods. A block is considered as a correctly detected data record if it contains all the appeared

1601

ZHU, NIE, ZHANG AND WEN

Data Sets LDST DDST

#Web Site 167 (78/52/34) 268 (2/3/0)

#Template 140 (57/0/0) 212 (0/4/0)

Table 3: Statistics of the data sets.

attributes of one object, and does not contain any attributes of other objects. A correct data record
could tolerate (miss or contain) some non-important information like “Add to Cart” button.

For attribute labeling, the performance on each attribute is evaluated by Precision (the per-
centage of returned elements that are correct), Recall (the percentage of correct elements that are
returned), and their harmonic mean F1. We also use two comprehensive evaluation criteria:

Block Instance Accuracy (Blk IA): the percentage of data records of which the key attributes
(Name, Image, and Price) are all correctly labeled.

Average F1 (Avg F1): the average of F1 values of different attributes.

6. Evaluation of Integrated Web Data Extraction Models

In this section, we report the evaluation results of integrated web data extraction models compared
with decoupled models. The results demonstrate that integrated extraction models can achieve
significant improvements over decoupled models in both record detection and attribute labeling.
We also show the generalization ability of the integrated extraction models.

6.1 Methods

We build the baseline methods by sequentially combining the record detection algorithm DEPTA
(Zhai and Liu, 2005) and 2D CRFs (Zhu et al., 2005). For detail pages, which DEPTA cannot deal
with, we first detect the main data block using the method by Song et al. (2004) and then use 2D
CRFs to perform attribute labeling on the detected main block. For the integrated extraction model,
a webpage is first segmented by VIPS to construct a vision-tree and then HCRFs are used to detect
both records and attributes on the vision-tree. Note that all the HCRFs evaluated in this section are
the model in Figure 3(b). The evaluation results of another HCRFs, which are slightly better, are
presented in Section 7.

To see the effect of the global features in Section 5.1.3, we also evaluate an HCRF model
that does not use these global features. We denote this model by H NG (without global features).
Similarly, we evaluate two 2D CRF models in the baseline methods. As in the work of Zhu et al.
(2005), a basic 2D CRF model is set up with only the basic features (see Table 1) when labeling
each detected data record. Another 2D CRF model is set up with both the basic features and the
global features. We denote the basic model by 2D CRF and denote the other model by 2D G. For
2D G, we first cache all the detected records from one webpage and then extract the global features.
As there is no tree structure here, the alignments are based on the elements’ relative positions in
each record.

To see the separate effect of our approach on record detection and attribute labeling, we first
detect data records on the parsed vision-trees using the content features, tree distance, shape dis-
tance, and type distance features. Then, we use HCRFs to label the detected records. When doing

1602

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

attribute labeling, we also evaluate two HCRF models with and without the global features. These
two models are denoted by H S and H SNG respectively.

For all the HCRF models, we use 200 list pages and 150 detail pages together to learn their
parameters. We use the same 200 list pages to train a 2D CRF model for extraction on list pages,
and use the same 150 detail pages to train another 2D CRF model for extraction on detail pages.
The reason for training two models for list and detail pages separately is that, for a 2D CRF model,
the features and parameters for list and detail pages are quite different and a uniform model cannot
work well. In the training stage, all of the algorithms converge quickly, within 20 iterations.

6.2 Results and Discussions

We compare our approach with DEPTA (Zhai and Liu, 2005) on LDST for data record detection.
The running results of DEPTA on our data set are kindly provided by its authors. DEPTA has a
similarity threshold, and it is set at 60% in this experiment. Some simple heuristics are also used
in DEPTA to remove some noise records. For example, a data region that is far from the center or
contains neither image nor dollar sign is removed.

6.2.1 RECORD DETECTION

The results of record detection are shown in Table 4. We can see that both HCRF and H NG
significantly outperform DEPTA in recall, improved by 8.1 points, and precision, improved by 7.5
points. The improvements come from two parts:

Advanced data representation and more features: in our model, we incorporate more features
such as content features and shape distance and type distance features than DEPTA. We also adopt
an advanced representation of webpages—vision-trees which have been shown to outperform tag-
tree representation(Cai et al., 2004). As we can see from Table 4, H SNG and H S outperform
DEPTA, and we gain about 2 points in precision, 7.3 points in recall, and 4.6 points in F1.

Incorporation of semantics during record detection: DEPTA just detects the blocks with reg-
ular patterns (i.e., regular tree structures) and does not take semantics into account. Thus, although
some heuristics are used to remove some noise blocks, the results still contain blocks that are not
data records or just parts of data records. In contrast, our approach integrates attribute labeling
into block detection and can consider semantics during detecting data records. So, the blocks de-
tected are of better quality and are more likely to be data records. For instance, a block containing
a product’s name, image, price and some descriptions is almost certain to be a data record, but a
block containing only irrelevant information is unlikely to be a data record. The lower precisions of
H SNG and H S demonstrate this. When not considering the semantics of the elements, H SNG and
H S extract more noise blocks compared with H NG or HCRF, so the precisions of record detection
decrease by 5.5 points and the overall F1 measures decrease by 3.2 points.

6.2.2 ATTRIBUTE LABELING

As we can see from Table 5, our HCRF model significantly outperforms the baseline approach. On
list pages, H NG gains 18.7 points over 2D CRF in block instance accuracy and the achievements of
HCRF are 13.9 points higher when compared with 2D CRF G. On detail pages, our approach gains
about 58 points over 2D CRF in block instance accuracy. The reasons for the better performance
are:

1603

ZHU, NIE, ZHANG AND WEN

Models H SNG H S H NG HCRF DEPTA

P 0.904 0.904 0.959 0.959 0.884
R 0.921 0.921 0.930 0.930 0.849
F1 0.912 0.912 0.944 0.944 0.866

Table 4: Record detection results of different methods on LDST.

Data Sets LDST DDST
Models H SNG H S H NG HCRF 2D CRF 2D G HCRF 2D CRF

Name 0.836 0.860 0.880 0.911 0.763 0.851 0.835 0.398
P Image 0.901 0.905 0.952 0.966 0.842 0.838 0.978 0.546

Price 0.906 0.903 0.959 0.963 0.913 0.915 0.986 0.809
Desc 0.783 0.766 0.792 0.788 0.769 0.779 0.663 0.588
Name 0.851 0.875 0.854 0.882 0.735 0.822 0.761 0.398

R Image 0.917 0.921 0.924 0.936 0.811 0.809 0.892 0.546
Price 0.922 0.919 0.930 0.933 0.879 0.883 0.899 0.809
Desc 0.797 0.780 0.768 0.764 0.741 0.752 0.604 0.395
Name 0.843 0.867 0.867 0.896 0.749 0.836 0.796 0.398

F1 Image 0.909 0.913 0.938 0.951 0.826 0.823 0.933 0.546
Price 0.914 0.911 0.944 0.948 0.896 0.899 0.940 0.809
Desc 0.790 0.773 0.780 0.776 0.755 0.765 0.632 0.473

Avg F1 0.864 0.866 0.882 0.893 0.807 0.831 0.825 0.556
Blk IA 0.789 0.816 0.856 0.890 0.669 0.751 0.817 0.231

Table 5: Attribute labeling results of different methods on both LDST and DDST, where Desc stands
for Description.

Attribute labeling benefits from good quality records: one reason for this better performance
is that attribute labeling can benefit from the good results of record detection. For example, if a
detected record is not a data record or misses some important information such as Name, attribute
labeling will fail to find the missed information or will find some incorrect information. So, H SNG
outperforms 2D CRF and H S outperforms 2D G. Of course the achievements of H SNG and H S
may also come from the incorporation of long distance dependencies, which will be discussed later.

Global features help attribute labeling: another reason for the improvements in attribute la-
beling is the incorporation of the global features as in Section 5.1.3. From the results, we can see
that when considering global features, attribute labeling is more accurate. For example, 3.4 points
are gained in block instance accuracy by HCRF compared with H NG, and H S achieves 2.7 points
in block instance accuracy compared with H SNG. For the two baseline methods, compared with
2D CRF, which uses only the features of the elements in each detected record, more than 8 points
are gained in block instance accuracy by 2D G, which incorporates the global features.

HCRF models incorporate long distance dependencies: the third reason is the incorporation
of long distance dependencies. From the results, we can see that hierarchical models could get

1604

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

promising results while 2D CRFs perform poorly on detail pages. This is because, for a detected
record, 2D CRFs put its elements in a two-dimensional grid and long distance interactions cannot be
incorporated in the flat model, due to the first-order Markov assumption. In contrast, HCRF models
can incorporate dependencies at various levels and thus incorporate long distance dependencies. For
detail pages, as there is no record detection, H SNG and H S are not applicable here. There are no
global features either, so we just list the results of HCRF and 2D CRF in Table 5.

The quite different performance of 2D CRFs on list and detail pages says the same thing about
the effectiveness of long distance dependencies. For list pages, the inputs are data records, which
always contain a small number of elements. In this case, 2D CRFs can effectively model the depen-
dencies of the attributes and achieve reasonable accuracy. Note that the results on detail pages are
achieved without any pre-processing to remove noise elements. Empirical studies show that some
appropriate pre-processing can improve the performance significantly on detail pages.

6.3 Generalization Ability

We report some empirical results to show the generalization ability of the integrated web data ex-
traction models. We randomly pick 37 templates from LDST and for each template we collect
5 webpages for training and 10 webpages for testing. We randomly select N(N = 1,2,3, · · · ,37)
templates together with their training pages as training data, and test the model on all the testing
webpages of the 37 templates. For each N, we run the integrated HCRFs 10 times and take the
average as the final results. Figure 5 shows the average F1 and block instance accuracy against
different N. We can see that the integrated extraction models converge very quickly. As the number
of templates increase in the training data, the extraction accuracy becomes higher and the variances
become smaller. The strong generalization ability to unseen templates is mainly due to the very
general and robust visual features we are using in our models. For different templates, although the
low-level HTML codes or HTML tag trees are quite different, the visual layout and visual features
they use are usually common. Thus, we can learn a robust model from a small set of templates
and generalize well to unseen templates. Section 7.3 presents another set of results that show the
generalization ability to unseen templates.

7. Evaluation of Dynamic Hierarchical Markov Random Fields

In this section, we report the evaluation results of Dynamic Hierarchical Markov Random Fields
compared with fixed-structured hierarchical models and Dynamic Trees. Results show that DHM-
RFs can (at least partially) overcome the blocky artifact issue in diverse web data extraction. We
also present some empirical studies about the learning algorithm of DHMRFs.

7.1 Models

We compare DHMRFs with HCRFs in both Figure 3(b) and 3(c), Dynamic Trees (D-Trees), and
fixed-structured tree models (F-Trees). For HCRFs and F-Trees, all training pages are hierarchically
labeled. The training is complete and exact message passing algorithms are used to learn their
parameters and find MAP label assignments. For DHMRFs and D-Trees, labels of leaf nodes are
kept the same and inner labels are hidden during learning. For the incomplete training, we apply
the variational method developed in this paper for DHMRFs. Mean field approximation is also used
for Dynamic Trees. For DHMRFs and HCRFs, the same set of feature functions are used for class

1605

ZHU, NIE, ZHANG AND WEN

0 5 10 15 20 25 30 35
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Template

A
ve

ra
ge

 F
1

0 5 10 15 20 25 30 35
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Template

B
lo

ck
 In

st
an

ce
 A

cc
ur

ac
y

Figure 5: The left plot is the mean and variance of the Average F1 and the right plot is the mean
and variance of the Block Instance Accuracy.

label assignment. We will use HCRF and HCRF+ to denote the two HCRF models in Figure 3(b)
and 3(c) respectively.

To apply DHMRFs and D-Trees, initial configuration of the model structure must be carried
out first. Basically, we need to initially set the number of layers and the number of nodes at each
layer. It may be different for different application domains to set the initial configuration. For
image processing, it can be done via sub-sampling or wavelet filtering. For web data extraction,
the data are represented as texts, images, buttons, and so on. These atomic information units are
more expressive compared to image pixels. There is definitely no benefit to view a webpage as a
collection of image pixels and then apply the methods in image processing. Here, we use the same
number of layers (and the same number of nodes at each layer) in dynamic models as in the vision-
trees. Note that additional nodes can be introduced. For DHMRFs feature functions can be easily
defined to consider these nodes, and for D-Trees the part-time-node-employment prior (Adams and
Williams, 1999) can be applied to get a sparse structure.

For D-Trees, two sets of parameters—conditional probability tables (CPTs) and affinities, need
to be set. We keep the affinities fixed and learn the CPTs. To avoid over-parametrization, layer-wise
CPT sharing is adopted in previous work. However, for heterogeneous web data, three-layer-wise
sharing is better. That is, every three layers from the top down share one CPT. To incorporate
evidence, we use the class-independent model (Storkey and Williams, 2003) with emission distribu-
tions set as the empirical frequencies in the training data set. CPTs are also initialized as frequencies.
To avoid zero probabilities of unseen samples, Laplace’s rule is used with pseudocount set at one.
Our study shows that when the affinities are set as 0 for the natural parent, -1 for the nearest neigh-
bors of the natural parent, and -3 for the null parent, better performance is achieved compared to
previously used settings. The CPTs used in our experiments are achieved with 10 iterations.

1606

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

7.2 Extraction Accuracy

Table 6 shows the extraction accuracy of different models. From the results, we can see that DHM-
RFs achieve the highest performance on both data sets. Compared to the fixed HCRF, on LDST
about 3 points in Average F1 and about 5 points in Block Instance Accuracy are gained. Compared
to the more complex HCRF+, more than 2 points in Average F1 and about 3 points in Block Instance
Accuracy are achieved. More specifically, compared to HCRF+, more than 3 points are achieved
in both precision and recall on Name, and more than 2 points are achieved on Desc. For Image and
Price the improvements are smaller. This is because Image and Price are usually more distinctive
than the other attributes. So both models perform quite well. On DDST, the improvements in Name
are about 4 points in both precision and recall, and for Description the improvements are about 7
points in both precision and recall. Small improvements are achieved in Image and Price due to the
same reason as in list pages.

The improvements demonstrate the merits of DHMRFs. First, DHMRFs can incorporate the
two-dimensional neighborhood dependencies among the nodes at the same level, which have been
shown to be useful (Zhu et al., 2005). The better performance of HCRF+ compared to HCRF also
shows the usefulness of two-dimensional neighborhood dependencies. By dynamically selecting
connections between different nodes, DHMRFs can bring together the attributes of the same ob-
ject (here, an object is a product item), and thus the correlation between these attributes can be
strengthened. Second, DHMRFs can deal with webpages with intertwined attributes (Zhai and Liu,
2005). For these webpages, the attributes of different objects are intertwined in HTML tag trees.
Unaware of semantic labels, the constructed vision-trees also have intertwined attributes. In these
cases, fixed-structured HCRFs (both HCRF and HCRF+) cannot correctly detect data records by
simply assigning labels to the nodes of a vision-tree. Instead, as structure selection is integrated
with labeling in DHMRFs, the dynamic model can properly group the attributes of the same object,
and at the same time separate the attributes of different objects with the help of semantic labels. The
semantic labels have been shown to be helpful in detecting data records (i.e., groups of attributes) in
previous experiments. Note that although intertwined cases are usually fewer than non-intertwined
cases, they are not sparse samples in our model. This is because although their edge connections in
HTML tag trees are somewhat different from non-intertwined ones, the visual features they share
are almost the same. Thus, training samples with or without intertwined cases can teach a good
model. In fact, to keep it fair for both dynamic models and fix-structured models, we only provide
non-intertwined samples during training.

Compared to the fixed F-Trees, the worse performance of D-Trees is quite counter-intuitive.
However, a close examination of the results reveals that the reason for the worse performance is due
to the less discriminative power of D-Trees. As we have stated, for diverse web data CPT sharing
can be difficult. Although empirical studies can find a good sharing method, we couldn’t learn
an optimal model with a limited set of training samples. Furthermore, its generative characteristic
causes difficulty in encoding useful features. In this way, more uncertainty in structure selection
couldn’t be resolved than that in DHMRFs. This is evident if we look at the average log-likelihood
of the MAP connections over all samples and all nodes. For D-Trees the average value is -0.4080,
and for DHMRFs it is -0.3170. In terms of probability, they are equivalent to 0.6650 and 0.7283
respectively. The less discriminative power of D-Trees causes additional errors in constructing
model structures even for the non-intertwined cases, and thus hurts the accuracy of record detection
and attribute labeling. So, D-Trees perform worse than F-Trees, which can deal with the non-

1607

ZHU, NIE, ZHANG AND WEN

Data Sets LDST DDST
Models F-Tree D-Tree HCRF HCRF+ DHMRF F-Tree D-Tree HCRF HCRF+ DHMRF

Name 0.890 0.879 0.911 0.920 0.952 0.829 0.785 0.835 0.835 0.874
P Image 0.959 0.951 0.966 0.968 0.988 0.972 0.928 0.978 0.978 0.978

Price 0.960 0.937 0.963 0.972 0.978 0.976 0.947 0.986 0.990 0.989
Desc 0.804 0.800 0.788 0.805 0.828 0.722 0.698 0.663 0.656 0.730
Name 0.842 0.744 0.882 0.897 0.928 0.779 0.684 0.761 0.753 0.799

R Image 0.908 0.805 0.936 0.944 0.958 0.868 0.809 0.892 0.883 0.898
Price 0.910 0.794 0.936 0.951 0.949 0.888 0.826 0.899 0.893 0.905
Desc 0.762 0.678 0.764 0.786 0.811 0.641 0.609 0.604 0.603 0.668
Name 0.865 0.806 0.896 0.908 0.940 0.803 0.731 0.796 0.792 0.835

F1 Image 0.933 0.872 0.951 0.956 0.973 0.917 0.864 0.933 0.928 0.936
Price 0.934 0.860 0.948 0.961 0.963 0.930 0.882 0.940 0.939 0.945
Desc 0.782 0.734 0.776 0.795 0.819 0.679 0.650 0.632 0.628 0.698

Avg F1 0.879 0.818 0.893 0.902 0.924 0.832 0.782 0.825 0.822 0.854
Blk IA 0.869 0.837 0.890 0.912 0.940 0.809 0.762 0.817 0.819 0.853

Table 6: Extraction accuracy on LDST and DDST, where Desc stands for Description.

intertwined cases well. The results also show that the directed tree models can perform well on our
data sets, but are inferior to HCRFs.

7.3 Extraction Accuracy on Unseen Templates

For detail pages, since only a small number (i.e., 4) of templates in the testing data are seen in the
training data, the results on webpages generated from unseen templates do not change much. Here,
we only report the results on list pages. In total, LDST has 83 templates that are not seen in the
training data. We select out all the pages with unseen templates, the total number being 190. Figure
6 shows the results of our models on these webpages. The overall performance is still very promising
although it is lower than that on the whole set of webpages. Generally, the Dynamic Hierarchical
Markov Random Fields always outperform all the other models. The integrated HCRFs outperform
the sequential HCRFs, which take record detection and attribute labeling as two separate steps as
described in Section 6.1. Dynamic Trees achieved the worst results due to the same reason of a less
discriminative power in structure selection.

7.4 Fitness of Model Structure

Figure 7(a) compares the posterior probabilities of the MAP structures constructed by DHMRFs
with those of the fixed structures. In terms of the number of nodes, the sizes of webpages change
from 39 to 576 (average 166) in LDST, and the log posteriors change from -503.80 to -4.49 (average -
50.7). In DDST, sizes range from 14 to 705 (average 131), and log posteriors range from -184.40 to -
1.72 (average -42.47). Here, we only present the samples whose log posteriors are between -200 and
0 because most of the samples (> 97%) fall into this interval. We can see that the MAP structures by
DHMRFs always appear above the equal probability line. Thus, the structures found by the dynamic

1608

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

Name Image Price Desc Avg_F1 Blk_IA
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Dynamic Trees
Sequential HCRFs
HCRFs
DHMRFs

Figure 6: The performance of Dynamic Trees, Sequential HCRFs, HCRFs, and DHMRFs on the
webpages whose templates are not presented in the training data. From left to right, the
first four groups of the columns are the F1 of different attributes.

model have higher posterior probabilities. Another observation is that the distribution of samples
from DDST is more disperse than that of the samples from LDST. The reason is that in list pages
the attributes of an object always concentrate into small clusters, while they can scatter anywhere in
detail pages.

7.5 Study about the Inference Algorithm

Figure 7(b) shows the change of average contrastive divergence with respect to iteration numbers
in the learning of DHMRFs. To initialize the algorithm, at the wake phrase my

i are set to a uniform
distribution plus a Gaussian noise with zero mean and variance 0.01, and µil are set to a random
distribution. The model weights are initialized to zero. We can see that before 7 iterations average
contrastive divergence decreases stably. And after 7, slight disturbances appear. But as for extraction
accuracy, marginal changes occur (no more than 0.5 point in Block Instance Accuracy). Thus, the
learning algorithm is quite stable. All the above results are achieved at iteration 7. The same
initialization is used in labeling, and by running both learning and labeling many times, we observe
that the algorithm is insensitive to the random initialization. Since the mean field equations are
locally calculated and their update can typically converge within 5 iterations, both the learning and
labeling are efficient.

8. Conclusions and Future Work

In this paper, we proposed an integrated web data extraction paradigm with hierarchical models.
The proposed model is called Dynamic Hierarchical Markov Random Fields (DHMRFs), which
take fixed-structured Hierarchical Conditional Random Fields (HCRFs) as a special case. DHMRFs
incorporate structural uncertainty in a discriminative manner. By dynamically selecting connections

1609

ZHU, NIE, ZHANG AND WEN

−200 −180 −160 −140 −120 −100 −80 −60 −40 −20 0
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Fixed Structure

M
A

P
 D

yn
am

ic
 S

tr
uc

tu
re

(a)

0 2 4 6 8 10 12 14
40

60

80

100

120

140

160

180

200

220

Epoch Number

A
ve

ra
ge

 C
on

tr
as

tiv
e

D
iv

er
ge

nc
e

(b)

Figure 7: (a) The log posteriors of MAP dynamic structures against those of fixed structures. Sam-
ples in asterisks are from LDST and those in circles are from DDST; (b) The change of
average contrastive divergence with respect to iteration numbers.

1610

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

between variables, DHMRFs can potentially address the blocky artifact issue in diverse web data
extraction. Compared to directed models, DHMRFs are compact in representation and powerful
in encoding useful features. We develop a contrastive divergence learning algorithm to learn the
parameters for DHMRFs. For the special case—HCRFs, parameter learning can be exactly per-
formed with some assumption about the linearity of the neighborhood dependencies among sibling
nodes, and without such an assumption piecewise learning can be applied to achieve a good ap-
proximation. We apply the models to a real-world web data extraction task. Experimental results
show that: (1) integrated extraction models perform significantly better than decoupled methods on
both record detection and attribute labeling; (2) DHMRFs can potentially address the blocky artifact
issue in diverse web data extraction; (3) integrated extraction models can generalize well to unseen
templates.

In our experiments, we apply a simple method to select labels for inner variables according to
the co-occurrence frequency. Apparently, labels should not be selected independently and meth-
ods considering the correlations between different labels could be more desirable. We plan to try
advanced methods in the future. It is also interesting to develop models that can automatically dis-
cover the number of layers and the number of nodes at each layer. Finally, extensive studies of the
integrated extraction models in other complicated domains, like extracting researchers’ information
(Zhu et al., 2007a), is also to comprise our future work.

Acknowledgments

We thank the anonymous reviewers for helpful comments in improving the earlier version of the
paper. The authors Jun Zhu and Bo Zhang are supported by National Natural Science Foundation of
China under the Grant No. 60621062, and National Key Foundation R&D Project under the Grant
No. 2003CB317007 and 2004CB318108.

References

Nicholas J. Adams and Christopher K. I. Williams. SDTs: Sparse dynamic trees. In Artificial
Neural Networks, 1999.

Arwind Arasu and Hector Garcia-Molina. Extracting structured data from webpages. In Proc. of
the International Conference on Management of Data, San Diego, CA, 2003.

David Buttler, Ling Liu, and Calton Pu. A fully automated object extraction system for the world
wide web. In Proc. of International Conference on Distributed Computing Systems, Arizona,
USA, 2001.

Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Block-based web search. In Proc. of the
Internaltinoal Conference on Information Retrieval, Sheffield, UK, 2004.

Miguel A. Carreira-Perpinan and Geoffrey E. Hinton. On contrastive divergence learning. In Proc.
of Artificial Intelligence and Statistics, Barbados, 2005.

Chia-Hui Chang and Shao-Chen Lui. IEPAD: Information extraction based on pattern discovery.
In Proc. of the International World Wide Web Conference, Hong Kong, China, 2001.

1611

ZHU, NIE, ZHANG AND WEN

Robert G. Cowell, A.Philip Dawid, Steffen L. Lauritzen, and David J. Spiegelhalter. Probabilistic
Networks and Expert Systems. Springer, New York, NY, 1999.

Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. ROADRUNNER: Towards automatic
data extraction from large web sites. In Proc. of the Conference on Very Large Data Bases, Rome,
Italy, 2001.

Aron Culotta, Trausti Kristjansson, Andrew McCallum, and Paul Viola. Corrective feedback and
persistent learning for information extraction. Artificial Intelligence Journal, 170(14):1101–
1122, 2006.

David W. Embley, Y. Jiang, and Y.-K. Ng. Record-boundary discovery in web documents. In Proc.
of the International Conference on Management of Data, Philadephia, PA, 1999.

Wolfgang Gatterbauer, Paul Bohunsky, Marcus Herzog, Bernhard Krupl, and Bernhard Pollak. To-
wards domain-independent information extraction from web tables. In Proc. of the International
World Wide Web Conference, Banff, Canada, 2007.

Lise Getoor, Nir Friedman, Daphne Koller, and Benjamin Taskar. Learning probabilistic models
of relational structure. In Proc. of the International Conference on Machine Learning, Williams
College, Williamstown, MA, 2001.

Xuming He, Richard S. Zemel, and Miguel A. Carreira-Perpinan. Multiscale conditional random
fields for image labeling. In IEEE Conference on Computer Vision and Pattern Recognition,
Washington, DC, 2004.

Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8):1771–1800, 2002.

William W. Irving, Paul W. Fieguth, and Alan S. Willsky. An overlapping tree approach to multi-
scale stochastic modeling and estimation. IEEE Trans. on Image Processing, 6(11):1517–1529,
1997.

Michael I. Jordan, Zoubin Ghahramani, Tommis Jaakkola, and Lawrence K. Saul. An Introduction
to Variational Methods for Graphical Models. M. I. Jordan (Ed.), Learning in Graphical Models,
Cambridge: MIT Press, Cambridge, MA, 1999.

Zoltan Kato, Marc Berthod, and Josiane Zerubia. Multiscale Markov random field models for
parallel image classification. In IEEE International Conference on Computer Vision, Berlin,
Germany, 1993.

Sanjiv Kumar and Martial Hebert. A hierarchical field framework for unified context-based classi-
fication. In IEEE International Conference on Computer Vision, Beijing, China, 2005.

Nicholas Kushmerick. Wrapper induction: efficiency and expressiveness. Artificial Intelligence,
118:15–68, 2000.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. of the International Conference on
Machine Learning, Williams College, Williamstown, MA, 2001.

1612

DYNAMIC HIERARCHICAL MARKOV RANDOM FIELDS

Kristina Lerman, Lise Getoor, Steven Minton, and Craig Knoblock. Using the structure of web sites
for automatic segmentation of tables. In Proc. of the International Conference on Management
of Data, Paris, France, 2004.

Jia Li, Robert M. Gray, and Richard A. Olshen. Multiresolution image classification by hierarchical
modeling with two-dimensional hidden Markov models. IEEE Trans. on Information Theory, 46
(5):1826–1841, 2000.

Lin Liao, Dieter Fox, and Henry Kautz. Location-based activity recognition. In Advances in Neural
Information Processing Systems, Whistler, Canada, 2005.

Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical Programming, 45:503–528, 1989.

Ion Muslea, Steven Minton, and Craig A. Knoblock. Hierarchical wrapper induction for semi-
structured information sources. Journal of Autonomous Agents and Multi-Agent, 4(1-2):93–114,
2001.

Ariadna Quattoni, Michael Collins, and Trevor Darrell. Conditional random fields for object recog-
nition. In Advances in Neural Information Processing Systems, Vancouver, Canada, 2004.

Garry Robins, Pip Pattison, Yuval Kalish, and Dean Lusher. An introduction to exponential random
graph (p?) model for social networks. Social Networks, 2006.

Ruihua Song, Ji-Rong Wen, and Wei-Ying Ma. Learning block importance models for web pages.
In Proc. of the International World Wide Web Conference, Budapest, Hungary, 2004.

Amos J. Storkey and Christopher K. I. Williams. Image modeling with position-encoding dynamic
trees. IEEE Trans. on Pattern Analysis and Machine Intelligence, 25(7):859–871, 2003.

Charles Sutton and Andrew McCallum. Piecewise training for undirected models. In Uncertainty
in Artificial Intelligence, Edinburgh, Scotland, 2005.

Charles Sutton, Khashayar Rohanimanesh, and Andrew McCallum. Dynamic conditional random
fields: factorized probabilistic models for labeling and segmenting sequence data. In Proc. of the
International Conference on Machine Learning, Banff, Canada, 2004.

Sinisa Todorovic and Michael C. Nechyba. Dynamic trees for unsupervised segmentation and
matching of image regions. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27(11):
1762–1777, 2005.

Martin Wainwright, Tommi Jaakkola, and Alan Willsky. A new class of upper bounds on the log
partition function. In Uncertainty in Artificial Intelligence, Alberta, Canada, 2002.

Max Welling and Geoffrey E. Hinton. A new learning algorithm for mean field boltzmann machines.
In International Conference on Artificial Neural Networks, Vienna, Austria, 2001.

Max Welling and Charles Sutton. Learning in Markov random fields with contrastive free energies.
In Artificial Intelligence and Statistics, Barbados, 2005.

1613

ZHU, NIE, ZHANG AND WEN

Christopher K. I. Williams and Nicholas J. Adams. DTs: dynamic trees. In Advances in Neural
Information Processing Systems, Denver, Colorado, USA, 1999.

Alan S. Willsky. Multiresolution Markov models for signal and image processing. In Proc. of the
IEEE, 2002.

Alan L. Yuille. The convergence of contrastive divergence. In Advances in Neural Information
Processing Systems, Vancouver, Canada, 2004.

Yanhong Zhai and Bing Liu. Web data extraction based on partial tree alignment. In Proc. of the
International World Wide Web Conference, Chiba, Japan, 2005.

Hongkun Zhao, Weiyi Meng, Zonghuan Wu, Vijay Raghavan, and Clement Yu. Fully automatic
wrapper generation for search engines. In Proc. of the International World Wide Web Conference,
Chiba, Japan, 2005.

Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and Wei-Ying Ma. 2D conditional random fields
for web information extraction. In Proc. of the International Conference on Machine Learning,
Bonn, Germany, 2005.

Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and Wei-Ying Ma. Simultaneous record detec-
tion and attribute labeling in web data extraction. In Proc. of the International Conference on
Knowledge Discovery and Data Mining, Philadelphia, PA, 2006.

Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and Hsiao-Wuen Hon. Webpage understanding: an
integrated approach. In Proc. of the International Conference on Knowledge Discovery and Data
Mining, San Jose, CA, 2007a.

Jun Zhu, Zaiqing Nie, Bo Zhang, and Ji-Rong Wen. Dynamic hierarchical Markov random fields
and their application to web data extraction. In Proc. of the International Conference on Machine
Learning, Corvallis, OR, 2007b.

1614

Journal of Machine Learning Research 9 (2008) 1615-1646 Submitted 7/07; Revised 1/08; Published 7/08

Universal Multi-Task Kernels

Andrea Caponnetto CAPONNET@CITYU.EDU.HK

Department of Mathematics
City University of Hong Kong
83 Tat Chee Avenue, Kowloon Tong, Hong Kong

Charles A. Micchelli CAM@MATH.ALBANY.EDU

Department of Mathematics and Statistics
State University of New York
The University at Albany
Albany, New York 12222, USA

Massimiliano Pontil M.PONTIL@CS.UCL.AC.UK

Department of Computer Science
University College London
Gower Street, London, WC1E 6BT, UK

Yiming Ying ENXYY@BRIS.AC.UK

Department of Engineering Mathematics
University of Bristol
Queen’s Building, Bristol, BS8 1TR, UK

Editor: Bernhard Schoelkopf

Abstract
In this paper we are concerned with reproducing kernel Hilbert spaces HK of functions from an
input space into a Hilbert space Y , an environment appropriate for multi-task learning. The re-
producing kernel K associated to HK has its values as operators on Y . Our primary goal here is to
derive conditions which ensure that the kernel K is universal. This means that on every compact
subset of the input space, every continuous function with values in Y can be uniformly approx-
imated by sections of the kernel. We provide various characterizations of universal kernels and
highlight them with several concrete examples of some practical importance. Our analysis uses
basic principles of functional analysis and especially the useful notion of vector measures which
we describe in sufficient detail to clarify our results.
Keywords: multi-task learning, multi-task kernels, universal approximation, vector-valued repro-
ducing kernel Hilbert spaces

1. Introduction

The problem of studying representations and methods for learning vector-valued functions has re-
ceived increasing attention in Machine Learning in the recent years. This problem is motivated
by several applications in which it is required to estimate a vector-valued function from a set of
input/output data. For example, one is frequently confronted with situations in which multiple su-
pervised learning tasks must be learned simultaneously. This problem can be framed as that of
learning a vector-valued function f = (f1, f2, . . . , fn), where each of its components is a real-valued
function and corresponds to a particular task. Often, these tasks are dependent on each other in

c©2008 Andrea Caponnetto, Charles A. Micchelli, Massimiliano Pontil and Yiming Ying.

CAPONNETTO, MICCHELLI, PONTIL AND YING

that they share some common underlying structure. By making use of this structure, each task is
easier to learn. Empirical studies indicate that one can benefit significantly by learning the tasks
simultaneously as opposed to learning them one by one in isolation (see, e.g., Evgeniou et al., 2005,
and references therein).

In this paper, we build upon the recent work of Micchelli et al. (2006) by addressing the issue of
universality of multi-task kernels. Multi-task kernels were recently discussed in Machine Learning
context by Micchelli and Pontil (2005), however there is an extensive literature on multi-task kernels
as there are important both in theory and practice (see Amodei, 1997; Burbea and Masani, 1984;
Caponnetto and De Vito, 2006; Carmeli et al., 2006; Devinatz, 1960; Lowitzsh, 2005; Reisert and
Burkhardt, 2007; Vazquez and Walter, 2003, and references therein for more information)

A multi-task kernel K is the reproducing kernel of a Hilbert space of functions from an input
space X which takes values in a Hilbert space Y . For example, in the discussion above, Y = R

n.
Generally, the kernel K is defined on X ×X and takes values as an operator from Y to itself.1 When
Y is n-dimensional, the kernel K takes values in the set of n×n matrix. The theory of reproducing
kernel Hilbert spaces (RKHS) as described in Aronszajn (1950) for scalar-valued functions has
extensions to any vector-valued Y . Specifically, the RKHS is formed by taking the closure of the
linear span of kernel sections {K(·,x)y, x ∈ X , y ∈ Y }, relative to the RKHS norm. We emphasize
here that this fact is fundamentally tied to a norm induced by K and is generally non-constructive.
Here, we are concerned with conditions on the kernel K which ensure that all continuous functions
from X to Y can be uniformly approximated on any compact subset of X by the linear span of
kernel sections.

As far as we are aware, the first paper which addresses this question in Machine Learning
literature is Steinwart (2001). Steinwart uses the expression universal kernel and we follow that
terminology here. The problem of identifying universal kernels was also discussed by Poggio et
al. (2002). One of us was introduced to this problem in a lecture given at City University of Hong
Kong by Zhou (2003). Subsequently, some aspects of this problem were treated in Micchelli et al.
(2003) and Micchelli and Pontil (2004) and then in detail in Micchelli et al. (2006).

The question of identifying universal kernels has a practical basis. We wish to learn a continuous
target function f : X → Y from a finite number of samples. The learning algorithm used for this
purpose should be consistent. That is, as the samples size increases, the discrepancy between the
target function and the function learned from the data should tend to zero. Kernel-based algorithms
(Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004) generally use the representer
theorem and learn a function in the linear span of kernel sections. Therefore, here we interpret
consistency to mean that, for any compact subset Z of the input space X and every continuous
target function f : X → Y , the discrepancy between the target function and the learned function
goes to zero uniformly on Z as the sample size goes to infinity. It is important to keep in mind
that our input space is not assumed to be compact. However, we do assume that it is a Hausdorff
topological space so that there is an abundance of compact subsets, for example any finite subset of
the input space is compact.

Consistency in the sense we described above is important in order to study the statistical perfor-
mance of learning algorithms based on RKHS. For example, Chen et al. (2004) and Steinwart et al.
(2006) studied statistical analysis of soft margin SVM algorithms, Caponnetto and De Vito (2006)
gave a detailed analysis of the regularized least-squares algorithm over vector-valued RKHS and

1. Sometimes, such a kernel is called operator-valued or matrix-valued kernel if Y is infinite of finite dimensional,
respectively. However, for simplicity sake we adopt the terminology multi-task kernel throughout the paper.

1616

UNIVERSAL MULTI-TASK KERNELS

proved universal consistency of this algorithm assuming that the kernel is universal and fulfills the
additional condition that the operators K(x,x) have finite trace. The results in these papers imply
universal consistency of kernel-based learning algorithms when the considered kernel is universal.
One more interesting application of universal kernels is described in Gretton et al. (2006).

This paper is organized as follows. In Section 2, we review the basic definition and properties
of multi-task kernels, define the notion of universal kernel and describe some examples. In Section
3, we introduce the notion of feature map associated to a multi-task kernel and show its relevance
to the question of universality. The main result in this section is Theorem 4, which establishes that
the closure of the RKHS in the space of continuous functions is the same as the closure of the space
generated by the feature map. The importance of this result is that universality of a kernel can
be established directly by considering its features. In Section 4 we provide an alternate proof of
Theorem 4 which uses the notion of vector measures and discuss ancillary results useful for several
concrete examples of some practical importance highlighted in Section 5.

name notation information
input space X a Hausdorff topological space

Z compact subset of X
x, t,z elements of Z
B(Z) Borel σ-algebra of Z
ν signed scalar measure
µ vector measure, see Def. 8
p,q indices running from 1 to n
i, j indices running from 1 to m

output space Y Hilbert space, with inner product (·, ·)Y
B1 unit ball centered at the origin, in Y

feature space W Hilbert space with inner product 〈·, ·〉W
L(Y ,W) all bounded linear operators from Y into W
L(Y) all bounded linear operators from Y into itself
A,B elements of L(Y)
L+(Y) ⊆ L(Y) subset of positive linear operators

multi-task kernel K a function from X ×X to L(Y), see Def. 1
HK reproducing kernel Hilbert space of K

feature representation Φ mapping from X to L(Y ,W)
C (Z,Y) space of continuous Y -valued functions on Z
ι isometric mapping from C (Z,Y) to C (Z ×B1)
CK(Z,Y) subset of C (Z,Y) generated by K, see Eq. (2)
CΦ(Z,Y) subset of C (Z,Y) generated by Φ, see Eq. (9)

Table 1: Notation.

2. RKHS of Vector-Valued Functions

In this section, we review the theory of reproducing kernels for Hilbert spaces of vector-valued
functions as in Micchelli and Pontil (2005) and introduce the notion of universal kernels.

1617

CAPONNETTO, MICCHELLI, PONTIL AND YING

We begin by introducing some notation. We let Y be a Hilbert space with inner product (·, ·)Y
(we drop the subscript Y when confusion does not arise). The vector-valued functions will take
values on Y . We denote by L(Y) the space of all bounded linear operators from Y into itself, with
the operator norm ‖A‖ := sup‖y‖=1 ‖Ay‖, A ∈ L(Y) and by L+(Y) the set of all bounded, positive
semi-definite linear operators, that is, A ∈ L+(Y) provided that, for any y ∈ Y , (y,Ay)≥ 0. We also
denote, for any A ∈ L(Y), by A∗ its adjoint. Finally, for every m ∈ N, we define Nm = {1, . . . ,m}.
Table 1 summarizes the notation used in paper.

Definition 1 We say that a function K : X ×X → L(Y) is a multi-task kernel on X if K(x, t)∗ =
K(t,x) for any x, t ∈ X , and it is positive semi-definite, that is, for any m ∈ N, {x j : j ∈ Nm} ⊆ X
and {y j : j ∈ Nm} ⊆ Y there holds

∑
i, j∈Nm

(yi,K(xi,x j)y j) ≥ 0. (1)

For any t ∈ X and y ∈ Y , we introduce the mapping Kty : X → Y defined, for every x ∈ X by
(Kty)(x) := K(x, t)y. In the spirit of Moore-Aronszjain’s theorem, there is a one-to-one correspon-
dence between the kernel K with property (1) and an RKHS of functions f : X → Y (Aronszajn,
1950), see also Micchelli and Pontil (2005) and Carmeli et al. (2006).

Throughout this paper, we assume that the kernel K is continuous relative to the operator norm
on L(Y). We now return to the formulation of the definition of universal kernel. For this purpose,
we recall that C (Z,Y) is the Banach space of continuous Y -valued continuous function on a com-
pact subset Z of X with the maximum norm, defined by ‖ f‖∞,Z := supx∈Z ‖ f (x)‖Y . We also define,
for every multi-task kernel K, the subspace of C (Z,Y)

CK(Z,Y) := span{Kxy : x ∈ Z,y ∈ Y }, (2)

where the closure is relative to the norm in the space C (Z,Y).

Definition 2 We say that a multi-task kernel K is a universal kernel if, for any compact subset Z of
X , CK(Z,Y) = C (Z,Y).

In the special case that Y = R
n, the kernel function K takes values as n× n matrices. The corre-

sponding matrix elements can be identified by the formula

(K(x, t))pq = 〈Kxep,Kteq〉K , ∀x, t ∈ X ,

where ep,eq are the standard coordinate basis in R
n, for p,q ∈ Nn.

In order to describe some of the examples of multi-task kernels below, it is useful to first present
the following generalization of Schur product of scalar kernels to matrix-valued kernels. For this
purpose, for any i ∈ Nm we let yi = (y1i,y2i, . . . ,yni) ∈ R

n, so that Equation (1) is equivalent to

∑
i, j∈Nm

∑
p,q∈Nn

ypi(K(xi,x j))pqyq j ≥ 0. (3)

From the above observation, we conclude that K is a kernel if and only if
(
(K(xi,x j)p,q

)
as the matrix

with row index (p, i) ∈ Nn ×Nm and column index (q, j) ∈ Nn ×Nm is positive semi-definite. This
fact makes possible, as long as the dimension of Y is finite, reducing the proof of some properties
of operator-valued kernels to the proof of analogous properties of scalar-valued kernels; this process
is illustrated by the following Proposition.

1618

UNIVERSAL MULTI-TASK KERNELS

Proposition 3 Let G and K be n×n multi-task kernels. Then, the element-wise product kernel K ◦
G : X × X → R

n × R
n defined, for any x, t ∈ X and p,q ∈ Nn, by

(
K ◦ G(x, t)

)
pq :=(

K(x, t)
)

pq

(
G(x, t)

)
pq is an n×n multi-task kernel.

Proof We have to check the positive semi-definiteness of K ◦G. To see this, for any m ∈ N, {yi ∈
R

n : i ∈ Nm} and {xi ∈ X : i ∈ Nm} we observe that

∑
i, j∈Nm

(yi,K ◦G(xi,x j)y j) = ∑
p,i

∑
q, j

ypiyq j
(
K(xi,x j)

)
pq

(
G(xi,x j)

)
pq. (4)

By inequality (3), it follows that the matrix
((

K(xi,x j)
)

pq

)
is positive semi-definite as the matrix

with (p, i) and (q, j) as row and column indices respectively, and so is
((

G(xi,x j)
)

pq

)
. Applying

the Schur Lemma (Aronszajn, 1950) to these matrices implies that Equation (4) is nonnegative, and
hence proves the assertion.

We now present some examples of multi-task kernels. They will be used in Section 5 to illustrate
the general results in Sections 3 and 4.

The first example is adapted from Micchelli and Pontil (2005).

Example 1 If, for every j ∈ Nm the function G j : X ×X → R is a scalar kernel and B j ∈ L+(Y),
then the function

K(x, t) = ∑
j∈Nm

G j(x, t)B j, ∀x, t ∈ X (5)

is a multi-task kernel.

The operators B j model smoothness across the components of the vector-valued function. For ex-
ample, in the context of multi-task learning (see, e.g., Evgeniou et al., 2005, and references therein),
we set Y = R

n, hence B j are n× n matrices. These matrices model the relationships across the
tasks. Evgeniou et al. (2005) considered kernels of the form (5) with m = 2, B1 a multiple of the
identity matrix and B2 a low rank matrix. A specific case for X = R

d is

(K(x, t))p,q = λx · t +(1−λ)δpq(x · t)2, p,q ∈ Nn,

where x · t is the standard inner product in R
d and λ ∈ [0,1] . This kernel has an interesting in-

terpretation. Using only the first term on the right hand side of the above equation (λ = 1) corre-
sponds to learning all tasks as the same task, that is, all components of the vector-valued function
f = (f1, . . . , fn) are the same function, which will be a linear function since the kernel G1 is lin-
ear. Whereas, using only the second term (λ = 0) corresponds to learning independent tasks, that
is, the components of the function f will be generally different functions. These functions will be
quadratic since G2 is a quadratic polynomial kernel. Thus, the above kernel combines two heteroge-
neous kernels to form a more flexible one. By choosing the parameter λ appropriately, the learning
model can be tailored to the data at hand.

We note that if K is a diagonal matrix-valued kernel, then each component of a vector-valued
function in the associated RKHS of K can be represented, independently of the other components,
as a function in the RKHS of a scalar kernel. However, in general, a multi-task kernel will not be
diagonal and, more importantly, will not be reduced to a diagonal one by linearly transforming the

1619

CAPONNETTO, MICCHELLI, PONTIL AND YING

output space. For example, the kernel in Equation (5) cannot be reduced to a diagonal kernel, unless
all the matrices B j, j ∈ Nm can all be simultaneously transformed into a diagonal matrix. Therefore,
in general, the component functions share some underlying structure which is reflected by the choice
of the kernel and cannot be treated as independent objects. This fact is further illustrated by the next
example.

Example 2 If X0 is a compact Hausdorff space, for p ∈ Nn, Tp is a map from X from X0 (not
necessary linear) and G : X0 ×X0 → R is a scalar kernel, then

K(x, t) :=
(

G(Tpx,Tqt)
)n

p,q=1
, ∀x, t ∈ X

is a matrix-valued kernel on X .

A specific instance of the above example is described by Vazquez and Walter (2003) in the context
of system identification. It corresponds to the choices that X0 = X = R and Tp(x) = x + τp, where
τp ∈ R. In this case, the kernel K models “delays” between the components of the vector-valued
function. Indeed, it is easy to verify that, for this choice, for all f ∈ HK and p ∈ Nn,

fp(x) := (f (x),ep) = h(x− τp), ∀x ∈ X

where h is a scalar-valued function in the RKHS of kernel G.
Other choices of the map Tp are possible and provide interesting extensions of scalar kernels.

For instance, the choice K(x, t) := (eσpq〈x,t〉 : p,q ∈ Nn), where σ = (σpq) is a positive semi-definite
matrix suggested by Example 2. Specifically, the eigenvalue decomposition of the matrix σ is
given by σ = ∑n

i=1 λiuiuT
i and, for any x ∈ X and i ∈ Nn the map T (i)

p is given by T (i)
p x :=

√
λiuipx.

Therefore, we obtain that K(x, t) = (∏n
i=1 e〈T

(i)
p x,T (i)

q t〉 : p,q ∈ Nn) and, so, by Proposition 3, we
conclude that K is a matrix-valued kernel.

It is interesting to note, in passing, that, although one would expect the function

K(x, t) :=
(

e−σpq‖x−t‖2
)n

p,q=1
, ∀x, t ∈ X (6)

to be a kernel over X = R
d , we will show later in Section 5 that this is not true, unless all entries of

the matrix σ are the same.
Our next example called Hessian of Gaussian is motivated by the problem of learning gradients

(Solak et al., 2002; Mukherjee and Zhou, 2006). In many applications, one wants to learn an un-
known real-valued function f (x), x = (x1, . . . ,xd)∈R

d and its gradient function ∇ f = (∂1 f , . . . ,∂d f)
where, for any j ∈ Nd , ∂p f denotes the p-th partial derivative of f . Here the outputs yip denotes
the observation of derivative of p-th derivative at sample xi. Therefore, this problem is an appealing
example of multi-task learning: learn the target function and its gradient function jointly.

To see why this problem is related with the Hessian of Gaussian, we adopt the Gaussian process
(Rasmussen and Williams, 2006) viewpoint of kernel methods. In this perspective, kernels are
interpreted as covariance functions of Gaussian prior probability distributions over suitable sets of
functions. More specifically, the (unknown) target function f is usually assumed as the realizations
of random variables indexed by its input vectors in a zero-mean Gaussian process. The Gaussian
process can be fully specified by giving the covariance matrix for any finite set of zero-mean random

1620

UNIVERSAL MULTI-TASK KERNELS

variables { f (xi) : i ∈ Nm}. The covariance between the functions corresponding to the inputs xi and

x j can be defined by a given Mercer kernel, for example, the Gaussian kernel G(x) = exp(− ‖x‖2

σ)
with σ > 0, that is,

cov(f (xi), f (x j)) = G(xi − x j).

Consequently, the covariance between ∂p f and ∂q f is given by

cov(∂p f (xi),∂q f (x j)) = ∂p∂qcov(f (xi), f (x j)) = −∂p∂qG(xi − x j).

This suggests to us to use the Hessian of Gaussian to model the correlation of gradient function ∇ f
as we present in the following example.

Example 3 We let Y = X = R
n, and, for any x = (xp : p ∈Nn)∈ X , G(x) = exp(− ‖x‖2

σ) with σ > 0.
Then, the Hessian matrix of G given by

K(x, t) := (−(∂p∂qG)(x− t) : p,q ∈ Nn) ∀x, t ∈ X

is a matrix-valued kernel.

To illustrate our final example we let L2(R) be the Hilbert space of square integrable functions
on R with the norm ‖h‖2

L2 :=
R

R
h2(x)dx. Moreover, we denote by W 1(R) the Sobolev space of

order one, which is defined as the space of real-valued functions h on R whose norm

‖h‖W 1 :=
(
‖h‖2

L2 +‖h′‖2
L2

) 1
2

is finite.

Example 4 Let Y = L2(R), X = R and consider the linear space of functions from R to Y which
have finite norm

‖ f‖2 =
Z

R

(
‖ f (x, ·)‖2

W 1 +

∥∥∥∥
∂ f (x, ·)

∂x

∥∥∥∥
2

W 1

)
dx.

Then this is an RKHS with multi-task kernel given, for every x, t ∈ X , by

(K(x, t)y)(r) = e−π|x−t|
Z

R

e−π|r−s|y(s)ds, ∀y ∈ Y , r ∈ R.

This example may be appropriate to learn the heat distribution in a medium if we think of x as time.
Another potential application extends the discussion following Example 1. Specifically, we consider
the case that the input x represents both time and a task (e.g., the profile identifying a customer)
and the output is the regression function associated to that task (e.g., the preference function of a
customer, see Evgeniou et al., 2005, for more information). So, this example may be amenable for
learning the dynamics of the tasks.

Further examples for the case that Y = L2(Rd) will be provided in Section 5. We also postpone
to that section the proof of the claims in Examples 1-4 as well as the discussion about the universality
of the kernels therein.

We end this section with some remarks. It is well known that universality of kernels is a main hy-
pothesis in the proof of the consistency of kernel-based learning algorithms. Universal consistency
of learning algorithms and their error analysis also rely on the capacity of the RKHS. In particular,

1621

CAPONNETTO, MICCHELLI, PONTIL AND YING

following the exact procedure for the scalar case in Cucker and Smale (2001), one sufficient condi-
tion for universal consistency of vector-valued (multi-task) learning algorithms is the compactness
of the unit ball of vector-valued RKHS relative to the space of continuous vector-valued functions.
Another alternate sufficient condition was proved in Caponnetto and De Vito (2006) for the regu-
larized least-squares algorithm over vector-valued RKHS. There, it was assumed that, in addition
to the universality of the kernel, the trace of the operators K(x,x) is finite, for every x ∈ X . Clearly,
both conditions are fulfilled by the multi-task kernels presented above if the output space Y is finite
dimensional, but they become non trivial in the infinite dimensional case. However, it is not clear to
the authors whether either of these two conditions is necessary for universal consistency. We hope
to come back to this problem in the future.

3. Universal Kernels by Features

In this section, we prove that a multi-task kernel is universal if and only if its feature representation
is universal. To explain what we have in mind, we require some additional notation. We let W be
a Hilbert space and L(Y ,W) be the set of all bounded linear operators from Y to W . A feature
representation associated with a multi-task kernel K is a continuous function

Φ : X → L(Y ,W)

such that, for every x, t ∈ X
K(x, t) = Φ∗(x)Φ(t), (7)

where, we recall, for each x ∈ X , Φ∗(x) is the adjoint of Φ(x) and, therefore, it is in L(W ,Y).
Hence, from now on we call W the feature space. In the case that Y = R, the condition that
Φ(x) ∈ L(Y ,W) can be merely viewed as saying that Φ(x) in an element of W . Therefore, at least
in this case we can rewrite Equation (7) as

K(x, t) = (Φ(x),Φ(t))W . (8)

Another example of practical importance corresponds to the choice W = R
k and Y = R

n, both
finite dimensional Euclidean spaces. Here we can identify Φ(x) relative to standard basis of W and
Y with the k×n matrix Φ(x) = (Φrp(x) : r ∈ Nk, p ∈ Nn), where Φrp are scalar-valued continuous
functions on X . Therefore, according to (7) the matrix representation of the multi-task kernel K is,
for each x, t ∈ X ,

(K(x, t))pq = ∑
r∈Nk

Φrp(x)Φrq(t), p,q ∈ Nn.

Returning to the general case, we emphasize that we assume that the kernel K has the representation
in Equation (7), although if it corresponds to a compact integral operator, such a representation will
follow from the spectral theorem and Mercer Theorem (see, e.g., Micchelli et al., 2006).

Associated with a feature representation as described above is the following closed linear sub-
space of C (Z,Y)

CΦ(Z,Y) :=
{

Φ∗(·)w : w ∈ W
}
, (9)

where the closure is taken relative to the norm of C (Z,Y). The continuity of the functions Φ∗(·)w
follows from the assumed continuity of K(·, ·) by

‖Φ∗(x)w−Φ∗(t)w‖2 ≤ ‖Φ∗(x)−Φ∗(t)‖2‖w‖2
W

= ‖(Φ∗(x)−Φ∗(t))(Φ(x)−Φ(t))‖‖w‖2
W

= ‖K(x,x)+K(t, t)−K(x, t)−K(t,x)‖‖w‖2
W .

1622

UNIVERSAL MULTI-TASK KERNELS

Our definition of the phrase “the feature representation is universal” means that CΦ(Z,Y) = C (Z,Y)
for every compact subset Z of the input space X . The theorem below demonstrates, as we men-
tioned above, that the kernel K is universal if and only if its feature representation is universal. The
content of Theorem 4 and of the other results of this Section (Lemmas 5, 6 and Proposition 7) are
graphically represented by the diagram in Table 2

Theorem 4 If K is a continuous multi-task kernel with feature representation Φ, then for every
compact subset Z of X , we have that CK(Z,Y) = CΦ(Z,Y).

Proof The theorem follows straightforwardly from Lemmas 5, 6 and Proposition 7, which we
present below.

As we know, the feature representation of a given kernel is not unique, therefore we conclude by
Theorem 4 that if some feature representation of a multi-task kernel is universal then every feature
representation is universal.

We shall give two different proofs of this general theorem. The first one will use a technique
highlighted in Micchelli and Pontil (2005) and will be given in this section. The second proof will
be given in the next section and uses the notion of vector measure. Both approaches adopt the point
of view of Micchelli et al. (2006), in which Theorem 4 is proved in the special case that Y = R.

We now begin to explain in detail our first proof. We denote the unit ball in Y by B1 := {y :
y ∈ Y ,‖y‖ ≤ 1} and let Z be a prescribed compact subset of X . Recall that B1 is not compact in
the norm topology on Y unless Y is finite dimensional. But it is compact in the weak topology
on Y since Y is a Hilbert space (see, e.g., Yosida, 1980). Remember that a basis for the open
neighborhood of the origin in the weak topology is a set of the form {y : y ∈ Y , |(y,yi)| ≤ 1, i ∈Nm},
where y1, . . . ,ym are arbitrary vectors in Y . We put on B1 the weak topology and conclude, by
Tychonoff’s theorem (see, e.g., Folland, 1999, p.136), that the set Z ×B1 is also compact in the
product topology.

The above observation allows us to associate Y -valued functions defined on Z to scalar-valued
functions defined on Z ×B1. Specifically, we introduce the map ι : C (Z,Y) → C (Z ×B1) which
maps any function f ∈ C (Z,Y) to the function ι(f) ∈ C (Z ×B1) defined by the action

ι(f) : (x,y) 7→ (f (x),y)Y , ∀(x,y) ∈ (Z ×B1). (10)

Consequently, it follows that the map ι is isometric, since

sup
x∈Z

‖ f (x)‖Y = sup
x∈Z

sup
‖y‖≤1

|(f (x),y)Y | = sup
x∈Z

sup
y∈B1

|ι(f)(x,y)|,

where the first equality follows by Cauchy-Schwarz inequality. Moreover, we will denote by
ι(C (Z,Y)) the image of C (Z,Y) under the mapping ι. In particular, this space is a closed lin-
ear subspace of C (Z ×B1) and, hence, a Banach space.

Similarly, to any multi-task kernel K on Z we associate a scalar kernel J on Z×B1 defined, for
every (x,y),(t,u) ∈ X ×B1, as

J((x,y),(t,u)) := (K(x, t)u,y). (11)

Moreover, we denote by CJ(Z×B1) the closure in C (Z×B1) of the set of the sections of the kernel,
{J((x,y),(·, ·)) : (x,y) ∈ Z ×B1}. It is important to realize that whenever K is a valid multi-task
kernel, then J is a valid scalar kernel.

1623

CAPONNETTO, MICCHELLI, PONTIL AND YING

CΨ(Z ×B1) CJ(Z ×B1)

ι
x

xι

CK(Z,Y) CΦ(Z,Y)

Table 2: The top equality is Proposition 7, the bottom equality is Theorem 4 and the left and right
arrows are Lemma 5 and 6, respectively.

The lemma below relates the set CK(Z,Y) to the corresponding set CJ(Z×B1) for the kernel J
on Z ×B1.

Lemma 5 If Z is a compact subset of X and K is a continuous multi-task kernel then ι(CK(Z,Y)) =
CJ(Z ×B1).

Proof The assertion follows by Equation (11) and the continuity of the map ι.

In order to prove Theorem 4, we also need to provide a similar lemma for the set CΦ(Z,Y).
Before we state the lemma, we note that knowing the features of the multi-task kernel K leads us to
the features for the scalar-kernel J associated to K. Specifically, for every (x,y),(t,u) ∈ X ×B1, we
have that

J((x,y),(t,u)) = (Ψ(x,y),Ψ(t,u))W , (12)

where the continuous function Ψ : X ×B1 → W is defined as

Ψ(x,y) = Φ(x)y, x ∈ X ,y ∈ B1.

Thus, Equation (12) parallels Equation (8) except that X is replaced by X ×B1. We also denote by
CΨ(Z ×B1) =

{
(Ψ(·),w)W : w ∈ W

}
, the closed linear subspace of C (Z ×B1).

Lemma 6 If Z is a compact subset of X and K is a continuous multi-task kernel with feature
representation Φ then ι(CΦ(Z,Y)) = CΨ(Z ×B1).

Proof The proof is immediate. Indeed, for each x ∈ X , w ∈ W , y ∈ Y , we have that (Φ∗(x)w,y)Y =
(w,Φ(x)y)W = (Ψ(x,y),w)W .

To complete the proof of Theorem 4, as illustrated in Table 2 it suffices to show that CΨ(Z ×
B1) = CJ(Z ×B1). To this end, we review some facts about signed measures and bounded linear
functionals on continuous functions. Let Ω be any prescribed compact Hausdorff space and C (Ω)
be the space of all real-valued continuous functions with norm ‖ · ‖∞,Ω. We also use the notation
B(Ω) to denote the Borel σ-algebra on Ω. Now, we recall the description of the dual space of
C (Ω). By the Riesz representation theorem, any linear functional L in the dual space of C (Ω) is
uniquely identified as a regular signed Borel measure ν on Ω (see, e.g., Folland 1999), that is,

L(g) =
Z

Ω
g(x)dν(x), ∀g ∈ C (Ω).

1624

UNIVERSAL MULTI-TASK KERNELS

The variation of ν is given, for any E ∈ B(Ω), by

|ν|(E) := sup
{

∑
j∈N

|ν(A j)| : {A j : j ∈ N} pairwise disjoint and ∪ j∈N A j = E
}
.

Moreover, we have that ‖L‖ = ‖ν‖, where ‖ν‖ = |ν|(Ω) and ‖L‖ is the operator norm of L defined
by ‖L‖ = sup‖g‖∞,Ω=1 |L(g)|. Recall that a Borel measure ν is regular if, for any E ∈ B(X),

ν(E) = inf
{

ν(U) : E ⊆U,U open
}

= sup
{

ν(Ū) : Ū ⊆ E,Ū compact
}
.

In particular, every finite Borel measure on Ω is regular, see Folland (1999, p.217). We denote by
M (Ω) the space of all regular signed measures on Ω with total variation norm. We emphasize here
that the Riesz representation theorem stated above requires the compactness of the underlying space
Ω.

As mentioned above, Z ×B1 is compact relative to the weak topology if Z is compact. This
enables us to use the Riesz representation theorem on the underlying space Ω = Z×B1 to show the
following proposition.

Proposition 7 For any compact set Z ⊆ X , and any continuous multi-task kernel K with feature
representation Φ, we have that CΨ(Z ×B1) = CJ(Z ×B1).

Proof For any compact set Z ⊆ X , recall that Z ×B1 is compact if B1 is endowed with the weak
topology of Y . Hence, the result follows by applying Theorem 4 in Micchelli et al. (2006) to the
scalar kernel J on the set Z ×B1 with the feature representation given by Equation (12). However,
for the convenience of the reader we review the steps of the argument used to prove that theorem.
The basic idea is the observation that two closed subspaces of a Banach space are equal if and only if
whenever a continuous linear functional vanishes on either one of the subspaces, it must also vanish
on the other one. This is a consequence of the Hahn-Banach Theorem (see, e.g., Lax, 2002). In the
case at hand, we know by the Riesz Representation Theorem that all continuous linear functionals
L on C (Z×B1) are given by a regular signed Borel measure ν, that is for every F ∈ C (Z×B1), we
have that

L(F) =
Z

Z×B1

F(x,y)dν(x,y).

Now, suppose that L vanishes on CJ(Z ×B1), then we conclude, by (12), that

0 =
Z

Z×B1

Z

Z×B1

(Ψ(x,y),Ψ(t,u))W dν(x,y)dν(t,u).

Also, since K is assumed to be continuous relative to the operator norm and Z is compact we
have that ‖Ψ(x,y)‖2

W = ‖Ψ(x)y‖2
W = (K(x,x)y,y) ≤ supx∈Z ‖K(x,x)‖ < ∞. This together with the

equation
∥∥∥∥

Z

Z×B1

Ψ(x,y)dν(x,y)

∥∥∥∥
W

≤
Z

Z×B1

‖Ψ(x,y)dν(x,y)‖dν(x,y) ≤ sup
x
‖K(x,x)‖|ν|(Z ×B1)

imply that the integrand
R

Z×B1
Ψ(x,y)dν(x,y) exists. Consequently, it follows that

Z

Z×B1

Z

Z×B1

(Ψ(x,y),Ψ(t,u))W dν(x,y)dν(t,u) =

∥∥∥∥
Z

Z×B1

Ψ(x,y)dν(x,y)

∥∥∥∥
2

W
(13)

1625

CAPONNETTO, MICCHELLI, PONTIL AND YING

and, so, we conclude that
Z

Z×B1

Ψ(x,y)dν(x,y) = 0. (14)

The proof of Equation (13) and the interpretation of the W -valued integral appearing in Equation
(14) is explained in detail in Micchelli et al. (2006). So, we conclude that L vanishes on CΨ(Z×B1).

Conversely, if L vanishes on CΨ(Z ×B1) then, for any x ∈ Z,y ∈ B1, we have that

Z

Z×B1

J((x,y),(t,u))dν(t,u) =

(
Ψ(x,y),

Z

Z×B1

Ψ(t,u)ν(t,u)

)
= 0

that is, L vanishes on CJ(Z ×B1).

4. Further Perspectives for Universality

In this section, we provide an alternate proof of Theorem 4 using the notion of vector measure and
also highlight the notion of the annihilator of a set, a useful tool for our examples of multi-task
kernels in Section 5.

At first glance, the reduction of the question of when a multi-task kernel is universal to the
scalar case, as explained in Section 3, seems compelling. However, there are several reasons to
explore alternate approaches to this problem. Firstly, from a practical point of view, if we view
multi-task learning as a scalar problem we may loose the ability to understand cross task interac-
tions. Secondly, only one tool to resolve a problem may limit the possibility of success. Finally,
as we demonstrated in Section 3 universality of multi-task kernels concerns density in the subspace
CJ(Z ×B1), not the full space C (Z ×B1), an issue heretofore not considered. Therefore, we can-
not directly employ the methods of the scalar case as presented in (Micchelli et al., 2003) to the
multi-task case.

As we shall see in this section, the concept of vector measure allows us to directly confront the
set C (Z,Y) rather than following a circuitous path to CJ(Z ×B1). However, the basic principle
which we employ is the same, namely, two closed linear subspaces of a Banach space are equal
if and only if whenever a bounded linear functional vanishes on one of them, it also vanishes on
the other one. Thus, to implement this principle we are led to consider the dual space of C (Z,Y).
We remark, in passing, that this space also arose in the context of the feature space perspective
for learning the kernel, see Micchelli and Pontil (2005a). For a description of the dual space of
C (Z,Y), we need the notion of vector measures and in this regard rely upon the information about
them in Diestel and Uhl, Jr. (1977).

To introduce our first definition, recall that throughout this paper X denotes a Hausdorff space,
Z ⊆ X any compact subset of X and B(Z) the Borel σ-algebra of Z.

Definition 8 A map µ : B(Z) → Y is called a Borel vector measure if µ is countably additive, that
is, µ(∪∞

j=1E j) = ∑∞
j=1 µ(E j) in the norm of Y , for all sequences {E j : j ∈ N} of pairwise disjoint

sets in B(Z)

It is important to note that the definition of vector measure given in Diestel and Uhl, Jr. (1977)
only requires it to be finitely additive. For our purpose here, we only use countably additive mea-
sures and thus do not require the more general setting used in Diestel and Uhl, Jr. (1977).

1626

UNIVERSAL MULTI-TASK KERNELS

For any vector measure µ, the variation of µ is defined, for any E ∈ B(Z), by the equation

|µ|(E) := sup

{
∑
j∈N

‖µ(A j)‖ : {A j : j ∈ N} pairwise disjoint and ∪ j∈N A j = E

}
.

In our terminology we conclude from (Diestel and Uhl, Jr., 1977, p.3) that µ is a vector measure if
and only if the corresponding variation |µ| is a scalar measure as explained in Section 3. Whenever
|µ|(Z) < ∞, we call µ a vector measure of bounded variation on Z. Moreover, we say that a Borel
vector measure µ on Z is regular if its variation measure |µ| is regular as defined in Section 3.
We denote by M (Z,Y) the Banach space of all vector measures with bounded variation and norm
‖µ‖ := |µ|(Z).

For any scalar measure ν ∈ M (Z ×B1), we define a Y -valued function on B(Z), by the equa-
tion

µ(E) :=
Z

E×B1

ydν(x,y), ∀E ∈ B(Z). (15)

Let us confirm that µ is indeed a vector measure. For this purpose, choose any sequence of pairwise
disjoint subsets {E j : j ∈ N} ⊆ B(Z), and observe that

∑
j∈N

‖µ(E j)‖Y ≤ ∑
j∈N

∣∣
Z

E j

Z

B1

dν(x,y)
∣∣≤ |ν|(Z ×B1),

which implies that |µ|(Z) is finite and, hence, µ is a regular vector measure. This observation
suggests that we define, for any f ∈ C (Z,Y), the integral of f relative to µ as

Z

Z
(f (x),dµ(x)) :=

Z

Z

Z

B1

(f (x),y)dν(x,y). (16)

Alternatively, by the standard techniques of measure theory, for any vector measure µ ∈ M (Z,Y)

the integral
Z

Z
(f (x),dµ(x)) is well-defined.

One of our goals below is to show that given any vector measure µ, there corresponds a scalar
measure ν such that Equation (16) still holds. Before doing so, let us point out a useful property
about the integral appearing in the left hand side of Equation (16). Specifically, for any y ∈ Y , we
associate to any µ ∈ M (Z,Y), a scalar measure µy defined, for any E ∈ B(Z), by the equation
µy(E) := (y,µ(E)). Therefore, we conclude, for any f ∈ C (Z), that

Z

Z
(y f (x),dµ(x)) =

Z

Z
f (x)dµy(x).

To prepare for our description of the dual space of C (Z,Y), we introduce, for each f ∈C (Z,Y),
a linear functional Lµ defined by,

Lµ f :=
Z

Z
(f (x),dµ(x)). (17)

Then, we have the following useful lemmas, see the appendix for their proofs.

Lemma 9 If µ ∈ M (Z,Y) then Lµ ∈ C ∗(Z,Y) and ‖Lµ‖ = ‖µ‖.

1627

CAPONNETTO, MICCHELLI, PONTIL AND YING

Lemma 10 (Dinculeanu-Singer) For any compact set Z ⊆ X , the map µ 7→ Lµ is an isomorphism
from M (Z,Y) to C∗(Z,Y).

Lemma 10 is a vector-valued form of the Riesz representation theorem called Dinculeanu-Singer
theorem, (see, e.g., Diestel and Uhl, Jr., 1977, p.182). For completeness, we provide a self-contained
proof in the appendix.

It is interesting to remark that, for any µ ∈ M (Z,Y) we have established in the proof of Lemma
10 that there exists a regular scalar measure ν on Z ×B1 such that

Lµ f =
Z

Z×B1

(f (x),y)dν(x,y).

Since we established the isometry between C ∗(Z,Y) and M (Z,Y), it follows that, for every regular
vector measure there corresponds a scalar measure on Z ×B1 for which Equation (15) holds true.

In order to provide our alternate proof of Theorem 4, we need to attend to one further issue.

Specifically, we need to define the integral
Z

Z
K(t,x)(dµ(x)) as an element in Y . For this purpose,

for any µ ∈ M (Z,Y) and t ∈ Z we define a linear functional Lt on Y at y ∈ Y as

Lty :=
Z

Z
(K(x, t)y,dµ(x)).

Since its norm has the property ‖Lt‖ ≤
(
supx∈Z ‖K(x, t)‖

)
‖µ‖, by the Riesz representation lemma,

we conclude that there exists a unique element ȳ in Y such that
Z

Z
(K(x, t)y,dµ(x)) = (ȳ,y).

It is this vector ȳ which we denote by the integral
Z

Z
K(t,x)(dµ(x)).

Similarly, we define the integral
Z

Z
Φ(x)(dµ(x)) as an element in W . To do this, we note that

‖Φ(x)‖ = ‖Φ∗(x)‖ and ‖Φ∗(x)y‖2 = 〈K(x,x)y,y〉. Hence, we conclude that there exists a constant
κ such that, for all x ∈ X , ‖Φ(x)‖ ≤ ‖K(x,x)‖ 1

2 ≤ κ. Consequently, the linear functional L on W
defined, for any w ∈ W , by

L(w) :=
Z

Z

(
Φ∗(x)w,dµ(x)

)

satisfies the inequality ‖L‖ ≤ κ‖µ‖. Hence, we conclude that there exists a unique element w̄ ∈ W
such that L(w) = (w̄,w) for any w ∈ W . Now, we denote w̄ by

Z

Z
Φ(x)(dµ(x)) which means that

(Z

Z
Φ(x)(dµ(x)),w

)
W

=
Z

Z

(
Φ∗(x)w,dµ(x)

)
. (18)

We have now assembled all the necessary properties of vector measures to provide an alternate
proof of Theorem 4.
Alternate Proof of Theorem 4. We see from the feature representation (7) that

Z

Z
K(t,x)(dµ(x)) =

Z

Z
Φ∗(t)Φ(x)(dµ(x)) = Φ∗(t)

(Z

Z
Φ(x)(dµ(x))

)
, ∀t ∈ Z.

1628

UNIVERSAL MULTI-TASK KERNELS

From this equation, we easily see that if
Z

Z
Φ(x)(dµ(x)) = 0 then, for every t ∈Z,

Z

Z
K(t,x)(dµ(x)) =

0. On the other hand, applying (18) with the choice w =
Z

Z
Φ(x)(dµ(x)) we get

Z

Z

(
Φ∗(t)

Z

Z
Φ(x)(dµ(x)),dµ(t)

)
=
∥∥∥

Z

Z
Φ(x)(dµ(x))

∥∥∥
2

W
.

Therefore, if, for any t ∈ Z,
Z

Z
K(t,x)(dµ(x)) = 0 then

Z

Z
Φ(x)(dµ(x)) = 0, or equivalently, by

Equation (18),
Z

Z
(Φ∗(x)w,dµ(x)) = 0, ∀w ∈ W .

Consequently, a linear functional vanishes on CK(Z,Y) if and only if it vanishes on CΦ(Z,Y) and
thus, we obtained that CK(Z,Y) = CΦ(Z,Y). �

We end this section with a review of our approach to the question of universality of multi-task
kernels. The principal tool we employ is a notion of functional analysis referred to as the annihilator
set. Recall the notion of the annihilator of a set V which is defined by

V ⊥ :=
{

µ ∈ M (Z,Y) :
Z

Z
(v(x),dµ(x)) = 0,∀v ∈ V

}
.

Notice that the annihilator of the closed linear span of V is the same as that of V . Consequently,
by applying the basic principle stated at the beginning of this section , we conclude that the linear
span of V is dense in C (Z,Y), that is, span(V) = C (Z,Y) if and only if the annihilator V ⊥ = {0}.
Hence, applying this observation to the set of kernel sections K(Z) := {K(·,x)y : x ∈ Z, y ∈ Y } or
to the set of its corresponding feature sections Φ(Z) := {Φ∗(·)w : w ∈ W }, we obtain from Lemma
10 and Theorem 4, the summary of our main result.

Theorem 11 Let Z be a compact subset of X , K a continuous multi-task kernel, and Φ its feature
representation. Then, the following statements are equivalent.

1. CK(Z,Y) = C (Z,Y).

2. CΦ(Z,Y) = C (Z,Y).

3. K(Z)⊥ =
{

µ ∈ M (Z,Y) :
R

Z K(t,x)(dµ(x)) = 0, ∀t ∈ Z
}

=
{

0
}

.

4. Φ(Z)⊥ =
{

µ ∈ M (Z,Y) :
R

Z Φ(x)(dµ(x)) = 0
}

=
{

0
}

.

5. Universal Kernels

In this section, we prove the universality of some kernels, based on Theorem 11 developed above.
Specifically, the examples highlighted in Section 2 will be discussed in detail.

Kernel’s universality is a main hypothesis in the proof of consistency of learning algorithms.
Universal consistency of the regularized least-squares algorithm over vector-valued RKHS was
proved in Caponnetto and De Vito (2006); there, it was assumed that, in addition to universality
of the kernel, the trace of the operators K(x,x) is finite. In particular, this extra condition on the
kernel holds, for the Example 1 highlighted in Section 2, when the operators B j are trace class,
and does not hold for Example 4. It is not clear to the authors whether the finite trace condition is
necessary for consistency.

1629

CAPONNETTO, MICCHELLI, PONTIL AND YING

5.1 Product of Scalar Kernels and Operators

Our first example is produced by coupling a scalar kernel with an operator in L+(Y). Given a scalar
kernel G on X and an operator B ∈ L+(Y), we define the function K : X ×X → L(Y) by

K(x, t) = G(x, t)B, ∀x, t ∈ X . (19)

For any {x j ∈X : j ∈Nm} and {y j ∈Y : j ∈Nm}, we know that (G(xi,x j))i, j∈Nm and ((Byi,y j))i, j∈Nm

are positive semi-definite. Applying Schur’s lemma implies that the matrix (G(xi,x j)(Byi,y j))i, j∈Nm

is positive semi-definite and hence, K is positive semi-definite. Moreover, K∗(x, t) = K(x, t) =
K(t,x) for any x, t ∈ X . Therefore, we conclude by Definition 1 that K is a multi-task kernel.

Our goal below is to use the feature representation of the scalar kernel G to introduce the corre-
sponding one for kernel K. To this end, we first let W be a Hilbert space and φ : X → W a feature
map of the scalar kernel G, so that

G(x, t) = (φ(x),φ(t))W , ∀x, t ∈ X .

Then, we introduce the tensor vector space W
N

Y . Algebraically, this vector space is spanned by
elements of the form w⊗y with w ∈ W , y ∈ Y . For any w1⊗y1,w2⊗y2 ∈ W

N

Y and c ∈R, there
holds the multi-linear relation

cw⊗ y = w⊗ cy = c(w⊗ y), (w1 +w2)⊗ y = w1 ⊗ y+w2 ⊗ y,

and
w⊗ (y1 + y2) = w⊗ y1 +w⊗ y2.

We can turn the tensor space into an inner product space by defining, for any w1 ⊗ y1,w2 ⊗ y2 ∈
W

N

Y ,
〈w1 ⊗ y1,w2 ⊗ y2〉 = (w1,w2)W (y1,y2)Y

and extending by linearity. Finally, taking the completion under this inner product, the vector space
W

N

Y becomes a Hilbert space. Furthermore, if W and Y have orthonormal bases {wi : i ∈ N}
and {yi : i ∈ N} respectively, then W

N

Y is exactly the Hilbert space spanned by the orthonormal
basis {wi ⊗ y j : i, j ∈ N} under the inner product defined above. For instance, if W = R

k and
Y = R

n, then W
N

Y = R
kn.

The above tensor product suggests that we define the map Φ : X → L(Y ,W ⊗Y) of kernel K
by

Φ(x)y := φ(x)⊗
√

By, ∀x ∈ X , y ∈ Y ,

and it follows that Φ∗ : X → L(W ⊗Y ,Y) is given by

Φ∗(x)(w⊗ y) := (φ(x),w)W
√

By, ∀x ∈ X ,w ∈ W , and y ∈ Y . (20)

From the above observation, it is easy to check, for any x, t ∈ X and y,u ∈ Y , that (K(x, t)y,u) =
〈Φ(x)y,Φ(t)u〉. Therefore, we conclude that Φ is a feature map for the multi-task kernel K.

Finally, we say that an operator B ∈ L+(Y) is positive definite if (By,y) is positive whenever y
is nonzero. We are now ready to present the result on universality of kernel K.

Theorem 12 Let G : X ×X → R be a continuous scalar kernel, B ∈ L+(Y) and K be defined by
Equation (19). Then, K is a multi-task universal kernel if and only if the scalar kernel G is universal
and the operator B is positive definite.

1630

UNIVERSAL MULTI-TASK KERNELS

Proof By Theorem 11 and the feature representation (20), we only need to show that Φ(Z)⊥ = {0}
if and only if G is universal and the operator B is positive definite.

We begin with the sufficiency. Suppose that there exists a nonzero vector measure µ such that,
for any w⊗ y ∈ W ⊗Y , there holds

Z

Z
(Φ∗(x)(w⊗ y),dµ(x)) =

Z

Z
(φ(x),w)W (

√
By,dµ(x)) = 0. (21)

Here, with a little abuse of notation we interpret, for a fixed y ∈ Y , (
√

By,dµ(x)) as a scalar measure
defined, for any E ∈ B(Z), by

Z

E
(
√

By,dµ(x)) = (
√

By,µ(E)).

Since µ ∈ M (Z,Y), (
√

By,dµ(x)) is a regular signed scalar measure. Therefore, we see from (21)
that (

√
By,dµ(x))∈ φ(Z)⊥ for any y∈Y . Remember that G is universal if and only if φ(Z)⊥ = {0},

and thus we conclude from (21) that (
√

By,dµ(x)) = 0 for any y∈Y . It follows that (
√

By,µ(E)) = 0
for any y ∈ Y and E ∈ B(Z). Thus, for any fixed set E taking the choice y =

√
Bµ(E) implies

that (Bµ(E),µ(E)) = 0. Since E is arbitrary, this means µ = 0 and thus finishes the proof for the
sufficiency.

To prove the necessity, suppose first that G is not universal and hence, we know that, for some
compact subset Z of X , there exists a nonzero scalar measure ν ∈ M (Z) such that ν ∈ φ(Z)⊥, that

is,
Z

Z
(φ(x),w)dν(x) = 0 for any w ∈ W . This suggests to us to choose, for a nonzero y0 ∈ Y , the

nonzero vector measure µ = y0ν defined by µ(E) := y0ν(E) for any E ∈ B(Z). Hence, the integral
in Equation (21) equals

Z

Z
(Φ∗(x)(w⊗ y),dµ(x)) = (

√
By,y0)

Z

Z
(φ(x),w)W dν(x) = 0.

Therefore, we conclude that there exists a nonzero vector measure µ ∈ Φ(Z)⊥, which implies that
K is not universal.

If B is not positive definite, namely, there exists a nonzero element y1 ∈ Y such that (By1,y1) =
0. However, we observe that ‖

√
By1‖2 = (By1,y1) which implies that

√
By1 = 0. This suggests to

us to choose a nonzero vector measure µ = y1ν with some nonzero scalar measure ν. Therefore, we
conclude, for any w ∈ W and y ∈ Y , that

Z

Z
(Φ∗(x)(w⊗ y),dµ(x)) = (

√
By,y1)

Z

Z
(φ(x),w)W dν(x)

= (y,
√

By1)
Z

Z
(φ(x),w)W dν(x) = 0,

which implies that the nonzero vector measure µ∈Φ(Z)⊥. This finishes the proof of the theorem.

In the special case Y = R
n, the operator B is an n× n positive semi-definite matrix. Then,

Theorem 12 tells us that the matrix-valued kernel K(x, t) := G(x, t)B is universal if and only if G is
universal and the matrix B is of full rank.

1631

CAPONNETTO, MICCHELLI, PONTIL AND YING

We now proceed further and consider kernels produced by a finite combination of scalar kernels
and operators. Specifically, we consider, for any j ∈ Nm, that G j : X ×X → R be a scalar kernel
and B j ∈ L+(Y). We are interested in the kernel defined, for any x, t ∈ X , by

K(x, t) := ∑
j∈Nm

G j(x, t)B j.

Suppose also, for each scalar kernel G j, that there exists a Hilbert feature space W j and a feature
map φ j : X → W j.

To explain the associated feature map of kernel K, we need to define its feature space. For this
purpose, let H j be a Hilbert space with inner products (·, ·) j for j ∈ Nm and we introduce the direct
sum Hilbert space ⊕ j∈NmH j as follows. The elements in this space are of the form (h1, . . . ,hm) with
h j ∈ H j, and its inner product is defined, for any (h1, . . . ,hm),(h′1, . . . ,h

′
m) ∈ ⊕ j∈NmH j, by

〈(h1, . . . ,hm),(h′1, . . . ,h
′
m)〉 := ∑

j∈Nm

(h j,h
′
j) j.

This observation suggests to us to define the feature space of kernel K by the direct sum Hilbert
space W := ⊕ j∈Nm(W j ⊗Y), and its the map Φ : X → L(Y ,W), for any x ∈ X and y ∈ Y , by

Φ(x)y := (φ1(x)⊗
√

B1 y, . . . ,φm(x)⊗
√

Bm y). (22)

Hence, its adjoint operator Φ∗ : X → L(⊕ j∈Nm(W j ⊗Y),Y) is given, for any (w1 ⊗ y1, . . . ,wm ⊗
ym) ∈ ⊕ j∈Nm(W j ⊗Y), by

Φ∗(x)((w1 ⊗ y1, . . . ,wm ⊗ ym)) := ∑
j∈Nm

(φ j(x),w j)W j

√
B j y j.

Using the above observation, it is easy to see that, for any x, t ∈ X , K(x, t) = Φ∗(x)Φ(t). Thus K is
a multi-task kernel and Φ is a feature map of K.

We are now in a position to state the result about the universality of the kernel K.

Theorem 13 Suppose that G j : X × X → R is a continuous scalar universal kernel, and B j ∈
L+(Y) for j ∈ Nm. Then, K(x, t) := ∑ j∈Nm

G j(x, t)B j is universal if and only if ∑ j∈Nm
B j is pos-

itive definite.

Proof Following Theorem 11, we need to prove that Φ(Z)⊥ = {0} for any compact set Z if and
only if ∑ j∈Nm

B j is positive definite. To see this, observe that µ ∈ Φ(Z)⊥ implies, for any (w1 ⊗
y1, . . . ,wm ⊗ ym) ∈ ⊕ j∈Nm(W j ⊗Y), that

Z

Z
∑

j∈Nm

(φ j(x),w j)W j
(
√

B j y j,dµ(x)) = 0.

Since w j ∈ W j is arbitrary, the above equation is equivalent to
Z

Z
(φ j(x),w j)W j

(
√

B j y j,dµ(x)) = 0, ∀w j ∈ W j,y j ∈ Y and j ∈ Nm, (23)

which implies that (
√

B j y j,dµ(x)) ∈ φ(Z)⊥ for any j ∈ Nm. Recall that G j is universal if and only
if φ(Z)⊥ = {0}. Therefore, Equation (23) holds true if and only if

(µ(E),
√

B j y j) = (
√

B jµ(E),y j) = 0, ∀E ∈ B(Z), y j ∈ Y , j ∈ Nm. (24)

1632

UNIVERSAL MULTI-TASK KERNELS

To move on to the next step, we will show that Equation (24) is true if and only if

(µ(E),B jµ(E)) = 0, ∀E ∈ B(Z), j ∈ Nm. (25)

To see this, we observe, for any j ∈ Nm, that ‖
√

B jµ(E)‖2 = (µ(E),B jµ(E)). Hence, Equation (25)
implies Equation (24). Conversely, applying Equation (24) with the choice y j = µ(E) directly yields
Equation (25).

Moreover, we know, for any y ∈ Y and j ∈Nm, that (B jy,y) is nonnegative. Therefore, Equation
(25) is equivalent to that

(
(∑

j∈Nm

B j)µ(E),µ(E)
)

= 0, ∀E ∈ B(Z). (26)

Therefore, we conclude that µ ∈ Φ(Z)⊥ if and only if the above equation holds true.
Obviously, by Equation (26), we see that if ∑ j∈Nm

B j is positive definite then µ = 0. This means
that kernel K is universal. Suppose that ∑ j∈Nm

B j is not positive definite, that is, there exists a

nonzero y0 ∈ Y such that ‖
(
∑ j∈Nm

B j
) 1

2 y0‖2 :=
(
(∑ j∈Nm

B j)y0,y0
)
= 0. Hence, choosing a nonzero

vector measure µ := y0ν, with ν a nonzero scalar measure, implies that Equation (26) holds true
and, thus kernel K is not universal. This finishes the proof of the theorem.

Now we are in a position to analyze Examples 1 and 4 given in the Section 2. Since the function
K considered in Example 1 is in the form of (22), we conclude that it is a multi-task kernel.

We now discuss a class of kernels which includes that presented in Example 4. To this end,
we use the notation Z+ = {0} ∪ N and, for any smooth function f : R

m → R and index α =

(α1, . . . ,αm) ∈ Z
m
+, we denote the α-th partial derivative by ∂α f (x) := ∂|α| f (x)

∂α1 x1...∂αm xm
. Then, recall

that the Sobolev space W k with integer order k is the space of real valued functions with norm
defined by

‖ f‖2
W k := ∑

|α|≤k

Z

Rm
|∂α f (x)|2dx, (27)

where |α| = ∑ j∈Nm
α j, see Stein (1970). This space can be extended to any fractional index s > 0.

To see this, we need the Fourier transform defined, for any f ∈ L1(Rm), as

f̂ (ξ) :=
Z

Rm
e−2πi〈x,ξ〉 f (x)dx, ∀ξ ∈ R

m,

see Stein (1970). It has a natural extension to L2(Rm) satisfying the Plancherel formula ‖ f‖L2(Rm) =

‖ f̂‖L2(Rm). In particular, we observe, for any α = (α1, . . . ,αm) ∈ Z
m
+ and ξ = (ξ1, . . . ,ξm) ∈ R

m, that

∂̂α f (ξ) = f̂ (ξ)(2πiξ1)
α1 . . .(2πiξm)αm . Hence, by Plancherel formula, we see, for any f ∈W k with

k ∈ N, that its norm ‖ f‖W k is equivalent to

(Z

Rm
(1+4π‖ξ‖2)k| f̂ (ξ)|2dξ

) 1
2
.

This observation suggests to us to introduce fractional Sobolev space W s (see, e.g., Stein, 1970)
with any order s > 0 with norm defined, for any function f , by

‖ f‖2
W s :=

Z

Rm
(1+4π2‖ξ‖2)s| f̂ (ξ)|2dξ.

1633

CAPONNETTO, MICCHELLI, PONTIL AND YING

Finally, we need the Sobolev embedding lemma which states that, for any s > m
2 , there exists an

absolute constant c such that, for any f ∈W s and any x ∈ R
m, there holds

| f (x)| ≤ c‖ f‖W s ,

(see, e.g., Folland, 1999; Stein, 1970).
The next result extends Example 4 to multivariate functions.

Proposition 14 Let Y = L2(Rd), X = R and H be the space of real-valued functions with norm

‖ f‖2 :=
Z

R

[∥∥∥ f (x, ·)
∥∥∥

2

W
d+1

2
+
∥∥∥∂ f

∂x
(x, ·)

∥∥∥
2

W
d+1

2

]
dx.

Then this is an RKHS with universal multi-task kernel given, for every x, t ∈ X by

(K(x, t)y)(r) = e−π|x−t|
Z

Rd
e−π‖r−s‖y(s)ds, ∀y ∈ Y , r ∈ R

d . (28)

Proof For any fixed t ∈ R
d , it follows from the Sobolev embedding lemma that

| f (x, t)| ≤ c‖ f (·, t)‖W 1 .

Combining this with the definition of Sobolev space W 1 given by Equation (27), we have that

‖ f (x)‖2
Y ≤ c2

Z

Rd
‖ f (·, t)‖2

W 1dt

= c2
Z

Rd

(Z

R

∣∣ f (x, t)
∣∣2 +

∣∣∂ f
∂x

(x, t)
∣∣2dt

)
dx ≤ c2‖ f‖2.

Since, for any y ∈ B1 and x ∈ R, |(y, f (x))Y | ≤ ‖y‖Y ‖ f (x)‖Y ≤ ‖ f (x)‖Y , by the above equation
there exists a constant c′ such that, for any y ∈ B1,x ∈ R and f ∈ H ,

|(y, f (x))Y | ≤ c′‖ f‖.

Hence, by the Riesz representation lemma, H is an RKHS (Micchelli and Pontil, 2005).
Next, we confirm Equation (28) is the kernel associated to H . To this end, it suffices to show

that the reproducing property holds, that is, for any f ∈ H , y ∈ Y and x ∈ X

(y, f (x))Y = 〈Kxy, f 〉, (29)

where 〈·, ·〉 denotes the inner product in H .
By the Plancherel formula, we observe that the left-hand side of Equation (29) equals

Z

Rd
ŷ(τ)

[Z

R

e2πi〈x,ξ〉 f̂ (ξ,τ)dξ
]
dτ =

Z

Rd

Z

R

ŷ(τ)e−2πi〈x,ξ〉 f̂ (ξ,τ)dξdτ.

On the other hand, note that Kxy(x′) := K(x′,x)y ∈ Y , and consider its Fourier transform

(K̂(·,x)y)(ξ,τ) =
Z

Rd

Z

R

e−2πi〈x′,ξ〉e−2πi〈r,τ〉(K(x′,x)y)(r)drdx′.

1634

UNIVERSAL MULTI-TASK KERNELS

Using Equation (28) and the Plancherel formula, the integral on the right hand of the above equation
is equal to

e−2πi〈x,ξ〉

(1+4π2|ξ|2)
ŷ(τ)

(1+4π2‖τ‖2)
d+1

2

. (30)

However, the right-hand side of Equation (29) is identical to
Z

Rd

Z

R

(K̂(·,x)y)(ξ,τ) f̂ (ξ,τ)(1+4π2|ξ|2)(1+4π2‖τ‖2)
d+1

2 dτdξ.

Putting (30) into the above equation, we immediately know that the reproducing property (29) holds
true. This verifies that K is the reproducing kernel of the Hilbert space H .

To prove the universality of this kernel, let Z be any prescribed compact subset of X , we define
the Laplace kernel, for any x, t ∈ R, by G(x, t) := e−|x−t| and the operator B : L2(Rd) → L2(Rd) by

Bg(r) :=
Z

Rd
e−‖r−s‖g(s)ds, ∀ r ∈ R

d .

Then, K(x, t) = e−|x−t|B and moreover

B̂g(τ) = cd
ĝ(τ)

(1+4π2‖τ‖2)
d+1

2

. (31)

By Theorem 12, it now suffices to prove that G is universal and B is positive definite. To this
end, note that there exists cd such that

G(x, t) = cd

Z

R

e−2πi〈x−t,ξ〉

1+4π2|ξ|2 dξ.

Since the weight function 1
1+4π2|ξ|2 is positive, G is universal according to Micchelli et al. (2003).

To show the positive definiteness of B, we obtain from Equation (31) and the Plancherel formula
that

(Bg,g) = cd

Z

Rd

|ĝ(τ)|2dτ
(1+4π2‖τ‖2)

d+1
2

.

From this observation, the assertion follows.

We now discuss continuous parameterized multi-task kernels. For this purpose, let Ω be a locally
compact Hausdorff space and, for any ω ∈ Ω, B(ω) be an n× n positive semi-definite matrix. We
are interested in the kernel of the following form

K(x, t) =
Z

Ω
G(ω)(x, t)B(ω)d p(ω), ∀x, t ∈ X , (32)

where p is a measure on Ω. We investigate this kernel in the case that, for any ω ∈ Ω, G(ω) is
a scalar kernel with a feature representation given, for any x, t ∈ X , by the formula G(ω)(x, t) =

〈φω(x),φω(t)〉W . Now, we introduce the Hilbert space W̃ = L2(Ω,W ⊗Y , p) with norm defined,
for any f : Ω → W ⊗Y , by

‖ f‖2
W̃

:=
Z

Ω
‖ f (ω)‖2

W⊗Y d p(ω).

1635

CAPONNETTO, MICCHELLI, PONTIL AND YING

Next, we define a map Φ : X → L(Y ,L2(Ω,W ⊗Y , p)), for any x ∈ X and ω ∈ Ω, by

Φ(x)y(ω) := φω(x)⊗ (
√

B(ω)y).

By an argument similar to that used just before Theorem 13, we conclude that K is a multi-task

kernel and has the feature map Φ with feature space W̃ .
We are ready to present a sufficient condition on the universality of K.

Theorem 15 Let p be a measure on Ω and for every ω in the support of p, let G(ω) be a continuous
universal kernel and B(ω) a positive definite operator. Then, the multi-task kernel K defined by
Equation (32) is universal.

Proof Following Theorem 11, for a compact set Z ⊆ X suppose that there exists a vector measure
µ such that

Z

Z
φω(x)⊗

√
B(ω)(dµ(x)) = 0.

Therefore, there exists a ω0 ∈ support(p) satisfying
R

Z φω0(x)⊗
√

B(ω0)
(
dµ(x)

)
= 0. Equivalently,

R

Z φω0(x)
(√

B(ω0)dµ(x),y
)

= 0 for any y ∈ Y . Since we assume G(ω0) is universal, appealing to
the feature characterization in the scalar case (Micchelli et al., 2006) implies that the scalar measure
(
√

B(ω0)dµ(x),y) = 0. Consequently, we obtain that µ ≡ 0 since y ∈ Y is arbitrary. This completes
the proof of this theorem.

Next we offer a concrete example of the above theorem.

Example 5 Suppose the measure p over [0,∞) does not concentrate on zero and B(ω) be a positive
definite n× n matrix for each ω ∈ (0,∞). Then the kernel K(x, t) =

R ∞
0 e−ω‖x−t‖2

B(ω)d p(ω) is a
multi-task universal kernel.

Further specializing this example, we choose the measure p to be the Lebesgue measure on
[0,∞) and choose B(ω) in the following manner. Let A be n× n symmetric matrices. For every
ω > 0, we define the (i, j)-th entry of the matrix B(ω) as e−ωAi j , i, j ∈ Nn. Recall that a matrix A is
conditionally negative semi-definite if, for any ci ∈ R, i ∈ Nn with ∑i∈Nn

ci = 0, then the quadratic
form satisfies ∑i, j∈Nn

ciAi jc j ≤ 0. A well-known theorem of I. J. Schoenberg (see, e.g., Micchelli,
1986) state that B(ω) is positive semi-definite for all ω > 0 if and only if A is conditionally negative
semi-definite. Moreover, if the elements of the conditionally negative semi-definite matrix A satisfy,
for any i, j ∈ Nn, the inequalities Ai j > 1

2(Aii + A j j) and Aii > 0, then B(ω) is positive definite
(Micchelli, 1986). With this choice of A, the universal kernel in Example 5 becomes

(
K(x, t)

)
i j

=
1

‖x− t‖2 +Ai j
, ∀i, j ∈ Nn.

5.2 Transformation Kernels

In this subsection we explore matrix-valued kernels produced by transforming scalar kernels. To
introduce this type of kernels, let Y = R

n , X̃ be a Hausdorff space and Tp be a map from X to

1636

UNIVERSAL MULTI-TASK KERNELS

X̃ (not necessary linear) for p ∈ Nn. Then, given a continuous scalar kernel G : X̃ × X̃ → R, we
consider the matrix-valued kernel on X defined by

K(x, t) :=
(

G(Tpx,Tqt)
)n

p,q=1
, ∀x, t ∈ X . (33)

Proposition 16 Let G be a scalar kernel and K be defined by (33). Then, K is a matrix-valued
kernel.

Proof For any m ∈ N, {yi : yi ∈ R
n, i ∈ Nm} and {xi : xi ∈ X̃ , i ∈ Nm} then

∑
i, j∈Nm

(yi,K(xi,x j)y j) = ∑
p,i

∑
q, j

ypiyq jG(Tpxi,Tqx j).

Since G is a scalar reproducing kernel on Z, the last term of the above equality is nonnegative, and
hence K is positive semi-definite matrix-valued kernel. This completes the proof of the assertion.

We turn our attention to the characterization of the universality of K defined by Equation (33).
To this end, we assume that the scalar kernel G has a feature map φ : X̃ → W and define the
mapping Φ(x) : R

n → W , for any y = (y1, . . . ,yn) ∈ R
n, by Φ(x)y = ∑p∈Nn

ypφ(Tpx). Its adjoint
operator Φ(x)∗ : W → R

n is given, for any w ∈ W , as Φ∗(x)w = (〈φ(T1x),w〉W , . . . ,〈φ(Tnx),w〉W).
Then, for any x, t ∈ X , the kernel K(x, t) = Φ∗(x)Φ(t) and thus, we conclude that W is the feature
space of K and Φ is its feature map.

We also need some further notation and definitions. For a map T : X → X̃ , we denote its range
space by T X := {T x : x ∈ X } and T−1(E) := {x : T x ∈ E} for any E ⊂ X̃ . In addition, we say that
T is continuous if T−1(U) is open whenever U is a open set in X̃ . Finally, for any scalar Borel
measure ν on X and a continuous map T from X to X̃ , we introduce the image measure ν◦T−1 on
X̃ defined, for any E ∈ B(X̃), by (ν◦T−1)(E) := ν({x ∈ X : T x ∈ E}).

We are ready to state the result about universality of the kernel K in Equation (33).

Proposition 17 Let G be a scalar universal kernel, Tp : X → X̃ be continuous for each p ∈ Nn and
define the kernel K by Equation (33). Then K is universal if and only the sets TqX , q ∈ Nn, are
pairwise disjoint and Tq is one-to-one for each q ∈ Nn.

Proof Following Theorem 11, for any compact set Z ⊆ X , it suffices to verify the equation
Φ(Z)⊥ = {0}. Before doing so, we recall that, by Lemma 10 and the remark which followed
it, for any vector measure µ ∈ M (Z,Rn), there exists a scalar regular measure ν ∈ M (Z×B1) such
that

dµ(t) =
(Z

B1

y1dν(t,y), . . . ,
Z

B1

yndν(t,y)
)
.

Hence, any vector measure µ can be represented as µ = (µ1, . . . ,µn) where each µi is a scalar measure.
Then, µ ∈ Φ(Z)⊥ can be rewritten as

∑
q∈Nn

Z

Z
φ(Tqt)dµq(t) = 0.

Equivalently, if Z̃ := ∪q∈NnTqZ we conclude that
Z

Z̃
φ(z)d

(
∑

q∈Nn

µq ◦T−1
q

)
(z) = 0.

1637

CAPONNETTO, MICCHELLI, PONTIL AND YING

Since Tq is continuous for any q ∈ Nn, the range space TqZ is compact and so is Z̃. Recall from
Micchelli et al. (2006) that the scalar kernel G is universal on Z̃ if and only if its feature map φ is
universal on Z̃ . Therefore, the above equation is reduced to the form

∑
q∈Nn

µq ◦T−1
q = 0.

Consequently, we conclude that K is universal if and only if

{
(µ1, . . . ,µn) : ∑

q∈Nn

µq ◦T−1
q = 0

}
=
{

0
}
. (34)

With the above derivation, we can now prove the necessity. Suppose that {TqX : q ∈ Nn} is not
pairwise disjoint. Without loss of generality, we assume that T1X ∩T2X 6= /0. That means there exists
x1,x2 ∈ X such that T1x1 = T2x2 = z0. Let µq ≡ 0 for q ≥ 3, and denote by δx=x′ the point distribution
at x′ ∈ X . Then, choosing µ1 = δx=x1 , and µ2 = −δx=x2 implies that Equation (34) holds true. By
Theorem 11 in Section 4, we know that K is not universal. This completes the first assertion.

Now suppose that there is a map, for example Tp, which is not one-to-one. This implies that
there exists x1,x2 ∈ X , x1 6= x2, such that Tpx1 = Tpx2. Hence, if we let µq = 0 for any q 6= p and
µp = δx=x1 −δx=x2 then ∑q∈Nn

µq ◦T−1
q = 0,. But µp 6= 0, hence, by Theorem 11, K is not universal.

This completes the our assertion.
Finally, we prove the sufficiency. Since µq ◦ T−1

q only lives on TqX and {TqX : q ∈ Nn} is
pairwise disjoint, then ∑q∈Nn

µq ◦ T−1
q = 0 is equivalent to µq ◦ T−1

q = 0 for each q ∈ Nn. How-
ever, since Tq is one-to-one, E = T−1

q (Tq(E)) for each Borel set E ∈ B(X). This means that
µq(E) = µq ◦T−1

q (Tq(E)) = 0 for any E ∈ B(X). This concludes the proof of the proposition.

We end this subsection with detailed proofs of our claims about the examples presented in
Section 2. Indeed, we already proved the positive semi-definiteness of the kernel in Example 2 by
Proposition 16. Below, we prove the claim that the function K given by Equation (6) is not a kernel
in general.

Proposition 18 Let σpq > 0 and σpq = σqp for any p,q ∈ Nn. Then, the matrix-valued function
defined by

K(x, t) :=
(

e−σpq‖x−y‖2
)n

p,q=1
, ∀x, t ∈ X

is a multi-task kernel if and only if for some constant σ, σpq = σ for any p,q ∈ Nn.

Proof When
(
σpq
)n

p,q=1 is a constant matrix then K is positive semi-definite. Conversely, suppose
K is a multi-task kernel which means, for any m∈N and xi ∈X with i∈Nm, that the double-indexed
nm×nm matrix (

G((i, p),(j,q)) = e−σpq‖xi−x j‖2
)

(i,p),(j,q)∈Nm×Nn

(35)

is positive semi-definite.
We choose any distinct positive integers p0 and q0. In Equation (35), we specify any m,n with

m ≥ n such that p0,q0 ∈ Nm, x1, . . . ,xn with xp0 6= xq0 and set c = ‖xp0 − xq0‖2. Therefore, we

1638

UNIVERSAL MULTI-TASK KERNELS

conclude that the matrix

1 1 exp{−cσp0 p0} exp{−cσp0q0}
1 1 exp{−cσq0 p0} exp{−cσq0q0}

exp{−cσp0 p0} exp{−cσp0q0} 1 1

exp{−cσq0 p0} exp{−cσq0q0} 1 1

is positive semi-definite. Consequently, the determinant of its 3× 3 sub-matrix in the upper right
hand corner, which equals −

[
exp{−cσp0 p0}−exp{−cσq0 p0}

]2
, is nonnegative. Therefore, we con-

clude that σp0 p0 = σq0 p0 .

5.3 Hessian of Gaussian Kernels

In this subsection we consider the universal example of the Hessian of scalar Gaussian kernels
(Example 3 in Section 2). To introduce this type of kernels, we let X = Y = R

n and G be a
Gaussian kernel with deviation σ, that is, for any x ∈ R

n, G(x) = e−‖x‖2/σ with σ > 0. Then, the
Hessian matrix of the kernel G is

K(x, t) :=
(
− (∂p∂qG)(x− t)

)n

p,q=1
∀x, t ∈ R

n. (36)

and so alternatively, K has the form

K(x, t) = 4π
(
2πσ

)n/2
Z

Rn
e2πi〈x−t,ξ〉ξξT e−σ‖ξ‖2

dξ. (37)

Corollary 19 Let n ≥ 1 and K : R
n ×R

n → R
n×n be defined by (36). Then, K is a matrix-valued

kernel which is universal if and only if n = 1.

Proof The fact that K is positive semi-definite directly follows from the observation, for any m ∈N,
{yi : yi ∈ R

n, i ∈ Nm} and {xi : xi ∈ X , i ∈ Nm}, that

∑
i, j,∈Nm

(yi,K(xi,x j)y j) = 4π
(
2πσ

)n/2
Z

Rn

∣∣∣∣∣ ∑
i∈Nm

〈yi,ξ〉e2πi〈xi,ξ〉
∣∣∣∣∣

2

e−σ‖ξ‖2
dξ.

In order to prove the universality of K, we follow Theorem 11. For this purpose, we assume that
Z is a compact subset of X and µ ∈ K (Z)⊥, that is,

Z

Z
K(x, t)(dµ(t)) = 0 ∀x ∈ Z. (38)

By Equation (37), this equation is equivalent to
Z

Rn
e2πi〈x,ξ〉ξe−σ‖ξ‖2

Z

Z
e−2πi〈t,ξ〉(ξ,dµ(t))dξ = 0, ∀x ∈ Z,

which implies, by integrating both sides of this equation with respect to x ∈ R
n, that

Z

Rn
e−σ‖ξ‖2

∣∣∣∣
Z

Z
e−2πi〈t,ξ〉(ξ,dµ(t))

∣∣∣∣
2

dξ = 0.

1639

CAPONNETTO, MICCHELLI, PONTIL AND YING

Consequently, Equation (38) is identical to the equation

Z

Z
e−2πi〈t,ξ〉(ξ,dµ(t)) = 0, ∀ξ ∈ R

n.

If n = 1, the above equation means that

Z

Z
e−2πitξdµ(t) = 0, ∀ξ ∈ R.

Taking the k-th derivative with respect to ξ of both sides of this equation and set ξ = 0, we have, for
every k ∈ N, that

Z

Z
tkdµ(t) = 0.

Since polynomials are dense in C (Z), we conclude from the above equation that µ = 0. Hence, by
Theorem 11, the kernel K is universal when n = 1.

If n ≥ 2, we choose µq = 0 for q ≥ 3 and dµ1(t) = dt1(δt2=1 −δt2=−1)∏n
p=3 δtp=0 and dµ2(t) =

(δt1=−1 −δt1=1)dt2 ∏n
p=3 δtp=0, and note that

Z

[−1,1]n
e−2πi〈t,ξ〉dµ1(t) = (−2πisin(2πξ2))

sin(2πξ1)

πξ1
,

and
Z

[−1,1]n
e−2πi〈t,ξ〉dµ2(t) = (2πisin(2πξ1))

sin(2πξ2)

πξ2
.

Therefore, we conclude that

Z

[−1,1]n
e−2πi〈t,ξ〉(ξ,dµ(t)) = ξ1

Z

[−1,1]n
e−2πi〈t,ξ〉dµ1(t)+ξ2

Z

[−1,1]n
e−2πi〈t,ξ〉dµ2(t) = 0.

Hence, the kernel K is not universal when n ≥ 2.

5.4 Projection Kernels

In the final subsection we introduce a class of multi-task kernels associated with projection operators
of scalar kernels.

We start with some notation and definitions. Let X ⊆ R
d , Ω ⊆ R

m be a compact set and
Y = L2(Ω). We also need a continuous scalar kernel G : (X ×Ω)× (X ×Ω) :→ R with a fea-
ture representation given, for any x,x′ ∈ X and t,s ∈ Ω, by

G((x, t),(x′,s)) = 〈φ(x, t),φ(x′,s)〉W . (39)

Then, the projection kernel K : X ×X → L(Y ,Y) is defined, for any f ∈ L2(Ω), by

(K(x,x′) f)(t) :=
Z

Ω
G((x, t),(x′,s)) f (s)ds, ∀ x,x′ ∈ X , t ∈ R. (40)

1640

UNIVERSAL MULTI-TASK KERNELS

We first show that K is a multi-task kernel. To see this, for any m ∈ N, {xi : xi ∈ X , i ∈ Nm}, and
{yi : yi ∈ L2(Ω), i ∈ Nm} there holds

∑i, j∈Nm
(K(xi,x j)y j,yi) = ∑i, j∈Nm

Z

Ω

Z

Ω
G((xi, t),(x j,s))y j(s)yi(t)dtds

= ∑i∈Nm

∥∥∥∥
Z

Ω
φ(xi,s)yi(s)ds

∥∥∥∥
2

≥ 0,

which implies that K is a kernel.
To investigate its universality from the feature perspective, we define the mapping Φ : X →

L(Y ,W), for any x ∈ X and y ∈ Y , by

Φ(x)y :=
Z

Ω
φ(x,s)y(s)ds,

and also its adjoint operator Φ∗ is given, for any w ∈ W , by Φ∗(x)w = 〈φ(x, ·),w〉W . Hence, for any
x,x′ ∈ X , we conclude that K(x,x′) = Φ∗(x)Φ(x′) which implies that K is a multi-task kernel and Φ
is its associated feature map.

Our next goal is to prove the universality of K.

Theorem 20 Let G and K be defined as in Equations (39) and (40). If G is a universal scalar kernel
then K is a universal multi-task kernel.

Proof By Theorem 11, it suffices to show that, for any compact Z ⊆ X , whenever there exists a
vector measure µ such that

Z

Z
Φ(x)(dµ(x)) = 0,

then µ = 0. Note that µ is an L2(Ω)-valued measure. Hence, µ can alternatively be interpreted as a

measure µ(·, ·) on Z ×Ω defined, for any E ∈ B(Z) and E ′ ∈ B(Ω), by µ(E,E ′) :=
Z

E ′
µ(E)(s)ds.

From this observation, we know that

Z

Z
Φ(x)(dµ(x)) =

Z

Z

Z

Ω
φ(x,s)dµ(x,s).

Since Z and Ω are both compact, then Z×Ω is also compact by Tychonoff theorem (Folland, 1999,
p.136). By assumption, G is universal on X ×Ω and φ is its feature map, and thus we conclude that
the scalar measure dµ(x,s) is the zero measure. This means that, for any E ∈B(Z) and E ′ ∈B(Ω),

Z

E ′
µ(E)(s)ds = 0.

Since E,E ′ are arbitrary, we conclude that the vector measure µ = 0 which completes the assertion.

1641

CAPONNETTO, MICCHELLI, PONTIL AND YING

6. Conclusion

We have presented a characterization of multi-task kernels from a Functional Analysis perspective.
Our main result, Theorem 4 established the equivalence between two spaces associated with the
kernel. The first space, CK(Z,Y), is the closure of the linear span of kernel sections; the second
space, CΦ(Z,Y), is the closure of the linear span of the features associated with the kernel. In
both cases, the closure was relative to the Banach space of continuous vector-valued functions. This
result is important in that it allows one to verify the universality of a kernel directly by considering
its features.

We have presented two alternate proofs of Theorem 4. The first proof builds upon the work
of Micchelli et al. (2006) and the observation that a multi-task kernel can be reduced to a standard
scalar-valued kernel on the cross product space Z ×Y . The second proof relies upon the theory of
vector-measures. This proof is constructive and provides necessary and sufficient conditions on the
universality of a multi-task kernel. They are summarized in Theorem 11, which is our main tool for
verifying the universality of a multi-task kernel.

In both proofs, an important ingredient is a principle from Functional Analysis, which uses the
notion of the annihilator set. This principle, which is a consequence of the Hahn-Banach Theorem,
states that two closed linear subspaces of a Banach space—in our case CK(Z,Y) and CΦ(Z,Y)—
are equal if and only if whenever a bounded linear functional vanishes on one of them, it also
vanishes on the other one.

A substantial part of the paper has been devoted to present several examples of multi-task ker-
nels, some of which are valuable for applications. Although much remains to be done on developing
applications of the theory of universal kernels, we hope that our theoretical findings, as they are il-
lustrated through the examples, will motivate further work on multi-task learning in applied machine
learning.

Acknowledgments

This work was supported by EPSRC Grants GR/T18707/01 and EP/D052807/1 by the IST Pro-
gramme of the European Community, under the PASCAL Network of Excellence IST-2002-506778.
The first author was supported by the NSF grant 0325113, the FIRB project RBIN04PARL, the EU
Integrated Project Health-e-Child IST-2004-027749, and the City University of Hong Kong grant
No.7200111(MA). The second author is supported by NSF grant DMS 0712827.

We are grateful to Alessandro Verri, Head of the Department of Computer Science at the Univer-
sity of Genova for providing us with the opportunity to complete part of this work in a scientifically
stimulating and friendly environment. We also wish to thank the referees for their valuable com-
ments.

Appendix A.

This appendix gives the proof of Lemmas 9 and 10 in Section 4.

1642

UNIVERSAL MULTI-TASK KERNELS

Proof of Lemma 9 By the definition of the integral appearing in the right-hand side of equation it
follows (17) (see, e.g., Diestel and Uhl, Jr., 1977), for any f ∈ C (Z,Y), that

|Lµ f | ≤ ‖µ‖sup
x∈Z

‖ f (x)‖Y .

Therefore, we obtain that ‖Lµ‖ ≤ ‖µ‖, and thus Lµ ∈ C ∗(Z,Y).
To show that ‖L‖ = ‖µ‖, it remains to establish that ‖µ‖ ≤ ‖Lµ‖. To this end, for any ε > 0

and, by the definition of ‖µ‖, we conclude that there exist pairwise disjoint sets {A j : j ∈ Nn}
such that ∪ j∈NnA j ⊆ Z and ‖µ‖ := |µ|(Z) ≤ ε + ∑ j∈Nn

‖µ(A j)‖Y . We introduce the function g =

∑ j∈Nn

µ(A j)
‖µ(A j)‖Y

χA j which satisfies, for any x ∈ Z, the bound ‖g(x)‖Y ≤ 1. Since |µ| is a regular

measure on Z, applying Lusin’s theorem (Folland, 1999, p.217) to the function χA j , there exists a
real-valued continuous function f j ∈ C (Z) such that | f j(x)| ≤ 1 for any x ∈ Z and f j = χA j , except
on a set E j with |µ|(E j) ≤ ε

(n+1)2 j+1 . We now define a function h : Y → Y by setting h(y) = y,

if ‖y‖Y ≤ 1 and h(y) = y
‖y‖Y

, if ‖y‖Y ≥ 1, and introduce another function in C (Z,Y) given by

f̄ := ∑ j∈Nn

µ(A j)
‖µ(A j)‖Y

f j. Therefore, the function f = h◦ f̄ is in C(Z,Y) as well, because f̄ ∈ C (Z,Y)

and, for any y,y′ ∈Y , ‖h(y)−h(y′)‖Y ≤ 2‖y−y′‖Y . Moreover, we observe, for any x∈
(
∪ j∈NnE j

)c
,

that f (x) = g(x) and, for any x ∈ Z, that ‖ f (x)‖Y ≤ 1.
We are now ready to estimate the total variation of µ. First, observe that

Z

Z
‖ f (x)−g(x)‖Y d|µ|(x) ≤ ∑

j∈Nn

(n+1)|µ|(E j) ≤ ε,

and consequently we obtain the inequality

‖µ‖ ≤ ∑ j∈Nn
‖µ(A j)‖Y + ε =

Z

Z
(g(x),dµ(x))+ ε

≤
∣∣∣
Z

Z
(f (x)−g(x),dµ(x))

∣∣∣+
∣∣∣
Z

Z
(f (x),dµ(x))

∣∣∣+ ε

≤
Z

Z
‖ f (x)−g(x)‖Y d|µ|(x)+‖Lµ‖+ ε ≤ 2ε+‖Lµ‖.

This finishes the proof of the lemma.

We proceed to the proof of Lemma 10.

Proof of Lemma 10 For each µ ∈ M (X ,Y), there exists an Lµ ∈ C ∗(Z,Y) given by Equation (17).
The isometry of the map µ 7→ Lµ follows from Lemma 9.

Therefore, it suffices to prove, for every L̄ ∈ C ∗(Z,Y), that there is a µ ∈ M (Z,Y) such that
Lµ = L̄. To this end, note that L̄ ◦ ι−1 ∈ C ∗

ι (Z ×B1) since ι is an isometric map from C (Z,Y)
onto Cι(Z ×B1) defined by Equation (10). Since Cι(Z ×B1) is a closed subspace of C (Z ×B1),
applying the Hahn-Banach extension theorem (see, e.g., Folland, 1999, p.222) yields that, for any
L ∈ C ∗

ι (Z ×B1), there exists an extension functional L̃ ∈ C ∗(Z ×B1) such that L̃(F) = L ◦ ι−1(F)
for any F ∈ Cι(Z×B1). Moreover, recalling that Z×B1 is compact if B1 is equipped with the weak
topology, by the Riesz representation theorem, for any L̃, there exists a scalar measure ν on Z ×B1

such that

L̃(F) =
Z

Z×B1

F(x,y)dν(x,y), ∀F ∈ C (Z ×B1).

1643

CAPONNETTO, MICCHELLI, PONTIL AND YING

Equivalently, for any f ∈ C (Z,Y) there holds

L̄ f = L̄◦ ι−1(F) =
Z

Z×B1

F(x,y)dν(x,y) =
Z

Z
(f (x),dµ(x)) = Lµ f ,

where µ is defined i terms of ν as in Equation (15).
This finishes the identification between functionals in C (Z,Y) and vector measures with bounded

variation.

References

L. Amodei. Reproducing kernels of vector–valued function spaces. In Proc. of Chamonix, A. Le
Meehaute et al. Eds., pages 1–9, 1997.

N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68:337–404, 1950.

S. K. Berberian. Notes on Spectral Theory. New York: Van Nostrand, 1966.

J. Burbea and P. Masani. Banach and Hilbert Spaces of Vector-Valued Functions. Pitman Research
Notes in Mathematics Series, 90, 1984.

A. Caponnetto and E. De Vito. Optimal rates for regularized least-squares algorithm. Foundations
of Computational Mathematics, 7:331–368, 2007.

C. Carmeli, E. De Vito, and A. Toigo. Vector valued reproducing kernel Hilbert spaces of integrable
functions and Mercer theorem. Analysis and Applications, 4:377–408, 2006.

F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc., 39:1–
49, 2001.

D. R. Chen, Q. Wu, Y. Ying, and D.X. Zhou. Support vector machine soft margin classifiers: error
analysis. Journal of Machine Learning Research, 5:1143–1175, 2004.

A. Devinatz. On measurable positive definite operator functions. J. Lonon Math. Soc., 35:417–424,
1960.

N. Dinculeanu. Vector Measures. Pergamon, Berlin, 1967.

J. Diestel and J. J. Uhl, Jr. Vector Measures. AMS, Providence (Math Surveys 15), 1977.

T. Evgeniou, C. A. Micchelli and M. Pontil. Learning multiple tasks with kernel methods. J. Ma-
chine Learning Research, 6:615–637, 2005.

G. B. Folland. Real Analysis: Modern Techniques and Their Applications. 2nd edition, New York,
John Wiley & Sons, 1999.

A. Gretton, K.M. Borgwardt, M. Rasch, B. Schölkopf and A.J. Smola. A kernel method for the
two-sample problem. In Advances in Neural Information Processing Systems 19, B. Schölkopf,
J. Platt and T. Hoffman editors, pages 513–520, MIT Press, 2007.

P. Lax. Functional Analysis., John Wiley & Sons, 2002.

1644

UNIVERSAL MULTI-TASK KERNELS

S. Lowitzsch. A density theorem for matrix-valued radial basis functions. Numerical Algorithms,
39:253-256, 2005.

C. A. Micchelli, Interpolation of scattered data: distances matrices and conditionally positive defi-
nite functions. Constructive Approximation, 2:11–22, 1986.

C. A. Micchelli and M. Pontil. A function representation for learning in Banach spaces. In Proceed-
ings of the 17th Annual Conference on Learning Theory (COLT’04), pages 255–269, 2004.

C. A. Micchelli and M. Pontil. On leaning vector-valued functions. Neural Computation, 17:177-
204, 2005.

C.A. Micchelli and M. Pontil. Feature space perspectives for learning the kernel. Machine Learning,
66:297–319, 2007.

C. A. Micchelli, Y. Xu, and P. Ye. Cucker Smale learning theory in Besov spaces. NATO Science
Series sub Series III Computer and System Science, 190:47–68, 2003.

C. A. Micchelli, Y. Xu, and H. Zhang. Universal kernels. J. Machine Learning Research, 7:2651-
2667, 2006.

S. Mukherjee and D.X. Zhou. Learning coordinate covariances via gradients, J. of Machine Learn-
ing Research 7:519-549, 2006.

T. Poggio, S. Mukherjee, R. Rifkin, A. Rakhlin, and A. Verri. b. In Uncertainty in Geometric Com-
putations, J. Winkler and M. Niranjan (eds.), Kluwer, 131–141, 2002.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning, MIT Press,
2006.

M. Reisert and H. Burkhardt. Learning equivariant functions with matrix valued kernels. J. Machine
Learning Research, 8:385–408, 2007.

B. Schölkopf and A. J. Smola. Learning with Kernels. The MIT Press, Cambridge, MA, USA, 2002.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University
Press, 2004.

E. Solak, R. Murray-Smith, W.E. Leithead, D.J. Leith and C.E. Rasmussen. Derivative observations
in Gaussian Process models of dynamic Systems. In Advances in Neural Information Processing
Systems 15, S. Becker, S. Thrun and K. Obermayer editors, pages 1033–1040, MIT Press, 2003.

E. M. Stein. Singular Integrals and Differential Properties of Functions, Princeton University Press,
Princeton, NJ, 1970.

I. Steinwart. On the influence of the kernel on the consistency of support vector machines. J. Ma-
chine Learning Research, 2:67–93, 2001.

I. Steinwart, D. Hush, and C. Scovel. Function classes that approximate the Bayes risk. In Proceed-
ing of the 19th Annual Conference on Learning Theory, pages 79–93, 2006.

1645

CAPONNETTO, MICCHELLI, PONTIL AND YING

K. Yosida. Functional Analysis, 6th edition, Springer-Verlag, 1980.

E. Vazquez and E. Walter. Multi-output support vector regression. In Proceedings of the 13th IFAC
Symposium on System Identification, 2003.

D. X. Zhou. Density problem and approximation error in learning theory. Preprint, 2003.

1646

Journal of Machine Learning Research 9 (2008) 1647-1678 Submitted 4/07; Revised 2/08; Published 8/08

A New Algorithm for Estimating
the Effective Dimension-Reduction Subspace

Arnak S. Dalalyan ARNAK.DALALYAN@UPMC.FR

Université Paris 6 - Pierre et Marie Curie
Laboratoire de Probabilités, B. C. 188
75252 Paris Cedex 05, France

Anatoly Juditsky ANATOLI.IOUDITSKI@IMAG.FR

University Joseph Fourier of Grenoble LMC-IMAG
51 rue des Mathematiques, B. P. 53
38041 Grenoble Cedex 9, France

Vladimir Spokoiny SPOKOINY@WIAS-BERLIN.DE

Weierstrass Institute for Applied Analysis and Stochastics
Mohrenstrasse 39, 10117 Berlin Germany

Editor: Aapo Hyvarinen

Abstract
The statistical problem of estimating the effective dimension-reduction (EDR) subspace in the
multi-index regression model with deterministic design and additive noise is considered. A new
procedure for recovering the directions of the EDR subspace is proposed. Many methods for
estimating the EDR subspace perform principal component analysis on a family of vectors, say
β̂1, . . . , β̂L, nearly lying in the EDR subspace. This is in particular the case for the structure-adaptive
approach proposed by Hristache et al. (2001a). In the present work, we propose to estimate the pro-
jector onto the EDR subspace by the solution to the optimization problem

minimize max
`=1,...,L

β̂>
` (I −A)β̂` subject to A ∈ Am∗ ,

where Am∗ is the set of all symmetric matrices with eigenvalues in [0,1] and trace less than or equal
to m∗, with m∗ being the true structural dimension. Under mild assumptions,

√
n-consistency of the

proposed procedure is proved (up to a logarithmic factor) in the case when the structural dimension
is not larger than 4. Moreover, the stochastic error of the estimator of the projector onto the EDR
subspace is shown to depend on L logarithmically. This enables us to use a large number of vectors
β̂` for estimating the EDR subspace. The empirical behavior of the algorithm is studied through
numerical simulations.
Keywords: dimension-reduction, multi-index regression model, structure-adaptive approach, cen-
tral subspace

1. Introduction

One of the most challenging problems in modern statistics is to find efficient methods for treating
high-dimensional data sets. In various practical situations the problem of predicting or explaining a
scalar response variable Y by d scalar predictors X (1), . . . ,X (d) arises. For solving this problem one
should first specify an appropriate mathematical model and then find an algorithm for estimating
that model based on the observed data. In the absence of a priori information on the relationship

c©2008 Arnak S. Dalalyan, Anatoly Juditsky and Vladimir Spokoiny.

DALALYAN, JUDITSKY AND SPOKOINY

between Y and X = (X (1), . . . ,X (d)), complex models are to be preferred. Unfortunately, the accu-
racy of estimation is in general a decreasing function of the model complexity. For example, in the
regression model with additive noise and two-times continuously differentiable regression function
f : R

d → R, the most accurate estimators of f based on a sample of size n have a quadratic risk
decreasing as n−4/(4+d) when n becomes large. This rate deteriorates very rapidly with increasing
d leading to unsatisfactory accuracy of estimation for moderate sample sizes. This phenomenon is
called “curse of dimensionality”, the latter term being coined by Bellman (1961).

To overcome the “curse of dimensionality”, additional restrictions on the candidates f for de-
scribing the relationship between Y and X are necessary. One popular approach is to consider the
multi-index model with m∗ indices: for some linearly independent vectors ϑ1, . . ., ϑm∗ and for some
function g : R

m∗ → R, the relation f (x) = g(ϑ>
1 x, . . . ,ϑ>

m∗x) holds for every x ∈ R
d . Here and in

the sequel the vectors are understood as one column matrices and M> denotes the transpose of the
matrix M. Of course, such a restriction is useful only if m∗ < d and the main argument in favor
of using the multi-index model is that for most data sets the underlying structural dimension m∗ is
substantially smaller than d. Therefore, if the vectors ϑ1, . . ., ϑm∗ are known, the estimation of f
reduces to the estimation of g, which can be performed much better because of lower dimensionality
of the function g compared to that of f .

Another advantage of the multi-index model is that it postulates that only few linear combina-
tions of the predictors may suffice for “explaining” the response Y . Considering these combinations
as new predictors leads to a much simpler model (due to its low dimensionality), which can be suc-
cessfully analyzed by graphical methods, see Cook and Weisberg (1999) and Cook (1998) for more
details.

Throughout this work we assume that we are given n observations (Y1,X1), . . . ,(Yn,Xn) from the
model

Yi = f (Xi)+ εi = g(ϑ>
1 Xi, . . . ,ϑ>

m∗Xi)+ εi, (1)

where ε1, . . . ,εn are unobserved errors assumed to be mutually independent zero mean random vari-
ables, independent of the design {Xi, i ≤ n}.

Since it is unrealistic to assume that ϑ1, . . . ,ϑm∗ are known, estimation of these vectors from the
data is of high practical interest. When the function g is unspecified, only the linear subspace Sϑ
spanned by these vectors may be identified from the sample. This subspace is usually called index
space or dimension-reduction (DR) subspace. Clearly, there are many DR subspaces for a fixed
model f . Even if f is observed without error, only the smallest DR subspace, henceforth denoted
by S , can be consistently identified. This smallest DR subspace, which is the intersection of all
DR subspaces, is called effective dimension-reduction (EDR) subspace (Li, 1991) or central mean
subspace (Cook and Li, 2002). We adopt in this paper the former term, in order to be consistent
with Hristache et al. (2001a) and Xia et al. (2002), which are the closest references to our work.

The present work is devoted to studying a new algorithm for estimating the EDR subspace. We
call it structural adaptation via maximum minimization (SAMM). It can be regarded as a branch
of the structure-adaptive (SA) approach introduced in Hristache et al. (2001b) and Hristache et al.
(2001a).

Note that a closely related problem is the estimation of the central subspace (CS), see Cook and
Weisberg (1999) for its definition. For model (1) with i.i.d. predictors, the CS coincides with the
EDR subspace. Hence, all the methods developed for estimating the CS can potentially be applied
in our set-up. We refer to Cook and Li (2002) for background on the difference between the CS and

1648

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

the central mean subspace and to Cook and Ni (2005) for a discussion of the relationship between
different algorithms estimating these subspaces.

There are a number of methods providing an estimator of the EDR subspace in our set-up.
These include ordinary least square (Li and Duan, 1989), sliced inverse regression (Li, 1991), sliced
inverse variance estimation (Cook and Weisberg, 1991), principal Hessian directions (Li, 1992),
graphical regression (Cook, 1998), parametric inverse regression (Bura and Cook, 2001a), SA ap-
proach (Hristache et al., 2001a), iterative Hessian transformation (Cook and Li, 2002), minimum
average variance estimation (MAVE) (Xia et al., 2002), nonparametric linear smoothing for inverse
regression (Bura, 2003), minimum discrepancy approach (Cook and Ni, 2005) marginal high mo-
ment regression (Yin and Cook, 2006) density based MAVE and outer product of gradient (Xia,
2007), as well as the refinements using contour-projection (Wang et al., 2008), intraslice covariance
estimation (Cook and Ni, 2006) and Lasso shrinkage (Ni et al., 2005; Li, 2007).

All these methods, except SA approach and MAVE, rely on the principle of inverse regression
(IR). Therefore they inherit its well known limitations. First, they require a hypothesis on the prob-
abilistic structure of the predictors usually called linearity condition. Second, there is no theoretical
justification guaranteeing that these methods estimate the whole EDR subspace and not just a part
thereof, see Cook and Li (2004, Section 3.1) and the comments on the third example in Hristache
et al. (2001a, Section 4). In the same time, they have the advantage of being simple for implemen-
tation and for inference.

The two other methods mentioned above—SA approach and MAVE—have much wider appli-
cability including even time series analysis. The inference for these methods is more involved than
that of IR based methods, but SA approach and MAVE need no strong requirements on the design
of covariates or on the response variable. Moreover, in many cases they provide more accurate
estimates of the EDR subspace (Hristache et al., 2001a; Xia et al., 2002; Xia, 2007).

These arguments, combined with empirical experience, indicate the complementarity of differ-
ent methods designed to estimate the EDR subspace. It turns out that there is no procedure among
those cited above that outperforms all the others in plausible settings. Therefore, a reasonable strat-
egy for estimating the EDR subspace is to execute different procedures and to take a decision after
comparing the obtained results. In the case of strong contradictions, collecting additional data is
recommended.

The algorithm SAMM we introduce here exploits the fact that the gradient ∇ f of the regression
function f evaluated at any point x ∈ R

d belongs to the EDR subspace. The estimation of the
gradient being an ill-posed inverse problem, it is better to estimate some linear combinations of
∇ f (X1), . . . ,∇ f (Xn), which still belong to the EDR subspace.

Let L be a positive integer. The main idea behind the algorithm proposed in Hristache et al.
(2001a) consists in iteratively estimating L linear combinations β1, . . . ,βL of vectors ∇ f (X1), . . . ,
∇ f (Xn) and then recovering the EDR subspace from the vectors β` by running a principal compo-
nent analysis (PCA). The resulting estimator is proved to be

√
n-consistent provided that L is cho-

sen independently of the sample size n. Unfortunately, if L is small with respect to n, the subspace
spanned by the vectors β1, . . . ,βL may cover only a part of the EDR subspace. Therefore, empirical
experience advocates for large values of L, even if the desirable feature of

√
n-consistency fails in

this case.
The estimator proposed in the present work is designed to provide a remedy for this dissension

between the theory and empirical experience. This goal is achieved by introducing a new method
of extracting the EDR subspace from the estimators of the vectors β1, . . . ,βL. If we think of PCA

1649

DALALYAN, JUDITSKY AND SPOKOINY

as the solution to a minimization problem involving a sum over L terms, see (5) in the next section,
then, to some extent, our proposal consists in replacing the sum by the maximum. This motivates
the term structural adaptation via maximum minimization. The main advantage of SAMM is that
it allows us to deal with the case when L increases polynomially in n and yields an estimator of
the EDR subspace which is consistent under a very weak identifiability assumption. In addition,
SAMM provides a

√
n-consistent estimator (up to a logarithmic factor) of the EDR subspace when

m∗ ≤ 4.
If m∗ = 1, the corresponding model is referred to as single-index regression. There are many

methods for estimating the EDR subspace in this case, see Yin and Cook (2005); Delecroix et al.
(2006) and the references therein. Note also that the methods for estimating the EDR subspace have
often their counterparts in the partially linear regression analysis, see for example Samarov et al.
(2005) and Chan et al. (2004).

An interesting problem in the context of dimensionality reduction is the estimation of the true
structural dimension m∗. Many approaches exist for constructing estimators of m∗, see (Li, 1991,
Section 5), (Xia et al., 2002, Section 2.2), and Bura and Cook (2001b), Bura and Cook (2001a),
Bura (2003) and Cook and Li (2004) and the references therein. Here we assume that the structural
dimension is known, leaving the development of an extension to the case of unknown m∗ for future
investigation.

The rest of the paper is organized as follows. We review the structure-adaptive approach and
introduce the SAMM procedure in Section 2. Theoretical features including

√
n-consistency of the

procedure are stated in Section 3. Section 4 contains an empirical study of the proposed procedure
through Monte Carlo simulations. The technical proofs are deferred to Section 5.

2. Structural Adaptation and SAMM

Introduced in Hristache et al. (2001b), the structure-adaptive approach is based on two observa-
tions. First, knowing the structural information helps better estimate the model function. Second,
improved model estimation contributes to recovering more accurate structural information about
the model. These advocate for the following iterative procedure. Start with the null structural infor-
mation, then iterate the above-mentioned two steps (estimation of the model and extraction of the
structure) several times improving the quality of model estimation and increasing the accuracy of
structural information during the iteration.

2.1 Purely Nonparametric Local Linear Estimation

When no structural information is available, one can only proceed in a fully nonparametric way. A
proper estimation method is based on local linear smoothing (cf. Fan and Gijbels, 1996, for more
details): estimators of the function f and its gradient ∇ f at a point Xi are given by

(
f̂ (Xi)

∇̂ f (Xi)

)
= argmin

(a,c)>

n

∑
j=1

(
Yj −a− c>Xi j

)2
K
(
|Xi j|2/b2)

=

{ n

∑
j=1

(
1

Xi j

)(
1

Xi j

)>
K

(|Xi j|2
b2

)}−1 n

∑
j=1

Yj

(
1

Xi j

)
K

(|Xi j|2
b2

)
,

where Xi j = X j −Xi, b is a bandwidth and K(·) is a univariate kernel supported on [0,1]. (For a
vector v, |v| stands for its Euclidean norm.) The bandwidth b should be selected so that the ball

1650

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

with radius b centered at the point of estimation Xi contains at least d + 1 design points. For large
value of d this leads to a large bandwidth and to a strong estimation bias. The goal of the structural
adaptation is to diminish this bias using an iterative procedure exploiting the available estimated
structural information.

In order to transform these general observations into a concrete procedure, let us describe in
the rest of this section how the knowledge of the structure can help to improve the quality of the
estimation and how the structural information can be obtained when the function or its estimator is
given.

2.2 Model Estimation When an Estimator of S is Available

Let us start with the case of known S . The function f has the same smoothness as g in the directions
of the EDR subspace S spanned by the vectors ϑ1, . . . ,ϑm∗ , whereas it is constant (and therefore,
infinitely smooth) in all the orthogonal directions. This suggests to apply an anisotropic bandwidth
for estimating the model function and its gradient. The corresponding local-linear estimator can be
defined by

(
f̂ (Xi)

∇̂ f (Xi)

)
=

{ n

∑
j=1

(
1

Xi j

)(
1

Xi j

)>
w∗

i j

}−1 n

∑
j=1

Yj

(
1

Xi j

)
w∗

i j , (2)

with the weights w∗
i j = K(|Π∗Xi j|2/h2), where h is some positive real number and Π∗ is the orthogo-

nal projector onto the EDR subspace S . This choice of weights amounts to using infinite bandwidth
in the directions lying in the orthogonal complement of the EDR subspace.

If only an estimator Â of the orthogonal projector Π∗ is available, a possible strategy is to
replace Π∗ by Â in the definitions of the weights w∗

i j. This strategy is however too stringent, since

it definitely discards the directions belonging to Ŝ⊥. Being not sure that our information about the
structure is exact, it is preferable to define the neighborhoods in a softer way. This is done by setting
wi j = K(X>

i j (I +ρ−2Â)Xi j/h2) and by redefining

(
f̂ (Xi)

∇̂ f (Xi)

)
=

{ n

∑
j=1

(
1

Xi j

)(
1

Xi j

)>
wi j

}−1 n

∑
j=1

Yj

(
1

Xi j

)
wi j . (3)

Here, ρ is a real number from the interval [0,1] measuring the importance attributed to the estimator
Â. If we are very confident in our estimator Â, we should choose ρ close to zero.

2.3 Recovering the EDR Subspace from an Estimator of ∇ f

Suppose first that the values of the function ∇ f at the points Xi are known. Then S is the linear
subspace of R

d spanned by the vectors ∇ f (Xi), i = 1, . . . ,n. For classifying the directions of R
d

according to the variability of f in each direction and, as a by-product, identifying S , the principal
component analysis (PCA) can be used.

Recall that the PCA method is based on the orthogonal decomposition of the matrix M =
n−1 ∑n

i=1 ∇ f (Xi)∇ f (Xi)
>: M = OΛOT with an orthogonal matrix O and a diagonal matrix Λ with

diagonal entries λ1 ≥ λ2 ≥ . . . ≥ λd . Clearly, for the multi-index model with m∗-indices, only the
first m∗ eigenvalues of M are positive. The first m∗ eigenvectors of M (or, equivalently, the first
m∗ columns of the matrix O) define an orthonormal basis in the EDR subspace.

1651

DALALYAN, JUDITSKY AND SPOKOINY

Let L be a positive integer. In Hristache et al. (2001a), a “truncated” matrix ML is considered,
which coincides with M if L equals n. Let {ψ`, ` = 1, . . . ,L} be a set of vectors of R

n satisfying
the conditions n−1 ∑n

i=1 ψ`,iψ`′,i = δ`,`′ for every `,`′ ∈ {1, . . . ,L}, with δ`,`′ being the Kronecker
symbol. Define

β` = n−1
n

∑
i=1

∇ f (Xi)ψ`,i (4)

and ML = ∑L
`=1 β`β>

` . By the Bessel inequality, it holds ML � M . Here and in the sequel, for
two symmetric matrices A and B, A � B means that B−A is positive-semidefinite. Moreover, since
MML = MLM , any eigenvector of M is an eigenvector of ML. Finally, by the Parseval equality,
ML = M if L = n.

The reason of considering the matrix ML instead of M is that ML can be estimated much better
than M . In fact, estimators of M have poor performance for samples of moderate size because
of the sparsity of high dimensional data, ill-posedness of the gradient estimation and the non-linear
dependence of M on ∇ f . On the other hand, estimation of ML reduces to the estimation of L linear
functionals of ∇ f and may be done with a better accuracy. The obvious limitation of this approach
is that it recovers the EDR subspace entirely only if the rank of ML coincides with the rank of M ,
which is equal to m∗. To enhance our chances of seeing the condition rank(ML) = m∗ fulfilled, we
have to choose L sufficiently large. In practice, L is chosen of the same order as n.

In the case when only an estimator of ∇ f is available, the above described method of recovering
the EDR directions from an estimator of ML has a risk of order

√
L/n (Hristache et al., 2001a,

Theorem 5.1). This fact advocates against using very large values of L. We desire nevertheless
to use many linear combinations in order to increase our chances of capturing the whole EDR
subspace. To this end, we modify the method of extracting the structural information from the
estimators β̂` of vectors β`.

Let m ≥ m∗ be an integer. Observe that the estimator Π̃m of the projector Π∗ based on the PCA
solves the following quadratic optimization problem:

minimize ∑̀ β̂>
` (I −Π)β̂` subject to Π2 = Π, trΠ ≤ m, (5)

where the minimization is carried over the set of all symmetric (d × d)-matrices. The value m∗

can be estimated by looking how many eigenvalues of Π̃m are significant. Let Am be the set of
(d ×d)-matrices defined as follows:

Am = {A : A = A>, 0 � A � I, trA ≤ m}.

Define Âm as a minimizer of the maximum of the β̂>
` (I −A)β̂`’s instead of their sum:

Âm ∈ argmin
A∈Am

max
`

β̂>
` (I −A)β̂`. (6)

This is a convex optimization problem that can be effectively solved even for a large d although a
closed form solution is not known. It is noteworthy that a solution to (6) is not necessarily a pro-
jection matrix. In fact, the matrices from Am are symmetric positive-semidefinite with eigenvalues
between 0 and 1 and not just 0 or 1. This enlargement of the search space guarantees its convexity,
which is needed for the algorithm to be tractable. Moreover, as we will show below, the incorpo-
ration of (6) in the structural adaptation yields an algorithm having good theoretical and empirical
performance.

1652

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

3. Theoretical Features of SAMM

Throughout this section the true dimension m∗ of the EDR subspace is assumed to be known. Thus,
we are given n observations (Y1,X1), . . . ,(Yn,Xn) from the model

Yi = f (Xi)+ εi = g(ϑ>
1 Xi, . . . ,ϑ>

m∗Xi)+ εi,

where ε1, . . . ,εn are independent centered random variables. The vectors ϑ j are assumed to form
an orthonormal basis of the EDR subspace entailing thus the representation Π∗ = ∑m∗

j=1 ϑ jϑ>
j . In

what follows, we mainly consider deterministic design. Nevertheless, the results hold in the case of
random design as well, provided that the errors are independent of X1, . . . ,Xn. Henceforth, without
loss of generality we assume that |Xi| ≤ 1 for any i = 1, . . . ,n.

3.1 Description of the Algorithm

The structure-adaptive algorithm with maximum minimization consists of following steps.

a) Specify positive real numbers aρ, ah, ρ1 and h1. Choose an integer L and select a set {ψ`, `≤
L} of vectors from R

n verifying |ψ`|2 = n.

b) Set k = 1 and Â0 = 0.

c) Define the estimators ∇̂ f k(Xi) for i = 1, . . . ,n by formula (3) with
wi j = K

(
X>

i j (I +ρ−2
k Âk−1)Xi j/h2

k

)
. Set

β̂`,k =
1
n

n

∑
i=1

∇̂ f k(Xi)ψ`,i, ` = 1, . . . ,L,

where ψ`,i is the ith coordinate of ψ`.

d) Define the new value Âk by Âk ∈ argminA∈Am∗ max` β̂>
`,k(I −A)β̂`,k.

e) Set ρk+1 = aρ ·ρk, hk+1 = ah ·hk and increase k by one.

f) Stop if ρk < ρmin or hk > hmax, otherwise continue with the step c).

Let k(n) be the total number of iterations. We denote by Π̂n the orthogonal projection onto the space
spanned by the eigenvectors of Âk(n) corresponding to the m∗ largest eigenvalues. The estimator of

the EDR subspace is then the image of Π̂n.
Both Âk(n) and Π̂n are estimators of the projector onto S . Our theoretical results are stated for

the estimator Π̂n, but similar results are valid for Âk(n), too. The numerical simulations we made
showed that these two estimators have comparable performances.

The described algorithm requires the specification of the parameters ρ1, h1, aρ and ah, as well
as the choice of the set of vectors {ψ`}. In what follows we use the values

ρ1 = 1, ρmin = n−1/(3∨m∗), aρ = e−1/2(3∨m∗),

h1 = C0n−1/(4∨d), hmax = 2
√

d, ah = e1/2(4∨d).

This choice of input parameters is up to some minor modifications the same as in Hristache et al.
(2001b), Hristache et al. (2001a) and Samarov et al. (2005), and is based on the trade-off between

1653

DALALYAN, JUDITSKY AND SPOKOINY

the bias and the variance of estimation. The constant C0 will be chosen in a design-dependent
manner taking into account the fact that the local neighborhoods used in (2) should contain enough
design points to entail the consistency of the estimator. The choice of L and that of vectors ψ` will
be discussed in Section 4.

3.2 Assumptions

Prior to stating rigorous theoretical results we need to introduce a set of assumptions. From now on,
we use the notation I for the identity matrix of dimension d, ‖A‖2 for the largest eigenvalue of A>A
and ‖A‖2 for the Frobenius norm of A (square root of the sum of squares of elements of A).

We start with the smoothness assumption ensuring the adequacy of the local linear approxima-
tion of the regression function.

(A1) There exists a positive real Cg such that |∇g(x)| ≤ Cg and |g(x)− g(x′)− (x− x′)>∇g(x)| ≤
Cg|x− x′|2 for every x,x′ ∈ R

m∗
.

Unlike the smoothness assumption, the assumptions on the identifiability of the model and the
regularity of design are more involved and specific to our algorithm. The formal statements read as
follows.

(A2) Let the vectors β` ∈ R
d be defined by (4) and let B∗ =

{
β̄ = ∑L

`=1 c`β` : ∑L
`=1 |c`| ≤ 1

}
. There

exist vectors β̄1, . . . , β̄m∗ ∈ B∗ and constants µ1, . . . ,µm∗ such that

Π∗ �
m∗

∑
k=1

µkβ̄kβ̄>
k . (7)

We denote µ∗ = µ1 + . . .+µm∗ .

Remark 1 Assumption (A2) implies that the subspace S = Im(Π∗) is the smallest DR subspace,
therefore it is the EDR subspace. Indeed, for any DR subspace S ′, the gradient ∇ f (Xi) belongs
to S ′ for every i. Therefore β` ∈ S ′ for every ` ≤ L and B∗ ⊂ S ′. Thus, for every β◦ from the
orthogonal complement S ′⊥, it holds |Π∗β◦|2 ≤ ∑k µk|β̄>

k β◦|2 = 0. Therefore S ′⊥ ⊂ S⊥ implying
thus the inclusion S ⊂ S ′.

Lemma 2 If the family {ψ`} spans R
n, then assumption (A2) is always satisfied with some µk (that

may depend on n).

Proof Set Ψ = (ψ1, . . . ,ψL)∈R
n×L, ∇ f = (∇ f (X1), . . . ,∇ f (Xn))∈R

d×n and write the d×L matrix
B = (β1, . . . ,βL) in the form ∇ f ·Ψ. Recall that if M1,M2 are two matrices such that M1 ·M2 is well
defined and the rank of M2 coincides with the number of lines in M2, then rank(M1 ·M2) = rank(M1).
This implies that rank(B) = m∗ provided that rank(Ψ) = n, which amounts to span({ψ`}) = R

n.
Let now β̃1, . . . , β̃m∗ be a linearly independent subfamily of {β`, ` ≤ L}. Then the m∗th largest

eigenvalue λm∗(M̃) of the matrix M̃ = ∑m∗
k=1 β̃kβ̃>

k is strictly positive. Moreover, if v1, . . . ,vm∗ are
the eigenvectors of M̃ corresponding to the eigenvalues λ1(M̃) ≥ . . . ≥ λm∗(M̃) > 0, then

Π∗ =
m∗

∑
k=1

vkv>k � 1

λm∗(M̃)

m∗

∑
k=1

λk(M̃)vkv>k = λm∗(M̃)−1
M̃ = λm∗(M̃)−1

m∗

∑
k=1

β̃kβ̃>
k .

1654

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

Hence, inequality (7) is fulfilled with µk = λm∗(M̃)−1 for every k = 1, . . . ,m∗.

These arguments show that the identifiability assumption (A2) is fairly weak. In fact, since we
always choose {ψ`} so that span({ψ`}) = R

n, (A2) amounts to requiring that the value µ∗ remains
bounded when n increases. This assumption is much weaker than the coverage assumption under
which the consistency of the inverse regression based methods is proved.

Let us proceed with the assumption on the design regularity. Define P∗
1 = I and P∗

k = (I +

ρ−2
k Π∗)−1/2 for every k ≥ 2. Next, set Z(k)

i j = (hkP∗
k)−1Xi j and for any d×d matrix U put w(k)

i j (U) =

K
(
(Z(k)

i j)>UZ(k)
i j

)
, w̄(k)

i j (U) = K′((Z(k)
i j)>UZ(k)

i j

)
, N(k)

i (U) = ∑ j w(k)
i j (U) and

V (k)
i (U) =

n

∑
j=1

(
1

Z(k)
i j

)(
1

Z(k)
i j

)>
w(k)

i j (U).

(A3) For some positive constants CV ,CK ,CK′ ,Cw and for some α ∈]0,1/2], the inequalities

‖V (k)
i (U)−1‖N(k)

i (U) ≤CV , i = 1, . . . ,n,
n

∑
i=1

w(k)
i j (U)/N(k)

i (U) ≤CK , j = 1, . . . ,n,

n

∑
i=1

|w̄(k)
i j (U)|/N(k)

i (U) ≤CK′ , j = 1, . . . ,n,

n

∑
j=1

|w̄(k)
i j (U)|/N(k)

i (U) ≤Cw i = 1, . . . ,n,

hold for every k ≤ k(n) and for every d ×d matrix U verifying ‖U − I‖2 ≤ α.

Remark 3 Note that in (A3) we implicitly assumed that the matrices V (k)
i are invertible, which may

be true only if any neighborhood E (k)(Xi) = {x : |(I + ρ−2
k Π∗)−1/2(Xi − x)| ≤ hk} contains at least

d design points different from Xi. The parameters h1, ρ1, aρ and ah are chosen so that the volume
of ellipsoids E(k)(Xi) is a non-decreasing function of k and Vol(E (1)(Xi)) = C0/n. Therefore, from
theoretical point of view, if the design is random with positive density on [0,1]d , it is easy to check
that for a properly chosen constant C0, assumption (A3) is satisfied with a probability close to one.
In applications, we define h1 as the smallest real such that mini=1,...,n #E(1)(Xi) = d +1 and add to
the matrix

n

∑
j=1

(
1

Xi j

)(
1

Xi j

)>
wi j,

involved in the definition (3), a small full-rank matrix to be sure that the resulting matrix is invertible,
see Section 4. This observation also implies that the SAMM procedure can not be applied in the
case where the sample size n is smaller than or equal to the dimension d of predictors.

(A4) The errors {εi, i ≤ n} are centered Gaussian with variance σ2.

1655

DALALYAN, JUDITSKY AND SPOKOINY

3.3 Risk Bounds for the Projection Matrix Estimation

In this section, we present the main result of the paper assessing the quality of the estimator Π̂n

of the projection matrix Π∗ in the asymptotics of large samples. To this end, we assume that the
kernel K used in (3) is chosen to be continuous, positive and vanishing outside the interval [0,1].
The vectors ψ` are assumed to verify

max
`=1,...,L

max
i=1,...,n

|ψ`,i| < ψ̄, (8)

for some constant ψ̄ independent of n. In the sequel, we denote by C,C1, . . . some constants depend-
ing only on m∗,µ∗,Cg,CV ,CK ,CK′ ,Cw and ψ̄.

Theorem 4 Let assumptions (A1)-(A4) be fulfilled. There exists C > 0 such that for any z ∈
]0,2

√
log(nL)] and for sufficiently large values of n, it holds

P
(√

tr(I − Π̂n)Π∗ > Cn−
2

3∨m∗ t2
n +

2
√

µ∗zc0σ√
n(1−ζn)

)
≤ Lze−

z2−1
2 +

3k(n)−5
n

,

where c0 = ψ̄
√

dCKCV , tn = O(
√

log(Ln)) and ζn = O(tn n−
1

6∨m∗).

Corollary 5 Under the assumptions of Theorem 4, for sufficiently large n, it holds

P
(
‖Π̂n −Π∗‖2 > Cn−

2
3∨m∗ t2

n +
2
√

2µ∗zc0σ√
n(1−ζn)

)
≤ Lze−

z2−1
2 +

3k(n)−5
n

E(‖Π̂n −Π∗‖2) ≤C

(
n−

2
3∨m∗ t2

n +

√
lognL√

n

)
+

√
2m∗(3k(n)−5)

n
.

Proof Easy algebra yields

‖Π̂n −Π∗‖2
2 = tr(Π̂n −Π∗)2 = trΠ̂2

n −2trΠ̂nΠ∗ + trΠ∗

≤ trΠ̂n +m∗−2trΠ̂nΠ∗ ≤ 2m∗−2trΠ̂nΠ∗.

The equality trΠ∗ = m∗ and the linearity of the trace operator complete the proof of the first in-
equality. The second inequality can be derived from the first one by standard arguments in view of
the inequality ‖Π̂n −Π∗‖2

2 ≤ 2m∗.

According to these results, for m∗ ≤ 4, the estimator of the orthogonal projector onto S provided
by the SAMM procedure is

√
n-consistent up to a logarithmic factor. This rate of convergence is

known to be optimal for a broad class of semiparametric problems, see Bickel et al. (1998) for a
detailed account on the subject.

Remark 6 The inspection of the proof of Theorem 4 shows that the factor t2
n multiplying the “bias”

term n−2/(3∨m∗) disappears when m∗ > 3.

Remark 7 The same rate of convergence remains valid in the case when the errors are not neces-
sarily identically distributed Gaussian random variables, but have a bounded exponential moment
(uniformly in n). This can be proved along the lines of Proposition 14, see Section 5.

1656

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

3.4 Risk Bound for the Estimator of a Basis of the EDR Subspace

The main result of this paper stated in the preceding subsection provides a risk bound for the esti-
mator Π̂n of Π∗, the orthogonal projector onto S . As a by-product of this result, we show in this
section that a similar risk bound holds also for the estimator of an orthonormal basis of S . This
means that for an arbitrarily chosen orthonormal basis of the estimated EDR subspace Ŝ = Im(Π̂n),
there is an orthonormal basis of the true EDR subspace S such that the matrices built from these
bases are close in Frobenius norm with a probability tending to one.

Proposition 8 Let the assumptions of Theorem 4 be fulfilled. For any orthonormal basis ϑ̂1, . . . , ϑ̂m∗

of the estimated EDR subspace Ŝ = Im(Π̂n) there exists an orthonormal basis ϑ1, . . . ,ϑm∗ of the true
EDR subspace S = Im(Π∗) such that, for sufficiently large n, it holds

P
(
‖Θ̂n −Θ‖2 > Cn−

2
3∨m∗ t2

n +
2(
√

m∗ +1)
√

2µ∗zc0σ√
n(1−ζn)

)
≤ Lze−

z2−1
2 +

3k(n)−5
n

,

where Θ̂n (resp. Θ) is the d ×m∗ matrix whose jth column is ϑ̂ j (resp. ϑ j).

Proof Using the singular value decomposition, we write Π∗Θ̂n = UΛV>, where U and V are
orthogonal matrices and Λ is a diagonal matrix. Let us denote by λ j, u j, v j respectively the jth
diagonal entry of Λ, the jth column of U and the jth column of V . Since Π∗Θ̂nv j = λ ju j, we have
λ j = |λ ju j| = |Π∗Θ̂nv j| ≤ 1. On the other hand,

λ j = |Π∗Θ̂nv j| ≥ |Θ̂nv j|− |(Π̂n −Π∗)Θ̂nv j| ≥ 1−‖Π̂n −Π∗‖,

where we used the fact that |Θ̂nv j|2 = v>j Θ̂>
n Θ̂nv j = v>j v j = 1. Let us define the matrix Θ as follows:

Θ = UId×m∗V>, where Id×m∗ is the d ×m∗ diagonal matrix with all diagonal entries equal to one.
One easily checks that Θ is orthogonal, that is Θ>Θ = Im∗ . Moreover, we have Θ = Π∗Θ̂nV Λ−V>,
where Λ− is the m∗×m∗ diagonal matrix having λ−1

j as jth diagonal entry. Note that if the norm

of Π̂n −Π∗ is less than 1, the eigenvalues λ j are strictly positive. In this case, Λ− is well defined
and we obviously have Π∗Θ = Θ. Thus the columns of Θ form an orthonormal basis of Im(Π∗).
Furthermore, we have

‖Θ̂n −Θ‖2 ≤ ‖Θ−Π∗Θ̂n‖2 +‖(Π∗− Π̂n)Θ‖2

≤ ‖U(Id×m∗ −Λ)V>‖2 +‖Π∗− Π̂n‖2

≤ (
m∗

∑
j=1

(λ j −1)2)1/2 +‖Π∗− Π̂n‖2

≤ (
√

m∗ +1)‖Π∗− Π̂n‖2,

provided that ‖Π∗− Π̂n‖ < 1. This implies that for every d ∈ (0,1) the event {‖Π∗− Π̂n‖2 ≤ d} is
included in {‖Θ̂n−Θ‖2 ≤ (

√
m∗+1)d}. By virtue of this inclusion, the assertion of the proposition

follows from Corollary 5.

1657

DALALYAN, JUDITSKY AND SPOKOINY

4. Simulation Results

The aim of this section is to demonstrate on several examples how the performance of the algorithm
SAMM depends on the sample size n, the dimension d and the noise level σ. We also show that our
procedure can be successfully applied in autoregressive models. Many unreported results show that
in most situations the performance of SAMM is comparable to the performance of SA approach
based on PCA and to that of MAVE. A thorough comparison of the numerical virtues of these
methods being out of scope of this paper, we simply show on some examples that SAMM may
substantially outperform MAVE in the case of large “bias”. Our results also show that SAMM and
MAVE provide more accurate estimates of the EDR subspace than inverse regression based methods
: inverse regression based on Minimum Discrepancy Approach (MDA) introduced in Cook and
Ni (2005) and Sliced Average Variance Estimation (SAVE) of Cook and Weisberg (1991). In all
simulations for inverse regression based methods, the number of slices is chosen to minimise the
risk.

The computer code of the procedure SAMM is distributed freely, it can be downloaded from
http://code.google.com/p/samm07/. It requires the MATLAB packages SDPT3 and YALMIP.
We are grateful to Professor Yingcun Xia for making the computer code of MAVE available to us.

To obtain higher stability of the algorithm, we preliminarily standardize the response Y and the
predictors X (j). More precisely, we deal with Ỹi = Yi/σY and X̃ = diag(ΣX)−1/2X , where σ2

Y is the
empirical variance of Y , ΣX is the empirical covariance matrix of X and diag(ΣX) is the d×d matrix
obtained from ΣX by replacing the off-diagonal elements by zero. To preserve consistency, we set
β̃`,k(n) = diag(ΣX)−1/2β̂`,k(n), where β̂`,k(n) is the last-step estimate of β`, and define Π̂k(n) as the

solution to (6) with β̂` replaced by β̃`,k(n). Furthermore, we add the small full-rank matrix Id+1/n to

∑n
j=1

(1
Xi j

)(1
Xi j

)>
wi j in (3).

In all examples presented below the number of replications is N = 250; for each replication,
a new sample of the design and the error vector (ε1, . . . ,εn) has been generated at random. The

mean loss erN = 1
N ∑ j er j and the standard deviation

√
1
N ∑ j(er j − erN)2 are reported, where er j =

‖Π̂(j)−Π∗‖ with Π̂(j) being the estimator of Π∗ for jth replication.

4.1 Choice of {ψ`, ` ≤ L}

The set {ψ`} plays an essential role in the algorithm. The optimal choice of this set is an important
issue that needs further investigation. We content ourselves with giving one particular choice which
agrees with theory and leads to nice empirical results.

Let S j, j ≤ d, be the permutation of the set {1, . . . ,n} satisfying X (j)
S j(1) ≤ . . . ≤ X (j)

S j(n). Let

S
−1
j be the inverse of S j, that is, S j(S

−1
j (k)) = k for every k = 1, . . . ,n. Define {ψ`} as the set of

vectors
{(

cos
(2π(k−1)S−1

j (1)

n

)
, . . . ,cos

(2π(k−1)S−1
j (n)

n

))>
(

sin
(2πkS−1

j (1)

n

)
, . . . ,sin

(2πkS−1
j (n)

n

))> ,k ≤ [n/2], j ≤ d

}

normalized to satisfy ∑n
i=1 ψ2

`,i = n for every `. It is easily seen that these vectors satisfy conditions
(8) and span({ψ`}) = R

n, so the conclusion of Lemma 2 holds. Above, [n/2] is the integer part of
n/2 and k and j are positive integers.

1658

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

The idea behind the above described choice of vectors ψ` is the following: if the design is
uniformly distributed in [0,1]d and H(x) is a function R

d → R depending only on one coordinate
of x, the projections of the vector g = (H(X1), . . . ,H(Xn))

> on some of directions ψ` are nearly
equal to the Fourier coefficients of H. Indeed, for n odd and for every fixed j, the vectors {ek, j =(
φk(S

−1
j (1)/n),φk(S

−1
j (2)/n), . . . ,φk(S

−1
j (n)/n)

)>
;1 ≤ k ≤ n} with {φk} being the trigonometric

basis (that is φ2p(x) =
√

2sin(2πpx) and φ2p+1(x) =
√

2cos(2πpx) for every p ∈ N) form an or-
thonormal basis of R

n. Therefore, for any function H from R
d to R, which depends exclusively on

the jth coordinate x(j) of x, one has g>ek j = ∑n
i=1 H0(X

(j)
i)φk(S

−1
j (i)/n) = ∑n

i=1 H0(X
(j)
S j(i)

)φk(i/n)

for some function H0 : R → R. Since for a sample X (j)
1 , . . . ,X (j)

n drawn from uniform distribu-
tion in [0,1] the order statistics are nearly equal to i/n, we get 1

n g>ek j ≈ 1
n ∑n

i=1 H0(i/n)φk(i/n) ≈
〈H0,φk〉L2[0,1]. Note that although this explanation is valid only for uniform design and a function
H depending only on one coordinate, empirical results show that this choice leads to satisfactory
results in more general situations.

4.2 Example 1 (Single-index)

We set d = 5 and f (x) = g(ϑ>x) with

g(t) = 4|t|1/2 sin2(πt), and ϑ = (1/
√

5,2/
√

5,0,0,0)> ∈ R
5.

We ran SAMM, MAVE, MDA and SAVE procedures on the data generated by the model

Yi = f (Xi)+0.5 · εi,

where the design X is such that the coordinates (X (j)
i , j ≤ 5, i ≤ n) are i.i.d. uniform in [−1,1], and

the errors εi are i.i.d. standard Gaussian independent of the design.
Table 1 contains the average loss for different values of the sample size n for the first step

estimator by SAMM, the final estimator provided by SAMM and the estimators based on MAVE,
MDA and SAVE. The first observation is that inverse regression based methods are not consistent
in this case. We plot in Figure 1 the average loss normalized by the square root of the sample
size n versus n. It is clearly seen that the iterative procedure improves considerably the quality
of estimation and that the final estimator provided by SAMM is

√
n-consistent. In this example,

MAVE method often fails to recover the EDR subspace. However, the number of failures decreases
very rapidly with increasing n. This is the reason why the curve corresponding to MAVE in Figure 1
decreases with a strong slope.

4.3 Example 2 (Double-index)

For d ≥ 2 we set f (x) = g(ϑ>x) with

g(x) = (x1 − x3
2)(x

3
1 + x2);

and ϑ1 = (1,0, . . . ,0) ∈ R
d , ϑ2 = (0,1, . . . ,0) ∈ R

d . We ran SAMM, MAVE, MDA and SAVE
procedures on the data generated by the model

Yi = f (Xi)+0.1 · εi, i = 1, . . . ,300,

1659

DALALYAN, JUDITSKY AND SPOKOINY

200 300 400 500 600 700 800
1

2

3

4

5

6

7

8

9

n

√
n
‖Π̂

n
−

Π
∗ ‖

SAMM 1st
SAMM Fnl
MAVE

Figure 1: Average loss multiplied by
√

n versus n for the first step (solid line) and the final (dotted
line) estimators provided by SAMM and for the estimator by MAVE (dashed line) in
Example 1.

n 200 300 400 600 800
SAMM, 1st 0.443 0.329 0.271 0.215 0.155

(.211) (.120) (.115) (.095) (.079)
SAMM, Fnl 0.337 0.170 0.116 0.076 0.053

(.273) (.147) (.104) (.054) (.031)
MAVE 0.626 0.455 0.249 0.154 0.061

(.363) (.408) (.342) (.290) (.161)
MDA 0.882 0.885 0.890 0.885 0.882

(.144) (.141) (.130) (.142) (.148)
SAVE 0.857 0.847 0.832 0.818 0.782

(.145) (.144) (.154) (.168) (.169)

Table 1: Average loss ‖Π̂−Π∗‖ of the estimators obtained by SAMM, MAVE, MDA and SAVE
procedures in Example 1. The standard deviation is given in parentheses.

where the design X is such that the coordinates (X (j)
i , j ≤ d, i ≤ n) are i.i.d. uniform in [−40,40],

and the errors εi are i.i.d. standard Gaussian independent of the design. The results of simulations
for different values of d are reported in Table 2.

As expected, we found that (cf. Figure 2) the quality of SAMM, as well as the quality of SAVE,
deteriorated linearly in d as d increased. This agrees with our theoretical results. It should be noted
that in this case MAVE and MDA fail to find the EDR subspace.

1660

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

number of covariates, d

‖Π̂
n
−

Π
∗ ‖

SAMM Fnl
MAVE
MDA
SAVE

Figure 2: Average loss versus d for the estimators provided by SAMM (dotted line), by MAVE
(dashed line), by MDA (dash-dot line) and by SAVE (solid line) in Example 2.

d 4 6 8 10 12
SAMM 1st 0.154 0.242 0.296 0.365 0.421

(.063) (.081) (.071) (.087) (.095)
SAMM, Fnl 0.028 0.048 0.060 0.077 0.098

(.011) (.020) (.021) (.026) (.037)
MAVE 0.284 0.607 0.664 0.681 0.693

(.147) (.073) (.052) (.054) (.044)
MDA 0.768 0.894 0.938 0.964 0.973

(.232) (.142) (.095) (.062) (.049)
SAVE 0.129 0.179 0.222 0.259 0.299

(.048) (.047) (.050) (.058) (.071)

Table 2: Average loss ‖Π̂−Π∗‖ of the estimators obtained by SAMM, MAVE and MDA procedures
in Example 2. The standard deviation is given in parentheses.

4.4 Example 3

For d = 5 we set f (x) = g(ϑ>x) with

g(x) = (1+ x1)(1+ x2)(1+ x3)

and ϑ1 = (1,0,0,0,0), ϑ2 = (0,1,0,0,0), ϑ3 = (0,0,1,0,0). We ran SAMM, MAVE, MDA and
SAVE procedures on the data generated by the model

Yi = f (Xi)+σ · εi, i = 1, . . . ,250,

1661

DALALYAN, JUDITSKY AND SPOKOINY

σ 200 150 100 50 25 10
SAMM 1st 0.227 0.177 0.141 0.119 0.113 0.106

(.092) (.075) (.055) (.051) (.048) (.043)
SAMM, Fnl 0.125 0.084 0.057 0.039 0.034 0.030

(.076) (.037) (.026) (.019) (.021) (.018)
MAVE 0.103 0.087 0.073 0.062 0.063 0.059

(.041) (.035) (.027) (.023) (.024) (.023)
MDA 0.854 0.850 0.867 0.862 0.858 0.873

(.167) (.173) (.157) (.159) (.171) (.159)
SAVE 0.510 0.511 0.496 0.505 0.496 0.490

(.208) (.204) (.207) (.197) (.196) (.199)

Table 3: Average loss ‖Π̂−Π∗‖ of the estimators obtained by SAMM and MAVE procedures in
Example 3. The standard deviation is given in parentheses.

where the design X is such that the coordinates (X (j)
i , j ≤ d, i ≤ n) are i.i.d. uniform in [0,20], and

the errors εi are i.i.d. standard Gaussian independent of the design.

Figure 3 shows that the qualities of both SAMM and MAVE deteriorate linearly in σ, when
σ increases. These results also demonstrate that, thanks to an efficient bias reduction, the SAMM
procedure outperforms MAVE when stochastic error is small, whereas MAVE works better than
SAMM in the case of dominating stochastic error (that is when σ is large).

20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

σ

‖Π̂
n
−

Π
∗ ‖

SAMM 1st
SAMM Fnl
MAVE

Figure 3: Average loss versus σ for the first step (solid line) and the final (dotted line) estimators
provided by SAMM and for the estimator based on MAVE (dashed line) in Example 3.

1662

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

4.5 Example 4 (Time Series)

Let now T1, . . . ,Tn+6 be generated by the autoregressive model

Ti+6 = f (Ti+5,Ti+4,Ti+3,Ti+2,Ti+1,Ti)+0.2 · εi, i = 1, . . . ,n,

with initial variables T1, . . . ,T6 being independent standard normal independent of the innovations
εi, which are i.i.d. standard normal as well. Let now f (x) = g(ϑ>x) with

g(x) = −1+0.6x1 − cos(0.5πx2)+ e−x2
3 ,

and

ϑ1 = (1,0,0,2,0,0)/
√

5,

ϑ2 = (0,0,1,0,0,2)/
√

5,

ϑ3 = (−2,2,−2,1,−1,1)/
√

15.

We ran SAMM and MAVE procedures on the data (Xi,Yi), i = 1, . . . ,250, where Yi = Ti+6 and
Xi = (Ti, . . . ,Ti+5)

>. The results of simulations reported in Table 4 show that the qualities of SAMM
and MAVE are comparable, with SAMM being slightly better. SAVE is better than MDA, but both
of them are far less accurate than SAMM and MAVE.

n 300 400 500 600
SAMM, 1st 0.391 0.351 0.334 0.293

(.172) (.161) (.137) (.132)
SAMM, Fnl 0.220 0.186 0.174 0.146

(.119) (.123) (.102) (.089)
MAVE 0.268 0.231 0.209 0.182

(.209) (.170) (.159) (.122)
MDA 0.914 0.915 0.913 0.912

(.115) (.107) (.119) (.119)
SAVE 0.617 0.515 0.428 0.369

(.200) (.184) (.151) (.138)

Table 4: Average loss ‖Π̂−Π∗‖ of the estimators obtained by SAMM, MAVE, MDA and SAVE
procedures in Example 4. The standard deviation is given in parentheses.

5. Proofs

Since the proof of the main result is carried out in several steps, we give a short road map for
guiding the reader throughout the proof. The main idea is to evaluate the accuracy of the first step
estimators of β` and, given the accuracy of the estimator at the step k, evaluate the accuracy of the
estimators at the step k + 1. This is done in Subsections 5.2 and 5.1. These results are based on a
maximal inequality proved in Subsection 5.4 and on some properties of the solution to (6) proved
in Subsection 5.5. The proof of Theorem 4 is presented in Subsection 5.3, while some technical
lemmas are postponed to Subsection 5.6.

1663

DALALYAN, JUDITSKY AND SPOKOINY

5.1 One Step Improvement

Let {δk} be a sequence of positive numbers to be chosen later and let Pk =
{

A∈Am∗ : tr(I−A)Π∗≤
δ2

k

}
. Recall that we use the following notation:

P∗
k = (I +ρ−2

k Π∗)−1/2, Z(k)
i j = (hkP∗

k)−1Xi j, w(k)
i j (U) = K

(
(Z(k)

i j)>UZ(k)
i j

)

N(k)
i (U) = ∑

j

w(k)
i j (U), V (k)

i (U) =
n

∑
j=1

(
1

Z(k)
i j

)(
1

Z(k)
i j

)>
w(k)

i j (U),

where U is a d×d symmetric positive-semidefinite matrix. Let us define Sk = (I +ρ−2
k Âk−1)

1/2 and
Uk = P∗

k S2
kP∗

k .

One easily checks that the estimator ∇̂ f k(Xi) is given by
(

f̂k(Xi)

∇̂ f k(Xi)

)
=
{ n

∑
j=1

(
1

Xi j

)(
1

Xi j

)>
w(k)

i j (Uk)
}−1 n

∑
j=1

Yj

(
1

Xi j

)
w(k)

i j (Uk),

Simple algebra yields
(

h−1
k f̂k(Xi)

P∗
k ∇̂ f k(Xi)

)
= h−1

k V (k)
i (Uk)

−1
n

∑
j=1

Yj

(
1

Z(k)
i j

)
w(k)

i j (Uk).

In order to study the behavior of ∇̂ f k, we will proceed in a first step as if Uk were deterministic. For
this reason, the notation

(
h−1

k f̄k(Xi)

P∗
k ∇ f k(Xi)

)
= h−1

k V (k)
i (Uk)

−1
n

∑
j=1

f (X j)

(
1

Z(k)
i j

)
w(k)

i j (Uk),

will be useful. In fact, ∇ f k(Xi) defined as above would be the expectation of ∇̂ f k(Xi) if Uk were
deterministic.

Proposition 9 Let assumptions (A1)-(A4) be fulfilled. If for some integer k ∈ [2,k(n)] the real
number αk = 2δ2

k−1ρ−2
k +2δk−1ρ−1

k is less than the constant α appearing in assumption (A3), then
there exist Gaussian vectors ξ∗1,k, . . . ,ξ

∗
L,k ∈ R

d such that max1≤`≤L E[|ξ∗`,k|2] ≤ c2
0σ2 and

P
(

max
1≤`≤L

∣∣∣P∗
k (β̂`,k −β`)−

ξ∗`,k√
nhk

∣∣∣≥ ϒk, Âk−1 ∈ Pk−1

)
≤ 2

n
,

where we used the notation ϒk =
√

CVCg(ρk +δk−1)
2hk +c1σαktn/(

√
nhk) with tn = 4+(3log(Ln)+

3
2 d2 logn)1/2, c0 = ψ̄(dCKCV)1/2 and c1 = 15ψ̄(C2

wC4
VC2

K +C2
VC2

K′)1/2.

Proof Let us start with evaluating the “bias” term |P∗
k (β̄`,k −β`)|, where the vectors β̄`,k are defined

as 1
n ∑n

i=1 ∇ f k(Xi)ψ`,i. According to the Cauchy-Schwarz inequality, it holds

∣∣P∗
k

(
β̄`,k −β`

)∣∣2 = n−2

∣∣∣∣
n

∑
i=1

P∗
k

(
∇ f k(Xi)−∇ f (Xi)

)
ψ`,i

∣∣∣∣
2

≤ n−2
n

∑
i=1

∣∣P∗
k

(
∇ f k(Xi)−∇ f (Xi)

)∣∣2
n

∑
i=1

ψ2
l,i

≤ max
i=1,...,n

∣∣P∗
k

(
∇ f k(Xi)−∇ f (Xi)

)∣∣2.

1664

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

Simple computations show that

∣∣P∗
k

(
∇ f k(Xi)−∇ f (Xi)

)∣∣≤
∣∣∣∣∣

(
h−1

k f̄k(Xi)

P∗
k ∇ f k(Xi)

)
−
(

h−1
k f (Xi)

P∗
k ∇ f (Xi)

)∣∣∣∣∣

=

∣∣∣∣∣h
−1
k V (k)

i (Uk)
−1

n

∑
j=1

f (X j)

(
1

Z(k)
i j

)
w(k)

i j (Uk)−
(

h−1
k f (Xi)

P∗
k ∇ f (Xi)

)∣∣∣∣∣

= h−1
k

∣∣∣V (k)
i (Uk)

−1
n

∑
j=1

ri j

(
1

Z(k)
i j

)
w(k)

i j (Uk)
∣∣∣ := b(Xi),

where ri j = f (X j) − f (Xi) − X>
i j ∇ f (Xi). Define v j = V (k)

i (Uk)
−1/2

(
1

Z(k)
i j

)√
w(k)

i j (Uk), λ j =

h−1
k ri j

√
w(k)

i j (Uk) and λ = (λ1, . . . ,λn)
>. Then ∑ j v jv>j = Id+1 and

b(Xi) =

∣∣∣∣V
(k)
i (Uk)

−1/2
n

∑
j=1

λ jv j

∣∣∣∣≤
∥∥V (k)

i (Uk)
−1/2

∥∥ · |λ|.

Note now that in view of Lemma 21, ‖Uk − I‖2 ≤ αk on the event {Âk−1 ∈ Pk−1}. Therefore,

b(Xi)
2 ≤ h−2

k

∥∥∥V (k)
i (Uk)

−1/2
∥∥∥

2
·

n

∑
j=1

r2
i jw

(k)
i j (Uk)

≤ h−2
k max

j:w(k)
i j (Uk)6=0

r2
i j

∥∥∥V (k)
i (Uk)

−1
∥∥∥ ·

n

∑
j=1

w(k)
i j (Uk) ≤CV h−2

k max
j:w(k)

i j (Uk)6=0
r2

i j .

Let us denote by Θ the (d×m∗) matrix having ϑl as lth column. Then Π∗ = ΘΘ> and therefore, in
view of (A1),

|ri j| = | f (X j)− f (Xi)−X>
i j ∇ f (Xi)|

= |g(Θ>X j)−g(Θ>Xi)− (Θ>Xi j)
>∇g(Θ>Xi)|

≤Cg|Θ>Xi j|2 = Cg|Π∗Xi j|2.

Since the weights w(k)
i j are defined via the kernel function K vanishing on the interval [1,∞[, we have

max
j:w(k)

i j (Uk)6=0
r2

i j = max{r2
i j : |SkXi j| ≤ hk}. By Corollary 19, the inequality |SkXi j| ≤ hk implies

|Π∗Xi j| ≤ (ρk + δk−1)hk. On the other hand, |Π∗Xi j| ≤ |Xi j| ≤ |SkXi j| ≤ hk. These estimates yield
|b(Xi)| ≤

√
CV Cg{(ρk +δk−1)∧1}2hk, and consequently,

max
`=1,...,L

∣∣P∗
k

(
β̄`,k −β`

)∣∣≤ max
i

b(Xi) ≤
√

CV Cg{(ρk +δk−1)∧1}2hk. (9)

Let us evaluate now the “stochastic” error P∗
k

(
β̂`,k − β̄`,k

)
. Define E1 as the d× (d +1) matrix (0 I),

where 0 stands for the vector all coordinates of which are zero and I is the d × d identity matrix.
Using this notation, we have P∗

k

(
β̂`,k − β̄`,k

)
= ∑n

j=1 c j,`(Uk)ε j, where

c j,`(Uk) =
1

nhk

n

∑
i=1

E1V (k)
i (Uk)

−1
(

1
Z(k)

i j

)
w(k)

i j (Uk)ψ`,i.

1665

DALALYAN, JUDITSKY AND SPOKOINY

Let us define ξ∗`,k =
√

nhk ∑n
j=1 c j,`(I)ε j. Clearly, the vectors ξ∗`,k are centered Gaussian and, in view

of Lemma 22, they satisfy E[|ξ∗`,k|2] ≤ nh2
kσ2 ∑ j |c j,`(I)|2 ≤ c2

0σ2.

By virtue of Lemma 21, on the event {Âk−1 ∈ Pk−1}, for any ` = 1, . . . ,L we have

∣∣∣P∗
k (β̂`,k − β̄`,k)−

ξ∗`,k√
nhk

∣∣∣≤ sup
‖U−I‖2≤αk

∣∣∣∣
n

∑
j=1

(
c j,`(U)− c j,`(I)

)
ε j

∣∣∣∣.

Set a j,`(U) = c j,`(U)− c j,`(I). Lemma 23 and inequality (12) imply that Proposition 14 can be
applied with κ0 = c1αk√

nhk
and κ1 = c1√

nhk
. Setting ε = 2αk/

√
n we get that the probability of the event

{
sup
U,`

∣∣∣∣
n

∑
j=1

(
c j,`(U)− c j,`(I)

)
ε j

∣∣∣∣≥
c1σαk(4+

√
3log(Ln)+3d2 log(

√
n))√

nhk

}

is less than 2/n. This completes the proof of the proposition.

Corollary 10 If nL ≥ 6 and the assumptions of Proposition 9 are fulfilled, then

P
(

max
`

∣∣P∗
k (β̂`,k −β`)

∣∣≥ ϒk +
σc0z√

nhk
, Âk−1 ∈ Pk−1

)
≤ Lze−

z2−1
2 .

In particular, if nL ≥ 6, the probability of the event
{

max
`

∣∣P∗
k (β̂`,k −β`)

∣∣≥ ϒk +
2σc0

√
log(Ln)√

nhk

}
∩{Âk−1 ∈ Pk−1}

does not exceed 3/n, where ϒk and c0 are defined in Proposition 9.

Proof In view of Lemma 7 in Hristache et al. (2001b), we have

P
(

max
`=1,...,L

∣∣ξ∗`,k
∣∣≥ zc0σ

)
≤

L

∑̀
=1

P
(∣∣ξ∗`,k

∣∣≥ zc0σ
)
≤ Lze−(z2−1)/2.

The choice z =
√

4log(nL) leads to the desired inequality provided that nL ≥ 6.

5.2 The Accuracy of the First-step Estimator

Since at the first step no information about the EDR subspace is available, we use the same band-
width in all directions, that is the local neighborhoods are balls (and not ellipsoids) of radius h.
Therefore the first step estimator β̂`,1 of the vector β` is the same as the one used in Hristache et al.
(2001a).

Proposition 11 Under assumptions (A1), (A3), (A4) and (8), for every ` ≤ L, there exists a d-
dimensional zero mean Gaussian vector ξ∗`,1 so that

∣∣∣β̂`,1 −β`−
ξ∗`,1√
nh1

∣∣∣≤ h1Cg

√
CV ,

and E|ξ∗`,1|2 ≤ dσ2CVCKψ̄2.

1666

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

Proof Since P∗
1 coincides by definition with the identity matrix, the arguments used in the proof

of Proposition 9 apply with S1 = I and therefore δ0 = α1 = 0. More precisely, in view of (9) and
ρ1 = 1, we have |β̄`,1 − β`| ≤ h1

√
CVCg for all `, while in view of the relation U1 = I, we have

β̂`,1 − β̄`,1 = 1√
nh1

ξ∗`,1. This yields the desired result.

Corollary 12 If nL ≥ 6 and the assertions of Proposition 11 hold, then

P
(

max
`

|β̂`,1 −β`| ≥ h1Cg

√
CV +

2
√

dCVCK log(nL)σψ̄
h1
√

n

)
≤ 1

n
.

Remark 13 In order that the kernel estimator of ∇ f (x) be consistent, the ball centered at x with
radius h1 should contain at least d points from {Xi, i = 1, . . . ,n}. If the design is regular, this means
that h1 is at least of order n−1/d . The optimization of the risk of β̂1,` with respect to h1 verifying
h1 ≥ n−1/d leads to h1 = Const.n−1/(4∨d). This motivates the choice of h1 presented in Section 3.

5.3 Proof of Theorem 4

Recall that at the first step we use the following values of parameters: Â0 = 0, ρ1 = 1 and h1 =
n−1/(d∨4). Let us denote

γ1 = h1Cg

√
CV +

2σψ̄
√

2dCVCK log(nL)

h1
√

n
, δ1 = 2γ1

√
µ∗,

and introduce the event Ω1 = {max` |β̂1,` − β`| ≤ γ1}. According to Corollary 12 the probability
of the event Ω1 is at least 1− n−1. In conjunction with Proposition 17, this implies that P(tr(I −
Â1)Π∗ ≤ δ2

1) ≥ 1−n−1.
Recall that for any integer k ∈ [2,k(n)]—where k(n) is the total number of iterations—we use the

notation ρk = aρρk−1, hk = ahhk−1 and αk = 2δ2
k−1ρ−2

k +2δk−1ρ−1
k . Let us introduce the additional

notation

γk =
1√
nhk

{√
nhkϒk +2σc0

√
log(nL), k < k(n),

√
nhkϒk +σc0z, k = k(n),

ζk = 2µ∗(γ2
kρ−2

k +
√

2γkρ−1
k Cg),

δk = 2γk

√
µ∗/
√

1−ζk,

Ωk = {max
`

|P∗
k (β̂`,k −β`)| ≤ γk}.

Combining Lemmas 24 and 25, we obtain P(tr(I− Âk−1)Π∗ > δ2
k−1)≤P(Ωc

k−1) and therefore, using
Corollary 10, we get

P
(
Ωc

k

)
≤ P

(
max

`
|P∗

k (β̂`,k −β`)| > γk, Âk−1 ∈ Pk−1

)
+P
(
Ωc

k−1

)

≤ 3
n

+P
(
Ωc

k−1

)
, ∀ k ≤ k(n)−1.

1667

DALALYAN, JUDITSKY AND SPOKOINY

Since P(Ωc
1) ≤ 1/n, it holds P(Ωc

k(n)−1) ≤ (3k(n)−5)/n and, by virtue of Corollary 10, P(Ωc
k(n)) ≤

Lze−(z2−1)/2 + 3k(n)−5
n . In conjunction with Lemma 25, this yields

P
(

tr(I − Âk(n))Π∗ > δ2
k(n)

)
≤ Lze−(z2−1)/2 +

3k(n)−5
n

. (10)

According to Lemma 24, we have δk(n)−2 ≤ ρk(n)−1, αk(n)−1 ≤ 4 and ζk(n)−1 ≤ 1/2. Consequently,
for n sufficiently large, we have

δk(n)−1 =
2
√

µ∗γk(n)−1√
1−ζk(n)−1

≤C

(
log(Ln)

n

)1/2

∨n−2/3∨m∗

and αk(n) ≤ 4δk(n)−1ρ−1
k(n) ≤C[(

√
log(Ln)(ρk(n)

√
n)−1)∨n−1/3∨m∗

]. Since hk(n) = 1 and (nρk(n))
−1 ≤

ρ2
k(n) = n−2/(3∨m∗), we infer that

γk(n) = Cg

√
CV (ρk(n) +δk(n)−1)

2 +
σ(zc0 + c1αk(n)tn)√

n

≤Ct2
n n−2/(3∨m∗) +

c0σz√
n

.

Therefore ζn := ζk(n) = O(γk(n)ρ−1
k(n)) tends to zero as n tends to infinity not slower than√

log(nL)n−1/(6∨m∗) and the assertion of the theorem follows from (10), the definition of δk(n) and
Lemma 20.

5.4 Maximal Inequality

The following result contains a well known maximal inequality for the maximum of a Gaussian
process. We include its proof for the completeness of exposition. Let Sd−1 denote the unit ball of
R

d .

Proposition 14 Let r be a positive number and let Γ be a finite set. Let functions a j,γ : R
p → R

d

obey the conditions

sup
γ∈Γ

sup
|u−u∗|≤r

n

∑
j=1

|a j,γ(u)|2 ≤ κ2
0,

sup
γ∈Γ

sup
|u−u∗|≤r

sup
e∈Sd−1

n

∑
j=1

∣∣∣∣
d
du

(e>a j,γ(u))

∣∣∣∣
2

≤ κ2
1

for some u∗ ∈ R
p. If the ε j’s are independent N (0,σ2)-distributed random variables, then

P
(

sup
γ∈Γ

sup
|u−u∗|≤r

∣∣∣∣
n

∑
j=1

a j,γ(u)ε j

∣∣∣∣> tσκ0 +2
√

nσκ1ε
)
≤ 2

n
,

where t =
√

3log(|Γ|(2r/ε)pn) and |Γ| is the cardinality of Γ.

1668

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

Proof Let Br be the ball {u : |u− u∗| ≤ r} ⊂ R
p and Σr,ε be an ε-net on Br such that for any

u ∈ Br there is an element ul ∈ Σr,ε such that |u− ul | ≤ ε. It is easy to see that such a net with
cardinality Nr,ε < (2r/ε)p can be constructed. For every u ∈ Br we denoteηγ(u) = ∑n

j=1 a j,γ(u)ε j.
Since E(|ηγ(u)|2) ≤ σ2κ2

0 for any γ and for any u, we have

P
(
|ηγ(ul)| > tσκ0

)
≤ P

(
|ηγ(ul)| > t

√
E(|ηγ(ul)|2)

)
≤ te−(t2−1)/2.

Thus we get

P
(

sup
γ∈Γ

sup
ul∈Σr,ε

∣∣ηγ(ul)
∣∣> tσκ0

)
≤ ∑

γ∈Γ

Nr,ε

∑
l=1

P
(∣∣ηγ(ul)

∣∣> tσκ0

)
≤ |Γ|Nr,εte

−(t2−1)/2.

Hence, if t =
√

3log(|Γ|Nr,εn), then P
(

supγ∈Γ supul∈Σr,ε

∣∣ηγ(ul)
∣∣> tσκ0

)
≤ 1/n. On the other hand,

for any u,u′ ∈ Br,

∣∣ηγ(u)−ηγ(u
′)
∣∣2 = sup

e∈Sd−1

∣∣e>
(
ηγ(u)−ηγ(u

′)
)∣∣2

≤ |u−u′|2 · sup
u∈Br

sup
e∈Sd−1

∣∣∣∣
d(e>ηγ)

du
(u)

∣∣∣∣
2

= |u−u′|2 · sup
u∈Br

sup
e∈Sd−1

∣∣∣∣
n

∑
j=1

d(e>a j,γ)

du
(u)ε j

∣∣∣∣
2

.

The Cauchy-Schwarz inequality yields

∣∣ηγ(u)−ηγ(u′)
∣∣2

|u−u′|2 ≤ sup
u∈Br

sup
e∈Sd−1

n

∑
j=1

∣∣∣∣
d(e>a j,γ)

du
(u)

∣∣∣∣
2 n

∑
j=1

ε2
j ≤ κ2

1

n

∑
j=1

ε2
j .

Since P
(

∑n
j=1 ε2

j > 4nσ2
)

is certainly less than n−1, we have

P
(

sup
γ∈Γ

sup
u∈Br

∣∣ηγ(u)
∣∣> tσκ0 +2

√
nσκ1ε

)

≤ P
(

sup
γ∈Γ

sup
ul∈Σr,ε

|ηγ(ul)|
tσκ0

> 1
)

+P
(

sup
γ∈Γ

sup
u∈Br

|ηγ(u)−ηγ(ul(u))|
2
√

nσκ1ε
> 1
)

≤ 1
n

+P
(

sup
u∈Br

κ2
1|u−ul(u)|2

n

∑
j=1

ε2
j > 4nσ2κ2

1ε2
)
≤ 2

n
,

and the assertion of proposition follows.

5.5 Properties of the Solution to (6)

We collect below some simple facts concerning the solution to the optimization problem (6). By
classical arguments, it is always possible to choose a measurable solution Â to (6). This measura-
bility will be assumed in the sequel.

1669

DALALYAN, JUDITSKY AND SPOKOINY

In Proposition 15, the case of general m (not necessarily equal to m∗) is considered. As we
explain below, this generality is useful for further developments of the method extending it to the
case of unknown structural dimension m∗.

The vectors β` are assumed to belong to a m∗-dimensional subspace S of R
d , but in this subsec-

tion we do not necessarily assume that β`s are defined by (4). In fact, we will apply the results of
this subsection to the vectors Π∗β̂`.

For every A ∈ Am∗ , let us define

R(A) = max
1≤`≤L

β̂>
` (I −A)β̂`, Âm = argmin

A∈Am

R(A),

R̂ (m) = min
A∈Am

√
R(A) =

√
R(Âm) = min

A∈Am

max
1≤`≤L

|(I −A)1/2β̂`|.

We also define

R ∗(m) = min
A∈Am

max
1≤`≤L

|(I −A)1/2β`|

and denote by A∗
m a minimizer of max` β>

` (I −A)β` over A ∈ Am. Note also that for every m ≥ m∗

the projector Π∗ belongs to Am. Therefore, we have A∗
m = Π∗ and R ∗(m) = 0 for every m ≥ m∗.

Proposition 15 Let B∗ =
{

β̄ = ∑` c`β` : ∑` |c`| ≤ 1
}

be the convex hull of vectors ±β`. If max` |β̂`−
β`| ≤ ε, then

R̂ (m) ≤ R ∗(m)+ ε,

max
β̄∈B∗

|(I − Âm)1/2β̄| ≤ R ∗(m)+2ε.

When m < m∗, we have also the lower bound R̂ (m) ≥ (R ∗(m)− ε)+.

Proof For every ` ∈ 1, . . . ,L, we have

|(I −A∗
m)1/2β̂`| ≤ |(I −A∗

m)1/2β`|+ |(I−A∗
m)1/2(β̂`−β`)|

≤ R ∗(m)+ |β̂`−β`| ≤ R ∗(m)+ ε.

Since Âm minimizes max` |(I −A)1/2β̂`| over A ∈ Am, we have

max
`

|(I − Âm)1/2β̂`| ≤ max
`

|(I −A∗
m)1/2β̂`| ≤ R ∗(m)+ ε.

Since Âm ∈ Am, we have 0 � (I − Âm)1/2 � I and consequently, for every `,

|(I − Âm)1/2β`| ≤ |(I− Âm)1/2β̂`|+ |(I− Âm)1/2(β`− β̂`)|
≤ |(I− Âm)1/2β̂`|+ |β`− β̂`| ≤ R ∗(m)+2ε.

The second inequality of the proposition follows now from |(I − Âm)1/2β̄| ≤ max` |(I − Âm)1/2β`|
for every β̄ ∈ B∗.

Let us prove the last assertion of the proposition. According to the definition of R ∗(m), for
every matrix A ∈ Am there exists an index `(A) such that |(I −A)1/2β`(A)| ≥ R ∗(m). In particular,

|(I− Âm)1/2β`(Âm)| ≥R ∗(m) and hence |(I− Âm)1/2β̂`(Âm)| ≥ |(I− Âm)1/2β`(Âm)|−|β̂`(Âm)−β`(Âm)| ≥
R ∗(m)− ε.

1670

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

Remark 16 Proposition 15 can be used for estimating the structural dimension m. Indeed, R̂ (m)≤
ε for m ≥ m∗ and R̂ (m) ≥ (R ∗(m)− ε)+ for m < m∗. Therefore, it is natural to search for the
smallest value m̂ of m such that the function R̂ (m) does not significantly decrease for m ≥ m̂. The
rigorous application of this heuristic argument is currently under investigation.

From now on, we assume that the structural dimension m∗ is known and we use the shortened
notation Â instead of Âm∗ .

Proposition 17 If the vectors β` satisfy (A2) and max` |β̂` −β`| ≤ ε, then tr(I − Â)Π∗ ≤ 4ε2µ∗ and
tr[(Â−Π∗)2] ≤ 8ε2µ∗.

Proof In view of the relations tr Â2 ≤ tr Â ≤ m∗ and tr(Π∗)2 = trΠ∗ = m∗, we have

tr(Â−Π∗)2 = tr(Â2 −Π∗)+2tr(I − Â)Π∗ ≤ 2| tr(I − Â)Π∗|.

Note also that the equality tr(I− Â)Π∗ = tr(I− Â)1/2Π∗(I− Â)1/2 implies that tr(I− Â)Π∗ ≥ 0. Now
condition (7) and Proposition 15 imply

tr(I − Â)Π∗ = tr(I − Â)1/2Π∗(I − Â)1/2

≤
m∗

∑
k=1

µk tr(I − Â)1/2β̄kβ̄>
k (I − Â)1/2

≤
m∗

∑
k=1

µkβ̄>
k (I − Â)β̄k ≤ (2ε)2

m∗

∑
k=1

µk

and the assertion follows.

Lemma 18 Let tr(I − Â)Π∗ ≤ δ2 for some δ > 0. Then for any x ∈ R
d

|Π∗x| ≤ |Â1/2x|+δ|x|.

Proof In view of the triangle inequality, |Π∗x| ≤ |Π∗Â1/2x|+ |Π∗(I − Â1/2)x|. On the other hand,

|Π∗(I − Â1/2)x|2 ≤ ‖Π∗(I − Â1/2)‖2
2 · |x|2 ≤ tr[Π∗(I − Â1/2)2Π∗] · |x|2.

For every A ∈ Am, it obviously holds (I −A1/2)2 = I − 2A1/2 + A � I −A, and hence, trΠ∗(I −
A1/2)2Π∗ ≤ trΠ∗(I −A)Π∗. Therefore,

trΠ∗(I − Â1/2)2Π∗ ≤ trΠ∗(I − Â)Π∗ = tr(I − Â)Π∗ ≤ δ2

yielding |Π∗x| ≤ |Π∗Â1/2x|+δ|x| ≤ |Â1/2x|+δ|x| as required.

Corollary 19 If for some ρ∈ (0,1) and for some x∈R
d , we have |(I+ρ−2Â)1/2x| ≤ h, then |Π∗x| ≤

(ρ+
√

tr(I − Â)Π∗)h.

1671

DALALYAN, JUDITSKY AND SPOKOINY

Proof The result follows from Lemma 18 and the inequalities |x| ≤ |(I + ρ−2Â)1/2x| ≤ h and
|Â1/2x| ≤ ρ|(I +ρ−2Â)1/2x| ≤ ρh.

Lemma 20 Let tr(I − Â)Π∗ ≤ δ2 for some δ ∈ [0,1) and let Π̂m∗ be the orthogonal projection
matrix in R

d onto the subspace spanned by the eigenvectors of Â corresponding to its largest m∗

eigenvalues. Then tr(I − Π̂m∗)Π∗ ≤ δ2/(1−δ2).

Proof Let λ̂ j and ϑ̂ j, j = 1, . . . ,d be respectively the eigenvalues and the eigenvectors of Â. Assume
that λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂d . Then Â = ∑d

j=1 λ̂ jϑ̂ jϑ̂>
j and Π̂m∗ = ∑m∗

j=1 ϑ̂ jϑ̂>
j . Moreover, ∑d

j=1 ϑ̂ jϑ̂>
j = I

since {ϑ̂1, . . . , ϑ̂d} is an orthonormal basis of R
d . This implies that

tr[ÂΠ∗] ≤ ∑
j≤m∗

λ̂ j tr[ϑ̂ jϑ̂>
j Π∗]+ λ̂m∗ ∑

j>m∗
tr[ϑ̂ jϑ̂>

j Π∗]

= ∑
j≤m∗

(λ̂ j − λ̂m∗) tr[ϑ̂ jϑ̂>
j Π∗]+ λ̂m∗ tr

[d

∑
j=1

ϑ̂ jϑ̂>
j Π∗

]

= ∑
j≤m∗

(λ̂ j − λ̂m∗) tr[ϑ̂ jϑ̂>
j Π∗]+m∗λ̂m∗ .

Since tr[ϑ̂ jϑ̂>
j Π∗] = |Π∗ϑ̂ j|2 ≤ 1, we get tr[ÂΠ∗] ≤ ∑ j≤m∗ λ̂ j. Taking into account the relations

∑ j≤d λ̂ j ≤ m∗, trΠ∗ = m∗ and (1− λ̂m∗+1)(I − Π̂m∗) � I − Â, we get λ̂m∗+1 ≤ m∗ −∑ j≤m∗ λ̂ j ≤
tr[(I − Â)Π∗] ≤ δ2 and therefore I − Π̂m∗ � (1− δ2)−1(I − Â). Consequently, tr[(I − Π̂m∗)Π∗] ≤
(1−δ2)−1 tr[(I− Â)Π∗] ≤ δ2/(1−δ2).

5.6 Technical Lemmas

This subsection contains five technical results. The first three lemmas have been used in the proof
of Proposition 9, whereas the two last lemmas have been used in the proof of Theorem 4.

Lemma 21 For every ρ ∈ (0,1] and for every A ∈ Am∗ we have

‖P∗
ρ(I +ρ−2A)P∗

ρ − I‖2 ≤ 2δ2
Aρ−2 +2δAρ−1,

where P∗
ρ = (I +ρ−2Π∗)−1/2 and δ2

A = tr[(I −A)Π∗].

Proof The inequality P∗
ρ � (I −Π∗)+ρΠ∗ implies that

ρ2
∥∥P∗

ρ(I +ρ−2A)P∗
ρ − I

∥∥
2 =

∥∥P∗
ρ(A−Π∗)P∗

ρ
∥∥

2

≤ ρ2
∥∥Π∗(A−Π∗)Π∗∥∥

2 +
∥∥(I −Π∗)(A−Π∗)(I −Π∗)

∥∥
2

+2ρ
∥∥Π∗(A−Π∗)(I −Π∗)

∥∥
2.

Since ‖B‖2
2 = trBB> ≤ (tr(BB>)1/2)2 for any matrix B, it holds

∥∥Π∗(A−Π∗)Π∗∥∥
2 =

∥∥Π∗(I −A)Π∗∥∥
2

≤ tr Π∗(I −A)Π∗ = tr(I −A)Π∗ = δ2
A.

1672

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

By similar arguments one checks that

∥∥(I −Π∗)(A−Π∗)(I −Π∗)
∥∥

2 =
∥∥(I −Π∗)A(I −Π∗)

∥∥
2 ≤ tr(I −Π∗)A

= trA− trΠ∗ + trΠ∗(I −A) ≤ δ2
A,

and

∥∥Π∗(A−Π∗)(I −Π∗)
∥∥

2 ≤
∥∥Π∗(A−Π∗)

∥∥
2 =

∥∥Π∗(I −A)
∥∥

2

≤
∥∥Π∗(I −A)1/2

∥∥
2 = (trΠ∗(I −A)Π∗)1/2

= (tr(I −A)Π∗)1/2 = δA.

This leads to the inequality ‖P∗
ρ(I +ρ−2A)P∗

ρ − I‖2 ≤ δ2
A(1+ρ−2)+2δAρ−1, which, in view of the

condition ρ ≤ 1, yields the assertion of the lemma.

Lemma 22 If ψ`s and U satisfy (8) and (A3), then ∑n
j=1 |c j,`(U)|2 ≤ dCKCV ψ̄2/(nh2

k).

Proof Simple computations yield

n

∑
j=1

∣∣∣∣E1V (k)
i (U)−1

(
1

Z(k)
i j

)∣∣∣∣
2

w(k)
i j (U) = tr(E1V (k)

i (U)−1E1) ≤
dCV

N(k)
i (U)

. (11)

Hence, we have

n

∑
j=1

|c j,`|2 =
1

n2h2
k

n

∑
j=1

∣∣∣∣
n

∑
i=1

E1V (k)
i (Uk)

−1
(

1
Z(k)

i j

)
w(k)

i j (U)ψ`,i

∣∣∣∣
2

≤ ψ̄2

n2h2
k

n

∑
j=1

(n

∑
i=1

w(k)
i j (U)

N(k)
i (U)

)(n

∑
i=1

∣∣∣∣E1V (k)
i (U)−1

(
1

Z(k)
i j

)∣∣∣∣
2

N(k)
i (U)w(k)

i j (U)

)

≤ CKψ̄2

n2h2
k

n

∑
j=1

n

∑
i=1

∣∣∣∣E1V (k)
i (U)−1

(
1

Z(k)
i j

)∣∣∣∣
2

N(k)
i (U)w(k)

i j (U).

Interchanging the order of summation and using inequality (11) we get the desired result.

Lemma 23 If (A3) and (8) are fulfilled, then, for any e ∈ Sd−1, we have

sup
U :‖U−I‖2≤1/2

max
j=1,...,n

∥∥∥∥
d

dU
(e>c j,`)(U)

∥∥∥∥
2

2
≤ 24C2

wC4
VC2

Kψ̄2

n2h2
k

+
216C2

VC2
K′ψ̄2

n2h2
k

,

where d
dU (e>c j,`)(U) is the d ×d matrix with entries ∂e>c j,`(U)

∂Upq
.

1673

DALALYAN, JUDITSKY AND SPOKOINY

Proof In order to ease the notation, we will remove the superscripts (k) in this proof. Thus, we will

write Vi, wi j and Zi j instead of V (k)
i , w(k)

i j and Z(k)
i j . By definition of c j,` we have

∥∥∥∥
d

dU
(e>c j,`)(U)

∥∥∥∥
2

2
≤ 2

∥∥∥∥
1

nhk

n

∑
i=1

[
d

dU
ẽ>V−1

i (U)

(
1

Zi j

)]
wi j(U)ψ`,i

∥∥∥∥
2

2

+2

∥∥∥∥
1

nhk

n

∑
i=1

ẽ>V−1
i (U)

(
1

Zi j

)
dwi j(U)

dU
ψ`,i

∥∥∥∥
2

2

= ∆1 +∆2,

where ẽ = E>
1 e satisfies |ẽ| ≤ |e|= 1. One checks that d wi j(U)/dU = w̄i j(U)Zi jZ>

i j , where we used
the notation w̄i j(U) = K′(Z>

i jUZi j). On the one hand, |w̄i j(U)| · |Zi j|2 = 0 if Z>
i jUZi j > 1. On the

other hand, the inequality ‖I −U‖2 ≤ 1/2 implies that

|Zi j|2 ≤ Z>
i jUZi j + |Z>

i j (I −U)Zi j| ≤ Z>
i jUZi j + |Zi j|2‖I −U‖2 ≤ Z>

i jUZi j + |Zi j|2/2.

Therefore |Zi j|2 ≤ 2 for all Zi j verifying Z>
i jUZi j ≤ 1. Hence, ‖d wi j(U)/dU‖2 = |w̄i j(U)| · |Zi j|2 ≤

2|w̄i j(U)| and we get

∆2 ≤
8ψ̄2

n2h2
k

(n

∑
i=1

∣∣∣V−1
i (U)

(
1

Zi j

)
w̄i j(U)

∣∣∣
)2

≤ 24ψ̄2C2
VC2

K′

n2h2
k

.

In order to estimate the term ∆1, remark that the differentiation (with respect to Upq) of the identity
V−1

i (U)Vi(U) = Id+1 yields

∂V−1
i

∂Upq
(U) = −V−1

i (U)
∂Vi

∂Upq
(U)V−1

i (U).

Simple computations show that

∂Vi

∂Upq
(U) =

n

∑
j=1

(
1

Zi j

)(
1

Zi j

)> ∂
∂Upq

wi j(U)

=
n

∑
j=1

(
1

Zi j

)(
1

Zi j

)>
w̄i j(U)(Zi j)p(Zi j)q.

Hence, for any a1,a2 ∈ R
d+1,

da>1 V−1
i (U)a2

dU
=

n

∑
j=1

a>1 V−1
i (U)

(
1

Zi j

)(
1

Zi j

)>
V−1

i (U)a2 w̄i j(U)Zi jZ
>
i j .

This relation, combined with the estimate |Zi j|2 ≤ 2 for all i, j such that w̄i j 6= 0, implies the norm
estimate

∥∥∥∥
da>1 V−1

i (U)a2

dU

∥∥∥∥
2
≤ 2

n

∑
j=1

∣∣∣∣a>1 V−1
i (U)

(
1

Zi j

)(
1

Zi j

)>
V−1

i (U)a2 w̄i j(U)

∣∣∣∣

≤ 6|a1| |a2|
n

∑
j=1

∥∥V−1
i (U)

∥∥2|w̄i j(U)|

≤ 6CwC2
V |a1| |a2|Ni(U)−1.

1674

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

This yields ∆1 ≤ 216C2
wC4

VC2
Kψ̄2/(nhk)

2 and the assertion of the lemma follows.

Note that under the assumptions of Lemma 23, for some Ũ satisfying ‖Ũ − I‖2 ≤ ‖U − I‖2, it
holds

|c j,`(U)− c j,`(I)| = sup
e∈Sd−1

|e>(c j,`(U)− c j,`(I))|

= sup
e∈Sd−1

|vec
[d e>c j,`

dU
(Ũ)
]>

vec(U − I)|

≤ sup
e∈Sd−1

∥∥∥d e>c j,`

dU
(Ũ)
∥∥∥

2
‖U − I‖2

≤
√

216 ψ̄
nhk

(C2
wC4

VC2
K +C2

VC2
K′)1/2‖U − I‖2, (12)

where vec(·) is a matrix operator that stacks the matrix’s columns one by one. In other terms, for
every d ×d matrix M, vec(M) = (m>

•,1, . . . ,m
>
•,d)

> where m•, j stands for the jth column of M.

Lemma 24 There exists an integer n0 ≥ 0 such that, for every n ≥ n0 and for all k ∈ {2, . . . ,k(n)},
we have δk−1 ≤ ρk, αk ≤ 4 and ζk ≤ 1/2.

Proof In view of the relations C0n−1/(d∨4) = ρ1h1 and ρk(n)hk(n) ≥C2n−1/3, the sequence

sn = 4
√

CVCgh1 +
4σ(c0

√
log(Ln)+ c1tn)√

nρk(n)hk(n)

tends to zero as n → ∞.
We do now induction on k. Since sn → 0 as n → ∞ and γ1 ≤ sn, the inequality δ1 = 2γ1

√
µ∗ ≤

1/
√

2 = ρ1/
√

2 is true for sufficiently large values of n. Let us prove the implication

δk−1 ≤ ρk−1/
√

2 =⇒
{

ζk ≤ 1/2,

δk ≤ ρk/
√

2.

Since 1/
√

2 ≤ e−1/6, the inequality δk−1 ≤ ρk/
√

2 entails that δk−1 ≤ ρk and therefore αk ≤ 4. By
our choice of ah and aρ, we have ρ1h1 ≥ ρkhk ≥ ρk(n)hk(n). Therefore,

γk

ρk
≤ 4
√

CVCgρkhk +
4σ(c0

√
log(Ln)+ c1tn)√

nρkhk

≤ 4
√

CVCgh1 +
4σ(c0

√
log(Ln)+ c1tn)√

nρk(n)hk(n)
= sn.

Thus, for n large enough, ζk ≤ 1/2 and γk ≤ ρk/4. This implies that δk = 2γk(1−ζk)
−1/2 ≤ ρk/

√
2.

By induction we infer that δk−1 ≤ ρk−1/
√

2 ≤ ρk and ζk ≤ 1/2 for any k = 2, . . . ,k(n)−1. This
completes the proof of the lemma.

1675

DALALYAN, JUDITSKY AND SPOKOINY

Lemma 25 If k > 2 and ζk−1 < 1 then Ωk−1 ⊂ {tr(I − Âk−1)Π∗ ≤ δ2
k−1}.

Proof Let us denote by β̃` the vector Π∗β̂`,k−1, which clearly belongs to S . It holds

|P∗
k−1(β̂`,k−1 −β`)| ≤ γk−1 =⇒

{
|β̂`,k−1 − β̃`| ≤ γk−1,

|β̃`−β`| ≤
√

2γk−1/ρk−1.

Set B = ∑m∗
i=1 µiβ̄iβ̄>

i and B̃ = ∑m∗
i=1 µi

¯̃βi
¯̃β>

i , where ¯̃βi = ∑` c`β̃` if β̄i = ∑` c`β`, see assumption (A2).

Since ∑` |c`| ≤ 1, we have |β̄i| ≤ max` |β`| ≤ ‖∇ f‖∞ and |β̄i − ¯̃βi| ≤ max` |β`− β̃`|. Therefore

‖B− B̃‖ ≤
m∗

∑
i=1

µi‖β̄iβ̄>
i − ¯̃βi

¯̃β>
i ‖ ≤ µ∗ max

i
‖β̄iβ̄>

i − ¯̃βi
¯̃β>

i ‖

≤ µ∗ max
i

(
|β̄i − ¯̃βi|2 +2|β̄i| · |β̄i − ¯̃βi|

)

≤ µ∗
(
2γ2

k−1ρ−2
k−1 +2

√
2γk−1ρ−1

k−1 max
`

|β`|
)

= ζk−1

and hence, for every unit vector v ∈ S , v>B̃v ≥
(
v>Bv −

∣∣v>Bv − v>B̃v
∣∣) ≥ v>Bv −‖B − B̃‖ ≥

1−ζk−1. This inequality implies that Π∗ � (1−ζk−1)
−1B̃. Thus the vectors β̃` satisfy assumption

(A2) with µ∗ replaced by µ∗/(1− ζk−1). Applying Proposition 17 to these vectors we obtain the
assertion of the lemma.

Acknowledgments

Much of this work has been carried out when the first author was visiting the Weierstrass Institute
for Applied Analysis and Stochastics. The financial support from the institute and the hospitality of
Professor Spokoiny are gratefully acknowledged.

The authors are grateful to the referees for their constructive comments, which have greatly
improved the paper.

References

P. Bickel, C. Klaassen, Y. Ritov, and J. Wellner. Efficient and Adaptive Estimation for Semipara-
metric Models. Princeton University Press, Springer, New York, 1998.

E. Bura. Using linear smoothers to assess the structural dimension of regressions. Statistica Sinica,
13(1):143–162, 2003.

E. Bura and R. D. Cook. Estimating the structural dimension of regressions via parametric inverse
regression. J. R. Stat. Soc. Ser. B Stat. Methodol., 63(2):393–410, 2001a.

E. Bura and R. D. Cook. Extending sliced inverse regression: The weighted chi-squared test. J.
Amer. Statist. Assoc., 96(455):996–1003, 2001b.

K. S. Chan, M. C. Li, and H. Tong. Partially linear reduced-rank regression. Technical report,
available at www.stat.uiowa.edu/techrep/tr328.pdf, 2004.

1676

ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

R. D. Cook. Regression graphics. Ideas for studying regressions through graphics. Wiley Series in
Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1998.

R. D. Cook and B. Li. Dimension reduction for conditional mean in regression. Ann. Statist., 30(2):
455–474, 2002.

R. D. Cook and B. Li. Determining the dimension of iterative hessian transformation. Ann. Statist.,
32(6):2501–2531, 2004.

R. D. Cook and L. Ni. Sufficient dimension reduction via inverse regression: a minimum discrep-
ancy approach. J. Amer. Statist. Assoc., 100(470):410–428, 2005.

R. D. Cook and L. Ni. Using intraslice covariances for improved estimation of the central subspace
in regression. Biometrika, 93(1):65–74, 2006.

R. D. Cook and S. Weisberg. Applied Regression Including Computing and Graphics. Hoboken NJ:
John Wiley, 1999.

R. D. Cook and S. Weisberg. Discussion of “sliced inverse regression for dimension reduction” by
K. C. Li. J. Amer. Statist. Assoc., 86(414):328–332, 1991.

M. Delecroix, M. Hristache, and V. Patilea. On semiparametric m-estimation in single-index regres-
sion. J. Statist. Plann. Inference, 136(3):730–769, 2006.

J. Fan and I. Gijbels. Local polynomial modelling and its applications. Monographs on Statistics
and Applied Probability, 66, Chapman & Hall, London, 1996.

M. Hristache, A. Juditsky, J. Polzehl, and V. Spokoiny. Structure adaptive approach for dimension
reduction. Ann. Statist., 29(6):1537–1566, 2001a.

M. Hristache, A. Juditsky, and V Spokoiny. Direct estimation of the index coefficient in a single-
index model. Ann. Statist., 29(3):595–623, 2001b.

K.C. Li. On principal hessian directions for data visualization and dimension reduction: another
application of stein’s lemma. J. Amer. Statist. Assoc., 87(420):1025–1039, 1992.

K.C. Li. Sliced inverse regression for dimension reduction. with discussion and a rejoinder by the
author. J. Amer. Statist. Assoc., 86(414):316–342, 1991.

K.C. Li and N. Duan. Regression analysis under link violation. Ann. Statist., 17(3):1009–1052,
1989.

L. Li. Sparse sufficient dimension reduction. Biometrika, 94(3):603–613, 2007.

L. Ni, R. D. Cook, and C.-L. Tsai. A note on shrinkage sliced inverse regression. Biometrika, 92
(1):242–247, 2005.

A. Samarov, V. Spokoiny, and C. Vial. Component identification and estimation in nonlinear high-
dimensional regression models by structural adaptation. J. Amer. Statist. Assoc., 100(470):429–
445, 2005.

1677

DALALYAN, JUDITSKY AND SPOKOINY

H. Wang, L. Ni, and C.-L. Tsai. Improving dimension reduction via contour- projection. Statistica
Sinica, 18:299–311, 2008.

Y. Xia. A constructive approach to the estimation of dimension reduction directions. Ann. Statist.,
35(6):2654–2690, 2007.

Y. Xia, H. Tong, W. K. Li, and L. X. Zhu. An adaptive estimation of dimension reduction space. J.
R. Stat. Soc. Ser. B Stat. Methodol., 64(3):363–410, 2002.

X. Yin and R. D. Cook. Direction estimation in single-index regressions. Biometrika, 92(2):371–
384, 2005.

X. Yin and R. D. Cook. Dimension reduction via marginal high moments in regression. Statist.
Probab. Lett., 76(4):393–400, 2006.

1678

Journal of Machine Learning Research 9 (2008) 1679-1709 Submitted 6/07; Revised 12/07; Published 8/08

Value Function Based Reinforcement Learning in
Changing Markovian Environments

Balázs Csanád Csáji BALAZS.CSAJI@SZTAKI.HU

László Monostori∗ LASZLO.MONOSTORI@SZTAKI.HU

Computer and Automation Research Institute
Hungarian Academy of Sciences
Kende utca 13–17, Budapest, H–1111, Hungary

Editor: Sridhar Mahadevan

Abstract

The paper investigates the possibility of applying value function based reinforcement learning (RL)
methods in cases when the environment may change over time. First, theorems are presented which
show that the optimal value function of a discounted Markov decision process (MDP) Lipschitz
continuously depends on the immediate-cost function and the transition-probability function. De-
pendence on the discount factor is also analyzed and shown to be non-Lipschitz. Afterwards, the
concept of (ε,δ)-MDPs is introduced, which is a generalization of MDPs and ε-MDPs. In this
model the environment may change over time, more precisely, the transition function and the cost
function may vary from time to time, but the changes must be bounded in the limit. Then, learning
algorithms in changing environments are analyzed. A general relaxed convergence theorem for
stochastic iterative algorithms is presented. We also demonstrate the results through three classical
RL methods: asynchronous value iteration, Q-learning and temporal difference learning. Finally,
some numerical experiments concerning changing environments are presented.

Keywords: Markov decision processes, reinforcement learning, changing environments, (ε,δ)-
MDPs, value function bounds, stochastic iterative algorithms

1. Introduction

Stochastic control problems are often modeled by Markov decision processes (MDPs) that con-
stitute a fundamental tool for computational learning theory. The theory of MDPs has grown ex-
tensively since Bellman introduced the discrete stochastic variant of the optimal control problem
in 1957. These kinds of stochastic optimization problems have great importance in diverse fields,
such as engineering, manufacturing, medicine, finance or social sciences. Several solution methods
are known, for example, from the field of [neuro-]dynamic programming (NDP) or reinforcement
learning (RL), which compute or approximate the optimal control policy of an MDP. These meth-
ods succeeded in solving many different problems, such as transportation and inventory control (Van
Roy et al., 1996), channel allocation (Singh and Bertsekas, 1997), robotic control (Kalmár et al.,
1998), production scheduling (Csáji and Monostori, 2006), logical games and problems from finan-
cial mathematics. Many applications of RL and NDP methods are also considered by the textbooks
of Bertsekas and Tsitsiklis (1996), Sutton and Barto (1998) as well as Feinberg and Shwartz (2002).

∗. Also faculty in Mechanical Engineering at the Budapest University of Technology and Economics.

c©2008 Balázs Csanád Csáji and László Monostori.

CSÁJI AND MONOSTORI

The dynamics of (Markovian) control problems can often be formulated as follows:

xt+1 = f (xt ,at ,wt), (1)

where xt is the state of the system at time t ∈ N, at is a control action and wt is some disturbance.
There is also a cost function g(xt ,at) and the aim is to find an optimal control policy that minimizes
the [discounted] costs over time (the next section will contain the basic definitions). In many appli-
cations the calculation of a control policy should be fast and, additionally, environmental changes
should also be taken into account. These two criteria are against each other. In most control appli-
cations during the computation of a control policy the system uses a model of the environment. The
dynamics of (1) can be modeled with an MDP, but what happens when the model is wrong (e.g., if
the transition function is incorrect) or the dynamics have changed? The changing of the dynamics
can also be modeled as an MDP, however, including environmental changes as a higher level MDP
very likely leads to problems which do not have any practically efficient solution methods.

The paper argues that if the model was “close” to the environment, then a “good” policy based
on the model cannot be arbitrarily “wrong” from the viewpoint of the environment and, moreover,
“slight” changes in the environment result only in “slight” changes in the optimal cost-to-go func-
tion. More precisely, the optimal value function of an MDP depends Lipschitz continuously on the
cost function and the transition probabilities. Applying this result, the concept of (ε,δ)-MDPs is in-
troduced, in which these functions are allowed to vary over time, as long as the cumulative changes
remain bounded in the limit.

Afterwards, a general framework for analyzing stochastic iterative algorithms is presented. A
novelty of our approach is that we allow the value function update operator to be time-dependent.
Then, we apply that framework to deduce an approximate convergence theorem for time-dependent
stochastic iterative algorithms. Later, with the help of this general theorem, we show relaxed conver-
gence properties (more precisely, κ-approximation) for value function based reinforcement learning
methods working in (ε,δ)-MDPs.

The main contributions of the paper can be summarized as follows:

1. We show that the optimal value function of a discounted MDP Lipschitz continuously depends
on the immediate-cost function (Theorem 12). This result was already known for the case
of transition-probability functions (Müller, 1996; Kalmár et al., 1998), however, we present
an improved bound for this case, as well (Theorem 11). We also present value function
bounds (Theorem 13) for the case of changes in the discount factor and demonstrate that this
dependence is not Lipschitz continuous.

2. In order to study changing environments, we introduce (ε,δ)-MDPs (Definition 17) that are
generalizations of MDPs and ε-MDPs (Kalmár et al., 1998; Szita et al., 2002). In this model
the transition function and the cost function may change over time, provided that the accu-
mulated changes remain bounded in the limit. We show (Lemma 18) that potential changes
in the discount factor can be incorporated into the immediate-cost function, thus, we do not
have to consider discount factor changes.

3. We investigate stochastic iterative algorithms where the value function operator may change
over time. A relaxed convergence theorem for this kind of algorithm is presented (Theorem
20). As a corollary, we get an approximation theorem for value function based reinforcement
learning methods in (ε,δ)-MDPs (Corollary 21).

1680

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

4. Furthermore, we illustrate our results through three classical RL algorithms. Relaxed conver-
gence properties in (ε,δ)-MDPs for asynchronous value iteration, Q-learning and temporal
difference learning are deduced. Later, we show that our approach could also be applied to
investigate approximate dynamic programming methods.

5. We also present numerical experiments which highlight some features of working in vary-
ing environments. First, two simple stochastic iterative algorithms, a “well-behaving” and a
“pathological” one, are shown. Regarding learning, we illustrate the effects of environmental
changes through two problems: scheduling and grid world.

2. Definitions and Preliminaries

Sequential decision making under the presence of uncertainties is often modeled by MDPs (Bert-
sekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Feinberg and Shwartz, 2002). This section
contains the basic definitions, the applied notations and some preliminaries.

Definition 1 By a (finite, discrete-time, stationary, fully observable) Markov decision process (MDP)
we mean a stochastic system characterized by a 6-tuple 〈X,A,A , p,g,α〉, where the components
are as follows: X is a finite set of discrete states and A is a finite set of control actions. Mapping
A : X → P (A) is the availability function that renders a set of actions available to each state where
P denotes the power set. The transition function is given by p : X×A → ∆(X), where ∆(X) is the
set of all probability distributions over X. Let p(y |x,a) denote the probability of arrival at state y
after executing action a ∈ A(x) in state x. The immediate-cost function is defined by g : X×A → R,
where g(x,a) is the cost of taking action a in state x. Finally, α ∈ [0,1) denotes the discount rate.

An interpretation of an MDP can be given, which viewpoint is often taken in RL, if we consider
an agent that acts in an uncertain environment. The agent receives information about the state of the
environment x, at each state x the agent is allowed to choose an action a ∈ A(x). After the action
is selected, the environment moves to the next state according to the probability distribution p(x,a)
and the decision-maker collects its one-step cost, g(x,a). The aim of the agent is to find an optimal
behavior (policy), such that applying this strategy minimizes the expected cumulative costs.

Definition 2 A (stationary, Markovian) control policy determines the action to take in each state.
A deterministic policy, π : X → A, is simply a function from states to control actions. A randomized
policy, π : X → ∆(A), is a function from states to probability distributions over actions. We denote
the probability of executing action a in state x by π(x)(a) or, for short, by π(x,a). Unless indicated
otherwise, we consider randomized policies.

For any x̃0 ∈ ∆(X) initial probability distribution of the states, the transition probabilities p
together with a control policy π completely determine the progress of the system in a stochastic
sense, namely, they define a homogeneous Markov chain on X,

x̃t+1 = P(π)x̃t ,

where x̃t is the state probability distribution vector of the system at time t and P(π) denotes the
probability transition matrix induced by control policy π,

[P(π)]x,y = ∑
a∈A

p(y |x,a)π(x,a).

1681

CSÁJI AND MONOSTORI

Definition 3 The value or cost-to-go function of a policy π is a function from states to costs, Jπ :
X → R. Function Jπ(x) gives the expected value of the cumulative (discounted) costs when the
system is in state x and it follows policy π thereafter,

Jπ(x) = E

[
N

∑
t=0

αtg(Xt ,A
π
t)

∣∣∣∣ X0 = x

]
, (2)

where Xt and Aπ
t are random variables, Aπ

t is selected according to control policy π and the distri-
bution of Xt+1 is p(Xt ,Aπ

t). The horizon of the problem is denoted by N ∈N∪{∞}. Unless indicated
otherwise, we will always assume that the horizon is infinite, N = ∞.

Definition 4 We say that π1 ≤ π2 if and only if ∀x ∈ X : Jπ1(x) ≤ Jπ2(x). A control policy is (uni-
formly) optimal if it is less than or equal to all other control policies.

There always exists at least one optimal policy (Sutton and Barto, 1998). Although there may
be many optimal policies, they all share the same unique optimal cost-to-go function, denoted by
J∗. This function must satisfy the Bellman optimality equation (Bertsekas and Tsitsiklis, 1996),
T J∗ = J∗, where T is the Bellman operator, defined for all x ∈ X, as

(T J)(x) = min
a∈A(x)

[
g(x,a)+α ∑

y∈X

p(y |x,a)J(y)
]
.

Definition 5 We say that function f : X → Y , where X , Y are normed spaces, is Lipschitz continu-
ous if there exists a β ≥ 0 such that ∀x1,x2 ∈ X : ‖ f (x1)− f (x2)‖Y ≤ β‖x1 − x2‖X , where ‖·‖X and
‖·‖Y denote the norm of X and Y , respectively. The smallest such β is called the Lipschitz constant
of f . Henceforth, assume that X = Y . If the Lipschitz constant β < 1, then the function is called a
contraction. A mapping is called a pseudo-contraction if there exists an x∗ ∈ X and a β ≥ 0 such
that ∀x ∈ X , we have ‖ f (x)− x∗‖X ≤ β‖x− x∗‖X .

Naturally, every contraction mapping is also a pseudo-contraction, however, the opposite is not
true. The pseudo-contraction condition implies that x∗ is the fixed point of function f , namely,
f (x∗) = x∗, moreover, x∗ is unique, thus, f cannot have other fixed points.

It is known that the Bellman operator is a supremum norm contraction with Lipschitz constant
α. In case we consider stochastic shortest path (SSP) problems, which arise if the MDP has an
absorbing terminal (goal) state, then the Bellman operator becomes a pseudo-contraction in the
weighted supremum norm (Bertsekas and Tsitsiklis, 1996).

From a given value function J, it is straightforward to get a policy, for example, by applying a
greedy and deterministic policy (w.r.t. J), that always selects actions with minimal costs,

π(x) ∈ argmin
a∈A(x)

[
g(x,a)+α ∑

y∈X

p(y |x,a)J(y)
]
.

Similarly to the definition of Jπ, one can define action-value functions of control polices,

Qπ(x,a) = E

[
N

∑
t=0

αtg(Xt ,A
π
t)

∣∣∣∣ X0 = x,Aπ
0 = a

]
,

1682

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

where the notations are the same as in (2). MDPs have an extensively studied theory and there exist
a lot of exact and approximate solution methods, for example, value iteration, policy iteration, the
Gauss-Seidel method, Q-learning, Q(λ), SARSA and TD(λ)—temporal difference learning (Bert-
sekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Feinberg and Shwartz, 2002). Most of these
reinforcement learning algorithms work by iteratively approximating the optimal value function
and typically consider stationary environments.

If J is “close” to J∗, then the greedy policy with one-stage lookahead based on J will also be
“close” to an optimal policy, as it was proven by Bertsekas and Tsitsiklis (1996):

Theorem 6 Let M be a discounted MDP and J is an arbitrary value function. The value function
of the greedy policy based on J is denoted by Jπ. Then, we have

‖Jπ − J∗‖∞ ≤
2α

1−α
‖J− J∗‖∞ ,

where ‖·‖∞ denotes the supremum norm, namely ‖ f‖∞ = sup{| f (x)| : x ∈ domain(f)}. Moreover,
there exists an ε > 0 such that if ‖J− J∗‖∞ < ε then J∗ = Jπ.

Consequently, if we could obtain a good approximation of the optimal value function, then we
immediately had a good control policy, as well, for example, the greedy policy with respect to our
approximate value function. Therefore, the main question for most RL approaches is that how a
good approximation of the optimal value function could be achieved.

3. Asymptotic Bounds for Generalized Value Iteration

In this section we will briefly overview a unified framework to analyze value function based rein-
forcement learning algorithms. We will use this approach later when we prove convergence prop-
erties in changing environments. The theory presented in this section was developed by Szepesvári
and Littman (1999) and was extended by Szita et al. (2002).

3.1 Generalized Value Functions and Approximate Convergence

Throughout the paper we denote the set of value functions by V which contains, in general, all
bounded real-valued functions over an arbitrary set X , for example, X = X, in the case of state-
value functions, or X = X×A, in the case of action-value functions. Note that the set of value
functions, V = B(X), where B(X) denotes the set of all bounded real-valued functions over set X ,
is a normed space, for example, with the supremum norm. Naturally, bounded functions constitute
no real restriction in case of analyzing finite MDPs.

Definition 7 We say that a sequence of random variables, denoted by Xt , κ-approximates random
variable X with κ ≥ 0, in a given norm, if we have

P

(
limsup

t→∞
‖Xt −X‖ ≤ κ

)
= 1. (3)

Hence, the “meaning” of this definition is that sequence Xt converges almost surely to an environ-
ment of X and the radius of this environment is less than or equal to a given constant κ. Naturally,
this definition is weaker (more general) than the probability one convergence, which arises as a
special case, when κ = 0. In the paper we will always consider convergence in the supremum norm.

1683

CSÁJI AND MONOSTORI

3.2 Relaxed Convergence of Generalized Value Iteration

A general form of value iteration type algorithms can be given as follows,

Vt+1 = Ht(Vt ,Vt),

where Ht is a random operator on V ×V →V (Szepesvári and Littman, 1999). Consider, for exam-
ple, the SARSA (state-action-reward-state-action) algorithm which is a model-free policy evaluation
method. It aims at finding Qπ for a given policy π and it is defined as

Qt+1(x,a) = (1− γt(x,a))Qt(x,a)+ γt(x,a)(g(x,a)+αQt(Y,B)),

where γt(x,a) denotes the stepsize associated with state x and action a at time t; Y and B are random
variables, Y is generated from the pair (x,a) by simulation, that is, according to the distribution
p(x,a), and the distribution of B is π(Y). In this case, Ht is defined as

Ht(Qa,Qb)(x,a) = (1− γt(x,a))Qa(x,a)+ γt(x,a)(g(x,a)+αQb(Y,B)), (4)

for all x and a. Therefore, the SARSA algorithm takes the form Qt+1 = Ht(Qt ,Qt).

Definition 8 We say that the operator sequence Ht κ-approximates operator H : V → V at V ∈ V
if for any initial V0 ∈ V the sequence Vt+1 = Ht(Vt ,V) κ-approximates HV .

The next theorem (Szita et al., 2002) will be an important tool for proving convergence results
for value function based RL algorithms in varying environments.

Theorem 9 Let H be an arbitrary mapping with fixed point V ∗, and let Ht κ-approximate H at V ∗

over set X . Additionally, assume that there exist random functions 0 ≤ Ft(x) ≤ 1 and 0 ≤ Gt(x) ≤ 1
satisfying the four conditions below with probability one

1. For all V1,V2 ∈ V and for all x ∈ X ,

|Ht(V1,V
∗)(x)−Ht(V2,V

∗)(x)| ≤ Gt(x) |V1(x)−V2(x)| .

2. For all V1,V2 ∈ V and for all x ∈ X ,

|Ht(V1,V
∗)(x)−Ht(V1,V2)(x)| ≤ Ft(x)‖V ∗−V2‖∞ .

3. For all k > 0, ∏n
t=k Gt(x) converges to zero uniformly in x as n increases.

4. There exist 0 ≤ ξ < 1 such that for all x ∈ X and sufficiently large t,

Ft(x) ≤ ξ(1−Gt(x)).

Then, Vt+1 = Ht(Vt ,Vt) κ′-approximates V ∗ over X for any V0 ∈ V , where κ′ = 2κ/(1−ξ).

Usually, functions Ft and Gt can be interpreted as the ratio of mixing the two arguments of
operator Ht . In the case of the SARSA algorithm, described above by (4), X = X×A, Gt(x,a) =
(1− γt(x,a)) and Ft(x,a) = αγt(x,a) would be a suitable choice.

One of the most important aspects of this theorem is that it shows how to reduce the problem
of approximating V ∗ with Vt = Ht(Vt ,Vt) type operators to the problem of approximating it with a
V ′

t = Ht(V ′
t ,V

∗) sequence, which is, in many cases, much easier to be dealt with. This makes, for
example, the convergence of Watkins’ Q-learning a consequence of the classical Robbins-Monro
theory (Szepesvári and Littman, 1999; Szita et al., 2002).

1684

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

4. Value Function Bounds for Environmental Changes

In many control problems it is typically not possible to “practise” in the real environment, only a
dynamic model is available to the system and this model can be used for predicting how the environ-
ment will respond to the control signals (model predictive control). MDP based solutions usually
work by simulating the environment with the model, through simulation they produce simulated ex-
perience and by learning from these experience they improve their value functions. Computing an
approximately optimal value function is essential because, as we have seen (Theorem 6), close ap-
proximations to optimal value functions lead directly to good policies. Though, there are alternative
approaches which directly approximate optimal control policies (see Sutton et al., 2000). However,
what happens if the model was inaccurate or the environment had changed slightly? In what follows
we investigate the effects of environmental changes on the optimal value function. For continuous
Markov processes questions like these were already analyzed (Gordienko and Salem, 2000; Favero
and Runggaldier, 2002; de Oca et al., 2003), hence, we will focus on finite MDPs.

The theorems of this section have some similarities with two previous results. First, Munos and
Moore (2000) studied the dependence of the Bellman operator on the transition-probabilities and the
immediate-costs. Later, Kearns and Singh (2002) applied a simulation lemma to deduce polynomial
time bounds to achieve near-optimal return in MDPs. This lemma states that if two MDPs differ only
in their transition and cost functions and we want to approximate the value function of a fixed policy
concerning one of the MDPs in the other MDP, then how close should we choose the transitions and
the costs to the original MDP relative to the mixing time or the horizon time.

4.1 Changes in the Transition-Probability Function

First, we will see that the optimal value function of a discounted MDP Lipschitz continuously
depends on the transition-probability function. This question was analyzed by Müller (1996), as
well, but the presented version of Theorem 10 was proven by Kalmár et al. (1998).

Theorem 10 Assume that two discounted MDPs differ only in their transition functions, denoted
by p1 and p2. Let the corresponding optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
nα‖g‖∞
(1−α)2 ‖p1 − p2‖∞ ,

recall that n is the size of the state space and α ∈ [0,1) is the discount rate.

A disadvantage of this theorem is that the estimation heavily depends on the size of the state
space, n. However, this bound can be improved if we consider an induced matrix norm for transition-
probabilities instead of the supremum norm. The following theorem presents our improved estima-
tion for transition changes. Its proof can be found in the appendix.

Theorem 11 With the assumptions and notations of Theorem 10, we have

‖J∗1 − J∗2‖∞ ≤
α‖g‖∞
(1−α)2 ‖p1 − p2‖1 ,

where ‖·‖1 is a norm on f : X×A×X → R type functions, for example, f (x,a,y) = p(y |x,a),

‖ f‖1 = max
x,a ∑

y∈X

| f (x,a,y) | . (5)

1685

CSÁJI AND MONOSTORI

If we consider f as a matrix which has a column for each state-action pair (x,a) ∈ X×A and a
row for each state y ∈ X, then the above definition gives us the usual “maximum absolute column
sum norm” definition for matrices, which is conventionally denoted by ‖·‖1.

It is easy to see that for all f , we have ‖ f‖1 ≤ n‖ f‖∞, where n is size of the state space.
Therefore, the estimation of Theorem 11 is at least as good as the estimation of Theorem 10. In
order to see that it is a real improvement consider, for example, the case when we choose a particular
state-action pair, (x̂, â), and take a p1 and p2 that only differ in (x̂, â). For example, p1(x̂, â) =
〈1,0,0, . . . ,0〉 and p2(x̂, â) = 〈0,1,0, . . . ,0〉, and they are equal for all other (x,a) 6= (x̂, â). Then, by
definition, ‖p1 − p2‖1 = 2, but n‖p1 − p2‖∞ = n. Consequently, in this case, we have improved the
bound of Theorem 10 by a factor of 2/n.

4.2 Changes in the Immediate-Cost Function

The same kind of Lipschitz continuity can be proven in case of changes in the cost function.

Theorem 12 Assume that two discounted MDPs differ only in the immediate-costs functions, g1

and g2. Let the corresponding optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
1

1−α
‖g1 −g2‖∞ .

4.3 Changes in the Discount Factor

The following theorem shows that the change of the value function can also be estimated in case
there were changes in the discount rate (all proofs can be found in the appendix).

Theorem 13 Assume that two discounted MDPs differ only in the discount factors, denoted by
α1,α2 ∈ [0,1). Let the corresponding optimal value functions be J∗

1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
|α1 −α2|

(1−α1)(1−α2)
‖g‖∞ .

The next example demonstrates, however, that this dependence is not Lipschitz continuous.
Consider, for example, an MDP that has only one state x and one action a. Taking action a loops
back deterministically to state x with cost g(x,a) = 1. Suppose that the MDP has discount factor
α1 = 0, thus, J∗1 (x) = 1. Now, if we change the discount rate to α2 ∈ (0,1), then |α1 −α2| < 1 but
‖J∗1 − J∗2‖∞ could be arbitrarily large, since J∗2 (x) → ∞ as α2 → 1.

At the same time, we can notice that if we fix a constant α0 < 1 and only allow discount factors
from the interval [0,α0], then this dependence became Lipschitz continuous, as well.

4.4 Case of Action-Value Functions

Many reinforcement learning algorithms, such as Q-learning, work with action-value functions
which are important, for example, for model-free approaches. Now, we investigate how the previ-
ously presented theorems apply to this type of value functions. The optimal action-value function,
denoted by Q∗, is defined for all state-action pair (x,a) by

Q∗(x,a) = g(x,a)+α ∑
y∈X

p(y |x,a)J∗(y),

1686

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

where J∗ is the optimal state-value function. Note that in the case of the optimal action-value
function, first, we take a given action (which can have very high cost) and, only after that the action
was taken, follow an optimal policy. Thus, we can estimate ‖Q∗‖∞ by

‖Q∗‖∞ ≤ ‖g‖∞ +α‖J∗‖∞ .

Nevertheless, the next lemma shows that the same estimations can be derived for environmental
changes in the case of action-value functions as in the case of state-value functions.

Lemma 14 Assume that we have two discounted MDPs which differ only in the transition-probability
functions or only in the immediate-cost functions or only in the discount factors. Let the correspond-
ing optimal action-value functions be Q∗

1 and Q∗
2, respectively. Then, the bounds for ‖J∗1 − J∗2‖∞ of

Theorems 11, 12 and 13 are also bounds for ‖Q∗
1 −Q∗

2‖∞.

4.5 Further Remarks on Inaccurate Models

In this section we saw that the optimal value function of a discounted MDP depends smoothly on
the transition function, the cost function and the discount rate. This dependence is of Lipschitz type
in the first two cases and non-Lipschitz for discount rates.

If we treat one of the MDPs in the previous theorems as a system which describes the “real”
behavior of the environment and the other MDP as our model, then these results show that even if the
model is slightly inaccurate or there were changes in the environment, the optimal value function
based on the model cannot be arbitrarily wrong from the viewpoint of the environment. These
theorems are of special interest because in “real world” problems the transition-probabilities and
the immediate-costs are mostly estimated only, for example, by statistical methods from historical
data. Later, we will see that changes in the discount rate can be traced back to changes in the
cost function (Lemma 18), therefore, it is sufficient to consider transition and cost changes. The
following corollary summarizes the results.

Corollary 15 Assume that two discounted MDPs (E and M) differ only in their transition functions
and their cost functions. Let the corresponding transition and cost functions be denoted by pE , pM

and gE , gM , respectively. The corresponding optimal value functions are denoted by J∗
E and J∗M.

The value function in E of the deterministic and greedy policy (π) with one stage-lookahead that is
based upon J∗M is denoted by Jπ

E . Then,

‖Jπ
E − J∗E‖∞ ≤

2α
1−α

[
‖gE −gM‖∞

1−α
+

cα‖pE − pM‖1

(1−α)2

]
,

where c = min{‖gE‖∞ ,‖gM‖∞} and α ∈ [0,1) is the discount factor.

The proof simply follows from Theorems 6, 11 and 12 and from the triangle inequality. Another
interesting question is the effects of environmental changes on the value function of a fixed control
policy. However, it is straightforward to prove (Csáji, 2008) that the same estimations can be derived
for ‖Jπ

1 − Jπ
2 ‖∞, where π is an arbitrary (stationary, Markovian, randomized) control policy, as the

estimations of Theorems 10, 11, 12 and 13.
Note that the presented theorems are only valid in case of discounted MDPs. Though, a large

part of the MDP related research studies the expected total discounted cost optimality criterion, in

1687

CSÁJI AND MONOSTORI

some cases discounting is inappropriate and, therefore, there are alternative optimality approaches,
as well. A popular alternative approach is to optimize the expected average cost (Feinberg and
Shwartz, 2002). In this case the value function is defined as

Jπ(x) = limsup
N→∞

1
N

E

[
N−1

∑
t=0

αtg(Xt ,A
π
t)

∣∣∣∣ X0 = x

]
,

where the notations are the same as previously, for example, as applied in Equation (2).
Regarding the validity of the results of Section 4 concerning MDPs with the expected average

cost minimization objective, we can recall that, in the case of finite MDPs, discounted cost offers
a good approximation to the other optimality criterion. More precisely, it can be shown that there
exists a large enough α0 < 1 such that ∀α ∈ (α0,1) optimal control policies for the discounted cost
problem are also optimal for the average cost problem (Feinberg and Shwartz, 2002). These policies
are called Blackwell optimal.

5. Learning in Varying Environments

In this section we investigate how value function based learning methods can act in environments
which may change over time. However, without restrictions, this approach would be too general to
establish convergence results. Therefore, we restrict ourselves to the case when the changes remain
bounded over time. In order to precisely define this concept, the idea of (ε,δ)-MDPs is introduced,
which is a generalization of classical MDPs and ε-MDPs. First, we recall the definition of ε-MDPs
(Kalmár et al., 1998; Szita et al., 2002).

Definition 16 A sequence of MDPs (Mt)
∞
t=1 is called an ε-MDP with ε > 0 if the MDPs differ

only in their transition-probability functions, denoted by pt for Mt , and there exists an MDP with
transition function p, called the base MDP, such that supt ‖p− pt‖ ≤ ε.

5.1 Varying Environments: (ε,δ)-MDPs

Now, we extend the idea described above. The following definition of (ε,δ)-MDPs generalizes the
concept of ε-MDPs in two ways. First, we also allow the cost function to change over time and,
additionally, we require the changes to remain bounded by parameters ε and δ only asymptotically,
in the limit. A finite number of large deviations is tolerated.

Definition 17 A tuple 〈X,A,A ,{pt}
∞
t=1,{gt}

∞
t=1,α〉 is an (ε,δ)-MDP with ε,δ ≥ 0, if there exists

an MDP 〈X,A,A , p,g,α〉, called the base MDP, such that

1. limsup
t→∞

‖p− pt‖ ≤ ε

2. limsup
t→∞

‖g−gt‖ ≤ δ

The optimal value function of the base MDP and of the current MDP at time t (which MDP has
transition function pt and cost function gt) are denoted by J∗ and J∗t , respectively.

In order to keep the analysis as simple as possible, we do not allow the discount rate parameter α
to change over time; not only because, for example, with Theorem 13 at hand, it would be straight-
forward to extend the results to the case of changing discount factors, but even more because, as

1688

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

Lemma 18 demonstrates, the effects of changes in the discount rate can be incorporated into the
immediate-cost function, which is allowed to change in (ε,δ)-MDPs.

Lemma 18 Assume that two discounted MDPs, M1 and M2, differ only in the discount factors,
denoted by α1 and α2. Then, there exists an MDP, denoted by M3, such that it differs only in the
immediate-cost function from M1, thus its discount factor is α1, and it has the same optimal value
function as M2. The immediate-cost function of M3 is

ĝ(x,a) = g(x,a)+(α2 −α1) ∑
y∈X

p(y |x,a)J∗2(y),

where p is the probability-transition function of M1, M2 and M3; g is the immediate-cost function
of M1 and M2; and J∗2 (y) denotes the optimal cost-to-go function of M2.

On the other hand, we can notice that changes in the cost function cannot be traced back to
changes in the transition function. Consider, for example, an MDP with a constant zero cost func-
tion. Then, no matter what the transition-probabilities are, the optimal value function remains zero.
However, we may achieve non-zero optimal value function values if we change the immediate-cost
function. Therefore, (ε,δ)-MDPs cannot be traced back to ε-MDPs.

Now, we briefly investigate the applicability of (ε,δ)-MDPs and a possible motivation behind
them. When we model a “real world” problem as an MDP, then we typically take only the major
characteristics of the system into account, but there could be many hidden parameters, as well,
which may affect the transition-probabilities and the immediate-costs, however, which are not ex-
plicitly included in the model. For example, if we model a production control system as an MDP
(Csáji and Monostori, 2006), then the workers’ fatigue, mood or the quality of the materials may
affect the durations of the tasks, but these characteristics are usually not included in the model. Ad-
ditionally, the values of these hidden parameters may change over time. In these cases, we could
either try to incorporate as many aspects of the system as possible into the model, which would most
likely lead to computationally intractable results, or we could model the system as an (ε,δ)-MDP,
which would result in a simplified model and, presumably, in a more tractable system.

5.2 Relaxed Convergence of Stochastic Iterative Algorithms

In this section we present a general relaxed convergence theorem for a large class of stochastic
iterative algorithms. Later, we will apply this theorem to investigate the convergence properties of
value function based reinforcement learning methods in (ε,δ)-MDPs.

Many learning and optimization methods can be written in a general form as a stochastic itera-
tive algorithm (Bertsekas and Tsitsiklis, 1996). More precisely, as

Vt+1(x) = (1− γt(x))Vt(x)+ γt(x)((KtVt)(x)+Wt(x)), (6)

where Vt ∈ V , operator Kt : V → V acts on value functions, each γt(x) is a random variable which
determines the stepsize and Wt(x) is also a random variable, a noise parameter.

Regarding reinforcement learning algorithms, for example, (asynchronous) value iteration, Gauss-
Seidel methods, Q-learning and TD(λ) – temporal difference learning can be formulated this way.
We will show that under suitable conditions these algorithms work in (ε,δ)-MDPs, more precisely,
κ-approximation to the optimal value function of the base MDP will be proven.

Now, in order to provide our relaxed convergence result, we introduce assumptions on the noise
parameters, on the stepsize parameters and on the value function operators.

1689

CSÁJI AND MONOSTORI

Definition 19 We denote the history of the algorithm until time t by Ft , defined as

Ft = {V0, . . . ,Vt ,W0, . . . ,Wt−1,γ0, . . . ,γt} .

The sequence F0 ⊆ F1 ⊆ F2 ⊆ ... can be seen as a filtration, viz., as an increasing sequence of
σ-fields. The set Ft represents the information available at each time t.

Assumption 1 There exits a constant C > 0 such that for all state x and time t, we have

E [Wt(x) |Ft] = 0 and E
[
W 2

t (x) |Ft
]
< C < ∞.

Regarding the stepsize parameters, γt , we make the “usual” stochastic approximation assump-
tions. Note that there is a separate stepsize parameter for each possible state.

Assumption 2 For all x and t, 0 ≤ γt(x) ≤ 1, and we have with probability one

∞

∑
t=0

γt(x) = ∞ and
∞

∑
t=0

γ2
t (x) < ∞.

Intuitively, the first requirement guarantees that the stepsizes are able to overcome the effects of
finite noises, while the second criterion ensures that they eventually converge.

Assumption 3 For all t, operator Kt : V → V is a supremum norm contraction mapping with
Lipschitz constant βt < 1 and with fixed point V ∗

t . Formally, for all V1,V2 ∈ V ,

‖KtV1 −KtV2‖∞ ≤ βt ‖V1 −V2‖∞ .

Let us introduce a common Lipschitz constant β0 = limsup
t→∞

βt , and assume that β0 < 1.

Because our aim is to analyze changing environments, each Kt operator can have different fixed
points and different Lipschitz constants. However, to avoid the progress of the algorithm to “slow
down” infinitely, we should require that limsupt→∞ βt < 1. In the next section, when we apply this
theory to the case of (ε,δ)-MDPs, each value function operator can depend on the current MDP at
time t and, thus, can have different fixed points.

Now, we present a theorem (its proof can be found in the appendix) that shows how the function
sequence generated by iteration (6) can converge to an environment of a function.

Theorem 20 Suppose that Assumptions 1-3 hold and let Vt be the sequence generated by iteration
(6). Then, for any V ∗,V0 ∈ V , the sequence Vt κ-approximates function V ∗ with

κ =
4ρ

1−β0
where ρ = limsup

t→∞
‖V ∗

t −V ∗‖∞.

This theorem is very general, it is valid even in the case of non-finite MDPs. Notice that V ∗ can
be an arbitrary function but, naturally, the radius of the environment of V ∗, which the sequence Vt

almost surely converges to, depends on limsupt→∞ ‖V ∗
t −V ∗‖∞.

If we take a closer look at the proof, we can notice that the theorem is still valid if each Kt

is only a pseudo-contraction but, additionally, it also attracts points to V ∗. Formally, it is enough
if we assume that for all V ∈ V , we have ‖KtV −KtV ∗

t ‖∞ ≤ βt ‖V −V ∗
t ‖∞ and ‖KtV −KtV ∗‖∞ ≤

βt ‖V −V ∗‖∞ for a suitable βt < 1. This remark could be important in case we want to apply
Theorem 20 to changing stochastic shortest path (SSP) problems.

1690

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

5.2.1 A SIMPLE NUMERICAL EXAMPLE

Consider a one dimensional stochastic process characterized by the iteration

vt+1 = (1− γt)vt + γt(Kt(vt)+wt), (7)

where γt is the learning rate and wt is a noise term. Let us suppose we have n alternating operators
ki with Lipschitz constants bi < 1 and fixed points v∗i where i ∈ {0, . . . ,n−1},

ki(v) = v+(1−bi)(v
∗
i − v).

The current operator at time t is Kt = ki (thus, V ∗
t = v∗i and βt = bi) if i ≡ t (mod n), that is, if i is

congruent with t modulo n: if they have the same remainder when they are divided by n. In other
words, we apply a round-robin type schedule for the operators.

Figure 1 shows that the trajectories remained close to the fixed points. The figure illustrates the
case of two (−1 and 1) and six (−3,−2,−1,1,2,3) alternating fixed points.

0 500 1000 1500
-4

-2

0

2

4

6

8

10

t ~ iterations iterationst ~

v(t) v(t)

fixed points

fixed points

-4

-2

0

2

4

6

8

10

0 500 1000 1500

Figure 1: Trajectories generated by (7) with two (left) and six (right) fixed points.

5.2.2 A PATHOLOGICAL EXAMPLE

During this example we will restrict ourselves to deterministic functions. According to the Banach
fixed point theorem, if we have a contraction mapping f over a complete metric space with fixed
point v∗ = f (v∗), then, for any initial v0 the sequence vt+1 = f (vt) converges to v∗. It could be
thought that this result can be easily generalized to the case of alternating operators. For example,
suppose we have n alternating contraction mappings ki with Lipschitz constants bi < 1 and fixed
points v∗i , respectively, where i ∈ {0, . . . ,n−1}, and we apply them iteratively starting from an
arbitrary v0, viz., vt+1 = Kt(vt), where Kt = ki if i ≡ t (mod n). One may think that since each ki

attracts the point towards its fixed point, the sequence vt converges to the convex hull of the fixed
points. However, as the following example demonstrates, this is not the case, since it is possible
that the point moves away from the convex hull and, in fact, it gets farther and farther after each
iteration.

Now, let us consider two one-dimensional functions, ki : R→R, where i∈ {a,b}, defined below
by Equation (8). It can be easily proven that these functions are contractions with fixed points v∗i

1691

CSÁJI AND MONOSTORI

and Lipschitz constants bi (in Figure 2, v∗a = 1, v∗b = −1 and bi = 0.9).

ki(v) =

v+(1−bi)(v∗i − v) if sgn(v∗i) = sgn(v− v∗i),

v∗i +(v∗i − v)+(1−bi)(v− v∗i) otherwise,
(8)

where sgn(·) denotes the signum1 function. Figure 2 demonstrates that even if the iteration starts
from the middle of the convex hull (from the center of mass), v0 = 0, it starts getting farther and
farther from the fixed points in each step when we apply ka and kb after each other. Nevertheless,

0 1 2 3 4 5 …-1-2-3-4-5…

v
b
* v

a
*v0

0 1 2 3 4 5-1-2-3-4-5… …

v1 = k
a
(v0)

0 1 2 3 4 5-1-2-3-4-5… …

v2 = k
b
(v1)

1

v
b
* v

a
*v0

0.9

2.92.61

v1

0 1 2 3 4 5-1-2-3-4-5… …

v2

4.61

v3= k
a
(v2)

v
b
* v

a
*

v
b
* v

a
*

4.149

v(0)

v(1)

v(2)

v(3)

t ~ iterations

t ~ iterations

0 5 10 15 20 25 30 35 40
-20

-15

-10

-5

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100
-20

-15

-10

-5

0

5

10

15

20

v(t)

v(t)

Figure 2: A deterministic pathological example, generated by the iterative application of (8). The
left part demonstrates the first steps, while the two images on the right-hand side show
the behavior of the trajectory in the long run.

the following argument shows that sequence vt cannot get arbitrarily far from the fixed points.
Let us denote the diameter of the convex hull of the fixed points by ρ. Since this convex hull
is a polygon (where the vertices are fixed points) ρ = maxi, j ‖v∗i − v∗j‖. Furthermore, let β0 be
defined as β0 = maxi bi and dt as dt = mini ‖v∗i − vt‖. Then, it can be proven that for all t, we have
dt+1 ≤ β0(2ρ+dt). If we assume that dt+1 ≥ dt , then it follows that dt ≤ dt+1 ≤ β0(2ρ+dt). After
rearrangement, we get the following inequality

dt ≤
2β0 ρ
1−β0

= φ(β0,ρ).

Therefore, dt > φ(β0,ρ) implies that dt+1 < dt . Consequently, if vt somehow got farther than
φ(β0,ρ), in the next step it would inevitably be attracted towards the fixed points. It is easy to
see that this argument is valid in an arbitrary normed space, as well.

1. sgn(x) = 0 if x = 0, sgn(x) = −1 if x < 0 and sgn(x) = 1 if x > 0.

1692

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

5.3 Reinforcement Learning in (ε,δ)-MDPs

In case of finite (ε,δ)-MDPs we can formulate a relaxed convergence theorem for value function
based reinforcement learning algorithms, as a corollary of Theorem 20. Suppose that V consists of
state-value functions, namely, X = X. Then, we have

limsup
t→∞

‖J∗− J∗t ‖∞ ≤ d(ε,δ),

where J∗t is the optimal value function of the MDP at time t and J∗ is the optimal value function
of the base MDP. In order to calculate d(ε,δ), Theorems 11 (or 10), 12 and the triangle inequality
could be applied. Assume, for example, that we use the supremum norm, ‖·‖∞, for cost functions
and ‖·‖1, defined by Equation (5), for transition functions. Then,

d(ε,δ) =
εα‖g‖∞
(1−α)2 +

δ
1−α

,

where g is the cost function of the base MDP. Now, by applying Theorem 20, we have

Corollary 21 Suppose that we have an (ε,δ)-MDP and Assumptions 1-3 hold. Let Vt be the se-
quence generated by iteration (6). Furthermore, assume that the fixed point of each operator Kt is
J∗t . Then, for any initial V0 ∈ V , the sequence Vt κ-approximates J∗ with

κ =
4d(ε,δ)

1−β0
.

Notice that as parameters ε and δ go to zero, we get back to a classical convergence theorem for
this kind of stochastic iterative algorithm (still in a little bit generalized form, since βt might still
change over time). Now, with the help of these results, we will investigate the convergence of some
classical reinforcement learning algorithms in (ε,δ)-MDPs.

5.3.1 ASYNCHRONOUS VALUE ITERATION IN (ε,δ)-MDPS

The method of value iteration is one of the simplest reinforcement learning algorithms. In ordinary
MDPs it is defined by the iteration Jt+1 = T Jt , where T is the Bellman operator. It is known that the
sequence Jt converges in the supremum norm to J∗ for any initial J0 (Bertsekas and Tsitsiklis, 1996).
The asynchronous variant of value iteration arises when the states are updated asynchronously, for
example, only one state in each iteration. In the case of (ε,δ)-MDPs a small stepsize variant of
asynchronous value iteration can be defined as

Jt+1(x) = (1− γt(x))Jt(x)+ γt(x)(TtJt)(x),

where Tt is the Bellman operator of the current MDP at time t. Since there is no noise term in
the iteration, Assumption 1 is trivially satisfied. Assumption 3 follows from the fact that each
Tt operator is an α contraction where α is the discount factor. Therefore, if the stepsizes satisfy
Assumption 2 then, by applying Corollary 21, we have that the sequence Jt κ-approximates J∗ for
any initial value function J0 with κ = (4d(ε,δ))/(1−α).

1693

CSÁJI AND MONOSTORI

5.3.2 Q-LEARNING IN (ε,δ)-MDPS

Watkins’ Q-learning is a very popular off-policy model-free reinforcement learning algorithm (Even-
Dar and Mansour, 2003). Its generalized version in ε-MDPs was studied by Szita et al. (2002). The
Q-learning algorithm works with action-value functions, therefore, X = X×A, and the one-step
Q-learning rule in (ε,δ)-MDPs can be defined as follows

Qt+1(x,a) = (1− γt(x,a))Qt(x,a)+ γt(x,a)(T̃tQt)(x,a), (9)

(T̃tQt)(x,a) = gt(x,a)+α min
B∈A(Y)

Qt(Y,B),

where gt is the immediate-cost function of the current MDP at time t and Y is a random variable
generated from the pair (x,a) by simulation, that is, according to the probability distribution pt(x,a),
where pt is the transition function of the current MDP at time t.

Operator T̃t is randomized, but as it was shown by Bertsekas and Tsitsiklis (1996) in their
convergence theorem for Q-learning, it can be rewritten in a form as follows

(T̃tQ)(x,a) = (K̃tQ)(x,a)+W̃t(x,a),

where W̃t(x,a) is a noise term with zero mean and finite variance, and K̃t is defined as

(K̃tQ)(x,a) = gt(x,a)+α ∑
y∈X

pt(y | x,a) min
b∈A(y)

Q(y,b).

Let us denote the optimal action-value function of the current MDP at time t and the base MDP by
Q∗

t and Q∗, respectively. By using the fact that J∗(x) = mina Q∗(x,a), it is easy to see that for all
t, Q∗

t is the fixed point of operator K̃t and, moreover, each K̃t is an α contraction. Therefore, if the
stepsizes satisfy Assumption 2, then the Qt sequence generated by iteration (9) κ-approximates Q∗

for any initial Q0 with κ = (4d(ε,δ))/(1−α).
In some situations the immediate costs are randomized, however, even in this case the relaxed

convergence of Q-learning would follow as long as the random immediate costs had finite expected
value and variance, which is required for satisfying Assumption 1.

5.3.3 TEMPORAL DIFFERENCE LEARNING IN (ε,δ)-MDPS

Temporal difference learning, or for short TD-learning, is a policy evaluation algorithm. It aims at
finding the corresponding value function Jπ for a given control policy π (Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998). It can also be used for approximating the optimal value function,
for example, if we apply it together with the policy iteration algorithm.

First, we briefly review the off-line first-visit variant of TD(λ) in case of ordinary MDPs. It can
be shown that the value function of a policy π can be rewritten in a form as

Jπ(x) = E

[
∞

∑
m=0

(αλ)mDπ
α,m

∣∣∣∣ X0 = x

]
+ Jπ(x),

where λ ∈ [0,1) and Dπ
α,m denotes the “temporal difference” coefficient at time m,

Dπ
α,m = g(Xm,Aπ

m)+αJπ(Xm+1)− Jπ(Xm),

1694

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

where Xm, Xm+1 and Aπ
m are random variables, Xm+1 has p(Xm,Aπ

m) distribution and Aπ
m is a random

variable for actions, it is selected according to the distribution π(Xm).
Based on this observation, we can define a stochastic approximation algorithm as follows. Let

us suppose that we have a generative model of the environment, for example, we can perform
simulations in it. Each simulation produces a state-action-reward trajectory. We can assume that all
simulations eventually end, for example, there is an absorbing termination state or we can stop the
simulation after a given number of steps. Note that even in this case we can treat each trajectory
as infinitely long, viz., we can define all costs after the termination as zero. The off-line first-visit
TD(λ) algorithm updates the value function after each simulation,

Jt+1(x
t
k) = Jt(x

t
k)+ γt(x

t
k)

∞

∑
m=k

(αλ)m−kdα,m,t , (10)

where xt
k is the state at step k in trajectory t and dα,m,t is the temporal difference coefficient,

dα,m,t = g(xt
m,at

m)+αJt(x
t
m+1)− Jt(x

t
m).

For the case of ordinary MDPs it is known that TD(λ) converges almost surely to Jπ for any
initial J0 provided that each state is visited by infinitely many trajectories and the stepsizes satisfy
Assumption 2. The proof is based on the observation that iteration (10) can be seen as a Robbins-
Monro type stochastic iterative algorithm for finding the fixed point of Jπ = HJπ, where H is a
contraction mapping with Lipschitz constant α (Bertsekas and Tsitsiklis, 1996). The only difference
in the case of (ε,δ)-MDPs is that the environment may change over time and, therefore, operator
H becomes time-dependent. However, each Ht is still an α contraction, but they potentially have
different fixed points. Therefore, we can apply Theorem 20 to achieve a relaxed convergence result
for off-line first-visit TD(λ) in changing environments under the same conditions as in the case of
ordinary MDPs.

The convergence of the on-line every-visit variant can be proven in the same way as in the case
of ordinary MDPs, viz., by showing that the difference between the two variants is of second order
in the size of γt and hence inconsequential as γt diminishes to zero.

5.3.4 APPROXIMATE DYNAMIC PROGRAMMING

Most RL algorithms in their standard forms, for example, with lookup table representations, are
highly intractable in practice. This phenomenon, which was named “curse of dimensionality” by
Bellman, has motivated approximate approaches that result in more tractable methods, but often
yield suboptimal solutions. These techniques are usually referred to as approximate dynamic pro-
gramming (ADP). Many ADP methods are combined with simulation, but their key issue is to
approximate the value function with a suitable approximation architecture: V ≈ Φ(r), where r is a
parameter vector. Direct ADP methods collect samples by using simulation, and fit the architecture
to the samples. Indirect methods obtain parameter r by using an approximate version of the Bellman
equation (Bertsekas, 2007).

The power of the approximation architecture is the smallest error that can be achieved, η =
infr ‖V ∗−Φ(r)‖, where V ∗ is the optimal value function. Suppose that η > 0, then no algorithm
can provide a result whose distance from V ∗ is less than η. Hence, the maximum that we can hope
for is to converge to an environment of V ∗ (Bertsekas and Tsitsiklis, 1996). In what follows, we
briefly investigate the connection of our results with ADP.

1695

CSÁJI AND MONOSTORI

In general, many direct and indirect ADP methods can be formulated as follows

Φ(rt+1) = Π
(
(1− γt)Φ(rt)+ γt(Bt(Φ(rt))+Wt)

)
, (11)

where rt ∈ Θ is an approximation parameter, Θ is the parameter space, for example, Θ ⊆ R
p,

Φ : Θ → F is an approximation architecture where F ⊆ V is a Hilbert space that can be repre-
sented by using Φ with parameters from Θ. Function Π : V → F is a projection mapping, it renders
a representation from F to each value function from V . Operator Bt : F → V acts on (approxi-
mated) value functions. Finally, γt denotes the stepsize and Wt is a noise parameter representing the
uncertainties coming from, for example, the simulation.

Operator Bt is time-dependent since, for example, if we model an approximate version of opti-
mistic policy iteration, then in each iteration the control policy changes and, therefore, the update
operator changes, as well. We can notice that if Π was a linear operator (see below), Equation (11)
would be a stochastic iterative algorithm with Kt = ΠBt . Consequently, the algorithm described by
Equation (6) is a generalization of many ADP methods, as well.

Now, we show that a convergence theorem for ADP methods can also be deduced by using
Theorem 20. In order to apply the theorem, we should ensure that each update operator be a con-
traction. If we assume that every Bt is a contraction, we should require two properties from Π to
guarantee that the resulted operators remain contractions. First, Π should be linear. Operator Π is
linear if it is additive and homogeneous, more precisely, if ∀V1,V2 : Π(V1 +V2) = Π(V1)+ Π(V2)
and ∀V : ∀α : Π(αV) = αΠ(V), where α is a scalar. This requirement allows the separation
of the components. Moreover, Π should be nonexpansive w.r.t. the supremum norm, namely:
∀V1,V2 : ‖Π(V1)−Π(V2)‖ ≤ ‖V1 −V2‖. Then, the update operator of the algorithm, Kt = ΠBt ,
is guaranteed to be a contraction.

If we assume that V ∗
t is the fixed point of Kt , thus, (ΠBt)V ∗

t =V ∗
t and βt is the Lipschitz constant

of Kt with limsupt→∞ βt = β0 < 1, we can deduce a convergence theorem for ADP methods, as a
corollary of Theorem 20. Suppose that Assumptions 1-2 hold and each Bt is a contraction as well
as Π is linear and supremum norm nonexpansive, then Φ(rt) κ-approximates V ∗ for any initial r0

with κ = 4ρ/(1− β0), where ρ = limsupt→∞ ‖V ∗
t −V ∗‖. In case all of the fixed points were the

same, viz., ∀t : V ∗
0 = V ∗

t , then Φ(rt) would converge to V ∗
0 almost surely, consequently, Φ(rt) would

κ-approximate V ∗ with κ = ‖V ∗
0 −V ∗‖.

Naturally, these results are quite loose, since we did not make strong assumptions on the applied
algorithm and on the approximation architecture. They only illustrate that the approach we took,
which allows time-dependent update operators and analyzes approximate convergence, could also
provide results for ordinary MDPs, for example, in the case of ADP.

6. Experimental Results

In this section we present two numerical experiments. The first one demonstrates the effects of
environmental changes during Q-learning based scheduling. The second one presents a parameter
analysis concerning the effectiveness of SARSA in (ε,δ)-type grid world domains.

6.1 Environmental Changes During Scheduling

Scheduling is the allocation of resources over time to perform a collection of jobs. Each job consists
of a set of tasks, potentially with precedence constraints, to be executed on the resources. The

1696

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

job-shop scheduling problem (JSP) is one of the basic scheduling problems (Pinedo, 2002). We
investigated an extension of JSP, called the flexible job-shop scheduling problem (FJSP), in which
some of the resources are interchangeable, that is, there may be tasks that can be executed on several
resources. This problem can be formulated as a finite horizon MDP and can be solved by Q-learning
based methods (Csáji and Monostori, 2006).

170

190

210

230

250

270

290

310

330

1 20 40 60 80 100 120 140 160 180

170

190

210

230

250

270

290

310

330

1 20 40 60 80 100 120 140 160 180 200 200

t ~ t ~time time

k(t) k(t)

(a) (b)

k’(t)

Figure 3: The black curves, κ(t), show the performance measure in case there was a resource break-
down (a) or a new resource availability (b) at time t = 100; the gray curve in (a), κ’(t),
demonstrates the case the policy would be recomputed from scratch.

200

220

240

260

280

300

320

340

360

1 20 40 60 80 100 120 14060 80 100 120 140 160 180 200

k(t)

(a) (b)

t ~ t ~time time

160 180

200

220

240

260

280

300

320

340

360

1 20 40 200

k(t)

Figure 4: The black curves, κ(t), show the performance measure during resource control in case
there was a new job arrival (a) or a job cancellation (b) at time t = 100.

In order to investigate the effects of environmental changes during scheduling, numerical ex-
periments were initiated and carried out. The aim of scheduling was to minimize the maximum
completion time of the tasks, which performance measure is called “makespan”. The adaptive
features of the Q-learning based approach were tested by confronting the system with unexpected
events, such as: resource breakdown, new resource availability (Figure 3), new job arrival or job
cancellation (Figure 4). In Figures 3 and 4 the horizontal axis represents time, while the vertical one,
the achieved performance measure. The figures were made by averaging hundred random samples.
In these tests a fixed number of 20 resources were used with few dozens of jobs, where each job
contained a sequence of tasks. In each case there was an unexpected event at time t = 100. After
the change took place, we considered two possibilities: we either restarted the iterative scheduling
process from scratch or we continued the learning using the current (obsolete) value function. We
experienced that the latter approach is much more efficient. That was one of the reasons why we
started to study how the optimal value function of an MDP depends on the dynamics of the system.

1697

CSÁJI AND MONOSTORI

Recall that Theorems 10, 11 and 12 measure the amount of the possible change in the value
function in case there were changes in the MDP, but since these theorems apply supremum norm,
they only provide bounds for worst case situations. However, the results of our numerical exper-
iments, shown in Figures 3 and 4, are indicative of the phenomenon that in an average case the
change is much less. Therefore, applying the obsolete value function after a change took place is
preferable over restarting the optimization from scratch.

The results, black curves, show the case when the obsolete value function approximation was
applied after the change took place. The performance which would arise if the system recomputed
the whole schedule from scratch is drawn in gray in part (a) of Figure 3.

6.2 Varying Grid World

We also performed numerical experiments on a variant of the classical grid world problem (Sutton
and Barto, 1998). The original version of this problem can be briefly described as follows: an agent
wanders in a rectangular world starting from a random initial state with the aim of finding the goal
state. In each state the agent is allowed to choose from four possible actions: “north”, “south”,
“east” and “west”. After an action was selected, the agent moves one step in that direction. There
are some mines on the field, as well, that the agent should avoid. An episode ends if the agent finds
the goal state or hits a mine. During our experiments, we applied randomly generated 10×10 grid
worlds (thus, these MDPs had 100 states) with 10 mines. The immediate-cost of taking a (non-
terminating) step was 5, a cost of hitting a mine was 100 and the cost of finding the goal state was
−100.

In order to perform the experiment described by Table 1, we have applied the “RL-Glue” frame-
work2 which consists of open source softwares and aims at being a standard protocol for bench-
marking and interconnecting reinforcement learning agents and environments.

We have analyzed an (ε,δ)-type version of grid world, where the problem formed an (ε,δ)-
MDP. More precisely, we have investigated the case when for all time t, the transition-probabilities
could vary by at most ε ≥ 0 around the base transition-probability values and the immediate-costs
could vary by at most δ ≥ 0 around the base cost values.

During our numerical experiments, the environment changed at each time-step. These changes
were generated as follows. First, changes concerning the transition-probabilities are described. In
our randomized grid worlds the agent was taken to a random surrounding state (no matter what
action it chose) with probability η and this probability changed after each step. The new η was
computed according to the uniform distribution, but its possible values were bounded by the values
described in the first row of Table 1.

Similarly, the immediate-costs of the base MDP (cf. the first paragraph) were perturbed with a
uniform random variable that changed at each time-step. Again, its (absolute) value was bounded
by δ, which is presented in the first column of the table. The values shown were divided by 100 to
achieve the same scale as the transition-probabilities have.

Table 1 was generated using an (optimistic) SARSA algorithm, namely, the current policy was
evaluated by SARSA, then the policy was (optimistically) improved, more precisely, the greedy
policy with respect to the achieved evaluation was calculated. That policy was also soft, namely, it
made random explorations with probability 0.05. We have generated 1000 random grid worlds for
each parameter pairs and performed 10000 episodes in each of these generated worlds. The results

2. RL-Glue can be found at http://rlai.cs.ualberta.ca/RLBB/top.html.

1698

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

∆‖g‖ the bounds for the varying probability of arriving at random states ∼ ε
δ/100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 -55.5 -48.8 -41.4 -36.7 -26.7 -16.7 -8.5 2.1 14.2 31.7 46.0
0.1 -54.1 -46.1 -41.2 -34.5 -25.8 -15.8 -6.0 3.7 16.5 32.3 46.3
0.2 -52.5 -44.8 -40.1 -34.4 -25.3 -15.4 -5.8 4.0 17.6 33.1 48.1
0.3 -49.7 -42.1 -36.3 -31.3 -23.9 -14.2 -5.3 8.0 18.1 37.2 51.6
0.4 -47.4 -41.5 -34.7 -30.7 -22.2 -12.2 -2.3 8.8 20.2 38.3 52.0
0.5 -42.7 -41.0 -34.5 -24.8 -21.1 -10.1 -1.3 11.2 25.7 39.2 52.1
0.6 -36.1 -36.5 -29.7 -24.0 -16.8 -7.9 1.1 17.0 31.3 43.9 54.1
0.7 -30.2 -29.3 -29.3 -19.1 -13.4 -6.0 7.4 18.9 26.9 47.2 60.9
0.8 -23.1 -27.0 -21.4 -18.8 -10.9 -2.6 8.9 22.5 31.3 50.0 64.2
0.9 -14.1 -19.5 -21.0 -12.4 -7.5 0.7 13.2 23.2 38.9 52.2 68.1
1.0 -6.8 -10.7 -14.5 -7.1 -5.3 6.6 15.7 26.4 39.8 57.3 68.7

Table 1: The (average) cumulative costs gathered by SARSA in varying grid worlds.

presented in the table were calculated by averaging the cumulative costs over all episodes and over
all generated sample worlds.

The parameter analysis shown in Table 1 is indicative of the phenomenon that changes in the
transition-probabilities have a much higher impact on the performance. Even large perturbations in
the costs were tolerated by SARSA, but large variations in the transition-probabilities caused a high
decrease in the performance. An explanation could be that large changes in the transitions cause the
agent to loose control over the events, since it becomes very hard to predict the effects of the actions
and, hence, to estimate the expected costs.

7. Conclusion

The theory of MDPs provide a general framework for modeling decision making in stochastic dy-
namic systems, if we know a function that describes the dynamics or we can simulate it, for example,
with a suitable program. In some situations, however, the dynamics of the system may change, too.
In theory, this change can be modeled with another (higher level) MDP, as well, but doing so would
lead to models which are practically intractable.

In the paper we have argued that the optimal value function of a (discounted) MDP Lipschitz
continuously depends on the transition-probability function and the immediate-cost function, there-
fore, small changes in the environment result only in small changes in the optimal value function.
This result was already known for the case of transition-probabilities, but we have presented an
improved estimation for this case, as well. A bound for changes in the discount factor was also
proven, and it was demonstrated that, in general, this dependence was not Lipschitz continuous.
Additionally, it was shown that changes in the discount rate could be traced back to changes in the
immediate-cost function. The application of the Lipschitz property helps the theoretical treatment
of changing environments or inaccurate models, for example, if the transition-probabilities or the
costs are estimated statistically, only.

In order to theoretically analyze environmental changes, the framework of (ε,δ)-MDPs was
introduced as a generalization of classical MDPs and ε-MDPs. In this quasi-stationary model the

1699

CSÁJI AND MONOSTORI

transition-probability function and the immediate-cost function may change over time, but the cu-
mulative changes must remain bounded by ε and δ, asymptotically.

Afterwards, we have investigated how RL methods could work in this kind of changing envi-
ronment. We have presented a general theorem that estimated the asymptotic distance of a value
function sequence from a fixed value function. This result was applied to deduce a convergence
theorem for value function based algorithms that work in (ε,δ)-MDPs.

In order to demonstrate our approach, we have presented some numerical experiments, too.
First, two simple iterative processes were shown, a “well-behaving” stochastic process and a “patho-
logical”, oscillating deterministic process. Later, the effects of environmental changes on Q-learning
based flexible job-shop scheduling was experimentally studied. Finally, we have analyzed how
SARSA could work in varying (ε,δ)-type grid world domains.

We can conclude that value function based RL algorithms can work in varying environments,
at least if the changes remain bounded in the limit. The asymptotic distance of the generated value
function sequence from the optimal value function of the base MDP is bounded for a large class of
stochastic iterative algorithms. Moreover, this bound is proportional to the diameter of this set, for
example, to parameters ε and δ in the case of (ε,δ)-MDPs. These results were illustrated through
three classical RL methods: asynchronous value iteration, Q-learning and temporal difference learn-
ing policy evaluation. We showed, as well, that this approach could be applied to investigate the
convergence of ADP methods.

There are many potential further research directions. Now, as a conclusion to the paper, we
highlight some of them. First, analyzing the effects of environmental changes on the value func-
tion in case of the expected average cost optimization criterion would be interesting. A promising
direction could be to investigate environments with non-bounded changes, for example, when the
environment might drift over time. Naturally, this drift should also be sufficiently slow in order to
give the opportunity to the learning algorithm to track the changes. Another possible direction could
be the further analysis of the convergence results in case of applying value function approximation.
The classical problem of exploration and exploitation should also be reinvestigated in changing en-
vironments. Finally, for practical reasons, it would be important to find finite time bounds for the
convergence of stochastic iterative algorithms for (a potentially restricted class of) non-stationary
environments.

Acknowledgments

The work was supported by the Hungarian Scientific Research Fund (OTKA), Grant No. T73376,
and by the EU-project Coll-Plexity, 12781 (NEST). Balázs Csanád Csáji greatly acknowledges the
scholarship of the Hungarian Academy of Sciences. The authors are also very grateful to Csaba
Szepesvári for the helpful comments and discussions.

Appendix A. Proofs

In this appendix the proofs of Theorems 11, 12, 13, 20 and Lemmas 14, 18 can be found.

1700

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

Theorem 11 Assume that two MDPs differ only in their transition-probability functions, denoted by
p1 and p2. Let the corresponding optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
α‖g‖∞
(1−α)2 ‖p1 − p2‖1 ,

where ‖·‖1 is a norm on f : X×A×X → R type functions, for example, f (x,a,y) = p(y |x,a),

‖ f‖1 = max
x,a ∑

y∈X

| f (x,a,y) | .

Proof First, let us introduce a deterministic Markovian policy. For all state x ∈ X:

π̂(x) =

argmin
a∈A(x)

[
g(x,a)+α ∑

y∈X

p1(y | x,a)J∗1(y)

]
if J∗1 (x) ≤ J∗2 (x),

argmin
a∈A(x)

[
g(x,a)+α ∑

y∈X

p2(y | x,a)J∗2(y)

]
if J∗2 (x) < J∗1 (x)

If the argmin is ambiguous then any action that takes the minimum can be selected. Using the
Bellman optimality equation in the first step, ‖J∗1 − J∗2‖∞ can be estimated as follows,

∀x ∈ X : |J∗1 (x)− J∗2(x)| =

=

∣∣∣∣∣ min
a∈A(x)

[
g(x,a)+α ∑

y∈X

p1(y | x,a)J∗1(y)

]
− min

a∈A(x)

[
g(x,a)+α ∑

y∈X

p2(y | x,a)J∗2(y)

]∣∣∣∣∣ ≤

≤

∣∣∣∣∣g(x, π̂(x))+α ∑
y∈X

p1(y | x, π̂(x))J∗1(y)−g(x, π̂(x))−α ∑
y∈X

p2(y | x, π̂(x))J∗2(y)

∣∣∣∣∣ ,

where we applied that ∀ f1, f2 : S → R bounded functions such that mins f1(s) ≤ mins f2(s) and
ŝ = argmins f1(s), we have |mins f1(s)−mins f2(s)| ≤ | f1(ŝ)− f2(ŝ)|. Then,

∀x ∈ X : |J∗1 (x)− J∗2(x)| ≤

∣∣∣∣∣α ∑
y∈X

p1(y | x, π̂(x))J∗1(y)− p2(y | x, π̂(x))J∗2(y)

∣∣∣∣∣ =

=

∣∣∣∣∣α ∑
y∈X

(p1(y | x, π̂(x))− p2(y | x, π̂(x)))J∗1(y)+α ∑
y∈X

p2(y | x, π̂(x))(J∗1(y)− J∗2 (y))

∣∣∣∣∣ ≤

≤ α ∑
y∈X

|(p1(y | x, π̂(x))− p2(y | x, π̂(x)))J∗1(y)|+α ∑
y∈X

|p2(y | x, π̂(x))(J∗1(y)− J∗2(y))|,

where in the second step we have rewritten p1(y |x, π̂(x))J∗1(y)− p2(y |x, π̂(x))J∗2(y) as

p1(y |x, π̂(x))J∗1(y)− p2(y |x, π̂(x))J∗2(y) =

= p1(y |x, π̂(x))J∗1(y)− p2(y |x, π̂(x))J∗1(y)+ p2(y |x, π̂(x))J∗1(y)− p2(y |x, π̂(x))J∗2(y) =

1701

CSÁJI AND MONOSTORI

= (p1(y |x, π̂(x))− p2(y |x, π̂(x)))J∗1(y)+ p2(y |x, π̂(x))(J∗1(y)− J∗2 (y)).

Now, let us recall (a special form of) Hölder’s inequality: let v1,v2 be two vectors and 1 ≤ q,r ≤ ∞
with 1/q + 1/r = 1. Then, we have ‖v1 v2‖(1) ≤ ‖v1‖(q) ‖v2‖(r), where ‖·‖(q) denotes vector norm,

for example, ‖v‖(q) = (∑i |vi|
q)1/q and ‖v‖(∞) = maxi |vi| = ‖v‖∞. Here, we applied the unusual

“(q)” notation to avoid confusion with the applied matrix norm. Notice that the first sum of the last
estimation can be treated as the (1)-norm of v1 v2, where

v1(y) = p1(y | x, π̂(x))− p2(y | x, π̂(x))) and v2(y) = J∗1 (y),

after which Hölder’s inequality can be applied with q = 1 and r = ∞ to estimate the sum. A similar
argument can be repeated in the case of the second sum with

v1(y) = p2(y | x, π̂(x)) and v2(y) = J∗1 (y)− J∗2 (y).

Then, after the two applications of Hölder’s inequality, we have for all x that

|J∗1 (x)− J∗2(x)| ≤ α‖p1(· | x, π̂(x))− p2(· | x, π̂(x))‖(1) ‖J∗1‖∞ +

+α‖p2(· | x, π̂(x))‖(1) ‖J∗1 − J∗2‖∞ ,

since ‖J∗1‖∞ ≤ ‖g‖∞ /(1−α), ‖p2(· | x, π̂(x))‖(1) = 1 and we have this estimation for all x,

‖J∗1 − J∗2‖∞ ≤
α‖g‖∞
1−α

max
x∈X

∑
y∈X

| p1(y |x, π̂(x))− p2(y |x, π̂(x)) |+α‖J∗1 − J∗2‖∞ ,

which formula can be overestimated, by taking the maximum over all actions, by

‖J∗1 − J∗2‖∞ ≤
α‖g‖∞
1−α

‖p1 − p2‖1 +α‖J∗1 − J∗2‖∞ ,

from which the statement of the theorem immediately follows after rearrangement.

Theorem 12 Assume that two discounted MDPs differ only in the immediate-cost functions, denoted
by g1 and g2. Let the corresponding optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
1

1−α
‖g1 −g2‖∞ .

Proof First, let us introduce a deterministic Markovian policy. For all state x ∈ X:

π̂(x) =

argmin
a∈A(x)

[
g1(x,a)+α ∑

y∈X

p(y | x,a)J∗1(y)

]
if J∗1 (x) ≤ J∗2 (x),

argmin
a∈A(x)

[
g2(x,a)+α ∑

y∈X

p(y | x,a)J∗2(y)

]
if J∗2 (x) < J∗1 (x).

1702

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

If the argmin is ambiguous, then any action that takes the minimum can be selected. Using the
Bellman optimality equation in the first step, ‖J∗1 − J∗2‖∞ can be estimated as follows,

∀x ∈ X : |J∗1 (x)− J∗2(x)| =

=

∣∣∣∣∣ min
a∈A(x)

[
g1(x,a)+α ∑

y∈X

p(y | x,a)J∗1(y)

]
− min

a∈A(x)

[
g2(x,a)+α ∑

y∈X

p(y | x,a)J∗2(y)

]∣∣∣∣∣ ≤

≤

∣∣∣∣∣g1(x, π̂(x))+α ∑
y∈X

p(y | x, π̂(x))J∗1(y)−g2(x, π̂(x))−α ∑
y∈X

p(y | x, π̂(x))J∗2(y)

∣∣∣∣∣ ,

where we applied that ∀ f1, f2 : S → R bounded functions such that mins f1(s) ≤ mins f2(s) and
ŝ = argmins f1(s), we have |mins f1(s)−mins f2(s)| ≤ | f1(ŝ)− f2(ŝ)|. Then,

∀x ∈ X : |J∗1 (x)− J∗2(x)| ≤ |g1(x, π̂(x))−g2(x, π̂(x))|+α ∑
y∈X

p(y | x, π̂(x)) |J∗1 (y)− J∗2 (y)| ≤

≤ ‖g1 −g2‖∞ +α ∑
y∈X

p(y | x, π̂(x)) ‖J∗1 − J∗2‖∞ =

= ‖g1 −g2‖∞ +α‖J∗1 − J∗2‖∞ .

It is easy to see that if

∀x ∈ X : |J∗1 (x)− J∗2(x)| ≤ ‖g1 −g2‖∞ +α‖J∗1 − J∗2‖∞ ,

then
‖J∗1 − J∗2‖∞ ≤ ‖g1 −g2‖∞ +α‖J∗1 − J∗2‖∞ ,

from which the statement of the theorem immediately follows after rearrangement.

Theorem 13 Assume that two discounted MDPs differ only in the discount factors, denoted by
α1,α2 ∈ [0,1). Let the corresponding optimal value functions be J∗

1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
|α1 −α2|

(1−α1)(1−α2)
‖g‖∞ .

Proof Let π∗
i denote a greedy and deterministic policy based on value function J∗

i , where i ∈ {1,2}.
Naturally, policy π∗

i is optimal if the discount rate is αi (Theorem 6). Then, let us introduce a
deterministic Markovian control policy π̂ defined as

π̂(x) =

π∗
1(x) if J∗1 (x) ≤ J∗2 (x),

π∗
2(x) if J∗2 (x) < J∗1 (x).

For any state x the difference of the two value functions can be estimated as follows,

|J∗1 (x)− J∗2(x)| =

1703

CSÁJI AND MONOSTORI

=

∣∣∣∣∣ min
a∈A(x)

[
g(x,a)+α1 ∑

y∈X

p(y | x,a)J∗1(y)

]
− min

a∈A(x)

[
g(x,a)+α2 ∑

y∈X

p(y | x,a)J∗2(y)

]∣∣∣∣∣ ≤

≤

∣∣∣∣∣g(x, π̂(x))+α1 ∑
y∈X

p(y | x, π̂(x))J∗1(y)−g(x, π̂(x))−α2 ∑
y∈X

p(y | x, π̂(x))J∗2(y)

∣∣∣∣∣ ,

where we applied that ∀ f1, f2 : S → R bounded functions such that mins f1(s) ≤ mins f2(s) and
ŝ = argmins f1(s), we have |mins f1(s)−mins f2(s)| ≤ | f1(ŝ)− f2(ŝ)|. Then,

∀x ∈ X : |J∗1 (x)− J∗2(x)| ≤

∣∣∣∣∣∑y∈X

p(y | x, π̂(x))(α1J∗1 (y)−α2J∗2 (y))

∣∣∣∣∣ ≤

≤ |α1 −α2|
1

1−α1
‖g‖∞ +α2 ‖J∗1 − J∗2‖∞ ,

where in the last step we used the following estimation of |α1J∗1 (y)−α2J∗2 (y)|,

|α1J∗1 (y)−α2J∗2 (y)| = |α1J∗1 (y)−α2J∗1 (y)+α2J∗1 (y)−α2J∗2 (y)| ≤

≤ |α1 −α2| |J
∗
1 (y)|+α2 |J

∗
1 (y)− J∗2(y)| ≤ |α1 −α2|

1
1−α1

‖g‖∞ +α2 ‖J∗1 − J∗2‖∞ ,

where we applied the fact that for any state y we have,

|J∗1 (y)| ≤
∞

∑
t=0

αt
1 ‖g‖∞ =

1
1−α1

‖g‖∞ .

Because the estimation of |J∗1 (x)− J∗2(x)| is valid for all x, we have the following result

‖J∗1 − J∗2‖∞ ≤ |α1 −α2|
1

1−α1
‖g‖∞ +α2 ‖J1 − J2‖∞ ,

from which the statement of the theorem immediately follows after rearrangement.

Lemma 14 Assume that we have two discounted MDPs which differ only in the transition-probability
functions or only in the immediate-cost functions or only in the discount factors. Let the correspond-
ing optimal action-value functions be Q∗

1 and Q∗
2, respectively. Then, the bounds for ‖J∗1 − J∗2‖∞ of

Theorems 11, 12 and 13 are also bounds for ‖Q∗
1 −Q∗

2‖∞.

Proof We will prove the theorem in three parts, depending on the changing components.
Case 1: Assume that the MDPs differ only in the transition functions, denoted by p1 and p2. We
will prove the same estimation as in the case of Theorem 11, more precisely, that

‖Q∗
1 −Q∗

2‖∞ ≤
α‖g‖∞
(1−α)2 ‖p1 − p2‖1 .

For all state-action pair (x,a) we can estimate the absolute difference of Q∗
1 and Q∗

2 as

|Q∗
1(x,a)−Q∗

2(x,a)| =

1704

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

=

∣∣∣∣∣g(x,a)+α ∑
y∈X

p1(y |x,a)J∗1(y)−g(x,a)−α ∑
y∈X

p2(y |x,a)J∗2(y)

∣∣∣∣∣ ≤

≤

∣∣∣∣∣α ∑
y∈X

(p1(y |x,a)J∗1(y)− p2(y |x,a)J∗2(y))

∣∣∣∣∣ ,

from which the proof continues in the same way as the proof of Theorem 11.
Case 2: Assume that the MDPs differ only in the immediate-cost functions, denoted by g1 and g2.
We will prove the same estimation as in the case of Theorem 12, more precisely,

‖Q∗
1 −Q∗

2‖∞ ≤
1

1−α
‖g1 −g2‖∞ .

For all state-action pair (x,a) we can estimate the absolute difference of Q∗
1 and Q∗

2 as

|Q∗
1(x,a)−Q∗

2(x,a)| =

=

∣∣∣∣∣g1(x,a)+α ∑
y∈X

p(y |x,a)J∗1(y)−g2(x,a)−α ∑
y∈X

p(y |x,a)J∗2(y)

∣∣∣∣∣ ≤

≤ ‖g1 −g2‖∞ +

∣∣∣∣∣α ∑
y∈X

p(y |x,a)(J∗1(y)− J∗2 (y))

∣∣∣∣∣ ≤ ‖g1 −g2‖∞ +α‖J∗1 − J∗2‖∞ .

The statement immediately follows after we apply Theorem 12 to estimate ‖J∗1 − J∗2‖∞.
Case 3: Assume that the MDPs differ only in the discount rates, denoted by α1 and α2. We will
prove the same estimation as in the case of Theorem 13, more precisely, that

‖Q∗
1 −Q∗

2‖∞ ≤
|α1 −α2|

(1−α1)(1−α2)
‖g‖∞ .

For all state-action pair (x,a) we can estimate the absolute difference of Q∗
1 and Q∗

2 as

|Q∗
1(x,a)−Q∗

2(x,a)| =

=

∣∣∣∣∣g(x,a)+α1 ∑
y∈X

p(y |x,a)J∗1(y)−g(x,a)−α2 ∑
y∈X

p(y |x,a)J∗2(y)

∣∣∣∣∣ ≤

≤

∣∣∣∣∣α1 ∑
y∈X

p(y |x,a)J∗1(y)−α2 ∑
y∈X

p(y |x,a)J∗2(y)

∣∣∣∣∣ ≤ |α1 −α2|
1

1−α1
‖g‖∞ +α2 ‖J∗1 − J∗2‖∞ ,

where in the last step we applied the same estimation as in the proof of Theorem 13. The statement
immediately follows after we apply Theorem 13 to estimate ‖J∗1 − J∗2‖∞.

Lemma 18 Assume that two discounted MDPs, M1 and M2, differ only in the discount factors,
denoted by α1 and α2. Then, there exists an MDP, denoted by M3, such that it differs only in the
immediate-cost function from M1, thus its discount factor is α1, and it has the same optimal value
function as M2. The immediate-cost function of M3 is

ĝ(x,a) = g(x,a)+(α2 −α1) ∑
y∈X

p(y |x,a)J∗2(y),

1705

CSÁJI AND MONOSTORI

where p is the probability-transition function of M1, M2 and M3; g is the immediate-cost function
of M1 and M2; and J∗2 (y) denotes the optimal cost-to-go function of M2.
Proof First of all, let us overview some general statements that will be used in the proof.

Recall from Bertsekas and Tsitsiklis (1996) that we can treat the solution (the optimal value
function) of the infinite horizon problem as the limit of the finite horizon solutions. More precisely,
the Bellman optimality equation for the n-stage (finite horizon) problem is

J∗k (x) = min
a∈A(x)

[
g(x,a)+α ∑

y∈X

p(y | x,a)J∗k−1(y)
]
,

for all k ∈ {1, . . . ,n} and x ∈ X. Note that by definition, we have J∗0 (x) = 0. Moreover,

∀x ∈ X : J∗(x) = J∗∞(x) = lim
n→∞

J∗n (x).

Also recall that the n-stage optimal action value function is defined as

Q∗
k(x,a) = g(x,a)+α ∑

y∈X

p(y |x,a)J∗k−1(y),

for all x, a and k ∈ {1, . . . ,n}. We also have Q∗
0(x,a) = 0 and J∗n (x) = mina Q∗

n(x,a).
During the proof we will apply the solutions of suitable finite horizon problems, thus, in order

to avoid notational confusions, let us denote the optimal state and action value functions of M2 and
M3 by J∗, Q∗ and Ĵ∗, Q̂∗, respectively. The corresponding finite horizon optimal value functions
will be denoted by J∗n , Q∗

n and Ĵ∗n , Q̂∗
n, respectively, where n is the length of the horizon. We will

show that for all state x and action a we have Q∗(x,a) = Q̂∗(x,a), from which J∗ = Ĵ∗ follows. Let
us define ĝn for all n > 0 by

ĝn(x,a) = g(x,a)+(α2 −α1) ∑
y∈X

p(y |x,a)J∗n−1(y).

We will apply induction on n. For the case of n = 0 we trivially have Q∗
0 = Q̂∗

0, since both of them
are constant zero functions. Now, assume that Q∗

k = Q̂∗
k for k ≤ n, then

Q̂∗
n+1(x,a) = ĝn+1(x,a)+α1 ∑

y∈X

p(y |x,a)Ĵ∗n(y) =

= g(x,a)+(α2 −α1) ∑
y∈X

p(y |x,a)J∗n(y)+α1 ∑
y∈X

p(y |x,a)Ĵ∗n(y) =

= g(x,a)+α2 ∑
y∈X

p(y |x,a)J∗n(y)+α1 ∑
y∈X

p(y |x,a)
(
Ĵ∗n (y)− J∗n (y)

)
=

= g(x,a)+α2 ∑
y∈X

p(y |x,a)J∗n(y)+α1 ∑
y∈X

p(y |x,a)

(
min

b∈A(y)
Q̂∗

n(y,b)− min
b∈A(y)

Q∗
n(y,b)

)
=

= g(x,a)+α2 ∑
y∈X

p(y |x,a)J∗n(y) = Q∗
n+1(x,a).

We have proved that for all n: Q∗
n = Q̂∗

n. Consequently, Q∗(x,a) = limn→∞ Q∗
n(x,a) = limn→∞ Q̂∗

n(x,a)
= Q̂∗(x,a) and, thus, J∗(x) = mina Q∗(x,a) = mina Q̂∗(x,a) = Ĵ∗(x). Finally, note that for the case

1706

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

of the infinite horizon problem ĝ(x,a) = limn→∞ ĝn(x,a).

Theorem 20 Suppose that Assumptions 1-3 hold and let Vt be the sequence generated by

Vt+1(x) = (1− γt(x))Vt(x)+ γt(x)((KtVt)(x)+Wt(x)),

then, for any V ∗,V0 ∈ V , the sequence Vt κ-approximates function V ∗ with

κ =
4ρ

1−β0
where ρ = limsup

t→∞
‖V ∗

t −V ∗‖∞.

The applied three main assumptions are as follows
Assumption 1 There exits a constant C > 0 such that for all state x and time t, we have

E [Wt(x) |Ft] = 0 and E
[
W 2

t (x) |Ft
]
< C < ∞.

Assumption 2 For all x and t, 0 ≤ γt(x) ≤ 1, and we have with probability one

∞

∑
t=0

γt(x) = ∞ and
∞

∑
t=0

γ2
t (x) < ∞.

Assumption 3 For all t, operator Kt : V → V is a supremum norm contraction mapping with
Lipschitz constant βt < 1 and with fixed point V ∗

t . Formally, for all V1,V2 ∈ V ,

‖KtV1 −KtV2‖∞ ≤ βt ‖V1 −V2‖∞ .

Let us introduce a common Lipschitz constant β0 = limsup
t→∞

βt , and assume that β0 < 1.

Proof During the proof, our main aim will be to apply Theorem 9, thus, we have to show that the
assumptions of the theorem hold. Let us define operator Ht for all Va,Vb ∈ V by

Ht(Va,Vb)(x) = (1− γt(x))Va(x)+ γt(x)((KtVb)(x)+Wt(x)).

Applying this definition, first, we will show that V ′
t+1 = Ht(V ′

t ,V
∗) κ-approximates V ∗ for all V ′

0.

Because βt < 1 for all t and limsupt→∞ βt = β0 < 1, it follows that supt βt = β̃ < 1 and each Kt is β̃
contraction. We know that limsupt→∞ ‖V ∗−V ∗

t ‖∞ = ρ, therefore, for all δ > 0, there is an index t0

such that for all t ≥ t0, we have that ‖V ∗−V ∗
t ‖∞ ≤ ρ+δ. Using these observations, we can estimate

‖KtV ∗‖∞ for all t > t0, as follows

‖KtV
∗‖∞ = ‖KtV

∗−V ∗ +V ∗‖∞ ≤ ‖KtV
∗−V ∗‖∞ +‖V ∗‖∞ ≤

≤ ‖KtV
∗−V ∗

t +V ∗
t −V ∗‖∞ +‖V ∗‖∞ ≤ ‖KtV

∗−V ∗
t ‖∞ +‖V ∗

t −V ∗‖∞ +‖V ∗‖∞ ≤

≤ ‖KtV
∗−KtV

∗
t ‖∞ +ρ+δ+‖V ∗‖∞ ≤ β̃‖V ∗−V ∗

t ‖∞ +ρ+δ+‖V ∗‖∞ ≤

≤ (1+ β̃)ρ+(1+ β̃)δ+‖V ∗‖∞ ≤ (1+ β̃)ρ+2δ+‖V ∗‖∞ .

If we apply δ = (1− β̃)ρ/2, then for sufficiently large t (t ≥ t0) we have that

‖KtV
∗‖∞ ≤ 2ρ+‖V ∗‖∞ .

1707

CSÁJI AND MONOSTORI

Now, we can upper estimate V ′
t+1 = Ht(V ′

t ,V
∗), for all x ∈ X , V ′

0 ∈ V and t ≥ t0 by

V ′
t+1(x) = Ht(V

′
t ,V

∗)(x) = (1− γt(x))V
′

t (x)+ γt(x)((KtV
∗)(x)+Wt(x)) ≤

≤ (1− γt(x))V
′

t (x)+ γt(x)(‖KtV
∗‖∞ +Wt(x)) ≤

≤ (1− γt(x))V
′

t (x)+ γt(x)(‖V ∗‖∞ +2ρ+Wt(x)).

Let us define a new sequence for all x ∈ X by

Ṽt+1(x) =

(1− γt(x))Ṽt(x)+ γt(x)(‖V ∗‖∞ +2ρ+Wt(x)) if t ≥ t0,

V ′
t (x) if t < t0.

It is easy to see (for example, by induction from t0) that for all time t and state x we have that
V ′

t (x) ≤ Ṽt(x) with probability one, more precisely, for almost all ω ∈ Ω, where ω = 〈ω1,ω2, . . .〉
drives the noise parameter Wt(x) = wt(x,ωt) in both V ′

t and Ṽt . Note that Ω is the sample space of
the underlying probability measure space 〈Ω,F ,P〉.

Applying the “Conditional Averaging Lemma” of Szepesvári and Littman (1999), which is
a variant of the Robbins-Monro Theorem and requires Assumptions 1 and 2, we get that Ṽt(x)
converges with probability one to 2ρ + ‖V ∗‖∞ for all Ṽ0 ∈ V and x ∈ X . Therefore, because
V ′

t (x) ≤ Ṽt(x) for all x and t with probability one, we have that the sequence V ′
t (x) κ-approximates

V ∗(x) with κ = 2ρ for all function V ′
0 ∈ V and state x ∈ X .

Now, let us turn to Conditions 1-4 of Theorem 9. For all x and t, we define functions Ft(x) and
Gt(x) as Ft(x) = βtγt(x) and Gt(x) = (1− γt(x)). By Assumption 2, functions Ft(x),Gt(x) ∈ [0,1]
for all x and t. Condition 1 trivially follows from the definitions of Gt and Ht . For the proof of Con-
dition 2, we need Assumption 3, namely that each operator Kt is a contraction with respect to βt .
Condition 3 is a consequence of Assumption 2 and the definition of Gt . Finally, we have Condition
4 for any ε > 0 and sufficiently large t by defining ξ = β0 + ε. Applying Theorem 9 with κ = 2ρ,
we get that Vt κ′-approximates V ∗ with κ′ = 4ρ/(1−β0 − ε). In the end, letting ε go to zero proves
our statement.

References

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2. Athena Scientific, Bel-
mont, Massachusetts, 3rd edition, 2007.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

B. Cs. Csáji. Adaptive Resource Control: Machine Learning Approaches to Resource Allocation
in Uncertain and Changing Environments. PhD thesis, Faculty of Informatics, Eötvös Loránd
University, Budapest, 2008.

B. Cs. Csáji and L. Monostori. Adaptive sampling based large-scale stochastic resource control.
In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-06), July 16-20,
Boston, Massachusetts, pages 815–820, 2006.

1708

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

R. Montes de Oca, A. Sakhanenko, and F. Salem. Estimates for perturbations of general discounted
Markov control chains. Applied Mathematics, 30:287–304, 2003.

E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning Research
(JMLR), 5:1–25, Dec. 2003.

G. Favero and W. J. Runggaldier. A robustness result for stochastic control. Systems and Control
Letters, 46:91–66, 2002.

E. A. Feinberg and A. Shwartz, editors. Handbook of Markov Decision Processes: Methods and
Applications. Kluwer Academic Publishers, 2002.

E. Gordienko and F. S. Salem. Estimates of stability of Markov control processes with unbounded
cost. Kybernetika, 36:195–210, 2000.

Zs. Kalmár, Cs. Szepesvári, and A. Lőrincz. Module-based reinforcement learning: Experiments
with a real robot. Machine Learning, 31:55–85, 1998.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine Learn-
ing, 49:209–232, 2002.

A. Müller. How does the solution of a Markov decision process depend on the transition probabil-
ities? Technical report, Institute for Economic Theory and Operations Research, University of
Karlsruhe, 1996.

R. Munos and A. W. Moore. Rates of convergence for variable resolution schemes in optimal
control. In Proceedings of the 17th International Conference on Machine Learning (ICML),
pages 647–654. Morgan Kaufmann, San Francisco, CA, 2000.

M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, 2002.

S. Singh and D. Bertsekas. Reinforcement learning for dynamic channel allocation in cellular
telephone systems. In Advances in Neural Information Processing Systems, volume 9, pages
974–980. The MIT Press, 1997.

R. S. Sutton and A. G. Barto. Reinforcement Learning. The MIT Press, 1998.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. Advances in Neural Information Processing Systems, 12:
1057–1063, 2000.

Cs. Szepesvári and M. L. Littman. A unified analysis of value-function-based reinforcement learn-
ing algorithms. Neural Computation, 11(8):2017–2060, 1999.

I. Szita, B. Takács, and A. Lőrincz. ε-MDPs: Learning in varying environments. Journal of Machine
Learning Research (JMLR), 3:145–174, 2002.

B. Van Roy, D. Bertsekas, Y. Lee, and J. Tsitsiklis. A neuro-dynamic programming approach
to retailer inventory management. Technical report, Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA., 1996.

1709

Journal of Machine Learning Research 9 (2008) 1711-1739 Submitted 8/06; Revised 3/07; Published 8/08

Regularization on Graphs with Function-adapted Diffusion Processes

Arthur D. Szlam ASZLAM@MATH.UCLA.EDU

Department of Mathematics
U.C.L.A., Box 951555
Los Angeles, CA 90095-1555

Mauro Maggioni MAURO.MAGGIONI@DUKE.EDU

Department of Mathematics and Computer Science
Duke University, Box 90320
Durham, NC, 27708

Ronald R. Coifman COIFMAN@MATH.YALE.EDU

Program in Applied Mathematics
Department of Mathematics
Yale University, Box 208283
New Haven,CT,06510

Editor: Zoubin Ghahrmani

Abstract
Harmonic analysis and diffusion on discrete data has been shown to lead to state-of-the-art algo-
rithms for machine learning tasks, especially in the context of semi-supervised and transductive
learning. The success of these algorithms rests on the assumption that the function(s) to be studied
(learned, interpolated, etc.) are smooth with respect to the geometry of the data. In this paper we
present a method for modifying the given geometry so the function(s) to be studied are smoother
with respect to the modified geometry, and thus more amenable to treatment using harmonic analy-
sis methods. Among the many possible applications, we consider the problems of image denoising
and transductive classification. In both settings, our approach improves on standard diffusion based
methods.
Keywords: diffusion processes, diffusion geometry, spectral graph theory, image denoising, trans-
ductive learning, semi-supervised learning

1. Introduction

Recently developed techniques in the analysis of data sets and machine learning use the geometry
of the data set in order to study functions on it. In particular the idea of analyzing the data set and
functions on it intrinsically has lead to novel algorithms with state-of-the-art performance in various
problems in machine learning (Szummer and Jaakkola, 2001; Zhu et al., 2003; Zhou and Schlkopf,
2005; Belkin and Niyogi, 2003a; Mahadevan and Maggioni, 2007; Maggioni and Mhaskar, 2007).
They are based on the construction of a diffusion, or an averaging operator K on the data set,
dependent on its local, fine scale geometry. K, its powers, and the special bases associated to it, such
as its eigenfunctions (Belkin and Niyogi, 2003a; Coifman et al., 2005a; Coifman and Lafon, 2006a)
or its diffusion wavelets (Coifman and Maggioni, 2006) can be used to study the geometry of and
analyze functions on the data set. Among other things, “diffusion analysis” allows us to introduce
a notion of smoothness in discrete settings that preserves the relationships between smoothness,

c©2008 Arthur D. Szlam, Mauro Maggioni and Ronald R. Coifman.

SZLAM, MAGGIONI AND COIFMAN

sparsity in a “Fourier” basis, and evolution of heat that are well-known in Euclidean spaces (Zhou
and Schlkopf, 2005).

One of the main contributions of this work is the observation that the geometry of the space is not
the only important factor to be considered, but that the geometry and the properties of the function
f to be studied (denoised/learned) should also affect the smoothing operation of the diffusion. We
will therefore modify the geometry of a data set with features from f , and build K on the modified
f -adapted data set. The reason for doing this is that perhaps f is not smooth with respect to the
geometry of the space, but has structure that is well encoded in the features. Since the harmonic
analysis tools we use are robust to complicated geometries, but are most useful on smooth functions,
it is reasonable to let the geometry of the data set borrow some of the complexity of the function,
and study a smoother function on a more irregular data set. In other words, we attempt to find the
geometry so that the functions to be studied are as smooth as possible with respect to that geometry.
On the one hand, the result is nonlinear in the sense that it depends on the input function f , in
contrast with methods which consider the geometry of the data alone, independently of f . On the
other hand, on the modified data set, the smoothing operator K will be linear, and very efficiently
computable. One could generalize the constructions proposed to various types of processes (e.g.,
nonlinear diffusions).

The paper is organized as follows: in Section 2, we review the basic ideas of harmonic analysis
on weighted graphs. In Section 3 we introduce the function-adapted diffusion approach, which aims
to modify the geometry of a data set so that a function or class of functions which was non-smooth
in the original geometry is smooth in the modified geometry, and thus amenable to the harmonic
analysis in the new geometry. In Section 4 we demonstrate this approach in the context of the image
denoising problem. In addition to giving easy to visualize examples of how the method works,
we achieve state of the art results. In Section 5, we demonstrate the approach in the context of
transductive learning. While here it is more difficult to interpret our method visually, we test it on
a standard database, where it outperforms comparable “geometry only” methods on the majority
of the data sets, and in many cases achieves state of the art results. We conclude by considering
the under-performance of the method on some data sets, observing that in those examples (most of
which are in fact the only artificial ones!), the geometry of the data suffices for learning the function
of interests; and our method is superfluous.

2. Diffusion on Graphs Associated with Data-sets

An intrinsic analysis of a data set, modeled as a graph or a manifold, can be developed by consid-
ering a natural random walk K on it (Chung, 1997; Szummer and Jaakkola, 2001; Ng et al., 2001;
Belkin and Niyogi, 2001; Zha et al., 2001; Lafon, 2004; Coifman et al., 2005a,b). The random walk
allows to construct diffusion operators on the data set, as well as associated basis functions. For an
initial condition δx, Ktδx(y) represents the probability of being at y at time t, conditioned on starting
at x.

2.1 Setup and Notation

We consider the following general situation: the space is a finite weighted graph G = (V,E,W),
consisting of a set V (vertices), a subset E (edges) of V×V , and a nonnegative function W : E→R

+

(weights). Without loss of generality we assume that there is an edge from x to y ∈ V , and write
x ∼ y, if and only if W (x,y) > 0. Notice that in this work W will usually be symmetric; that is

1712

REGULARIZATION ON GRAPHS WITH FUNCTION-ADAPTED DIFFUSION PROCESSES

the edges will be undirected. The techniques we propose however do not require this property, and
therefore can be used on data sets in which graph models with directed edges are natural.

We interpret the weight W (x,y) as a measure of similarity between the vertices x and y. A natural
filter acting on functions on V can be defined by normalization of the weight matrix as follows: let

d(x) = ∑
y∈V

W (x,y) ,

and let1 the filter be
K(x,y) = d−1(x)W (x,y) , (1)

so that ∑y∈V K(x,y) = 1, and so that multiplication K f of a vector from the left is a local averaging
operation, with locality measured by the similarities W . Multiplication by K can also be interpreted
as a generalization of Parzen window type estimators to functions on graphs/manifolds. There
are other ways of defining averaging operators. For example one could consider the heat kernel
e−tL where L is defined in (3) below, see also Chung (1997), or a bi-Markov matrix similar to W
(Sinkhorn, 1964; Sinkhorn and Knopp, 1967; Soules, 1991; Linial et al., 1998; Shashua et al., 2005;
Zass and Shashua, 2005).

In general K is not column-stochastic,2 but the operation f K of multiplication on the right by a
(row) vector can be thought of as a diffusion of the vector f . This filter can be iterated several times
by considering the power Kt .

2.2 Graphs Associated with Data Sets

¿From a data set X we construct a graph G: the vertices of G are the data points in X , and weighted
edges are constructed that connect nearby data points, with a weight that measures the similarity
between data points. The first step is therefore defining these local similarities. This is a step
which is data- and application-dependent. It is important to stress the attribute local. Similarities
between far away data points are not required, and deemed unreliable, since they would not take into
account the geometric structure of the data set. Local similarities are assumed to be more reliable,
and non-local similarities will be inferred from local similarities through diffusion processes on the
graph.

2.2.1 LOCAL SIMILARITIES

Local similarities are collected in a matrix W , whose rows and columns are indexed by X , and whose
entry W (x,y) is the similarity between x and y. In the examples we consider here, W will usually be
symmetric, that is the edges will be undirected, but these assumptions are not necessary.

If the data set lies in R
d , or in any other metric space with metric ρ, then the most standard

construction is to choose a number (“local time”) σ > 0 and let

Wσ(x,y) = h

(

ρ(x,y)2

σ

)

,

1. Note that d(x) = 0 if and only if x is not connected to any other vertex, in which case we trivially define d−1(x) = 0,
or simply remove x from the graph.

2. In particular cases K is a scalar multiple of a column-stochastic matrix, for example when D is a multiple of identity,
which happens for example if G is regular and all the edges have the same weight.

1713

SZLAM, MAGGIONI AND COIFMAN

for some function h with, say, exponential decay at infinity. A common choice is h(a) = exp(−a).
The idea is that we expect that very close data points (with respect to ρ) will be similar, but do not
want to assume that far away data points are necessarily different.

Let D be the diagonal matrix with entries given by d as in (2.1). Suppose the data set is, or
lies on, a manifold in Euclidean space. In Lafon (2004), Belkin and Niyogi (2005), Hein et al.
(2005), von Luxburg et al. (2004) and Singer (2006), it is proved that in this case, the choice of h
in the construction of the weight matrix is in some asymptotic sense irrelevant. For a rather generic

symmetric function h, say with exponential decay at infinity, (I−D
− 1

2
σ WσD

− 1
2

σ)/σ, approaches the
Laplacian on the manifold, at least in a weak sense, as the number of points goes to infinity and σ
goes to zero. Thus this choice of weights is naturally related to the heat equation on the manifold.
On the other hand, for many data sets, which either are far from asymptopia or simply do not lie on
a manifold, the choice of weights can make a large difference and is not always easy. Even if we
use Gaussian weights, the choice of the “local time parameter” σ can be nontrivial.

For each x, one usually limits the maximum number of points y such that W (x,y) 6= 0 (or
non-negligible). Two common modifications of the construction above are to use either ρε(x,y)
or ρk(x,y) instead of ρ, where

ρε(x,y) =

{

d(x,y) if ρ(x,y)≤ ε;
∞ if ρ(x,y) > ε ,

where usually ε is such that h(ε2/σ) << 1, and

ρk(x,y) =

{

ρ(x,y) if y ∈ nk(x);
∞ otherwise.

and nk(x) is the set of k nearest neighbors of x. This is for two reasons: one, often only very small
distances give information about the data points, and two, it is usually only possible to work with
very sparse matrices.3 This truncation causes W to be not symmetric; if symmetry is desired, W
may be averaged (arithmetically or geometrically) with its transpose.

A location-dependent approach for selecting the similarity measure is suggested in Zelnik-
Manor and Perona (2004). A number m is fixed, and the distances at each point are scaled so
the m-th nearest neighbor has distance 1; that is, we let ρx(y,y′) = ρ(y,y′)/ρ(x,xm), where xm is the
m-th nearest neighbor to x. Now ρx depends on x, so in order to make the weight matrix symmetric,
they suggest to use the geometric mean of ρx and ρy in the argument of the exponential, that is, let

Wσ(x,y) = h

(

ρx(x,y)ρy(x,y)

σ

)

, (2)

with h, as above, decaying at infinity (typically, h(a) = exp(−a)), or truncated at the k-th nearest
neighbor. This is called the self-tuning weight matrix. There is still a timescale in the weights, but
a global σ in the self-tuning weights corresponds to some location dependent choice of σ in the
standard exponential weights.

3. However, methods of Fast Multipole of Fast Gauss type (Greengard and Rokhlin, 1988) may make it possible to work
with dense matrices implicitly, with complexity proportional to the number of points. See Raykar et al. (2005) for a
recent reference with applications to machine learning.

1714

REGULARIZATION ON GRAPHS WITH FUNCTION-ADAPTED DIFFUSION PROCESSES

2.2.2 THE AVERAGING OPERATOR AND ITS POWERS

Multiplication by the normalized matrix K as in (1) can be iterated to generate a Markov process
{Kt}t≥0, and can be used to measure the strength of all the paths between two data points, or the
likelihood of getting from one data point to the other if we constrain ourselves to only stepping
between very similar data points. For example one defines the diffusion or spectral distance (Bérard
et al., 1994; Coifman et al., 2005a; Coifman and Lafon, 2006a) by

D(t)(x,y) = ||Kt(x, ·)−Kt(y, ·)||2 =
√

∑
z∈X

|Kt(x,z)−Kt(y,z)|2 .

The term diffusion distance was introduced in Lafon (2004), Coifman et al. (2005a) and Coifman
and Lafon (2006a) and is suggested by the formula above, which expresses D (t) as some similarity
between the probability distributions Kt(x, ·) and Kt(y, ·), which are obtained by diffusion from x
and y according to the diffusion process K. The term spectral distance was introduced in Bérard
et al. (1994, see also references therein). It has recently inspired several algorithms in clustering,
classification and learning (Belkin and Niyogi, 2003a, 2004; Lafon, 2004; Coifman et al., 2005a;
Coifman and Lafon, 2006a; Mahadevan and Maggioni, 2005; Lafon and Lee, to appear, 2006; Mag-
gioni and Mhaskar, 2007).

2.3 Harmonic Analysis

The eigenfunctions {ψi} of K, satisfying

Kψi = λiψi ,

are are related,via multiplication by D−
1
2 , to the eigenfunctions φi of the graph Laplacian (Chung,

1997), since
L = D−

1
2 WD−

1
2 − I = D

1
2 KD−

1
2 − I . (3)

They lead to a natural generalization of the Fourier analysis: any function g ∈ L
2(X) can be written

as g = ∑i∈I 〈g,φi〉φi, since {φi} is an orthonormal basis. The larger is i, the more oscillating the
function φi is, with respect to the geometry given by W , and λi measures the frequency of φi. These
eigenfunctions can be used for dimensionality reduction tasks (Lafon, 2004; Belkin and Niyogi,
2003a; Coifman and Lafon, 2006a; Coifman et al., 2005a; Jones et al., 2007a,b).

For a function g on G, define its gradient (Chung, 1997; Zhou and Schlkopf, 2005) as the
function on the edges of G defined by

∇g(x,y) = W (x,y)

(

g(y)
√

d(y)
−

g(x)
√

d(x)

)

(4)

if there is an edge e connecting x to y and 0 otherwise; then

||∇g(x)||2 = ∑
x∼y
|∇g(x,y)|2.

The smoothness of g can be measured by the Sobolev norm

||g||2H 1 = ∑
x
|g(x)|2 +∑

x
||∇g(x)||2 . (5)

1715

SZLAM, MAGGIONI AND COIFMAN

The first term in this norm measures the size of the function g, and the second term measures the
size of the gradient. The smaller ||g||H 1 , the smoother is g. Just as in the Euclidean case,

||g||2H 1 = ||g|2
L2(X ,d)−〈g,Lg〉 ;

thus projecting a function onto the first few terms of its expansion in the eigenfunctions of L is a
smoothing operation.4

We see that the relationships between smoothness and frequency forming the core ideas of Eu-
clidean harmonic analysis are remarkably resilient, persisting in very general geometries. These
ideas have been applied to a wide range of tasks in the design of computer networks, in paral-
lel computation, clustering (Ng et al., 2001; Belkin and Niyogi, 2001; Zelnik-Manor and Perona,
2004; Kannan et al., 2004; Coifman and Maggioni, 2007), manifold learning (Bérard et al., 1994;
Belkin and Niyogi, 2001; Lafon, 2004; Coifman et al., 2005a; Coifman and Lafon, 2006a), image
segmentation (Shi and Malik, 2000), classification (Coifman and Maggioni, 2007), regression and
function approximation (Belkin and Niyogi, 2004; Mahadevan and Maggioni, 2005; Mahadevan
et al., 2006; Mahadevan and Maggioni, 2007; Coifman and Maggioni, 2007).

2.4 Regularization by Diffusion

It is often useful to find the smoothest function f̃ on a data set X with geometry given by W , so
that for a given f , f̃ is not too far from f ; this task is encountered in problems of denoising and
function extension. In the denoising problem, we are given a function f + η from X → R, and η
is Gaussian white noise of a given variance, or if one is ambitious, some other possibly stochastic
contamination. We must find f . In the function extension or interpolation problem, a relatively
large data set is given, but the values of f are known at only relatively few “labeled” points, and the
task is to find f on the “unlabeled” points. Both tasks, without any a priori information on f , are
impossible; the problems are underdetermined. On the other hand, it is often reasonable to assume
f should be smooth, and so we are led to the problem of finding a smooth f̃ close to f .

In Euclidean space, a classical method of mollification is to run the heat equation for a short
time with initial condition specified by f . It turns out that the heat equation makes perfect sense on
a weighted graph: if f is a function on V , set f0 = f , and fk+1 = K f . If gk(x) = d

1
2 (x) fk(x),

gk+1−gk = Lgk ,

so multiplication by K is a step in the evolution of the (density normalized) heat equation. Further-
more, a quick calculation shows this is the gradient descent for the smoothness energy functional
∑ ||∇g||2. We can thus do “harmonic” interpolation on X by iterating K (Zhu et al., 2003).

We can design more general mollifiers using an expansion on the eigenfunctions {ψi} of K.
For the rest of this section, suppose all inner products are taken against the measure d, that is,
〈a,b〉 = ∑a(x)b(x)d(x), and so ψ are orthonormal. Then f = ∑〈 f ,ψi〉ψi and one can define f̃ , a
smoothed version of f , by

f̃ = ∑
i

αi〈 f ,ψi〉ψi

4. However it is well known that if f does not have uniform smoothness everywhere, the approximation by eigenfunc-
tions is poor not only in regions of lesser smoothness, but the poor approximation spills to regions of smoothness as
well. This lack of localization can be avoided with the multiscale constructions in Coifman and Maggioni (2006) and
Maggioni and Mhaskar (2007).

1716

REGULARIZATION ON GRAPHS WITH FUNCTION-ADAPTED DIFFUSION PROCESSES

for some sequence {αi} which tends to 0 as i→ +∞; in the interpolation problem, we can attempt
to estimate the inner products 〈 f ,ψi〉, perhaps by least squares. Typical examples for αi are:

(i) αi = 1 if i < I, and 0 otherwise (pure low-pass filter); I usually depends on a priori information
on η, for example on the variance of η. This is a band-limited projection (with band I), see
for example Belkin (2003).

(ii) αi = λt
i for some t > 0, this corresponds to setting f̃ = Kt(f), that is, kernel smoothing on the

data set, with a data-dependent kernel (Smola and Kondor, 2003; Zhou and Schlkopf, 2005;
Chapelle et al., 2006).

(iii) αi = P(λi), for some polynomial (or rational function) P, generalizing (ii). See, for example,
Maggioni and Mhaskar (2007)

As mentioned, one can interpret Kt f as evolving a heat equation on the graph with an initial condi-
tion specified by f . If we would like to balance smoothing by K with fidelity to the original f , we
can choose β > 0 and set f0 = f and ft+1 = (K ft + β f)/(1 + β); the original function is treated as
a heat source. This corresponds at equilibrium to

(iv) αi = β/(1+β−λi).

One can also consider families of nonlinear mollifiers, of the form

f̃ = ∑
i

m(〈 f ,ψi〉)ψi ,

where for example m is a (soft-)thresholding function (Donoho and Johnstone, 1994). In fact, m may
be made even dependent on i. While these techniques are classical and well-understood in Euclidean
space (mostly in view of applications to signal processing), it is only recently that research in their
application to the analysis of functions on data sets has begun (in view of applications to learning
tasks, see in particular Maggioni and Mhaskar 2007).

All of these techniques clearly have a regularization effect. This can be easily measured in
terms of the Sobolev norm defined in (5): the methods above correspond to removing or damping
the components of f (or f + η) in the subspace spanned by high-frequency ψi, which are the ones
with larger Sobolev norm.

3. Function-adapted Kernels

The methods above are based on the idea that the function f to be recovered should be smooth with
respect to W , but it can happen that an interesting function on data is not smooth with respect to
the given geometry on that data. In this case we cannot directly bring to bear the full power of the
methods described above. On the other hand, we have seen that these methods are well defined
on any weighted graph. We thus propose to modify the geometry of W so that the function(s) to
be recovered are as smooth as possible in the modified geometry. Even when f is not smooth, the
geometry of W and f can interact in a structured way. We will attempt to incorporate the geometry
of the function f (or a family of functions F) in the construction of the weights W ; the hope is that
we can convert structure to smoothness, and apply the methods of harmonic analysis to a smoother
function on a rougher data set. In other words, we want our regularizer to take averages between

1717

SZLAM, MAGGIONI AND COIFMAN

points where f has similar structure, in addition to being near to each other in terms of the given
geometry of the data.

The simplest version of this idea is to only choose nonzero weights between points on the same
level set of f . Then ||∇ f || (with respect to W) is zero everywhere, and the function to be recovered
is as smooth as possible. Of course knowing the level sets of f is far too much to ask for in practice.
For example, in the function extension problem, if f has only a few values (e.g., for a classification
task), knowing the level sets of f would be equivalent to solving the problem.

If we had some estimate f̃ for f , we could set

W f (x,y) = exp

(

−
||x− y||2

σ1
−
| f̃ (x)− f̃ (y)|2

σ2

)

, (6)

so that when σ2 << σ1, the associated averaging kernel K will average locally, but much more along
the (estimated) level sets of f than across them, because points on different level sets now have very
weak or no affinity. This is related to ideas in Yaroslavsky (1985); Smith and Brady (1995) and
Coifman et al. (2005a).

The estimate f̃ of f is just a simple example of a feature map. More generally, we set

W f (x,y) = h1

(

−
ρ1(x,y)2

σ1

)

h2

(

−
ρ2(F (f)(x),F (f)(y))2

σ2

)

, (7)

where F (f)(x) is a set of features associated with f , evaluated at the data point x, ρ1 is a metric
on the data set, ρ2 is a metric on the set of features, h1 and h2 are (usually exponentially) decaying
functions, and σ1 and σ2 are “local time” parameters in data and feature space respectively. Such a
similarity is usually further restricted as described at the end of Section 2.2.1. The idea here is to be
less ambitious than (6), and posit affinity between points where we strongly believe f to have the
same structure, and not necessarily between every point on an (estimated) level set. The averaging
matrix K f associated with W f can then be used for regularizing, denoising and learning tasks, as
described above. We call such a kernel a function-adapted kernel.

The way the function f affects the construction of K f will be application- and data- specific, as
we shall see in the applications to image denoising and graph transductive learning. For example, in
the application to image denoising, F (f)(x) may be a vector of filter responses applied to the image
f at location x. In the application to transductive classification, we are given C functions χi, defined
by χi(x) = 1 if x is labeled as a point in class i, and 0 otherwise (either the point is not labeled, or it
is not in class i). We set f = (χi)

N
i=1. Then F (f)(x) can be obtained by evaluating K t(χi) at x, where

K is a diffusion operator which only depends on the data set, and not on the χi’s. In all applications,
our idea is simply to to try to choose similarities, with the limited information about the function(s)
to be recovered that we are given, so that the function(s) are as regular as possible with respect to
the chosen similarities.

4. Application I: Denoising of Images

We apply function-adapted kernels to the task of denoising images. Not only this will be helpful to
gain intuition about the ideas in Section 3 in a setting where our methods are easily visualized, but
it also leads to state-of-art results.

Gray-scale images are often modeled as real-valued functions, or distributions, on Q, a fine
discretization of the square [0,1]2, and they are often analyzed, denoised, compressed, inpainted, de-
blurred as such, see for example Tschumperle (2002), Perona and Malik (1990), Rudin et al. (1992),

1718

REGULARIZATION ON GRAPHS WITH FUNCTION-ADAPTED DIFFUSION PROCESSES

Chan and Shen (2005), Perona and Malik (1990), Tomasi and Manduchi (1998), Elad (2002), Boult
et al. (1993), Chin and Yeh (1983), Davis and Rosenfeld (1978), Graham (1961), Huang et al.
(1979), Lee (1980), Yin et al. (1996) and references therein. It is well known that images are not
smooth as functions from Q to R, and in fact the interesting and most important features are often
exactly the non-smooth parts of f . Thus Fourier analysis and the heat equation on Q are not ideally
suited for images; much of the work referenced above aims to find partial differential equations
whose evolution smooths images without blurring edges and textures.

With the approach described in Section 3, unlike with many PDE-based image processing meth-
ods, the machinery of smoothing is divorced from the task of feature extraction. We build a graph
G(I) whose vertices are the pixels of the image and whose weights are adapted to the image struc-
ture, and use the diffusion on the graph with a fidelity term, as described in Section 2.4 to smooth
the image, considered as a function on the graph. If we are able to encode image structure in the
geometry of the graph in such a way that the image is actually smooth as a function on its graph,
then the harmonic analysis on the graph will be well-suited for denoising that image. Of course, we
have shifted part of the problem to feature extraction, but we will see that very simple and intuitive
techniques produce state of the art results.

4.1 Image-adapted Graphs and Diffusion Kernels

To build the image-adapted graph we first associate a feature vector to each location x in the image
I, defined on a square Q. A simple choice of d + 2 dimensional feature vectors is obtained by
setting two of the coordinates of the feature vector to be scaled versions of the coordinates of the
corresponding pixel in the image αx, where α≥ 0 is a scalar, and x ∈ Q. The remaining d features
are the responses to convolution with d different filters g1, · · · ,gd , evaluated at location x. More
formally, we pick a d-vector g = (g1, · · · ,gd) of filters (i.e., real valued functions on Q), fix α ≥ 0,
and map Q into R

d+2 by a feature map

Fg,α(I) : Q→ R
d+2

x 7→ (αx, f ∗g1(x), · · · , f ∗gd(x))

This is an extremely flexible construction, and there are many interesting choices for the filters
{gi}. One could take a few wavelets or curvelets at different scales, or edge filters, or patches of
texture, or some measure of local statistics. Also note there are many other choices of feature maps
that are not obtained by convolution, see Section 4.1.2 for examples.

The graph G(I) will have vertices given by Fg,α(x), x ∈ Q. To obtain the weighted edges, set

ρ(x,y) = ρg,α(x,y) = ||Fg,α(f)(x)−Fg,α(f)(y)|| ,

where || · || is a norm (e.g., Euclidean) in R
d+2. The parameter α specifies the amount of weight

to give to the original 2-d space coordinates of the pixels, and may be 0. Alternatively, instead of
using a weight α, one can choose sets S = S(x)⊂ Q so that

ρ(x,y) = dg,S(x,y) =

{

ρg,0(x,y) if y ∈ S(x);
∞ otherwise.

. (8)

In the discrete case, if we choose S(x) to be the n nearest neighbors of x in the 2 space coordinates:
we will write ρg,n, and if the filters are understood, just ρn.

1719

SZLAM, MAGGIONI AND COIFMAN

Figure 1: Above: image of Lena, with two locations highlighted. Left: row of the diffusion kernel
corresponding to the upper-left highlighted area in the above image. Right: row of the
diffusion kernel corresponding to the bottom-left highlighted area in the above image.
The diffusion kernel averages according to different patterns in different locations. The
averaging pattern on the right is also “non-local”, in the sense that the averaging occurs
along well-separated stripes, corresponding to the hair in the original picture.

For a fixed choice of metric ρ as above, and a “local time” parameter σ, we construct the
similarity matrix Wσ as described in Section 2.2.1, and the associated diffusion kernel K as in (1).

In Figure 3 we explore the local geometry in patch space by projecting the set of patches around
a given patch onto the principal components of the set of patches itself. Geometric structures of the
set of patches, dependent on local geometry of the image (e.g., texture vs. edge) are apparent. The
key feature of these figures is that the gray level intensity value is smooth as a function from the set
of patches to R, even when the intensity is not smooth in the original spatial coordinates.

We now describe some interesting choices for the feature maps F (I).

4.1.1 PATCH GRAPH

Let gN be the set of N2 filters {gi, j}i, j=1,...,N , where gi, j is a N×N matrix with 1 in the i, j entry
and 0 elsewhere. Then FgN ,0 is the set of patches of the image embedded in N2 dimensions. The
diffusion one gets from this choice of filters is the NL-means filter of Buades et al. (2005a). “NL”

1720

REGULARIZATION ON GRAPHS WITH FUNCTION-ADAPTED DIFFUSION PROCESSES

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Figure 2: Left to right: image of Barbara, with several locations pi highlighted; Kt(pi, ·), for t =
1,2.

stands for Non-Local; in the paper, they proposed setting α = 0. In a later paper they add some
locality constraints; see Buades et al. (2005b) and Mahmoudi (2005). We wish to emphasize that
smoothing with the NL-means filter is not, in any sort of reasonable limit, a 2-d PDE; rather, it is
the heat equation on the set of patches of the image!

Note the embedding into 5× 5 patches is the same embedding (up to a rotation) as into 5× 5
DCT coordinates, and so the weight matrices constructed from these embeddings are the same. On
the other hand, if we attenuate small filter responses, the weight matrices for the two filter families
will be different.

4.1.2 BOOTSTRAPPING A DENOISER; OR DENOISED IMAGES GRAPH

Different denoising methods often pick up different parts of the image structure, and create different
characteristic artifacts. Suppose we have obtained denoised images f1, ..., fd , from a noisy image f .
To make use of the various sensitivities, and rid ourselves of the artifacts, we could embed pixels
x ∈ Q into R

d+2 by x 7→ (αx, f1(x), ..., fd(x)). In other words we interpret (fi(x))i=1,...,d as a feature
vector at x. This method is an alternative to “cycle spinning”(Coifman and Donoho, 1995), that is,
simply averaging the different denoisings.

In practice, we have found that a better choice of feature vector is fσ(1)(x), ..., fσ(d)(x), where σ
is a random permutation of {1, ...,d} depending on x. The idea is to mix up the artifacts from the
various denoisings. Note that this would not affect standard averaging, since ∑ fi(x) = ∑ fσ(i).

4.2 Image Graph Denoising

Once we have the graph W and normalized diffusion K, we use K to denoise the image. The obvious
bijection from pixels to vertices in the image graph induces a correspondence between functions on
pixels (such as the original image) and functions on the vertices of the graph. In particular the
original image can be viewed as a function I on G(I). The functions K tI are smoothed versions
of I with respect to the geometry of G(I). If the graph was simply the standard grid on Q, then
K would be nothing other than a discretization of the standard two-dimensional heat kernel, and
KtI would be the classical smoothing of I induced by the Euclidean two-dimensional heat kernel,
associated with the classical Gaussian scale space (we refer the reader to Witkin, 1983; Koenderink,

1721

SZLAM, MAGGIONI AND COIFMAN

1984; Lindeberg, 1994, and references therein). In our context K t is associated with a scale space
induced by G(I), which is thus a nonlinear scale space (in the sense that it depends on the original

11

2

1

2

3

1

2

3

4

50 100 150 200 250

50

100

150

200

250

−100

0

100

200

−100
0

100
−100

−50

0

50

100

−500

0

500

−400

−200

0

200

−100

0

100

−400

−200

0

200

400 −200

0

200

−200

0

200

−200 0 200 −20

−10

0

10

20

30

−20

−10

0

10

Figure 3: Top left: image of Barbara, with 4 square 10× 10 pixel regions highlighted. The 5× 5
patches in each region are considered as 25 dimensional vectors, and top right we plot the
singular values of their covariance matrix. At the bottom, we project the 25-dimensional
points in each region on their top 3 principal components, and the color is the value of the
image at each point. In region 1, note how the (approximate) periodicity of the texture in
region 1 is reflected in the tubular shape of the projection; in region 2, the portions of the
image on different sides of the edge are disconnected in the feature space, and note the
higher dimensionality, as measured by the singular values; for region 3, note the higher
dimensionality (slower decay of the singular values) compared to regions 1 and 4; for
region 4 note the very small dimensionality. Most importantly, note that in each region,
the gray level pixel value is smooth as a function of the patches.

1722

REGULARIZATION ON GRAPHS WITH FUNCTION-ADAPTED DIFFUSION PROCESSES

image I). In fact G(I), as described above, is often a point cloud in high-dimensional space, where
closeness in those high-dimensional space represents similarity of collections of pixels, and/or of
their features, in the original two-dimensional domain of I.

We can balance smoothing by K with fidelity to the original noisy function by setting ft+1 =
(K ft +β f)/(1+β) where β > 0 is a parameter to be chosen, and large β corresponds to less smooth-
ing and more fidelity to the noisy image. This is a standard technique in PDE based image process-
ing, see Chan and Shen (2005) and references therein. If we consider iteration of K as evolving a
heat equation, the fidelity term sets the noisy function as a heat source, with strength determined
by β. Note that even though when we smooth in this way, the steady state is no longer the constant
function, we still do not usually wish to smooth to equilibrium. We refer the reader to Figure 4 for
a summary of the algorithm proposed.

Ĩ←DenoiseImage(I, t)

// Input:
// I : an image
// t : amount of denoising

// Output:
// Ĩ : a denoised version of I.

1. Construct a graph G associated with I, in any of the ways discussed in Section 4.

2. Compute the associated I-adapted diffusion operator K I .

3. set Ĩ← (KI)tI.

Figure 4: Pseudo-code for denoising an image

4.3 Examples

Figure 5 displays examples of denoising with a diffusion on an image graph. On the top left of the
figure we have the noisy image f0; the noise is N(0, .0244). On the top right of Figure 5, we denoise
the image using a 7×7 NL-means type patch embedding as described in Section 4.1.1. We set

W (k, j) = e− ˜ρ81(k, j)2/.3

where ˜ρ81 is the distance in the embedding, restricted to 81 point balls in the 2-d metric; that is we
take S(k) in Equation (8) to be the 81 nearest pixels to pixel k in the 2-d metric. We then normalize
K = D−1W and denoise the image by applying K three times with a fidelity term of .07; that is,
ft+1 = (K ft + .07 f0)/(1.07), and the image displayed is f3. The parameters were chosen by hand.

In the bottom row of Figure 5: on the bottom left, we sum 9 curvelet denoisings. Each curvelet
denoisings is a reconstruction of the noisy image f0 shifted either 1, 2, or 4 pixels in the vertical
and/or horizontal directions, using only coefficients with magnitudes greater than 3σ. To demon-
strate bootstrapping, or cycle spinning by diffusion, we embed each pixel in R

9 using the 9 curvelet
denoisings as coordinates. We set

W (k, j) = e− ˜ρ81(k, j)2/.03

1723

SZLAM, MAGGIONI AND COIFMAN

Figure 5: 1) Lena with Gaussian noise added. 2) Denoising using a 7×7 patch graph. 3) Denoising
using hard thresholding of curvelet coefficients. The image is a simple average over
9 denoisings with different grid shifts. 4) Denoising with a diffusion built from the 9
curvelet denoisings.

where ˜ρ81 is the distance in the embedding, and again we take S(k) in Equation (8) to be the 81
nearest pixels to pixel k in the 2-d metric. We then normalize K = D−1W and denoise the image
by applying K ten times with a fidelity term of .1; that is ft+1 = (K ft + .1 f0)/(1.1), and f10 is
displayed. The results are on the bottom right of Figure 5. We are able to greatly reduce the artifacts
from a simple average of the curvelet denoisings.

1724

REGULARIZATION ON GRAPHS WITH FUNCTION-ADAPTED DIFFUSION PROCESSES

5. Application II: Graph Transductive Learning

We apply function adapted approach to the transductive learning problem, and give experimental
evidence demonstrating that using function adapted weights can improve diffusion based classifiers.

In a transductive learning problem one is given a few “labeled” examples X̃× F̃ = {(x1,y1), . . . ,
(xp,yp)} and a large number of “unlabeled” examples X \ X̃ = {xp+1, . . . ,xn}. The goal is to estimate
the conditional distributions F(y|x) associated with each available example x (labeled or unlabeled).

For example F̃ may correspond to labels for the points X̃ , or the result of a measurement at the
points in X̃ . The goal is to extend F̃ to a function F defined on the whole X , that is consistent with
unseen labels/measurements at points in X \ X̃ .

This framework is of interest in applications where it is easy to collect samples, that is, X is
large, however it is expensive to assign a label or make a measurement at X , so only a few la-
bels/measurements are available, namely at the points in X̃ . The points in X \ X̃ , albeit unlabeled,
can be used to infer properties of the structure of the space (or underlying process/probability dis-
tribution) that is potentially useful in order to extend F̃ to F . Data sets with internal structures or
geometry are in fact ubiquitous.

If F is smooth with respect to the data, an intrinsic analysis on the data set, such as the one
possible by the use of diffusion processes and the associated Fourier and multi-scale analyses, fits
very well in the transductive learning framework. In several papers a diffusion process constructed
on X has been used for finding F directly (Zhou and Schlkopf, 2005; Zhu et al., 2003; Kondor and
Lafferty, 2002) and indirectly, by using adapted basis functions on X constructed from the diffusion,
such as the eigenfunctions of the Laplacian (Coifman and Lafon, 2006a,b; Lafon, 2004; Coifman
et al., 2005a,b; Belkin and Niyogi, 2003b; Maggioni and Mhaskar, 2007), or diffusion wavelets
(Coifman and Maggioni, 2006; Mahadevan and Maggioni, 2007; Maggioni and Mahadevan, 2006;
Mahadevan and Maggioni, 2005; Maggioni and Mahadevan, 2005).

We will try to modify the geometry of the unlabeled data so that F is as smooth as possible
with respect to the modified geometry. We will use the function adapted approach to try to learn the
correct modification.

5.1 Diffusion for Classification

We consider here the case of classification, that is, F takes only a small number of values (compared
to the cardinality of X), say {1, . . . ,k}. Let Ci, i ∈ {1, ...k}, be the classes, let Clab

i be the labeled
data points in the ith class, that is, Ci = {x ∈ X̃ : F̃ = i}, and let χlab

i be the characteristic function
of those Ci, that is, χlab

i (x) = 1 if x ∈Ci, and χlab
i (x) = 0 otherwise.

A simple classification algorithm can be obtained as follows (Szummer and Jaakkola, 2001):

(i) Build a geometric diffusion K on the graph defined by the data points X , as described in
Section 2.2.1.

(ii) Use a power of K to smooth the functions χlab
i , exactly as in the denoising algorithm described

above, obtaining functions χlab
i :

χlab
i = Ktχlab

i .

The parameter t can be chosen by cross-validation.

(iii) Assign each point x to the class
argmaxiχlab

i (x) .

1725

SZLAM, MAGGIONI AND COIFMAN

This algorithm takes into account the influence of the labeled points on the unlabeled point to be
classified, where the measure of influence is based on the weighted connectivity of the whole data
set. If we average with a power of the kernel we have constructed, we count the number and strength
of all the paths of length t to the various classes from a given data point. As a consequence, this
method is more resistant to noise than, for example, a simple nearest neighbors (or also a geodesic
nearest neighbors) method, as changing the location or class of a small number of data points does
not change the structure of the whole network, while it can change the class label of a few nearest
neighbors.

For each i, the “initial condition” for the heat flow given by χlab
i considers all the unlabeled

points to be the same as labeled points not in Ci. Since we are solving many one-vs-all problems, this
is reasonable; but one also may want to set the initial condition χlab

i (x) = 1 for x∈Clab
i , χlab

i (x) =−1
for x∈Clab

j , j 6= i, and χlab
i (x) = 0 for all other x. It can be very useful to change the initial condition

to a boundary condition by resetting the values of the labeled points after each application of the
kernel. For large powers, this is equivalent to the harmonic classifier of Zhu et al. (2003), where the
χlab

i is extended to the “harmonic” function with given boundary values on the labeled set. Just as
in the image denoising examples, it is often the case that one does not want to run such a harmonic
classifier to equilibrium, and we may want to find the correct number of iterations of smoothing by
K and updating the boundary values by cross validation.

We can also use the eigenfunctions of K (which are also those of the Laplacian L) to extend the
classes. Belkin (2003) suggests using least squares fitting in the embedding defined by the first few
eigenfunctions φ1, ...,φN of K. Since the values at the unlabeled points are unknown, we regress
only to the labeled points; so for each χlab

i , we need to solve

argmin{al} ∑
x labeled

∣

∣

∣

∣

∣

N

∑
l=1

ailφl(x)−χlab
i (x)

∣

∣

∣

∣

∣

2

,

and extend the χlab
i to

χlab
i =

N

∑
l=1

ailφi.

The parameter N controls the bias-variance tradeoff: smaller N implies larger bias of the model
(larger smoothness)5 and decreases the variance, while larger N has the opposite effect. Large N
thus corresponds to small t in the iteration of K.

5.2 Function Adapted Diffusion for Classification

If the structure of the classes is very simple with respect to the geometry of the data set, then smooth-
ness with respect to this geometry is precisely what is necessary to generalize from the labeled data.
However, it is possible that the classes have additional structure on top of the underlying data set,
which will not be preserved by smoothing geometrically. In particular at the boundaries between
classes we would like to filter in such a way that the “edges” of the class function are preserved.
We will modify the diffusion so it flows faster along class boundaries and slower across them, by
using function-adapted kernels as in (7). Of course, we do not know the class boundaries: the func-

5. On the other hand, extending with small numbers of eigenfunctions creates “ripples”; that is, the Gibbs phenomenon.
Techniques for avoiding the Gibbs phenomenon are discussed in Maggioni and Mhaskar (2007).

1726

REGULARIZATION ON GRAPHS WITH FUNCTION-ADAPTED DIFFUSION PROCESSES

F ←ClassifyWithAdaptedDiffusion(X , X̃,{χi}i=1,...,N , t1,β, t2)

// Input:
// X := {xi} : a data set
// X̃ : a subset of X , representing the labeled set
// {χi}i=1,...,N : set of characteristic functions of the classes, defined on X̃
// β : weight of the tuning parameter

// Output:
// C : function on X , such that C(x) is the class to which x ∈ X is estimated to belong.

1. Construct a weighted graph G associated with X , in any of the ways discussed.

2. Compute the associated diffusion operator K as in (1).

3. Compute guesses at the soft class functions χi using any of the methods in Section 5.1, or
any other method, and for multi-class problems, set

ci(x) =
χi(x)

∑i |χi(x)|
.

4. Using the ci as features, or χi for two class problems, construct a new graph with kernel
K′ from the similarities as in Equation (7), with σ2 = βσ1.

5. Finally, find C(x) using any of the methods in Section 5.1 and the kernel K ′

Figure 6: Pseudo-code for learning of a function based on diffusion on graphs

tions {χi} are initially given on a (typically small) subset X̃ of X , and hence a similarity cannot be
immediately defined in a way similar to (7).

We use a bootstrapping technique. We first use one of the algorithms above, which only uses
similarities between data points (“geometry”), to generate the functions χi. We then use these
functions to design a function-adapted kernel, by setting

F ({χi})(x) := (ci(x))i=1,...,k ,

and then define a kernel as in (7). Here the ci’s are normalized confidence functions defined by

ci(x) =
χi(x)

∑i |χi(x)|
.

In this way, if several classes claim a data point with some confidence, the diffusion will tend
to average more among other points which have the same ownership situation when determining
the value of a function at that data point. The normalization, besides having a clear probabilistic
interpretation when the χi are positive, also achieves the effect of not slowing the diffusion when
there is only one possible class that a point could be in, for example, if a data point is surrounded
by points of a single class, but is relatively far from all of them.

We summarize the algorithm in Figure 6. In the examples below we simply let ρ2 be the metric
of R

k, and also let h2(a) = h1(a) = e−a. The ratio β between σ2 and σ1, however, is important,

1727

SZLAM, MAGGIONI AND COIFMAN

since it measures the trade-off between the importance given to the geometry of X and that of the
set of estimates {(χi(x))i=1,...,k}x∈X ⊆ R

k.

We wish to emphasize the similarity between this technique and those described in Section 4 and
especially Section 4.1.2. We allow the geometry of the data set to absorb some of the complexity
of the classes, and use diffusion analysis techniques on the modified data set. The parallel with
image denoising should not be unexpected: the goal of a function-adapted kernel is to strengthen
averaging along level lines, and this is as desirable in image denoising as in transductive learning.

We remark that even if the ci’s are good estimates of the classes, they are not necessarily good
choices for extra coordinates: for example, consider a two class problem, and a function c which
has the correct sign on each class, but oscillates wildly. On the other hand, functions which are poor
estimates of the classes could be excellent extra coordinates as long as they oscillate slowly parallel
to the class boundaries. Our experience suggests, consistently with these considerations, that the
safest choices for extra coordinates are very smooth estimates of the classes. In particular, of the
three methods of class extension mentioned above, the eigenfunction method is often not a good
choice for extra coordinates because of oscillation phenomena; see the examples in Section 5.4.

5.3 Relationship Between Our Methods and Previous Work

In Coifman et al. (2005a) the idea of using the estimated classes to warp the diffusion is introduced.
They suggest, for each class Cn, building the modified weight matrix Wn(i, j) =W (i, j)χlab

n (i)χlab
n (j),

normalizing each Wn, and using the Wn to diffuse the classes. Our approach refines and generalizes
theirs, by collecting all the class information into a modification of the metric used to build the
kernel, rather than modifying the kernel directly. The tradeoff between geometry of the data and
geometry of the (estimated/diffused) labels is made explicit and controllable.

In Zhu et al. (2003) it is proposed to adjust the graph weights to reflect prior knowledge. How-
ever, their approach is different than the one presented here. Suppose we have a two class problem.
They add to each node of the graph a “dongle” node with transition probability β, which they leave
as a parameter to be determined. They then run the harmonic classifier (Zhu et al., 2003) with the
confidence function (ranging from 1 to −1) from a prior classifier as the boundary conditions on all
the dongle nodes. Thus their method sets a tension between the values of the prior classifier and
the harmonic classifier. Our method does not suggest values for the soft classes based on the prior
classifier; rather, it uses this information to suggest modifications to the graph weights between
unlabeled points.

5.4 Examples

We present experiments that demonstrate the use of function-adapted weights for transductive clas-
sification. We find that on many standard benchmark data sets, classification rate is improved using
function-adapted weights instead of “geometry only” weights in diffusion based classifiers.

We use the data sets of Chapelle et al. (2006) and the first 10,000 images in the MNIST data
set. At the time this article was written, the respective data sets are available at http://www.kyb.
tuebingen.mpg.de/ssl-book/benchmarks.html and http://yann.lecun.com/exdb/mnist/,
with an extensive review of the performance of existing algorithms available at http://www.
kyb.tuebingen.mpg.de/ssl-book/benchmarks.pdf, and at http://yann.lecun.com/exdb/
mnist/.

1728

REGULARIZATION ON GRAPHS WITH FUNCTION-ADAPTED DIFFUSION PROCESSES

All the data sets were reduced to 50 dimensions by principal components analysis. In addition,
we smooth the MNIST images by convolving 2 times with an averaging filter (a 3×3 all ones ma-
trix). The convolutions are necessary if we want the MNIST data set to resemble a Riemannian
manifold; this is because if one takes an image with sharp edges and considers a smooth family of
smooth diffeomorphisms of [0,1]× [0,1], the set of images obtained under the family of diffeomor-
phisms is not necessarily a (differentiable) manifold (see Donoho and Grimes 2002, and also Wakin
et al. 2005). However, if the image does not have edges, then the family of morphed images is a
manifold.6

We do the following:

x1. Choose 100 points as labeled. Each of the benchmark data sets of Chapelle et al., has 12
splits into 100 labeled and 1400 unlabeled points; we use these splits. In the MNIST data set
we label points 1001 through 1100 for the first split, 1101 to 1200 for the second split, etc,
and used 12 splits in total. Denote the labeled points by L, let Ci the ith class, and let χlab

i be
1 on the labeled points in the ith class, −1 on the labeled points of the other classes, and 0
elsewhere.

x2. Construct a Gaussian kernel W with k nearest neighbors, σ = 1, and normalized so the jth
neighbor determines unit distance in the self tuning normalization (Equation 2), where {k, j}
is one of {9,4}, {13,9}, {15,9}, or {21,15}.

x3. Classify unlabeled points x by supi χlab
i (x), where χlab

i (x) are constructed using the harmonic
classifier with the number of iterations chosen by leave-20-out cross validation from 1 to 250.
More explicitly: set g0

i = χlab
i . Set gN

i (x) = (KgN−1
i)(x) if x /∈ L, gN

i (x) = 1 if x ∈ Ci
T

L,

and gN
i (x) = 0 if x ∈ L\Ci, and K is W normalized to be averaging. Finally, set χlab

i = gN
i (x),

where N is chosen by leave-10-out cross validation between 1 and 250 (Ci and L are of course
reduced for the cross validation).

x4. Classify unlabeled points x by supi χlab
i (x), where the χlab

i (x) are constructed using least
squares regression in the (graph Laplacian normalized) eigenfunction embedding, with the
number of eigenfunctions cross validated; that is, for each χlab

i , we solve

argmin{al} ∑
x labeled

∣

∣

∣

∣

∣

N

∑
l=1

ailφl(x)−χi(x)

∣

∣

∣

∣

∣

2

,

and extend the χlab
i to

χlab
i =

N

∑
l=1

ailφi.

The φ are the eigenfunctions of L , which is W normalized as a graph Laplacian, and N is
chosen by leave-10-out cross validation.

6. For the most simple example, consider a set of n×n images where each image has a single pixel set to 1, and every
other pixel set to 0. As we translate the on pixel across the grid, the difference between each image and its neighbor
is in a new direction in Rn2

, and thus there is no reasonable tangent. The same thing is true for translates of a more
complicated binary image, and translates of any image with an edge. One could complain that this is an artifact of
the discrete grid, but it is easy to convince yourself that the set of translates of a characteristic function in L2(R) does
not have a tangent anywhere- the tangent direction of the curve defined by the translates of a function is exactly the
derivative of the function.

1729

SZLAM, MAGGIONI AND COIFMAN

x5. Classify unlabeled points x by supi χlab
i (x), where χlab

i (x) are constructed by smoothing χlab
i

with K. More explicitly: set g0
i = χlab

i . Set gN
i = WgN−1

i , where K is W normalized to be

averaging; and finally, let χlab
i = gN

i (x), where N is chosen by leave-10-out cross validation
between 1 and 250 (Ci and L are of course reduced for the cross validation).

We also classify the unlabeled points using a function-adapted kernel. Using the χlab
i from the

harmonic classifier at steady state (N = 250), we do the following:

x6. If the problem has more than two classes, set

ci(x) =
g250

i (x)

∑i |g
250
i (x)|

,

else, set ci(x) = g250
i (x)

x7. Using the ci as extra coordinates, build a new weights W̃ . The extra coordinates are normal-
ized to have average norm equal to the average norm of the original spatial coordinates; and
then multiplied by the factor β, where β is determined by cross validation from {1,2,4,8}.
The modified weights are constructed using the nearest neighbors from the original weight
matrix, exactly as in the image processing examples.

x8. Use the function dependent K̃ to estimate the classes as in (x3).

x9. Use the function dependent L̃ to estimate the classes as in (x4).

x10. Use the function dependent K̃ to estimate the classes as in (x5).

We also repeat these experiments using the smoothed classes as an initial guess, and using
the eigenfunction extended classes as initial guess. The results are reported in the Figures 7, 8,
and 9. Excepting the data sets g241c, gc241n, and BCI, there is an almost universal improvement
in classification rate using function-adapted weights instead of “geometry only” weights over all
choices of parameters and all methods of initial soft class estimation.

In addition to showing that function adapted weights often improve classification using diffusion
based methods, the results we obtain are very competitive and in many cases better than all other
methods listed in the extensive comparative results presented in Chapelle et al. (2006), also available
at http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.pdf. In Figure 10 we attempt
a comparison. For every data set, we report the performance of the best classifier (with model
selection, and cross-validated performance) among all the ones considered in Chapelle et al. (2006).
We also report the performance of our best classifier, among the ones we considered, corresponding
to different choices of the two parameters for the self-tuning nearest-neighbor graph and initial
smoothing (but with other parameters cross-validated). This comparison is unfair in many respects,
for us in that we give the best choice over the two graph parameters (out of the four pairs we tested)
and choice of initial class estimation (three tested), and against us considering the large number of
algorithms listed in Chapelle et al. (2006). Nevertheless it demonstrates that the proposed algorithms
on 3 out of 7 data sets can outperform all the algorithms considered in Chapelle et al. (2006).

1730

REGULARIZATION ON GRAPHS WITH FUNCTION-ADAPTED DIFFUSION PROCESSES

KS FAKS HC FAHC EF FAEF
digit1 2.9 2.2 2.9 2.5 2.6 2.2
USPS 4.9 4.1 5.0 4.1 4.2 3.6
BCI 45.9 45.5 44.9 44.7 47.4 48.7
g241c 31.5 31.0 34.2 32.7 23.1 41.3
COIL 14.3 12.0 13.4 11.1 16.8 15.1
gc241n 25.5 24.7 27.1 25.9 13.9 35.7
text 25.5 23.7 26.3 24.0 26.4 25.4
MNIST 9.4 8.5 9.0 7.9 9.4 8.7

KS FAKS HC FAHC EF FAEF
digit1 2.8 2.2 2.7 2.1 2.6 2.2
USPS 5.2 4.2 5.2 4.0 4.0 3.3
BCI 47.6 47.4 45.0 45.5 48.2 48.6
g241c 30.7 31.2 33.3 32.0 21.7 31.7
COIL 17.2 16.7 16.0 15.1 21.9 19.0
gc241n 23.1 21.6 25.3 22.8 11.1 24.0
text 25.2 23.0 25.5 23.3 26.9 24.0
MNIST 10.0 9.2 10.1 8.7 9.7 8.5

KS FAKS HC FAHC EF FAEF
digit1 3.0 2.3 2.8 2.2 2.6 1.9
USPS 5.0 4.0 5.2 3.9 3.9 3.3
BCI 48.2 48.0 45.9 46.1 47.6 47.9
g241c 30.5 30.4 32.8 31.2 21.2 29.7
COIL 18.0 17.0 16.2 15.2 22.9 19.9
gc241n 24.5 21.7 26.2 23.1 11.1 17.7
text 25.1 22.4 25.7 22.3 25.6 22.9
MNIST 10.3 9.2 10.0 8.9 9.6 8.3

KS FAKS HC FAHC EF FAEF
digit1 3.1 2.6 2.9 2.6 2.0 2.1
USPS 5.6 4.7 5.6 4.4 4.4 3.7
BCI 48.2 48.5 46.3 46.7 48.9 48.5
g241c 28.5 28.2 32.1 29.4 18.0 23.6
COIL 19.8 19.3 19.2 17.9 26.3 24.1
gc241n 21.8 20.5 24.6 21.7 9.2 14.2
text 25.1 22.3 25.6 22.7 25.4 23.2
MNIST 10.8 10.0 10.7 9.7 10.8 10.0

Figure 7: Various classification error percentages. Each pair of columns corresponds to a smoothing
method; the right column in each pair uses function adapted weights, with ci determined
by the harmonic classifier. KS stands for kernel smoothing as in (x5), FAKS for func-
tion adapted kernel smoothing as in (x10), HC for harmonic classifier as in (x3), FAHC
for function adapted harmonic classifier as in (x8), EF for eigenfunctions as in (x4), and
FAEF for function adapted eigenfunctions as in (x9). The Gaussian kernel had k neigh-
bors, and the jth neighbor determined unit distance in the self-tuning construction, where
counterclockwise, from the top left, {k, j} is {9,4}, {13,9}, {15,9}, and {21,15}. No-
tice that excepting the data sets g241c, gc241n, and BCI, there is an almost universal
improvement in classification error with function-adapted weights.

KS FAKS HC FAHC EF FAEF
digit1 2.9 2.4 2.9 2.4 2.6 2.1
USPS 4.9 4.6 5.0 4.6 4.2 3.3
BCI 45.9 47.0 44.9 45.3 47.4 47.8
g241c 31.5 29.3 34.2 29.2 23.1 33.1
COIL 14.3 13.3 13.4 12.4 16.9 16.8
gc241n 25.5 21.3 27.1 22.5 13.9 23.0
text 25.5 24.5 26.3 25.0 26.4 24.6
MNIST 9.4 7.9 9.0 7.7 9.4 7.3

KS FAKS HC FAHC EF FAEF
digit1 2.8 2.2 2.7 2.1 2.6 2.1
USPS 5.2 4.3 5.2 4.0 4.0 3.5
BCI 47.6 48.7 45.0 46.5 48.2 49.1
g241c 30.7 27.9 33.3 27.7 21.7 28.1
COIL 17.2 17.6 16.0 15.5 22.5 20.3
gc241n 23.1 17.9 25.3 19.3 11.1 21.0
text 25.2 23.8 25.5 23.7 26.9 24.5
MNIST 10.0 8.2 10.1 8.2 9.7 7.7

KS FAKS HC FAHC EF FAEF
digit1 3.0 2.5 2.8 2.2 2.6 1.9
USPS 5.0 4.0 5.2 3.9 3.9 3.4
BCI 48.2 48.6 45.9 46.5 47.6 48.1
g241c 30.5 26.9 32.8 27.9 21.2 27.3
COIL 18.0 17.6 16.2 15.8 22.3 21.0
gc241n 24.5 19.7 26.2 20.8 11.1 19.5
text 25.1 22.8 25.7 23.3 25.6 23.4
MNIST 10.3 8.3 10.0 7.9 9.6 7.7

KS FAKS HC FAHC EF FAEF
digit1 3.1 2.6 2.9 2.6 2.0 2.1
USPS 5.6 4.9 5.6 4.2 4.4 4.2
BCI 48.2 49.0 46.3 47.1 48.9 49.0
g241c 28.5 26.0 32.1 26.5 18.0 22.8
COIL 19.8 19.4 19.2 18.3 26.6 23.1
gc241n 21.8 16.5 24.6 17.4 9.2 14.3
text 25.1 22.9 25.6 23.0 25.4 22.8
MNIST 10.8 9.6 10.7 9.2 10.8 8.2

Figure 8: Various classification results, ci determined by smoothing by K. The table is otherwise
organized as in Figure 7.

6. Some Comments on the Benchmarks where Our Methods Do Not Work Well

If the class structure is trivial with respect to the geometry of the data as presented, then anisotropy
will be unhelpful. This is the case for two of the benchmark data sets, g241c and g241n. In g241c,
which has been constructed by generating two Gaussian clouds, and labeling each point by which
cloud it came from, the best possible strategy (knowing the generative model) is to assign a point

1731

SZLAM, MAGGIONI AND COIFMAN

KS FAKS HC FAHC EF FAEF
digit1 2.9 2.9 2.9 2.6 2.6 2.4
USPS 4.9 4.1 5.0 3.8 4.2 4.1
BCI 45.9 47.1 44.9 46.0 47.4 48.7
g241c 31.5 25.3 34.2 26.7 23.1 23.7
COIL 14.3 13.0 13.4 12.0 16.5 16.6
gc241n 25.5 16.7 27.1 18.2 13.9 14.1
text 25.5 25.1 26.3 25.6 26.4 25.4
MNIST 9.4 7.4 9.0 6.9 9.4 7.9

KS FAKS HC FAHC EF FAEF
digit1 2.8 2.0 2.7 2.1 2.6 2.3
USPS 5.2 3.8 5.2 3.6 4.0 3.4
BCI 47.6 48.1 45.0 46.9 48.2 48.5
g241c 30.7 23.8 33.3 24.7 21.7 21.6
COIL 17.2 17.5 16.0 15.4 22.0 21.5
gc241n 23.1 13.0 25.3 14.1 11.1 11.5
text 25.2 24.8 25.5 24.9 26.9 27.3
MNIST 10.0 7.8 10.1 7.3 9.7 7.4

KS FAKS HC FAHC EF FAEF
digit1 3.0 2.5 2.8 2.2 2.6 2.2
USPS 5.0 4.1 5.2 3.5 3.9 3.2
BCI 48.2 47.5 45.9 45.7 47.6 47.9
g241c 30.5 23.1 32.8 24.1 21.2 21.2
COIL 18.0 17.5 16.2 16.1 22.8 22.1
gc241n 24.5 13.2 26.2 13.9 11.1 11.1
text 25.1 24.3 25.7 24.3 25.6 25.9
MNIST 10.3 8.1 10.0 7.5 9.6 8.6

KS FAKS HC FAHC EF FAEF
digit1 3.1 2.7 2.9 2.5 2.0 2.2
USPS 5.6 4.6 5.6 4.1 4.4 3.6
BCI 48.2 49.0 46.3 47.4 48.9 49.7
g241c 28.5 19.8 32.1 21.5 18.0 18.0
COIL 19.8 19.8 19.2 18.8 26.7 25.8
gc241n 21.8 11.0 24.6 12.0 9.2 9.2
text 25.1 24.1 25.6 24.0 25.4 24.9
MNIST 10.8 8.9 10.7 7.9 10.8 9.4

Figure 9: Various classification results, ci determined by smoothing by eigenfunctions of L . The
table is otherwise organized as in Figure 7.

FAKS FAHC FAEF Best of other methods
digit1 2.0 2.1 1.9 2.4 (Data-Dep. Reg.)
USPS 4.0 3.9 3.3 4.7 (LapRLS, Disc. Reg.)
BCI 45.5 45.3 47.8 31.4 (LapRLS)
g241c 19.8 21.5 18.0 13.5 (Cluster-Kernel)
COIL 12.0 11.1 15.1 9.6 (Disc. Reg.)
gc241n 11.0 12.0 9.2 5.0 (ClusterKernel)
text 22.3 22.3 22.8 23.6 (LapSVM)

Figure 10: Classification errors, in percent. In the rightmost column we chose, for each data set,
the best performing method with model selection, among all those discussed in Chapelle
et al. (2006). In each of the remaining columns we report the performance of each of
the smoothing methods described above, but with the best settings of parameters for
constructing the nearest neighbor graph and type of initial class guesses, among those
considered in other tables (but all other smoothing parameters, including those for the
initial guesses, cross validated). The aim of this rather unfair comparison is to highlight
the potential of the methods on the different data sets.

1732

REGULARIZATION ON GRAPHS WITH FUNCTION-ADAPTED DIFFUSION PROCESSES

to the cluster center it is nearest to. The boundary between the classes is exactly at the bottleneck
between the two clusters; in other words, the geometry/metric of the data as initially presented leads
to the optimal classifier, and thus modifying the geometry by the cluster guesses can only do harm.
This is clearly visible if one looks at the eigenfunctions of the data set: the sign of the second
eigenfunction at a given point is an excellent guess as to which cluster that point belongs to, and in
fact in our experiments, often two was the optimal number of eigenfunctions. See figure 11. g241n

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−8 −6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−8 −6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−8 −6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−8 −6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 11: Panel on the left. On the left the lighter and darker points are the two classes for g241c.
On the right is the second eigenfunction. Panel on the right. On the top left the lighter
and darker points are the two classes for g241n. On the top right is the second eigen-
function, then on the bottom the third and fourth eigenfunctions.

is very similar; it is generated by four Gaussians. However, two pairs of centers are close together,
and the pairs are relatively farther apart. The classes split across the two fine scale clusters in each
coarse scale cluster as in g241c. In this data set, the ideal strategy is to decide which coarse cluster
a point is in, and then the problem is exactly as above. In particular, the optimal strategy is given
by the geometry of the data as presented. This is again reflected in the simplicity of the classes with
respect to eigenfunctions 2, 3, and 4; see figure 11.

While in some sense these situations are very reasonable, it is our experience that in many
natural problems the geometry of the data is not so simple with respect to the classes, and function-
adapted kernels help build better classifiers.

Our method also was not useful for the BCI example. Here the problem was simply that the
initial guess at the classes was too poor.

7. Computational Considerations

Let N be the cardinality of the data set X , which is endowed with some metric ρ. The first and most
computationally intensive part of the algorithms proposed is the construction of the graph and corre-
sponding weights. The approach we use is direct, in the sense that we explicitly store the similarity
matrix W . For each point x ∈ X , we need to find the points in an ε-ball, or the k nearest neighbors
of x. This problem can be solved trivially, for any metric ρ, in O(dN2) computations. It is of course
highly desirable to reduce this cost, and this requires more efficient ways of computing near (or

1733

SZLAM, MAGGIONI AND COIFMAN

nearest) neighbors. This problem is known to be hard even in Euclidean space R
d , as d increases.

The literature on the subject is vast, rather than a long list of papers, we point the interested reader to
Datar et al. (2004) and references therein. The very short summary is that for approximate versions
of the k-nearest neighbor problem, there exist algorithms which are subquadratic in N, and in fact
pretty close to linear. The neighbor search is in fact the most expensive part of the algorithm: once
for each point x we know its neighbors, we compute the similarities W (this is O(k) for the k neigh-
bors of each point), and create the N×N sparse matrix W (which contains kN non-zero entries).
The computation of K from W is also trivial, requiring O(N) with a very small constant. Apply K t

to a function f on X is very fast as well (for t << N, as is the case in the algorithm we propose),
because of the sparsity of K, and takes O(tkN) computations.

This should be compared with the O(N2) or O(N3) algorithms needed for other kernel methods,
involving the computations of many eigenfunctions of the kernel, or of the Green’s function (I−
K)−1.

Note that in most of the image denoising applications we have presented, because of the 2-
d locality constraints we put on the neighbor searches, the number of operation is linear in the
number N of pixels, with a rather small constant. In higher dimensions, for all of our examples,
we use the nearest neighbor searcher provided in the TSTool package, available at http://www.
physik3.gwdg.de/tstool/. The entire processing of an image as in the examples 256×256 takes
about 7 seconds on a laptop with a 2.2Ghz dual core Intel processor (the code is not parallelized
though, so it runs on one core only), and 2Gb of RAM (the memory used during processing is
approximately 200Mb).

8. Future Work

We mention several directions for further study. The first one is to use a transductive learning
approach to tackle image processing problems like denoising and inpainting. One has at one’s
disposal an endless supply of clean images to use as the “unlabeled data”, and it seems that there is
much to be gained by using the structure of this data.

The second one is to more closely mimic the function regularization in image processing in
the context of transductive learning. In this paper, our diffusions regularize in big steps; also our
method is linear (on a modified space). Even though there is no differential structure on our data sets,
it seems that by using small time increments and using some sort of constrained nearest neighbor
search so that we do not have to rebuild the whole graph after each matrix iteration, we can use truly
nonlinear diffusions to regularize our class functions.

Another research direction is towards understanding how to construct and use efficiently basis
functions which are associated to function-adapted diffusion kernels. The use of the low-frequency
eigenfunctions of the operator, and the associated Fourier analysis of functions on the set has been
considered in several works, as cited above, while the construction and use of multiscale basis
functions, which correspond to a generalized wavelet analysis on data sets (Coifman and Maggioni,
2006; Szlam et al., 2005; Maggioni et al., 2005), has been used so far for approximation problems
in machine learning (Maggioni and Mahadevan, 2006; Mahadevan and Maggioni, 2007) but has
potential in many other applications. One can consider the approach that uses diffusion kernels
directly, as in this paper, as a sort of “PDE approach” (even if in fact the discreteness and roughness
of the sets considered usually brings us quite afar from PDEs on continua), while one can investigate
“dual” approaches based on representations and bases functions.

1734

REGULARIZATION ON GRAPHS WITH FUNCTION-ADAPTED DIFFUSION PROCESSES

9. Conclusions

We have introduced a general approach for associating graphs and diffusion processes to data sets
and functions on such data sets. This framework is very flexible, and we have shown two particular
applications, denoising of images and transductive learning, which traditionally are considered very
different and have been tackled with very different techniques. We show that in fact they are very
similar problems and results at least as good as the state-of-the-art can be obtained within the single
framework of function-adapted diffusion kernels.

Acknowledgments

The authors would like to thank Francis Woolfe and Triet Le for helpful suggestions on how to
improve the manuscript, and to James C. Bremer and Yoel Shkolnisky for developing code for some
of the algorithms. MM is grateful for partial support by NSF DMS-0650413 and ONR N00014-07-
1-0625 313-4224.

References

M. Belkin. Problems of learning on manifolds. PhD thesis, University of Chicago, 2003.

M. Belkin and P. Niyogi. Using manifold structure for partially labelled classification. Advances in
NIPS, 15, 2003a.

M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clus-
tering. In Advances in Neural Information Processing Systems 14 (NIPS 2001), pages 585–591.
MIT Press, Cambridge, 2001.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation, 6(15):1373–1396, June 2003b.

M. Belkin and P. Niyogi. Semi-supervised learning on Riemannian manifolds. Machine Learning,
56(Invited Special Issue on Clustering):209–239, 2004. TR-2001-30, Univ. Chicago, CS Dept.,
2001.

Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for laplacian-based manifold
methods. In COLT, pages 486–500, 2005.

P. Bérard, G. Besson, and S. Gallot. Embedding Riemannian manifolds by their heat kernel. Geom.
and Fun. Anal., 4(4):374–398, 1994.

T. Boult, R.A. Melter, F. Skorina, and I. Stojmenovic. G-neighbors. Proc. SPIE Conf. Vision Geom.
II, pages 96–109, 1993.

A. Buades, B. Coll, and J. M. Morel. A review of image denoising algorithms, with a new one.
Multiscale Model. Simul., 4(2):490–530 (electronic), 2005a. ISSN 1540-3459.

A. Buades, B. Coll, and J. M. Morel. Denoising image sequences does not require motion estima-
tion. CMLA Preprint, (12), 2005b.

1735

SZLAM, MAGGIONI AND COIFMAN

T. F. Chan and J. Shen. Image processing and analysis. Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, PA, 2005. ISBN 0-89871-589-X. Variational, PDE, wavelet, and
stochastic methods.

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT Press, Cambridge,
MA, 2006. URL http://www.kyb.tuebingen.mpg.de/ssl-book.

R.T. Chin and C.L. Yeh. Quantitative evaluation of some edge-preserving noise-smoothing tech-
niques. Computer Vision, Graphics, and Image Processing, 23:67–91, 1983.

F. R. K. Chung. Spectral graph theory, volume 92 of CBMS Regional Conference Series in Math-
ematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC,
1997. ISBN 0-8218-0315-8.

R. R. Coifman and D. L. Donoho. Translation-invariant de-noising. Technical report, Department
of Statistics, 1995. URL citeseer.ist.psu.edu/coifman95translationinvariant.html.

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker.
Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffu-
sion maps. PNAS, 102(21):7426–7431, 2005a. doi: 10.1073/pnas.0500334102. URL http:
//www.pnas.org/cgi/content/abstract/102/21/7426.

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker. Geo-
metric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps.
PNAS, 102(21):7432–7438, 2005b. doi: 10.1073/pnas.0500334102.

R.R. Coifman and S. Lafon. Diffusion maps. Appl. Comp. Harm. Anal., 21(1):5–30, 2006a.

R.R. Coifman and S. Lafon. Geometric harmonics: a novel tool for multiscale out-of-sample exten-
sion of empirical functions. Appl. Comp. Harm. Anal., 21(1):31–52, 2006b.

R.R. Coifman and M. Maggioni. Multiscale data analysis with diffusion wavelets. Proc. SIAM
Bioinf. Workshop, Minneapolis, April 2007. Tech. Rep. YALE/DCS/TR-1335, 2005.

R.R. Coifman and M. Maggioni. Diffusion wavelets. Appl. Comp. Harm. Anal., 21(1):53–94, July
2006. (Tech. Rep. YALE/DCS/TR-1303, Yale Univ., Sep. 2004).

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on
p-stable distributions. In SCG ’04: Proceedings of the twentieth annual symposium on Computa-
tional geometry, pages 253–262, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-885-7.
doi: http://doi.acm.org/10.1145/997817.997857.

L.S. Davis and A. Rosenfeld. Noise cleaning by iterated local averaging. IEEE Tran. on Systems,
Man, and Cybernetics, 8:705–710, 1978.

D. L. Donoho and C. Grimes. When does isomap recover natural parameterization of families of
articulated images? Technical Report Tech. Rep. 2002-27, Department of Statistics, Stanford
University, August 2002.

D. L Donoho and IM Johnstone. Ideal denoising in an orthonormal basis chosen from a library of
bases. Technical report, Stanford University, 1994.

1736

REGULARIZATION ON GRAPHS WITH FUNCTION-ADAPTED DIFFUSION PROCESSES

M. Elad. the origin of the bilateral filter and ways to improve it, 2002. URL citeseer.ist.psu.
edu/elad02origin.html.

R.E. Graham. Snow-removal - a noise-stripping process for picture signals. IRE Trans. on Inf. Th.,
8:129–144, 1961.

L. Greengard and V. Rokhlin. The rapid evaluation of potential fields in particle systems. MIT
Press, 1988.

Matthias Hein, Jean-Yves Audibert, and Ulrike von Luxburg. From graphs to manifolds - weak and
strong pointwise consistency of graph laplacians. In COLT, pages 470–485, 2005.

T.S. Huang, G.J. Yang, and G.Y. Tang. A fast two-dimensional median filtering algorithm. IEEE
Trans. Acoustics, Speech, and Signal Processing, 27(1):13–18, 1979.

P.W. Jones, M. Maggioni, and R. Schul. Manifold parametrizations by eigenfunctions of the Lapla-
cian and heat kernels. Proc. Nat. Acad. Sci., 2007a. to appear.

P.W. Jones, M. Maggioni, and R. Schul. Universal local manifold parametrizations via heat kernels
and eigenfunctions of the Laplacian. submitted, 2007b. http://arxiv.org/abs/0709.1975.

R. Kannan, S. Vempala, and A. Vetta. On clusterings: good, bad and spectral. J. ACM, 51(3):
497–515 (electronic), 2004. ISSN 0004-5411.

J. Koenderink. The structure of images. Biological Cybernetics, 50:363–370, Jan 1984.

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete structures. In Proceed-
ings of the ICML, 2002.

S. Lafon. Diffusion maps and geometric harmonics. PhD thesis, Yale University, Dept of Mathe-
matics & Applied Mathematics, 2004.

Stephane Lafon and Ann B. Lee. Diffusion maps and coarse-graining: A unified framework for
dimensionality reduction, graph partitioning and data set parameterization. To appear in IEEE
Pattern Analysis and Machine Intelligence, to appear, 2006.

J.S. Lee. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans.
Pattern Anal. Mach. Intell., 2(2):165–168, 1980.

T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Academic Publishers, 1994.

N. Linial, A. Samorodnitsky, and A. Wigderson. A deterministic strongly polynomial algorithm for
matrix scaling and approximate permanents. In STOC ’98: Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages 644–652, New York, NY, USA, 1998. ACM
Press. ISBN 0-89791-962-9. doi: http://doi.acm.org/10.1145/276698.276880.

M. Maggioni and S. Mahadevan. Multiscale diffusion bases for policy iteration in markov decision
processes. submitted, 2006. in preparation.

M. Maggioni and S. Mahadevan. Fast direct policy evaluation using multiscale analysis of markov
diffusion processes. In University of Massachusetts, Department of Computer Science Technical
Report TR-2005-39; accepted at ICML 2006, 2005.

1737

SZLAM, MAGGIONI AND COIFMAN

M. Maggioni and H. Mhaskar. Diffusion polynomial frames on metric measure spaces. ACHA,
2007. in press.

M. Maggioni, J.C. Bremer Jr., R.R. Coifman, and A.D. Szlam. Biorthogonal diffusion wavelets for
multiscale representations on manifolds and graphs. volume 5914, page 59141M. SPIE, 2005.
URL http://link.aip.org/link/?PSI/5914/59141M/1.

S. Mahadevan and M. Maggioni. Value function approximation with diffusion wavelets and lapla-
cian eigenfunctions. In University of Massachusetts, Department of Computer Science Technical
Report TR-2005-38; Proc. NIPS 2005, 2005.

S. Mahadevan and M. Maggioni. Proto-value functions: A spectral framework for solving markov
decision processes. JMLR, 8:2169–2231, 2007.

S. Mahadevan, K. Ferguson, S. Osentoski, and M. Maggioni. Simultaneous learning of representa-
tion and control in continuous domains. In AAAI. AAAI Press, 2006.

G. Mahmoudi, M.; Sapiro. Fast image and video denoising via nonlocal means of similar neighbor-
hoods. IEEE Signal Processing Letters, 12(12):839–842, 2005.

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm, 2001. URL
citeseer.ist.psu.edu/ng01spectral.html.

P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans.
Pattern Anal. Mach. Intell., 12(7):629–639, 1990.

V.C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov. Fast computation of sums of gaussians in
high dimensions. Technical Report CS-TR-4767, Department of Computer Science, University
of Maryland, CollegePark, 2005.

L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.
Phys. D, 60(1-4):259–268, 1992. ISSN 0167-2789. doi: http://dx.doi.org/10.1016/0167-2789(92)
90242-F.

A. Shashua, R. Zass, and T. Hazan. Multiway clustering using supersymmetric nonnegative tensor
factorization. Technical report, Hebrew University, Computer Science, Sep 2005.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Tran PAMI, 22(8):888–905,
2000.

A. Singer. From graph to manifold Laplacian: the convergence rate. Appl. Comp. Harm. Anal., 21
(1):128–134, July 2006.

R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matrices.
Annals of Mathematical Statistics, 35(2):876–879, 1964.

R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices. Pacific
Journal of Mathematics, 21(2):343–349, 1967.

1738

REGULARIZATION ON GRAPHS WITH FUNCTION-ADAPTED DIFFUSION PROCESSES

S. M. Smith and J. M. Brady. SUSAN – A new approach to low level image processing.
Technical Report TR95SMS1c, Chertsey, Surrey, UK, 1995. URL citeseer.ist.psu.edu/
smith95susan.html.

A. Smola and R. Kondor. Kernels and regularization on graphs, 2003. URL citeseer.ist.psu.
edu/smola03kernels.html.

G. W. Soules. The rate of convergence of sinkhorn balancing. Linear Algebra and its Applications,
150(3):3–38, 1991.

A.D. Szlam, M. Maggioni, R.R. Coifman, and J.C. Bremer Jr. Diffusion-driven multiscale analysis
on manifolds and graphs: top-down and bottom-up constructions. volume 5914-1, page 59141D.
SPIE, 2005. URL http://link.aip.org/link/?PSI/5914/59141D/1.

M. Szummer and T. Jaakkola. Partially labeled classification with markov random walks. In Ad-
vances in Neural Information Processing Systems, volume 14, 2001. URL citeseer.ist.psu.
edu/szummer02partially.html. http://www.ai.mit.edu/people/szummer/.

C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. Proc. IEEE Inter. Conf.
Comp. Vis., 1998.

D. Tschumperle. PDE’s Based Regularization of Multivalued Images and Applications. PhD thesis,
Universite de Nice-Sophia Antipolis, 2002.

U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clustering. Technical Report
TR-134, Max Planck Insitute for Biological Cybernetics, 2004.

M. Wakin, D. Donoho, H. Choi, and R. Baraniuk. The Multiscale Structure of Non-Differentiable
Image Manifolds. In Optics & Photonics, San Diego, CA, July 2005.

A. P. Witkin. Scale-space filtering. In Proc. 8th int. Joint Conf. Art. Intell., pages 1019–1022, 1983.
Karlsruhe, Germany.

L. P. Yaroslavsky. Digital Picture Processing. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1985. ISBN 0387119345.

L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo. Weighted median filters: a tutorial. IEEE Trans. on
Circuits and Systems II: Analog and Digital Signal Processing, 43(3):155–192, 1996.

R. Zass and A. Shashua. A unifying approach to hard and probabilistic clustering. In International
Conference on Computer Vision (ICCV), Oct 2005.

L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. Eighteenth Annual Conference on
Neural Information Processing Systems, (NIPS), 2004.

H. Zha, C. Ding, M. Gu, X. He, and H.D. Simon. Spectral relaxation for k-means clustering. In
NIPS 2001, pages 1057–1064. MIT Press, Cambridge, 2001.

D. Zhou and B. Schlkopf. Regularization on discrete spaces. pages 361–368, Berlin, Germany, 08
2005. Springer.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and har-
monic functions, 2003. URL citeseer.ist.psu.edu/zhu03semisupervised.html.

1739

Journal of Machine Learning Research 9 (2008) 1741-1755 Submitted 6/07; Revised 3/08; Published 8/08

Nearly Uniform Validation Improves Compression-Based Error
Bounds

Eric Bax BAXHOME@YAHOO.COM

PO Box 60543
Pasadena, CA 91116-6543

Editor: Manfred Warmuth

Abstract
This paper develops bounds on out-of-sample error rates for support vector machines (SVMs). The
bounds are based on the numbers of support vectors in the SVMs rather than on VC dimension.
The bounds developed here improve on support vector counting bounds derived using Littlestone
and Warmuth’s compression-based bounding technique.
Keywords: compression, error bound, support vector machine, nearly uniform

1. Introduction

The error bounds developed in this paper are based on the number of support vectors in an SVM.
Littlestone and Warmuth (Littlestone and Warmuth, 1986; Floyd and Warmuth, 1995) pioneered
error bounds of this type. Their method derives error bounds based on how few training examples
are needed to represent a classifier that is consistent with all training examples. Hence, bounds
derived using their method are called compression-based bounds.

Compression-based bounds apply to SVMs because producing an SVM involves determining
which training examples are “border” examples of each class and then ignoring “interior” exam-
ples. The number of border examples can be a small fraction of the number of training examples.
Discarding the interior examples and training on the border examples alone produces the same
SVM. So SVM training itself is a method to reconstruct the classifier based on a subset of the train-
ing data. For more details on applying compression-based bounds to SVMs, refer to Cristianini
and Shawe-Taylor (2000) and von Luxburg et al. (2004). For information on applying compression-
based bounds to some other classifiers, refer to Littlestone and Warmuth (1986), Floyd and Warmuth
(1995), Marchand and Shawe-Taylor (2001) and Marchand and Sokolova (2005).

Compression-based bounds are effective when a small subset of the available examples can
represent a classifier that is consistent with all available examples. Proofs of effectiveness for
compression-based bounds use uniform validation over a set of classifiers that includes the consis-
tent classifier. The validation is uniform in the sense that no classifier in the set may be misvalidated.

The bounds introduced in this paper apply when multiple subsets of the available examples can
represent the same consistent classifier. (Support vector machines meet this condition.) Proofs of
effectiveness for the new bounds use validation over a set of classifiers that includes several copies
of the consistent classifier. So the validation need not be strictly uniform over the set of classifiers;
the proofs can tolerate any number of misvalidated classifiers less than the number of copies of the
classifier of interest and must still validate that classifier. Hence, the error bounds are said to be
nearly uniform. Nearly uniform error bounds are introduced in Bax (1997).

c©2008 Eric Bax.

BAX

This paper is organized as follows. Section 2 sets up definitions, notation, and goals. Section 3
gives an error bound for validation of a classifier. Section 4 presents a bound on the probability of
several simultaneous events, which is the basis for nearly uniform error bounds. Section 5 describes
nearly uniform error bounds. Section 6 applies nearly uniform error bounds to compression-based
bounding. Section 7 analyzes the error bounds. Section 8 applies the error bounds. Section 9
discusses possibilities for future research.

2. Definitions, Notation, and Goals

Let C = Z1, . . . ,Zm be a sequence of examples drawn i.i.d. from a joint input-label distribution D,
with labels in {0,1}. Let Z = (X, Y), where X is the input, and Y is the class label. Let g be a
classifier, that is, a function from the input space to class labels. Define the error of g:

ED(g) = PD(g(X) 6= Y),

where the probability is over distribution D.
Let V be a sequence of examples. Define the empirical error of g on V:

EV (g) = PV (g(X) 6= Y),

where the probability is uniform over the examples in V. If a classifier has empirical error zero, then
the classifier is said to be consistent with V.

The goal is to use the examples in C to develop a classifier g* that is consistent with C and
to produce a PAC (probably approximately correct) bound on the error. This paper focuses on
producing the error bound for training methods that can develop g* using subsets of the examples in
C, called compression training algorithms. These methods include training support vector machines
(SVMs) and perceptrons.

3. Validation of a Consistent Classifier

Theorem 1 Let V be a sequence of examples drawn i.i.d. from D, and let g be a classifier developed
independently of the examples in V. Then

P[EV (g) = 0∧ED(g) ≥ ε] ≤ (1− ε)|V |.

Proof The LHS is

= P[EV (g) = 0|ED(g) ≥ ε]P[ED(g) ≥ ε]. (1)

The second probability in (1) is at most one, so this is

≤ P[EV (g) = 0|ED(g) ≥ ε]. (2)

If the error is at least ε, then the probability of correctly classifying each example in V is at most
1-ε, so (2) is

≤ (1− ε)|V |.

1742

NEARLY UNIFORM VALIDATION IMPROVES COMPRESSION-BASED ERROR BOUNDS

The set V is called the set of validation examples. Theorem 1 cannot be applied directly to g*
with V = C to compute an error bound, because g* is developed using the examples in C. To validate
g*, we can use Theorem 1 indirectly, performing uniform validation over a set of classifiers that
includes g*, with validation for each classifier based on examples not used to develop the classifier.
Since the set of classifiers includes g*, uniform validation over the set implies validation of g*.

In this paper, we use nearly uniform validation to validate g*. We use a multi-set of classifiers
that has several copies of g*, and we perform validation over the classifiers, allowing fewer failed
validations than the number of copies of g*. This nearly uniform validation implies validation of
g*.

4. Probability of Several Simultaneous Events

Nearly uniform validation is based on a bound on the probability of several simultaneous events.
Let A1, . . . ,An be subsets of a universal set U. Let P(Ai) be the probability that an element drawn at
random from U is a member of set Ai.

Theorem 2

P

[

∪
S⊆{1,...,n}∧|S|=k

(

∩
i∈S

Ai

)]

≤
1
k
[P(A1)+ ...+P(An)],

that is, the probability that a random u ∈U is in at least k sets from A1, . . . ,An is at most the sum of
probabilities for the sets, divided by k.

Proof The LHS of Theorem 2 is

P [I(A1)+ ...+ I(An) ≥ k] , (3)

where I is the indicator function:

I(Ai) =

{

1 if u ∈ Ai

0 otherwise
.

By Markov’s inequality, (3) is

≤
1
k

E [I(A1)+ ...+ I(An)] .

By linearity of expectation, the RHS is

=
1
k

[EI(A1)+ ...+EI(An)] ,

which is

=
1
k

[P(A1)+ ...+P(An)] .

Note that setting k = 1 gives the well-known sum bound on the probability of a union:

P [A1 ∪ ...∪An] ≤ P(A1)+ ...+P(An).

1743

BAX

5. Nearly Uniform Validation

Consider the probability that at least k classifiers from a set of n classifiers are consistent with their
validation examples and yet all have error at least ε.

Theorem 3 Let g1, . . . ,gn be a sequence of classifiers. Let V1, . . . ,Vn be validation sets, with each
classifier gi developed independently of validation set Vi. Let |V | = |V1| = · · · = |Vn|. Then

P[∃S ⊆ {1, ...,n}∧ |S| = k : ∀i ∈ S : (EVi(gi) = 0∧ED(gi) ≥ ε)] ≤
1
k

n(1− ε)|V |,

where the probability is over validation sets, with the examples within each validation set drawn
i.i.d. according to D, but without requiring any independence between validation sets. For instance,
with a set of examples, each classifier could be the result of training on a subset of the examples,
and each validation set could be the examples not used to train the corresponding classifier.

Proof We will apply Theorem 2. Define

∀i ∈ {1, ...,n} : Ai = {(V1, ...,Vn)|(EVi(gi) = 0∧ED(gi) ≥ ε)},
that is, Ai is the set of validation set sequences for which gi is consistent with Vi and yet the error of
gi is at least ε. Then the LHS of Theorem 3 is equal to the LHS of Theorem 2. So, by Theorem 2,
the LHS of Theorem 3 is

≤
1
k
[P(A1)+ ...+P(An)]. (4)

By Theorem 1

∀i ∈ {1, ...,n} : P(Ai) ≤ (1− ε)|V |. (5)

Substituting (5) into (4) completes the proof.

6. Sample Compression and Nearly Uniform Validation

This section begins with some definitions and notation. Next, Section 6.1 reviews sample com-
pression bounds based on uniform validation. These are the compression bounds found in previous
work. Then Section 6.2 develops new sample compression bounds. The new bounds are based on
nearly uniform validation.

Recall that C = Z1, . . . ,Zm is the sequence of examples available for training. For T ⊆ {1,
. . . , m}, define g(T) to be the classifier represented by the examples in C that are indexed by T,
under some scheme for representing classifiers. (An example scheme is to train a classifier on the
examples used for representation.) Define V(T) to be the subsequence of examples in C not indexed
by T. Let

ED(T) = ED(g(T)),

and let

EV (T) = EV (T)(g(T)).

1744

NEARLY UNIFORM VALIDATION IMPROVES COMPRESSION-BASED ERROR BOUNDS

6.1 Review of Uniform Sample Compression Bounds

Define compression index set H to be a minimum-sized subset of {1, . . . , m} such that

EV (H) = 0,

that is, g(H) is consistent with the examples in C not indexed by H. Note that any method to represent
such a classifier by the examples indexed by H can be extended to represent a classifier that is
consistent with all examples in C by the examples indexed by H—simply augment the classifier with
the examples indexed by H, use a lookup to classify those examples correctly, and apply the original
classifier to any input not in those examples. Hence, the bounds developed here also apply under
the condition that H indexes a minimum-sized subset of examples in C that represent a classifier
that is consistent with C.

Theorem 4 Choose an integer h ∈ {1, . . . , m}, independently of the examples in C. Identify a
compression index set H. Let g*=g(H). Then

P [ED(g∗) ≥ ε∧ |H| = h] ≤

(

m
h

)

(1− ε)m−h ,

where the probability is over random draws of C = Z1, . . . ,Zm.

Proof Assume |H|=h; otherwise the probability in Theorem 4 is zero, and the proof is done. By the
definition of H,

ED(g∗) ≥ ε ⇒ (EV (H) = 0∧ED(H) ≥ ε).

So
P [ED(g∗) ≥ ε] ≤ P [EV (H) = 0∧ED(H) ≥ ε] .

Since H depends on the examples in C, Theorem 3 does not apply directly. So use uniform validation
over the set of classifiers represented by size-h subsets of C to validate g(H) using Theorem 3. (This
set of classifiers is chosen independently of C, and it includes g(H).)

Let g1, . . . ,gn be the classifiers represented by size-h subsets of C. Since g(H) ∈ {g1, . . . ,gn},

P[EV (H) = 0∧ED(H) ≥ ε] ≤ P[∃gi ∈ {g1, ...,gn} : (EVi(gi) = 0∧ED(gi) ≥ ε)].

Apply Theorem 3 to the RHS. Set k=1 in Theorem 3 to bound the probability of at least one misval-
idation, and note that

n =

(

m
h

)

.

Then Theorem 3 implies

P[∃gi ∈ {g1, ...,gn} : (EVi(gi) = 0∧ED(gi) ≥ ε)] ≤
(

m
h

)

(1− ε)m−h.

In Theorem 4, we must choose h independently of C. The following theorem allows us to choose
h based on C.

1745

BAX

Theorem 5 Let

δ(m,h,ε) =

(

m
h

)

(1− ε)m−h .

Let ε(m, h, δ) be the value of ε such that δ=δ(m, h, ε):

ε(m,h,δ) = 1−

δ
(

m
h

)

1
m−h

.

Select δ. Identify a compression index set H. Let g*=g(H). Then, with probability at least 1-δ,

ED(g∗) ≤ ε(m, |H| ,
δ
m

),

where the probability is over random draws of C = Z1, . . . ,Zm.

Proof By Theorem 4, for each h ∈ {1, . . . , m},

P[ED(g∗) ≥ ε(m,h,
δ
m

)∧h = |H|] ≤
δ
m

.

Using the sum bound on the probability of a union:

P[∃h ∈ {1, ...,m} : ED(g∗) ≥ ε(m,h,
δ
m

)∧h = |H|] ≤ δ.

So

P[∀h ∈ {1, ...,m} : ED(g∗) ≤ ε(m,h,
δ
m

)∨h 6= |H|] ≥ 1−δ.

6.2 Nearly Uniform Sample Compression Bounds for SVMs

Now consider a case where multiple subsets of the examples in C all represent the same consistent
classifier. Under this condition, we can use nearly uniform validation to derive new error bounds.
This section focuses on a special case of this condition, a case that applies to SVM training.

Define retained set R ⊆ {1, . . . , m} to be a minimum-sized set such that for some classifier g∗,

EV (R)(g
∗) = 0∧∀{1, ...,m} ⊇ Q ⊇ R : g(Q) = g∗.

In other words, every superset of R represents the same classifier, g*, which is consistent with the
examples in C not indexed by R. For example, in support vector machine training, R can be the
set of support vectors in a support vector machine produced by training on all examples in C. (To
ensure that the training algorithm produces the same SVM for different supersets of R, assume that
the training algorithm breaks ties to determine which SVM to return in a nonrandom way that does
not depend on which examples beyond R are in the training set. For example, the algorithm could

1746

NEARLY UNIFORM VALIDATION IMPROVES COMPRESSION-BASED ERROR BOUNDS

form a candidate set consisting of all SVMs with a minimum number of support vectors among
those that minimize the algorithm’s training objective function. Then the algorithm could return the
candidate SVM with the lexicographically earliest bit-string representation.)

Theorem 6 Choose an integer q ∈ {1, . . . , m}, independently of the examples in C. Identify a
retained set R ⊆ C and an associated classifier g*. Let r=|R|. Then

P [ED(g∗) ≥ ε∧q ≥ r] ≤

(

m− r
q− r

)−1 (

m
q

)

(1− ε)m−q ,

where the probability is over random draws of C = Z1, . . . ,Zm.

Proof Assume q = r; otherwise the probability in Theorem 6 is zero, and the proof is done. By the
definition of R,

ED(g∗) ≥ ε ⇒∀{1, ...,m} ⊇ Q ⊇ R s.t. |Q| = q : (EV (Q) = 0∧ED(Q) ≥ ε).

So
P[ED(g∗) ≥ ε] ≤ P[∀{1, ...,m} ⊇ Q ⊇ R s.t. |Q| = q : (EV (Q) = 0∧ED(Q) ≥ ε)]. (6)

Since R depends on the examples in C, Theorem 3 does not apply directly. So use nearly uniform
validation over the set of classifiers represented by size-q subsets of C to validate g* using Theorem
3. This set of classifiers is chosen independently of C, and it includes at least k instances of g*,
where

k = |{Q|{1, ...m} ⊇ Q ⊇ R∧|Q| = q}| =

(

m− r
q− r

)

.

Let g1, . . . ,gn be the classifiers represented by size-q subsets of C. Since g1, . . . ,gn contains at least
k instances of g*, the RHS of (6) is

≤ P[∃S ⊆ {1, ...,n}∧ |S| = k : ∀i ∈ S : (EVi(gi) = 0∧ED(gi) ≥ ε)]. (7)

Apply Theorem 3, noting that

n =

(

m
q

)

.

Then Theorem 3 implies that (7) is

≤

(

m− r
q− r

)−1 (

m
q

)

(1− ε)m−q .

In Theorem 6, we must choose q independently of C, and hence without reference to r. So, in
Theorem 6, the value of q cannot be optimized with respect to r. Also, if q < r, then the theorem
does not produce an error bound. The following theorem allows us to choose q based on r.

1747

BAX

Theorem 7 Let

δ(m,r,q,ε) =

(

m− r
q− r

)−1 (

m
q

)

(1− ε)m−q .

Let ε(m, r, q, δ) be the value of ε such that δ=δ(m, r, q, ε):

ε(m,r,q,δ) = 1−

δ
(

m− r
q− r

)−1 (

m
q

)

1
m−q

.

Select δ and a set W = {q1, . . . ,qw} of candidates for q, independently of C. Use C to identify a
retained set R and an associated classifier g*. Let r=|R|. Then, with probability at least 1-δ,

ED(g∗) ≤ min
q∈W s.t. q≥r

ε(m,r,q,
δ
w

),

where the probability is over random draws of C = Z1, . . . ,Zm.

Proof By Theorem 6, for each q ∈ W,

P[ED(g∗) ≥ ε(m,r,q,
δ
w

)∧q ≥ r] ≤
δ
w

.

Using the sum bound on the probability of a union:

P[∃q ∈W : ED(g∗) ≥ ε(m,r,q,
δ
w

)∧q ≥ r] ≤ δ.

So

P[∀q ∈W : ED(g∗) ≤ ε(m,r,q,
δ
w

)∨q < r] ≥ 1−δ.

Note that setting q = r and W = {1, . . . , m} in Theorem 7 gives the compression error bound
from Theorem 5, which is the bound from the literature (Littlestone and Warmuth, 1986; Cristianini
and Shawe-Taylor, 2000; Langford, 2005). In the next two sections, we examine how different
choices of q and W affect the error bound.

7. Analysis

This section analyzes optimal choices of q and analyzes how strongly the error bound depends on
different factors. To determine optimal choices for q, we analyze how probability of bound failure δ
changes as q increases. To compare the influence of different factors, we use some approximations
for the bound ε. Also, we compare choosing q to maximize the number of examples used for
validation to choosing q to maximize the number of copies of g∗ in the nearly uniform validation.

1748

NEARLY UNIFORM VALIDATION IMPROVES COMPRESSION-BASED ERROR BOUNDS

7.1 Optimal q Based on m, r and ε

In this section, we examine which values of q minimize δ(m,r,q,ε). For some background, note that
increasing q increases the fraction of classifiers in the nearly uniform validation that match g∗, but
it decreases the number of validation examples for each classifier. The minimum for q is r, which
produces only one classifier that matches g* and leaves m-r examples for validation. The maximum
for q is m, making g∗ the only classifier involved in uniform validation, but leaving no validation
examples.

For fixed m, r, and ε, we want to determine values of q that minimize δ(m,r,q,ε). Let

p(q) = δ(m,r,q,ε).

Compare values of p(q) for successive values of q ∈ [r,m], examining the ratio p(q+1)/p(q). If this
ratio is less than one, then increasing q improves the error bound. Writing the ratio in terms of
factorials and canceling terms yields

p(q+1)/p(q) = (1−
r

q+1
)(1− ε)−1. (8)

The RHS increases with q. So an optimal value of q is the integer that is the floor of the value that
makes the RHS of (8) one. Setting the RHS equal to one and solving for q produces

qopt =
⌊ r

ε
−1

⌋

,

making the optimal validation set size

m−qopt = m−
⌊ r

ε
−1

⌋

.

For example, with SVM training, if 5% of the training examples are support vectors, and the error
bound is ε = 10%, then the optimal choice for q is one less than half the number of training examples.

7.2 How Error Bound ε Depends on m, r, q, and δ

To explore how the error bound ε(m,r,q,δ/w) in Theorem 7 depends on m, r, q, ,δ, and w, we will
use the following pair of approximations:

(

n
k

)

≈
(en

k

)k
,

which follows from Stirling’s approximation (Feller, 1968, p. 52), and

(1−a)b ≈ e−ab.

Apply these approximations to

δ
w

=

(

m− r
q− r

)−1 (

m
q

)

(1− ε)m−q , (9)

producing

1749

BAX

δ
w
≈

(

e(m− r)
q− r

)−(q−r) (em
q

)q

e−ε(m−q).

Solve for ε:

ε(m,r,q,
δ
w

) ≈
1

m−q

[

−(q− r) ln
e(m− r)

q− r
+q ln

em
q

+ ln
w
δ

]

. (10)

The error bound is linear in the inverse of the number of validation examples m - q, approximately
linear in q - r and in q, logarithmic in the number w of candidates for q, and logarithmic in the
inverse of δ. (Setting q = r and w = m in (10) gives the bound from Cristianini and Shawe-Taylor
2000, p. 70.)

To compare error bounds based on uniform validation to bounds based on nearly uniform vali-
dation, compare ε(m,r,q,δ/w) with q = r, which produces a single copy of g* in the set of classifiers
being validated, to ε(m,r,q,δ/w) with q = (m+r)/2, which maximizes the number of copies of g* in
the set of classifiers being validated.

For q = r, use (10):

ε(m,r,r,
δ
w

) ≈
1

m− r

[

r ln
em
r

+ ln
w
δ

]

. (11)

For q = (m+r)/2, start from (9):

δ
w

=

(

m− r
1
2(m+ r)− r

)−1 (

m
1
2(m+ r)

)

(1− ε)m−(m+r)/2 .

Combining terms shows that this is

=

(

m− r
1
2(m− r)

)−1 (

m
1
2(m+ r)

)

(1− ε)(m−r)/2 .

The first combination counts the number of copies of g* in the set of classifiers to be validated. We
chose q to make this the coefficient of the central (i.e., largest) term of a binomial distribution. Using
the bounds for the central and near-central terms of the binomial distribution from Feller (1968, p.
180), shows this to be

≈

√

1−
r
m

2re−(m−r)ε/2..

For r<<m, the first term is close to one, so ignore it. Then

δ
w
≈ er ln2−(m−r)ε/2..

Solve for ε:

ε(m,r,
m+ r

2
,

δ
w

) ≈
2

m− r

(

r ln2+ ln
w
δ

)

. (12)

Compare (11) to (12):

1750

NEARLY UNIFORM VALIDATION IMPROVES COMPRESSION-BASED ERROR BOUNDS

ε(m,r,r,
δ
w

) : ε(m,r,
m+ r

2
,

δ
w

) ≈
1

m− r

[

r ln
em
r

+ ln
w
δ

]

:
2

m− r

(

r ln2+ ln
w
δ

)

.

Terms ln(w/δ) tend to be small compared to the rest of the sums in parentheses, so ignore them.
Then divide both sides of the ratio by r/(m-r) to get:

≈ ln
em
r

: ln4,

which is

= lnm− lnr +1 : ln4.

For example, if there are m = 1024 training examples and r = 64 support vectors, then the ratio is
3:1, indicating that using nearly uniform validation improves the bound by a factor of about three.

8. Tests

This section presents results of tests applying Theorem 7 to compare uniform error bounds to some
nearly uniform bounds. We compare the bound methods:

1. Uniform – Use q = r and W = {1, . . . , m}. This is the compression-based bound from the
literature.

2. Full – Use the optimal q in W = {1, . . . , m}. This is the straightforward nearly uniform bound.

3. Sample – Use the optimal q in W = {m/11, 2m/11, . . . , 10m/11}, that is, use 10 equally-
spaced candidates for q. This limits the candidates for q, making w = 10 in the error bound
instead of w = m, but optimizing over fewer choices for q.

4. Center – Use q = m/2. So W = {m/2}, and w = 1.

For all tests, δ = 0.01, and bounds are produced by applying Theorem 7. Each table in this
section shows error bounds produced by various methods for a set of problems. For each problem,
the best error bound is shown in bold. In parentheses after the bounds are values of q that produced
the bounds. For methods Full and Sample, qmin is the value of q ∈ W that minimizes ε(m, r, q, δ/w)
in Theorem 7. For the other methods, the value of q shown is the only choice.

8.1 Error Bounds for SVMs Trained on Real-World Data Sets

This subsection applies the bound methods to actual data sets for which SVMs have been developed:

1. Netclass – SVMs were trained to recognize which of several generative graph models best
describe a graph of the neural network of c. elegans (Middendorf et al., 2004). There are m =
800 training examples and r = 51 support vectors.

2. Genex – SVMs were trained to classify microarray gene expression data (Brown et al., 1999).
There are m = 1097 training examples and r = 216 support vectors.

1751

BAX

Bound Method
Data m r Uniform (q) Full (qmin) Sample (qmin) Center (q)

Netclass 800 51 23.2% (51) 11.2% (440) 10.0% (509) 9.8% (400)
Genex 1097 216 46.5% (216) 25.8% (810) 24.3% (897) 28.1% (548)
Dig1 787 355 71.9% (355) 53.5% (648) 52.1% (715) 65.6% (393)

Table 1: Error Bounds for Real-World Data Sets

Bound Method
r Uniform (q) Full (qmin) Sample (qmin) Center (q)
5 25.0% (5) 19.7% (21) 17.1% (27) 15.0% (50)
10 35.6% (10) 27.2% (33) 24.5% (36) 21.3% (50)
20 50.9% (20) 39.8% (50) 36.9% (54) 34.1% (50)

Table 2: Error Bounds for m = 100 Examples

3. Dig1 – An SVM was trained for digit recognition (Langford 2005). There are m = 787 training
examples and r = 355 support vectors.

Method Center produces the best bound for problem Netclass, and method Sample produces the
best bound for the other problems. For the first two problems (Netclass and Genex), all methods
based on nearly uniform bounds produce about the same bounds, and they are about half the error
bound produced by uniform validation. For Dig1, the bounds produced by methods Full and Sample
are much better than those produced by uniform validation, but still not good enough to be of any
use in practice.

Why are compression bounds for Dig1 so ineffective? Compression bounds are based on the
idea that if a classifier is based on only a few training examples and still performs well on the rest,
then that is evidence that the classifier performs well in general. For Dig1, the size of the retained
set, r, is about half of the number of training examples m. The retained set is composed of training
examples used in the classifier and of training examples for which the classifier errs. Consider the
following scenario: each class label is equally likely, and we simply choose g* to be the function
that returns the most common label in the training set regardless of the input. Then the retained set
consists of all training examples with the least common label, which is most likely a little less than
half the training examples. In this case, the true error rate is 50%, and r is about half of m. Since
our compression bounds are based on r and m, the bounds cannot distinguish this scenario from the
case of Dig1. Hence, compression bounds rely heavily on having few retained examples relative to
the number of training examples.

8.2 Error Bounds for m = 1000 Examples

This section explores error bounds produced by the different methods over a range of training set
sizes m and retained set sizes r. These tests give a sense of how data set sizes and ratios of r to m
affect bounds.

As in Section 8.1, the most effective bound methods in Tables 2 to 4 are Sample and Center.
Comparing methods within rows shows that the nearly uniform methods produce better bounds
than the uniform methods, with the nearly uniform methods producing bounds that are about half

1752

NEARLY UNIFORM VALIDATION IMPROVES COMPRESSION-BASED ERROR BOUNDS

Bound Method
r Uniform (q) Full (qmin) Sample (qmin) Center (q)

50 19.5% (50) 9.0% (480) 7.9% (636) 7.7% (500)
100 30.9% (100) 15.1% (620) 13.8% (727) 14.6% (500)
200 47.0% (200) 26.4% (742) 24.9% (818) 28.5% (500)

Table 3: Error Bounds for m = 1000 Examples

Bound Method
r Uniform (q) Full (qmin) Sample (qmin) Center (q)

50 11.7% (50) 4.6% (895) 4.0% (1090) 3.9% (1000)
100 19.2% (100) 7.7% (1209) 7.0% (1454) 7.3% (1000)
200 30.6% (200) 13.6% (1374) 12.7% (1454) 14.2% (1000)

Table 4: Error Bounds for m = 2000 Examples

the bounds for the uniform method when the ratio r:m is about 1:10. The advantage of using nearly
uniform methods is more pronounced for smaller ratios of r:m.

Comparing Table 2 to Table 3 cell-by-cell shows the effect of increasing problem size by a factor
of 10 while keeping ratios r:m the same. In general, the bounds improve as problem size increases,
and the improvement is greater for smaller r:m ratios. The same kind of comparison is possible
between Table 3 and Table 4 by comparing the first two rows of Table 3 to the last two rows of
Table 4. This comparison shows the same general trends.

9. Discussion

This section outlines several possible directions for future work. One possibility is to improve
the bounds by treating training examples for which g* errs differently from training examples that
comprise g*. Right now, these examples are combined in the retained set R. Let RE be the set of
training errors for g*, and let R* be the set of examples used to form g*. Suppose training on any
superset of R* yields g*, that is, including some training errors from RE does not disrupt training.
Then R* can be used in place of R to form a new error bound on g*. Of course, we need to use
validation of non-consistent classifiers in the proposed bound, since validation sets would contain
examples that cause empirical error. For example, we could use the bounds based on Binomial Tail
Inversion (Langford, 2005).

The error bounds in this paper are based on uniform validation over different validation sets
resulting from partitions of all available data into training and validation sets. Lack of knowledge of
the joint distribution of misvalidations forces us to take the worst-case joint distributions as bases for
the bounds. The worst-case bound is often applied when many validations all use the same exam-
ples; better bounds apply when the validations are all based on example sets drawn independently
of each other. For each pair of partitions into training and validation sets, the validation sets have an
intersection of shared examples, and the non-intersection examples are drawn independently of each
other. Perhaps it is possible to use some information about the patterns of shared and independent
examples among the different validation sets to constrain the joint distribution of misvalidations in
a way that improves the uniform error bounds.

1753

BAX

It would be useful to extend the results of this paper to other classifiers that have compression-
based bounds, including set covering machines (SCMs) (Marchand and Shawe-Taylor 2001) and
decision list machines (DLMs) (Marchand and Sokolova 2005). The challenge is to efficiently
identify a retained set under the present training methods for SCMs and DLMs, that is, identify a
small subset of training examples such that training on any superset that is a subset of the training
examples produces the same classifier. A solution may be to modify the training algorithms in some
way to make it easy to identify a small retained set after training.

An alternative approach is to empirically estimate the fraction of trainings on subsets of training
data (and perhaps on strings of side information) that produce the same classifier as the classifier
g* trained on all available data. Use sampling over subsets of training data (and strings of side
information) to estimate the fraction. Then form an error bound that uses the estimated fraction
as the basis for nearly uniform validation. Include a term in the error bound to account for the
possibility of over-estimating the fraction of trainings that produce g*.

Finally, it should be possible to apply this empirical approach to nearly uniform validation in a
transductive setting, where the inputs of examples to be classified are known. Each classifier g that
agrees with g* on all examples to be classified could be considered equivalent to g*. This procedure
is similar to empirically determining VC dimension for specific data sets, as described by Vapnik
(1998).

Acknowledgments

Thanks to John Langford for extremely helpful advice, encouragement, and data. Thanks to Mario
Marchand for encouragement, pointers to relevant literature, and feedback on presentation. Thanks
to Manfred Warmuth and three anonymous referees for many helpful suggestions. Thanks to Lance
Williams and Dan Ruderman for discussions that led to this paper and for feedback on several
versions of the results. Thanks to Danny Hillis and everyone at Applied Minds for encouragement
and support to pursue this research.

References

E. Bax. Similar classifiers and vc error bounds, caltechcstr:1997.cs-tr-97-14.
Technical report, California Institute of Technology, 1997. Also available as
http://resolver.caltech.edu/CaltechCSTR:1997.cs-tr-97-14.

M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugnet, M. Ares Jr., and D. Haussler. Support vec-
tor machine classification of microarray gene expression data, ucsc-crl 99-09. Technical report,
University California Santa Cruz, 1999.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-
Based Learning Methods. Cambridge University Press, 2000.

W. Feller. An Introduction to Probability Theory and Its Applications. John Wiley & Sons, New
York, 1968.

S. Floyd and M. Warmuth. Sample compression, learnability, and the vapnik-chervonenkis dimen-
sion. Machine Learning, 21(3):1–36, 1995.

1754

NEARLY UNIFORM VALIDATION IMPROVES COMPRESSION-BASED ERROR BOUNDS

J. Langford. Tutorial on practical prediction theory for classification. Journal of Machine Learning
Research, 6:273–306, 2005.

N. Littlestone and M. Warmuth. Relating data compression and learnability, 1986. Unpublished
manuscript, University of California Santa Cruz.

M. Marchand and J. Shawe-Taylor. Learning with the set covering machine. In Proceedings of the
Eighteenth International Conference on Machine Learning (ICML 2001), pages 345–352, 2001.

M. Marchand and M. Sokolova. Learning with decision lists of data-dependent features. Journal of
Machine Learning Research, 6:427–451, 2005.

M. Middendorf, E. Ziv, C. Adams, J. Hom, R. Koytcheff, C. Levovitz, G. Woods, L. Chen, and
C. Wiggins. Discriminative topological features reveal biological network mechanisms. BMC
Bioinformatics, 5(181), 2004.

V. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

U. von Luxburg, O. Bousquet, and B. Scholkopf. A compression approach to support vector model
selection. Journal of Machine Learning Research, 5:293–323, 2004.

1755

Journal of Machine Learning Research 9 (2008) 1757-1774 Submitted 7/07; Revised 4/08; Published 8/08

Learning from Multiple Sources∗

Koby Crammer CRAMMER@CIS.UPENN.EDU

Michael Kearns MKEARNS@CIS.UPENN.EDU

Jennifer Wortman WORTMANJ@SEAS.UPENN.EDU

Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA

Editor: Peter Bartlett

Abstract
We consider the problem of learning accurate models from multiple sources of “nearby” data.
Given distinct samples from multiple data sources and estimates of the dissimilarities between
these sources, we provide a general theory of which samples should be used to learn models for
each source. This theory is applicable in a broad decision-theoretic learning framework, and yields
general results for classification and regression. A key component of our approach is the develop-
ment of approximate triangle inequalities for expected loss, which may be of independent interest.
We discuss the related problem of learning parameters of a distribution from multiple data sources.
Finally, we illustrate our theory through a series of synthetic simulations.

Keywords: error bounds, multi-task learning

1. Introduction

We introduce and analyze a theoretical model for the problem of learning from multiple sources of
“nearby” data. As a hypothetical example of where such problems might arise, consider the follow-
ing scenario: For each web user in a large population, we wish to learn a classifier for what sites
that user is likely to find “interesting.” Assuming we have at least a small amount of labeled data for
each user (as might be obtained either through direct feedback, or via indirect means such as click-
throughs following a search), one approach would be to apply standard learning algorithms to each
user’s data in isolation. However, if there are natural and accessible measures of similarity between
the interests of pairs of users (as might be obtained through their mutual labelings of common web
sites), an appealing alternative is to aggregate the data of “nearby” users when learning a classifier
for each particular user. This alternative is intuitively subject to a trade-off between the increased
sample size and how different the aggregated users are.

We treat this problem in some generality and provide a bound addressing the aforementioned
trade-off. In our model there are K unknown data sources, with source i generating a distinct sample
Si of ni observations. We assume we are given only the samples Si, and a disparity1 matrix D whose
entry D(i, j) bounds the difference between source i and source j. Given these inputs, we wish to

∗. A preliminary version of this work appeared in Advances in Neural Information Processing Systems 19 (Crammer
et al., 2007).

1. We avoid using the term distance since our results include settings in which the underlying loss measures may not be
formal distances.

c©2008 Koby Crammer, Michael Kearns and Jennifer Wortman.

CRAMMER, KEARNS AND WORTMAN

decide which subset of the samples S j will result in the best model for each source i. Our frame-
work includes settings in which the sources produce data for classification, regression, and density
estimation (and more generally any additive-loss learning problem obeying certain conditions).

Our main result is a general theorem establishing a bound on the expected loss incurred by
using all data sources within a given disparity of the target source. Optimization of this bound
then yields a recommended subset of the data to be used in learning a model of each source. Our
bound clearly expresses a trade-off between three quantities: the sample size used (which increases
as we include data from more distant models), a weighted average of the disparities of the sources
whose data is used, and a model complexity term. It can be applied to any learning setting in which
the underlying loss function obeys an approximate triangle inequality, and in which the class of
hypothesis models under consideration obeys uniform convergence of empirical estimates of loss to
expectations. For classification problems, the standard triangle inequality holds. For regression we
prove a 2-approximation to the triangle inequality. Uniform convergence bounds for the settings we
consider may be obtained via standard data-independent model complexity measures such as VC
dimension and pseudo-dimension, or via more recent measures such as Rademacher complexity.

Recent work by Crammer et al. (2006) examines the considerably more limited problem of
learning a model when all data sources are corrupted versions of a single, fixed source, for instance
when each data source provides noisy samples of a fixed binary function, but with varying levels
of noise. In the current work, the labels on each source may be entirely unrelated to those on other
source except as constrained by the bounds on disparities, requiring us to develop new techniques.
Blitzer et al. (2007) study the related problem of training classifiers using multiple sources of data
drawn from different underlying domains but labeled using identical or similar labeling functions.
Wu and Dietterich (2004) study similar problems experimentally in the context of SVMs. The
framework examined here can also be viewed in the context of multi-task learning, or as a type of
transfer learning (Baxter, 1995; Ben-David, 2003; Maurer, 2005).

In Section 2 we introduce a decision-theoretic framework for probabilistic learning that includes
classification, regression, and many other settings as special cases, and then give our multiple source
generalization of this model. In Section 3 we provide our main result, which is a general bound on
the expected loss incurred by using all data within a given disparity of a target source. Section 4
discusses the most simple application of this bound to binary classification using VC theory. In Sec-
tion 5, we give applications of our general theory to classification and regression using Rademacher
complexity, and show more generally how the theory can be applied for any Lipschitz loss function.
In Section 6 we discuss how to empirically estimate the disparity matrix from data. In Section 7,
we discuss the related problem of learning parameters of a distribution from multiple data sources.
Finally, in Section 8, we illustrate the theory through synthetic simulations.

2. Learning Models

Before detailing our multiple-source learning model, we first introduce a standard decision-theoretic
learning framework in which our goal is to find a model minimizing a generalized notion of empiri-
cal loss (Haussler, 1992). Let the hypothesis class H be a set of models (which might be classifiers,
real-valued functions, densities, etc.), and let f be the target model, which may or may not lie in
the class H . Let z be a (generalized) data point or observation. For instance, in (noise-free) clas-
sification and regression, z will consist of a pair 〈x,y〉 where y = f (x). We assume that the target
model f induces some underlying distribution Pf over observations z. In the case of classification

1758

LEARNING FROM MULTIPLE SOURCES

or regression, Pf is induced by drawing the inputs x according to some underlying distribution P,
and then setting y = f (x) (possibly corrupted by noise).

Each setting we consider has an associated loss function L(h,z). For example, in classification
we typically consider the 0/1 loss: L(h,〈x,y〉) = 0 if h(x) = y, and 1 otherwise. In regression we
might consider the squared loss function L(h,〈x,y〉) = (y−h(x))2. In each case, we are interested
in the expected loss of a model g2 on target g1, e(g1,g2) = Ez∼Pg1

[L(g2,z)]. Expected loss is not
necessarily symmetric.

In our multiple source model, we are presented with K distinct mutually independent samples or
sources of data S1, ...,SK , and a symmetric K×K matrix D. Each source Si contains ni observations
that are generated from a fixed and unknown model fi, and D satisfies max(e(fi, f j),e(f j, fi)) ≤
D(i, j). When D is unknown, it often can be estimated from a small amount of data; see Section 6 for
more details. Our goal is to decide which sources S j to use in order to learn the best approximation
(in terms of expected loss) to each fi.

While we are interested in accomplishing this goal for each fi, it suffices and is convenient
to examine the problem from the perspective of a fixed fi. Thus without loss of generality let us
suppose that we are given sources S1, ...,SK of size n1, . . . ,nK from models f1, . . . , fK such that
ε1 ≡ D(1,1) ≤ ε2 ≡ D(1,2) ≤ ·· · ≤ εK ≡ D(1,K), and our goal is to learn f1. Here we have simply
taken the problem in the preceding paragraph, focused on the problem for f1, and reordered the
other models according to our estimations or their proximity to f1. To highlight the distinguished
role of the target f1 we shall denote it f . We denote the observations in S j by z j

1, . . . ,z
j
n j . In all cases

we will analyze, for any k ≤ K, the hypothesis ĥk minimizing the empirical loss êk(h) on the first k
sources S1, . . . ,Sk, that is

ĥk = argmin
h∈H

êk(h) = argmin
h∈H

1
n1:k

k

∑
j=1

n j

∑
i=1

L(h,z j
i) ,

where n1:k = n1 + · · ·+nk. We also denote the expected error of function h with respect to the first
k sources of data as

ek(h) = E [êk(h)] =
k

∑
i=1

(

ni

n1:k

)

e(fi,h).

3. General Theory for the Multiple Source Problem

In this section we provide the first of our main results: a general bound on the expected loss of the
model minimizing the empirical loss on the nearest k sources. Optimization of this bound leads to
a recommended set of sources to incorporate when learning f = f1. The key ingredients needed to
apply this bound are an approximate triangle inequality and a uniform convergence bound, which
we define below. In the subsequent sections we demonstrate that these ingredients can indeed be
provided for a variety of natural learning problems.

Definition 1 For α ≥ 1, we say that the α-triangle inequality holds for a class of models F and
expected loss function e if for all g1,g2,g3 ∈ F we have

e(g1,g2) ≤ α(e(g1,g3)+ e(g3,g2)).

The parameter α ≥ 1 is a constant that depends on F and e.

1759

CRAMMER, KEARNS AND WORTMAN

The choice α = 1 yields the standard triangle inequality. We note that the restriction to models
in the class F may in some cases be quite weak—for instance, when F is all possible classifiers or
real-valued functions with bounded range—or stronger, as in densities from the exponential family.
Our results will require only that the unknown source models f1, . . . , fK lie in F , even when our
hypothesis models are chosen from some possibly much more restricted class H ⊆ F . For now we
simply leave F as a parameter of the definition.

Definition 2 A uniform convergence bound for a hypothesis space H and loss function L is a
bound that states that for any 0 < δ < 1, with probability at least 1−δ for any h ∈ H

|ê(h)− e(h)| ≤ β(n,δ) ,

where ê(h) = 1
n ∑n

i=1 L(h,zi) for n observations z1, . . . ,zn generated independently according to dis-
tributions P1, . . .Pn, and e(h) = E [ê(h)] where the expectation is taken with respect to z1, . . . ,zn.
Here β is a function of the number of observations n and the confidence δ, and depends on H and
L .

This definition simply asserts that for every model in H , its empirical loss on a sample of size
n and the expectation of this loss will be “close” when β(n,δ) is small. In general the function β
will incorporate standard measures of the complexity of H , and will be a decreasing function of
the sample size n, as in the classical O(

√

d/n) bounds of VC theory. Our bounds will be derived
from the rich literature on uniform convergence. The only twist to our setting is the fact that the
observations are no longer necessarily identically distributed, since they are generated from multiple
sources. However, generalizing the standard uniform convergence results to this setting is mostly
straightforward as we will see in the upcoming sections on applications of the bound.

We are now ready to present our general bound.

Theorem 3 Let e be the expected loss function for loss L , and let F be a class of models for which
the α-triangle inequality holds with respect to e. Let H ⊆ F be a class of hypothesis models for
which there is a uniform convergence bound β for L . Let K, f = f1, f2, . . . , fK ∈ F , {εi}K

i=1, {ni}K
i=1,

and ĥk be defined as above. For any δ such that 0 < δ < 1, with probability at least 1− δ, for any
k ∈ {1, . . . ,K}

e(f , ĥk) ≤ α2 min
h∈H

{e(f ,h)}+(α+α2)
k

∑
i=1

(

ni

n1:k

)

εi +2αβ(n1:k,δ/2K) .

Before providing the proof, let us examine the bound of Theorem 3, which expresses a natural
and intuitive trade-off. The first term in the bound is simply the approximation error, the residual
loss that we incur by limiting our hypothesis model to fall in the restricted class H . The second
term is a weighted sum of the disparities of the k ≤ K models whose data is used with respect to
the target model f = f1. We expect this term to increase as we increase k to include more distant
sources. The final term is determined by the uniform convergence bound. We expect this term to
decrease with added sources due to the increased sample size. All three terms are influenced by the
strength of the approximate triangle inequality that we have, as quantified by α.

The bound given in Theorem 3 can be loose, but provides an upper bound necessary for opti-
mization and suggests a natural choice for the number of sources k∗ to use to estimate the target

1760

LEARNING FROM MULTIPLE SOURCES

f :

k∗ = argmin
k

(

(α+α2)
k

∑
i=1

(

ni

n1:k

)

εi +2αβ(n1:k,δ/2K)

)

.

Theorem 3 and this optimization make the implicit assumption that the best subset of sources
to use will be a prefix of the sources—that is, that we should not “skip” a nearby source in favor of
more distant ones. This assumption will be true for typical data-independent uniform convergence
such as VC dimension bounds, and will be true on average for data-dependent bounds, where we
expect uniform convergence bounds to improve with increased sample size.

We now give the proof of Theorem 3.
Proof: (Theorem 3) By Definition 1, for any h ∈ H , any k ∈ {1, . . .K}, and any i ∈ {1, . . . ,k},

(

ni

n1:k

)

e(f ,h) ≤
(

ni

n1:k

)

(αe(f , fi)+αe(fi,h)) .

Summing over all i ∈ {1, . . . ,k}, we find

e(f ,h) ≤
k

∑
i=1

(

ni

n1:k

)

(αe(f , fi)+αe(fi,h))

= α
k

∑
i=1

(

ni

n1:k

)

e(f , fi)+ α
k

∑
i=1

(

ni

n1:k

)

e(fi,h) ≤ α
k

∑
i=1

(

ni

n1:k

)

εi +αek(h) .

In the first line above we have used the α-triangle inequality to deliberately introduce a weighted
summation involving the fi. In the second line, we have broken up the summation using the fact that
e(f , fi) ≤ εi and the definition of ek(h). Notice that the first summation is a weighted average of the
expected loss of each fi, while the second summation is the expected loss of h on the data. Using the
uniform convergence bound, we may assert that with high probability ek(h)≤ êk(h)+β(n1:k,δ/2K),
and with high probability

êk(ĥk) = min
h∈H

{êk(h)} ≤ min
h∈H

{

k

∑
i=1

(

ni

n1:k

)

e(fi,h)+β(n1:k,δ/2K)

}

.

Putting these pieces together, we find that with high probability

e(f , ĥk) ≤ α
k

∑
i=1

(

ni

n1:k

)

εi +2αβ(n1:k,δ/2K)+αmin
h∈H

{

k

∑
i=1

(

ni

n1:k

)

e(fi,h)

}

≤ α
k

∑
i=1

(

ni

n1:k

)

εi +2αβ(n1:k,δ/2K)

+ αmin
h∈H

{

k

∑
i=1

(

ni

n1:k

)

αe(fi, f)+
k

∑
i=1

(

ni

n1:k

)

αe(f ,h)

}

= (α+α2)
k

∑
i=1

(

ni

n1:k

)

εi +2αβ(n1:k,δ/2K)+α2 min
h∈H

{e(f ,h)} .

1761

CRAMMER, KEARNS AND WORTMAN

4. Simple Application to Binary Classification

We demonstrate the applicability of the general theory given by Theorem 3 to several standard
learning settings. As a warm-up, we begin with the most straightforward application, classification
using VC bounds.

In (noise-free) binary classification, we assume that our target model is a fixed, unknown
and arbitrary function f from some input set X to {0,1}, and that there is a fixed and unknown
distribution P on the X . Note that the distribution P over input does not depend on the target
function f . The observations are of the form z = 〈x,y〉 where y ∈ {0,1}. The loss function
L(h,〈x,y〉) is defined as 0 if y = h(x) and 1 otherwise, and the corresponding expected loss is
e(g1,g2) = E〈x,y〉∼Pg1

[L(g2,〈x,y〉)] = Prx∼P[g1(x) 6= g2(x)].
For 0/1 loss it is well-known and easy to see that the (standard) 1-triangle inequality holds.

Classical VC theory (Vapnik, 1998) provides us with uniform convergence as follows.

Lemma 4 Let H : X → {0,1} be a class of functions with VC dimension d, and let L(h,〈x,y〉) =
|y− h(x)| be the 0/1-loss. The following function β is a uniform convergence bound for H and L
when n ≥ d/2:

β(n,δ) =

√

8(d ln(2en/d)+ ln(4/δ))

n
.

The proof is analogous to the standard proof of uniform convergence using the VC Dimension
(see, for example, Chapters 2–4 of Anthony and Bartlett (1999)), requiring only minor modifications
to the symmetrization argument to handle the fact that the samples need not be uniformly distributed.
It relies heavily on Hoeffding’s inequality (Hoeffding, 1963), stated here for completeness.

Lemma 5 (Hoeffding’s Inequality) Let X be a set, D1, · · · ,Dm be probability distributions on X,
and f1, · · · , fm be real-valued functions on X such that fi : X → [ai,bi] for i = 1, · · · ,m. Then

Pr

(∣

∣

∣

∣

∣

(

1
m

m

∑
i=1

fi(xi)

)

−
(

1
m

m

∑
i=1

Ex∼Di [fi(x)]

)∣

∣

∣

∣

∣

≥ ε

)

≤ 2exp

(−2ε2m2

∑m
i=1(bi −ai)2

)

,

where the probability is over the sequence of values xi distributed according to Di for all i =
1, · · · ,m.

With Lemma 4 in place, the conditions of Theorem 3 are easily satisfied, yielding the following
result.

Theorem 6 Let F be the set of all functions from an input set X into {0,1} and let d be the VC
dimension of H ⊆ F . Let e be the expected 0/1 loss. Let K, f = f1, f2, . . . , fK ∈ F , {εi}K

i=1, {ni}K
i=1,

and ĥk be defined as above in the multi-source learning model, and assume that n1 ≥ d/2. For any
δ such that 0 < δ < 1, with probability at least 1−δ, for any k ∈ {1, . . . ,K}

e(f , ĥk) ≤ min
h∈H

{e(f ,h)}+2
k

∑
i=1

(

ni

n1:k

)

εi +

√

32(d ln(2en1:k/d)+ ln(8K/δ))

n1:k
.

1762

LEARNING FROM MULTIPLE SOURCES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MAX DATA

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

120

140

sa
m

pl
e

si
ze

Figure 1: Visual illustration of Theorem 6.

In Figure 1 we provide a visual illustration of the behavior of Theorem 3 applied to a simple clas-
sification problem. In this problem there are K = 100 classifiers, each classifier f i for i = 1 . . .100 is
defined by 2 parameters represented by a point in the unit square, such that the expected disagree-
ment rate between two such classifiers is proportional the L1 distance between their parameters.2

We chose the 100 parameter vectors fi uniformly at random from the unit square (the circles in
the left panel). To generate varying source sizes, we let ni decrease with the distance of fi from a
chosen “central” point at (0.75,0.75) (marked “MAX DATA” in the left panel); the resulting source
sizes for each model are shown in the bar plot in the right panel, where the origin (0,0) is in the
near corner, (1,1) in the far corner, and the source sizes clearly peak near (0.75,0.75). For every
function fi we used Theorem 6 to find the best sources j to be used to estimate its parameters. The
undirected graph on the left includes an edge between fi and f j if and only if the data from f j is
used to learn fi and/or the converse.

The graph simultaneously displays the geometry implicit in Theorem 6 as well as its adaptivity
to local circumstances. Near the central point, the graph is sparse and the edges quite short, corre-
sponding to the fact that for such models we have enough direct data (represented with high bars
in the right panel) that it is not advantageous to include data from distant models. Far from the
central point the graph becomes dense and the edges long, as we are required to aggregate a larger
neighborhood to learn the optimal model. In addition, decisions are affected locally by how many
models are “nearby” a given model, when there are many close functions f j to a given fi there is
no need to use “far” models, but when the neighborhood of a function is not populated with many
examples, there is a need for data from models far-away.

5. Bounds Using Rademacher Complexity

Given the interest in tighter, potentially data-dependent convergence bounds (such as maximum
margin bounds, PAC-Bayes, and others) in recent years, it is natural to ask how our multi-source
theory can exploit these modern bounds. We examine one specific case here using Rademacher

2. It is easy to create simple input distributions and classifiers that generate exactly this geometry. Let the input x
be a pair x = (p,b) where p ∈ [0,1],b ∈ {0,1} and let the hypothesis class consist of functions defined as pairs of
thresholds f = (t1, t2) where f (x) = 1 if and only if (p > t1 and b = 0) or (p > t2 and b = 1). The distribution of
x = (p,b) is a product of a uniform distribution for p and a fair coin for b.

1763

CRAMMER, KEARNS AND WORTMAN

complexity (Bartlett and Mendelson, 2002; Bartlett et al., 2002; Koltchinskii, 2001; Koltchinskii
and Panchenko, 2000); analogs can be derived in a similar manner for other complexity measures.
We start by deriving bounds for settings in which generic Lipschitz loss functions are used, and then
discuss specific applications to classification and to regression with squared loss.

5.1 Rademacher Complexity and General Lipschitz-loss Bounds

If H is a class of functions mapping from a set X to R, the empirical Rademacher complexity of H
on a fixed set of observations x1, . . . ,xn is defined as

R̂n(H) = E

[

sup
h∈H

∣

∣

∣

∣

∣

2
n

n

∑
i=1

σih(xi)

∣

∣

∣

∣

∣

]

,

where the expectation is taken with respect to independent uniform {±1}-valued random vari-
ables σ1, . . . ,σn. The Rademacher complexity for n observations can then be defined as Rn(H) =
E
[

R̂n(H)
]

where the expectation is with respect to observations x1, . . . ,xn. In the standard setting,
x1, . . . ,xn are drawn i.i.d. from a fixed distribution. In our setting, these observations will still be
independent, but not necessarily identically distributed. We will show that the standard uniform
convergence results still hold for this modified definition of Rademacher complexity.

Consider any setting in which each generalized data point z = 〈x,y〉 for some x ∈ X and y ∈ Y
with y = f (x). A cost function for the loss L is a function φ(y,a) : R → R such that L(h,〈x,y〉) =
φ(y,h(x)) for all x ∈ X , y ∈ Y , and h ∈ H . We will consider cost functions φ that are Lipschitz in
the second parameter. Define φ′(y,a) = φ(y,a)− φ(y,0). Note that if φ is Lipschitz in the second
parameter with constant L then φ′ is also Lipschitz in the second parameter with the same constant
L.

Lemma 8 below gives a uniform convergence bound for any loss function with a corresponding
Lipschitz cost function. The proof of this lemma is in Appendix A. It is analogous to the proof of
Theorem 8 in Bartlett and Mendelson (2002), which makes a similar claim in the i.i.d. setting, and
uses the following lemma from Bartlett and Mendelson (2002).

Lemma 7 If φ : R → R is Lipschitz with constant L and φ(0) = 0, then Rn(φ◦H) ≤ 2LRn(H).

Lemma 8 Let L be a loss function bounded in [0,1], and φ : R → R a cost function such that
L(f ,〈x,y〉) = φ(y, f (x)) where φ is Lipschitz in the second parameter with constant L. Let H :
X → Y be a class of functions and let {〈xi,yi〉}n

i=1 be sampled independently according to some
probability distributed P. For any n, for any 0 < δ < 1, with probability 1− δ over samples of
length n, every h ∈ H satisfies

β(n,δ) = 2LRn(H)+

√

2ln(2/δ)

n
.

5.2 Application to Classification Using Rademacher Complexity

Theorem 9 below follows from the application of Theorem 3 using the 1-triangle inequality and an
application of Lemma 8 with

φ(y,a) =

1 if ya ≤ 0,

1− ya if 0 < ya ≤ 1,

0 if ya > 1.

1764

LEARNING FROM MULTIPLE SOURCES

Notice first that if L is the 0/1 loss, then for all x ∈ X , y ∈ {−1,1}, and h ∈ X → {−1,1},
L(h,〈x,y〉) = φ(y,h(x)), and furthermore that φ is Lipschitz with constant 1, so Lemma 8 can be
applied immediately.

Theorem 9 Let F be a set of functions from an input set X into {-1,1} and let Rn1:k(H) be the
Rademacher complexity of H ⊆ F on the first k sources of data. Let e be the expected 0/1 loss. Let
K, f = f1, f2, . . . , fK ∈ F , {εi}K

i=1, {ni}K
i=1, and ĥk be defined as in the multi-source learning model.

For any δ such that 0 < δ < 1, with probability at least 1−δ, for any k ∈ {1, . . . ,K}

e(f , ĥk) ≤ min
h∈H

{e(f ,h)}+2
k

∑
i=1

(

ni

n1:k

)

εi +2

√

2ln(4K/δ)

n1:k
+4Rn1:k(H) .

Before moving on, let us briefly examine the behavior of this bound. Similarly to the VC-based
bound given in Theorem 6, as k increases and more sources of data are combined, the second term
will grow while the third will shrink. The behavior of the final term Rn1:k(H), however, is less
predictable and may grow or shrink as more sources of data are combined.

Note that for the special case of classification with 0/1 loss, it is possible to get tighter bounds
with better dependence on Rn1:k by using a more careful analysis than the one in the proof of
Lemma 8. Such bounds are given in an earlier version of this paper (Crammer et al., 2007); we
choose not to present these alternate bounds here to simplify presentation.

5.3 Regression

We now turn to (noise-free) regression with squared loss. Here our target model f is any function
from an input class X into some bounded subset of R. (Frequently we will have X ⊆ R

d , but
this is not required.) Our loss function is L(h,〈x,y〉) = (y− h(x))2, and the expected loss is thus
e(g1,g2) = E〈x,y〉∼Pg1

[L(g2,〈x,y〉)] = Ex∼P
[

(g1(x)−g2(x))2
]

.
For regression it is known that the standard 1-triangle inequality does not hold. However, a

2-triangle inequality does hold and is stated in the following lemma.

Lemma 10 Given any three functions g1,g2,g3 : X → R, a fixed and unknown distribution P on the
inputs X , and the expected loss e(g1,g2) = Ex∼P

[

(g1(x)−g2(x))2
]

,

e(g1,g2) ≤ 2(e(g1,g3)+ e(g3,g1)) .

Proof: By Jensen’s inequality and the convexity of x 7→ x2, for any g1, g2, and g3,

e(g1,g2) = Ex∼P
[

(g1(x)−g2(x))
2]

= Ex∼P

[

4

(

1
2
(g1(x)−g3(x))+

1
2
(g3(x)−g2(x))

)2
]

≤ Ex∼P
[

2(g1(x)−g3(x))
2 +2(g3(x)−g2(x))

2]= 2(e(g1,g3)+ e(g3,g1)) .

We can derive a uniform convergence bound for squared loss using Rademacher complexity as
long as the region Y is bounded.

1765

CRAMMER, KEARNS AND WORTMAN

Lemma 11 Let H : X → [−B,B] be a class of functions, and let L(h,〈x,y〉) = (y− h(x))2 be the
squared loss. The following function β is a uniform convergence bound for H and L:

β(n,δ) = 8BRn(H)+4B2

√

2ln(2/δ)

n
.

Proof: We cannot apply Lemma 8 directly using the squared loss function, since it may output
values outside of the range [0,1]. Instead, we apply the Lemma 8 using the alternate loss function
L ′(h,〈x,y〉) = φ(y,h(x)) where

φ(y,a) =

1
4B2 (y+B)2 if a < −B,

1
4B2 (y−a)2 if −B ≤ a ≤ B,

1
4B2 (y+B)2 if a > B.

It is easy to see that φ always outputs values in the range [0,1]. Furthermore, for any y ∈ [−B,B], φ
is Lipschitz in the second parameter with parameter 1/B. For any [a,b] ∈ [−B,B],

|φ(y,a)−φ(y,b)| =
1

4B2

∣

∣(y−a)2 − (y−b)2
∣

∣=
1

4B2

∣

∣a2 −b2 +2y(b−a)
∣

∣

≤ 1
4B2

∣

∣a2 −b2
∣

∣+
1

2B2 |y(a−b)|

≤ 1
4B2 |a+b| |a−b|+ 1

2B2 |y(a−b)| ≤ 1
B
|a−b| .

Applying Lemma 8 gives a uniform convergence bound of (2/B)Rn(H)+
√

2ln(2/δ)/n for L ′.
Scaling by 4B2 yields the bound for L .

Combining this with Lemma 10 and applying Theorem 3 yields the following.

Theorem 12 Let F be the set of functions from X into [−B,B], and H ⊆ F . Let e be the expected
squared loss. Let K, f = f1, f2, . . . , fK ∈F , {εi}K

i=1, {ni}K
i=1, and ĥk be defined as in the multi-source

learning model. For any δ such that 0 < δ < 1, with probability at least 1−δ, for any k ∈ {1, . . . ,K}

e(f , ĥk) ≤ 4min
h∈H

{e(f ,h)}+6
k

∑
i=1

(

ni

n1:k

)

εi +32BRn1:k(H)+16B2

√

2ln(4K/δ)

n1:k
.

5.4 Remarks on the Use of Data-Dependent Complexity Measures

The following lemma, which relates the true Rademacher complexity of a function class to its
empirical Rademacher complexity, follows directly from Theorem 11 of Bartlett and Mendelson
(2002), the proof of which does not require samples to be identically distributed.

Lemma 13 Let H be a class of functions mapping to [−1,1]. For any integer n, for any 0 < δ < 1,
with probability 1−δ,

∣

∣Rn(H)− R̂n(H)
∣

∣≤
√

8ln(2/δ)

n
.

1766

LEARNING FROM MULTIPLE SOURCES

This lemma immediately allows us to replace Rn(H) with that data-dependent quantity R̂n in
any of the bounds above for only a small penalty.

While the use of data-dependent complexity measures can be expected to yield more accurate
bounds and thus better decisions about the number k∗ of sources to use, it is not without its costs
in comparison to the more standard data-independent approaches. In particular, in principle the
optimization of a data-dependent version of the bound given in Theorem 9 to choose k∗ may actually
involve running the learning algorithm on all possible prefixes of the sources, since we cannot
know the data-dependent complexity term for each prefix without doing so. In contrast, the data-
independent bounds can be computed and optimized for k∗ without examining the data at all, and
the learning performed only once on the first k∗ sources. This is especially useful in the case that
labels are not free but must be purchased at a price.

6. Estimating the Disparity Matrix

A potential drawback of the theory presented here is the need to estimate the disparity matrix D
when it is unknown. However, it is often the case that this matrix can be estimated with many fewer
labeled samples than are required for learning. In this section, we discuss how D can be estimated
in the classification setting.

As before, consider the scenario in which each target function is a fixed, unknown and arbitrary
function from some input set X to {−1,1}, and assume that there is a fixed and unknown distribution
P over X . Suppose we are given m data points labeled by a pair of functions f i and f j, and let ê(fi, f j)
be the fraction of points on which the labels disagree. By Hoeffding’s inequality, with probability
1−δ′,

|ê(fi, f j)− e(fi, f j)| ≤
√

ln(2/δ′)
2m

.

Thus in order to approximate e(fi, f j) with an error no more than ε, only ln(2/δ′)/(2ε2) commonly
labeled points are needed. Applying the union bound gives us the following lemma.

Lemma 14 Let F be a set of functions from X into {−1,1}, and suppose f1, . . . , fK ∈ F . Let e be
the expected 0/1 loss. Suppose that for each pair i, j ∈ {1, · · · ,K}, there exist mi, j ≥ m0 examples
distributed according to P commonly labeled by fi and f j, where

m0 =
2ln(K)+ ln(2/δ)

2ε2

for any δ such that 0≤ δ≤ 1, and let ê(fi, f j) be the fraction of commonly labeled examples on which
fi and f j disagree. Then with probability 1−δ, for all i, j ∈ {1, · · · ,K}, |ê(fi, f j)− e(fi, f j)| ≤ ε.

Using the lemma we set the upper bound on the mutual error e(fi, f j) between the pair of func-
tion fi and f j to be Di, j = ê(fi, f j)+ ε. With probability at least 1−δ these bound holds simultane-
ously for all i, j.

Note that in general, log(K) will be significantly smaller than the dimension d of H . Thus many
fewer labeled examples are required to estimate the disparity matrix than to actually learn the best
function in the class.

The assumption that there exist commonly labeled points for each pair of functions is natural
in many settings. Consider, for example, the problem of predicting whether or not users will enjoy

1767

CRAMMER, KEARNS AND WORTMAN

certain movies using ratings from other users. It is often the case that pairs of users will have seen
many of the same movies. These commonly rated movies can be used to determine how similar
each pair of users are, while ratings of additional movies can be reserved to learn the prediction
functions.

7. Estimating the Parameters of a Distribution

We now proceed with the study of the related problem of estimating the unknown parameters of
a distribution from multiple sources of data. As in the previous sections, we provide a bound on
the diversity of an estimator based on the first k sources from the target. Up until this point, we
have measured the diversity between two functions by using the expected value of a loss function.
The loss is a function of two specific observations. Thus, although two functions may not agree on
many points, the diversity between them could be zero (if the measure of their disagreement points
is zero). In this section we use a more direct way to measure the diversity between two functions by
computing the distance between the parameters used to specify these distributions.

Before stating the problem formally we provide with some illustrative examples for intuition.

Example 1 We wish to estimate the bias θ of a coin given K sources of training observations
N1, ...,NK . Each source Nk contains nk outcomes of flips of a coin with bias θk. The only infor-
mation we are given is that θk ∈ [θ− εk,θ+ εk].

In the next example we consider the simple generalization to the multinomial distribution, which
involves more than a single parameter.

Example 2 We wish to estimate the probability Θ(p) of a die to fall on its pth side (out of D possible
outcomes) given K sources of training observations N1, ...,NK . Each source Nk contains nk outcomes

using a die with parameters Θ(p)
k . The only information provided is a bound on the `∞ distance

between the parameter sets, maxp |Θ(p)
k −Θ(p)| = ‖Θk −Θ‖∞ ≤ εk.

Formally, let Pr [X |Θ] be a parametric family of distributions such that X ∈ R
d and Θ ∈ R

D. We
assume that there exists a vector function Ψ such that

E
[

Ψ(p)(X)
]

= Θ(p) for p = 1, . . . ,D .

This assumption is met, for example, by any member of the exponential family. In the two examples
we have discussed, the function Ψ is simply an identity or indicator. This function is useful because
it allows us to estimate the parameters of the distribution from data. Let X1, · · · ,Xn be a sequence
of n i.i.d. samples from such a distribution, where the function Ψ is known. Then the estimator
obtained by the method of moments is given by the empirical mean

Θ̂ =
1
n

n

∑
i=1

Ψ(Xi) .

In our setting, we wish to estimate the parameters Θ of a parametric distribution Pr [X |Θ] given K
sources of training observations N1, ...,NK . Each source Nk contains nk outcomes from a distribution
with parameters Θk, that is, Pr [X |Θk]. The only information we are given is a bound on the `∞
distance between the parameter sets, ‖Θ−Θk‖∞ ≤ εk.

1768

LEARNING FROM MULTIPLE SOURCES

We first bound the deviation of this estimation from the true parameters using Hoeffding’s in-
equality. Fix the value of the index p = 1, . . . ,D. We assume that there exist A and B > 0 such
that,

Ψ(p)(Xi) ∈ [A,A+B] for i = 1, . . . ,n .

Then,

Pr
[∣

∣

∣
E
[

Θ̂(p)
]

− Θ̂(p)
∣

∣

∣
≥ ε
]

≤ 2exp

(

−2
nε2

B2

)

.

Setting the right hand-side of the inequality equal to δ and solving for ε, we get

Pr

∣

∣

∣
E
[

Θ̂(p)
]

− Θ̂(p)
∣

∣

∣
≥

√

B2 ln(2
δ)

2n

≤ δ .

We can use the union bound to bound on this difference for all D parameters at once and get

Pr

∃p :
∣

∣

∣
E
[

Θ̂(p)
]

− Θ̂(p)
∣

∣

∣
≥

√

B2 ln(2D
δ)

2n

≤
D

∑
p=1

δ
D

= δ .

This proves the following lemma.

Lemma 15 Let X1, . . . ,Xn be a sequence of i.i.d. random variables. Let Θ̂ = 1
n ∑n

i=1 Ψ(Xi) and
Θ = E

[

Θ̂
]

, where both Θ̂ and Θ are D-dimensional vectors. Assume that Ψ(p)(Xi) ∈ [A,A + B] for
i = 1, . . . ,n , p = 1, . . . ,D, for some A and B > 0. Then, for any δ ∈ (0,1) the following bound holds.

Pr

‖Θ− Θ̂‖∞ ≥

√

B2 ln(2D
δ)

2n

≤ δ .

We now turn our attention to the problem of choosing the best sources. We define the estimator
using the first k sources to be,

Θ̂k =
1

n1:k

k

∑
i=1

∑
X∈Ni

Ψ(X) ,

where as before n1:k = ∑k
i=1 ni. We denote the expectation of this estimate by

Θ̄k = E
[

Θ̂k
]

=
1

n1:k

k

∑
i=1

niΘi .

We now bound the deviation of the estimate Θ̂k from the true set of parameters Θ using the expec-
tation Θ̄k,

‖Θ− Θ̂k‖∞ = ‖Θ− Θ̄k + Θ̄k − Θ̂k‖∞

≤ ‖Θ− Θ̄k‖∞ +‖Θ̄k − Θ̂k‖∞

≤
k

∑
i=1

ni‖Θ−Θi‖∞

n1:k
+‖Θ̄k − Θ̂k‖∞

≤
k

∑
i=1

ni

n1:k
εk +‖Θ̄k − Θ̂k‖∞ .

1769

CRAMMER, KEARNS AND WORTMAN

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

Figure 2: Simulation of the multiple source error bounds.

Let B = maxk=1...K supX‖Ψ(X)‖∞. We can then use Lemma 15 to bound the second term above,
yielding the following theorem.

Theorem 16 Let Θ̂k be the estimate of Θ obtained by using only the data from the first k sources,
where both Θ̂ and Θ are D-dimensional vectors. Assume that −B ≤ Ψ(p)(Xi) ≤ B. Then for any
δ > 0, with probability ≥ 1−δ we have

‖Θ− Θ̂k‖∞ ≤
k

∑
i=1

ni

n1:k
εi +

√

4B2 ln(2DK
δ)

2n1:k

simultaneously for all k = 1, . . . ,K.

As we did with Theorem 3, we can convert Theorem 16 into an algorithm for selecting data
sources. Given the K sources of data we simply compute the bounds provided by these theorems for
each prefix of the sources of length k and select the subset of sources that yields the smallest bound.
A bound for the special case of Example 1 was developed and presented in previous work (Crammer
et al., 2006). That bound has the same form as the bound given here in Theorem 16 but with better
constants.

8. Synthetic Simulations

In this section, we illustrate the bounds of our main theorem through a simple synthetic simulation.
Our hypothesis class H consists of all linear separators through the origin in 15 dimensions. The

1770

LEARNING FROM MULTIPLE SOURCES

goal is to learn thirty classifiers from this class using only limited amounts of data. These data
points are drawn uniformly at random from inside the 15-dimensional unit sphere. In this restricted
setting, it is easy to calculate the disparity between two functions. Representing each function f
by a unit weight vector w such that f (x) = sign(w · x), the distance between functions w and w′ is
simply θ/π where θ = arccos(w ·w′) is the angle between w and w′.

In each simulation we ran, the linear classifiers were generated as follows. First, three base
classifiers were generated by choosing weight vectors uniformly at random from the surface of the
15-dimensional sphere. Each of the thirty classifiers was then generated by randomly choosing
one of the base classifiers, perturbing each coordinate of its weight vector, and renormalizing the
perturbed weights.

The number of training samples available for each function was generated from a Poisson dis-
tribution with a mean of 8. Each data instance was then sampled from inside the 15-dimensional
unit sphere via rejection sampling and labeled by the corresponding classifier, and 500 test samples
for each function were generated in the same manner.

To predict the optimal set of training data sources to use for each model, we calculated an
approximation of the multiple-source VC bound for classification. It is well known that the constants
in the VC-based uniform convergence bounds are not tight. Thus for the purpose of illustrating how
these bounds might be used in practice, we have chosen to show approximations of our bounds with
a variety of constants. In particular, we have chosen to approximate the bound with

2
k

∑
i=1

(

nk

n1:K

)

εk +C

√

(d ln(2en1:K/d)+ ln(8K/δ))

n1:K

with δ = 0.001 for different values of C. These approximations yield curves that are closer in shape
and magnitude to the actual error than a curve generated using the precise, overly conservative
constants of Theorem 6.

The set of plots shown in Figure 2 illustrates the results of a single multiple source simulation.
(Results from repeated versions of this experiment and experiments with different source sizes were
similar.) Each individual plot represents a particular target function. On the x axis is the number of
data sources used in training. On the y axis is error. The solid blue curves show test error of a model
trained using logistic regression. Dashed red curves show our multiple source error bound with C
set to 1/4 in the lowest curve, 1/2 in the middle curve, and 1/

√
2 in the highest curve. The × on

each curve marks the minimum value.
These plots clearly show the trade-off that exists. When too few sources are used, there is not

enough data available to learn a 15-dimensional function. When too many sources are used, the
labels on the training data often will not correspond to the labels that would have been assigned by
the target function. The optimal amount of data lies somewhere in between.

Although the VC bounds remain loose even after constants have been dropped, the bounds tend
to maintain the appropriate shape and thus predict the optimal set of sources quite well. In general,
when C is set to small values, the predicted error values for small amounts of data (low k) tend to be
quite accurate, while predicted values for larger amounts of data overestimate the true error. As C is
set to larger values, the predictions become much larger in magnitude than the true error curves, but
the shape of the prediction curves become more similar to the true error. In both cases, although the
bounds are loose, they can still prove useful in determining the optimal set of sources to consider.

1771

CRAMMER, KEARNS AND WORTMAN

Acknowledgments

We thank the anonymous reviewers for many valuable suggestions, especially on the simplified
presentation of the application to regression.

Appendix A. Proof of Lemma 8

The proof relies on McDiarmid’s inequality (McDiarmid, 1989), which is stated here for complete-
ness.

Lemma 17 (McDiarmid’s inequality) Let x1, . . . ,xn be independent random variables taking on
values in a set A and assume that f : An → R satisfies

sup
x1,...,xn,x′i∈A

| f (x1, . . . ,xn)− f (x1, . . . ,xi−1,xi′ ,xi+1, . . . ,xn)| ≤ ci

for every 1 ≤ i ≤ n. Then for every t > 0,

Pr [f (x1, . . . ,xn)−E [f (x1, . . . ,xn)] ≥ t] ≤ exp−2t2/∑n
i=1 c2

i .

Here we show one direction of the bound, namely that with probability 1−δ/2, for all h ∈ H ,

e(h) ≤ ê(h)+2LRn(H)+

√

2ln(2/δ)

n
.

The proof of the other direction is nearly identical. For i ∈ {1, . . . ,n}, let 〈xi,yi〉 be the ith train-
ing instance, distributed according to Pi, and let 〈x′i,y′i〉 be independent random variables drawn
according to Pi. Note that for all h ∈ H ,

e(h) = e(h)+ ê(h)− ê(h) ≤ ê(h)+ sup
h′∈H

(

e(h′)− ê(h′)
)

= ê(h)+ sup
h′∈H

(

E{〈x′i,y′i〉}n
i=1

[

1
n

n

∑
i=1

φ(y′i,h
′(x′i))

]

− 1
n

n

∑
i=1

φ(yi,h
′(xi))

)

= ê(h)+ sup
h′∈H

(

E{〈x′i,y′i〉}n
i=1

[

1
n

n

∑
i=1

φ′(y′i,h
′(x′i))+φ(y′i,0)

]

−1
n

n

∑
i=1

φ′(yi,h
′(xi))+φ(yi,0)

)

.

When only one instance 〈xi,yi〉 changes, the sup term can change by at most 2/n. Thus we can
apply McDiarmid’s inequality to see that with probability at least 1−δ/2,

e(h) ≤ ê(h)+E

[

sup
h′∈H

(

E

[

1
n

n

∑
i=1

φ′(y′i,h
′(x′i))

]

− 1
n

n

∑
i=1

φ′(yi,h
′(xi))

)]

+

√

2ln(2/δ)

n
,

where the outer expectation is with respect to set of training instances {〈xi,yi〉}n
i=1 and the inner

expectation is with respect to the set of random variables {〈x′i,y′i〉}n
i=1. Now it suffices to show that

1772

LEARNING FROM MULTIPLE SOURCES

this middle term is bounded by 2LRn(H). Using the fact that the supremum of an expectation is
less than or equal to the expectation of a supremum, we find that

E{〈xi,yi〉}n
i=1

[

sup
h′∈H

(

E{〈x′i,y′i〉}n
i=1

[

1
n

n

∑
i=1

φ′(y′i,h
′(x′i))

]

− 1
n

n

∑
i=1

φ′(yi,h
′(xi))

)]

≤ E{〈xi,yi〉}n
i=1,{〈x′i,y′i〉}n

i=1

[

sup
h′∈H

1
n

n

∑
i=1

(

φ′(y′i,h
′(x′i))−φ′(yi,h

′(xi))
)

]

= E{〈xi,yi〉}n
i=1,{〈x′i,y′i〉}n

i=1,{σi}n
i=1

[

sup
h′∈H

1
n

n

∑
i=1

σi
(

φ′(y′i,h
′(x′i))−φ′(yi,h

′(xi))
)

]

≤ E{〈xi,yi〉}n
i=1,{σi}n

i=1

[

sup
h′∈H

2
n

n

∑
i=1

σiφ′(yi,h
′(xi))

]

= Rn(φ′ ◦H) .

Lemma 7 implies that Rn(φ′ ◦H) ≤ 2LRn(H) since φ is Lipschitz with parameter L. The result
follows.

References

M. Anthony and P. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge Uni-
versity Press, 1999.

P. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3:463–482, 2002.

P. Bartlett, S. Boucheron, and G. Lugosi. Model selection and error estimation. Machine Learning,
48:85–113, 2002.

J. Baxter. Learning internal representations. In Proceedings of the Eighth Annual Conference on
Computational Learning Theory, 1995.

S. Ben-David. Exploiting task relatedness for multiple task learning. In Proceedings of the Sixteenth
Annual Conference on Computational Learning Theory, 2003.

J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Wortman. Learning bounds for domain
adaptation. In Advances in Neural Information Processing Systems 20, 2007.

K. Crammer, M. Kearns, and J. Wortman. Learning from data of variable quality. In Advances in
Neural Information Processing Systems 18, 2006.

K. Crammer, M. Kearns, and J. Wortman. Learning from multiple sources. In Advances in Neural
Information Processing Systems 19, 2007.

D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning
applications. Information and Computation, 100(1):78–150, 1992.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

1773

CRAMMER, KEARNS AND WORTMAN

V. Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transactions on
Information Theory, 47(5):1902–1914, 2001.

V. Koltchinskii and D. Panchenko. Rademacher processes and bounding the risk of function learn-
ing. High Dimensional Probability, II:443–459, 2000.

A. Maurer. Algorithmic stability and meta-learning. Journal of Machine Learning Research, 6:
967–994, 2005.

C. McDiarmid. On the method of bounded differences. Surveys in Combinatorics, pages 148–188,
1989.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

P. Wu and T. Dietterich. Improving SVM accuracy by training on auxiliary data sources. In Pro-
ceedings of the Twenty-First International Conference on Machine Learning, 2004.

1774

Journal of Machine Learning Research 9 (2008) 1775-1822 Submitted 9/07; Published 8/08

Exponentiated Gradient Algorithms for Conditional Random Fields
and Max-Margin Markov Networks

Michael Collins∗ MCOLLINS@CSAIL.MIT.EDU

Amir Globerson∗ GAMIR@CSAIL.MIT.EDU

Terry Koo∗ MAESTRO@CSAIL.MIT.EDU

Xavier Carreras CARRERAS@CSAIL.MIT.EDU

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Peter L. Bartlett BARTLETT@CS.BERKELEY.EDU

University of California, Berkeley
Division of Computer Science and Department of Statistics
Berkeley, CA 94720, USA

Editor: John Lafferty

Abstract

Log-linear and maximum-margin models are two commonly-used methods in supervised machine
learning, and are frequently used in structured prediction problems. Efficient learning of parameters
in these models is therefore an important problem, and becomes a key factor when learning from
very large data sets. This paper describes exponentiated gradient (EG) algorithms for training
such models, where EG updates are applied to the convex dual of either the log-linear or max-
margin objective function; the dual in both the log-linear and max-margin cases corresponds to
minimizing a convex function with simplex constraints. We study both batch and online variants of
the algorithm, and provide rates of convergence for both cases. In the max-margin case, O(1

ε) EG
updates are required to reach a given accuracy ε in the dual; in contrast, for log-linear models only
O(log(1

ε)) updates are required. For both the max-margin and log-linear cases, our bounds suggest
that the online EG algorithm requires a factor of n less computation to reach a desired accuracy than
the batch EG algorithm, where n is the number of training examples. Our experiments confirm that
the online algorithms are much faster than the batch algorithms in practice. We describe how the EG
updates factor in a convenient way for structured prediction problems, allowing the algorithms to be
efficiently applied to problems such as sequence learning or natural language parsing. We perform
extensive evaluation of the algorithms, comparing them to L-BFGS and stochastic gradient descent
for log-linear models, and to SVM-Struct for max-margin models. The algorithms are applied to a
multi-class problem as well as to a more complex large-scale parsing task. In all these settings, the
EG algorithms presented here outperform the other methods.

Keywords: exponentiated gradient, log-linear models, maximum-margin models, structured pre-
diction, conditional random fields

∗. These authors contributed equally.

c©2008 Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras and Peter L. Bartlett.

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

1. Introduction

Structured prediction problems involve learning to map inputs x to labels y, where the labels have
rich internal structure, and where the set of possible labels for a given input is typically exponential
in size. Examples of structured prediction problems include sequence labeling and natural language
parsing. Several models that implement learning in this scenario have been proposed over the last
few years, including log-linear models such as conditional random fields (CRFs, Lafferty et al.,
2001), and maximum-margin models such as maximum-margin Markov networks (Taskar et al.,
2004a).

For both log-linear and max-margin models, learning is framed as minimization of a regularized
loss function which is convex. In spite of the convexity of the objective function, finding the optimal
parameters for these models can be computationally intensive, especially for very large data sets.
This problem is exacerbated in structured prediction problems, where the large size of the set of
possible labels adds an additional layer of complexity. The development of efficient optimization
algorithms for learning in structured prediction problems is therefore an important problem.

In this paper we describe learning algorithms that exploit the structure of the dual optimization
problems for log-linear and max-margin models. For both log-linear and max-margin models the
dual problem corresponds to the minimization of a convex function Q subject to simplex constraints
(Jaakkola and Haussler, 1999; Lebanon and Lafferty, 2002; Taskar et al., 2004a). More specifically,
the goal is to find

argmin
∀i, ui∈∆

Q(u1,u2, . . . ,un) , (1)

where n is the number of training examples, each ui is a vector of dual variables for the i’th training
example, and Q(u) is a convex function.1 The size of each vector ui is |Y |, where Y is the set of
possible labels for any training example. Furthermore, ui is constrained to belong to the simplex of
distributions over Y , defined as:

∆ =

{

p ∈ R
|Y | : py ≥ 0 , ∑

y∈Y
py = 1

}

. (2)

Thus each ui is constrained to form a distribution over the set of possible labels. The max-margin
and log-linear problems differ only in their definition of Q.

The algorithms in this paper make use of exponentiated gradient (EG) updates (Kivinen and
Warmuth, 1997) in solving the problem in Eq. 1, in particular for the cases of log-linear or max-
margin models. We focus on two classes of algorithms, which we call batch and online. In the
batch case, the entire set of ui variables is updated simultaneously at each iteration of the algorithm;
in the online case, a single ui variable is updated at each step. The “online” case essentially cor-
responds to coordinate-descent on the dual function Q, and is similar to the SMO algorithm (Platt,
1998) for training SVMs. The online algorithm has the advantage of updating the parameters after
every sample point, rather than after making a full pass over the training examples; intuitively, this
should lead to considerably faster rates of convergence when compared to the batch algorithm, and
indeed our experimental and theoretical results support this intuition. A different class of online
algorithms consists of stochastic gradient descent (SGD) and its variants (e.g., see LeCun et al.,
1998; Vishwanathan et al., 2006). In contrast to SGD, however, the EG algorithm is guaranteed to

1. In what follows we use u to denote the variables u1, . . . ,un.

1776

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

improve the dual objective at each step, and this objective may be calculated after each example
without performing a pass over the entire data set. This is particularly convenient when making a
choice of learning rate in the updates.

We describe theoretical results concerning the convergence of the EG algorithms, as well as
experiments. Our key results are as follows:

• For the max-margin case, we show that O(1
ε) time is required for both the online and batch

algorithms to converge to within ε of the optimal value of Q(u). This is qualitatively sim-
ilar to recent results in the literature for max-margin approaches (e.g., see Shalev-Shwartz
et al., 2007). For log-linear models, we show convergence rates of O(log(1

ε)), a significant
improvement over the max-margin case.

• For both the max-margin and log-linear cases, our bounds suggest that the online algorithm
requires a factor of n less computation to reach a desired accuracy, where n is the number of
training examples. Our experiments confirm that the online algorithms are much faster than
the batch algorithms in practice.

• We describe how the EG algorithms can be efficiently applied to an important class of struc-
tured prediction problems where the set of labels Y is exponential in size. In this case the
number of dual variables is also exponential in size, making algorithms which deal directly
with the ui variables intractable. Following Bartlett et al. (2005), we focus on a formulation
where each label y is represented as a set of “parts”, for example corresponding to labeled
cliques in a max-margin network, or context-free rules in a parse tree. Under an assumption
that part-based marginals can be calculated efficiently—for example using junction tree algo-
rithms for CRFs, or the inside-outside algorithm for context-free parsing—the EG algorithms
can be implemented efficiently for both max-margin and log-linear models.

• In our experiments we compare the online EG algorithm to various state-of-the-art algo-
rithms. For log-linear models, we compare to the L-BFGS algorithm (Byrd et al., 1995)
and to stochastic gradient descent. For max-margin models we compare to the SVM-Struct
algorithm of Tsochantaridis et al. (2004). The methods are applied to a standard multi-class
learning problem, as well as to a more complex natural language parsing problem. In both
settings we show that the EG algorithm converges to the optimum much faster than the other
algorithms.

• In addition to proving convergence results for the definition of Q(u) used in max-margin and
log-linear models, we give theorems which may be useful when optimizing other definitions
of Q(u) using EG updates. In particular, we give conditions for convergence which depend
on bounds relating the Bregman divergence derived from Q(u) to the Kullback-Leibler diver-
gence. Depending on the form of these bounds for a particular Q(u), either O(1

ε) or O(log(1
ε))

rates of convergence can be derived.

The rest of this paper is organized as follows. In Section 2, we introduce the log-linear and
max-margin learning problems, and describe their dual optimization problems. Section 3 describes
the batch and online EG algorithms; in Section 4, we describe how the algorithms can be efficiently
applied to structured prediction problems. Section 5 then gives convergence proofs for the batch and

1777

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

online cases. Section 6 discusses related work. Sections 7 and 8 give experiments, and Section 9
discusses our results.

This work builds on previous work described by Bartlett et al. (2005) and Globerson et al.
(2007). Bartlett et al. (2005) described the application of the EG algorithm to max-margin param-
eter estimation, and showed how the method can be applied efficiently to part-based formulations.
Globerson et al. (2007) extended the approach to log-linear parameter estimation, and gave new
convergence proofs for both max-margin and log-linear estimation. The work in the current paper
gives several new results. We prove rates of convergence for a randomized version of the EG online
algorithm; previous work on EG algorithms had not given convergence rates for the online case.
We also report new experiments, including experiments with the randomized strategy. Finally, the
O(log(1

ε)) convergence rates for the log-linear case are new. The results in Globerson et al. (2007)
gave O(1

ε) rates for the batch algorithm for log-linear models, and did not give any theoretical rates
of convergence for the online case.

2. Primal and Dual Problems for Regularized Loss Minimization

In this section we present the log-linear and max-margin optimization problems for supervised
learning. For each problem, we describe the equivalent dual optimization problem, which will form
the core of our optimization approach.

2.1 The Primal Problems

Consider a supervised learning setting with objects x ∈ X and labels y ∈ Y .2 In the structured
learning setting, the labels may be sequences, trees, or other high-dimensional data with internal
structure. Assume we are given a function f(x,y) : X ×Y → R

d that maps (x,y) pairs to feature
vectors. Our goal is to construct a linear prediction rule

h(x,w) = argmax
y∈Y

w · f(x,y) ,

with parameters w ∈ R
d , such that h(x,w) is a good approximation of the true label of x. The

parameters w are learned by minimizing a regularized loss

L(w;{(xi,yi)}
n
i=1,C) =

n

∑
i=1

`(w,xi,yi)+
C
2
‖w‖2 ,

defined over a labeled training set {(xi,yi)}
n
i=1. Here C > 0 is a constant determining the amount of

regularization. The function ` measures the loss incurred in using w to predict the label of xi, given
that the true label is yi.

In this paper we will consider two definitions for `(w,xi,yi). The first definition, originally
introduced by Taskar et al. (2004a), is a variant of the hinge loss, and is defined as follows:

`MM(w,xi,yi) = max
y∈Y

[

e(xi,yi,y)−w · (f(xi,yi)− f(xi,y))
]

. (3)

2. In general the set of labels for a given example x may be a set Y (x) that depends on x; in fact, in our experiments
on dependency parsing Y does depend on x. For simplicity, in this paper we use the fixed notation Y for all x; it is
straightforward to extend our notation to the more general case.

1778

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

Here e(xi,yi,y) is some non-negative measure of the error incurred in predicting y instead of yi

as the label of xi. We assume that e(xi,yi,yi) = 0 for all i, so that no loss is incurred for correct
prediction, and therefore `MM(w,xi,yi) is always non-negative. This loss function corresponds to
a maximum-margin approach, which explicitly penalizes training examples for which, for some
y 6= yi,

w · (f(xi,yi)− f(xi,y)) < e(xi,yi,y) .

The second loss function that we will consider is based on log-linear models, and is commonly
used in conditional random fields (CRFs, Lafferty et al., 2001). First define the conditional distri-
bution

p(y |x;w) =
1
Zx

ew·f(x,y) ,

where Zx = ∑y ew·f(x,y) is the partition function. The loss function is then the negative log-likelihood
under the parameters w:

`LL(w,xi,yi) = − log p(yi |xi;w) .

The function L is convex in w for both definitions `MM and `LL. Furthermore, in both cases
minimization of L can be re-cast as optimization of a dual convex problem. The dual problems in
the two cases have a similar structure, as we describe in the next two sections.

2.2 The Log-Linear Dual

The problem of minimizing L with the loss function `LL can be written as

P-LL : w∗ = argmin
w

∑
i

− log p(yi |xi;w)+
C
2
‖w‖2 .

This is a convex optimization problem, and has an equivalent convex dual which was derived by
Lebanon and Lafferty (2002). Denote the dual variables by ui,y where i = 1, . . . ,n and y ∈ Y . We
also use u to denote the set of all variables, and ui the set of all variables corresponding to a given i.
Thus u = [u1, . . . ,un]. We assume u is a column vector. Define the function QLL(u) as

QLL(u) = ∑
i

∑
y

ui,y logui,y +
1

2C
‖w(u)‖2 ,

where
w(u) = ∑

i
∑
y

ui,ygi,y ,

and where gi,y = f(xi,yi)− f(xi,y). We shall find the following matrix notation convenient:

QLL(u) = ∑
i

∑
y

ui,y logui,y +
1
2

uT Au , (4)

where A is a matrix of size n|Y |×n|Y | indexed by pairs (i,y), and A(i,y),(j,z) = 1
C gi,y ·g j,z.

In what follows we denote the set of distributions over Y , that is, the |Y |-dimensional probabil-
ity simplex, by ∆, as in Eq. 2. The Cartesian product of n distributions over Y will be denoted by
∆n. The dual optimization problem is then

D-LL : u∗ = argmin QLL(u)
s.t. u ∈ ∆n .

1779

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

The minimum of D-LL is equal to −1 times the minimum of P-LL. The duality between P-LL and
D-LL implies that the primal and dual solutions satisfy Cw∗ = w(u∗).

2.3 The Max-Margin Dual

When the loss is defined using `MM(w,xi,yi), the primal optimization problem is as follows:

P-MM : w∗ = argmin
w

∑
i

max
y

[

e(xi,yi,y)−w · (f(xi,yi)− f(xi,y))
]

+
C
2
‖w‖2 .

The dual of this minimization problem was derived in Taskar et al. (2004a) (see also Bartlett et al.,
2005). We first define the dual objective

QMM(u) = −bT u+
1
2

uT Au . (5)

Here, the matrix A is as defined above and b ∈ R
n|Y | is a vector defined as bi,y = e(xi,yi,y). The

convex dual for the max-margin case is then given by

D-MM : u∗ = argmin QMM(u)
s.t. u ∈ ∆n .

The minimum of D-MM is equal to −1 times the minimum of P-MM. (Note that for D-MM the
minimizer u∗ may not be unique; in this case we take u∗ to be any member of the set of minimizers
of QMM(u)). The optimal primal parameters are again related to the optimal dual parameters, through
Cw∗ = w(u∗). Here again the constraints are that ui is a distribution over Y for all i.

It can be seen that the D-LL and D-MM problems have a similar structure, in that they both
involve minimization of a convex function Q(u) over the set ∆n. This will allow us to describe
algorithms for both problems using a common framework.

3. Exponentiated Gradient Algorithms

In this section we describe batch and online algorithms for minimizing a convex function Q(u)
subject to the constraints u ∈ ∆n. The algorithms can be applied to both the D-LL and D-MM
optimization problems that were introduced in the previous section. The algorithms we describe
are based on exponentiated gradient (EG) updates, originally introduced by Kivinen and Warmuth
(1997) in the context of online learning algorithms.3

The EG updates rely on the following operation. Given a sequence of distributions u ∈ ∆n, a
new sequence of distributions u′ can be obtained as

u′i,y =
1
Zi

ui,ye−η∇i,y ,

where ∇i,y = ∂Q(u)
∂ui,y

, Zi = ∑ŷ ui,ŷe−η∇i,ŷ is a partition function ensuring normalization of the distribu-

tion u′
i, and the parameter η > 0 is a learning rate. We will also use the notation u′

i,y ∝ ui,ye−η∇i,y

where the partition function should be clear from the context.

3. Kivinen and Warmuth (1997) study the online setting, as opposed to a fixed data set which we study here. They are
thus not interested in minimizing a fixed objective, but rather study regret type bounds. This leads to algorithms and
theoretical analyses that are different from the ones considered in the current work.

1780

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

Clearly u′ ∈ ∆n by construction. For the dual function QLL(u) the gradient is

∇i,y = 1+ logui,y +
1
C

w(u) ·gi,y ,

and for QMM(u) the gradient is

∇i,y = −bi,y +
1
C

w(u) ·gi,y .

In this paper we will consider both parallel (batch), and sequential (online) applications of the
EG updates, defined as follows:

• Batch: At every iteration the dual variables ui are simultaneously updated for all i = 1, . . . ,n.

• Online: At each iteration a single example k is chosen uniformly at random from {1, . . . ,n}
and uk is updated to give u′

k. The dual variables ui for i 6= k are left unchanged.

Pseudo-code for the two schemes is given in Figures 1 and 2. From here on we will refer to the
batch and online EG algorithms applied to the log-linear dual as LLEG-Batch, and LLEG-Online
respectively. Similarly, when applied to the max-margin dual, they will be referred to as MMEG-
Batch and MMEG-Online.

Note that another plausible online algorithm would be a “deterministic” algorithm that repeat-
edly cycles over the training examples in a fixed order. The motivation for the alternative, random-
ized, algorithm is two-fold. First, we are able to prove bounds on the rate of convergence of the
randomized algorithm; we have not been able to prove similar bounds for the deterministic variant.
Second, our experiments show that the randomized variant converges significantly faster than the
deterministic algorithm.

The EG online algorithm is essentially performing coordinate descent on the dual objective,
and is similar to SVM algorithms such as SMO (Platt, 1998). For binary classification, the exact
minimum of the dual objective with respect to a given coordinate can be found in closed form,4

and more complicated algorithms such as the exponentiated-gradient method may be unnecessary.
However for multi-class or structured problems, the exact minimum with respect to a coordinate ui

(i.e., a set of |Y | dual variables) cannot be found in closed form: this is a key motivation for the use
of EG algorithms in this paper.

In Section 5 we give convergence proofs for the batch and online algorithms. The techniques
used in the convergence proofs are quite general, and could potentially be useful in deriving EG
algorithms for convex functions Q other than QLL and QMM. Before giving convergence results for
the algorithms, we describe in the next section how the EG algorithms can be applied to structured
problems.

4. Structured Prediction with the EG Algorithms

We now describe how the EG updates can be applied to structured prediction problems, for example
parameter estimation in CRFs or natural language parsing. In structured problems the label set Y
is typically very large, but labels can have useful internal structure. As one example, in CRFs each

4. This is true for the max-margin case. For log-linear models, minimization with respect to a single coordinate is a
little more involved.

1781

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

Inputs: A convex function Q : ∆n → R, a learning rate η > 0.

Initialization: Set u1 to a point in the interior of ∆n.

Algorithm:

• For t = 1, . . . ,T , repeat:

– For all i,y, calculate ∇i,y = ∂Q(ut)
∂ui,y

– For all i,y, update ut+1
i,y ∝ ut

i,ye−η∇i,y

Output: Final parameters uT+1.

Figure 1: A general batch EG Algorithm for minimizing Q(u) subject to u ∈ ∆n. We use ut to
denote the set of parameters after t iterations.

Inputs: A convex function Q : ∆n → R, a learning rate η > 0.

Initialization: Set u1 to a point in the interior of ∆n.

Algorithm:

• For t = 1, . . . ,T , repeat:

– Choose kt uniformly at random from the set {1,2, . . . ,n}

– For all y, calculate: ∇kt ,y = ∂Q(ut)
∂ukt ,y

– For all y, update ut+1
kt ,y

∝ ut
kt ,y

e−η∇kt ,y

– For all i 6= kt , set ut+1
i = ut

i

Output: Final parameters uT+1.

Figure 2: A general randomized online EG Algorithm for minimizing Q(u) subject to u ∈ ∆n.

label y is an m-dimensional vector specifying the labeling of all m vertices in a graph. In parsing
each label y is an entire parse tree. In both of these cases, the number of labels typically grows
exponentially quickly with respect to the size of the inputs x.

We follow the framework for structured problems described by Bartlett et al. (2005). Each label
y is defined to be a set of parts. We use R to refer to the set of all possible parts.5 We make the
assumption that the feature vector for an entire label y decomposes into a sum over feature vectors
for individual parts as follows:

f(x,y) = ∑
r∈y

f(x,r) .

5. As with the label set Y , the set of parts R may in general be a set R(x) that depends on x. For simplicity, we assume
that R is fixed.

1782

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

Note that we have overloaded f to apply to either labels y or parts r.
As one example, consider a CRF which has an underlying graph with m nodes, and a maximum

clique size of 2. Assume that each node can be labeled with one of two labels, 0 or 1. In this case
the labeling of an entire graph is a vector y ∈ {0,1}m. Each possible input x is usually a vector in
X m for some set X , although this does not have to be the case. Each part corresponds to a tuple
(u,v,yu,yv) where (u,v) is an edge in the graph, and yu,yv are the labels for the two vertices u and
v. The feature vector f(x,r) can then track any properties of the input x together with the labeled
clique r = (u,v,yu,yv). In CRFs with clique size greater than 2, each part corresponds to a labeled
clique in the graph. In natural language parsing, each part can correspond to a context-free rule at a
particular position in the sentence x (see Bartlett et al., 2005; Taskar et al., 2004b, for more details).

The label set Y can be extremely large in structured prediction problems. For example, in a
CRF with an underlying graph with m nodes and k possible labels at each node, there are km possible
labelings of the entire graph. The algorithms we have presented so far require direct manipulation
of dual variables ui,y corresponding to each possible labeling of each training example; they will
therefore be intractable in cases where there are an exponential number of possible labels. However,
in this section we describe an approach that does allow an efficient implementation of the algorithms
in several cases. The approach is based on the method originally described in Bartlett et al. (2005).

The key idea is as follows. Instead of manipulating the dual variables ui for each i directly, we
will make use of alternative data structures si for all i. Each si is a vector of real values si,r for all
r ∈ R. In general we will assume that there are a tractable (polynomial) number of possible parts,
and therefore that the number of si,r variables is also polynomial. For example, for a linear chain
CRF with m nodes and k labels at every node, each part takes the form r = (u,v,yu,yv), and there
are (m−1)k2 possible parts.

In the max-margin case, we follow Taskar et al. (2004a) and make the additional assumption
that the error function decomposes into “local” error functions over parts:

e(xi,yi,y) = ∑
r∈y

e(xi,yi,r) .

For example, when Y is a sequence of variables, the cost could be the Hamming distance between
the correct sequence yi and the predicted sequence y; it is straightforward to decompose the Ham-
ming distance as a sum over parts as shown above. For brevity, in what follows we use ei,r instead
of e(xi,yi,r).

The si variables are used to implicitly define regular dual values ui = p(si) where p : R
|R| → ∆

is defined as

py(s) =
exp
{

∑r∈y sr
}

∑y′ exp
{

∑r∈y′ sr
} .

To see how the si variables can be updated, consider again the EG updates on the dual u variables.
The EG updates in all algorithms in this paper take the form

u′i,y =
ui,y exp{−η∇i,y}

∑ŷ ui,ŷ exp{−η∇i,ŷ}
,

where for QLL

∇i,y = 1+ logui,y +
1
C

w(u) · (f(xi,yi)− f(xi,y)) ,

1783

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

and for QMM,

∇i,y = −bi,y +
1
C

w(u) · (f(xi,yi)− f(xi,y)) ,

where bi,y = e(xi,yi,y) as in Section 2.3.
Notice that, for both objective functions, the gradients can be expressed as a sum over parts. For

the QLL objective function, this follows from the fact that ui = p(si) and from the assumption that
the feature vector decomposes into parts. For the QMM objective, it follows from the latter, and the
assumption that the loss decomposes into parts. The following lemma describes how EG updates
on the u variables can be restated in terms of updates to the s variables, provided that the gradient
decomposes into parts in this way.

Lemma 1 For a given u ∈ ∆n, and for a given i ∈ [1 . . .n], take u′
i to be the updated value for ui

derived using an EG step, that is,

u′i,y =
ui,y exp{−η∇i,y}

∑ŷ ui,ŷ exp{−η∇i,ŷ}
.

Suppose that, for some Gi and gi,r, we can write ∇i,y = Gi +∑r∈y gi,r for all y. Then if ui = p(si) for
some si ∈ R |R|, and for all r we define

s′i,r = si,r −ηgi,r ,

it follows that u′
i = p(s′i).

Proof: We show that, for ui = p(si), updating the si,r as described leads to p(s′i) = u′
i. For suitable

partition functions Zi, Z′
i , and Z′′

i , we can write

py(s′i) =
exp
{

∑r∈y(si,r −ηgi,r)
}

Zi

=
ui,y exp

{

−η∑r∈y gi,r
}

Z′
i

=
ui,y exp{−η(∇i,y −Gi)}

Z′
i

=
ui,y exp{−η∇i,y}

Z′′
i

= u′i,y .

In the case of the QLL objective, a suitable update is

s′i,r = si,r −η
(

si,r −
1
C

w(u) · f(xi,r)

)

.

In the case of the QMM objective, a suitable update is

s′i,r = si,r −η
(

−ei,r −
1
C

w(u) · f(xi,r)

)

.

1784

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

Inputs: Examples {(xi,yi)}
n
i=1, learning rate η > 0.

Initialization: For each i = 1 . . .n, set s1
i to some (possibly different) point in R

|R|.

Algorithm:

• Calculate
w1 = ∑

i

f(xi,yi)−∑
i,y

py(s1
i)f(xi,y)

• For t = 1, . . . ,T , repeat:

– Choose kt uniformly at random from the set [1,2, . . . ,n]

– For all r ∈ R,

If optimizing QLL: st+1
kt ,r

= st
kt ,r −η

(

st
kt ,r −

1
C

wt · f(xkt ,r)

)

If optimizing QMM: st+1
kt ,r

= st
kt ,r −η

(

−ekt ,r −
1
C

wt · f(xkt ,r)

)

– For all i 6= kt , for all r, set st+1
i,r = st

i,r

– Calculate

wt+1 = ∑
i

f(xi,yi)−∑
i,y

py(st+1
i)f(xi,y)

= wt +∑
y

py(st
kt
)f(xkt ,y)−∑

y
py(st+1

kt
)f(xkt ,y)

Output: Final dual parameters sT+1 or primal parameters 1
C wT+1.

Figure 3: An implementation of the algorithm in Figure 2 using a part-based representation. The
algorithm uses variables si for i = 1 . . .n as a replacement for the dual variables ui in
Figure 2.

Because of this result, all of the EG algorithms that we have presented can be restated in terms of
the s variables: instead of maintaining a sequence ut = {ut

1,u
t
2, . . . ,u

t
n} of dual variables, a sequence

st = {st
1,s

t
2, . . . ,s

t
n} is maintained and updated using the method described in the above lemmas.6

To illustrate this, Figure 3 gives a version of the randomized algorithm in Figure 2 that makes use
of s variables. The batch algorithm can be implemented in a similar way.

6. Note that in the max-margin case, the optimal u values may have zero probabilities which correspond to infinite s
values. This does not pose a problem, since the algorithm will indeed converge to infinite s values at the limit, but
st will not be infinite for any finite t. For the log-linear case, the optimal u will never have zero values, as shown in
Globerson et al. (2007).

1785

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

The main computational challenge in the new algorithms comes in computing the parameter
vector w(p(st)). The value for w(p(st)) can be expressed as a function of the marginal probabilities
of the part variables, as follows:

w(p(st)) = ∑
i

∑
y

ui,y (f(xi,yi)− f(xi,y))

= ∑
i

f(xi,yi)−∑
i,y

py(st
i)f(xi,y)

= ∑
i

f(xi,yi)−∑
i,y

∑
r∈y

py(st
i)f(xi,r)

= ∑
i

f(xi,yi)−∑
i

∑
r∈R

µi,r(st
i)f(xi,r) .

Here the µi,r terms correspond to marginals, defined as

µi,r(st
i) = ∑

y:r∈y
py(st

i) .

The mapping from parameters st
i to marginals µi,r(st

i) can be computed efficiently in several impor-
tant cases of structured models. For example, in CRFs belief propagation can be used to efficiently
calculate the marginal values, assuming that the tree-width of the underlying graph is small. In
weighted context-free grammars the inside-outside algorithm can be used to calculate marginals,
assuming that the set of parts R corresponds to context-free rule productions. Once marginals are
computed, it is straightforward to compute w(p(st)) and thereby implement the part-based EG al-
gorithms.

5. Convergence Results

In this section, we provide convergence results for the EG batch and online algorithms presented in
Section 3. Section 5.1 provides the key results, and the following sections give the proofs and the
technical details.

5.1 Main Convergence Results

Our convergence results give bounds on how quickly the error |Q(u)−Q(u∗)| decreases with respect
to the number of iterations, T , of the algorithms. In all cases we have |Q(u) − Q(u∗)|→ 0 as T →∞.

In what follows we use D[p‖q] to denote the KL divergence between p,q ∈ ∆n (see Section 5.2).
We also use |A|∞ to denote the maximum magnitude element of A (i.e., |A|∞ = max(i,y),(j,z) |A(i,y),(j,z)|).
The first theorem provides results for the EG-batch algorithms, and the second for the randomized
online algorithms.

Theorem 1 For the batch algorithm in Figure 1, for QLL and QMM,

Q(u∗) ≤ Q(uT+1) ≤ Q(u∗)+
1

ηT
D[u∗‖u1] , (6)

assuming that the learning rate η satisfies 0 < η ≤ 1
1+n|A|∞

for QLL, and 0 < η ≤ 1
n|A|∞

for QMM.
Furthermore, for QLL,

Q(u∗) ≤ Q(uT+1) ≤ Q(u∗)+
e−ηT

η
D[u∗‖u1] ,

1786

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

Batch Algorithm Online Algorithm

QMM
n2

ε |A|∞D[u∗‖u1] n
ε
(

|A|∞D[u∗‖u1]+Q(u1)−Q(u∗)
)

QLL n(1+n|A|∞) log(c1
ε) n(1+ |A|∞) log(c2

ε)

Table 1: Each entry shows the amount of computation (measured in terms of the number of training
sample processed using the EG updates) required to obtain |Q(u)−Q(u∗)| ≤ ε for the
batch algorithm, or E [|Q(u)−Q(u∗)|]≤ ε for the online algorithm, for a given ε > 0. The
constants are c1 = (1+n|A|∞)D[u∗‖u1], and c2 =

[

(1+ |A|∞)D[u∗‖u1]+Q(u1)−Q(u∗))
]

.

assuming again that 0 < η ≤ 1
1+n|A|∞

.

The randomized online algorithm will produce different results at every run, since different
points will be processed on different runs. Our main result for this algorithm characterizes the mean
value of the objective Q(uT+1) when averaged over all possible random orderings of points. The
result implies that this mean will converge to the optimal value Q(u∗).

Theorem 2 For the randomized algorithm in Figure 2, for QLL and QMM,

Q(u∗) ≤ E
[

Q(uT+1)
]

≤ Q(u∗)+
n

ηT
D[u∗‖u1]+

n
T

[

Q(u1)−Q(u∗)
]

, (7)

assuming that the learning rate η satisfies 0 < η ≤ 1
1+|A|∞

for QLL, and 0 < η ≤ 1
|A|∞

for QMM.
Furthermore, for QLL, for the algorithm in Figure 2,

Q(u∗) ≤ E
[

Q(uT+1)
]

≤ Q(u∗)+ e−
ηT
n

[

1
η

D[u∗‖u1]+Q(u1)−Q(u∗)

]

,

assuming again that 0 < η ≤ 1
1+|A|∞

.

The above result characterizes the average behavior of the randomized algorithm, but does not
provide guarantees for any specific run of the algorithm. However, by applying the standard ap-
proach of repeated sampling (see, for example, Mitzenmacher and Upfal, 2005; Shalev-Shwartz
et al., 2007), one can obtain a solution that, with high probability, does not deviate by much from
the average behavior. In what follows, we briefly outline this derivation.

Note that the random variable Q(uT+1)−Q(u∗) is nonnegative, and so by Markov’s inequality,
it satisfies

Pr
{

Q(uT+1)−Q(u∗) ≥ 2
(

E
[

Q(uT+1)
]

−Q(u∗)
)

}

≤
1
2

.

Given some δ > 0, if we run the algorithm k = log2(
1
δ) times,7 each time with T iterations, and

choose the best û of these k results, we see that

Pr
{

Q(û)−Q(u∗) ≥ 2
(

E
[

Q(uT+1)
]

−Q(u∗)
)

}

≤ δ .

7. Assume for simplicity that log2(
1
δ) is integral.

1787

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

Thus, for any desired confidence 1− δ, we can obtain a solution that is within a factor of 2 of the
bound for T iterations in Theorem 2 by using T log2(

1
δ) iterations. In our experiments, we found

that repeated trials of the randomized algorithm did not yield significantly different results.
The first consequence of the two theorems above is that the batch and randomized online algo-

rithms converge to a u with the optimal value Q(u∗). This follows since Equations 6 and 7 imply
that as T → ∞ the value of Q(uT+1) approaches Q(u∗).

The second consequence is that for a given ε > 0 we can find the number of iterations needed
to reach a u such that |Q(u)−Q(u∗)| ≤ ε for the batch algorithm or E [|Q(u)−Q(u∗)|] ≤ ε for the
online algorithm. Table 1 shows the computation required by the different algorithms, where the
computation is measured by the number of training examples that need to be processed using the
EG updates.8 The entries in the table assume that the maximum possible learning rates are used
for each of the algorithms—that is, 1

1+n|A|∞
for LLEG-Batch, 1

1+|A|∞
for LLEG-Online, 1

n|A|∞
for

MMEG-batch, and 1
|A|∞

for MMEG-Online.
Crucially, note that these rates suggest that the online algorithms are significantly more efficient

than the batch algorithms; specifically, the bounds suggest that the online algorithms require a factor
of n less computation in both the QLL and QMM cases. Thus these results suggest that the randomized
online algorithm should converge much faster than the batch algorithm. Roughly speaking, this is
a direct consequence of the learning rate η being a factor of n larger in the online case (see also
Section 9). This prediction is confirmed in our empirical evaluations, which show that the online
algorithm is far more efficient than the batch algorithm.

A second important point is that the rates for QLL lead to an O(log(1
ε)) dependence on the desired

accuracy ε, which is a significant improvement over QMM, which has an O(1
ε) dependence. Note that

the O(1
ε) dependence for QMM is similar to several other max-margin algorithms in the literature (see

Section 6 for more discussion).
To gain further intuition into the order of magnitude of iterations required, note that the factor

D[u∗‖u1] which appears in the above expressions is at most n log |Y |, which can be achieved by
setting u1

i to be the uniform distribution over Y for all i. Also, the value of |A|∞ can easily be seen
to be 1

C maxi,y ‖gi,y‖
2.

In the remainder of this section we give proofs of the results in Theorems 1 and 2. In doing so,
we also give theorems that apply to the optimization of general convex functions Q : ∆n → R.

5.2 Divergence Measures

Before providing convergence proofs, we define several divergence measures between distributions.
Define the KL divergence between two distributions ui,vi ∈ ∆ to be

D[ui‖vi] = ∑
y

ui,y log
ui,y

vi,y
.

Given two sets of n distributions u,v ∈ ∆n define their KL divergence as

D[u‖v] = ∑
i

D[ui‖vi] .

8. Note that if we run the batch algorithm for T iterations (as in the figure), nT training examples are processed.
In contrast, running the online algorithm for T iterations (again, as shown in the figure) only requires T training
examples to be processed. It is important to take this into account when comparing the rates in Theorems 1 and 2;
this is the motivation for measuring computation in terms of the number of examples that are processed.

1788

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

Next, we consider a more general class of divergence measures, Bregman divergences (e.g., see
Bregman, 1967; Censor and Zenios, 1997; Kivinen and Warmuth, 1997). Given a convex function
Q(u), the Bregman divergence between u and v is defined as

BQ[u‖v] = Q(u)−Q(v)−∇Q(v) · (u−v) .

Convexity of Q implies BQ[u‖v] ≥ 0 for all u,v ∈ ∆n.
Note that the Bregman divergence with Q(u) = ∑i,y ui,y logui,y is the KL divergence. We shall

also be interested in the Mahalanobis distance

MA[u‖v] =
1
2
(u−v)T A(u−v) ,

which is the Bregman divergence for Q(u) = 1
2 uT Au.

In what follows, we also use the Lp norm defined for x ∈ R
m as ‖x‖p = p

√

∑i |xi|p.

5.3 Dual Improvement and Bregman Divergence

In this section we provide a useful lemma that determines when the EG updates in the batch al-
gorithm will result in monotone improvement of Q(u). The lemma requires a condition on the
relation between the Bregman and KL divergences which we define as follows (the second part of
the definition will be used in the next section):

Definition 5.1 : A convex function Q : ∆n → R is τ-upper-bounded for some τ > 0 if for any
p,q ∈ ∆n,

BQ[p‖q] ≤ τD[p‖q] .

In addition, we say Q(u) is (µ,τ)-bounded for constants 0 < µ < τ if for any p,q ∈ ∆n,

µD[p‖q] ≤ BQ[p‖q] ≤ τD[p‖q] .

The next lemma states that if Q(u) is τ-upper-bounded, then the change in the objective as a
result of an EG update can be related to the KL divergence between consecutive values of the dual
variables.

Lemma 2 If Q(u) is τ-upper-bounded, then if η is chosen such that 0 < η ≤ 1
τ , it holds that for all

t in the batch algorithm (Figure 1):

Q(ut)−Q(ut+1) ≥
1
η

D[ut‖ut+1] .

Proof: Given a ut , the EG update is

ut+1
i,y =

1
Zt

i
ut

i,ye−η∇t
i,y ,

where

∇t
i,y =

∂Q(ut)

∂ui,y
, Zt

i = ∑̂
y

ut
i,ŷe−η∇t

i,y .

1789

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

Simple algebra yields

∑
i

(

D[ut
i‖ut+1

i]+D[ut+1
i ‖ut

i]
)

= η∑
i,y

(ut
i,y −ut+1

i,y)∇t
i,y .

Equivalently, using the notation for KL divergence between multiple distributions:

D[ut‖ut+1]+D[ut+1‖ut] = η(ut −ut+1) ·∇Q(ut) .

The definition of the Bregman divergence BQ then implies

−ηBQ[ut+1‖ut]+D[ut‖ut+1]+D[ut+1‖ut] = η(Q(ut)−Q(ut+1)) . (8)

Since Q(u) is τ-upper-bounded and η ≤ 1
τ it follows that D[ut+1‖ut] ≥ ηBQ[ut+1‖ut], and together

with Eq. 8 we obtain the desired result η(Q(ut)−Q(ut+1)) ≥ D[ut‖ut+1].

Note that the condition in the lemma may be weakened to requiring that τD[ut‖ut+1] ≥
BQ[ut‖ut+1] for all t. For simplicity, we require the condition for all p,q ∈ ∆n. Note also that
D[p‖q] ≥ 0 for all p,q ∈ ∆n, so the lemma implies that for an appropriately chosen η, the EG up-
dates always decrease the objective Q(u). We next show that the log-linear dual QLL(u) is in fact
τ-upper-bounded.

Lemma 3 Define |A|∞ to be the maximum magnitude of any element of A, that is, |A|∞ =
max(i,y),(j,z) |A(i,y),(j,z)|. Then QLL(u) is τLL-upper-bounded with τLL = 1+n|A|∞.

Proof: First notice that the Bregman divergence BQ is linear in Q. Thus, for any p,q ∈ ∆n we can
write BQLL as a sum of two terms (see Eq. 4).

BQLL [p‖q] = D[p‖q]+MA[p‖q] .

We first bound MA[p‖q] in terms of squared L1 distance between p and q. Denote r = p−q. Then:

MA[p‖q] =
1
2 ∑

i,y, j,z

ri,yr j,zA(i,y),(j,z) ≤
|A|∞

2 ∑
i,y, j,z

|ri,y||r j,z| =
|A|∞

2
‖p−q‖2

1 .

Next, we use the inequality D[p1‖p2]≥
1
2‖p1− p2‖

2
1 (also known as Pinsker’s inequality, see Cover

and Thomas, 1991, p. 300), which holds for any two distributions p1 and p2. Consider the two
distributions p̂ = 1

n p and q̂ = 1
n q, each defined over an alphabet of size n|Y |. Then it follows that:9

|A|∞
2

‖p−q‖2
1 =

n2|A|∞
2

‖p̂− q̂‖2
1 ≤ n2|A|∞D[p̂‖q̂] = n|A|∞D[p‖q] ,

and thus MA[p‖q] ≤ n|A|∞D[p‖q]. So for the Bregman divergence of QLL(u) we obtain

BQLL [p‖q] ≤ (1+n|A|∞)D[p‖q] ,

yielding the desired result.

The next lemma shows that a similar result can be obtained for the QMM objective.

9. Note that D[p̂‖q̂] is a divergence between two distributions over |Y |n symbols and D[p‖q] is a divergence between
two sets of n distributions over |Y | symbols.

1790

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

Lemma 4 The function QMM(u) is τMM-upper-bounded with τMM = n|A|∞.

Proof: For QMM defined in Eq. 5, we have

BQMM [p‖q] = MA[p‖q] .

We can then use a similar derivation to that of Lemma 3 to obtain the result.

We thus have that the condition in Lemma 2 is satisfied for both the QLL(u) and QMM(u) objec-
tives, implying that their EG updates result in monotone improvement of the objective, for a suitably
chosen η:

Corollary 1 The LLEG-Batch algorithm with 0 < η ≤ 1
τLL

satisfies for all t

QLL(ut)−QLL(ut+1) ≥
1
η

D[ut‖ut+1] ,

and the MMEG-Batch algorithm with 0 < η ≤ 1
τMM

satisfies for all t

QMM(ut)−QMM(ut+1) ≥
1
η

D[ut‖ut+1] .

5.4 Convergence Rates for the EG Batch Algorithms

The previous section showed that for appropriate choices of the learning rate η, the batch EG updates
are guaranteed to improve the QLL and QMM loss functions at each iteration. In this section we build
directly on these results, and address the following question: how many iterations does the batch
EG algorithm require so that the |Q(ut)−Q(u)| ≤ ε for a given ε > 0? We show that as long as
Q(u) is τ-upper-bounded, the number of iterations required is O(1

ε). This bound thus holds for both
the log-linear and max-margin batch algorithms. Next, we show that if Q(u) is (µ,τ)-bounded, the
rate can be significantly improved to requiring O(log(1

ε)) iterations. We conclude by showing that
QLL(u) is (µ,τ)-bounded, implying that the O(log(1

ε)) rate holds for LLEG-Batch.
The following result gives an O(1

ε) rate for QLL and QMM:

Lemma 5 If Q(u) is τ-upper-bounded and 0 ≤ η ≤ 1
τ , then after T iterations of the EG-Batch

algorithm, for any z ∈ ∆n including z = u∗,

Q(uT+1)−Q(z) ≤
1

ηT
D[z‖u1] .

Proof: See Appendix A.

The lemma implies that to get ε-close to the optimal objective value, O(1
ε) iterations are

required—more precisely, if a choice of η = 1
τ is made, then at most τ

ε D[z‖u1] iterations are re-
quired. Since its conditions are satisfied by both QLL(u) and QMM(u) (given an appropriate choice
of η) the result holds for both the LLEG-Batch and MMEG-Batch algorithms.

A much improved rate may be obtained if Q(u) is not only τ-upper-bounded, but also (µ,τ)-
bounded (see Definition 5.1).

1791

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

Lemma 6 If Q(u) is (µ,τ)-bounded and 0 < η ≤ 1
τ then after T iterations of the EG-Batch algo-

rithm, for any z ∈ ∆n including z = u∗,

Q(uT+1)−Q(z) ≤
e−ηµT

η
D[z||u1] .

Proof: See Appendix B.

The lemma implies that an accuracy of ε may be achieved by using O(log(1
ε)) iterations.

To see why QLL(u) is (µ,τ)-bounded note that for any p,q ∈ ∆n,

BQLL [p‖q] = D[p‖q]+MA[p‖q] ≥ D[p‖q] ,

implying (together with Lemma 3) that QLL(u) is (1,τLL)-bounded.
Finally, note that Lemmas 5 and 6, together with the facts that QLL is (1,τLL)-bounded and QMM

is τMM-upper-bounded, imply Theorem 1 of Section 5.1.

5.5 Convergence Results for the Randomized Online Algorithm

This section analyzes the rate of convergence of the randomized online algorithm in Figure 2. Before
stating the results, we need some definitions. We will use Qu,i : ∆ → R to be the function defined as

Qu,i(v) = Q(u1,u2, . . . ,ui−1,v,ui+1, . . . ,un) ,

for any v ∈ ∆. We denote the Bregman divergence associated with Qu,i as BQu,i [x‖y]. We then
introduce the following definitions:

Definition 5.2: A convex function Q : ∆n → R is τ-online-upper-bounded for some τ > 0 if for any
i ∈ 1 . . .n and for any p,q ∈ ∆,

BQu,i [p‖q] ≤ τD[p‖q] .

In addition, Q is (µ,τ)-online-bounded for 0 < µ < τ if Q is τ-online-upper-bounded, and in addition,
for any p,q ∈ ∆n,

µD[p‖q] ≤ BQ[p‖q] .

Note that the lower bound in the above definition refers to BQ and not to BQu,i . Also, note that if a
function is (µ,τ)-online-bounded then it must also be τ-online-upper-bounded.

The following lemma then gives results for the QLL and QMM functions:

Lemma 7 The log-linear dual QLL(u) is (µ,τ)-online-bounded for µ = 1 and τ = 1 + |A|∞. The
max-margin dual QMM(u) is τ-online-upper-bounded for τ = |A|∞.

Proof: See Appendix C.

For any τ-online-upper-bounded Q, the online EG algorithm converges at an O(1
ε) rate, as shown

by the following lemma.

1792

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

Lemma 8 Consider the algorithm in Figure 2 applied to a convex function Q(u) that is τ-online-
upper-bounded. If η > 0 is chosen such that η ≤ 1

τ , then it follows that for all z ∈ ∆n

E
[

Q(uT+1)
]

≤ Q(z)+
n

ηT
D[z‖u1]+

n
T

[

Q(u1)−Q(u∗)
]

,

where E
[

Q(uT+1)
]

is the expected value of Q(uT+1), and u∗ = argminu∈∆n Q(u).

Proof: See Appendix D.

The previous lemma shows, in particular, that the online EG algorithm converges at an O(1
ε)

rate for the function QMM. However, we can prove a faster rate of convergence for QLL, which is
(µ,τ)-online-bounded. The following lemma shows that such functions exhibit an O(log(1

ε)) rate of
convergence.

Lemma 9 Consider the algorithm in Figure 2 applied to a convex function Q(u) that is (µ,τ)-
online-bounded. If η > 0 is chosen such that η ≤ 1

τ , then it follows that for all z ∈ ∆n

E
[

Q(uT+1)
]

≤ Q(z)+ e−
ηµT

n

[

1
η

D[z‖u1]+Q(u1)−Q(u∗)

]

,

where u∗ = argminu∈∆n Q(u).

Proof: See Appendix E.

Note that Lemmas 7, 9 and 8 complete the proof of Theorem 2 in Section 5.1.

6. Related Work

The idea of solving regularized loss-minimization problems via their convex duals has been ad-
dressed in several previous papers. Here we review those, specifically focusing on the log-linear
and max-margin problems.

Zhang (2002) presented a study of convex duals of general regularized loss functions, and pro-
vided a methodology for deriving such duals. He also considered a general procedure for solving
such duals by optimizing one coordinate at a time. However, it is not clear how to implement this
procedure in the structured learning case (i.e., when |Y | is large), and convergence rates are not
given.

In the specific context of log-linear models, several papers have addressed dual optimization.
Earlier work (Jaakkola and Haussler, 1999; Keerthi et al., 2005; Zhu and Hastie, 2001) treated the
logistic regression model, a simpler version of a CRF. In the binary logistic regression case, there is
essentially one parameter ui per example with the constraint 0 ≤ ui ≤ 1, and therefore simple line-
search methods can be used for optimization. Minka (2003) presents empirical results which show
that this approach performs similarly to conjugate gradient. The problem becomes much harder
when ui is constrained to be a distribution over many labels, as in the case discussed here. Recently,
Memisevic (2006) addressed this setting, and suggests optimizing ui by transferring probability
mass between two labels y1,y2 while keeping the distribution normalized. This requires a strategy
for choosing these two labels, and the author suggests one which seems to perform well.

1793

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

While some previous work on log-linear models proved convergence of dual methods (e.g.,
Keerthi et al., 2005), we are not aware of rates of convergence that have been reported in this
context. Convergence rates for related algorithms, in particular a generalization of EG, known
as the Mirror-Descent algorithm, have been studied in a more general context in the optimization
literature. For instance, Beck and Teboulle (2003) describe convergence results which apply to
quite general definitions of Q(u), but which have only O(1

ε2) convergence rates, as compared to
our results of O(1

ε) and O(log(1
ε)) for the max-margin and log-linear cases respectively. Also, their

work considers optimization over a single simplex, and does not consider online-like algorithms
such as the one we have presented.

For max-margin models, numerous dual methods have been suggested, an earlier example being
the SMO algorithm of Platt (1998). Such methods optimize subsets of the u parameters in the dual
SVM formulation (see also Crammer and Singer, 2002). Analysis of a similar algorithm (Hush
et al., 2006) results in an O(1

ε) rate, similar to the one we have here. Another algorithm for solving
SVMs via the dual is the multiplicative update method of Sha et al. (2007). These updates are
shown to converge to the optimum of the SVM dual, but convergence rate has not been analyzed,
and extension to the structured case seems non-trivial. An application of EG to binary SVMs was
previously studied by Cristianini et al. (1998). They show convergence rates of O(1

ε2), that are
slower than our O(1

ε), and no extension to structured learning (or multi-class) is discussed.

Recently, several new algorithms have been presented, along with a rate of convergence analysis
(Joachims, 2006; Shalev-Shwartz et al., 2007; Teo et al., 2007; Tsochantaridis et al., 2004; Taskar
et al., 2006). All of these algorithms are similar to ours in having a relatively low dependence on n
in terms of memory and computation. Among these, Shalev-Shwartz et al. (2007), Teo et al. (2007)
and Taskar et al. (2006) present an O(1

ε) rate, but where accuracy is measured in the primal or via
the duality gap, and not in the dual as in our analysis. Thus, it seems that a rate of O(1

ε) is currently
the best known result for algorithms that have a relatively low dependence on n (general QP solvers,
which may have O(log(1

ε)) behavior, generally have a larger dependence on n, both in time and
space). Note that, as in our analysis, all these convergence rates depend on |A|∞.

Finally, we emphasize again that the EG algorithm is substantially different from stochastic
gradient and stochastic subgradient approaches (LeCun et al., 1998; Nedic and Bertsekas, 2001;
Shalev-Shwartz et al., 2007; Vishwanathan et al., 2006). EG and stochastic gradient methods are
similar in that they both process a single training example at a time. However, EG corresponds to
block-coordinate descent in the dual, and uses the exact gradient with respect to the block being
updated. In contrast, stochastic gradient methods directly optimize the primal problem, and at each
update use a single example to approximate the gradient (or subgradient) of the primal objective
function.

7. Experiments on Regularized Log-Likelihood

In this section we analyze the performance of the EG algorithms for optimization of regularized
log-likelihood. We describe experiments on two tasks: first, the MNIST digit classification task,
which is a multiclass classification task; second, a log-linear model for a structured natural-language
dependency-parsing task. In each case we first give results for the EG method, and then compare

1794

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

its performance to L-BFGS (Byrd et al., 1995), which is a batch gradient descent method, and to
stochastic gradient descent.10

We do not report results on LLEG-Batch, since we found it to converge much more slowly than
the online algorithm. This is expected from our theoretical results, which anticipate a factor of n
speed-up for the online algorithm. We also report experiments comparing the randomized online
algorithm to a deterministic online EG algorithm, where samples are drawn in a fixed order (e.g.,
the algorithm first visits the first example, then the second, etc.).

Although EG is guaranteed to converge for an appropriately chosen η, it turns out to be bene-
ficial to use an adaptive learning rate. Here we use the following simple strategy: we first consider
only 10% of the data-set, and find a value of η that results in monotone improvement for at least
95% of the samples. Denote this value by ηini (for the experiments in Section 7.1 we simply use
ηini = 0.5). For learning over the entire data-set, we keep a learning rate ηi for each sample i (where
i = 1, . . . ,n), and initialize this rate to ηini for all points. When sample i is visited, we halve ηi until
an improvement in the objective is obtained. Finally, after the update, we multiply ηi by 1.05, so
that it does not decrease monotonically.

It is important that when updating a single example using the online algorithms, the improve-
ment (or decrease) in the dual can be easily evaluated, allowing the halving strategy described in
the previous paragraph to be implemented efficiently. If the current dual parameters are u, the i’th
coordinate is selected, and the EG updates then map ui to u′

i, the change in the dual objective is

∑
y

u′i,y logu′i,y +
1

2C

∥

∥

∥

∥

∥

w(u)+∑
y

(

u′i,y −ui,y
)

gi,y

∥

∥

∥

∥

∥

2

−∑
y

ui,y logui,y −
1

2C
‖w(u)‖2 .

The primal parameters w(u) are maintained throughout the algorithm (see Figure 3), so that this
change in the dual objective can be calculated efficiently. A similar method can be used to calculate
the change in the dual objective in the max-margin case.

We measure the performance of each training algorithm (the EG algorithms, as well as the
batch gradient and stochastic gradient methods) as a function of the amount of computation spent.
Specifically, we measure computation in terms of the number of times each training example is
visited. For EG, an example is considered to be visited for every value of η that is tested on it. For
L-BFGS, all examples are visited for every evaluation performed by the line-search routine. We
define the measure of effective iterations to be the number of examples visited, divided by n. In
the following sections we compare the algorithms in terms of their performance as a function of the
effective number of iterations. A comparison in terms of running time is provided in Appendix F;
there is little difference between the timed comparisons and the results presented in this section.

7.1 Multi-class Classification

We first conducted multi-class classification experiments on the MNIST classification task. Exam-
ples in this data set are images of handwritten digits represented as 784-dimensional vectors. We
used a training set of 59k examples, and a validation set of 10k examples.11 Note that since we

10. We also experimented with conjugate gradient algorithms, but since these resulted in worse performance than L-
BFGS, we do not report these results here.

11. In reporting results, we consider only validation error; that is, error computed during the training process on a
validation set. This measure is often used in early-stopping of algorithms, and is therefore of interest in the current
context. We do not report test error since our main focus is algorithmic.

1795

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

only use a linear kernel, accuracy results are not competitive with state of the art classifiers which
use non-linear kernels (e.g., see Cortes and Vapnik, 1995). We define a ten-class logistic-regression
model where

p(y |x) ∝ ex·wy ,

and x,wy ∈ R
784,y ∈ {1, . . . ,10}.

Models were trained for various values of the regularization parameter C: specifically, we tried
values of C equal to 1000, 100, 10, 1, 0.1, and 0.01. Convergence of the EG algorithm for low
values of C (i.e., 0.1 and 0.01) was found to be slow; we discuss this issue more in Section 7.1.1,
arguing that it is not a serious problem.

Figure 4 shows plots of the validation error versus computation for C equal to 1000, 100, 10,
and 1, when using the EG algorithm. For C equal to 10 or more, convergence is fast. For C = 1
convergence is somewhat slower. Note that there is little to choose between C = 10 and C = 1 in
terms of validation error.

Figure 5 shows plots of the primal and dual objective functions for different values of C. To
obtain the primal objective values, we used the EG weight vector 1

C w(ut). Note that EG does not
explicitly minimize the primal objective function, so the EG primal will not necessarily decrease
at every iteration. Nevertheless, our experiments show that the EG primal decreases quite quickly.
Figure 6 shows how the duality gap decreases with the amount of computation spent (the duality gap
is the difference between the primal and dual values at each iteration). The log of the duality gap
decreases more-or-less linearly with the amount of computation spent, as predicted by the O(log(1

ε))
bounds on the rate of convergence.12

Finally, we compare the deterministic and randomized versions of the EG algorithm. Figure 7
shows the primal and dual objectives for both algorithms. It can be seen that the randomized algo-
rithm is clearly much faster to converge. This is even more evident when plotting the duality gap,
which converges much faster to zero in the case of the randomized algorithm. These results give
empirical evidence that the randomized strategy is to be preferred over a fixed ordering of the train-
ing examples (note that we have been able to prove bounds on convergence rate for the randomized
algorithm, but have not been able to prove similar bounds for the deterministic case).

7.1.1 CONVERGENCE FOR LOW VALUES OF C

As mentioned in the previous section, convergence of the EG algorithm for low values of C can be
very slow. This is to be expected from the bounds on convergence, which predict that convergence
time should scale linearly with 1

C (other algorithms, e.g., see Shalev-Shwartz et al., 2007, also
require O(1

C) time for convergence). This is however, not a serious problem on the MNIST data,
where validation error has reached a minimum point for around C = 10 or C = 1.

If convergence for small values of C is required, one strategy we have found effective is to start
C at a higher value, then “anneal” it towards the target value. For example, see Figure 8 for results
for C = 1 using one such annealing scheme. For this experiment, if we take t to be the number of
iterations over the training set, where for any t we have processed t × n training examples, we set
C = 10 for t ≤ 5, and set C = 1+9×0.7t−5 for t > 5. Thus C starts at 10, then decays exponentially
quickly towards the target value of 1. It can be seen that convergence is significantly faster for
the annealed method. The intuition behind this method is that the solution to the dual problem for

12. The rate results presented in this paper are for dual accuracy, but it is straightforward to obtain an O(log(1
ε)) for the

duality gap in the log-linear case.

1796

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 10 20 30 40 50 60 70 80 90 100

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

Eff. Iteration

C=1
C=10
C=100
C=1000

 7.2

 7.3

 7.4

 7.5

 7.6

 7.7

 7.8

 7.9

 8

 20 40 60 80 100 120 140 160 180 200

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

Eff. Iteration

C=1
C=10

Figure 4: Validation error results on the MNIST learning task for log-linear models trained using
the EG randomized online algorithm. The X axis shows the number of effective iterations
over the entire data set. The Y axis shows validation error percentages. The left figure
shows plots for values of C equal to 1, 10, 100, and 1000. The right figure shows plots
for C equal to 1 and 10 at a larger scale.

C = 10 is a reasonable approximation to the solution for C = 1, and is considerably easier to solve;
in the annealing strategy we start with an easier problem and then gradually move towards the harder
problem of C = 1.

7.1.2 AN EFFICIENT METHOD FOR OPTIMIZING A RANGE OF C VALUES

In practice, when estimating parameters using either regularized log-likelihood or hinge-loss, a
range of values for C are tested, with cross-validation or validation on a held-out set being used to
choose the optimal value of C. In the previously described experiments, we independently optimized
log-likelihood-based models for different values of C. In this section we describe a highly efficient
method for training a sequence of models for a range of values of C.

The method is as follows. We pick some maximum value for C; as in our previous experiments,
we will choose a maximum value of C = 1000. We also pick a tolerance value ε, and a parameter
0 < v < 1. We then optimize C using the randomized online algorithm, until the duality gap is
less than ε× p, where p is the primal value. Once the duality gap has converged to within this ε
tolerance, we reduce C by a factor of v, and again optimize to within an ε tolerance. We continue
this strategy—for each value of C optimizing to within a factor of ε, then reducing C by a factor
of v—until C has reached a low enough value. At the end of the sequence, this method recovers a
series of models for different values of C, each optimized to within a tolerance of ε.

It is crucial that each time we decrease C, we take our initial dual values to be the final dual
values resulting from optimization for the previous value of C. In practice, if C does not decrease
too quickly, the previous dual values are a very good starting point for the new value of C; this
corresponds to a “warm start” in optimizing values of C that are less than the maximum value. A

1797

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

O
bj

ec
tiv

e

Eff. Iteration

Primal, C=1000
Dual, C=1000
Primal, C=100
Dual, C=100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 10 15 20 25 30 35 40 45 50

O
bj

ec
tiv

e

Eff. Iteration

Primal, C=10
Dual, C=10
Primal, C=1
Dual, C=1

Figure 5: Primal and dual objective values on the MNIST learning task for log-linear models trained
using the EG randomized online algorithm. The dual values have been negated so that
the primal and dual problems have the same optimal value. The X axis shows the number
of effective iterations over the entire data set. The Y axis shows the value of the primal
or dual objective functions. The left figure shows plots for values of C equal to 1000 and
100; the right figure shows plots for C equal to 10, and 1. In all cases the primal and dual
objectives converge to the same value, with faster convergence for larger values of C.

similar initialization method is used in Koh et al. (2007) in the context of `1 regularized logistic
regression.

As one example of this approach, we trained models in this way with the starting (maximum)
value of C set to 1000, ε set to 0.001 (i.e., 0.1%), and v set to 0.7. Table 2 shows the number of
iterations of training required for each value of C. The benefits of using the previous dual values at
each new value of C are clear: for 13.84≤C ≤ 700 at most 5 iterations are required for convergence;
even for C = 0.798 only 15.24 iterations are required; a range of 25 different values of C between
1000 and 0.274 can be optimized with 211.17 effective iterations over the training set.

7.1.3 COMPARISONS TO STOCHASTIC GRADIENT DESCENT

This section compares performance of the EG algorithms to stochastic gradient descent (SGD) on
the primal objective. In SGD the parameters w are initially set to be 0. At each step an example
index i is chosen at random, and the following update is performed:

w = w−η
∂

∂w

(

− log p(yi |xi;w)+
C
2n

‖w‖2
)

,

where η > 0 is a learning rate. The term

∂
∂w

(

− log p(yi |xi;w)+
C
2n

‖w‖2
)

,

1798

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

C Iterations Total Error
Iterations

1000 11 11 0.1011
700 3 14 0.0968
490 4.01 18.01 0.0926
343 4.09 22.1 0.0895
240.1 4.24 26.34 0.0869
168.07 4.32 30.67 0.0846
117.649 4.3 34.97 0.0829
82.3543 4.29 39.27 0.0809
57.648 4.32 43.6 0.0803
40.3536 4.33 47.93 0.0775
28.2475 4.34 52.28 0.0768
19.7733 4.36 56.64 0.0758
13.8413 4.38 61.03 0.076
9.6889 5.47 66.51 0.0744
6.78223 5.49 72 0.0741
4.74756 5.51 77.52 0.0732
3.32329 6.6 84.12 0.0736
2.32631 7.69 91.82 0.0735
1.62841 8.78 100.61 0.0729
1.13989 12 112.62 0.074
0.797923 15.24 127.86 0.0747
0.558546 20.61 148.47 0.0749
0.390982 27.05 175.53 0.074
0.273687 35.63 211.17 0.0747

Table 2: Table showing number of effective iterations required to optimize a sequence of values for
C for the MNIST task, using the method described in Section 7.1.2. The column C shows
the sequence of decreasing regularizer constants. Iterations shows the number of effective
iterations over the training set required to optimized each value of C. Total iterations shows
the cumulative value of Iterations, and Error shows the validation error obtained for every
C value. It can be seen that the optimal error is reached at C = 1.62841.

1799

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 20 40 60 80 100 120 140 160 180 200

D
u

a
lit

y
 G

a
p

 (
%

)

Eff. Iteration

C=100
C=10
C=1

Figure 6: Graph showing the duality gap on the MNIST learning task for log-linear models trained
using the EG randomized online algorithm. The X axis shows the number of effective
iterations over the entire data set. The Y axis (with a log scale) shows the value of the
duality gap, as a percentage of the final optimal value.

can be thought of as an estimate of the gradient of the primal objective function for the entire training
set.

In our experiments, we chose the learning rate η to be

η =
η0

1+ k/n
,

where η0 > 0 is a constant, n is the number of training examples, and k is the number of updates
that have been performed up to this point. Thus the learning rate decays to 0 with the number of
examples that are updated. This follows the approach described in LeCun et al. (1998); we have
consistently found that it performs better than using a single, fixed learning rate.

We tested SGD for C values of 1000, 100, 10, 1, 0.1 and 0.01. In each case we chose the value
of η0 as follows. For each value of C we first tested values of η0 equal to 1, 0.1, 0.01, 0.001, and
0.0001, and then chose the value of η0 which led to the best validation error after a single iteration
of SGD. This strategy resulted in a choice of η0 = 0.01 for all values of C except C = 1000, where
η0 = 0.001 was chosen. We have found this strategy to be a robust method for choosing η0 (note
that we do not want to run SGD for more than one iteration with all (C,η0) combinations, since
each iteration is costly).

Figure 9 compares validation error rates for SGD and the randomized EG algorithm. For the
initial (roughly 5) iterations of training, SGD has better validation error scores, but beyond this the
EG algorithm is very competitive on this task. Note that the amount of computation for SGD does
not include the iterations required to find the optimal value of η0; if this computation was included
the SGD curves would be shifted 5 iterations to the right.

Figure 10 shows graphs comparing the primal objective value for EG and SGD. For C equal
to 1000, 100, and 10, the results are similar: SGD is initially better than EG, but after around 5

1800

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250

O
bj

ec
tiv

e

Eff. Iteration

Primal - Deterministic EG
Dual - Deterministic EG
Primal - Randomized EG
Dual - Randomized EG

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

D
ua

lit
y

G
ap

 (
%

)

Eff. Iteration

Deterministic EG
Randomized EG

Figure 7: Results on the MNIST learning task, comparing the randomized and deterministic online
EG algorithms, for C = 1. The left figure shows primal and dual objective values for both
algorithms. The right figure shows the normalized value of the duality gap: (primal(t)−
dual(t))/opt, where opt is the value of the joint optimum of the primal and dual problems,
and t is the iteration number. The X axis counts the number of effective iterations over
the entire data set.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 5 10 15 20 25 30 35 40 45 50

O
bj

ec
tiv

e

Eff. Iteration

C=1
C=1, annealed

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 10 20 30 40 50 60 70 80 90 100

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

Eff. Iteration

C=1
C=1, annealed

Figure 8: Results on the MNIST learning task, for C = 1, comparing the regular EG randomized
algorithm with an annealed version of the algorithm (see Section 7.1.1). The left figure
shows primal objective values calculated for C = 1; the right figure shows validation error.
The annealed strategy gives significantly faster convergence.

iterations EG overtakes SGD, and converges much more quickly to the optimal point. The difference
between EG and SGD appears to become more pronounced as C becomes smaller. For C = 1 our

1801

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

 7

 8

 9

 10

 11

 12

 10 20 30 40 50 60 70 80 90 100

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

Eff. Iteration

EG, C=10
SGD, C=10
SGD, C=0.01
SGD, C=1000
SGD, C=100

 7.3

 7.4

 7.5

 7.6

 7.7

 7.8

 7.9

 8

 5 10 15 20 25 30 35 40 45 50

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

Eff. Iteration

EG, C=10
SGD, C=10
SGD, C=0.01

Figure 9: Graphs showing validation error results on the MNIST learning task, comparing the EG
randomized algorithm to stochastic gradient descent (SGD). The X axis shows number of
effective training iterations, the Y axis shows validation error in percent. The EG results
are shown for C = 10; SGD results are shown for several values of C. For SGD for C = 1,
C = 0.1, and C = 0.01 the curves were nearly identical, hence we omit the curves for
C = 1 and C = 0.1. Note that the amount of computation for SGD does not include the
iterations required to find the optimal value for the learning rate η0.

strategy for choosing η0 does not pick the optimal value for η0 at least when evaluating the primal
objective; see the caption to the figure for more discussion. EG again appears to out-perform SGD
after the initial few iterations.

7.1.4 COMPARISONS TO L-BFGS

One of the standard approaches to training log-linear models is using the L-BFGS gradient-based
algorithm (Sha and Pereira, 2003). L-BFGS is a batch algorithm, in the sense that its updates require
evaluating the primal objective and gradient, which involves iterating over the entire data-set. To
compare L-BFGS to EG, we used the implementation based on Byrd et al. (1995).13

For L-BFGS, a total of n training examples must be processed every time the gradient or objec-
tive function is evaluated; note that because L-BFGS uses a line search, each iteration may involve
several such evaluations.14

13. Specifically, we used the code by Zhu, Byrd, Lu, and Nocedal (www.ece.northwestern.edu/∼nocedal/) with L. Stew-
art’s wrapper (www.cs.toronto.edu/∼liam/). In all the experiments, we used 10 pairs of saved gradient vectors (see
also Sha and Pereira, 2003).

14. The implementation of L-BFGS that we use requires both the gradient and objective when performing the line-search.
In some line-search variants, it is possible to use only objective evaluations. In this case, the EG line search will be
somewhat more costly, since the dual objective requires evaluations of both marginals and partition function, whereas
the primal objective only requires the partition function. This will have an effect on running times only if the EG line
search evaluates more than one point, which happened for less than 10%.

1802

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

 0.644

 0.645

 0.646

 0.647

 0.648

 0.649

 0.65

 0.651

 0.652

 10 20 30 40 50 60 70 80 90 100

O
bj

ec
tiv

e

Eff. Iteration

EG, C=1000
SGD, C=1000

 0.37

 0.375

 0.38

 0.385

 0.39

 0.395

 0.4

 10 20 30 40 50 60 70 80 90 100

O
bj

ec
tiv

e

Eff. Iteration

EG, C=100
SGD, C=100

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 10 20 30 40 50 60 70 80 90 100

O
bj

ec
tiv

e

Eff. Iteration

EG, C=10
SGD, C=10

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 10 20 30 40 50 60 70 80 90 100

O
bj

ec
tiv

e

Eff. Iteration

EG, C=1
EG, C=1, annealed
SGD, C=1, eta=0.1
SGD, C=1, eta=0.01

Figure 10: Graphs showing primal objective values on the MNIST learning task, comparing the EG
randomized algorithm to stochastic gradient descent (SGD). The X axis shows number
of effective training iterations, the Y axis shows primal objective. The graphs are for
C equal to 1000, 100, 10, and 1. For C = 1 we show EG results with and without the
annealed strategy described in Section 7.1.1. For C = 1 we also show two SGD curves,
for learning rates 0.01 and 0.1: in this case η0 = 0.01 was the best-performing learning
rate after one iteration for both validation error and primal objective, however a post-hoc
analysis shows that η0 = 0.1 converges to a better value in the limit. Thus our strategy
for choosing η0 was not optimal in this case, although it is difficult to know how η0 = 0.1
could be chosen without post-hoc analysis of the convergence for the different values of
η0. For other values of C our strategy for picking η0 was more robust.

1803

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30

O
bj

ec
tiv

e

Eff. Iteration

EG, C=1000
L-BFGS, C=1000

 0.35

 0.4

 0.45

 0.5

 0.55

 10 20 30 40 50 60

O
bj

ec
tiv

e

Eff. Iteration

EG, C=100
L-BFGS, C=100

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 10 20 30 40 50 60 70 80 90 100

O
bj

ec
tiv

e

Eff. Iteration

EG, C=10
L-BFGS, C=10

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 20 40 60 80 100 120 140 160 180 200

O
bj

ec
tiv

e

Eff. Iteration

EG, C=1
EG, C=1, annealed
L-BFGS, C=1

 7

 8

 9

 10

 11

 12

 10 20 30 40 50 60 70 80 90 100

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

Eff. Iteration

EG, C=10
L-BFGS, C=1000
L-BFGS, C=100
L-BFGS, C=10
L-BFGS, C=1
L-BFGS, C=0.1
L-BFGS, C=0.01

Figure 11: Results on the MNIST learning task, comparing the EG algorithm to L-BFGS. The
figures on the first and second row show the primal objective for both algorithms, for
various values of C. The bottom curve shows validation error for L-BFGS for various
values of C and for EG with C = 10.

1804

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

As in Section 7.1.3, we calculated primal values for EG. Figure 11 shows the primal objective
for EG, and L-BFGS. It can be seen that the primal value for EG converges considerably faster than
the L-BFGS one. Also shown is a curve of validation error for both algorithms. Here we show the
results for EG with C = 10 and L-BFGS with various C values. It can be seen that L-BFGS does
not outperform the EG curve for any value of C.

7.2 Structured learning - Dependency Parsing

Parsing of natural language sentences is a challenging structured learning task. Dependency parsing
(McDonald et al., 2005) is a simplified form of parsing where the goal is to map sentences x into
projective directed spanning trees over the set of words in x. Each label y is a set of directed arcs
(dependencies) between pairs of words in the sentence. Each dependency is a pair (h,m) where h is
the index of the head word of the dependency, and m is the index of the modifier word. Assuming
we have a function f(x,h,m) that assigns a feature vector to dependencies (h,m), we can use a
weight vector w to score a given tree y by w ·∑(h,m)∈y f(x,h,m). Dependency parsing corresponds to
a structured problem where the parts r are dependencies (h,m); the approach described in Section 4
can be applied efficiently to dependency structures. For projective dependency trees (e.g., see Koo
et al., 2007), the required marginals can be computed efficiently using a variant of the inside-outside
algorithm (Baker, 1979).

In the experiments below we use a feature set f(x,h,m) similar to that in McDonald et al. (2005)
and Koo et al. (2007), resulting in 2,500,554 features. We report results on the Spanish data-
set which is part of the CoNLL-X Shared Task on multilingual dependency parsing (Buchholz
and Marsi, 2006). The training data consists of 2,306 sentences (58,771 tokens). To evaluate
validation error, we use 1,000 sentences (30,563 tokens) and report accuracy (rate of correct edges
in a predicted parse tree) on these sentences.15 Since we used only sentences from the training set,
results are not directly comparable to the CoNLL-X shared task results. However, our previous
work on this data set (Koo et al., 2007) shows that regularized max-margin and log-linear models
typically outperform the averaged perceptron, which is not explicitly regularized.

As in the multi-class experiments, we compare to SGD and L-BFGS. The implementation of
the algorithms is similar to that described in Section 7.1. The gradients for SGD and L-BFGS were
obtained by calculating the relevant marginals of the model, using the inside-outside algorithm that
was also used for EG. The learning rate for SGD was chosen as in the previous section; that is, we
tested several learning rates (η0 = 1,0.1,0.001,0.0001) and chose the one that yielded the minimum
validation error after one iteration.

Figure 12 shows results for EG and L-BFGS on the parsing task. We experiment with values
of C in the set {0.1,1,10,100,1000}. Of these, the value that results in optimal validation error
was C = 10. The performance of L-BFGS, SGD and EG is demonstrated in terms of the primal
objective for a subset of the C values. L-BFGS and EG both converge to the optimal value, and EG
is significantly faster. On the other hand, SGD does not converge to the optimum for all C values
(e.g., for C = 1,10), and when it does converge to the optimum, it is slower than EG.

Figure 12 also shows the validation error for EG at the optimal C value, compared to validation
error for L-BFGS and SGD at various C values. Again, it can be seen that EG significantly outper-
forms L-BFGS. For SGD, performance is comparable to EG. However, as mentioned earlier, SGD

15. All 3,306 sentences were obtained from the training data section of the CoNLL-X Spanish data-set (Civit and Martı́,
2002).

1805

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

C Iterations Total Accuracy
Iterations

1000 8 8 72.44
700 3.01 11.01 73.42
490 4.76 15.77 74.35
343 4.9 20.67 75.29
240.1 4.91 25.58 76.13
168.07 6.1 31.68 77.13
117.649 6.06 37.74 77.82
82.354 6.08 43.82 78.74
57.648 7.23 51.05 79.41
40.353 7.23 58.28 79.99
28.247 8.33 66.61 80.38
19.773 9.4 76.01 80.60
13.841 12.6 88.61 80.77
9.688 13.71 102.32 80.72
6.782 19.03 121.35 80.67
4.747 23.33 144.68 80.61
3.323 30.82 175.5 80.31
2.326 37.22 212.72 80.18
1.628 45.8 258.52 79.98
1.139 57.53 316.05 79.63
0.797 73.6 389.65 79.36

Table 3: Table showing number of effective iterations required to optimize a sequence of values for
C for the parsing task, using the method described in Section 7.1.2. The column C shows
the sequence of decreasing regularizer constants. Iterations shows the number of effective
iterations over the training set required to optimize each value of C. Total iterations shows
the cumulative value of Iterations, and Accuracy shows the validation accuracy obtained
for every C value. It can be seen that the optimal accuracy is reached at C = 13.841.

in fact does not successfully optimize the primal objective for low values of C, and for higher values
of C the SGD primal objective is slower to converge.

As in the multi-class experiments (see Figure 10), it is possible to find learning rates for SGD
such that it converges to the primal optimum for C = 1,10. However, the optimality of these rates
only becomes evident after 10 iterations or more (results not shown). Thus, to find a learning rate
for SGD that actually solves the optimization problem would typically require an additional few
tens of iterations, making it significantly slower than EG.

Finally, it is possible to use EG to efficiently optimize over a set of regularization constants, as
in Section 7.1.2. Table 3 shows results for a sequence of regularization constants.

1806

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

 23.4

 23.6

 23.8

 24

 24.2

 24.4

 24.6

 24.8

 25

 0 10 20 30 40 50 60

O
bj

ec
tiv

e

Eff. Iteration

EG, C=1000
L-BFGS, C=1000
SGD, C=1000

 15.5

 16

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 0 10 20 30 40 50 60

O
bj

ec
tiv

e

Eff. Iteration

EG, C=100
L-BFGS, C=100
SGD, C=100

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120 140 160 180 200

O
bj

ec
tiv

e

Eff. Iteration

EG, C=10
L-BFGS, C=10
SGD, C=10

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

O
bj

ec
tiv

e

Eff. Iteration

EG, C=1
L-BFGS, C=1
SGD, C=1

 72

 74

 76

 78

 80

 82

 0 20 40 60 80 100 120 140 160 180 200

A
cc

ur
ac

y
(%

)

Eff. Iteration

EG, C=10
L-BFGS, C=0.01
L-BFGS, C=0.1
L-BFGS, C=1
L-BFGS, C=10
L-BFGS, C=100

 72

 74

 76

 78

 80

 82

 0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y
(%

)

Eff. Iteration

EG, C=10
SGD, C=1
SGD, C=10
SGD, C=100

Figure 12: Results on the dependency-parsing task, comparing the EG algorithm to L-BFGS and
SGD. All algorithms are trained on the log-linear objective function. The figures on
the first and second rows show the primal objective for the three algorithms, for various
values of C. The left bottom plot shows validation accuracy (measured as the fraction of
correctly predicted edges) for L-BFGS for various values of C and for EG with C = 10.
The right bottom plot show validation accuracy for EG (with C = 10) and SGD.

1807

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

8. Experiments on Max-Margin Models

The max-margin loss (Eq. 3) has a discontinuity in its derivative. This makes optimization of max-
margin models somewhat more involved than log-linear ones, since gradient algorithms such as
L-BFGS cannot be used. This difficulty is exacerbated in the case of structured prediction models,
since maximization in Eq. 3 is potentially over an exponentially large set.

In this section, we apply the EG algorithm to the max-margin problem, and compare its per-
formance to the SVM-Struct algorithm presented in Tsochantaridis et al. (2004).16 SVM-Struct is
based on a cutting-plane algorithm that operates on the dual max-margin problem (D-MM) and re-
sults in monotone improvement in this dual. In this sense, it is similar to our EG algorithm. In order
to facilitate a fair comparison, we report the performance of the two algorithms as a function of
time. We do not report results by iteration since EG and SVM-struct involve different computation
per iteration (e.g., SVM-Struct solves a QP per iteration).

We applied SVM-Struct and EG to the dependency parsing problem described in Section 7.2. To
apply SVM-Struct to this problem, we supply it with a routine that finds the y ∈ Y which attains the
maximum of the hinge-loss in Eq. 3. This maximum can be found using a Viterbi-style algorithm.
For the value of C we experimented with C ∈ {1,10,100,1000,10000}. The optimal value in terms
of validation error was C = 100.

Figure 13 shows results in terms of primal and dual objective and in terms of accuracy. It can
be seen that EG is considerably faster than SVM-Struct for most C values. The performance is
comparable only for C = 1, where convergence is slow for both algorithms.

9. Conclusion

We have presented novel algorithms for large-scale learning of log-linear and max-margin models,
which provably converge to the optimal value of the respective loss functions. Although the algo-
rithms have both batch and online variants, the online version turns out to be much more effective,
both in theory and in practice. Our theoretical results (see Section 5.1) suggest that the online algo-
rithm requires a factor of n less iterations to achieve a desired accuracy ε in the dual objective. This
factor results from the fact that the online algorithm can use a learning rate η that is n times larger
than the batch case to obtain updates that decrease the dual objective. Intuitively, this difference
is associated with the fact that the batch algorithm updates all u values simultaneously. The dual
objective has a term uT Au which involves all the ui variables and second order interactions between
them. It turns out that for batch updates only a relatively small change in the ui is allowed, if one
still requires an improvement in the dual objective after the update. It is possible that our bounds
for the batch convergence rate are more conservative than those for the online case. However, we
have observed in practice that the batch algorithm is much slower to converge. Furthermore, we
also observed that other batch-based algorithms such as L-BFGS and conjugate gradient converge
more slowly than the online EG algorithm.

Our results provide an O(log(1
ε)) rate for the log-linear model, as opposed to O(1

ε) for max-
margin. If these bounds are tight, they would imply that log-linear models have an advantage over
max-margin ones in terms of training efficiency. However, it is possible that the analysis is not tight,
and that improved rates may also be obtained for the max-margin model. In any case, this raises

16. The code is available from svmlight.joachims.org/svm struct.html.

1808

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8 9 10

O
bj

ec
tiv

e

CPU Time (hours)

EG Primal, C=1000
EG Dual, C=1000
SVM-S Primal, C=1000
SVM-S Dual, C=1000

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25

O
bj

ec
tiv

e

CPU Time (hours)

EG Primal, C=100
EG Dual, C=100
SVM-S Primal, C=100
SVM-S Dual, C=100

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

O
bj

ec
tiv

e

CPU Time (hours)

EG Primal, C=10
EG Dual, C=10

SVM-S Primal, C=10
SVM-S Dual, C=10

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

O
bj

ec
tiv

e

CPU Time (hours)

EG Primal, C=1
EG Dual, C=1
SVM-S Primal, C=1
SVM-S Dual, C=1

 74

 75

 76

 77

 78

 79

 80

 81

 82

 0 5 10 15 20 25 30

A
cc

ur
ac

y
(%

)

CPU Time (hours)

EG, C=100
SVM-S, C=100
SVM-S, C=10

Figure 13: Results on the dependency-parsing task, comparing the EG algorithm to SVM-Struct.
Both algorithms are trained on a max-margin model. The figures on the first and second
rows show the primal objective for both algorithms, for various values of C. The bottom
curve shows validation accuracy (measured as the fraction of correctly predicted edges)
for SVM-Struct for various values of C and for EG with C = 100 (the value that yielded
the highest validation accuracy). The X axis on all curves is running time in hours.

1809

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

the interesting question of comparing classification models not only in terms of accuracy but also in
terms of optimization efficiency.

Our convergence rates are with respect to accuracy in the dual objective. Some previous work
(e.g., Shalev-Shwartz et al., 2007) has considered the accuracy with respect to the primal objective.
It is relatively easy to show that in order to obtain ε accuracy in the primal, the EG algorithms require
O(log(1

ε)) updates for the log-linear problem and O(1
ε2) for the max-margin case. It is possible that

a more refined analysis of the max-margin case will result in O(1
ε) (e.g., see List et al., 2007), but

we leave this for further study.
Most of our proofs rely on a relation between BQ and the KL divergence. This relation holds

for max-margin learning as well, a fact that simplifies previous results in this setting (Bartlett et al.,
2005). We expect a similar analysis to hold for other functions Q.

An interesting extension of our method is to using second order derivative information, or its
approximations, as in L-BFGS (Byrd et al., 1995). Such information may be used to obtain more
accurate minimization for each ui and may speed up convergence. Another possible improvement is
to the line search method. In the experiments reported here we use a crude mechanism for adapting
the learning rate, and it is possible that a more careful procedure will improve convergence rates in
practice.

Parallelization is becoming increasingly relevant as multi-core CPUs become available. For the
batch EG algorithm, it is straightforward to distribute the computation among k processors. One
method for distributing the online EG algorithm would be to update k examples in parallel on k
different processors. It should be possible to analyze this setting in a similar way to our proofs for
the online case, but we leave this to future work.

Finally, our results show that the EG algorithms are highly competitive with state-of-the-art
methods for training log-linear and max-margin models. We thus expect them to become useful as
learning algorithms, particularly in the structured prediction setting.

Acknowledgments

The authors gratefully acknowledge the following sources of support. Amir Globerson was sup-
ported by a fellowship from the Rothschild Foundation - Yad Hanadiv. Terry Koo was funded by
a grant from the NSF (DMS-0434222) and a grant from NTT, Agmt. Dtd. 6/21/1998. Xavier Car-
reras was supported by the Catalan Ministry of Innovation, Universities and Enterprise, and by a
grant from NTT, Agmt. Dtd. 6/21/1998. Michael Collins was funded by NSF grants 0347631 and
DMS-0434222. Peter Bartlett was funded by a grant from the NSF (DMS-0434383).

Appendix A. O(1
ε) Rate for Batch Algorithms - Proof of Lemma 5

We use a similar proof technique to that of Kivinen and Warmuth (2001). In particular, we need the
following Lemma, which is very similar to results used by Kivinen and Warmuth (2001):

Lemma 10 (See Kivinen and Warmuth (2001), Proof of Lemma 4) For any convex function Q(u)
over ∆n, for any z ∈ ∆n, and any ut in the interior of ∆n, if ut+1 is derived from ut using the EG
updates with a learning rate η, then

ηQ(ut)−ηQ(z) = D[z‖ut]−D[z‖ut+1]+D[ut‖ut+1]−ηBQ[z‖ut] . (9)

1810

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

Proof: By the definition of Bregman divergence, we have

ηQ(ut)−ηQ(z) = −η∇Q(ut) · (z−ut)−ηBQ[z‖ut] . (10)

Given that ut+1 is derived from ut using EG updates,

ut+1
i,y =

ut
i,ye−η∇i,y

Zt
i

,

where Zt
i is a normalization constant, and ∇i,y = ∂Q(ut)

∂ui,y
. Simple algebra then shows that:

D[z‖ut]−D[z‖ut+1]+D[ut‖ut+1] = ∑
i,y

(

zi,y log
zi,y

ut
i,y

− zi,y log
zi,y

ut+1
i,y

+ut
i,y log

ut
i,y

ut+1
i,y

)

= ∑
i,y

(zi,y −ut
i,y) log

ut+1
i,y

ut
i,y

= ∑
i,y

(zi,y −ut
i,y)(−η∇i,y − logZt

i)

= ∑
i,y

(zi,y −ut
i,y)(−η∇i,y)

= −η∇Q(ut) · (z−ut) . (11)

Note that we have used ∑i,y(zi,y−ut
i,y) logZt

i = 0, which follows because ∑i,y zi,y logZt
i = ∑i,y ut

i,y logZt
i

= ∑i logZt
i .

Combining Eq. 10 and Eq. 11 gives Eq. 9, thus proving the lemma.
We can now prove Lemma 5:
Proof of Lemma 5: Using −ηBQ[z‖ut] ≤ 0, Lemma 10 implies that for all t

ηQ(ut)−ηQ(z) ≤ D[z‖ut]−D[z‖ut+1]+D[ut‖ut+1] . (12)

By the assumptions of Lemma 5, Q(u) is τ-upper-bounded, and 0 ≤ η ≤ 1
τ , hence by Lemma 3 we

have

Q(ut)−Q(ut+1) ≥
1
η

D[ut‖ut+1] . (13)

Combining Eqs. 12 and 13 gives for all t

ηQ(ut+1)−ηQ(z) ≤ D[z‖ut]−D[z‖ut+1] .

Summing this over t = 1, . . . ,T gives (the sum on the RHS telescopes)

η
T

∑
t=1

Q(ut+1)−ηT Q(z) ≤ D[z‖u1]−D[z‖uT+1] .

Because Q(ut) is monotone decreasing (by Eq. 13), we have T Q(uT+1) ≤ ∑T
t=1 Q(ut+1) and simple

algebra gives

Q(uT+1) ≤ Q(z)+
D[z‖u1]−D[z‖uT+1]

ηT
.

1811

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

Dropping the term D[z‖uT+1] (because −D[z‖uT+1] ≤ 0) we obtain

Q(uT+1) ≤ Q(z)+
D[z‖u1]

ηT
,

as required.

Appendix B. O(log(1
ε)) Rate for Batch Algorithms - Proof of Lemma 6

By the assumptions of Lemma 6, Q(u) is τ-upper-bounded, and 0 ≤ η ≤ 1
τ , hence by Lemma 3 we

have for all t

Q(ut)−Q(ut+1) ≥
1
η

D[ut‖ut+1] .

Combining this result with Lemma 10 gives

ηQ(ut+1)−ηQ(z) ≤ D[z‖ut]−D[z‖ut+1]−ηBQ[z‖ut] .

We can now make use of the assumption that Q(u) is (µ,τ)-bounded, and hence ηBQ[z‖ut] ≥
ηµD[z‖ut], to obtain

ηQ(ut+1)−ηQ(z) ≤ D[z‖ut]−D[z‖ut+1]−ηµD[z‖ut]

= (1−ηµ)D[z‖ut]−D[z‖ut+1]

≤ (1−ηµ)D[z‖ut] . (14)

If there exists a t ≤ T such that Q(ut+1)−Q(z) ≤ 0 then because Q(ut) decreases monotonically
with t we have Q(uT+1) ≤ Q(ut+1) ≤ Q(z) and the lemma trivially holds. Otherwise, it must be the
case that Q(ut+1)−Q(z) ≥ 0 for all t ≤ T , and thus for all t ≤ T

D[z‖ut+1] ≤ (1−ηµ)D[z‖ut] .

Using this inequality recursively for t = 1, . . . ,T we get

D[z‖uT+1] ≤ (1−ηµ)T D[z‖u1] .

Substituting back into Eq. 14 we obtain

Q(uT+1)−Q(z) ≤
(1−ηµ)T

η
D[z‖u1] ≤

e−ηµT

η
D[z‖u1] ,

where we have used log(1− x) ≤−x.

Appendix C. Proof of Lemma 7

For the regularized log-likelihood dual, for any v ∈ ∆

Qu,i(v) = ∑
y

vy logvy +
1
2

vT A(i, i)v+ ∑
j 6=i

∑
y

u j,y logu j,y +
1
2 ∑

j 6=i
∑
k 6=i

uT
j A(j,k)uk + ∑

j 6=i

uT
j A(j, i)v ,

1812

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

where A(j,k) is the |Y | × |Y | sub-matrix of A defined as Ay,z(j,k) = A(j,y),(k,z). To obtain the
Bregman divergence BQu,i [p‖q], note that the last three terms in Qu,i(v) are either constant or linear
in v and thus do not contribute to BQu,i [p‖q]. It follows that

BQu,i [p‖q] = D[p‖q]+MA(i,i)[p‖q] .

By a similar argument to the proof of Lemma 3, it follows that BQu,i [p‖q] ≤ (1+ |A(i, i)|∞)D[p‖q].
Because A(i, i) is a sub-matrix of A we have |A(i, i)|∞ ≤ |A|∞, and the first part of the lemma follows.
For the max-margin dual, a similar argument shows that

BQu,i [p‖q] = MA(i,i)[p‖q] ,

so we have BQu,i [p‖q] ≤ |A(i, i)|∞D[p‖q] ≤ |A|∞D[p‖q].

Appendix D. Proof of Lemma 8

For the proof we will need some additional notation, which makes explicit the relationship between
the sequence of dual variables u1,u2, . . . ,uT+1 and the sequence of indices k1,k2, . . . ,kT used in the
algorithm in Figure 2. We will use the following definitions:

• We use kt
1 to denote a sequence of indices k1,k2, . . . ,kt . We take k0

1 to be the empty sequence.

• We write r : ∆n × [1 . . .n] → ∆n to denote the function that corresponds to an EG update on a
single example. More specifically, we have

ri(u,k) = ui for i 6= k

ri,y(u,k) ∝ ui,y exp{−η∇i,y} where ∇i,y = ∂Q(u)
∂ui,y

for i = k, for all y .

• Finally, for any choice of index sequence kT
1 we will define a sequence of dual variables using

the following iterative definition:

u(k0
1) = u1

u(kt
1) = r(u(kt−1

1),kt) for t ≥ 1 .

Here u1 is the initial setting of the dual variables, as shown in the algorithm in Figure 2.

From these definitions it follows that if kT
1 is the sequence of indices chosen during a run of the

algorithm in Figure 2, then the sequence of dual variables u1,u2, . . . ,uT+1 is such that ut+1 = u(kt
1)

for t = 0 . . .T . We can now give the proof.

Proof of Lemma 8. First, we have for any u,z ∈ ∆n

Q(u) ≤ Q(z)+(u− z) ·∇Q(u)

= Q(z)+
1
η

n

∑
i=1

[

D[zi‖ui]−D[zi‖ri(u, i)]+D[ui‖ri(u, i)]
]

. (15)

The second line follows by similar arguments to those in the proof of Lemma 10.

1813

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

Next consider the terms on the right-hand-side of the inequality. For any i, we have

D[zi‖ui]−D[zi‖ri(u, i)]

= D[zi‖ui]−D[zi‖ri(u, i)]+ ∑
j=1...n, j 6=i

D[z j‖u j]− ∑
j=1...n, j 6=i

D[z j‖u j] (16)

= D[zi‖ui]−D[zi‖ri(u, i)]+ ∑
j=1...n, j 6=i

D[z j‖u j]− ∑
j=1...n, j 6=i

D[z j‖r j(u, i)] (17)

= D[z‖u]−D[z‖r(u, i)] . (18)

Here Eq. 17 follows from Eq. 16 because r j(u, i) = u j for j 6= i. In addition, for any i we have

1
η

D[ui‖ri(u, i)] ≤ Q(u)−Q(r(u, i)) . (19)

This follows because by the assumption in the lemma, Q(u) is τ-online-upper-bounded, so we have
BQu,i [ri(u, i)‖ui]≤ τD[ri(u, i)‖ui]. By an application of Lemma 2 to the convex function Qu,i, noting
that by assumption η ≤ 1/τ, it follows that

1
η

D[ui‖ri(u, i)] ≤ Qu,i(ui)−Qu,i(ri(u, i)) .

Finally, note that Qu,i(ui) = Q(u), and Qu,i(ri(u, i)) = Q(r(u, i)), giving the result in Eq. 19.
Combining Equations 15, 18 and 19 gives for any u,

Q(u) ≤ Q(z)+
1
η

n

∑
i=1

[

D[z‖u]−D[z‖r(u, i)]
]

+
n

∑
i=1

[

Q(u)−Q(r(u, i))
]

. (20)

Because Eq. 20 holds for any value of u, we have for all t = 1 . . .T , for all kt−1
1 ∈ [1 . . .n]t−1,

Q(u(kt−1
1)) ≤ Q(z)+

1
η

n

∑
i=1

[

D[z‖u(kt−1
1)]−D[z‖r(u(kt−1

1), i)]
]

+
n

∑
i=1

[

Q(u(kt−1
1))−Q(r(u(kt−1

1), i))
]

. (21)

We can now take an expectation of both sides of the inequality in Eq. 21. For any function f (kt
1),

we use the notation Et [f (kt
1)] to denote the expected value of f (kt

1) when kt
1 is drawn uniformly at

random from [1,2, . . . ,n]t ; more precisely

Et [f (kt
1)] =

1
nt ∑

kt
1∈[1,2,...,n]t

f (kt
1) .

We apply the operator Et−1 to both sides of Eq. 21. We consider the different terms in turn. First,

Et−1[Q(u(kt−1
1))] = ET [Q(u(kt−1

1))] .

This follows because Q(u(kt−1
1)) does not depend on the values for kt , . . . ,kT . Clearly, Et−1[Q(z)] =

Q(z). Next,

Et−1

[

1
η

n

∑
i=1

D[z‖u(kt−1
1)]−D[z‖r(u(kt−1

1), i)]

]

1814

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

= Et−1

[

n
η

D[z‖u(kt−1
1)]

]

−Et−1

[

n
η

n

∑
i=1

1
n

D[z‖r(u(kt−1
1), i)]

]

= Et−1

[

n
η

D[z‖u(kt−1
1)]

]

−Et

[

n
η

D[z‖u(kt
1)]

]

= ET

[

n
η

D[z‖u(kt−1
1)]

]

−ET

[

n
η

D[z‖u(kt
1)]

]

.

Finally, we consider the last term:

Et−1

[

n

∑
i=1

Q(u(kt−1
1))−Q(r(u(kt−1

1), i))

]

= Et−1

[

nQ(u(kt−1
1))−n

n

∑
i=1

1
n

Q(r(u(kt−1
1), i))

]

= Et−1
[

nQ(u(kt−1
1))

]

−Et
[

nQ(u(kt
1))
]

= ET
[

nQ(u(kt−1
1))

]

−ET
[

nQ(u(kt
1))
]

.

Combining these results with Eq. 21 gives

ET [Q(u(kt−1
1))] ≤ Q(z)+ET

[

n
η

D[z‖u(kt−1
1)]

]

−ET

[

n
η

D[z‖u(kt
1)]

]

+ET
[

nQ(u(kt−1
1))

]

−ET
[

nQ(u(kt
1))
]

. (22)

Summing Eq. 22 over t = 1 . . .T gives

T

∑
t=1

ET [Q(u(kt−1
1))] ≤ T Q(z)+ET

[

n
η

D[z‖u(k0
1)]

]

−ET

[

n
η

D[z‖u(kT
1)]

]

+ET
[

nQ(u(k0
1))
]

−ET
[

nQ(u(kT
1))
]

≤ T Q(z)+
n
η

D[z‖u(k0
1)]+n

[

Q(u(k0
1))−Q(u∗)

]

= T Q(z)+
n
η

D[z‖u1]+n
[

Q(u1)−Q(u∗)
]

, (23)

where u∗ = argminu∈∆n Q(u). Finally, note that for any value of kT
1 we have Q(u(kt

1))≤ Q(u(kt−1
1))

for t = 1 . . .T . Thus
ET [Q(u(kt

1))] ≤ ET [Q(u(kt−1
1))] ,

and

T ET [Q(u(kT
1)] ≤

T

∑
t=1

ET [Q(u(kt−1
1))] .

Combining this with Eq. 23 gives

T ET [Q(u(kT
1)] ≤ T Q(z)+

n
η

D[z‖u1]+n
[

Q(u1)−Q(u∗)
]

,

thus proving the lemma.

1815

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

Appendix E. Proof of Lemma 9

(Note: this proof builds on notation and techniques given in the proof of Lemma 8, see Appendix D.)
We begin with the following identity

BQ[z||u] = Q(z)−Q(u)−∇Q(u) · (z−u) .

Rearranging yields for any z,u ∈ ∆n,

Q(u)−Q(z) = ∇Q(u) · (u− z)−BQ[z||u]

=
1
η

n

∑
i=1

[

D[zi‖ui]−D[zi‖ri(u, i)]+D[ui‖ri(u, i)]
]

−BQ[z||u] ,

where the second line follows by a similar argument to the proof of Lemma 10.
By applying similar arguments to those leading to Eq. 20 in Appendix D, we get for any z,u ∈

∆n,

Q(u)−Q(z) ≤
1
η

n

∑
i=1

[

D[z‖u]−D[z‖r(u, i)]
]

+
n

∑
i=1

[

Q(u)−Q(r(u, i))
]

−BQ[z||u]

=
n
η

D[z‖u]−
n
η

n

∑
i=1

1
n

D[z‖r(u, i)]+
n

∑
i=1

[

Q(u)−Q(r(u, i))
]

−BQ[z||u]

≤

(

n
η
−µ

)

D[z‖u]−
n
η

n

∑
i=1

1
n

D[z‖r(u, i)]+
n

∑
i=1

[

Q(u)−Q(r(u, i))
]

,

where in the third line, we have used the assumption from the lemma that Q(u) is (µ,τ)-online-
bounded, and hence BQ[z||u]≥ µD[z‖u]. The inequality above holds for all u,z ∈ ∆n, so we can take
u = u(kt−1

1) for any sequence kt−1
1 . Taking expectations of both sides, and using similar arguments

to those leading to Eq. 22 in Appendix D, we get

ET

[

Q(u(kt−1
1))

]

−Q(z) ≤

(

n
η
−µ

)

ET

[

D[z‖u(kt−1
1)]

]

−
n
η

ET

[

D[z‖u(kt
1)]
]

+ nET

[

Q(u(kt−1
1))

]

−nET

[

Q(u(kt
1))
]

, (24)

where ET is again an expectation with respect to the sequence kT
1 being drawn from the uniform

distribution over [1 . . .n]T . For convenience, define

Q̃ t ≡ ET

[

Q(u(kt
1))
]

−Q(z) and D̃t ≡
1
η

ET

[

D[z||u(kt
1)]
]

.

We may assume that Q̃ t ≥ 0 for all t ≤ T since if this is not true the lemma trivially holds.17 Eq. 24
can be rearranged to give

Q̃ t−1 ≤ (n−ηµ)D̃t−1 −nD̃t +nQ̃ t−1 −nQ̃ t

nQ̃ t +nD̃t ≤ (n−1)Q̃ t−1 +(n−ηµ)D̃t−1 ≤ (n−ηµ)
(

Q̃ t−1 + D̃t−1) (25)

Q̃ t + D̃t ≤
(

1−
ηµ
n

)

(

Q̃ t−1 + D̃t−1) ,

17. Note that ET
[

Q(u(kt
1))
]

is monotone decreasing since every random sequence of updates results in monotone im-
provement. The lemma then holds by an argument similar to Appendix B.

1816

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

where Eq. 25 uses the observation that n−ηµ ≥ n−1 because ηµ ≤ 1 (this follows because η ≤ 1/τ
and µ < τ for some τ > 0). By iterating this result, it follows that

Q̃ T + D̃T ≤
(

1−
ηµ
n

)T
(

Q̃ 0 + D̃0)

ET
[

Q(u(kT
1))
]

≤ Q(z)+
(

1−
ηµ
n

)T
(

Q(u1)−Q(z)+
1
η

D[z||u1]

)

≤ Q(z)+ e−ηµT/n
(

Q(u1)−Q(z)+
1
η

D[z||u1]

)

,

thus proving the lemma.

Appendix F. Empirical Comparisons in Terms of Running Time

In this section we compare EG to SGD and L-BFGS in terms of running time. The experiments in
the main text provide comparison in terms of “effective” iterations, which do not take into account
the computational cost of processing a single example. Here we show that EG maintains its advan-
tages over the other learning algorithms when running time is used as a performance measure, with
similar relative improvements to those reported in the main text.

Clearly, any timed comparison depends on the quality of the implementations being compared.
Data processing and gradient and objective calculations were performed using the same C++ code
for all three algorithms: EG, SGD, and L-BFGS. For L-BFGS, we used the implementation based
on Byrd et al. (1995).18 This code is available online and is written in Fortran. The SGD update is
straightforward and we implemented it ourselves in our C++ package. All the timing experiments
were performed on a 1.8GHz AMD OpteronTM CPU.

We focus on the log-linear case here, since timing results for the max-margin case were provided
in Section 8.

Figures 14 and 15 show results for the MNIST multi-class (see Section 7.1), and the parsing
tasks (see Section 7.2) respectively. As in the results in the main text, it can be seen that the EG
objective converges faster than the two other algorithms. Also, as in the main text, SGD converges
quickly in terms of accuracy, but its objective converges very slowly to the optimum.

Note that the timing of the EG experiments includes the time required to convert the dual pa-
rameters to the primal representation. We have found that the EG algorithm is quite fast in practice;
in the MNIST task, for example, the EG algorithm requires on average only 10% more time per
iteration (including the step-size search) than SGD and L-BFGS. To help explain why EG is able to
run almost as fast as SGD, Figure 16 presents pseudocode for the SGD and online EG algorithms.
Both SGD and EG share the following operations: (a) inner products between the feature vectors
and the primal vector, (b) computation of part-wise marginals, and (c) addition of scaled feature
vectors to the primal vector. In the EG algorithm, we require two additional loops over R(xi) in
order to update the dual variables and compute the dual entropy term. In practice, however, the cost
of the two additional loops is dominated by the three shared operations mentioned above. Thus,
processing a single example takes roughly the same time for EG and SGD. Similar arguments can
be used to explain why EG can run almost as fast as L-BFGS.

18. Specifically, we used the code by Zhu, Byrd, Lu, and Nocedal (www.ece.northwestern.edu/∼nocedal/).

1817

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

��� ���

��� ���

��� ���

��� �

��� �
	

��� ���

��� ���

��� ���

� �� 	���� 	��� �����

� � �
���
� �
�

��������� "!$# %�!'&�(�)+*�%�,

-/.10 �32 	��
4+576�8�.:9;0 �32 	��
9�.1<30 �32 	��

 7

 8

 9

 10

 11

 12

 0 50 100 150 200

C
la

s
s
if
ic

a
ti
o

n
 E

rr
o

r
(%

)

CPU Time (seconds)

EG, C=10
L-BFGS, C=10

SGD, C=10

Figure 14: Timing results on the MNIST task, comparing the EG algorithm to L-BFGS and SGD.
All algorithms are trained on the log-linear objective function with C = 10. The left fig-
ure shows objective values and the right figure shows classification error (see Figure 12).
The results roughly correspond to 200 effective iterations.

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5 6 7

O
b

je
c
ti
v
e

CPU Time (hours)

EG, C=10
L-BFGS, C=10
SGD, C=10

 72

 74

 76

 78

 80

 82

 0 1 2 3 4 5 6 7

A
c
c
u

ra
c
y
 (

%
)

CPU Time (hours)

EG, C=10
L-BFGS, C=10
SGD, C=10

Figure 15: Timing results on the dependency-parsing task, comparing the EG algorithm to L-BFGS
and SGD. All algorithms are trained on the log-linear objective function with C = 10.
The left figure shows objective values and the right figure shows accuracy (see Fig-
ure 12). The results roughly correspond to 100 effective iterations.

1818

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

SGD Update:

/ compute part-wise inner products
1. q = 0
2. for r ∈ R(xi)
3. qr = wt · f(xi,r)
4. endfor

/ compute marginals
5. m = MARGINALS(q)

/ apply gradient of regularizer
6. wt+1 = (1−ηC)wt

/ apply gradient of log-loss
7. for r ∈ R(xi)
8. if r ∈ yi

/ empirical contribution
9. wt+1 = wt+1 +ηf(xi,r)
10. endif

/ expected contribution
11. wt+1 = wt+1 −ηmrf(xi,r)
12. endfor

Online EG Update:

/ compute part-wise inner products
1. q = 0
2. for r ∈ R(xi)

3. qr = 1
C wt · f(xi,r)

4. endfor
/ update part-wise duals

5. for r ∈ R(xi)

6. st+1
i,r = (1−η)st

i,r +ηqr

7. endfor
/ compute marginals and partition function

8. (µt+1
i ,Z) = MARGINALS(st+1

i)
/ compute new dual entropy

9. Ht+1
i = logZ

10. for r ∈ R(xi)

11. Ht+1
i = Ht+1

i −µt+1
i,r st+1

i,r

12. endfor
/ update primals

13. wt+1 = wt

14. for r ∈ R(xi)

15. wt+1 = wt+1 +(µt
i,r −µt+1

i,r)f(xi,r)
16. endfor

/ compute change in dual objective
17. δ = 1

2C‖wt+1‖2 −Ht+1
i − (1

2C‖wt‖2 −Ht
i)

Figure 16: Pseudocode for the updates performed in SGD and online EG for structured log-linear
models (note that / denotes a comment). In EG, we maintain dual vectors st

i , marginals
µt

i , entropy values H t
i , and a vector wt = w(ut). Note that line-search techniques can

be implemented based on the δ value computed in line 17 of the EG update. A vector
scaling operation is required in line 6 of SGD, and vector norm operations are required in
line 17 of EG; these can be performed in O(1) time using an appropriate representation
(e.g., see Shalev-Shwartz et al., 2007).

1819

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

References

J. Baker. Trainable grammars for speech recognition. In J.J. Wolf and D.H. Klatt, editors, Proceed-
ings of the 97th meeting of the Acoustical Society of America, pages 547–550. Acoustical Society
of America, New York, NY, 1979.

P. L. Bartlett, M. Collins, B. Taskar, and D. McAllester. Exponentiated gradient algorithms for
large–margin structured classification. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances
in Neural Information Processing Systems 17, pages 113–120, Cambridge, MA, 2005. MIT Press.

A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31:167–175, 2003.

L.M. Bregman. The relaxation method of finding the common point of convex sets and its applica-
tion to the solution of problems in convex programming. U.S.S.R. Computational Mathematics
and Mathematical Physics, 7:200–217, 1967.

S. Buchholz and E. Marsi. CoNLL-X shared task on multilingual dependency parsing. In Proceed-
ings of the 10th Conference on Computational Natural Language Learning, pages 149–164, New
York City, 2006. Association for Computational Linguistics.

R.H. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained optimization.
SIAM Journal on Scientific and Statistical Computing, 16(5):1190–1208, 1995.

Y. Censor and S.A. Zenios. Parallel Optimization. Oxford University Press, 1997.

M. Civit and M. Antònia Martı́. Design principles for a Spanish treebank. In Proceedings of the 1st
Workshop on Treebanks and Linguistic Theories, pages 61–77, 2002.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

T.M. Cover and J.A Thomas. Elements of Information Theory. Wiley, 1991.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. Journal of Machine Learning Research, 2:265–292, 2002.

N. Cristianini, C. Campbell, and J. Shawe-Taylor. Multiplicative updatings for support-vector learn-
ing. Technical report, NC-TR-98-016, Neuro COLT, Royal Holloway College, 1998.

A. Globerson, T. Koo, X. Carreras, and M. Collins. Exponentiated gradient algorithms for log-linear
structured prediction. In Z. Ghahramani, editor, Proceedings of the 24th International Conference
on Machine Learning, pages 305–312. ACM Press, New York, NY, 2007.

D. Hush, P. Kelly, C. Scovel, and I. Steinwart. QP algorithms with guaranteed accuracy and run
time for support vector machines. Journal of Machine Learning Research, 7:733–769, 2006.

T. Jaakkola and D. Haussler. Probabilistic kernel regression models. In D. Heckerman and J. Whit-
taker, editors, Proceedings of 7th Workshop on Artificial Intelligence and Statistics. Morgan Kauf-
mann, San Francisco, CA, 1999.

1820

EXPONENTIATED GRADIENT ALGORITHMS FOR CRFS AND MAX-MARGIN MARKOV NETWORKS

T. Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 217–226. ACM Press,
New York, NY, 2006.

S.S. Keerthi, K.B. Duan, S.K. Shevade, and A. N. Poo. A fast dual algorithm for kernel logistic
regression. Machine Learning, 61:151–165, 2005.

J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 132(1):1–63, 1997.

J. Kivinen and M. Warmuth. Relative loss bounds for multidimensional regression problems. Ma-
chine Learning, 45(3):301–329, 2001.

K. Koh, S.J. Kim, and S. Boyd. An interior point method for large scale l1-regularized logistic
regression. Journal of Machine Learning Research, 8:1519–1555, 2007.

T. Koo, A. Globerson, X. Carreras, and M. Collins. Structured prediction models via the matrix-
tree theorem. In Proceedings of the Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning, pages 141–150. Association
for Computational Linguistics, 2007.

J. Lafferty, A. McCallum, and F. Pereira. Conditonal random fields: Probabilistic models for seg-
menting and labeling sequence data. In C.E. Brodley and A.P. Danyluk, editors, Proceedings
of the 18th International Conference on Machine Learning, pages 282–289, San Francisco, CA,
2001. Morgan Kaufmann.

G. Lebanon and J. Lafferty. Boosting and maximum likelihood for exponential models. In T.G.
Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing
Systems 14, pages 447–454. MIT Press, Cambridge, MA, 2002.

Y. LeCun, L. Bottou, Y. Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

N. List, D. Hush, C. Scovel, and I. Steinwart. Gaps in support vector optimization. In Proceedings
of the 20th Conference on Learning Theory, pages 336–348, 2007.

R. McDonald, K. Crammer, and F. Pereira. Online large-margin training of dependency parsers. In
Proceedings of the 43rd Annual Meeting of the ACL, pages 91–98. Association for Computational
Linguistics, 2005.

R. Memisevic. Dual optimization of conditional probability models. Technical report, University
of Toronto, 2006.

T. Minka. A comparison of numerical optimizers for logistic regression. Technical report, Carnegie
Mellon University, 2003.

M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and Proba-
bilistic Analysis. Cambridge University Press, 2005.

A. Nedic and D. P. Bertsekas. Incremental subgradient methods for nondifferentiable optimization.
SIAM Journal on Optimization, 12(1):109–138, 2001.

1821

COLLINS, GLOBERSON, KOO, CARRERAS AND BARTLETT

J. Platt. Fast training of support vector machines using sequential minimal optimization. In
B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vec-
tor Learning, pages 41–64. MIT Press, 1998.

F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceedings of the
conference of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology, pages 134–141. Association for Computational Linguistics, 2003.

F. Sha, Y. Lin, L.K. Saul, and D.D. Lee. Multiplicative updates for nonnegative quadratic program-
ming. Neural Computation, 19(8):2004–2031, 2007.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for
SVM. In Z. Ghahramani, editor, Proceedings of the 24th International Conference on Machine
Learning, pages 807–814. ACM Press, New York, NY, 2007.

B. Taskar, C. Guestrin, and D. Koller. Max margin Markov networks. In S. Thrun, L. Saul, and
B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages 25–32. MIT
Press, Cambridge, MA, 2004a.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. Max-margin parsing. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing, pages 1–8. Association
for Computational Linguistics, 2004b.

B. Taskar, S. Lacoste-Julien, and M. Jordan. Structured prediction, dual extragradient and Bregman
projections. Journal of Machine Learning Research, pages 1627–1653, 2006.

C.H. Teo, Q. Le, A. Smola, and S.V.N. Vishwanathan. A scalable modular convex solver for regu-
larized risk minimization. In Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 727–736. ACM Press, New York, NY, USA, 2007.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for
interdependent and structured output spaces. In C.E. Brodley, editor, Proceedings of the 21st
International Conference on Machine Learning, pages 823–830. ACM, New York, NY, 2004.

S.V. N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. P. Murphy. Accelerated training
of conditional random fields with stochastic gradient methods. In W.W. Cohen and A. Moore,
editors, Proceedings of the 23rd International Conference on Machine Learning, pages 969–976.
ACM Press, New York, NY, 2006.

T. Zhang. On the dual formulation of regularized linear systems with convex risks. Machine Learn-
ing, 46:91–129, 2002.

J. Zhu and T. Hastie. Kernel logistic regression and the import vector machine. In T.G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14,
pages 1081–1088. MIT Press, Cambridge, MA, 2001.

1822

Journal of Machine Learning Research 9 (2008) 1823-1840 Submitted 11/06; Revised 8/07; Published 8/08

Classification with a Reject Option using a Hinge Loss

Peter L. Bartlett BARTLETT@CS.BERKELEY.EDU

Computer Science Division and Department of Statistics
University of California
Berkeley, CA 94720-1776, USA

Marten H. Wegkamp WEGKAMP@STAT.FSU.EDU

Department of Statistics
Florida State University
Tallahassee, FL 32306-4330, USA

Editor: John Shawe-Taylor

Abstract
We consider the problem of binary classification where the classifier can, for a particular cost,
choose not to classify an observation. Just as in the conventional classification problem, minimiza-
tion of the sample average of the cost is a difficult optimization problem. As an alternative, we
propose the optimization of a certain convex loss function φ, analogous to the hinge loss used in
support vector machines (SVMs). Its convexity ensures that the sample average of this surrogate
loss can be efficiently minimized. We study its statistical properties. We show that minimizing the
expected surrogate loss—the φ-risk—also minimizes the risk. We also study the rate at which the
φ-risk approaches its minimum value. We show that fast rates are possible when the conditional
probability P(Y = 1|X) is unlikely to be close to certain critical values.
Keywords: Bayes classifiers, classification, convex surrogate loss, empirical risk minimization,
hinge loss, large margin classifiers, margin condition, reject option, support vector machines

1. Introduction

The aim of binary classification is to classify observations that take values in an arbitrary feature
space X into one of two classes, labeled −1 or +1. A discriminant function f : X → R yields a
classifier sgn(f (x)) ∈ {−1,+1} that represents our guess of the label Y of a future observation X
and we err if the margin y · f (x) < 0. The Bayes discriminant function

P{Y = 1|X = x}−P{Y = −1|X = x}

minimizes the probability of misclassification P{Y f (X) < 0}. Observations x for which the condi-
tional probability

η(x) = P{Y = +1|X = x}

is close to 1/2, are the most difficult to classify. In the extreme case where η(x) = 1/2, we may just
as well toss a coin to make a decision. While it is our aim to classify the majority of future observa-
tions in an automatic way, it is often appropriate to instead report a warning for those observations
that are hard to classify (the ones having conditional probability η(x) near the value 1/2). This mo-
tivates the introduction of a reject option for classifiers, by allowing for a third decision, r (reject),

c©2008 Peter L. Bartlett and Marten H. Wegkamp.

BARTLETT AND WEGKAMP

expressing doubt. For instance, in clinical trials it is important to be able to reject a tumor diagnostic
classification since the consequences of misdiagnosis are severe and scientific expertise is required
to make reliable determination. Although such classifiers are valuable in practice, few theoretical
results are available in the statistical literature (Herbei and Wegkamp, 2006; Ripley, 1996). In the
engineering community on the other hand this option is more common and empirically shown to
effectively reduce the misclassification rate (Chow, 1970; Fumera and Roli, 2002, 2004; Fumera
et al., 2000; Golfarelli et al., 1997; Györfi et al., 1978; Hansen et al., 1997; Landgrebe et al., 2006).

We propose to incorporate the reject option into our classification scheme by using a threshold
value 0 ≤ δ < 1 as follows. Given a discriminant function f : X → R, we report sgn(f (x))) ∈
{−1,1} if | f (x)| > δ, but we withhold decision if | f (x)| ≤ δ and report r. In this note, we assume
that the cost of making a wrong decision is 1 and the cost of using the reject option is d > 0. The
appropriate risk function is then

Ld,δ(f) = E`d(Y f (X)) = P{Y f (X) < −δ}+dP{|Y f (X)| ≤ δ} (1)

for the discontinuous loss

`d,δ(z) =

1 if z < −δ,

d if |z| ≤ δ,

0 otherwise.

The classifier associated with the discriminant function f ∗d (x) that minimizes the risk Ld,δ(f) assigns
−1,1 or r depending on which of η(x), 1−η(x) or d is smallest. Since we never reject if d > 1/2,
we restrict ourselves to the cases 0 ≤ d ≤ 1/2. The generalized Bayes discriminant function f ∗d (x)
is then

f ∗d (x) =

−1 if η(x) < d
0 if d ≤ η(x) ≤ 1−d
+1 if η(x) > 1−d

(2)

with risk
L∗

d = Ld,δ(f ∗d) = Emin{η(X),1−η(X),d}.

The case (δ,d) = (0,1/2) reduces to the classical situation without the reject option. We emphasize
that the rejection cost d should be known a priori. In a medical setting when determining whether a
disease is present or absent, the reject option often leads to quantifiable costs for additional tests and
perhaps in delays of treatment. The exact value of d will be dictated by such considerations. From
the above we can also view d as an upper bound on the conditional probability of misclassification
(given X) that is considered tolerable.

We postpone the discussion on the choice of the threshold δ until after Theorem 2.
Plug-in classification rules replace the regression function η(x) by an estimate η̂(x) in the for-

mula for f ∗d (x) above. It is shown by Herbei and Wegkamp (2006) that the rate of convergence of the
risk (1) to the Bayes risk L∗

d of a general plug-in rule with reject option depends on how well η̂(X)
estimates η(X) and on the behavior of η(X) near the values d and 1− d. This condition on η(X)
nicely generalizes the margin condition of Tsybakov (2004) from the classical setting (d = 1/2)
to our more general framework (0 ≤ d ≤ 1/2). The same paper derives oracle inequalities for the
excess risk Ld,δ(f̂)−L∗

d of the (naive) empirical risk minimizer f̂ of ∑n
i=1 `d,δ(Yi f (Xi)) based on n

1824

CLASSIFICATION WITH A REJECT OPTION USING A HINGE LOSS

independent observations (Xi,Yi), over a class of discriminant functions F . The results are in line
with recent theoretical developments (Boucheron et al., 2006, 2005; Massart, 2007) of standard bi-
nary classification (d = 1/2). Despite its attractive theoretical properties, the naive empirical risk
minimization method is often hard to implement. This paper addresses this pitfall by considering a
convex surrogate for the loss function akin to the hinge loss that is used in SVMs. In the engineering
literature, there are recently encouraging empirical results on SVMs with a reject option (Bounsiar
et al., 2006; Fumera et al., 2003; Fumera and Roli, 2002; Tortorella, 2004).

The next section introduces a piecewise linear loss function φd(x) that generalizes the hinge loss
function max{0,1−x} in that it allows for the reject option and φd(x) = max{0,1−x} for d = 1/2.
We prove that f ∗d in (2) also minimizes the risk associated with this new loss and that the excess
risk Ld,δ −L∗

d can be bounded by 2d times the excess risk based on the piecewise linear loss φd if
δ = 1/2. Thus classifiers with small excess φd-risk automatically have small excess classification
risk, providing theoretical justification of the more computationally appealing method.

In Section 3, we illustrate the computational convenience of the new loss, showing that the SVM
classifier with reject option can be obtained by solving a standard convex optimization problem.

Finally, in Section 4, we show that fast rates (for instance, faster than n−1/2) of the SVM clas-
sifier with reject option are possible under the same noise conditions on η(X) used by Herbei and
Wegkamp (2006). As a side effect, for the standard SVM (the special case of d = 1/2), our results
imply fast rates without an assumption that η(X) is unlikely to be near 0 and 1, a technical condition
that has been imposed in the literature for that case (Blanchard et al., 2008; Tarigan and van de Geer,
2006).

2. Generalized Hinge Loss

Instead of the discontinuous loss `d,δ, we consider the convex surrogate loss

φd(z) =

1−az if z < 0,

1− z if 0 ≤ z < 1,

0 otherwise

where a = (1−d)/d ≥ 1. The next result states that the minimizer of the expectation of the discrete
loss `d,δ(z) and the convex loss φd(z) remains the same.

Proposition 1 The Bayes discriminant function (2) minimizes the risk

Lφd (f) = Eφd(Y f (X))

over all measurable f : X → R. Furthermore,

dLφd (f ∗d) = Ld,δ(f ∗d).

Proof Observe that

Lφd (f) = Eη(X)φd(f (X))+E(1−η(X))φd(− f (X)).

Hence, for

rη,φd (z) = ηφd(z)+(1−η)φd(−z) (3)

1825

BARTLETT AND WEGKAMP

it suffices to show that

z∗ =

−1 if η < 1/(1+a),

0 if 1/(1+a) ≤ η ≤ a/(1+a),

1 if η > a/(1+a)

minimizes rη,φd (z). The function rη,φd (z) can be written as

rη,φd (z) =

η−aηz if z ≤−1,

1+ z(1− (1+a)η) if −1 ≤ z ≤ 0,

1+ z(−η+a(1−η)) if 0 ≤ z ≤ 1,

z(a(1−η))+(1−η) if z ≥ 1

and it is now a simple exercise to verify that z∗ indeed minimizes rη,φd (z). Finally, since Lφd (f) =
Erη,φd (f (X)) and

inf
z

ηφd(z)+(1−η)φd(−z)

= ηφd(z
∗)+(1−η)φd(z

∗)

=
η
d

1 [η < d]+1 [d ≤ η ≤ 1−d]+
1−η

d
1 [η > 1−d] ,

where 1 [A] denotes the indicator function of a set A, we find that

dLφd (f ∗d) = E [min(η(X),1−η(X),d)] = L∗
d .

and the second claim follows as well.

We see that φd(z) ≥ `d,δ(z) for all z ∈ R as long as 0 ≤ δ ≤ 1−d. Since this pointwise relation
remains preserved under taking expected values, we immediately obtain Ld,δ(f) ≤ Lφd (f). The
following comparison theorem shows that a relation like this holds not only for the risks, but for the
excess risks as well.

Theorem 2 Let 0 ≤ d < 1/2 and a measurable function f be fixed. For all 0 < δ ≤ 1/2, we have

Ld,δ(f)−L∗
d ≤

d
δ
(
Lφd (f)−L∗

φd

)
,

where L∗
φd

= Lφd (f ∗d). For 1/2 ≤ δ ≤ 1−d, we have

Ld,δ(f)−L∗
d ≤ Lφd (f)−L∗

φd
.

Finally, for (δ,d) = (0,1/2), we have

L(f)−L∗ ≤ Lφ(f)−L∗
φ, (4)

where L(f) := P{Y f (X) < 0}, L∗ := Emin(η(X),1−η(X)) and φ(x) = max{0,1− x}.

1826

CLASSIFICATION WITH A REJECT OPTION USING A HINGE LOSS

Remark 3 The optimal multiplicative constant (d/δ or 1 depending on the value of δ) in front of
the φd-excess risk is achieved at δ = 1/2. For this choice, Theorem 2 states that

Ld,1/2(f)−L∗
d ≤ 2d

(
Lφd (f)−L∗

φd

)
.

For all d ≤ δ ≤ 1− d, the multiplicative constant in front of the φd-excess risk does not exceed 1.
The choice δ = 1/2 with the smallest constant 2d < 1 is right in the middle of the interval [d,1−d].
The choice δ = 1−d corresponds to the largest value of δ for which the piecewise constant function
`d,δ(z) is still majorized by the convex surrogate φd(z). For δ = d we will reject less frequently than
for δ = 1−d and δ = 1/2 can be seen as a compromise among these two extreme cases.

Inequality (4) is due to Zhang (2004).

Before we prove the theorem, we need an intermediate result. We define the functions

ξ(η) = η1 [η < d]+d1 [d ≤ η ≤ 1−d]+ (1−η)1 [η > 1−d]

and

H(η) = inf
z

ηφd(z)+(1−η)φd(−z)

=
η
d

1 [η < d]+1 [d ≤ η ≤ 1−d]+
1−η

d
1 [η > 1−d] .

(We suppress their dependence on d in our notation.) Their expectations are L∗
d = Eξ(η(X)) and

L∗
φd

= EH(η(X)), respectively. Furthermore, we define

H−1(η) = inf
z<−δ

(ηφd(z)+(1−η)φd(−z)) ,

Hr(η) = inf
|z|≤δ

(ηφd(z)+(1−η)φd(−z)) ,

H1(η) = inf
z>δ

(ηφd(z)+(1−η)φd(−z)) ;

ξ−1(η) = η−ξ(η),

ξr(η) = d −ξ(η),

ξ1(η) = 1−η−ξ(η).

Proposition 4 Let 0 ≤ d < 1/2.
If 0 < δ ≤ 1/2, then, for b ∈ {−1,1,r},

ξb(η) ≤
δ
d
{Hb(η)−H(η)}.

If d ≤ δ ≤ 1−d, then, for b ∈ {−1,1,r},

ξb(η) ≤ Hb(η)−H(η).

If (δ,d) = (0,1/2), then, for b ∈ {−1,1,r},

ξb(η) ≤ Hb(η)−H(η).

1827

BARTLETT AND WEGKAMP

The proof is in the appendix.
Proof [Proof of Theorem 2] Recall that Ld,δ(f) = P(η1 [f < −δ]+d1 [−δ ≤ f ≤ δ]+(1−η)1 [f > δ])
and Lφd (f) = Prη,φd (f) with rη,φd defined in the proof of Proposition 1. Here P is the probability
measure of X and Pg =

R

gdP for any P-integrable g. Assume 0 < δ ≤ 1/2 and 0 ≤ d < 1/2. Define
ψ(x) = xδ/d. By linearity of ψ, we have for any measurable function f ,

ψ(Ld,δ(f)−L∗
d) = P(1 [f < −δ]ψ(ξ−1(η))+1 [−δ ≤ f ≤ δ]ψ(ξr(η))

+1 [f > δ]ψ(ξ1(η))) .

Invoke now Proposition 4 to deduce

ψ(Ld,δ(f)−L∗
d) ≤ P(1 [f < −δ] [H−1(η)−H(η)]+1 [−δ ≤ f ≤ δ] [Hr(η)−H(η)]

+1 [f > δ] [H1(η)−H(η)])

≤ P
{

rη,φd (f)−H(η)
}

and conclude the proof by observing that the term on the right of the previous inequality equals
Lφd (f)−L∗

φd
.

For the case (δ,d) = (0,1/2) and the case (δ,d) with d ≤ δ ≤ 1− d and 0 ≤ d < 1/2, take
ψ(x) = x.

3. SVM Classifiers with Reject Option

In this section, we consider an SVM-like classifier for classification with a reject option, and show
that it can be obtained by solving a quadratically constrained quadratic program (QCQP).

Let K : X 2 → R be the kernel of a reproducing kernel Hilbert space (RKHS) H , and let ‖ f‖ be
the norm of f in H . The SVM classifier with reject option is the minimizer of the empirical φd-risk
subject to a constraint on the RKHS norm.1 The following theorem shows that this classifier is the
solution to a QCQP, that is, it is the minimizer of a convex quadratic criterion on a convex subset of
Euclidean space defined by quadratic inequalities. Thus, the classifier can be found efficiently using
general-purpose algorithms.

Theorem 5 For any x1, . . . ,xn ∈ X and y1, . . . ,yn ∈ {−1,1}, let f̂ ∈ H be the solution to

minimize f 7→
n

∑
i=1

φd (yi f (xi))

such that ‖ f‖2 ≤ r2,

where r > 0. Then we can represent f̂ as the finite sum

f̂ (x) =
n

∑
i=1

α̂iK(xi,x),

1. Notice that we parameterize the optimization problem in terms of the constraint on the RKHS norm, rather than
in terms of its Lagrange multiplier, which is more standard. The regularization path—the set of solutions to these
problems as the parameter of the optimization problem varies—is identical.

1828

CLASSIFICATION WITH A REJECT OPTION USING A HINGE LOSS

where α̂1, . . . , α̂n is the solution to the following QCQP.

min
αi,ξi,γi

1
n

n

∑
i=1

(
ξi +

1−2d
d

γi

)

such that ∑
i, j

αiα jK(xi,x j) ≤ r2

ξi ≥ 0, γi ≥ 0,

ξi ≥ 1− yi

n

∑
j=1

α jK(xi,x j),

γi ≥−yi

n

∑
j=1

α jK(xi,x j) for i = 1, . . . ,n.

Proof The fact that f̂ can be represented as a finite sum over the kernel basis functions is a standard
argument (Kimeldorf and Wahba, 1971; Cox and O’Sullivan, 1990). It follows from Pythagoras’
theorem in Hilbert space: the squared RKHS norm can be split into the squared norm of the com-
ponent in the space spanned by the kernel basis functions x 7→ K(xi,x) and that of the component in
the orthogonal subspace. Since the cost function depends on f only at the points xi, and the repro-
ducing property f (xi) = 〈K(xi, ·), f 〉 shows that these values depend only on the component of f in
the space spanned by the kernel basis functions, the orthogonal subspace only makes the constraint
harder to satisfy, but does not affect the cost function. Thus, a minimizing f̂ can be represented in
terms of the solution α̂ to the minimization

min
α1,...,αn

1
n

n

∑
i=1

φd

(
yi

n

∑
j=1

α jK(xi,x j)

)

such that ∑∑
1≤i, j≤n

αiα jK(xi,x j) ≤ r2.

But then it is easy to see that we can decompose φd as

φd(β) = max{0,1−β}+
1−2d

d
max{0,−β}.

Parameterizing φd using the slack variables

ξi = max{0,1− yi f (xi)}, γi = max{0,−yi f (xi)}

gives the QCQP.

4. Tsybakov’s Margin Condition, Bernstein Classes, and Fast Rates

In this section, we consider methods that choose the function f̂ from some class F so as to minimize
the empirical φd-risk

L̂φd (f) =
1
n

n

∑
i=1

φd(Yi f (Xi)).

1829

BARTLETT AND WEGKAMP

For instance, to analyze the SVM classifier with reject option, we could consider classes Fn = { f ∈
H : ‖ f‖ ≤ cn} for some sequence of constants cn. We are interested in bounds on the excess φd-
risk, that is, the difference between the φd-risk of f̂ and the minimal φd-risk over all measurable
functions, of the form

ELφd (f̂)−L∗
φd
≤ 2 inf

f∈F

(
Lφd (f)−L∗

φd

)
+ εn.

Such bounds can be combined with an assumption on the rate of decrease of the approximation error

inf f∈Fn

(
Lφd (f)−L∗

φd

)
for a sequence of classes Fn used by a method of sieves, and thus provide

bounds on the rate of convergence of risk Ld,δ(f̂) to the optimal Bayes risk L∗
d .

For many binary classification methods (including empirical risk minimization, plug-in esti-
mates, and minimization of the sample average of a suitable convex loss), the estimation error term
εn approaches zero at a faster rate when the conditional probability η(X) is unlikely to be close
to the critical value of 1/2 (Audibert and Tsybakov, 2007; Bartlett et al., 2006; Blanchard et al.,
2008; Steinwart and Scovel, 2007; Tarigan and van de Geer, 2006; Tsybakov, 2004). For plug-in
rules, Herbei and Wegkamp (2006) showed an analogous result for classification with a reject op-
tion, where the corresponding condition concerns the probability that η(X) is close to the critical
values of d and 1− d. In this section, we prove a bound on the excess φd-risk of f̂ that converges
rapidly when a condition of this kind applies. We begin with a precise statement of the condition.
For d = 1/2, it is equivalent to the margin condition of Tsybakov (2004).

Definition 6 We say that η satisfies the margin condition at d with exponent α > 0 if there is a c ≥ 1
such that for all t > 0,

P{|η(X)−d| ≤ t} ≤ ctα and P{|η(X)− (1−d)| ≤ t} ≤ ctα.

The reason that conditions of this kind allow fast rates is related to the variance of the excess
φd-loss,

g f (x,y) = φd(y f (x))−φd(y f ∗d (x)),

where f ∗d minimizes the φd-risk. Notice that the expectation of g f is precisely the excess risk of
f , Eg f (X ,Y) = Lφd (f)−L∗

φd
. We will show that when η satisfies the margin condition at d with

exponent α, the variance of each g f is bounded in terms of its expectation, and thus approaches zero
as the φ-risk of f approaches the minimal value. Classes for which this occurs are called Bernstein
classes.

Definition 7 We say that G ⊂ L2(P) is a (β,B)-Bernstein class with respect to the probability mea-
sure P (0 < β ≤ 1, B ≥ 1) if every g ∈ G satisfies

Pg2 ≤ B(Pg)β .

We say that G has a Bernstein exponent β with respect to P if there exists a constant B for which G
is a (β,B)-Bernstein class.

Lemma 8 If η satisfies the margin condition at d with exponent α, then for any class F of mea-
surable uniformly bounded functions, the class G = {g f : f ∈ F } has a Bernstein exponent β =
α/(1+α).

1830

CLASSIFICATION WITH A REJECT OPTION USING A HINGE LOSS

The result relies on the following two lemmas. The first shows that the excess φd-risk is at least
linear in a certain pseudo-norm of the difference between f and f ∗d . It is similar to the L1(P) norm,
but it penalizes f less for large excursions that have little impact on the φd-risk. For example, if
η(x) = 1, then the conditional φd-risk is zero even if f (x) takes a large positive value. For η ∈ [0,1],
define

ρη(f , f ∗d) =

η| f − f ∗d | if η < d and f < −1,

(1−η)| f − f ∗d | if η > 1−d and f > 1,

| f − f ∗d | otherwise,

and recall the definition of the conditional φd-risk in (3).

Lemma 9 For η ∈ [0,1],

d
(
rη,φd (f)− rη,φd (f ∗d)

)
≥ (|η−d|∧ |η− (1−d)|)ρη(f , f ∗d).

Proof Since rη,φd is convex,

rη,φd (f) ≥ rη,φd (f ∗d)+g(f − f ∗d)

for any g in the subgradient of rη,φd (f) at f ∗d . In our case, rη,φd is piecewise linear, with four pieces,
and the subgradients include

η 1−d
d at f ∗d = −1,

|η−d| 1
d at f ∗d = −1,0,

|1−η−d| 1
d at f ∗d = 0,1,

(1−η) 1−d
d at f ∗d = 1.

Thus, we have

d(rη,φd (f)− rη,φd (f ∗d))

≥

η(1−d)| f − f ∗d | if η < d and f < −1,

|η−d|| f − f ∗d | if η < d and f > −1,

(|η−d|∧ |1−η−d|) | f − f ∗d | if d ≤ η ≤ 1−d,

|1−η−d|| f − f ∗d | if η > 1−d and f < 1,

(1−η)(1−d)| f − f ∗d | if η > 1−d, f > 1.

=

(1−d)ρη(f , f ∗d) if η < d and f < −1,

|η−d|ρη(f , f ∗d) if η < d and f > −1,

(|η−d|∧ |1−η−d|)ρη(f , f ∗d) if d ≤ η ≤ 1−d,

|1−η−d|ρη(f , f ∗d) if η > 1−d and f < 1,

(1−d)ρη(f , f ∗d) if η > 1−d, f > 1.

≥ (|η−d|∧ |1−η−d|)ρη(f , f ∗d).

We shall also use the following inequalities.

1831

BARTLETT AND WEGKAMP

Lemma 10 If ‖ f‖∞ = B, then for η ∈ [0,1],

ρη(f , f ∗d) ≤ | f − f ∗d |,

and

η |φd(f)−φd(f ∗d)|2 +(1−η) |φd(− f)−φd(− f ∗d)|2 ≤

(
1−d

d

)2

(B+1)ρη(f , f ∗d).

Proof The first inequality is immediate from the definition of ρη. To see the second, use the fact
that φd is flat to the right of 1 to notice that

η |φd(f)−φd(f ∗d)|2 +(1−η) |φd(− f)−φd(− f ∗d)|2

=

{
η
∣∣φd(f)−φd(f ∗d)

∣∣2 if η < d and f < −1,

(1−η)
∣∣φd(− f)−φd(− f ∗d)

∣∣2 if η > 1−d and f > 1.

Since φd has Lipschitz constant a = (1−d)/d, this implies

η |φd(f)−φd(f ∗d)|2 +(1−η) |φd(− f)−φd(− f ∗d)|2

≤

ηa2| f − f ∗d |
2 if η < d and f < −1,

(1−η)a2| f − f ∗d |
2 if η > 1−d and f > 1,

a2| f − f ∗d |
2 otherwise

≤ a2(1+B)ρη(f , f ∗d),

where the last inequality uses the fact that | f − f ∗d | ≤ B+1.

Proof [Proof of Lemma 8] By Lemma 9, we have

Lφd (f)−L∗
φd
≥ d−1

Eρη(f , f ∗d)
(
|η− (1−d)|IE− + |η−d|IE+

)
,

with
E− = {|η− (1−d)| ≤ |η−d|}, E+ = {|η− (1−d)| > |η−d|}.

Using the assumption on η, there is an A ≥ 1 such that for all t > 0

P{|η(X)−d| ≤ t} ≤ Atα and P{η(X)− (1−d)| ≤ t} ≤ Atα.

Thus, for any set E,

Pρη(f , f ∗d)|η− (1−d)|IE ≥ tPρη(f , f ∗d)I{|η−(1−d)|≥t}IE

= tPρη(f , f ∗d)IE − tPρη(f , f ∗d)I{|η−(1−d)|<t}IE

≥ t{Pρη(f , f ∗d)IE − (B+1)Atα},

where B is such that | f | ≤ B and hence ρη(f , f ∗d) ≤ | f − f ∗d | ≤ B+1. Similarly,

Pρη(f , f ∗d)|η−d|IE ≥ t{Pρη(f , f ∗d)IE − (B+1)Atα},

1832

CLASSIFICATION WITH A REJECT OPTION USING A HINGE LOSS

and we obtain

Lφd (f)−L∗
φd

≥ d−1t
(
Pρη(f , f ∗d)IE+∪E− −2(B+1)Atα)

= d−1t (Pρη(f , f ∗d)−2(B+1)Atα) .

Choose

t =

(
Pρη(f , f ∗d)

4(B+1)A

)1/α
,

in the expression above, and we obtain

Eg f (X ,Y) = Lφd (f)−L∗
φd
≥

1

2d(4(B+1)A)1/α (Pρη(f , f ∗d))(1+α)/α ,

and so

Pρη(f , f ∗d) ≤
{

2d(4(B+1)A)1/α
}α/(α+1){

Eg f (X ,Y)
}α/(1+α)

.

In addition, by Lemma 10,

E{g f (X ,Y)}2 = EE[{g f (X ,Y)}2|X]

= P
(
η|φd(f)−φd(f ∗d)|2 +(1−η)|φd(− f)−φd(− f ∗d)|2

)

≤ (B+1)

(
1−d

d

)2

Pρη(f , f ∗d).

Combining these two inequalities shows that

E{g f (X ,Y)}2 ≤ (B+1)

(
1−d

d

)2(
2d(4A(B+1))1/α

)α/(α+1)
(Eg f (X ,Y))α/(1+α) .

Remark 11 Specialized to the case (δ,d) = (0,1/2), we note that Lemma 8 removes unnecessary
technical restrictions on η(X) near 0 and 1, imposed by Blanchard et al. (2008) and Tarigan and
van de Geer (2006). This is consistent with results of Steinwart and Scovel (2007) on SVMs with
Gaussian kernels.

Lemma 8 provides the main ingredient for establishing fast rates of minimizers f̂d of the empir-
ical risk L̂φd (f).

In the theorem, we use the notation N(ε,L∞,F) to denote the ε-covering number of F in L∞,
that is, the smallest number of closed ε-balls in L∞ needed to cover F . The countability assumption
means that measurability is not an issue. It can be replaced by other mild sufficient conditions.

Theorem 12 If η satisfies the margin condition at d with exponent α, F is a countable class of
functions f : X → R satisfying ‖ f‖∞ ≤ B, and F satisfies

logN(ε,L∞,F) ≤Cε−p

1833

BARTLETT AND WEGKAMP

for all ε > 0 and some 0 ≤ p ≤ 2, then there exists a constant C′ independent of n, such that

ELφd (f̂d)−L∗
φd
≤ 2 inf

f∈F

(
Lφd (f)−L∗

φd

)
+C′n−

1+α
2+p+α+pα ,

where f̂d = argmin f∈F L̂φd (f).

Proof We use the notation Pg f = Eg f (X ,Y) and

Png f =
1
n

n

∑
i=1

g f (Xi,Yi).

By definition of f̂d , we have

Lφd (f̂d)−L∗
φd

= Pg f̂d

= 2Png f̂d
+(P−2Pn)g f̂d

≤ 2 inf
f∈F

Png f + sup
f∈F

(P−2Pn)g f .

Taking expected values on both sides, yields,

ELφd (f̂d)−L∗
φd
≤ 2 inf

f∈F

(
Lφd (f)−L∗

φd

)
+E

[
sup
f∈F

(P−2Pn)g f

]
.

Since |g f −g f ′ | ≤ | f − f ′|(1−d)/d, it follows that

E

[
sup
f∈F

(P−2Pn)g f

]
≤

1−d
d

εn +
1−d

d
BP

{
sup
f∈Fn

(P−2Pn)g f ≥ εn

}
,

where Fn is a minimal εn-covering net of F with

εn = Mn−(1+α)/(2+p+α+pα)

for some constant M to be selected later. The union bound and Bernstein’s exponential inequality
for the tail probability of sums of bounded random variables in conjunction with Lemma 8, yield

P

{
sup
f∈Fn

(P−2Pn)g f ≥ εn

}
≤ ∑

f∈Fn

P

{
(P−Pn)g f ≥

1
2
(Pg f + εn)

}

≤ |Fn|max
f∈Fn

exp

(
−

n
8

(εn +Pg f)
2

Pg2
f +B(εn +Pg f)/6

)

≤ exp(Cε−p
n − cnε2−β

n)

with 0 ≤ β = α/(1+α) ≤ 1 and some c > 0 independent of n. Conclude the proof by noting that

exp(Cε−p
n − cnε2−β

n) = exp
(
−

c
2

nε2−β
n

)
,

and by choosing the constant M in εn such that Cε−p
n = cnε2−β

n /2 and exp(−nε2−β
n) = o(εn).

1834

CLASSIFICATION WITH A REJECT OPTION USING A HINGE LOSS

Remark 13 The constant 2 in front of the minimal excess risk on the right could be made closer to
1, at the expense of increasing C′.

Theorem 12 discusses minimizers of the empirical risk L̂φd over classes F of uniformly bounded
functions. The analysis of SVMs that minimize L̂φd plus a regularization term requires more work.

Remark 14 Consider for simplicity the case F is finite (p = 0). Then, if the margin condition holds
for α = +∞, we obtain from the proof of Theorem 12 rates of convergence of order log |F |/n. If
α = 0, we in fact impose no restriction on η(X) at all, and the rate equals (log |F |/n)1/2.

Remark 15 The entropy condition is satisfied for many classes. For instance, Kolmogorov and
Tichomirov (1961) prove the following result for Sobolev spaces with parameter β. Let X be a
bounded, convex subset of R

d and for every k = (k1, . . . ,kd) ∈ N
d , define the differential operator

Dk by

Dk =
∂k1+...+kd

∂xk1
1 . . .∂xkd

d

.

Let F = F (β,c1,c2) be the class of real valued, continuous functions f on X with uniformly
bounded partial derivatives of order k ≤ bβc (the greatest integer smaller than β),

max
k1+...+kn≤bβc

max
x∈X

∣∣Dk f (x)
∣∣≤ c1,

and which highest partial derivatives are Lipschitz of order β−bβc,

max
k1+...+kn=bβc

max
x,y∈X , x 6=y

|Dk f (x)−Dk f (y)|

‖x− y‖β−bβc ≤ c2.

The constants c1 and c2 are independent of f . Such classes have covering numbers (Kolmogorov
and Tichomirov, 1961; van der Vaart and Wellner, 1996)

logN(ε,L∞,F) ≤Cd

(
1
ε

)d/β
,

for every ε > 0 and some constant Cd depending on the dimension d and the constants c1 and c2,
but not on ε. Applying the theorem with p = d/β, we obtain rates between n−β/(2β+d) (for α = 0)
and n−β/(d+β) (for α = +∞).

Another example is the case where F is a subset of a RKHS. For instance, let H be the RKHS
corresponding to the Gaussian kernel K(x,y) = exp(−‖x−y‖2/σ2) and let ‖ f‖ be the norm of f in
H . For F = FR = { f ∈ H : ‖ f‖ ≤ R}, Zhou (2003) proves that, for X = [0,1]d , fixed R and fixed
scale parameter σ, the entropy bound

logN(ε,L∞,F) ≤Cd logd+1
(

R
ε

)

for some Cd < ∞ and the rates of convergence range between
√

logd+1(n)/n (α = 0) and logd+1(n)/n
(α = ∞). See also the results of Guo et al. (2002).

1835

BARTLETT AND WEGKAMP

Acknowledgments

The authors gratefully acknowledge the support of NSF, the first author through grant DMS-0434383
and the second author through grant DMS-0706829.

Appendix A. Proof of Proposition 4

First we compute

inf
z≤−1

rη,φd (z) =
η
d

,

inf
−1≤z≤−δ

rη,φd (z) =
η
d

1 [η ≤ d]+

(
δ
d

η+1−δ
)

1 [η > d]

inf
−δ≤z≤0

rη,φd (z) = 1 [η ≥ d]+

(
δ
d

η+1−δ
)

1 [η < d]

inf
0≤z≤δ

rη,φd (z) = 1 [η ≤ 1−d]+

(
1+

δ
d
−δ−

δ
d

η
)

1 [η > 1−d]

inf
δ≤z≤1

rη,φd (z) =
1−η

d
1 [η > 1−d]+

(
1+

δ
d
−δ−

δ
d

η
)

1 [η ≤ 1−d]

inf
z≥1

rη,φd (z) =
1−η

d

It is now easy to verify that

H−1(η) = inf
z<−δ

ηφd(z)+(1−η)φd(−z)

=
η
d

1 [η < d]+

(
δ
d

η+1−δ
)

1 [η ≥ d]

so that

H−1(η)−H(η) =(
δ
d

η−δ
)

1 [d ≤ η ≤ 1−d]+

(
1+δ

d
η+1−δ−

1
d

)
1 [η > 1−d]

On the other hand,

ξ−1(η) = η−ξ(η)

= (η−d)1 [d ≤ η ≤ 1−d]+ (2η−1)1 [η > 1−d]

and we see that
δ
d

ξ−1(η) ≤ H−1(η)−H(η)

for all 0 < δ ≤ 1. Next, we compute

Hr(η) = inf
|z|≤δ

ηφd(z)+(1−η)φd(−z)

=

(
1−δ+

δ
d

η
)

1 [η < d]+1 [d ≤ η ≤ 1−d]

+

(
1−δ+

δ
d
−

δ
d

η
)

1 [η > 1−d]

1836

CLASSIFICATION WITH A REJECT OPTION USING A HINGE LOSS

and

Hr(η)−H(η) =

(
1−δ−

1−δ
d

η
)

1 [η < d]

+

(
1−δ−

1−δ
d

+
1−δ

d
η
)

1 [η > 1−d] .

Since

ξr(η) = d −ξ(η)

= (d −η)1 [η < d]+ (d −1+η)1 [η > 1−d]

we find that
δ
d

ξr(η) ≤ Hr(η)−H(η)

provided 0 < δ ≤ 1/2. Finally, we find that

H1(η) = inf
z>δ

ηφd(z)+(1−η)φd(−z)

=
1−η

d
1 [η > 1−d]+

(
δ
d

+1−δ−
δ
d

η
)

1 [η ≤ 1−d]

and consequently

H1(η)−H(η) =

(
1−δ+

δ
d
−

δ
d

η−
η
d

)
1 [η < d]

+

(
δ
d
−δ−

δ
d

η
)

1 [d ≤ η ≤ 1−d] .

Now,

ξ1(η) = 1−η−ξ(η)

= (1−2η)1 [η < d]+ (1−η−d)1 [d ≤ η ≤ 1−d] ,

and we find that
δ
d

ξ1(η) ≤ H1(η)−H(η)

provided 0 < δ ≤ 1.
We now verify the second claim of Proposition 4. Assume that d ≤ δ ≤ 1−d.
First we consider the case η < d. Then

ξ−1(η) ≤ H−1(η)−H(η) holds trivially.

ξr(η)≤ Hr(η)−H(η) ⇐⇒ (1−δ−d)η ≤ (1−δ−d)d. As η ≤ d, we need that δ ≤ 1−d.

ξ1(η)≤H1(η)−H(η) ⇐⇒ (1+δ−2d)η≤ δ(1−d). As η≤ d, we need that (1+δ−2d)d ≤
δ(1−d), equivalently, (δ−d)(1−2d) ≥ 0.

Next, if d ≤ η ≤ 1−d, we see that

1837

BARTLETT AND WEGKAMP

ξ−1(η) ≤ H−1(η)−H(η) ⇐⇒ (δ−d)η ≥ d(δ−d).

ξr(η) ≤ Hr(η)−H(η) holds trivially.

ξ1(η) ≤ H1(η)−H(η) ⇐⇒ (δ−d)η ≤ (1−d)(δ−d).

Finally, if η > 1−d, we find that

ξ−1(η) ≤ H−1(η)−H(η) ⇐⇒ (1 + δ− 2d)η ≥ (1 + dδ− 2d). For η ≥ 1− d this holds
provided (1+δ−2d)(1−d) ≥ (1+dδ−2d) ⇐⇒ (δ−d)(1−2d) ≥ 0.

ξr(η) ≤ Hr(η)−H(η) ⇐⇒ (1−δ−d)η ≥ (1−d)(1−δ−d).

ξ1(η) ≤ H1(η)−H(η) holds trivially.

This concludes the proof of the second claim, since d ≤ δ ≤ 1− d. The last claim for the case
(δ,d) = (0,1/2) follows as well from the preceding calculations.

References

J. Y. Audibert and A. B. Tsybakov. Fast learning rates for plug-in classifiers under margin condi-
tions. Annals of Statistics, 35(2):608–633, 2007.

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Journal
of the American Statistical Association, 101(473):138–156, 2006.

G. Blanchard, O. Bousquet, and P. Massart. Statistical performance of support vector machines.
Annals of Statistics, 36(2):489–531, 2008.

S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: a survey of recent advances.
ESAIM: Probability and Statistics, 9:323–375, 2005.

S. Boucheron, O. Bousquet, and G. Lugosi. Introduction to statistical learning theory. In O. Bous-
quet, U. von Luxburg, and G. Rätsch, editors, Advanced Lectures in Machine Learning, pages
169–207. Springer, 2006.

A. Bounsiar, E. Grall, and P. Beauseroy. A kernel based rejection method for supervised classifica-
tion. International Journal of Computational Intelligence, 3(4):312–321, 2006.

C.K. Chow. On optimum error and reject trade-off. IEEE Transactions on Information Theory, 16:
41–46, 1970.

D. Cox and F. O’Sullivan. Asymptotic analysis of penalized likelihood and related estimators.
Annals of Statistics, 18:1676–1695, 1990.

G. Fumera and F. Roli. Suppport vector machines with embedded reject option. In S. Lee and
A. Verri, editors, Pattern Recognition with Support Vector Machines, volume 2388, pages 68–82.
Springer, 2002.

G. Fumera and F. Roli. Analysis of error-reject trade-off in linearly combined multiple classifiers.
Pattern Recognition, 37:1245–1265, 2004.

1838

CLASSIFICATION WITH A REJECT OPTION USING A HINGE LOSS

G. Fumera, F. Roli, and G. Giacinto. Reject option with multiple thresholds. Pattern Recognition,
33:2099–2101, 2000.

G. Fumera, I. Pillai, and F. Roli. Classification with reject option in text categorisation systems.
In Proceedings of the 12th International Conference on Image Analysis and Processing, pages
582–587. IEEE Computer Society, 2003.

M. Golfarelli, D. Maio, and D. Maltoni. On the error-reject trade-off in biometric verification
systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:786 –796, 1997.

Y. Guo, P.L. Bartlett, J. Shawe-Taylor, and R.C Williamson. Covering numbers for support vector
machines. IEEE Transactions on Information Theory, 48(1):239 – 250, 2002.

L. Györfi, Z. Györfi, and I. Vajda. Bayesian decision with rejection. Problems of Control and
Information Theory, 8:445–452, 1978.

L. K. Hansen, C. Lissberg, and P. Salamon. The error-reject tradeoff. Open Systems and Information
Dynamics, 4:159–184, 1997.

R. Herbei and M. H. Wegkamp. Classification with reject option. Canadian Journal of Statistics, 4
(4):709–721, 2006.

G.S̃. Kimeldorf and G. Wahba. Some results on tchebycheffian spline functions. Journal of Mathe-
matical Analysis and Applications, 33:82–95, 1971.

A.N. Kolmogorov and V.M. Tichomirov. ε-entropy and ε-capacity of sets in functional spaces.
American Mathematical Society Translations, 17:277–364, 1961.

C.W. Landgrebe, D.M.J. Tax, P. Paclik, and R.P.W. Duin. The interaction between classification
and reject performance for distance-based reject-option classifiers. Pattern Recognition Letters,
27(8):908–917, 2006.

P. Massart. Concentration Inequalities and Model Selection, volume 1896. Springer, 2007.

B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

I. Steinwart and C. Scovel. Fast rates for support vector machines using gaussian kernels. Annals
of Statistics, 35(2):575–607, 2007.

B. Tarigan and S. A. van de Geer. Classifiers of support vector machine type with `1 complexity
regularization. Bernoulli, 12(6):1045–1076, 2006.

F. Tortorella. Reducing the classification cost of support vector classifiers through an ROC-based
rejection rule. Pattern Analysis and Applications, 7:128 – 143, 2004.

A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statistics, 32:
135–166, 2004.

A.W. van der Vaart and J.A. Wellner. Weak Convergence and Empirical Processes. Springer, 1996.

T. Zhang. Statistical behavior and consistency of classification methods based on convex risk mini-
mization. Annals of Statistics, 32:56–85, 2004.

1839

BARTLETT AND WEGKAMP

D.X. Zhou. Capacity of reproducing kernel spaces in learning theory. IEEE Transactions on Infor-
mation Theory, 49(7):1743–1752, 2003.

1840

Journal of Machine Learning Research 9 (2008) 1841-1870 Submitted 11/07; Revised 6/08; Published 8/08

Learning Balls of Strings from Edit Corrections∗

Leonor Becerra-Bonache LEONOR.BECERRA-BONACHE@YALE.EDU

Department of Computer Science
Yale University
51 Prospect Street
New Haven, CT, 06511, USA

Colin de la Higuera CDLH@UNIV-ST-ETIENNE.FR

Jean-Christophe Janodet JANODET@UNIV-ST-ETIENNE.FR

Frédéric Tantini FREDERIC.TANTINI@UNIV-ST-ETIENNE.FR

Universities of Lyon
Laboratoire Hubert Curien
18 rue du Professeur Benoît Lauras
42000 Saint-Étienne, France

Editor: Rocco Servedio

Abstract
When facing the question of learning languages in realistic settings, one has to tackle several prob-
lems that do not admit simple solutions. On the one hand, languages are usually defined by complex
grammatical mechanisms for which the learning results are predominantly negative, as the few al-
gorithms are not really able to cope with noise. On the other hand, the learning settings themselves
rely either on too simple information (text) or on unattainable one (query systems that do not exist
in practice, nor can be simulated). We consider simple but sound classes of languages defined via
the widely used edit distance: the balls of strings. We propose to learn them with the help of a
new sort of queries, called the correction queries: when a string is submitted to the Oracle, either
she accepts it if it belongs to the target language, or she proposes a correction, that is, a string of
the language close to the query with respect to the edit distance. We show that even if the good
balls are not learnable in Angluin’s MAT model, they can be learned from a polynomial number
of correction queries. Moreover, experimental evidence simulating a human Expert shows that this
algorithm is resistant to approximate answers.
Keywords: grammatical inference, oracle learning, correction queries, edit distance, balls of
strings

1. Introduction

Do you know how many Nabcodonosaur were kings of Babylon? And do you know when Arnold
Shwartzeneger was born? Just two decades ago, you would have had to consult encyclopedias and
Who’s Who dictionaries in order to get answers to such questions. At that time, you may have
needed this information in order to participate to quizzes and competitions organized by famous
magazines during the summers, but because of these questions, you might possibly have missed the
very first prize. Why?. . . Nowadays, everything has changed: you naturally use the Web, launch

∗. This paper is an extended version of “Learning Balls of Strings with Correction Queries” presented at the 2007
European Conference in Machine Learning (ECML’07).

c©2008 Leonor Becerra-Bonache, Colin de la Higuera, Jean-Christophe Janodet and Frédéric Tantini.

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

your favorite search engine, type two keywords, follow three links and note down the answers. In
this particular case, you discover. . . that no king of Babylon was called Nabcodonosaur but two
Nabuchodonosor’s reigned there many centuries ago. Again, the day Arnold Shwartzeneger was
born is not clear, but it is easy to check that Arnold Schwarzenegger was born in 1947, July 30th.

So you would probably win today the great competitions of the past. Indeed, the actual search
engines are able to propose corrections when a keyword is not frequent. Those corrections are most
often reliable because the reference dictionary is built from the billions of web pages indexed all
over the world. Hence, a search engine is playing the role of an imperfect but powerful Oracle, able
to validate a relevant query by returning relevant documents, but also to correct any suspect query.
Such an Oracle is able to answer to what we shall call correction queries.

The first goal of this paper is to show, from a theoretical standpoint, that the concept of correction
query allows one to get new challenging results in the field of Active Learning. In this framework,
developed by Angluin in the 80’s (Angluin, 1987b), a Learner (He) has access to an Oracle (She)
that knows a concept he must discover. To this purpose, he submits different kinds of queries
(e.g., Correction Queries) and she has to answer without lying. The game ends when he guesses
the concept. Query-based Learners are often interesting from a practical viewpoint. For instance,
instead of requiring a human expert to label huge quantities of data, this expert could be asked by
the Learner, in an interactive situation, to provide a small amount of targeted information.

The second goal of this paper is to provide evidence that correction queries are suitable for
this kind of real-life applications. However, assuming that the Oracle is a human expert introduces
new constraints. On one hand, it is inconceivable to ask a polynomial number of queries: this may
still be too much for a human. So the learning algorithm should aim at minimizing the number of
queries even if we must pay for it with a worse time complexity. On the other hand, a human being
(or even the Web) is fallible. Therefore the learning algorithm should also aim at learning functions
or languages from approximate corrections.

In the above Web example, the search engine uses the frequency of words to propose corrections.
In consequence, correct words (e.g., malophile = someone who loves apples) are sometimes subject
to a correction (e.g., halophile = a cell which thrives in environments with high concentrations of
salt). Another key point is the distance used to find a closest correct string; it is a variant of the
edit distance, also called the Levenshtein distance, which measures the minimum number of dele-
tion, insertion or substitution operations needed to transform one string into another (Levenshtein,
1965; Wagner and Fisher, 1974). This distance have been used in many fields including Computa-
tional Biology (Gusfield, 1997; Durbin et al., 1998), Language Modelling (Amengual et al., 2001;
Amengual and Dupont, 2000) and Pattern Recognition (Navarro, 2001; Chávez et al., 2001).

Edit distance appears in specific Grammatical Inference problems, in particular when one wants
to learn languages from noisy data (Tantini et al., 2006). In this domain, the classes of languages
studied are not defined following the Chomsky Hierarchy. Indeed, even the easiest level of this
hierarchy, the class of regular languages, is not at all robust to noise, since it includes all the parity
functions, which can be defined as regular languages and are not learnable in the presence of noise
(Kearns and Li, 1993). In order to avoid this difficulty, we shall consider only special finite lan-
guages, that may seem elementary to formal language theoreticians, but are relevant for topologists
and complex for combinatorialists: the balls of strings.

Balls of strings are formed by choosing one specific string, called the centre, and all its neigh-
bours up to a given length for the edit distance, called the radius. From a practical standpoint, balls
of strings appear in a variety of settings: in approximate string matching tasks, the goal is to find all

1842

LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

close matches to some target string (Navarro, 2001; Chávez et al., 2001); in noisy settings, garbled
versions of an unidentified string are given and the task is to recover the original string (Kohonen,
1985); when using dictionaries, the task can be described as that of finding the intersection between
two languages, the dictionary itself and a ball around the target string (Schulz and Mihov, 2002); in
the field of bioinformatics, extracting valid models from large data sets of DNA or proteins can in-
volve looking for substrings at distance less than some given bound, and the set of these approximate
substrings can also be represented by balls (Sagot and Wakabayashi, 2003).

Hence, in this paper, we study the problem of identifying balls of strings from correction queries.
In Section 2, we present the motivations of our work; we discuss why noise is a problem (2.1),
which queries should be used to learn languages (2.2), and the relevance of a fallible Oracle in
real applications (2.3). Definitions are given in Section 3, where we pay special attention to the
definitions of edit distance (3.1), balls of strings (3.2), and correction queries (3.3). On one hand,
we prove that the balls are not learnable with Angluin’s membership and equivalence queries, and
on the other hand, that the deterministic finite automata are not learnable with correction queries.

The main result of the paper is shown in Section 4. It consists of a polynomial time algorithm
that infers any ball from correction queries. We explain some technical results (4.1), and we present
the algorithm (4.2). An important question is raised concerning the fact that only good balls can be
learned with a polynomial number of correction queries (4.3). In Section 5, we study the effective-
ness of our algorithm in more practical situations. First, we are concerned with the case where the
Oracle is fallible (5.1). Next, we try to minimize the number of queries asked, considering the fact
that the expensive resource is the expert playing the part of the Oracle, not the machine making the
computations (5.2). We conclude in Section 6.

2. Motivations and Related Work

Several questions need to be addressed before tackling the core of the problem.

2.1 Why is it Hard to Learn Languages in Noisy Settings?

Languages can either be generated, recognized or defined by mechanisms like regular expressions,
finite state automata or formal grammars (Harrison, 1978; Sakarovich, 2004; Salomaa, 2006). Al-
ternatively equations can define properties that the strings in the language should verify (Clark et al.,
2006). The techniques enabling to learn such formalisms are known as grammatical inference, and
new algorithms are developed all the time. But there is one issue that is systematically problematic
for such algorithms: that of dealing with noise.

Results obtained in the field of grammatical inference show that learning in noisy situations is
hard (de la Higuera, 2006). Some attempts to deal with this problem can be found, for example, in
the GOWACHIN (Lang et al., 1998) and GECCO competitions (Lucas, 2004), where the problem of
learning DFA from noisy examples was the main challenge.

Noise over strings can, in the simplest case, just affect the labels: a string in the language will
be classified as not belonging, whereas a string can be labeled inside the language when it is not.
It is known since (Trakhtenbrot and Barzdin, 1973; Angluin, 1978) that with even small doses of
noise, learning automata is hard.

The second sort of noise that one may encounter with strings, which is possibly most character-
istic here, consists in having the strings slightly modified through some noisy channel. This type of

1843

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

noise is invariably described by the edit distance (Levenshtein, 1965): individual symbols appear or
disappear, or even are transformed into different ones.

Again, for the edit noise, the typical classes of languages belonging to the Chomsky hierarchy
(Chomsky, 1957; Sakarovich, 2004) are far from robust. Consider for instance the set of strings over
the alphabet {0,1} whose parity of 0’s is identical to the parity of 1’s (see Figure 1). This typical

1 2

34

0

0

1 11 1

0

0

Figure 1: An automaton recognizing {w ∈ (0+1)∗ : |w|0 mod 2 = |w|1 mod 2}.

regular language is clearly very sensitive to the noise: if any symbol is inserted or deleted in a string,
the string will cease to belong to the language; and conversely, any string out of the language will
be transformed into a string from the language, as the parity of either of the letters will change.

Unfortunately, the picture is even less clear with other regular languages such as 0∗1∗ and
(010)∗, or higher languages in the Chomsky hierarchy such as {ww : w ∈ (0 + 1)∗} or the set of
palindromes or {0n1n2n : n ≥ 0}. Indeed, these languages are sparse in the set of all strings, so
trying to learn them from noisy data is like looking for a needle in a haystack: no string seems to
belong to the target anymore.

The reader may think that probably, all these textbook languages are not relevant in practice. In
which case, studying their learnability in the presence of noise would not be significative. Neverthe-
less, concerning randomly drawn regular languages, the picture is not better: the website developed
by Coste et al. (1998) shows that despite a decade of efforts, no convincing solution has been yet
found to take into account the noise during the learning process.

Therefore, if we are to learn languages in a noisy setting where the noise is modelled through
the edit distance, we think that it is necessary to consider other classes of languages that could be
much better adapted to this type of noise. The balls of strings are an example of such languages.

2.2 What Queries Should we Use?

Learning with queries was introduced by Angluin in order to provide a firm mathematical back-
ground to machine learning in a non statistical setting (Angluin, 1987b). In this paradigm, both
positive and negative results are relevant. Indeed, if one cannot learn using a polynomial number of
questions, then one cannot do it from data that one gets without choice from the environment. In
this setting the questions are called queries and they are asked to a perfect abstract machine, called
Oracle.

Several types of queries have been studied, and some classes were proved to be learnable from
specific combination of queries (see Angluin, 2004, for a survey). The best known and most im-
portant of such positive results is that deterministic finite state automata are polynomially learnable

1844

LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

from a combination of membership queries and strong equivalence queries (Angluin, 1987a). The
corresponding definitions will be given in Section 3.3.

We argue that equivalence queries are not realistic for the intended applications, and we choose
to use the recently introduced correction queries instead (Becerra-Bonache and Yokomori, 2004).
When making a correction query, we submit a string to the Oracle who answers YES if the string
is in the target language, and if it is not then the Oracle returns a string from the language that is
closest to the query. This string is called the correction.

In order to give an introductory intuition, let us consider the case where we want to learn disks
in the plane using the Euclidean distance. Instead of learning from examples (with the possibility
of them being labeled), let us suppose we have access to an Oracle that will answer the following
query: a point is proposed, and is returned either the answer YES or a correction of this point, that
is, the closest point in the disk.

Then we can proceed in three stages to learn a disk of centre O and radius R with correction
queries as shown in Figure 2:

A

B

D
O

C

Figure 2: Three stages are sufficient to learn the disks of IR2 with correction queries: (1) find two
points A and B outside of the disk haphazardly using correction queries; (2) ask the Oracle
for the corrections of A and B, which will result in C and D, respectively; (3) use a ruler
to deduce the centre O and a compass to draw the circle.

1. We start by finding two points A and B outside of the disk we want to identify. Looking for
them haphazardly by asking to the Oracle if such or such a point is in the disk is enough:
intuitively, we are going to find them with very few queries.

2. We ask the Oracle for the corrections of A and B. Concerning A, the Oracle is going to return
a point C inside the disk, as close as possible to A. Clearly, this point is at the intersection of
the segment [OA] and the boundary circle of the target disk. Likewise, let D be the correction
of B.

3. We draw the lines (AC) and (BD) with a ruler: they intersect in O. Then we can draw the
circle with a compass. We get the radius by measuring the distance between O and C.

1845

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

Hence, it is easy to learn the balls of IR2 with very few correction queries. Now, focusing on
balls of strings, we may hope that the previous approach is good and try to reproduce it.

However, building the centre of a ball from strings on its periphery is difficult for at least two
reasons. On one hand, (Σ∗,d) is a metric space with no vector space as underlying structure. This
is similar to the case where we were trying to learn the disks of the plane with just a compass but
no ruler.1 On the other hand, the problem is formally hard:

Theorem 1 (de la Higuera and Casacuberta 2000) Given a finite set of strings
W = {w1, . . . ,wn} and a constant K, deciding whether a string u∈Σ∗ exists such that maxw∈W d(u,w) <
K (respectively ∑w∈W d(u,w)
< K) is N P -complete.

Therefore, we will have to study the balls in more detail and make the best possible use of the
correction queries, so as not to build the centres from scratch.

2.3 Why might the Oracle be Fallible?

Above we argued that the active learning model was based on the strong assumption of a perfect
Oracle. This corresponded to a reasonable assumption when dealing with mathematics and with the
objective of being in a favorable setting in which negative results could be blamed on the complexity
of the task and not on the adversarial nature of the Oracle.

But in recent years, the active learning setting (corresponding to learning from an Oracle) has
been accepted as a plausible setting for real applications. Indeed we are faced with huge quantities
of unlabeled data. Choosing which data is to receive attention by an expert (human or machine)
is a difficult question. Interactive learning sessions, where the learning algorithm asks for specific
information during runtime, is an interesting alternative to deal with such problems.

A typical example is system SQUIRREL (Carme et al., 2007) which induces a web wrapper
through interaction with a human user. Another case is that of testing hardware (Hagerer et al.,
2002): the specifications of the software correspond to the Oracle which can then allow to check
if the constructed item obeys to the specifications. In both examples the Oracle is fallible: in the
second one because testing equivalence is done through sampling.

A third situation in which active learning can be useful corresponds to that of rendering intel-
ligible some black box learned through some statistical machine learning method. Indeed, even if
hyper-planes (Clark et al., 2006) or recurrent neural networks (Giles et al., 2001) are difficult to
interpret, one can try to use the learned numerical models as Oracles in an active learning algorithm
whose result might be some rule based classifier (de la Higuera, 2006).

3. Definitions

An alphabet Σ is a finite nonempty set of symbols called letters. For the sake of clarity, we shall use
0,1,2, . . . as letters in our examples and write a,b,c, . . . to denote variables for letters in an alphabet.
A string w = a1 . . .an is any finite sequence of letters. We write Σ∗ for the set of all strings over Σ
and λ for the empty string. Let a ∈ Σ, |w| be the length of w and |w|a the number of occurrences of

1. Actually, this is still possible: a theorem due to Mohr (1672), rediscovered by Mascheroni (1797), states that every
construction with a ruler and a compass can also be done with a compass only. We know an algorithm that uses 14
circles to learn a disk of the plane. If the reader knows a better method, please contact us!

1846

LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

a in w. We say that a string u is a subsequence of v, denoted u � v, if u = a1 . . .an and there exist
u0, . . . ,un ∈ Σ∗ such that v = u0a1u1 . . .anun. A language is any subset L ⊆ Σ∗. Let IN be the set of
non negative integers. For all k ∈ IN, let Σk = {w ∈ Σ∗ : |w|= k} and Σ≤k = {w ∈ Σ∗ : |w| ≤ k}. Let
IR denote the set of real numbers. We say that a real number ρ ∈ IR is irrational if |ρ| 6= p

q for all
p,q ∈ IN.

3.1 Edit Distance

The edit distance d(w,w′) between two strings w and w′ is the minimum number of edit operations
needed to transform w into w′ (Levenshtein, 1965).

More precisely, we say that w rewrites to w′ in one step, written w−→ w′, if either

1. w = uav and w′ = uv (deletion of a letter), or

2. w = uv and w′ = uav (insertion of a letter), or

3. w = uav and w′ = ubv (substitution of a letter by another letter),

where u,v ∈ Σ∗, a,b ∈ Σ and a 6= b.

Let
k−→ denote a rewriting derivation made of k rewriting steps. The edit distance d(w,w′) is the

minimum k ∈ IN such that w
k−→ w′. For instance, d(0100,001) = 2 since 0100 −→ 000 −→ 001 and

rewriting 0100 into 001 cannot be achieved with less than two steps. Notice that d(w,w′) can be
computed in time O (|w| · |w′|) by means of dynamic programming (Wagner and Fisher, 1974).

The following basic property states that d(w,w′) is at least the number of insertions needed to
equalize the lengths of w and w′:

Proposition 2 For all w,w′ ∈ Σ∗, d(w,w′)≥
∣

∣|w|− |w′|
∣

∣. Moreover, d(w,w′) =
∣

∣|w|− |w′|
∣

∣ iff (w�
w′ or w′ � w).

In all the parts of this paper but in Section 5.2.1, we shall use the standard edit distance defined
above. However, for practical reasons, people often use variants of this definition. Sometimes, new
edit operations are defined such as the exchange of two adjoining letters in a string. And often, the
edit operations are weighted. We shall give more details when needed.

3.2 Balls of Strings

It is well-known that the edit distance is a metric (Crochemore et al., 2007), so it conveys to Σ∗ the
structure of a metric space.

Definition 3 (Ball of Strings) The ball of centre o ∈ Σ∗ and radius r ∈ IN, denoted Br(o), is the set
of all the strings whose distance to o is at most r:

Br(o) = {w ∈ Σ∗ : d(o,w)≤ r}.

For instance, if Σ = {0,1}, then B1(10) = {0,1,00,10,11,010,100,101,110} and Br(λ) = Σ≤r for
all r ∈ IN.

The previous example illustrates the fact that the number of strings in a ball grows exponentially
with the radius. Experimentally (see Table 1), we clearly notice that for center strings of fixed length,
the average number of strings is more than twice larger when the radius is incremented by 1. This

1847

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

Length of Radius
the centre 1 2 3 4 5 6

0 3.0 7.0 15.0 31.0 63.0 127.0
1 6.0 14.0 30.0 62.0 126.0 254.0
2 8.6 25.6 56.5 119.7 246.8 501.6
3 10.8 41.4 101.8 222.8 468.6 973.0
4 13.1 61.4 173.8 402.9 870.9 1850.8
5 16.3 91.0 285.1 698.5 1584.4 3440.9
6 17.9 125.8 441.2 1177.5 2771.3 6252.9
7 21.2 166.9 678.0 1908.8 4835.8 11233.5
8 24.3 200.2 1034.2 3209.9 8358.1 19653.6
9 26.0 265.4 1390.9 5039.6 13677.8 34013.1

Table 1: Average number of strings in a ball. The alphabet has 2 letters. Each value is computed
over 20 random centres (possibly the same).

combinatorial explosion occurs as soon as |Σ| ≥ 2, although we leave open the question of finding
a general formula that would assess the volume of any ball Br(o).

The combinatorial explosion noted before raises the problem of the representation scheme that
we should use to learn the balls, that is to say, the format of the output space of any learning
algorithm. Basically, we need representations whose size is “reasonable”, which is not the case of
an exhaustive enumeration. An alternative representation could be based on automata, since the
balls of strings are finite and thus regular languages.

It is not difficult to see that every ball Br(o) is recognized by a non deterministic finite automa-
ton with λ-transitions having O (|o| · r) states. However, the non deterministic automata are bad
candidates from the learning standpoint. Indeed, they are not learnable in most paradigms (Angluin
and Kharitonov, 1995; de la Higuera, 1997).

The corresponding deterministic finite automata (DFA) do not have this drawback. However,
experiments show that these DFA often have an exponential number of states. More precisely,
several efficient algorithms exist to build a DFA that recognizes Br(o) (Ukkonen, 1985; Melichar,
1995; Schulz and Mihov, 2002). For instance, Schulz and Mihov (2002) have recently introduced
the so-called Levenshtein automaton. Denoting by n(o,r) the number of states of this automaton,
they state: n(o,1) = O(5 · |o|), n(o,2) = O(30 · |o|), n(o,3) = O(180 · |o|), n(o,4) = O(1353 · |o|).
Basically, n(o,r) is linear in |o| but exponential in r (In their construction, the size of the alphabet
only plays a role in the number of transitions, not in the number of states).

Unfortunately, proving that the minimal DFA has the same property is a challenging combina-
torial problem. So we only claim here:

Conjecture 4 The minimal DFA recognizing the ball Br(o) has Ω(2r · |o|) states in the worst case.

On the other hand, why not represent the ball Br(o) by the pair (o,r) itself? Indeed, its size is
|o|+ logr, which is reasonable (Garey and Johnson, 1979). Besides, deciding whether w ∈ Br(o) or
not is immediate: one only has to (1) compute d(o,w) and (2) check whether this distance is ≤ r,

1848

LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

which is achievable in time O (|o| · |w|+ logr). Finally, when the alphabet has at least two letters,
(o,r) is a unique thus canonical representation of Br(o):

Theorem 5 If |Σ| ≥ 2 and Br1(o1) = Br2(o2), then o1 = o2 and r1 = r2.

Proof

• Claim 1: if Br1(o1) = Br2(o2), then |o1|+r1 = |o2|+r2. Indeed, let w∈ Σr1 , then d(o1,o1w) =
|w|= r1 by Proposition 2. So o1w∈Br1(o1), thus o1w∈Br2(o2), that is to say, d(o1w,o2)≤ r2.
Now d(o1w,o2) ≥ |o1w| − |o2| from Proposition 2. So we deduce that r2 ≥ |o1w| − |o2| =
|o1|+ r1−|o2|. The same reasoning yields |o1|+ r1 ≥ |o2|+ r2.

• Claim 2: if |Σ| ≥ 2 and o2 6� o1, then there exists w ∈ Σ∗ such that (1) |w|= r1 + |o1| and (2)
o1 � w and (3) o2 6� w. Indeed, assume that Σ = {0,1, . . .} and o2 begins with an 0. Then we
define w = 1r1o1 and get the result.

Theorem itself: Assume that o1 6= o2. Then either o1 6� o2, or o2 6� o1. Suppose that o2 6� o1, without
loss of generality. By Claim 2, there exists a string w such that (1) |w|= r1 + |o1| and (2) o1 �w and
(3) o2 6�w. As o1 �w, Proposition 2 yields d(o1,w) = |w|−|o1|= r1. So w ∈ Br1(o1). On the other
hand, o2 6�w, so Proposition 2 yields d(o2,w) >

∣

∣|w|−|o2|
∣

∣ =
∣

∣r1 + |o1|−|o2|
∣

∣ = r2, so w 6∈ Br2(o2).
In consequence, Br1(o1) 6= Br2(o2), that is impossible. Therefore, o1 = o2, and by Claim 1, r1 = r2.

Notice however that if Σ = {0}, then B2(0) = B3(λ) = {λ,0,00,000}, for instance.

3.3 Queries

Query learning is a paradigm introduced by Angluin (1987b). Her model brings a Learner and an
Oracle into play. The goal of the Learner is to identify the representation of an unknown language,
by submitting queries to the Oracle. The latter knows the target language and answers properly
to the queries (she does not lie). The Learner is bounded by efficiency constraints at each step of
the learning process: the runtime of the Learner to make its next query must be polynomial in the
size of the target representation and in the length of the information returned by the Oracle up to
that point. Notice that certain types of queries require answers that may be of unbounded length
(examples or counter-examples). In that case, it is impossible not to take into account the length of
this information in the amount of time and queries the Learner is allowed.

Between the different combinations of queries, one, called MAT (Minimally Adequate Teacher),
is sufficient to learn the DFA (Angluin, 1987a). Two kinds of queries are used:

Definition 6 (Membership and Equivalence Queries) Let Λ be a class of languages on Σ∗ and
L ∈ Λ a target language known by the Oracle, that the Learner aims at guessing.

In the case of membership queries, the Learner submits a string w ∈ Σ∗ to the Oracle; her
answer, denoted by MQ(w), is either YES if w ∈ L, or NO if w /∈ L.

In the case of equivalence queries, the Learner submits (the representation of) a language K ∈Λ
to the Oracle; her answer, denoted by EQ(K), is either YES if K = L, or a string belonging to the
symmetric difference

(

(K \L)∪ (L\K)
)

if K 6= L.

Although membership queries and equivalence queries have established themselves as a stan-
dard combination, there are real grounds to believe that equivalence queries are too powerful to

1849

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

exist or even be simulated. From a cognitive point of view, we may imagine that a child could ask
to his mother whether some sentence is correct or not (that would be a membership query), but not
whether he knows English or not (that would be an equivalence query). As suggested by Angluin
(1987a), in practice, we may be able to substitute the equivalence queries with a random draw of
strings that are then submitted as membership queries (sampling). However, in many cases, sam-
pling is not possible because the relevant distribution is unknown and/or inaccessible (de la Higuera,
2006).

Besides, we will not consider membership queries and equivalence queries together because
they do not help to learn balls:

Theorem 7 Assume |Σ| ≥ 2. Let m,n ∈ IN and B≤m,n = {Br(o) : r ≤ m,o ∈ Σ∗, |o| ≤ n}. Any
algorithm that identifies every ball of B≤m,n with equivalence queries and membership queries nec-
essarily uses Ω(|Σ|n) queries in the worst case.

Proof Following Angluin (1987b), we describe a malevolent Oracle who forces any method of
exact identification using membership and equivalence queries to make Ω(|Σ|n) queries in the worst
case. The Oracle is an Adversary: she changes the target ball during the process of identification
in order to penalize the Learner. However, all her answers will have to be consistent with the final
ball. Technically, she maintains a set S of all the possible balls. At the beginning, S = B≤m,n. As
long as S contains at least two balls, she proceed as follows: her answer to the equivalence query
L = Br(o) is the counterexample o; her answer to the membership query o is NO; in other words,
she always declares that o is not in the target ball. After such an answer, every ball of S that contains
o cannot be a possible target anymore, so she eliminates them from S. At this point, many balls
might disappear, but only one of centre o and radius 0. As there are Ω(|Σ|n) such balls in B≤m,n, the
Learner will need Ω(|Σ|n) queries to identify one of them.

It should be noted that if the Learner is given one string from the ball, then he can learn using
a polynomial number of membership queries.2 We shall see that the correction queries, introduced
below, allow to get round these problems:

Definition 8 (Correction Queries) Let L be a target language known by the Oracle and w a string
submitted by the Learner to the Oracle. Her answer, denoted CQ(w), is either YES if w ∈ L, or a
correction of w with respect to L if w /∈ L, that is a string w′ ∈ L at minimum edit distance from w:

CQ(w) = one string of
{

w′ ∈ L : d(w,w′) is minimum
}

.

Notice that other milder definitions of correction queries have been proposed in the literature
such as Becerra-Bonache et al. (2006) and Kinber (2008). However, the correction queries defined
above can easily be simulated knowing the target language. Moreover, we have seen in the intro-
duction that they naturally exist in real-world applications such as the search engines of the Web.
Also, we can note that the correction queries are relevant from a cognitive point of view: there
is growing evidence that corrective input for grammatical errors is widely available to children
(Becerra-Bonache, 2006).

And last but not least, the correction queries as well as the balls rely on a distance, that fore-
shadows nice learning results. This is not the case for every class of languages:

2. More precisely, the best algorithm we know uses O
(

|Σ|(|o|+ r)
)

membership queries.

1850

LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

Theorem 9 Assume |Σ| ≥ 2. Let n ≥ 2 and D≤n the set of all DFA with fewer than n states. Any
algorithm that identifies every DFA of D≤n with correction queries necessarily uses Ω(|Σ|n) queries
in the worst case.

Proof Remember that the number of states of a DFA is a reasonable measure of its size. Let Aw

denote the minimal DFA that recognizes Σ∗ \{w}. The reader may check that Aw has |w|+2 states
(see Figure 3 for an example). So basically, {Aw : w ∈ Σn−2} ⊆ D≤n. Following Angluin (1987b)
again, we describe an Adversary that maintains a set S of all the possible DFA. At the beginning,
S = D≤n. Each time the correction of any string w is demanded, the Adversary answers YES and
eliminates Aw from S (and a lot of other DFA) in order to be consistent. As there are Ω(|Σ|n) such
DFA in D≤n, identifying one of them requires Ω(|Σ|n) queries.

1 0 1

0 0,1
1 0

Figure 3: The minimal DFA A101 that recognizes Σ∗ \{101} has 5(= |101|+2) states.

4. Identifying Balls of Strings using Corrections

In this section, we propose an algorithm that learns the balls of strings using correction queries. We
follow the method described for the disks of the plane. However, several details distinguish the balls
of strings and the balls in IR2.

4.1 Technicalities

In this section we introduce four related mathematical results. The first is an analysis of the correc-
tions the Oracle can make. The second corresponds to the definition of the set of the longest strings
in a ball (what we call the upper border of the ball). The third result is an algorithm allowing to
extract the centre of the ball if we are given some elements from this upper border. And finally we
explain how to find a string from the upper border using corrections.

4.1.1 A CHARACTERIZATION OF THE CORRECTIONS

When the Learner submits a string outside of a ball to the Oracle, she answers with a string that
belongs to the ‘circle’ delimiting the ball. However, a string often has a lot of different possible cor-
rections, contrarily to what happens in the plane. For instance, the possible corrections for the string
0000 with respect to the ball B2(11) are {00,001,010,100,0011,0101,0110,1001,1010,1100}.

By the definition of a correction query, the Oracle will choose one of them arbitrarily, possibly
the worst one from the Learner’s point of view. Nevertheless, the Oracle’s potential malevolence is
limited by the following result, that characterizes the set of all the possible corrections for a string:

1851

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

Lemma 10 Let Br(o) be a ball and v 6∈ Br(o). Then the set of possible corrections of v is exactly
{u ∈ Σ∗ : d(o,u) = r and d(u,v) = d(o,v)− r}.

Proof Let k = d(o,v) and consider a derivation from o to v of minimum length: o
k−→ v. As

v 6∈ Br(o), we get k > r, so this derivation passes through a string w0 such that o
r−→ w0

k−r−−→ v.
Let us define the set W = {w ∈ Σ∗ : d(o,w) = r and d(w,v) = k− r}. Basically, w0 ∈W , so W 6= /0.
Moreover, W ⊆ Br(o). Now let U denote the set of all the possible corrections of v. We claim
that U = W . Indeed, let u ∈ U and w ∈W . If d(u,v) > d(w,v), then w is a string of Br(o) that
is closer to v than u, so u cannot be a correction of v. On the other hand, if d(u,v) < d(w,v),
then as d(o,v) ≤ d(o,u) + d(u,v), we deduce that d(o,u) ≥ d(o,v)− d(u,v) > d(o,v)− d(w,v).
As d(o,v) = k and d(w,v) = k− r, we get d(o,u) > r, which is impossible since u ∈U ⊆ Br(o).
Hence, d(u,v) = d(w,v) = k− r. In consequence, all the strings w ∈W and corrections u ∈ U
are at the same distance from v, thus W ⊆ U . Moreover, we have d(o,v) ≤ d(o,u) + d(u,v), so
k ≤ d(o,u)+ k− r, thus d(o,u)≥ r. As u ∈ Br(o), we deduce that d(o,u) = r. Finally, as we have
stated that d(u,v) = k− r, we can conclude that U ⊆W .

Here is a geometric interpretation of the result above. Let us define the segment [o,v] = {w ∈
Σ∗ : d(o,w)+ d(w,v) = d(o,v)} and the circle Cr(o) = {w ∈ Σ∗ : d(o,w) = r}. Lemma 10 states
that a string u is a possible correction of v iff u ∈ [o,v]∩Cr(o). The fact that v has several possible
corrections shows that the geometry of Σ∗ is very different from that of IR2.

4.1.2 THE BORDERLINE STRINGS OF MAXIMUM LENGTH

We begin by distinguishing the longest strings of any ball:

Definition 11 (Upper Border) The upper border of a ball Br(o), denoted Bmax
r (o), is the set of all

the strings that belong to Br(o) and are of maximum length:

Bmax
r (o) = {u ∈ Br(o) : ∀w ∈ Br(o), |w| ≤ |u|}.

For instance, given Σ = {0,1}, we get Bmax
1 (10) = {010, 100, 101, 110}.

The strings of Bmax
r (o) are remarkable because they are all built from the centre o by doing r

insertions. So from a string w ∈ Bmax
r (o), one ‘simply’ has to guess the inserted letters and delete

them to find o again. We get:

Proposition 12 w ∈ Bmax
r (o) iff (o� w and d(o,w) = |w|− |o|= r).

Proof Let us assume that o�w and d(o,w) = |w|−|o|= r. Then w∈ Br(o). Let w′ be a string such
that |w′| > |w|. Then, by Proposition 2, d(o,w′) ≥ |w′|− |o|> |w|− |o|= r, so w′ 6∈ Br(o). There-
fore, w ∈ Bmax

r (o). Conversely, let w ∈ Bmax
r (o). Consider an arbitrary letter a ∈ Σ and the string

aro. Basically, d(o,aro) = r, so aro ∈ Br(o). As w ∈ Bmax
r (o), we deduce that |w| ≥ |aro|= |o|+ r.

Therefore, by Proposition 2, d(o,w) ≥ |w| − |o| ≥ r. On the other hand, r ≥ d(o,w) holds since
w ∈ Bmax

r (o). So we deduce that d(o,w) = |w|− |o|= r, that also brings o� w, by Proposition 2.

1852

LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

4.1.3 FINDING THE CENTRE GIVEN STRINGS FROM THE UPPER BORDER

Some strings of Bmax
r (o) are even more informative. Indeed, let a ∈ Σ be an arbitrary letter. Then

aro ∈ Bmax
r (o). So, if we know r, we can easily deduce o. We claim that the correction queries

allow us to get hold of aro from any string w ∈ Bmax
r (o) by swapping the letters. This is the goal of

EXTRACT_CENTRE (see Algorithm 1).
Let us run this procedure on an example. Consider the ball B2(11). Then it is easy to check

that Bmax
2 (11) = {0011,0101,0110,0111,1001,1010,1011,1100,1101,1110,1111}. Running EX-

TRACT_CENTRE on the string w = 0110 and radius r = 2 transforms, at each loop, the ith letter of
w to a 0 that is put at the beginning and then submits it to the Oracle. We get:

i w w′ CQ(w′) w changes
1 0110 0110 YES yes
2 0110 0010 0110 no
3 0110 0010 0110 no
4 0110 0011 YES yes

Therefore, EXTRACT_CENTRE stops with w = 0011 and returns o = 11 (since r = 2).

Algorithm 1 EXTRACT_CENTRE

Require: A string w = a1 . . .an ∈ Bmax
r (o), the radius r

Ensure: The centre o of the ball Br(o)
1: x← an (* x is an arbitrary letter *)
2: for i = 1 to n do
3: Assume w = a1 . . .an and let w′ = xa1 . . .ai−1ai+1 . . .an

4: if CQ(w′) = YES then w← w′ end if
5: end for
6: Assume w = a1 . . .an and return ar+1 . . .an

Proposition 13 Given w∈Bmax
r (o) and the radius r, Algorithm EXTRACT_CENTRE returns o using

O (|o|+ r) correction queries.

Proof (Sketch) Let us show that the swapping operation is correct. Consider the string w =
a1 . . .an ∈ Bmax

r (o) and let w′ = xa1 . . .ai−1ai+1 . . .an for some 0≤ i≤ n. If there exists at least one
derivation o

r−→w where the letter ai of w comes from an insertion in o, then deleting ai and doing the
insertion of a x in front of o yields a string w′ that satisfies o� w′ and |w′|= |w|. By Proposition 2,
we get d(o,w′) = |w′|− |o|= |w|− |o|= r, so by Proposition 12, w′ ∈ Bmax

r (o) and CQ(w′) = YES.
On the other hand, if there is no derivation where ai is introduced by an insertion, then deleting ai

and inserting a x yields a string w′ such that o 6� w′. By Proposition 2, we get d(o,w′) > |w′|− |o|.
As |w′|= |w|, we deduce that d(o,w′) > r. So w′ 6∈ Bmax

r (o) and CQ(w′) 6= YES.

4.1.4 FINDING ONE BORDERLINE STRING OF MAXIMUM LENGTH

Hence, we are now able to deduce the centre of a ball as soon as we know its radius and a string
from its upper border. The following technical result is a step towards finding this string (although
we have no information about r and |o| yet):

1853

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

Proposition 14 Suppose that Σ = {a1, . . . ,an} and consider the string v = (a1 . . . an)
k with k ≥

|o|+ r. Then every correction of v belongs to Bmax
r (o).

Proof Let U be the set of all the possible corrections of v. Let us show that U = Bmax
r (o). As

v =(a1 . . .an)
k with k≥ |o|+r, we get o� v, so d(o,v)= |v|−|o|, by Proposition 2. Let w∈Bmax

r (o).
By Proposition 12, we get o � w and d(o,w) = |w| − |o| = r. Moreover, as v = (a1 . . .an)

k with
k ≥ |o|+ r, we get w � v. So d(w,v) = |v|− |w| = |v|− |o|− r = d(o,v)− r by Proposition 2. As
d(o,w) = r and d(w,v) = d(o,v)− r, Lemma 10 yields Bmax

r (o) ⊆U . Conversely, let u ∈U . We
get d(o,u) = r, again by Lemma 10. If o � u, then u ∈ Bmax

r (o) by Proposition 12. If o 6� u, then
Proposition 2 yields d(o,u) > |u| − |o|, that is to say, |u| < |o|+ r. But then, d(u,v) ≥ |v| − |u| >
|v|− |o|− r = d(w,v) for all w ∈ Bmax

r (o), so u 6∈U , that is impossible. Therefore, U ⊆ Bmax
r (o).

If one submits (a1 . . .an)
k with a sufficiently large k, then one is sure to get a string of Bmax

r (o).
So the last problem is to find such an interesting k. The following lemma states that if one asks
to the Oracle the correction of a string made of a lot of 0’s, then this correction contains precious
informations about the radius and the number of occurrences of 0’s in the centre:

Lemma 15 Consider the ball Br(o). Let a ∈ Σ be any letter and j ∈ IN an integer such that a j 6∈
Br(o). Let w denote a correction of a j. If |w|< j, then |w|a = |o|a + r.

Proof Let a j 6∈Br(o) and w = CQ(a j). By Lemma 10, we get d(o,w)= r and d(w,a j) = d(o,a j)−r.
As |w|< |a j|, the computation of d(w,a j) consists in (1) substituting all the letters of w that are not
a’s, thus doing |w| − |w|a substitutions, and (2) completing this string with further a’s in order to
reach a j, thus doing j−|w| insertions of a’s. So we deduce that d(w,a j) = |w|− |w|a + j−|w| =
j−|w|a. Let us compute d(o,a j). Clearly, if |o| ≤ |w|< j, then we can use the same arguments as
before and get d(o,a j) = j−|o|a. Finally, since d(w,a j) = d(o,a j)− r, we deduce that j−|w|a =
j−|o|a− r, that is, |w|a = |o|a + r.

Now suppose that |o| > |w|. Then we cannot use the same arguments as before, because it
is possible that |o| ≥ |a j|, thus that deletions are needed to compute d(o,a j). However, this case
is impossible. Indeed, consider a derivation o

r−→ w. Since |o| > |w|, there is at least one dele-
tion along this derivation. Now, instead of deleting a letter, suppose that we substitute it by an

a and do not change anything else. This leads us to a new derivation o
r−→ w′ (or o

r−1−−→ w′ if
the deleted letter was an a) with |w′| = |w|+ 1 and |w′|a = |w|a + 1. Moreover, d(o,w′) ≤ r,
thus w′ ∈ Br(o). Finally, as |w| < j, we get |w′| ≤ j, so with the same arguments as before,
only substitutions and insertions are necessary to compute d(w′,a j). More precisely, we have
d(w′,a j) = (|w′| − |w′|a) + (j− |w′|) = −|w|a − 1 + j = d(w,a j)− 1, thus d(w′,a j) < d(w,a j).
Since w′ ∈ Br(o), w cannot be a correction of a j.

Finally, let us assume that the alphabet is Σ = {a1, . . . ,an} and let j1, . . . , jn ∈ IN be large inte-
gers. If we define k = ∑n

i=1 |CQ(a ji
i)|ai , then Lemma 15 brings k = ∑n

i=1(|o|ai + r) = |o|+ |Σ| · r ≥
|o|+r. So we can plug k into Proposition 14 and get a string w = CQ

(

(a1 . . .an)
k
)

∈ Bmax
r (o). More-

over, we have |w|= |o|+ r and k = |o|+ |Σ| · r. So, we deduce that the radius is r = (k−|w|)/(|Σ|−
1).

1854

LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

4.2 An Algorithm to Learn Balls from Correction Queries

Let us summarize, by assuming that Σ = {a1, . . . ,an} and that the target is the ball Br(o). (1) For
each letter ai, the Learner asks for the correction of a j

i where j is sufficiently large to get a correction
whose length is smaller than j; (2) the Learner sets k = ∑n

i=1 |CQ(a ji
i)|ai and gets the correction w

of the string v = (a1 . . .an)
k; (3) from k and |w|, he deduces r; (4) he uses EXTRACT_CENTRE on

w and r, and he gets o. In other words, he is able to guess the balls with correction queries (see
Algorithm IDF_BALL and Proposition 16).

Algorithm 2 IDF_BALL

Require: The alphabet Σ = {a1, . . . ,an}
Ensure: The representation (o,r) of the target ball Br(o)

1: j← 1;k← 0
2: for i = 1 to n do
3: while CQ(a j

i) = YES or else |CQ(a j
i)| ≥ j do

4: j← 2 · j
5: end while
6: k← k + |CQ(a j

i)|ai

7: end for
8: w← CQ((a1a2 . . .an)

k)
9: r← (k−|w|)/(|Σ|−1)

10: o← EXTRACT_CENTRE(w,r)
11: return (o,r)

For instance, consider the ball B2(11) defined over Σ = {0,1}. IDF_BALL begins by looking
for the corrections of 0 j and 1 j with a sufficiently large j. We might observe: CQ(0) = YES,
CQ(02) = YES, CQ(04) = 0011, CQ(08) = 0110, CQ(18) = 1111. So k = |0110|0 + |1111|1 =
2+4 = 6. Then CQ

(

(01)6
)

= CQ(010101010101) = 0110, for instance, so r = (6−4)/(2−1) = 2.
Finally, EXTRACT_CENTRE(0110,2) returns 11. So the algorithm returns (11,2), which is the
representation of the target ball.

Proposition 16 Given any fixed ball Br(o), the Algorithm IDF_BALL returns the representation
(o,r) using O (|Σ|+ |o|+ r) correction queries.

Proof The correction of IDF_BALL is clear. Concerning the number of queries, the corrections of
all the strings a j

i require O (|Σ|+ log(|o|+ r)) correction queries (lines 2-5). Indeed, O(log(|o|+r))
queries are necessary to get long enough corrections, plus one query per letter, thus |Σ| queries.
Then EXTRACT_CENTRE needs O (|o|+ r) correction queries (line 8) to find the centre, by Propo-
sition 13. So the total amount of queries is O (|Σ|+ |o|+ r).

4.3 Only the Good Balls are Learnable with IDF_BALL

We now have an algorithm that guesses all the balls Br(o) with O (|Σ|+ |o|+ r) correction queries.
Is this result relevant?

1855

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

In Section 3, we have decided to represent every ball Br(o) by the pair (o,r). The size of this
representation, |o|+ logr, is basically related to the number of bits needed to encode this represen-
tation. Notice that |o|+ r is not a correct measure of the size: this would correspond to an encoding
in base 1 of the radius r, which is not considered reasonable (Garey and Johnson, 1979). Therefore,
the number of correction queries used by IDF_BALL is exponential in logr. In consequence, if r is
too large with respect to |o|, (e.g., r > 2|o|), then our algorithm is not able to identify efficiently the
target ball.

In order to avoid this problem, we introduce the following definition that allows us to rewrite
Proposition 16 in a more relevant way:

Definition 17 (Good Balls)

• Let q() be any fixed polynomial. We say that a ball Br(o) is q()-good if r ≤ q(|o|).

• We say that Br(o) is very good if r ≤ |o|.

A very good ball is thus a q()-good ball for the polynomial q(x) = x.
Then, Proposition 16 yields:

Theorem 18

• Let q() be any fixed polynomial. The set of all q()-good balls Br(o) is identifiable with an
algorithm that uses O (|Σ|+ |o|+q(|o|)) correction queries and a polynomial amount of time.

• The set of all very good balls is identifiable with a linear number O (|Σ|+ |o|) of correction
queries and a polynomial amount of time.

Finally, the reader may wonder if a better learnability result could be established, which would
include the huge balls. Unfortunately, there is not a unique answer to this question. On one hand,
if the number of correction queries authorized to learn can also depend on the length of the longest
correction provided by the Oracle during a run of IDF_BALL, then the answer is positive: all the
balls are learnable. On the other hand, in de la Higuera et al. (2008), it has been proved that the set
of all the balls was not polynomially identifiable in the limit, nor in most relevant online learning
paradigms, whereas positive results were established for the good balls in most paradigms. From
this point of view, Theorem 18 is satisfying.

5. Learning in a Realistic Environment

The setting of learning with queries itself occurs in many circumstances: when a human being is
asked to provide data for a learning program, an alternative to have the human expert labeling huge
quantities of data can be to have the learning system interact with the human expert, who then only
labels those items required. Nevertheless, assuming that the Oracle is a human expert introduces
new constraints. On one hand, asking billions of queries is unacceptable: there is no chance to get
enough answers in reasonable time. So the learning algorithm should aim at minimizing the number
of queries even if we must pay for it with a worse time complexity. On the other hand, a human
(or even the Web) is fallible. Therefore, the learning algorithm should aim at learning functions or
languages that are robust from corrections that may not be ideal, thus approximative.

These issues are discussed in de la Higuera (2006). Some examples of this alternative approach
(imperfect Oracle) are: system SQUIRREL, which makes use of queries to a human expert to allow

1856

LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

wrapper induction (Carme et al., 2007); learning test sets (Bréhélin et al., 2001) and testing hardware
(Hagerer et al., 2002), where the actual electronic device can be physically tested by entering a
sequence, and the device will then be able to answer a membership query (note that in that setting
equivalence queries will be usually simulated by sampling). Another typical question occurs when
learning some non intelligible function, defined perhaps by a complex kernel (Clark et al., 2006) or
neural networks (Giles et al., 2001): a representation of these complex functions in another setting
can be obtained if we use the complex function as an Oracle to learn from.

5.1 Faced with a Fallible Oracle

The algorithm IDF_BALL has been designed in an ideal setting, where we have assumed that the
Oracle was a perfect machine: her answers were so precise that we could scrupulously characterize
them (see Lemma 10). However, as described in the introduction, in practice, an Oracle is often
an expert, thus a human being, or is simulated through sampling. In such settings, our assumption
is no longer correct. Indeed, computing the correction of (101)127 w.r.t. the ball B217((1011)32) is
probably out of the cognitive capacities of any human being. So our algorithm should not believe
unwisely the answers he gets since they can be approximate. In this section, we would like to
show, with a series of experiments, that our algorithm withstands such approximate (that is to say,
inaccurate, noisy) answers.

5.1.1 DESIGNING THE APPROXIMATE ORACLE

We want here to design an approximate Oracle that might look like a human being. So let us
consider a string w and a ball Br(o). Let CQh(w) denote the answer of the approximate Oracle, and
CQ(w) the answer that would be returned by a perfect Oracle (as before).

Firstly, we assume that an expert can easily determine whether an example fulfills a concept
or not, thus here, whether w belongs to Br(o) or not. So we assume that if CQ(w) = YES, then
CQh(w) = YES. Secondly, what is really hard for the expert is to compute the best correction of w
when w 6∈ Br(o), and more precisely, a string of the ball that is as close to w as possible. Again,
CQh(w) will probably be inside the ball rather than on its frontier.

Staying a step ahead, let X = d(w,CQh(w))− d(w,CQ(w)) measure the distance between an
approximate correction and a perfect one. Intuitively, an approximate but strong Oracle will often
provide corrections such that X = 0, sometimes X = 1 and rarely X ≥ 2. . . To formalize this idea, we
introduce a confidence parameter 0 < p≤ 1, called the accuracy level of the Oracle, that translates
the quality of her answers, and use a geometric distribution: Pr(X = k) = (1− p)k p, for all k ∈ IN.

Therefore, with probability (1− p)k p, the correction CQh(w) of a string w will be in the target
ball, at distance k of CQ(w). Basically, we get E(X) = (1/p)− 1. So when the Oracle is very
accurate, say p = 0.8, then the average distance between an approximate and a perfect correction
is low (0.25). Conversely, an expert with limited computation capacities, say p = 0.4, will often
provide inaccurate corrections, at distance 1.5 on average.

Our model of approximate Oracle is simple. For instance, we do not suppose that she has any
memory, thus by submitting twice every string w, we would probably get 2 different corrections
that could be used to correct the corrections! We want here to study the resistance of IDF_BALL to
approximate answers, not to design the best possible algorithm, able to beat the approximate Oracle.
So from this standpoint, our basic model is sufficient.

1857

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

5.1.2 BEHAVIOR OF THE ALGORITHM FACED WITH AN APPROXIMATE ORACLE

Following Theorem 18, IDF_BALL systematically guesses the target ball with the help of a perfect
Oracle. But of course, he is sometimes going to fail in front of an approximate Oracle. So, in
order to assess the resistance of IDF_BALL to approximate corrections, we conduct the following
experiment. We randomly choose a set of 100 balls Br(o) such that |o|+ r = 200. More precisely,
we make the radius r vary between 10 and 190 by step of 20, and randomly choose 10 centres o
of length 200− r for each radius. Then, for every accuracy level 0.5 ≤ p ≤ 1, we ask IDF_BALL

to learn all of them and we compute the percentage of balls he is able to retrieve, that we call the
precision of the algorithm. We show the result in Figure 4. We notice that IDF_BALL is able to
identify about 75% of the balls faced with an accuracy level of p = 0.9. Of course, as one can
expect, with lower levels of accuracy, his performances quickly drop (15% for p = 0.5).

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

accuracy

Figure 4: Precision of IDF_BALL faced with an approximate Oracle in function of the accuracy
level p. Each point is assessed on 100 balls.

We also show, in Figure 5, the average distances between the centres of the target balls and the
centres of the the learnt balls when he fails to retrieve them. We observe that these distances are not
that important: even with an accuracy level of p = 0.5, the difference is less than 3. The last curve
in Figure 6 is the difference between the radii, that basically follow the same trend.

5.1.3 IMPROVING THE PRECISION WITH a posteriori HEURISTICS

We have seen that IDF_BALL was able to assimilate the approximations of the Oracle up to a certain
level of accuracy. Moreover, the centres and the radii returned by the algorithm are generally not far
from the target. Therefore, it is reasonable to think that we could improve the precision by exploring
the neighborhood of the learnt centre, using local edit modifications. This kind of approaches has
been pioneered by Kohonen (1985) and is surveyed in Martínez-Hinarejos et al. (2000).

Suppose that the learnt ball is Bk(u) and let Q be the set of all the corrections returned by the
Oracle during the process of IDF_BALL. The heuristics is composed of two steps:

1858

LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.5 0.6 0.7 0.8 0.9 1

di
st

an
ce

 b
et

w
ee

n
ce

nt
re

s

accuracy

Figure 5: Average distances (and standard deviation) between the centres of the target balls and the
centres of the learnt balls, when IDF_BALL fails in retrieving them.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.5 0.6 0.7 0.8 0.9 1

di
st

an
ce

 b
et

w
ee

n
ra

di
i

accuracy

Figure 6: Average difference (and standard deviation) between the radii of the target balls and the
radii of the learnt balls, when IDF_BALL fails in retrieving them.

1859

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

1. We test each neighbor u′ (at distance 1) of the learnt centre u and examine if it is a better
centre with respect to Q , that is to say, if there exists k′ ∈ IN such that k′ < k and Q ⊆ Bk′(u′).
Then we keep the representations (u′,k′) of the smallest balls that contain all the corrections
seen so far.

2. From this set, we select all the pairs (u′,k′) that maximize the number of corrections (of Q)
at distance k′, in such a way as to get the maximum number of corrections on the border of
the new ball. Then we randomly choose and return one of them.

This heuristics will be very good each time u is at distance 1 from the target centre. But as soon
as this distance grows, IDF_BALL will fail again. In order to enhance the one-step heuristics, we
iterate the process and design a second until-convergence heuristics by repeating the local search
described above, until the size of the ball cannot decrease anymore.

In order to show that the balls learnt by IDF_BALL can be corrected a posteriori, we compare,
in a series of experiments, the precision of the algorithm without any post-treatment, with the one-
step heuristics and with the until-convergence heuristics. We fix |o|+ r = 200 and make the radius
vary from 10 to 190. For each radius, we randomly draw 50 centres of length 200− r. Then, we
make the accuracy level vary from 0.5 to 1. For each pair (accuracy, radius), we ask IDF_BALL to
retrieve the 50 balls and note the precision. In order to be able to reduce the variance due to the
approximations of the Oracle, we repeat the experiment 10 times using the same set of balls and
finally plot the average precisions in Figure 7.

We can remark that whatever the accuracy level, using the until-convergence heuristics is never
worse than the one-step heuristics, which is never worse than no post-treatment at all. However, our
heuristics do not always improve the precision of the algorithm: this depends on the ratio between
the radius of the target ball and the length of its centre. In order to detail this, we have extracted two
transverse sections, shown in Figures 8 and 9, where we fix the radii.

Figure 8 describes the precision of IDF_BALL for target balls such that r = 170 and |o|= 30. In
this case, we gain little using the heuristics. This is probably due to the fact that the size of the set
Q , which is used to control the heuristics, is incomparably smaller than the volume of such balls.
In other words, the heuristics are not sufficiently guided by Q towards the targets, because Q is not
informative enough.

On the other hand, Figure 9 describes the precision for target balls such that r = 10 and |o|= 190.
Basically, our heuristics outperform the precision with respect to the algorithm without any post-
treatment, whatever the accuracy level of the Oracle. Moreover, the benefit is all the more important
as the accuracy level is bad. For instance, when p = 0.6, the until-convergence heuristics is able to
dramatically boost the precision from 12% to 86%.

So in this setting, with no further enhancement, IDF_BALL produces balls that are so close to
the targets that they can easily be improved using only basic local modifications.

5.2 Using Less Correction Queries

We have seen that the good balls were identifiable with O (|Σ|+ |o|+ r) correction queries. How-
ever, as discussed in the introduction, such a number of queries is excessive if the Oracle is a human
being. Moreover, if the reader thinks of what happens in the plane (see Figure 2), then very few
queries are needed to identify the disks. Hence, our result might seem to be a bit disappointing.

If one takes a closer look at IDF_BALL, one can notice that the first part of the identification,
that is to say, the search for a string of Bmax

r (o), is done with O (|Σ|+ log(|o|+ r)) correction queries

1860

LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

until-convergence
one-step

whitout

 0.5 0.6 0.7 0.8 0.9 1

accuracy

 0
 50

 100
 150

 200

radius 0

 20

 40

 60

 80

 100

precision

Figure 7: Precision of IDF_BALL with and without heuristics in function of accuracy and radius
when |o|+ r = 200. For each pair (accuracy, radius), we compute the average over 50
balls.

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

accuracy

until-convergence
one-step

without

Figure 8: Precision of IDF_BALL when |o|+ r = 200 for r = 170. For each accuracy, we compute
the average over 50 balls. We run the experiment 10 times in order to reduce the variance.

1861

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

accuracy

until-convergence
one-step

without

Figure 9: Precision of IDF_BALL when |o|+ r = 200 for r = 10. For each accuracy, we compute
the average over 50 balls. We run the experiment 10 times in order to reduce the variance.

(thus, a logarithmic number). What is really expensive is to find the centre of the ball using the
function EXTRACT_CENTRE. We are going to show below that this function can be eliminated
from the learning stage, and thus, that the complexity can be dramatically reduced, but in a slightly
different setting.

For reasons that we shall develop later, we now suppose that the alphabet has at least three
letters: Σ = {a1, . . . ,an} with n≥ 3.

5.2.1 THE USE OF A WEIGHTED EDIT DISTANCE

Up to now, we have considered the standard edit distance defined by Levenshtein (1965). How-
ever, for practical reasons, people often use variants of this definition where the edit operations are

weighted. In this case, every derivation w
k−→ w′ has a weight which is the sum of the weights of

the edit operations along the derivation. Then the weighted edit distance d(w,w′) is the minimum
weight of every derivation transforming w into w′. Clearly, if the weight of all the edit operations is
1, then we get the standard edit distance.

The different combinations of weights will impose alternative algorithms when using correction
queries. As we aim at showing that the number of correction queries can be dramatically reduced,
we assume that:

1. the weight of every insertion and every deletion is 1 (as before),

2. the weight of every substitution is an irrational number ρ such that 0 < ρ < 1.

For instance, the weight of the substitution could be ρ = π
4 ' 0.7854.

1862

LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

It is worth noting that the low cost of a substitution operation is usual from a linguistic point of
view. For instance, works on Phonology make this assumption in order to enforce the alignment of
phonetically similar segments (Albright and Hayes, 2003).

Nevertheless, the fact that ρ is not rational may be confusing for the reader. Actually, from the
Learner standpoint, we will see that he never needs to compute the weighted edit distance (that is
probably not the case of the Oracle). So the fact that ρ is not a fraction will not be a problem.

We can show that this set of weights induces an edit distance that can be computed using
dynamic programming.3 Moreover, Proposition 2, stating that (1) d(w,w′) ≥

∣

∣|w| − |w′|
∣

∣ and (2)
d(w,w′) =

∣

∣|w|− |w′|
∣

∣ iff (w � w′ or w′ � w), still holds, because the weight of the insertions and
deletions is 1. Finally, the fact that ρ is irrational allows us to establish strong properties:

Proposition 19 Let o,w,w′ ∈ Σ∗ be three strings. The following statements are equivalent:

1. There exists a derivation of minimum weight from w to w′ that uses x ∈ IN insertions and
deletions, and y ∈ IN substitutions;

2. d(w,w′) = x+ρy;

3. All the derivations of minimum weight from w to w′ use x ∈ IN insertions and deletions, and
y ∈ IN substitutions.

In consequence, if d(o,w) = d(o,w′), then all the derivations from o to w and from o to w′ use the
same number of insertions and deletions, and the same number of substitutions.

Proof

• 3. =⇒ 1.: straightforward.

• 1. =⇒ 2.: since the weight of the insertions and deletions is 1, and the weight of the substitu-
tions is ρ, and the derivation has a minimum weight, we get d(w,w′) = x+ρy.

• 2. =⇒ 3.: consider another derivation from w to w′ of minimum weight that uses x′ ∈ IN
insertions and deletions, and y′ ∈ IN substitutions. Then we get d(w,w′) = x′+ρy′ = x +ρy,
so x− x′ = ρ(y′− y). As ρ is irrational and x,x′,y,y′ are integers, we deduce that y′− y = 0
and x− x′ = 0, thus x′ = x and y′ = y.

Of course, this result would not hold if ρ was a rational number, for instance ρ = 1
2 , because two

substitutions would have the same weight as one insertion, which might induce two very different
derivations of minimum weight between two strings.

5.2.2 THE NEW GOOD BALLS AND CORRECTIONS

Basically, changing the edit distance also changes the balls. For instance, using the standard edit
distance, we get B1(011) = {01,11,001,010,011,111,0011,0101,0110,1011,0111}. But the use

of the weighted edit distance with ρ =
√

2
4 ' 0.3536 adds {000,101,110} as new strings.

3. Indeed, its restriction to Σ∪{λ} is a distance, so following Crochemore et al. (2007), the standard dynamic program-
ming algorithm of Wagner and Fisher (1974) can be used to compute the weighted edit distance over Σ∗.

1863

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

The reader may also wonder whether the radius of the balls should still be an integer or not. Ac-
tually, we shall not consider balls whose radius is not an integer, because otherwise, the balls Br(o)
and Br+ ρ

2
(o) might represent the same set. In other words, Theorem 5, that states the uniqueness of

the representation, would not hold anymore. Conversely, if we only consider balls with an integer
radius, then the reader can check that Theorem 5 still holds (because Proposition 2 still holds).

Concerning the corrections, their properties become more intricate due to the weights. In partic-
ular, Lemma 10 was stating that the set of possible corrections of any string v 6∈ Br(o) was exactly
{u ∈ Σ∗ : d(o,u) = r and d(u,v) = d(o,v)− r}. This result does not hold anymore. Indeed, con-

sider the ball B1(011) when ρ =
√

2
4 . Then any correction u of the string 100 is in {000,101,110}.

Basically, d(011,u) = 2ρ < 1 and d(u,100) = ρ > d(011,100)− 1 = 3ρ− 1. In other words, a
correction is not necessarily on the circle that delimits the ball.

Nevertheless, we get a more sophisticated result that characterizes the set of all the possible
corrections:

Lemma 20 Let Br(o) be a ball and v 6∈ Br(o). Given any α ∈ IR, we define

Cα = {u ∈ Σ∗ : d(o,u) = α and d(u,v) = d(o,v)−α}.

All the nonempty Cα define concentric arcs of circles of strings around the centre o. Let α0 be the
radius of biggest one inside the ball of strings:

α0 = max
0≤α≤r

{α : Cα 6= /0}.

Then the set of possible corrections of v is exactly Cα0 .

Proof The proof is the same as that of Lemma 10, except that W is replaced by Cα0 and r is replaced
by α0. The key point is that W could be empty with the weighted edit distance whereas Cα0 cannot,
by definition.

5.2.3 THE BORDERLINE STRINGS OF MAXIMUM LENGTH

Let us tackle the problem of learning the balls. As in Section 4, we study the longest strings of Br(o)
since they are very informative. Indeed, we are going to show as in Lemma 15, that if one asks for
the correction w of a string made of a lot of 0’s, then |w|0 = |o|0 + r. In addition, in our setting,
we also get w ∈ Bmax

r (o) directly. Nevertheless, we must pay for it by assuming that we know the
polynomial q() for which Br(o) is a good ball.

Lemma 21 Let q() be a fixed polynomial with coefficients in IN. Consider the q()-good ball Br(o),
a letter a ∈ Σ and an integer j ∈ IN such that a j 6∈ Br(o). Let u = CQ(a j) and v = CQ(a j+q(j)). If
|u|< j, then v ∈ Bmax

r (o) and |v|a = |o|a + r.

This subsection aims at proving this lemma, using two intermediate results:

Proposition 22 Consider the ball Br(o), a letter a ∈ Σ and an integer j ∈ IN such that a j 6∈ Br(o).
Let u = CQ(a j). If |u|< j, then |o|< j.

1864

LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

Proof Let us show that |o| ≤ |u|; as |u| < j, we shall get the result. Hence, suppose that |u| < |o|
and consider a rewriting derivation o

k−→ u of minimum weight d(o,u) = x + ρy. Since |o| > |u|,
there is at least one deletion along this derivation. Suppose that, instead of deleting a letter, we

substitute it by an a and do not change anything else. This leads us to a new derivation o
k−→ u′

(or o
k−1−−→ u′ if the deleted letter was an a) with |u′| = |u|+ 1 and |u′|a = |u|a + 1. Moreover,

d(o,u′)≤ (x−1)+ρ(y+1) = d(o,u)−1+ρ. Since d(o,u)≤ r, we deduce that d(o,u′) < r, thus
u′ ∈ Br(o). Finally, as |u|< j, we get |u′| ≤ j, so only substitutions and insertions are necessary to
compute both d(u,a j) and d(u′,a j). More precisely, we have d(u′,a j) = (j−|u′|)+ρ(|u′|−|u′|a) =
(j− |u| − 1)+ ρ(|u| − |u|a) = d(u,a j)− 1, thus d(u′,a j) < d(u,a j). As u′ ∈ Br(o), u cannot be a
correction of a j, which is a contradiction. So |u| ≥ |o|, thus |o|< j.

Proposition 23 Consider the ball Br(o), a letter a ∈ Σ and an integer ` ∈ IN such that a` 6∈ Br(o).
Let v = CQ(a`). If |o|+ r < `, then v ∈ Bmax

r (o) and |v|a = |o|a + r.

Proof As |o|+ r < `, we have |o| < `, so the computation of d(o,a`) necessarily uses `− |o| in-
sertions of a’s and |o|− |o|a substitutions by a’s. Let us define a reference derivation from o to a`,
where the `−|o| insertions are performed first at the beginning of o, and then the |o|− |o|a substi-

tutions by a’s in o: o
`−|o|−−−→ a`−|o|o

|o|−|o|a−−−−→ a`−|o|a|o| = a`. As `−|o|> r, the string a`−|o|o is not in
the ball, so this derivation passes through the string aro before reaching a`−|o|o. In other words, the

reference derivation looks as follows: o
r−→ aro

`−|o|−r−−−−→ a`−|o|o
|o|−|o|a−−−−→ a`. Now consider Lemma

20. Basically, d(o,aro) = r and d(aro,a`) = `− |o| − r + ρ(|o| − |o|a) = d(o,a`)− r, so Cr 6= /0.
Therefore, as v = CQ(a`), we deduce that d(o,v) = r and d(v,a`) = d(o,a`)− r. We claim that
only insertions of a’s can occur along the derivation o

r−→ v. Indeed, we have d(o,v) = r ∈ IN, so by
Proposition 19, no substitution occurs. Moreover, no deletion occurs since any minimal derivation
from o to a` only uses insertions of a’s and substitutions by a’s. In consequence, v ∈ Bmax

r (o) and
|v|a = |o|a + r.

Proof [of Lemma 21] By Proposition 22, we get |o| < j. Then we have |o|+ r ≤ |o|+ q(|o|).
Moreover, as |o| < j and all the coefficients of q() are in IN, we deduce that |o|+ r < j + q(j). So
plugging ` = j +q(j) in Proposition 23 yields the result.

5.2.4 LEARNING THE BALLS LOGARITHMICALLY

As a consequence of Lemma 21, the correction of a long string of 0’s leads to a string of Bmax
r (o). But

we get more properties, if the alphabet has at least three letters, say 0,1,2. . . Indeed, let u0 = CQ(0 j)
with |u0| < j, and v0 = CQ(0 j+q(j)). Thanks to Lemma 21, v0 is obtained from o with r insertions
of 0’s. So all the letters in v0, but the occurrences of 0, are those of o and appear in the correct order.

More formally, let Ea be the function that erases every occurrence of any letter a ∈ Σ in a string:

1. Ea(λ) = λ,

2. Ea(a.z) = Ea(z), and

1865

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

3. Ea(b.z) = b.Ea(z), for all b 6= a.

Then, for every a ∈ Σ, Ea(va) = Ea(o).
For instance, consider the ball B1(o) with o = 10302. If the corrections of the strings 0`, 1`

and 2` (with ` big enough) are v0 = 103020, v1 = 101302 and v2 = 103202 respectively, then
E0(v0) = E0(o) = 132, E1(v1) = E1(o) = 0302 and E2(v2) = E2(o) = 1030.

Furthermore, we can easily deduce o by aligning the strings E0(o) and E1(o) and E2(o):

E0(o) 1 · 3 · 2
E1(o) · 0 3 0 2
E2(o) 1 0 3 0 ·

o 1 0 3 0 2

This procedure does not use any new correction query and runs in time O (|o|) which is clearly more
efficient than EXTRACT_CENTRE. Notice that if |Σ| > 3, we only need three corrections to align
and deduce the center. So we finally obtain Algorithm 3 and Theorem 24.

Algorithm 3 IDF_WEIGHTED_BALLS

Require: The alphabet Σ = {a1, . . . ,an} with n≥ 3, and the polynomial q()
Ensure: The representation (o,r) of the target q()-good ball Br(o)

1: j← 1
2: for i = 1 to 3 do
3: while CQ(a j

i) = YES or else |CQ(a j
i)| ≥ j do

4: j← 2 · j
5: end while
6: vi← CQ

(

a j+q(j)
i

)

7: ei← Eai(vi)
8: end for
9: o← ALIGN(e1,e2,e3)

10: r← |v1|− |o|
11: return (o,r)

Theorem 24 Assume |Σ| ≥ 3.

• Let q() be any fixed polynomial with coefficients in IN. The set of all q()-good balls Br(o) is
identifiable with an algorithm that uses O (log(|o|+q(|o|))) correction queries and a poly-
nomial amount of time.

• The set of all very good balls is identifiable with a logarithmic number O (log |o|) of correction
queries and a polynomial amount of time.

Therefore, assuming that the weight of the substitutions is an irrational < 1 allows us to reduce
dramatically the complexity of the learning stage. Of course, this gain is not possible with all
weighted distances, which leaves room for further research. Moreover, if the Learner does not
know the polynomial q(), we believe that learning is still possible.

1866

LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

6. Discussion and Conclusion

In this work, we have used correction queries to learn a particular class of languages from an Oracle.
The intended setting is that of an inexact Oracle, and experiments show that the proposed algorithm
can learn a language sufficiently close to the target for simple local modifications (with no extra
queries). In order to do this, the languages we consider are good balls of strings defined with the
edit distance. Studying them allowed us to catch a glimpse of the geometry of sets of strings, which
is very different from the Euclidean geometry. A number of questions and research directions are
left open by this work.

A first question concerns the distance we use. We have chosen to work with the unitary edit
distance, but in many applications, the edit operations can have different weights. Preliminary work
has allowed us to notice that the geometry of sets of strings, thus the algorithmics, could change
considerably depending on the sorts of weights we used: with the substitutions costing less than
the other two operations, a much faster algorithm exists, requiring only O (log(|o|+ r)) correction
queries. Alternative conditions over the weights require new interesting learning algorithms.

A second question concerns the inaccuracy model we are using: as noticed in Section 5.1, with
the current model it would be possible to repeat the same query various times, getting different cor-
rections, but possibly being able, through some majority vote scheme, to get the adequate correction
with very little extra cost. Just asking for persistent corrections is not enough to solve this problem:
a good model should require that if one queries from a close enough string (a999 instead of a1000)
then the corrections should also remain close. Topologically, we would expect the Oracle to be
k-Lipschitz continuous (with 0 < k < 1).

A third more challenging problem then arises: our choice here was to learn supposing the Oracle
was exact, and correcting later. But a more direct approach might be better, by taking into account
the inexactitude of the Oracle when interpreting the correction.

Acknowledgments

The authors wish to thank Jose Oncina for his help in proving Theorem 5, Rémi Eyraud for fruit-
ful discussions about this paper, Dana Angluin for constructive comments and Baptiste Gorin for
his helpful pointers towards the Mohr-Mascheroni constructions. We would also like to thank the
anonymous referees that have carefully read this manuscript and allowed us to improve the results
based on the weighted edit distance. Their remarks led us to formulate Conjecture 4 that was dis-
cussed with Ron Greensberg, Borivoj Melichar, Klaus Schultz and Stoyan Mihov. This work was
supported in part by the IST Programme of the European Community, under the PASCAL Network
of Excellence, IST-2006-216886, and by a Marie Curie International Fellowship within the 6th
European Community Framework Programme. This publication only reflects the authors’ views.

References

A. Albright and B. Hayes. Rules vs. analogy in English past tenses: A computational/experimental
study. Cognition, 90:119–161, 2003.

J.-C. Amengual and P. Dupont. Smoothing probabilistic automata: An error-correcting approach.
In Proc. of the 5th International Colloquium in Grammatical Inference (ICGI’00), pages 51–64.

1867

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

LNAI 1891, 2000.

J.-C. Amengual, A. Sanchis, E. Vidal, and J.-M. Benedí. Language simplification through error-
correcting and grammatical inference techniques. Machine Learning Journal, 44(1-2):143–159,
2001.

D. Angluin. Learning regular sets from queries and counterexamples. Information and Computa-
tion, 75(2):87–106, 1987a.

D. Angluin. Queries revisited. Theoretical Computer Science, 313(2):175–194, 2004.

D. Angluin. On the complexity of minimum inference of regular sets. Information and Control, 39:
337–350, 1978.

D. Angluin. Queries and concept learning. Machine Learning Journal, 2(4):319–342, 1987b.

D. Angluin and M. Kharitonov. When won’t membership queries help? Journal of Computer and
System Sciences, 50(2):336–355, 1995.

L. Becerra-Bonache. On the Learnability of Mildly Context-Sensitive Languages using Positive
Data and Correction Queries. PhD thesis, Rovira i Virgili University, Tarragona, 2006.

L. Becerra-Bonache and T. Yokomori. Learning mild context-sensitiveness: Towards understand-
ing children’s language learning. In Proc. of the 7th International Colloquium in Grammatical
Inference (ICGI’04), pages 53–64. LNAI 3264, 2004.

L. Becerra-Bonache, A. H. Dediu, and C. Tirnauca. Learning DFA from correction and equivalence
queries. In Proc. of the 8th International Colloquium in Grammatical Inference (ICGI’06), pages
281–292. LNAI 4201, 2006.

L. Bréhélin, O. Gascuel, and G. Caraux. Hidden Markov models with patterns to learn boolean
vector sequences and application to the built-in self-test for integrated circuits. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 23(9):997–1008, 2001.

J. Carme, R. Gilleron, A. Lemay, and J. Niehren. Interactive learning of node selecting tree trans-
ducers. Machine Learning, 66(1):33–67, 2007.

E. Chávez, G. Navarro, R. A. Baeza-Yates, and J. L. Marroquín. Searching in metric spaces. ACM
Computing Surveys, 33(3):273–321, 2001.

N. Chomsky. Syntactic Structure. Mouton, 1957.

A. Clark, C. Costa Florêncio, and C. Watkins. Languages as hyperplanes: Grammatical inference
with string kernels. In Proc. of the 17th European Conference on Machine Learning (ECML’06),
pages 90–101. LNCS 4212, 2006.

F. Coste, K. Lang, and B. A. Pearlmutter. The Gowachin automata learning competition, 1998.
URL http://www.irisa.fr/Gowachin/.

M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge University Press,
2007.

1868

LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

C. de la Higuera. Data complexity issues in grammatical inference. In M. Basu and T. K. Ho,
editors, Data Complexity in Pattern Recognition, pages 153–172. Springer-Verlag, 2006.

C. de la Higuera. Characteristic sets for polynomial grammatical inference. Machine Learning, 27:
125–138, 1997.

C. de la Higuera and F. Casacuberta. Topology of strings: Median string is NP-complete. Theoreti-
cal Computer Science, 230:39–48, 2000.

C. de la Higuera, J.-C. Janodet, and F. Tantini. Learning languages from bounded resources: The
case of the DFA and the balls of strings. In Proc. of the 9th International Colloquium in Gram-
matical Inference (ICGI’08), page ? (to appear). LNAI, 2008.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cambridge
University Press, 1998.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

C. L. Giles, S. Lawrence, and A.C. Tsoi. Noisy time series prediction using recurrent neural net-
works and grammatical inference. Machine Learning Journal, 44(1):161–183, 2001.

D. Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computational
Biology. Cambridge University Press, 1997.

A. Hagerer, H. Hungar, O. Niese, and B. Steffen. Model generation by moderated regular extrap-
olation. In Proc. of the 5th International Conference on Fundamental Approaches to Software
Engineering (FASE’02), pages 80–95. LNCS 2306, 2002.

M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.

M. J. Kearns and M. Li. Learning in the presence of malicious errors. SIAM Journal of Computing,
22(4):807–837, 1993.

E. B. Kinber. On learning regular expressions and patterns via membership and correction queries.
In Proc. of the 9th International Colloquium in Grammatical Inference (ICGI’08), page ? (to
appear). LNAI, 2008.

T. Kohonen. Median strings. Pattern Recognition Letters, 3:309–313, 1985.

K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the Abbadingo one DFA learning com-
petition and a new evidence-driven state merging algorithm. In Proc. of the 4th International
Colloquium in Grammatical Inference (ICGI’98), pages 1–12. LNAI 1433, 1998.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Doklady
Akademii Nauk SSSR, 163(4):845–848, 1965.

S. Lucas. Learning deterministic finite automata from noisy data competition, 2004. URL
http://cswww.essex.ac.uk/staff/sml/gecco/NoisyDFA.html.

1869

BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

C. D. Martínez-Hinarejos, A. Juan, and F. Casacuberta. Use of median string for classification. In
Proc. of the 15th International Conference on Pattern Recognition (ICPR’00), volume 2, pages
2903–2906, 2000.

L. Mascheroni. Geometria del compasso. Pavia, 1797.

B. Melichar. Approximate string matching by finite automata. In Proc. 6th International Conference
on Computer Analysis of Images and Patterns (CAIP’95), pages 342–349. LNCS 970, 1995.

G. Mohr. Euclides danicus. Amsterdam, 1672.

G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys, 33(1):31–88,
2001.

M.-F. Sagot and Y. Wakabayashi. Pattern inference under many Guises. In Recent Advances in
Algorithms and Combinatorics, pages 245–287. Springer-Verlag, 2003.

J. Sakarovich. Eléments de Théorie des Automates. Vuibert, 2004.

A. Salomaa. On languages defined by numerical parameters. In Formal Models, Languages and
Applications, volume 66 of Machine Perception and Artificial Intelligence, chapter 8. World Sci-
entific Publishing Company, 2006.

K. U. Schulz and S. Mihov. Fast string correction with Levenshtein automata. International Journal
on Document Analysis and Recognition, 5(1):67–85, 2002.

F. Tantini, C. de la Higuera, and J. C. Janodet. Identification in the limit of systematic-noisy lan-
guages. In Proc. of the 8th International Colloquium in Grammatical Inference (ICGI’06), pages
19–31. LNCS 4201, 2006.

B. Trakhtenbrot and Y. Barzdin. Finite Automata: Behavior and Synthesis. North Holland Pub.
Comp., Amsterdam, 1973.

E. Ukkonen. Algorithms for approximate string matching. Information and Control, 64(1-3):100–
118, 1985.

R. Wagner and M. Fisher. The string-to-string correction problem. Journal of the ACM, 21:168–178,
1974.

1870

Journal of Machine Learning Research 9 (2008) 1871-1874 Submitted 5/08; Published 8/08

LIBLINEAR: A Library for Large Linear Classification

Rong-En Fan B90098@CSIE.NTU.EDU.TW

Kai-Wei Chang B92084@CSIE.NTU.EDU.TW

Cho-Jui Hsieh B92085@CSIE.NTU.EDU.TW

Xiang-Rui Wang R95073@CSIE.NTU.EDU.TW

Chih-Jen Lin CJLIN@CSIE.NTU.EDU.TW

Department of Computer Science
National Taiwan University
Taipei 106, Taiwan

Editor: Soeren Sonnenburg

Abstract
LIBLINEAR is an open source library for large-scale linear classification. It supports logistic regres-
sion and linear support vector machines. We provide easy-to-use command-line tools and library
calls for users and developers. Comprehensive documents are available for both beginners and
advanced users. Experiments demonstrate that LIBLINEAR is very efficient on large sparse data
sets.

Keywords: large-scale linear classification, logistic regression, support vector machines, open
source, machine learning

1. Introduction

Solving large-scale classification problems is crucial in many applications such as text classification.
Linear classification has become one of the most promising learning techniques for large sparse
data with a huge number of instances and features. We develop LIBLINEAR as an easy-to-use tool
to deal with such data. It supports L2-regularized logistic regression (LR), L2-loss and L1-loss
linear support vector machines (SVMs) (Boser et al., 1992). It inherits many features of the popular
SVM library LIBSVM (Chang and Lin, 2001) such as simple usage, rich documentation, and open
source license (the BSD license1). LIBLINEAR is very efficient for training large-scale problems.
For example, it takes only several seconds to train a text classification problem from the Reuters
Corpus Volume 1 (rcv1) that has more than 600,000 examples. For the same task, a general SVM
solver such as LIBSVM would take several hours. Moreover, LIBLINEAR is competitive with or
even faster than state of the art linear classifiers such as Pegasos (Shalev-Shwartz et al., 2007) and
SVM

perf (Joachims, 2006). The software is available at http://www.csie.ntu.edu.tw/˜cjlin/
liblinear.

This article is organized as follows. In Sections 2 and 3, we discuss the design and implemen-
tation of LIBLINEAR. We show the performance comparisons in Section 4. Closing remarks are in
Section 5.

1. The New BSD license approved by the Open Source Initiative.

c©2008 Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang and Chih-Jen Lin.

FAN, CHANG, HSIEH, WANG AND LIN

2. Large Linear Classification (Binary and Multi-class)

LIBLINEAR supports two popular binary linear classifiers: LR and linear SVM. Given a set of
instance-label pairs (xi,yi), i = 1, . . . , l, xi ∈ Rn, yi ∈ {−1,+1}, both methods solve the following
unconstrained optimization problem with different loss functions ξ(w;xi,yi):

min
w

1
2

wT w+C∑l
i=1 ξ(w;xi,yi), (1)

where C > 0 is a penalty parameter. For SVM, the two common loss functions are max(1−
yiwT xi,0) and max(1− yiwT xi,0)2. The former is referred to as L1-SVM, while the latter is L2-
SVM. For LR, the loss function is log(1+e−yiwT xi), which is derived from a probabilistic model. In
some cases, the discriminant function of the classifier includes a bias term, b. LIBLINEAR han-
dles this term by augmenting the vector w and each instance xi with an additional dimension:
wT ← [wT ,b],xT

i ← [xT
i ,B], where B is a constant specified by the user. The approach for L1-

SVM and L2-SVM is a coordinate descent method (Hsieh et al., 2008). For LR and also L2-SVM,
LIBLINEAR implements a trust region Newton method (Lin et al., 2008). The Appendix of our SVM
guide.2 discusses when to use which method. In the testing phase, we predict a data point x as posi-
tive if wT x > 0, and negative otherwise. For multi-class problems, we implement the one-vs-the-rest
strategy and a method by Crammer and Singer. Details are in Keerthi et al. (2008).

3. The Software Package

The LIBLINEAR package includes a library and command-line tools for the learning task. The design
is highly inspired by the LIBSVM package. They share similar usage as well as application program
interfaces (APIs), so users/developers can easily use both packages. However, their models after
training are quite different (in particular, LIBLINEAR stores w in the model, but LIBSVM does not.).
Because of such differences, we decide not to combine these two packages together. In this section,
we show various aspects of LIBLINEAR.

3.1 Practical Usage

To illustrate the training and testing procedure, we take the data set news20,3 which has more than
one million features. We use the default classifier L2-SVM.

$ train news20.binary.tr
[output skipped]
$ predict news20.binary.t news20.binary.tr.model prediction
Accuracy = 96.575% (3863/4000)

The whole procedure (training and testing) takes less than 15 seconds on a modern computer. The
training time without including disk I/O is less than one second. Beyond this simple way of running
LIBLINEAR, several parameters are available for advanced use. For example, one may specify a
parameter to obtain probability outputs for logistic regression. Details can be found in the README
file.

2. The guide can be found at http://www.csie.ntu.edu.tw/˜cjlin/papers/guide/guide.pdf.
3. This is the news20.binary set from http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets. We use a

80/20 split for training and testing.

1872

LIBLINEAR: A LIBRARY FOR LARGE LINEAR CLASSIFICATION

3.2 Documentation

The LIBLINEAR package comes with plenty of documentation. The README file describes the instal-
lation process, command-line usage, and the library calls. Users can read the “Quick Start” section,
and begin within a few minutes. For developers who use LIBLINEAR in their software, the API
document is in the “Library Usage” section. All the interface functions and related data structures
are explained in detail. Programs train.c and predict.c are good examples of using LIBLINEAR
APIs. If the README file does not give the information users want, they can check the online FAQ
page.4 In addition to software documentation, theoretical properties of the algorithms and compar-
isons to other methods are in Lin et al. (2008) and Hsieh et al. (2008). The authors are also willing
to answer any further questions.

3.3 Design

The main design principle is to keep the whole package as simple as possible while making the
source codes easy to read and maintain. Files in LIBLINEAR can be separated into source files, pre-
built binaries, documentation, and language bindings. All source codes follow the C/C++ standard,
and there is no dependency on external libraries. Therefore, LIBLINEAR can run on almost every
platform. We provide a simple Makefile to compile the package from source codes. For Windows
users, we include pre-built binaries.

Library calls are implemented in the file linear.cpp. The train() function trains a classifier
on the given data and the predict() function predicts a given instance. To handle multi-class
problems via the one-vs-the-rest strategy, train() conducts several binary classifications, each
of which is by calling the train one() function. train one() then invokes the solver of users’
choice. Implementations follow the algorithm descriptions in Lin et al. (2008) and Hsieh et al.
(2008). As LIBLINEAR is written in a modular way, a new solver can be easily plugged in. This
makes LIBLINEAR not only a machine learning tool but also an experimental platform.

Making extensions of LIBLINEAR to languages other than C/C++ is easy. Following the same
setting of the LIBSVM MATLAB/Octave interface, we have a MATLAB/Octave extension available
within the package. Many tools designed for LIBSVM can be reused with small modifications. Some
examples are the parameter selection tool and the data format checking tool.

4. Comparison

Due to space limitation, we skip here the full details, which are in Lin et al. (2008) and Hsieh et al.
(2008). We only demonstrate that LIBLINEAR quickly reaches the testing accuracy corresponding
to the optimal solution of (1). We conduct five-fold cross validation to select the best parameter
C for each learning method (L1-SVM, L2-SVM, LR); then we train on the whole training set and
predict the testing set. Figure 1 shows the comparison between LIBLINEAR and two state of the art
L1-SVM solvers: Pegasos (Shalev-Shwartz et al., 2007) and SVM

perf (Joachims, 2006). Clearly,
LIBLINEAR is efficient.

To make the comparison reproducible, codes used for experiments in Lin et al. (2008) and Hsieh
et al. (2008) are available at the LIBLINEAR web page.

4. FAQ can be found at http://www.csie.ntu.edu.tw/˜cjlin/liblinear/FAQ.html.

1873

FAN, CHANG, HSIEH, WANG AND LIN

0 2 4 6 8 10
0.955

0.96

0.965

0.97

Training Time (s)

T
es

tin
g

ac
cu

ra
cy

 (
%

)

LIBLINEAR−L1
LIBLINEAR−L2
LIBLINEAR−LR
PEGASOS
SVMperf

(a) news20, l: 19,996, n: 1,355,191, #nz: 9,097,916

0 5 10 15 20 25 30
0.97

0.971

0.972

0.973

0.974

0.975

0.976

0.977

0.978

0.979

Training Time (s)

T
es

tin
g

ac
cu

ra
cy

 (
%

)

LIBLINEAR−L1
LIBLINEAR−L2
LIBLINEAR−LR
PEGASOS
SVMperf

(b) rcv1, l: 677,399, n: 47,236, #nz: 156,436,656

Figure 1: Testing accuracy versus training time (in seconds). Data statistics are listed after the data
set name. l: number of instances, n: number of features, #nz: number of nonzero feature
values. We split each set to 4/5 training and 1/5 testing.

5. Conclusions

LIBLINEAR is a simple and easy-to-use open source package for large linear classification. Exper-
iments and analysis in Lin et al. (2008), Hsieh et al. (2008) and Keerthi et al. (2008) conclude that
solvers in LIBLINEAR perform well in practice and have good theoretical properties. LIBLINEAR
is still being improved by new research results and suggestions from users. The ultimate goal is to
make easy learning with huge data possible.

References

B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In COLT,
1992.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. Software avail-
able at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate descent
method for large-scale linear SVM. In ICML, 2008.

T. Joachims. Training linear SVMs in linear time. In ACM KDD, 2006.

S. S. Keerthi, S. Sundararajan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A sequential dual method
for large scale multi-class linear SVMs. In ACM KDD, 2008.

C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton method for large-scale logistic
regression. JMLR, 9:627–650, 2008.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: primal estimated sub-gradient solver for
SVM. In ICML, 2007.

1874

Journal of Machine Learning Research 9 (2008) 1875-1908 Submitted 4/07; Revised 4/08; Published 8/08

On Relevant Dimensions in Kernel Feature Spaces

Mikio L. Braun MIKIO@CS.TU-BERLIN.DE

Technische Universität Berlin
Franklinstr. 28/29, FR 6-9
10587 Berlin, Germany

Joachim M. Buhmann JBUHMANN@INF.ETHZ.CH

Institute of Computational Science
ETH Zurich, Universitätstrasse 6
CH-8092 Zürich, Switzerland

Klaus-Robert Müller∗ KRM@CS.TU-BERLIN.DE

Technische Universität Berlin
Franklinstr. 28/29, FR 6-9
10587 Berlin, Germany

Editor: Peter Bartlett

Abstract
We show that the relevant information of a supervised learning problem is contained up to negligi-
ble error in a finite number of leading kernel PCA components if the kernel matches the underlying
learning problem in the sense that it can asymptotically represent the function to be learned and is
sufficiently smooth. Thus, kernels do not only transform data sets such that good generalization can
be achieved using only linear discriminant functions, but this transformation is also performed in
a manner which makes economical use of feature space dimensions. In the best case, kernels pro-
vide efficient implicit representations of the data for supervised learning problems. Practically, we
propose an algorithm which enables us to recover the number of leading kernel PCA components
relevant for good classification. Our algorithm can therefore be applied (1) to analyze the interplay
of data set and kernel in a geometric fashion, (2) to aid in model selection, and (3) to denoise in
feature space in order to yield better classification results.

Keywords: kernel methods, feature space, dimension reduction, effective dimensionality

1. Introduction

Kernel machines implicitly map the data into a high-dimensional feature space in a non-linear fash-
ion using a kernel function. This mapping is often referred to as an empirical kernel map (Schölkopf
et al., 1999; Vapnik, 1998; Müller et al., 2001; Schölkopf and Smola, 2002). By virtue of the empir-
ical kernel map, the data is ideally transformed in a way such that a linear discriminative function
can separate the classes with low generalization error by a canonical hyperplane with large mar-
gin. Such large margin hyperplanes provide an appropriate mechanism of capacity control and thus
“protect” against the high dimensionality of the feature space.

However, this picture is incomplete as it does not explain why the typical variants of capacity
control cooperate well with the induced feature map. This paper adds a novel aspect as the key idea

∗. Also at Fraunhofer FIRST.IDA, Kekuléstr. 7, 12489 Berlin, Germany.

c©2008 Mikio L. Braun, Joachim M. Buhmann and Klaus-Robert Müller.

BRAUN, BUHMANN AND MÜLLER

to this picture. We show theoretically that if the learning problem matches the kernel well, the rele-
vant information of a supervised learning data set is always contained in the subspace spanned by a
finite and typically small number of leading kernel PCA components (principal component analysis
in the feature space induced by the kernel, see below and Section 2), up to negligible error. This re-
sult is based on recent approximation bounds for the eigenvectors of the kernel matrix which show
that if a function can be reconstructed using only a few kernel PCA components asymptotically,
then the same already holds in a finite sample setting, even for small sample sizes.

Consequently, the use of a kernel function not only greatly increases the expressive power of
linear methods by non-linearly transforming the data, but it does so ensuring that the high dimen-
sionality of the feature space does not become overwhelming: the relevant information for learning
stays confined within a comparably low-dimensional subspace. This finding underlines the efficient
use of data that is made by kernel machines if the kernel works well for the learning problem. A
smart choice of kernel permits to make better use of the available data at a favorable “number of
data points per effective dimension”-ratio, even for infinite-dimensional feature spaces. The kernel
induces an efficient representation of the data in feature space such that even unregularized methods
like linear least squares regression are able to perform well on the reduced feature space.

Let us consider an example. Figure 1(a) shows a two-dimensional classification problem (the
banana data set from Rätsch et al., 2001). We can visualize the contributions of the individual
kernel PCA components1 to the class membership by plotting the absolute values of scalar products
between the labels and the kernel PCA components. Figure 1(b) shows the resulting contributions
sorted by decreasing principal value (variance along principal direction). We can observe that the
contributions are concentrated in the leading kernel PCA directions, but a large fraction of the
information is contained in the later components as well.

Note, however, that the class membership information in the data set also contains a certain
amount of noise. Therefore, Figure 1(b) actually shows a mixture of relevant information and noise.
We need to devise a different procedure for assessing the amount of task-relevant information in
certain kernel PCA components. This can be accomplished by incorporating a second data set from
the same source for testing. One first projects onto the subspace spanned by a number of leading
kernel PCA components, trains a linear classifier (for example, by least squares regression) and then
measures the prediction error on the test set. The test error is large either if the considered subspace
did not capture all of the relevant information, or if it already contained too much noise leading to
overfitting. If the minimal test error is on par with a state-of-the-art method independently trained
using the same kernel then the subspace has successfully captured all of the relevant information.

If we apply this procedure to our data set, we obtain training and test errors as shown in Fig-
ure 1(c). By definition, the training error decreases as more and more dimensions are used. How-
ever, after decreasing quickly initially, the test error eventually starts to increase again. The minimal
test error also coincides with the actually achievable test error using, for example, support vector
machines. Therefore, we see that the later components only contain noise, and the relevant infor-
mation is contained in the leading kernel PCA components. In this paper, our goal is to understand

1. Recall that kernel PCA (Schölkopf et al., 1998) amounts to implicitly performing PCA in the feature space. Roughly,
instead of the covariance matrix, one considers the eigenvalues and eigenvectors of the kernel matrix, which is built
from all pairwise evaluations of the kernel matrix on the inputs. Principal values (variances) are still given by the
eigenvalues of the kernel matrix, but principal directions (which would be potentially infinite-dimensional vectors)
are replaced by principal components, which are scalar products with the principal directions. Also see Section 2.

1876

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) The training data set.

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10

kernel PCA components

ab
so

lu
te

 c
on

tr
ib

ut
io

n
to

 c
la

ss
 m

em
be

rs
hi

p

(b) Contributions of kernel PCA components.

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

number of kernel PCA components

pr
ed

ic
tio

n
er

ro
rs

 (
%

)

training error
test error

(c) Training and test errors using only leading kernel PCA
components.

−3 −2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(d) The solution on the test data set.

Figure 1: A more complex example (resample 1 of the “banana” data set, see Section A). This time,
the information is not contained in a single component. Nevertheless, the test error of a
hyperplane learned using only the first d components has a clear minimum at d = 34 at
optimal error rate (cf. Table 3), showing that the relevant information is contained in the
leading 34 directions.

more thoroughly why and when this effect occurs, and to estimate the dimensionality of a concrete
data set given a kernel.

Our claim—that the relevant information about a learning problem is contained in the space
spanned by the leading kernel PCA components—is similar to the idea that the information about
the learning problem is contained in the kernel PCA components with the largest contributions.
However, our results show that the magnitude of the contribution of a kernel PCA component to
the label information is only partially indicative of the relevance of that component. Instead, we
show that the leading kernel PCA components (sorted by corresponding principal value) contain

1877

BRAUN, BUHMANN AND MÜLLER

the relevant information. Components which contain only little variance will therefore not contain
relevant information. If such a component manages to contribute much to the label information, it
will only reflect noise.

What practical implications follow from these results? We explore several possibilities of using
these ideas to assess the suitability of a kernel or a family of kernels to a specific data set. The
main idea is that the observed dimensionality of the data set in feature space is characteristic for
the relation between a data set and a kernel. Roughly speaking, the relevant dimensionality of the
data set corresponds to the complexity of the learning problem when viewed through the “lens”
of the kernel function. Using the estimated dimensionality, one can project the labels onto the
corresponding subspace and obtain a noise free version of the labels. By comparing the denoised
labels to the original labels, one can estimate of the amount of noise contained in the labels. One
therefore obtains a more detailed measure of the fit between the kernel and the data set as compared
to, for example, the cross-validation error alone. This allows us to take a closer look at data sets on
which the achieved error is quite large. In such cases, we are able to distinguish whether the data
set is highly complex and the amount of data is insufficient, or the amount of intrinsic noise is very
large. This is practically relevant as one has to deal with both these cases quite differently, either by
providing more data, or by thinking about means to obtain less noisy or ambiguous features.

We summarize the main contributions of this paper: (1) We provide theoretical bounds showing
that the relevant information (defined in Section 2) is actually contained in the leading projected
kernel principal components under appropriate conditions. (2) We propose an algorithm which es-
timates the relevant dimensionality and related estimates of the data set and permits to analyze the
appropriateness of a kernel for the data set, and thus to perform model selection among different ker-
nels. (3) We validate the accuracy of the estimates experimentally by showing that non-regularized
methods perform on the reduced feature space on par with state-of-the-art kernel methods. We ana-
lyze some well-known benchmark data sets in Section 5. Note that we do not claim to obtain better
performance within our framework when compared to, for example, cross-validation techniques.
Rather, we are on par. Our contribution is to foster an understanding about a data set and to gain
better insights of whether a mediocre classification result is due to intrinsic high dimensionality of
the data (and consequently insufficient number of examples), or an overwhelming noise level.

2. Preliminaries

Let us start to formalize the ideas introduced so far. As usual, we consider a data set (X1,Y1),
. . . ,(Xn,Yn) where the inputs X lie in some space X and the outputs Y to be predicted are in Y =
{±1} for classification or Y = R for regression. We often refer to the outputs Yi as the “labels”
irrespective of whether we are considering a classification or regression task. We assume that the
(Xi,Yi) are drawn i.i.d. from some probability measure PX×Y . In kernel methods, the data is non-
linearly mapped into some feature space F via the feature map Φ. Scalar products in F can be
computed by the kernel k in closed form: 〈Φ(x),Φ(x′)〉 = k(x,x′). Summarizing all the pairwise
scalar products results in the (normalized) kernel matrix K with entries k(Xi,X j)/n.

In the discussion below, we study the relationship between the label vector Y = (Y1, . . . ,Yn) and
the kernel PCA components which are introduced next. Kernel PCA (Schölkopf et al., 1998) is a
kernelized version of PCA. Since the dimensionality of the feature space might be too large to deal

1878

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

Symbol Meaning
n number of training examples
Xi ∈ X input examples
Yi ∈ Y output labels
k : X ×X → R kernel function
K = (k(Xi,X j))/n (normalized) kernel matrix
Y = (Y1, . . . ,Yn) label vector
Φ : X → F feature map
lm ∈ R≥0 mth kernel PCA value (in descending order),

mth eigenvalue of kernel matrix K
vm ∈ F mth kernel PCA direction
fm(x) = 〈Φ(x),vm〉 mth kernel PCA component
um = (fm(X1), . . . , fm(Xn)) mth kernel PCA component evaluated on X1, . . . ,Xn,

mth eigenvector of kernel matrix K
πd(Y) = ∑d

i=1 uiuiY projection onto first d kernel PCA components
G = (E(Y1|X1), . . . ,E(Yn|Xn)) relevant information vector
zi = u>i G contribution of ith eigenvector to relevant information
g(x) = E(Y |X = x) relevant information function
L2(X ,PX) set of all square integrable functions with respect to PX
Tk f (s) =

R

X k(s, t) f (t)PX (dt) integral operator associated with k
λi ∈ R≥0 ith eigenvalue of Tk

ψi ∈ L2(X ,PX) ith eigenfunction of Tk

ζi = 〈ψi,g〉 contribution of ith eigenfunction to relevant information
d̂ estimated relevant dimension
cvloo leave-one-out cross-validation error
Ĝ estimated relevant information vector
S = ∑d

i=1 uiu>i “hat”-matrix
ˆerr estimated noise-level

Table 1: Overview of notation used in this paper.

with the vectors directly, the principal directions are represented using the points Xi of the data set:

vm =
n

∑
i=1

αiΦ(Xi),

where αi = [um]i/lm, [um]i is the ith component of the mth eigenvector of the kernel matrix K, and
lm the corresponding eigenvalue.2 Still, vm can usually not be computed explicitly such that one
instead works with kernel PCA components

fm(x) = 〈Φ(x),vm〉.

We are interested in the relation between fm and a label vector Y . As we have seen in the introduc-
tion, it seems that only a finite number of leading kernel PCA components are necessary to represent
the relevant information about the learning problem up to a small error.

2. As usual, we assume that lm and um have been sorted such that l1 ≥ . . .≥ ln.

1879

BRAUN, BUHMANN AND MÜLLER

Therefore, we would like to compare fm with the values Y1, . . . ,Yn at the points X1, . . . ,Xn. The
following easy lemma summarizes the relationship between the sample vector of fm and Y .

Lemma 1 The mth kernel PCA component fm evaluated on the Xis is equal to the mth eigenvector of
the kernel matrix K: (fm(X1), . . . , fm(Xn)) = um. Consequently, the sample vectors are orthogonal,
and the projection of a vector Y ∈R

n onto the leading d kernel PCA components is given by πd(Y) =

∑d
m=1 umu>mY.

Proof The mth kernel PCA component for a point X j in the training set is

fm(X j) = 〈Φ(X j),vm〉=
1
lm

n

∑
i=1

〈Φ(X j),Φ(Xi)〉[um]i =
1
lm

n

∑
i=1

k(X j,Xi)[um]i.

The sum computes the jth component of Kum, and Kum = lmum, because um is an eigenvector of K.
Therefore

fm(X j) =
1
lm

[lmum] j = [um] j.

Since K is a symmetric matrix, its eigenvectors um are orthonormal, and the projection of Y onto
the space spanned by the first d kernel PCA components is given by ∑d

m=1 umu>mY . �

Since the kernel PCA components are orthogonal, the coefficients of a vector Y ∈ R
n with

respect to the basis u1, . . . ,un is easily computed by forming the scalar products. We call the coeffi-
cients

zm = u>mY (1)

of Y w.r.t. the basis formed from the kernel PCA components the kernel PCA coefficients. They are
the central object of our discussion.

The projection of Y to a kernel PCA component can be thought of as the least squares regression
of Y using only the direction along the kernel PCA component in feature space.

Using the kernel PCA coefficients, we can extend the projected labels to new points via

Ŷ (x) =
d

∑
m=1

zm fm(x),

which amounts to the prediction of least squares regression on the reduced feature space.

3. The Label Vector and Kernel PCA Components

In the introduction, we have discussed an example which suggests that a small number of leading
kernel PCA components might suffice to capture the relevant information about the output variable.
It is clear that we cannot expect this behavior for all possible data sets and kernels. It seems plausible
though, that under certain conditions, the distribution of the data and the kernel fit together well.
Then we can expect to observe this behavior with high probability for a random sample from this
distribution through some form of concentration or convergence property.

1880

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

−3 −2 −1 0 1 2 3 4 5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X

Y

d a ta
re le v a n t in fo rm a tio n G
p (x | Y = 1)
p (x | Y = −1)

−4 −3 −2 −1 0 1 2 3 4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

X

Y

d a ta
re le v a n t in fo rm a tio n G

Figure 2: Relevant information vectors visualized for the classification and the regression case.
In the (two-class) classification case (left) it encodes the posterior probability (scaled
between −1 and 1), in the regression case it is the sample vector of the function to be
learned.

3.1 Decomposing the Label Vector Information

We start the discussion by defining formally what the relevant information contained in the labels
is. Given a label vector Y , we define the relevant information vector as the vector of the expected
labels:

G = (E(Y1|X1), . . . ,E(Yn|Xn)).

Intuitively speaking, G is a noise-free version of Y . This vector contains all the relevant information
about the outputs Y of the learning problem: For regression, G amounts to the values of the true
function. For the case of two-class classification, the vector G contains all the information about the
optimal decision boundary. Since E(Y |X) = P(Y = 1|X)−P(Y =−1|X), the sign of G contains the
relevant information on the true class membership by telling us which class is more probable (see
Figure 2 for examples). Thus, using this denoised label information, the learning problem becomes
much easier as the denoised labels already contain the Bayes optimal prediction at that point.3

Using G we obtain a very useful additive decomposition of the labels into “signal” and “noise”:

Y = G+N.

In this setting, we are now interested in showing that G is contained in the leading kernel PCA com-
ponents, such that projecting G onto the leading kernel PCA components leads to only negligible
error. In the following, we treat the signal and noise part of Y separately. This is possible because
the projection πd is a linear operation such that πd(Y) = πd(G+N) = πd(G)+πd(N).

3. Also note that the capacity control typically employed in kernel methods amounts to some form of regularization, or
“implicit denoising” (Smola et al., 1998). Therefore, we do not expect that the results using G are generally better
than with the original labels. However, as we will see below, unregularized methods perform on par with kernel
methods with capacity control using the estimated relevant information vector G.

1881

BRAUN, BUHMANN AND MÜLLER

3.2 The Relevant Information Vector

We first treat the relevant information vector G. The location of G with respect to the kernel PCA
components is characterized by scalar products with the eigenvectors of the kernel matrix. We start
by discussing this relationship in an asymptotic setting and then transfer the results back to the finite
sample setting using convergence results for the spectral properties of the kernel matrix

Using the kernel function k, we define the integral operator

Tk f (s) =
Z

X
k(s, t) f (t)PX (dt),

where PX is the marginal distribution which generates the inputs Xi. It is well known that the linear
operator

T̃k f (s) =
1
n

n

∑
i=1

k(s,Xi) f (Xi)

represented by the kernel matrix approximates Tk as the number of points tend to infinity (see, for
example, von Luxburg, 2004). While this follows easily for a fixed f and s, making the argument
theoretically exact for operators (this means uniform over all functions) is not trivial.

As a consequence, the eigenvalues and eigenvectors of T̃k, which are equal to those of the kernel
matrix, converge to those of Tk (see Koltchinskii and Giné, 2000; Koltchinskii, 1998). In particular,
scalar products of sample functions and eigenvectors of K converge to scalar products with eigen-
functions of Tk. The asymptotic counterpart of the relevant information vector G is the function

g(x) = E(Y |X = x).

These correspondences are summarized in Figure 3. In summary, we can think of zi = u>i G (properly
scaled) as an approximation to ζi = 〈ψi,g〉.

finite sample setting

[Kx]i =
1
n

n

∑
j=1

k(Xi,X j)x j

li eigenvalue of K
ui eigenvector of K

G =
(

E(Y1|X1), . . .E(Yn|Xn)
)

zi = u>i G

asymptotic setting

Tk f (s) =
Z

X
k(s, t) f (t)PX (dt)

λi eigenvalue of Tk

ψi eigenfunction of Tk

g(x) = E(Y |X = x)
ζi = 〈ψi,g〉

Figure 3: Transition from the finite sample size and asymptotic setting.

In the asymptotic setting, it is now fairly easy to specify conditions such that g is contained in
the subspace spanned by a finite number of leading eigenfunctions ψi. Since it is unrealistic that
g is exactly contained in a finite dimensional subspace, we relax that requirement and instead only
require that ζi decays to zero at the same rate as the eigenvalues of Tk.

The decay rate of the eigenvalues depends on the interplay between the kernel and the distribu-
tion PX . However, expressing this connection in closed form is in general not possible. As a rule
of thumb, the eigenvalues decay quickly when the kernel is smooth at the scale of the data. Since
one usually uses smooth kernels to prevent from overfitting, the eigenvalues typically decay rather
quickly. As we will see, most of the information about g is then contained in a few kernel PCA
components.

1882

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

A natural assumption is that the learning problem can be asymptotically represented by the
given kernel function k. By this we mean that there exists some function h ∈ L 2(X ,PX) such that
g = Tkh. Using the spectral decomposition of Tk, this implies

g = Tkh =
∞

∑
i=1

λi〈ψi,h〉ψi. (2)

Since the sequence of αi = 〈ψi,h〉 is square summable, it follows that

ζi = 〈ψi,g〉= λiαi = O(λi).

Intuitively speaking, (2) translates to asymptotic representability of the learning problem: As n→∞,
it becomes possible to represent the optimal labels using the kernel function k.

Furthermore, we assume that k is bounded. This technical requirement is mainly necessary to
ensure that g is also bounded. The requirement holds for common radial basis function kernels like
the Gaussian kernel, and also if the underlying space X is compact and the kernel is continuous.

Note that the requirement that g lies in the range of Tk is essential. If this is not the case, we
cannot expect that the scalar products decay at a given rate. Also note that it is in fact possible to
break this condition. For example, if k is continuous, every non-continuous function does not lie in
the range of Tk.

The question is now whether the same behavior can be expected for a finite data set. This
question is not trivial, because eigenvector stability is known to be linked to the gap between the
corresponding eigenvalues, which is fairly small for small eigenvalues (see, for example, Zwald and
Blanchard, 2006).

The main theoretical result of this paper (Theorem 1 in the Appendix) provides a bound of the
form

1
n
|u>i G| ≤ liC +E

which expresses an essential equivalence between the finite sample setting and the asymptotic set-
ting with two modifications: The decay rate O(λi) of the scalar products 〈ψi,g〉 holds for the finite
sample up to a (small) additive error E with λi replaced by its finite sample approximation li.

The technical details of this theorem and the proof are deferred to the appendix. Let us discuss
how the absolute term occurs in the bound and why it can be expected to be small. An exact
scaling bound (without additive term E) can only be derived (at least following the approach taken
in this paper) for the case where the kernel function is degenerate, that is, Tk has only finitely many
non-zero eigenvalues. The same finiteness restriction also holds for the expansion of g in terms of
the eigenfunctions of Tk. The proof thus contains a truncation step of general kernels and general
functions g, leading to a scaling bound on the scalar product and an additive term arising from the
truncation. However, as the name suggests, the truncation error E can be made arbitrarily small by
considering approximations with many non-zero eigenvalues. At the same time, considering such
kernels with more terms in the expansion leads to a larger constant C in the actual scaling part. Thus,
both terms have to be balanced by the order of truncation, which permits to control the additive term
well practically.

Note that the problem considered here is significantly different from the problem studying the
performance of kernel PCA itself (see, for example, Blanchard et al., 2007; Shawe-Taylor et al.,
2005; Mika, 2002). There, only the projection error using the Xs is studied. Here, we are specifically
interested in the relationship between the Y s and the Xs.

1883

BRAUN, BUHMANN AND MÜLLER

In view of our original concern, the bound shows that the relevant information vector G (as
introduced in Section 2) is contained in a number of leading kernel PCA components up to a neg-
ligible error. The number of dimensions depends on the asymptotic coefficients αi and the decay
rate of the asymptotic eigenvalues of k. Since this rate is related to the smoothness of the kernel
function, the dimension is small for smooth kernels whose leading eigenfunctions ψi permit good
approximation of g.

3.3 The Noise

To study the relationship between the noise and the eigenvectors of the kernel matrix, no asymptotic
arguments are necessary. The key insight is that the eigenvectors are independent of the noise in the
labels, such that the noise vector N is typically evenly distributed over all coefficients u>i N: Let U be
the matrix whose ith column is equal to ui. The coefficients of N with respect to the eigenbasis of K
are then given by U>N. Note that since U is orthogonal, multiplication by its transpose amounts to
a (random) rotation. In particular, this rotation is independent of the noise N as the ui depend on the
Xs only. Now if the noise has a spherical distribution, for example, N is normally distributed with
covariance matrix σ2

εI, it follows that U>N ∼ N (0,σ2
εI). For heteroscedastic noise in a regression

setting, or for classification, this simple analysis is not sufficient. In that case, the individual u>i N
are no longer uncorrelated. However, because of the independence of the Ni, the variance of u>i N is
upper bounded by

Var(u>i N) =
n

∑
j=1

u2
i, j Var(N j)≤ max

1≤ j≤n
Var(N j)

since ∑n
j=1 u2

i, j = ‖ui‖2 = 1. Therefore, the variance of the u>i N is not concentrated in any single
coefficient as the total variance does not increase by rotating the basis and the individual variances
are bounded by the maximum individual variance before the rotation.

The practical relevance of these observations is that the relevant information and noise part have
radically different properties with respect to the kernel PCA components, allowing us to practically
estimate the number of relevant dimension for a given kernel and data set. In the next section, we
will propose two different algorithms for this task.

4. Relevant Dimension Estimation and Related Estimates

We have seen that the number of leading kernel PCA components necessary to capture the relevant
information about the labels of a finite size data set is bounded under the mild assumptions that the
learning problem can be represented asymptotically and the kernel is smooth such that the eigenval-
ues of the kernel matrix decay quickly. The actual number of necessary dimensions depends on the
interplay between kernel and learning data set, giving insights into the suitability of the kernel. For
example, a kernel might fail to provide an efficient representation of the learning problem, leading
to an embedding requiring many kernel PCA components to capture the information on Y . Or, even
worse, a kernel might completely fail to model some part of the learning problem, such that a part of
the information appears to be just noise. Therefore, in order to make practical use of the presented
insights, we need to devise a method to estimate the number of relevant kernel PCA components for
a given concrete data set and choice of kernel.

In this section we propose methods for estimating the actual dimensionality of a data set, and two
related estimators. Based on the dimensionality estimate, one can denoise the labels by projecting

1884

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

onto the respective subspace and obtain an estimate for the relevant information vector G. By
comparing the denoised labels with the original labels, one can then estimate the overall noise level
of the data source. Based on these estimates, we discuss how to use the dimensionality estimate for
model-selection and to further analyze data sets which so far show inferior performance. Figure 4
summarizes the information flow for the different estimates.

Y

Kernel matrix

XKernel

Noise estimate (Eq. 6)

Dimension (Eq. 4)

Kernel PCA coefficients (Eq. 1)

Denoised Y (Eq. 5)

Figure 4: Information flow for the estimates.

4.1 Relevant Dimension Estimation (RDE)

The most basic estimate is the number of relevant kernel PCA components. We also call this number
simply the relevant dimension or the dimensionality (also see the discussion in Section 6.3). Recall
that we have decomposed the labels into Y = G + N , with Gi = E(Yi|Xi) (see Section 3.1). This
decomposition carries over to the kernel PCA coefficients zi = u>i Y = u>i G + u>i N. We want to
estimate d̂ such that |u>i G| is negligible for i > d̂.

We propose two algorithms for solving this relevant dimension estimation (RDE) task which
are based on different approaches to the problem but lead to comparable performance. The first
algorithm fits a parametric model to the kernel PCA coefficients, while the second one is based on
leave-one-out cross-validation.

4.1.1 RDE BY FITTING A TWO-COMPONENT MODEL (TCM)

The first algorithm works only on the coefficients zi = u>i Y . Recall that U is the matrix whose
columns are the eigenvectors of the kernel matrix ui such that z = U>Y = U>G + U>N = G̃ + Ñ.
In Section 3, we have seen that both parts have significantly different structure. From Theorem 1,
we know that |G̃i| ≈ O(li), and that the G̃i are close to zero for all but a leading number of coeffi-
cients. On the other hand, as discussed in Section 3.3, the transformed noise Ñ is typically evenly
distributed over all coefficients. Thus, the coefficients of the noise have the shape of an evenly
distributed “noise floor” Ñi from which the coefficients G̃i of the relevant information arise (see
Figure 1(b) for an example).

The idea is now to find a cut-off point such that the coefficients are divided into two parts
z1, . . . ,zd and zd+1, . . . ,zn such that the first part contains the relevant information and the latter part
consists of evenly distributed noise. We model the coefficients by two zero-mean Gaussians with

1885

BRAUN, BUHMANN AND MÜLLER

individual variances

zi ∼
{

N (0,σ2
1) 1≤ i≤ d,

N (0,σ2
2) d < i≤ n.

Of course, in order to be able to extract meaningful information, it should hold that σ1 � σ2.
Alternatively, one could assume that zi ∼N (0,σ2

1 +σ2
2), for 1≤ i≤ d, which nevertheless leads to

the exact same choice of d.
For real data, both parts need not be actually Gaussian distributed. However, due to lack of

additional a priori knowledge on the signal or the noise, the Gaussian distribution represents the
optimal choice among all distributions with the same variance according to the maximum entropy
principle (Jaynes, 1957).

The negative log-likelihood is proportional to

− log`(d)∼ d
n

logσ2
1 +

n−d
n

logσ2
2, with σ2

1 =
1
d

d

∑
i=1

z2
i , σ2

2 =
1

n−d

n

∑
i=d+1

z2
i . (3)

The estimated dimension is then given as the maximum likelihood fit

d̂ = argmin
1≤d≤n′

(− log`(d)) = argmin
1≤d≤n′

(

d
n

logσ2
1 +

n−d
n

logσ2
2

)

. (4)

Due to numerical instabilities of kernel PCA components corresponding to small eigenvalues, the
choice of d should be restricted to 1≤ d ≤ n′ < n: The coefficients zi are computed by taking scalar
products with eigenvectors ui. For small eigenvalues (small meaning of the order of the available
numerical precision, for double precision floating point numbers, this is typically around 10−16),
individual eigenvectors cannot be computed accurately, although the space spanned by all these
eigenvectors is accurate. Therefore, coefficients zi for large i are not be reliable. To systematically
stabilize the algorithm, one should therefore limit the range of possible effective dimensions. We
have found the choice of 1 ≤ d ≤ n/2 to work well as this choice ensures that at least half of the
coefficients are interpreted as noise. For very small and very complex data sets, this choice might
prove suboptimal and better thresholds based, for example, on the actual decay of eigenvalues might
be advisable. However, on all data sets discussed in this paper, the above choice performed very
well.

4.1.2 RDE BY LEAVE-ONE-OUT CROSS-VALIDATION (LOO-CV)

We propose a second algorithm which is based on cross validation, a more general concept than
parametric noise modeling. This algorithm only depends on our theoretical results to the extent that
it searches for subspaces spanned by leading kernel PCA components. We later compare the two
methods to see whether our assumptions were justified.

As stated in Lemma 1, the projection of Y onto the space spanned by the d leading kernel PCA
components is given by ∑d

i=1 uiu>i Y , where ui are the eigenvectors of the kernel matrix. The matrix
S = ∑d

i=1 uiu>i can be interpreted as a “hat matrix” in the context of regression.4 The idea is now to
choose the dimension which minimizes the leave-one-out cross-validation error. This subspace then
captures all of the relevant information about Y without overfitting.

4. Recall that for regression methods where the fitted function depends linearly on the labels, the matrix S which
computes Ŷ = SY is called the “hat matrix” since it “puts the hat on Y .”

1886

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

Computationally, note that one can write the squared error leave-one-out cross-validation in
closed form, similar to kernel ridge regression (see Wahba, 1990):

cvloo(d) =
1
n

n

∑
i=1

(

[SY]i−Yi

1−Sii

)2

.

It is possible to organize the computation in a way such that given the eigendecomposition of K,
each value cvloo(d) can be computed in O(n) (instead of O(n2) if one naively implements the above
formula): Note that Sii is equal to ∑d

j=1(u j)
2
i , therefore, one can compute Sii iteratively by

S0
ii← 0

Sd+1
ii ← Sd

ii +(ud+1)
2
i .

In the same way, since Ŷ = SY = ∑d
j=1 u ju>jY , we get that

Ŷ 0← 0

Ŷ d+1← Ŷ d +ud+1u>d+1Y.

The squared error is in principle not the most appropriate loss function for classification problems.
But as we will see below, it nevertheless works well also for classification problems.

4.2 Denoising the Labels and Estimating the Noise Level

One direct application of the dimensionality estimate is the projection of Y onto the first d̂ kernel
PCA components. By Lemma 1, this projection is

Ĝ′ =
d̂

∑
i=1

uiu
>
i Y.

Then, an estimate of the noiseless labels is given by

Ĝ =

{

sign Ĝ′ classification against ±1 labels

Ĝ′ regression
. (5)

Note that this amounts to computing the in-sample fit using kernel principal component regression
(kPCR).

The estimated dimension can also be used to estimate the noise level present in the data set by

ˆerr =
1
n

n

∑
i=1

L(Ŷi,Yi), (6)

where L is the loss function.
The accuracy of both these estimates depends on a number of factors. Basically, the estimation

error is small if the first d̂ kernel PCA components capture most of G and d̂ is small such that
most of the noise is removed. Note that our assumption that the kernel suits the data set is crucial
for both these requirements. If g does not lie in the span of the associated integral operator Tk,
the coefficients decay only slowly and a huge number of dimensions are necessary to capture most
information about G, leading to a huge amount of residual noise.

1887

BRAUN, BUHMANN AND MÜLLER

10
−5

10
0

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

kernel width

es
t.

no
is

e
le

ve
l (

%
)

dimension (%)
noise level

(a) Classification (“banana” data set)

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

kernel width

es
t.

no
is

e
le

ve
l (

M
S

E
)

dimension (%)
noise level

(b) Regression (noisy sinc function)

Figure 5: Dimensions and estimated noise levels for varying kernel widths are not suited for model
selection as it is unclear how to combine both estimates and they become instable for very
small kernel widths. Shown are the 10%, 25%, 50%, 75%, and 90% percentiles over 100
resamples. Legend: “dimension (%)”—estimated dimensionality divided by number of
samples. “noise level”—estimated noise level using the `1-norm for classification, and
the (unnormalized) `2-norm for regression.

4.3 Applications to Model Selection

A highly relevant problem in the context of kernel methods is the selection of a kernel from a
number of possible candidates which fits the problem best. This problem is usually solved by
extensive cross-validation.

We would like to discuss possibilities to use the estimates introduced so far for model selection.
Choosing the model based on either dimensionality or noise level alone is not sufficient, since one
wants to optimize a combination of both. However, as the two terms live on quite different scales, it
is unclear how to combine them effectively. Furthermore, as we will see below, both estimates alone
become unstable for very small or very large kernel widths. The log-likelihood which achieves the
optimum in (4) overcomes both problems and can be used for effective model selection.

Let us first discuss how the relation between the scale of the kernel and the data set can affect
the dimensionality of the embedding in feature space. The standard example for a family of kernels
with a scale parameter is the rbf-kernel (also known as Gaussian kernel, see Appendix A). Figure 5
shows the dimension and noise level estimates for a classification data set (the “banana” data set),
and a regression data set (the “noisy sinc function” with 100 data points for training, and 1000 data
points for testing) over a range of kernel widths. Generally speaking, if the scale of the kernel is too
coarse for the problem, the problem tends to appear to be very low-dimensional with a large amount
of noise. On the other hand, if the scale of the kernel is too fine the learning problem appears to be
very complex with almost no noise.

Now, the log-likelihood `(d̂) solves both problems. It combines the dimension and the noise
level into a single meaningful number, and its value is stable across the whole scale range. In
Figure 6, we have plotted the log-likelihood (scaled to fit into the plot) against the test error, both

1888

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

10
−5

10
0

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

kernel width

te
st

 e
rr

or
 (

%
)

log−lik. (scaled)
test error

(a) Classification (“banana” data set)

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

kernel width

te
st

 e
rr

or
 (

M
S

E
)

log−lik. (scaled)
test error

(b) Regression (noisy sinc function)

Figure 6: Comparison of test errors and the negative log-likelihood from Equation (3) shows that
the negative log-likelihood is highly correlated with the test error and can thus be used
for model selection. Shown are the 10%, 25%, 50%, 75%, and 90% percentiles over 100
resamples. Legend: “log-lik. (scaled)”—log-likelihood (scaled). “test error”—test error
using the `1-norm for classification, or the (unnormalized) `2-norm for regression.

with respect to the classification and least squares error. We see that the estimated log-likelihoods
can be estimated well over the whole range, and that the likelihoods are highly correlated with the
actual test error. Thus, the log-likelihood is a reliable indicator for the test errors based on the best
separation between signal and noise.

Another alternative, which is somewhat more straight-forward, but conceptually also less inter-
esting, is to use the leave-one-out cross-validation error. This quantity also measures how well the
kernel can separate the noise from the relevant information, and is directly linked to the test error on
an independent data set. We validate both model selection approaches experimentally in Section 5.

4.4 Applications to Data Set Assessment

When working on a concrete data set in a kernel setting, one is faced with the problem of finding a
suitable kernel. This problem is usually approached with a mix of hard-won experience and domain
knowledge. The main tool for guiding the search are prediction performance measures, the classical
one being prediction accuracy. Measurements like the ROC (receiver-operator-curve), or the AUC
(area-under-the-curve) give more fine-grained measurements of prediction quality, in particular in
areas where many false positives or false negatives are not acceptable.

If, after testing a number of sensible candidates, the achieved prediction quality is satisfying,
this approach is perfectly adequate, but more often than not, prediction quality is not as good as
desirable. In such a case, it is important to identify the cause for the inferior performance. In
principle, three alternatives are possible:

1. The kernels which have been used so far are not suited for the problem.

2. The learning problem is very complex and requires more data.

1889

BRAUN, BUHMANN AND MÜLLER

data set RDE method dimension noise-level
complex data set TCM 50 16.07%

LOO-CV 25 40.59%
noisy data set TCM 9 40.71%

LOO-CV 9 40.71%

Table 2: Estimated dimensions for the two data sets from Figure 7. Methods are “TCM” for RDE
by fitting a two-component model, “LOO-CV” for RDE by leave-one-out cross-validation.
“noise-level” is measured as normalize mean square error (see Appendix A).

3. Better performance cannot be achieved since the learning problem is intrinsically noisy.

Each of these alternatives requires different approaches. In the first case, a better kernel has to be
devised, in the second case, more data has to be acquired, and in the last case, one can either stop
searching for a better kernel, or try to improve the quality of the data or the features used.

Ultimately, these questions cannot be answered without knowledge of the true distribution of
the data, but the important observation here is that performance measures do not provide enough
information to distinguish these cases.

The estimates introduced so far can now be used to obtain evidence for distinguishing between
the second and third case. On the one hand, the dimensionality of the problem is related to the
complexity of the problem, while the noise level measures the inherent noise. Note that both these
estimates depend on the chosen kernel.

Consider the following example: We study two data sets, a simple data set built from a noisy
sinc function, and a complex data set based on a high-frequency sine function (see Figure 7). For the
same number of data points n = 100, both data sets lead to comparable normalized test errors5 for
the best model selected (A normalized test error of 43.7% on the complex data set and 44.4% on the
noisy data set using kernel ridge regression with model selection by leave-one-out cross-validation.
Widths were selected from 20 logarithmically spaced points from 10−6 to 102, regularization con-
stant was selected from 10 logarithmically spaced points from 10−6 to 103). However, the reason
for the large error on the complex data set is clearly due to the small number of samples. If we
increase the data set size to 1000 points, the normalized test error becomes 2.4%.

The question is now whether we can distinguish these two cases based on the kernel PCA coeffi-
cients. In fact, even on visual inspection, the kernel PCA coefficients display significant differences
(see Figures 7(c) and 7(d)). We estimate the effective dimension and the resulting noise-level using
the two methods we have proposed, the results are shown in Table 2. While both methods lead to
different estimates, they both agree on the fact that the noisy data set has comparably low complex-
ity and high noise, while the complex data set is quite high-dimensional, in particular if one takes
into account that the data set contains only 100 data points. In fact, the RDE analysis on the larger
complex data set with 1000 data points gives a dimension of 142, and a noise-level of 1.96%. Thus,
the RDE measure correctly indicates that the large test error is due to the insufficient amount of data
in the one case, and due to the large noise level in the other case.

This simple example demonstrates how the RDE measure can provide further information be-
yond the error rates. Below, we discuss this approach for several benchmark data sets.

5. See Appendix A for a definition of the normalized error.

1890

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5
Normalized Test Error: 43.73%

test points predicted function training points

(a) A complex data set.

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2
Normalized Test Error: 44.37%

test points
predicted function
training points

(b) A noisy data set.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

kernel PCA components

ab
so

lu
te

 v
al

ue
 o

f s
ca

la
r

pr
od

uc
t

kernel width 0.001000

(c) Kernel PCA coefficients for the complex data set.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

kernel PCA components

ab
so

lu
te

 v
al

ue
 o

f s
ca

la
r

pr
od

uc
t

kernel width 5.000000

(d) Kernel PCA coefficients for the noisy data set.

Figure 7: For both data sets, the X values were sampled uniformly between−π and π. For the com-
plex data set, Y = sin(35X)+ ε where ε has mean zero and variance 0.01. For the noisy
data set, Y = sinc(X)+ ε′ where ε′ has mean zero and variance 0.09. Errors are reported
as normalized mean squared error (see Appendix A). Below, the kernel PCA coefficients
(scalar products with eigenvectors of the kernel matrix) for the optimal kernel selected
based on the RDE (TCM) estimates are plotted. Coefficients are sorted by decreasing
corresponding eigenvalue.

5. Experiments

We test our methods on several benchmark data sets. As discussed in the introduction, in order to
validate whether our dimension estimates are accurate, we compare the achieved test error rates on
the reduced feature space to other state-of-the-art algorithms. If the estimate is accurate, the test
errors should be on par with these algorithms. Furthermore, we apply our method to estimate the
complexity and noise level of the various data sets.

1891

BRAUN, BUHMANN AND MÜLLER

5.1 Benchmark Data Sets

We performed experiments on the classification data sets from Rätsch et al. (2001). For each of the
data sets, we analyze it using a family of rbf kernels (see Appendix A). The kernel width is selected
automatically using the achieved log-likelihood as described above. The width of the rbf kernel is
selected from 20 logarithmically spaced points between 10−2 and 104 for each data set.

Table 3 shows the resulting dimension estimates using both RDE methods, with the cross-
validation based RDE method being slightly biased towards higher dimensions. We see that both
methods perform on par, which shows that the strong structural prior assumption underlying RDE
is justified.

To assess the accuracy of the dimensionality estimate, we compare an unregularized least-
squares fit in the reduced feature space (RDE+kPCR) with kernel ridge regression (KRR) and sup-
port vector machines (SVM) on the original data set. The resulting test errors are also shown in
Table 3. Note that the combination of RDE and kPCR is conceptually very similar to the kernel
projection machine (Vert et al., 2005) which also produces comparable results. However, in that pa-
per, no practical method for estimating the dimension (beyond cross-validation) has been proposed.
From the resulting test errors, we see that a relatively simple method on the reduced features per-
forms on par with the state-of-the-art competitors. We conclude that the identified reduced feature
space really contains all of the relevant information. Also note that the estimated noise levels match
the actually observed error rates quite well, although there is a slight tendency to under-estimate the
true error.

As discussed in Section 4.4, while the test errors only suggest a linear ordering of the data sets
by increasing difficulty, using the dimension and noise level estimates, a more fine-grained analysis
is possible. We can roughly divide the data sets into four classes (see Table 4), depending on whether
the dimensionality is small or large, and the noise level is low or high. Data sets with small noise
level show good results, almost irrespective of the dimensionality. The data set image seems to be
particularly noise free, given that one can achieve a small error in spite of the large dimensionality.

The data sets breast-cancer, diabetes, flare-solar, german, and titanic, which all have test errors
of 20% or more, have only moderately large dimensionalities. This means that the complexity of
the underlying optimal decision boundary is not overly large (at least when viewed through the lens
of the rbf-kernel), but a large inherent noise level prevents better results. Since this holds for rbf-
kernels over a wide range of kernel widths, these results can be taken as a strong indicator that the
Bayes error is in fact large.

The splice data set seems to be a good candidate for improvement. The noise level is moderately
high, while the dimensionality with respect to the rbf-kernel seems quite high. We would like to
use our dimensionality and noise level estimate as a tool to examine different kernel choices. (See
Section C for further details).

Closer inspection of the data set reveals that a plain rbf-kernel is a suboptimal choice. The task
of the splice data set consists in predicting whether there is a splice-site in the middle of a string of
DNA (such sites encode the beginning and endings of coding regions on the DNA). In the data set,
the four amino-acids A, C, G, T are encoded as numbers 1, 2, 3, and 4. Therefore, an rbf-kernel
incorrectly assumes that C and G are more similar than A and T. One alternative which is more
suited to this data set consists in encoding A, C, G, and T as binary four-vectors. The resulting
kernel matrix has much smaller dimension, and also a smaller error rate (see Table 5).

1892

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

data set TCM LOO-CV TCM-noise level RDE+kPCR KRR SVM
banana 24 26 8.8 ± 1.5 11.3 ± 0.7 10.6 ± 0.5 11.5 ± 0.7
breast-cancer 2 2 25.6 ± 2.1 27.0 ± 4.6 26.5 ± 4.7 26.0 ± 4.7
diabetes 9 9 21.5 ± 1.3 23.6 ± 1.8 23.2 ± 1.7 23.5 ± 1.7
flare-solar 10 10 32.9 ± 1.2 33.3 ± 1.8 34.1 ± 1.8 32.4 ± 1.8
german 12 12 22.9 ± 1.1 24.1 ± 2.1 23.5 ± 2.2 23.6 ± 2.1
heart 4 5 15.8 ± 2.5 16.7 ± 3.8 16.6 ± 3.5 16.0 ± 3.3
image 272 368 1.7 ± 1.0 4.2 ± 0.9 2.8 ± 0.5 3.0 ± 0.6
ringnorm 36 37 1.9 ± 0.7 4.4 ± 1.2 4.7 ± 0.8 1.7 ± 0.1
splice 92 89 9.2 ± 1.3 13.8 ± 0.9 11.0 ± 0.6 10.9 ± 0.6
thyroid 17 18 2.0 ± 1.0 5.1 ± 2.1 4.3 ± 2.3 4.8 ± 2.2
titanic 4 6 20.8 ± 3.8 22.9 ± 1.6 22.5 ± 1.0 22.4 ± 1.0
twonorm 2 2 2.3 ± 0.7 2.4 ± 0.1 2.8 ± 0.2 3.0 ± 0.2
waveform 14 23 8.4 ± 1.5 10.8 ± 0.9 9.7 ± 0.4 9.9 ± 0.4

Table 3: Estimated dimensions and error rates for the benchmark data sets from Rätsch et al.
(2001). Legend: “TCM”—medians of estimated dimensionalities over resamples us-
ing the RDE by TCM methods. “LOO-CV”—dimensionality estimated by leave-one-out
cross-validation. “TCM-noise level”—estimated error rate using the estimated dimension.
“RDE+kPCR”—test error using a least-squares hyperplane on the estimated subspace in
feature space. “KRR”—kernel ridge regression with parameters determined by leave-one-
out cross-validation. “SVM”—the original error rates from Rätsch et al. (2001). Best and
second best results are highlighted.

low noise high noise
low dimensional banana, breast-cancer, diabetes

thyroid, flare-solar, german
waveform heart, titanic

high dimensional image, ringnorm splice

Table 4: The data sets by noise level and complexity.

Still, there is further room for improvement. Using a weighted-degree kernel, which has been
specifically designed for this problem (Sonnenburg et al., 2005), we obtain even better results:
While the dimension is again slightly larger (but still moderate compared to the number of 1000
training examples), the noise level is even smaller. The reason is that the weighted degree kernel
weights longer consecutive matches on the DNA differently while the rbf kernel just compares
individual matches. Again, learning hyperplanes on the subspace of the estimated dimension leads
to classification results on the test sets which are close to those predicted by the error level estimate.

6. Discussion

We discuss some implications of our results to learning theory. In particular we show how the
“standard picture” on kernels and feature spaces is extended by our results. With respect to practical

1893

BRAUN, BUHMANN AND MÜLLER

kernel RDE est. error rate RDE+kPCR
rbf 87 9.4 ± 1.0 12.9 ± 0.9
rbf (binary) 11 7.1 ± 1.0 7.6 ± 0.7
wdk 29 4.5 ± 0.7 5.5 ± 0.7

Table 5: Different kernels for the splice data set (for fixed kernel width w = 50). Legend: “rbf”—
plain rbf-kernel, “rbf (binary)”—rbf-kernel on A, C, G, T encoded in binary four-vectors,
“wdk”—weighted degree kernel (Sonnenburg et al., 2005).

applications we explain the role of RDE as a diagnosis tool for kernels. We close by contrasting our
notion of dimension with two closely related dimensions, the dimension of the minimal subspace
necessary to capture the relevant information about a learning problem, and the dimension of the
data sub-manifold.

6.1 Connections to Learning Theory

We start with some informal reasoning about our findings much like in the spirit of Vapnik (1995).
Although our ideas are not developed to all formal details, they are intended to provide some in-
teresting insights on extensions to the general statistical learning theory picture (see Figure 8). The
standard picture (see, for example, Burges, 1998; Müller et al., 2001) can be summarized as fol-
lows: The learning problem is given in terms of a finite data set in X ×Y . The kernel k implicitly
embeds X in some (potentially) high-dimensional feature space F via the feature map Φ. Now
since the feature space can be high-dimensional, it is argued that one needs to employ some form of
appropriate complexity control in order to be able to learn. A prominent example are large margin
classifiers, leading to support vector machines. Other examples include penalization of the norm of
the weight vectors, which relates to a penalization of the norm in the resulting reproducing kernel
Hilbert space (RKHS).

F (high−dimensional)

c omp lex ity
has low

c omp lex ity
c ontrol

inc rease linear
sep arab ility

Y
?

need for

X

ex tension of standard p ic tu re

(experimentally)

Φ

Figure 8: Learning in kernel feature spaces.

This picture is not entirely conclusive since it is not a priori clear that the feature map and
the complexity control interact in a benign fashion. For example, it might be possible that the

1894

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

feature map transforms the data such that a good representation can be learned, but the solution is
incompatible with the kind of complexity one is penalizing. On the other hand, the large body of
successful applications of kernel methods to real world problems is ample experimental verification
of the fact that this seems to be the case and choosing a good kernel leads to an embedding which
has low complexity, permitting, for example, large margin classifiers.

The question of the complexity of the image of X under the feature map actually has two parts.
Part 1 concerns the complexity of the embedded object features Φ(X), while part 2 concerns the
relation between the labels Y and the embedded object features Φ(X).

The first part has already been studied in several works. For example, Blanchard et al. (2007)
and Braun (2006) have derived approximation bounds which show that the principal component
values approximate the true principal values quickly (see also Mika, 2002; Shawe-Taylor et al.,
2005). And since the asymptotic principal values decay rapidly, these results show that most of the
variance of the X in feature space is contained in a finite dimensional subspace in feature space.
Considering the function class generated by the feature map, Shawe-Taylor et al. (1998) first dealt
with the complexity of kernel classes showing that the complexity can be bounded in the spirit of
the structural risk minimization framework if a properly regularized class is picked depending on
the data, for example by using large margin hyperplanes. Williamson et al. (2001) have further
refined these results by using the concept of entropy numbers for compact operators that the com-
plexity of the resulting hypothesis class is actually finite at any given positive scale. Evgeniou and
Pontil (1999) show, using the concept of Vγ-dimension, which directly translates to a constraint on
the RKHS-norm of the functions, that the resulting hypothesis classes have finite complexity. In
summary, the embedding of X is known to have finite complexity (up to a small residual error).

The second part addresses the question if the embedding also relates favorably to the labels. In
this work we have studied this question and answered it positively. One can prove that under mild
assumptions on the general fit between the kernel and the learning problem, the information about
the labels is always contained in the (typically small) subspace also containing most of the variance
about the object features. While this borders on the trivial for the asymptotic setting, we could show
that the same also holds true for a concrete finite data set, even at small sample sizes.

Our findings clarify the role of complexity control in feature space. The complexity control
is not sufficient for effective learning in the feature space, but necessary. In conjunction with a
sensible embedding provided by a suitable choice of the kernel function, it ensures that learning
focuses on the relevant information and prevents overfitting. Interestingly, RKHS type penalty
terms automatically ensure that the learned function focuses on directions in which the data has
large variance, automatically leading to a concentration on the leading kernel PCA components.

6.2 RDE as a Diagnosis Tool

As discussed in Section 4.4, performance measures like the test error are very useful to compare
different kernels, but fail to provide evidence if the performance is not as good as desired on whether
the right kernel has not been found yet or the problem is intrinsically noisy.

Now, the RDE based estimates proposed in this paper offer a possible new approach to solve
this problem. The relevant dimensionality estimate and the noise level estimate allow us to directly
address the complexity vs. randomness issue, at least for a given kernel. Of course, our approach
only provides a partial answer. However, using a generic kernel like an rbf-kernel for different
widths results in an analysis of the data set on a whole range of scale resolutions. If the data set

1895

BRAUN, BUHMANN AND MÜLLER

appears to be low-dimensional and noisy at every scale, there is a strong indication that the noise
level is actually quite high.

In the data sets discussed in Section 5, we have considered kernel widths in the range 10−2 to
104. The data sets breast-cancer, diabetes, flare-solar, german, heart, and titanic, which all have
prediction errors larger than 15%, turn out to be fairly low-dimensional over the whole range.

On the other hand, the splice data set seemed to be quite complex, but not very noisy. Using
domain knowledge, we improved the encoding, and finally chose a different kernel, which further
reduced the complexity and noise (see Section C for further details).

In summary, using the RDE based estimates as a diagnosis tool, it is possible to obtain more
detailed insights into how well a kernel is adapted to the characteristic properties of a data set and
its underlying distribution than by using integrative performance measures like test errors only.

6.3 The “True” Dimensionality of the Data

We estimate the number of leading kernel PCA components necessary to capture the relevant infor-
mation contained in the learning problem. This “relevant dimensionality estimate” captures only a
very special kind of dimensionality notion, and we would like to compare it with two other aspects
of dimensionality.

In our dimensionality estimate, the basis was fixed and given by leading kernel PCA compo-
nents. One might wonder how many dimensions are necessary to capture the relevant information
about the learning problem if one were also allowed to choose the basis. The answer is easy: In
order to capture G, it suffices to consider the one-dimensional space spanned by G itself, which
means that the minimal dimensionality of the learning problem is 1. However, note that G is not
known, and estimating G amounts to solving the learning problem itself. In other words, the choice
of a kernel can be interpreted as implicitly specifying an appropriate basis in feature space which is
able to capture G using as few basis vector as possible, and also using a subspace which contains as
much of the variance of the data as possible.

For most data sets, the different input variables are highly dependent, such that the data does
not occupy all of the space but only a sub-manifold in the space. The dimension of this sub-
manifold is a further notion of dimensionality of a data set. However, note that we consider the
dimensionality of the data with respect to the information in the labels, while the sub-manifold view
usually concentrates on the inputs only. Also, we are considering linear subspaces (in an RKHS),
which typically require more dimensions to capture the data than a non-linear manifold would. On
the other hand, since we are only looking at the subspace which is relevant for predicting the labels,
the estimated dimension may also be smaller than the dimension of the data manifold in feature
space.

7. Conclusion

Both in theory and on practical data sets, we have demonstrated that the relevant information in a
supervised learning scenario is contained in the leading projected kernel PCA components if the
kernel matches the learning problem and is sufficiently smooth. This behavior complements the
common statistical learning theoretical view on kernel based learning adding insight on the intricate
interplay of data and kernel: An appropriately selected kernel (a) leads to an efficient model which
generalizes well, since only a comparatively low dimensional representation has to be learned for a

1896

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

fixed given data size. An appropriately selected kernel (b) permits a dimension reduction step that
discards some irrelevant projected kernel PCA directions and thus yields a regularized model.

We propose two algorithms for the relevant dimensionality estimate (RDE) task. These can
also be used to automatically select a suitable kernel model for the data and to extract as addi-
tional side information an estimate of the effective dimension and estimated expected error for the
learning problem. Compared to common cross-validation techniques one could argue that all we
have achieved is to find a similar model as usual at a comparable computing time. However, we
would like to emphasize that the side information extracted by our procedure contributes to a better
understanding of the learning problem at hand: Is the classification result limited due to intrinsic
high dimensional structure or are we facing noise and nuisance dimensions? Simulations show the
usefulness of our RDE algorithms.

An interesting future direction lies in combining these results with generalization bounds which
are also based on the notion of an effective dimension, this time, however, with respect to some
regularized hypothesis class (see, for example, Zhang, 2005). Linking the effective dimension of a
data set with the “dimension” of a learning algorithm, one could obtain data dependent bounds in a
natural way with the potential to be tighter than bounds which are based on the abstract capacity of
a hypothesis class.

Acknowledgments

Parts of this work have been performed while MLB was with the Intelligent Data Analysis Group
at the Fraunhofer Institute FIRST. The authors would like to thank Volker Roth, Tilman Lange,
Gilles Blanchard, Stefan Harmeling, Motoaki Kawanabe, Claudia Sannelli, Jan Müller, and Nicole
Krämer for fruitful discussions. The authors would also like to thank the anonymous referees whose
comments have helped to improve the paper further, and in particular Peter Bartlett for his valuable
comments. This work was supported in part by the BMBF FaSor project, 16SV2234, and by the
FP7-ICT Programme of the European Community, under the PASCAL2 Network of Excellence,
ICT-216886.

Appendix A. Data Sets and Kernel Functions

In this section, we introduce some data sets and define the Gaussian kernel, since there exists some
variability with respect to its parameterization.

A.1 Gaussian kernel

The Gaussian kernel, or rbf-kernel, used in this paper are parameterized as follows: The Gaussian
with width w is

k(x,y) = exp

(

−‖x− y‖2

2w

)

.

A.2 Classification Data Sets

For classification, we use the data sets from Rätsch et al. (2001). This benchmark data set consists
of 13 classification data sets, which are partly synthetic, and partly derived from real-world data.
The data sets are pre-arranged into different resamples of training and test data sets. The number

1897

BRAUN, BUHMANN AND MÜLLER

of resamples is 100 with the exception of the “image” and “splice” data sets which have only 20
resamples (because these data sets are fairly large). For visualization purposes, we often take the
first resample of the “banana” data set, which is a two-dimensional classification problem (see
Figure 1(a)).

A.3 Regression Data Sets

The “noisy sinc function” data set is defined as follows:

Xi ∼ uniformly from [−π,π],

Yi = sinc(Xi)+ εi,

εi ∼N (0,σ2
ε).

There are different alternatives for defining the sinc function, we choose sinc(x) = sin(πx)/πx,
sinc(0) = 1.

For regression, we sometimes measure the error using the “normalized mean squared error.” If
the original labels are given by Yi, 1≤ i≤ n, and the predicted ones are Ŷi, then this error is defined
as

nmse =
∑n

i=1(Yi− Ŷi)
2

∑n
i=1(Yi− 1

n ∑n
j=1Yj)2

.

Appendix B. Proof of the Main Theorem

In this section, the main theorem of the paper is stated and proven. We start with some definitions,
then introduce and discuss the assumptions of the main result. Next we define a few quantities on
which the bound depends. The bound itself is split into two theorems. First the general bound is
derived and then the asymptotic rates of these quantities are studied.

B.1 Preliminaries

Using the probability measure PX which generates the Xs, we can define a scalar product via 〈 f ,g〉=
R

X f (x)g(x)PX (dx) which induces the Hilbert space L2(X ,PX). Unless indicated otherwise, ‖ f‖
will denote the norm with respect to this scalar product. Let k(x,y) = ∑∞

`=1 λ`ψ`(x)ψ`(y) be a kernel
function (such that λ` ≥ 0). The ψ` form an orthogonal family of functions on the Hilbert space
L2(X ,PX). Given an n-sample X1, . . . ,Xn from PX , the sample vector of a function g is the vector
g(X) = (g(X1), . . . ,g(Xn)). The kernel matrix given a kernel function k and an n-sample X1, . . . ,Xn

is the n×n matrix K with entries k(Xi,X j)/n.
Let g(x) = ∑∞

`=1 α`λ`ψ`(x) with (α`) ∈ `2, the set of all square-summable sequences. The
expansion of g in terms of λ`ψ` amounts to assuming that g lies in the range of the integral operator
Tk defined by Tk f =

R

X k(· ,x) f (x)PX (dx). Then, g = Tkh with h = ∑∞
`=1 α`ψ`.

The act of truncating an object with an infinite expansion to its first r coefficients is so ubiquitous
in the following that we introduce a generic notation. If k is a kernel function, k̃ is the kernel
function whose expansion has been reduced to the first r terms. Likewise, K̃ is the kernel matrix
induced by k̃. For a sequence (α`) ∈ `2, α̃ is the tuple consisting of the first r elements of the
sequence. The sample vector matrices Ψ̃ is formed by the sample vector of the first r eigenvectors,
that is, Ψ̃i j = ψ j(Xi)/

√
n, and Λ̃ is the diagonal matrix formed from the first r eigenvalues, such that

K̃ = Ψ̃Λ̃Ψ̃>. Finally, g̃ is obtained from g by truncating the expansion to the first r eigenfunctions.

1898

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

The eigen-decompositions of the kernel matrix and the truncated kernel matrix (kernel matrix
for the truncated kernel function) are

K = ULU>, K̃ = ŨL̃Ũ>,

where U, Ũ are orthogonal matrices with columns ui, ũ j, and L, L̃ are diagonal matrices with entries
li, l̃ j, such that the eigenpairs of K are (li,ui), and those of K̃ are (l̃ j, ũ j). We stick to the general
convention that eigenvalues are always sorted in decreasing order.

Tail-sums of eigenvalues are denoted by

Λ>r =
∞

∑
i=r+1

λi, Λ≥r =
∞

∑
i=r

λi.

We will refer to the following result relating decay rates of the eigenvalues to the tail-sums. For
proofs, see, for example, Braun (2006). It holds that if λr = r−d with d ≥ 1, then Λ>r = O(r1−d). If
λr = exp(−cr) with c > 0, then Λ>r = O(exp(−cr)). The same rates hold for Λ≥r.

Furthermore, we will often make use of the fact that
√

a+b≤√a+
√

b if a,b≥ 0.

B.2 Assumptions

The overall goal is to derive a meaningful upper bound on 1√
n |u
>
i g(X)|. In particular, the bound

should scale with the corresponding eigenvalue li. We proceed as follows: First, we derive the
actual bound which depends on a number of quantities. In the next step, we estimate the worst case
asymptotic rates of these quantities. The actual bound depends on assumptions which are discussed
in the following.

(A1) We assume that the kernel is uniformly bounded, that is,

sup
x,y∈X×X

|k(x,y)|= K < ∞.

(A2) We assume that n≥ r large enough such that Ψ̃>Ψ̃ is invertible.

(A3) We assume that λi = O(i−5/2−ε) for some ε > 0.

Assumption (A1) is true for radial basis functions like the Gaussian kernel, but also if the un-
derlying space X is compact and the kernel is continuous. From (A1), it follows easily that g is
bounded as well since

|g(x)| ≤ K‖h‖.

Furthermore, since the ψi are orthogonal, it follows that ‖h− h̃‖ ≤ ‖h‖, and therefore

|g(x)− g̃(x)| ≤ K‖h‖

since g− g̃ = Tk(h− h̃), and therefore |g(x)− g̃(x)| ≤ K‖h− h̃‖ ≤ K‖h‖. These inequalities play an
important role for bounding the truncation error g− g̃ in a finite sample setting.

Since the sample vectors ψ`(X) are asymptotically pairwise orthogonal, Ψ̃>Ψ̃ converges to I,
and for large enough n, assumption (A2) is met. See also Lemma 2 below.

1899

BRAUN, BUHMANN AND MÜLLER

Assumption (A3) ensures that the term r(∑r
i=1 |αi|)Λ≥r occurring in the bound vanishes as r→

∞. Note that since the sequence of αi is square-summable,

r

∑
i=1

|αi| ≤
√

r
r

∑
i=1

α2
i ≤
√

r‖α‖`2 = O(
√

r).

Therefore, r ∑r
i=1 |αi|= O(r3/2). Also, Λ≥r = O(r−3/2−ε), such that r(∑r

i=1 |αi|)Λ≥r = O(r−ε). Note
that (A3) is quite modest and eigenvalues often decay much faster, even at exponential rates.

B.3 The Main Result

The following five quantities occur in the bound:

• ci = |{1≤ j≤ r | li/2≤ l̃ j ≤ 2li}| is the number of eigenvalues of the truncated kernel matrix
which are close to the eigenvalues of the normal kernel matrix. This is a measure for the
approximate degeneracy of eigenvalues.

• ã = ‖α̃‖1, is a measure for the size of the first r coefficients which define g.

• Ẽ = K− K̃ is the truncation error for the kernel matrix.

• T̃ = ‖g− g̃‖=
√

∑∞
j=r+1 α2

jλ2
j is the asymptotic truncation error for the function g.

• F = ‖g‖∞ < ∞, an upper bound on g.

We study these quantities in more detail after proving the actual bound, which follows next.

Theorem 1 With the definitions introduced so far, it holds that with probability larger that 1− δ,
for all 1≤ i≤ n,

1√
n
|u>i g(X)|< min

1≤r≤n

[

liciD(r,n)+E(r,n)+T (r,n)
]

where the three terms are given by

D(r,n) = 2ã‖Ψ̃+‖, E(r,n) = 2rã‖Ψ̃+‖‖Ẽ‖, T (r,n) = T̃ +
√

FT̃ 4

√

1
nδ

.

Proof First, we replace g = g̃+(g− g̃) and obtain

1√
n
|u>i g(X)| ≤ 1√

n
|u>i g̃(X)|+ 1√

n
‖g(X)− g̃(X)‖=: (I),

using the Cauchy-Schwarz-inequality and the fact that ‖ui‖= 1 for the second term.
Next, we re-express g̃(X) = ∑r

`=1 λ`α`ψ`(X) as follows. By definition, g̃(X) lies in the image
of K̃, therefore, g̃(X) = ∑r

j=1 ũ jũ>j g̃(X). Using both these equations, we obtain

1√
n
|u>i g̃(X)| ≤

r

∑̀
=1

|α`|
r

∑
j=1

(u>i ũ j)

[

1√
n

λ`ψ`(X)>ũ j

]

=: (II)

1900

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

The term u>i ũ j measures the angle between the eigenvectors of K and K̃. Note that K can be
considered an additive perturbation of K̃ by Ẽ = K− K̃. Such perturbations are studied by the so-
called sin-theta-theorems. Specializing Theorem 6.2 of Davis and Kahan (1970) (see Section D) to
two single eigenvectors, we obtain that

|u>i ũ j| ≤min

(‖Ẽ‖
|li− l̃ j|

,1

)

.

The term λ`ψ`(X)>ũ j/
√

n is bounded by l̃ j‖Ψ̃+‖ (where Ψ+ denotes the pseudo-inverse of Ψ),
since

l̃ jũ j = K̃ũ j = Ψ̃Λ̃Ψ̃>ũ j ⇒ l̃ jΨ̃+ũ j = Λ̃Ψ̃>ũ j.

Taking norms, we obtain ‖Λ̃Ψ̃>ũ j‖ ≤ l̃ j‖Ψ̃+‖, from which the claimed inequality follows for each
individual coordinate of the vector on the left-hand side.

Combining the bounds for the two terms u>i ũ j and λ`ψ`(X)>ũ j/
√

n, we obtain

(u>i ũ j)

[

1√
n

λ`ψ`(X)>ũ j

]

≤ ‖Ψ̃+‖min

(‖Ẽ‖
|li− l̃ j|

,1

)

l̃ j =: ‖Ψ̃+‖ci j.

For j /∈ J(li) = {1≤ j ≤ r | 1
2 li ≤ l̃ j ≤ 2li}, it holds that ‖Ẽ‖l̃ j/|li− l̃ j| ≤ 2‖Ẽ‖, therefore,

r

∑
j=1

ci j = ∑
j∈J(li)

ci j + ∑
j/∈J(li)

ci j ≤ 2|J(li)|li +2r‖Ẽ‖.

We have just shown that

(II)≤ ‖Ψ̃+‖
r

∑̀
=1

|α`|
(

2|J(li)|li +2r‖Ẽ‖
)

. (7)

Now concerning the other term in (I), note that by the strong law of large numbers,

1
n
‖g(X)− g̃(X)‖2

Rn →‖g− g̃‖2
L2(X ,PX) =

∞

∑
j=r+1

α2
jλ

2
j =: T̃ 2.

Since g is bounded, ‖g‖∞ = F < ∞, we can bound the variance of g− g̃:

VarPX ((g− g̃)2)≤ ‖g− g̃‖2
∞‖g− g̃‖2 = F2T̃ 2.

We can thus bound the probability of a large deviation using the Chebychev-inequality. Taking the
square roots, we obtain that with probability larger than 1−δ,

1√
n
‖g(X)− g̃(X)‖ ≤ T̃ +

√

FT̃ (nδ)−
1
4 . (8)

Combining bound (7) and (8), we obtain that

1√
n
|u>i g(X)| ≤ 2li|J(li)|‖α̃‖1‖Ψ̃+‖+2r‖Ẽ‖‖α̃‖1‖Ψ̃+‖+ T̃ +

√

FT̃ (nδ)−
1
4 .

This proves the upper bound on the coefficients.

1901

BRAUN, BUHMANN AND MÜLLER

B.4 Worst Case Asymptotic Rates of the Error Matrices

The bound depends on a number of error terms, whose worst case asymptotic rates and their depen-
dency on r are studied next.

The norm of the pseudo-inverse of Ψ̃ can be related to the matrix C̃ = Ψ̃>Ψ̃−I, which measures
the deviation from orthonormality of the sample vectors of the first r eigenfunctions of Tk. Since the
eigenfunctions are asymptotically orthonormal, it is guaranteed that ‖C̃‖→ 0 as n→ ∞.

Lemma 2 Let C̃ = Ψ̃>Ψ̃− I. If ‖C̃‖< 1, then

‖Ψ̃+‖ ≤ (1−‖C̃‖)−1/2 = 1+O(

√

‖C̃‖).

Proof Recall that ‖Ψ̃+‖ = 1/σr(Ψ̃), where σr(Ψ̃) is the rth singular value of Ψ̃ in descending
order. The singular values are the square roots of the eigenvalues of Ψ̃>Ψ̃, and

1−λr(Ψ̃>Ψ̃)≤ max
1≤i≤r

|λi(Ψ̃>Ψ̃)−1| ≤ ‖Ψ̃>Ψ̃− I‖,

and therefore σr(Ψ̃) = (λr(Ψ̃>Ψ̃))1/2 ≥ (1−‖Ψ̃>Ψ̃− I‖)1/2, which proves the inequality.
For the asymptotic rate, observe that

‖Ψ̃+‖ ≤
√

1

1−‖C̃‖
=

√

‖C̃‖−1

‖C̃‖−1−1
=

√

1+
1

‖C̃‖−1−1
≤ 1+

√

1

‖C̃‖−1−1
.

Now, 1/(x−1) = O(1/x) for x→ ∞, which proves the asymptotic rate.

The two error matrices C̃ and Ẽ were discussed in depth by Braun (2006). However, note that
these asymptotic rates are worst case rates over certain families of kernel functions. This means that
the results on the asymptotic rates do not describe typical behavior but rather worst case behavior,
and their main purpose of these rates is to ensure that the error terms cannot diverge rather than
giving realistic estimates.

The following result is Theorem 4 from Braun (2006).

Lemma 3 For 1≤ r ≤ n, with probability larger than 1−δ,

‖C̃‖< r

√

r(r +1)K
λrnδ

, ‖Ẽ‖< λr +Λ>r +

√

2KΛ>r

nδ
.

¿From Lemma 3, it follows that

‖Ψ̃+‖= 1+O(rλ−1/4
r n−1/4),

‖Ẽ‖= Λ≥r +O(
√

Λ>rn
−1/2).

If we plug these rates into the bound from Theorem 1 and suppress all parts which converge to
zero, the bound becomes

1√
n
|u>i g(X)| ≤ 2ciãli +2rãΛ≥r + T̃ + terms which vanish as n→ ∞.

1902

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

We see that the general structure of the bound consists a part which scales with the eigenvalue under
consideration and an additive part which is independent of i. The factor of the scaling part increases
with r since ã = O(

√
r) in the worst case. At the same time, the truncation error T̃ arising from

the truncation of g becomes smaller as r is increased, and by assumption (A3), it is ensured that the
second term actually converges to zero as r→ ∞. The two parts therefore form a trade-off and by
choosing r, one can balance these two terms.

Now, in particular the convergence of ‖Ψ̃+‖ → 1 can be quite slow in the worst case, if the
eigenvalues of the kernel matrix decay quickly (see the paper by Braun, 2006, for a more thorough
discussion including an artificial example of a kernel function which achieves the described rate).
However, note that ‖Ψ̃+‖ only occurs in conjunction with terms involving eigenvalues, such that
the overall bound still converges. For example, one can prove that a decay rate of λr faster than
O(r−12) ensures that E(r,n) = 2rã‖Ψ̃+‖‖Ẽ‖→ 0 for r→ ∞ independently of n: It holds that

E(r,n) = 2rã‖Ψ̃+‖‖Ẽ‖= 2rã
(

1+O(rλ−1/4
r n−1/4)

)(

Λ≥r +O(
√

Λ>rn
−1/2)

)

.

If one expands the product, the term which decays slowest with respect to r is (recall that ã = O(
√

r))

2rãO(rλ−1/4
r)O(

√

Λ>r) = O(r5/2λ−1/4
r Λ1/2

>r).

Now if λr = r−d , then Λ>r = O(r1−d), and

O(r5/2λ−1/4
r Λ1/2

>r) = O(r5/2rd/4r(1−d)/2) = O(r3−d/4).

We require that the exponent is smaller than 0 which is true if d > 12. Again, since these are worst
case considerations, and usually r and n will be coupled in some way, the additive terms will be
controlled even for slower decay rates.

An interesting feature of the bound is that it is uniform in i, which means that the bound holds
simultaneously for all eigenvectors. Therefore, the individual bounds can be combined, for example,
to sums of scalar products without a decrease in the probability with which the bound holds.

In principle, it is possible to further relate the decay rate of the eigenvalues of the kernel matrix
li to the asymptotic eigenvalue λi, for example using bounds for individual eigenvalues (Braun,
2006), or tail-sums of eigenvalues (Blanchard et al., 2007; Shawe-Taylor et al., 2005) if we wish
to explicitly control the component of the relevant information vector which is not contained in the
leading kernel PCA directions.

Appendix C. A Worked Through Example

In this section, we work through the “splice” data set to show how one would perform a kernel
fitness analysis using the methods presented here. The computations of the estimates proposed in
Section 4 are summarized in Algorithm 1.

We start out with the splice data set. As explained in the main section, each data points encodes
sequence of aminoacids. In the positive examples, there exists a so-called splice site in the center of
the encoded DNA signal. The task requires to predict splice sites in these short DNA sequences.

Usually, one would start with some specific kernel, for example an rbf-kernel, train some kernel
learning algorithm using this kernel, evaluate the kernel on some test data set, and start to select
different parameters. There are two potential drawbacks following this approach: (1) there exists

1903

BRAUN, BUHMANN AND MÜLLER

Algorithm 1 Computing the estimates from Section 4
Input: Kernel matrix K, label vector Y , loss function L
Output: kernel PCA coefficients z, dimensionality d̂,

negative log-likelihood ˆ̀, denoised labels Ŷ ,
noise-level ˆerr

1: {Compute kernel PCA coefficients}
2: Compute eigendecomposition KU = UD
3: z← U>Y
4: {Estimate dimensionality d̂ (Eq. 4)}
5: c← 0; C←‖z‖2 {here, it is shown in detail how to achieve linear run-time}
6: for d = 1 to n/2 do
7: c← c+ z2

i
8: s1← c/d
9: s2← (C− c)/(n−d)

10: ld ← d logs1 +(n−d) logs2

11: end for
12: d̂← argmin1≤d≤n/2 ld
13: ˆ̀← ld̂ .
14: {Compute denoised labels (Eq. 5)}
15: Extract first d̂ eigenvectors T← U:,1:d̂

16: Ŷ ← TT>Y
17: {Estimate noise-level (Eq. 6)}
18: êrr = 1

n ∑n
i=1 L(Y,Ŷ)

no absolute measure of the goodness of a certain kernel choice, only comparisons to other kernels,
(2) there exists some dependency on the kernel learning method employed. Using the methods
developed in this paper, it is possible to explore the relationship between the kernel and the data set
in an algorithm independent way. Furthermore, in the case of poor performance, it is possible to
distinguish between very complex cases (which require more input data), and cases where the data
set appears to be very noisy (either requiring better data quality, or a kernel which can capture more
information about the learning problem).

The splice data set consists of 20 resamples. We first try an rbf-kernel with width w = 50
(see Section A). We start by computing and plotting the kernel PCA coefficients. The resulting
coefficients are plotted in Figure 9(a). We see that the data set appears to be rather high-dimensional,
and the noise level is also quite high. The estimated median estimated dimension is 87.5, but it
seems that roughly up to dimension 200, relevant information might be contained.

As explained in the main text, the encoding used by the rbf-kernel is not fit for this example.
The four aminoacids A, C, G, and T have just been mapped to the numbers 1–4. We re-encode the
object features by mapping A, C, G, and T to the four vectors (1,0,0,0), (0,1,0,0), and so on. The
resulting kernel PCA coefficients are plotted in Figure 9(b). The encoding has obviously resulted
in a large improvement, as the dimension is much smaller now, while the amount of noise has also
been reduced.

Finally, we consider using a weighted-degree-kernel (Sonnenburg et al., 2005). The resulting
kernel PCA coefficients are plotted in Figure 9(c). While the estimated dimension is larger than

1904

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10

kernel PCA components

ke
rn

el
 P

C
A

 c
oe

ffi
ci

en
ts

Median of estimated dimensions = 87.5
Maximum of median kernel PCA coefficient = 13.3

0.95 percentile
median
0.05 percentile

(a) Rbf-kernel on the original data.

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10

kernel PCA components

ke
rn

el
 P

C
A

 c
oe

ffi
ci

en
ts

Median of estimated dimensions = 12.0
Maximum of median kernel PCA coefficient = 18.3

0.95 percentile
median
0.05 percentile

(b) Encoding the aminoacids using four bits.

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10

kernel PCA components

ke
rn

el
 P

C
A

 c
oe

ffi
ci

en
ts

Median of estimated dimensions = 29.5
Maximum of median kernel PCA coefficient = 21.2

0.95 percentile
median
0.05 percentile

(c) Using a weighted-degree kernel.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

kernel PCA components

ke
rn

el
 P

C
A

 c
oe

ffi
ci

en
ts

 (
su

bs
am

pl
ed

)

naive
4−bit
wdk

(d) The mean kernel PCA coefficients of all three kernels
compared (coefficients clipped to the interval from 0 to 2).

Figure 9: Figures (a)-(c) show 0.05, 0.5, and 0.95 percentiles of the kernel PCA coefficients over
the 20 resamples of the splice data set using the indicated kernels. Coefficients have been
truncated to the range [0,10] for better visibility. Figure (d) plots all three medians for
comparison (subsampled by combining ten consecutive points into their mean for better
visibility). Coefficients are sorted by decreasing corresponding eigenvalue.

in the previous case, the amount of noise was dramatically reduced, which is also reflected in the
classification results shown in Table 5.

In summary, using the estimates here, one can get a much more fine-grained assessment of how
well a kernel is adapted to the data. Figure 9(d) compares the mean kernel PCA coefficients over the
resamples for the three kernels. Initially, the splice data set appears to be rather high-dimensional,
indicating that more data would be needed. Incorporating domain knowledge in the encoding and
finally switching to a special-purpose kernel shows that the true dimensionality of the data is in fact

1905

BRAUN, BUHMANN AND MÜLLER

smaller, and that the noise level, which was initially quite high, could also be lowered significantly.
Using the weighted-degree-kernel the data quality and the amount of data seem to be suited for
predicting with high accuracy.

Appendix D. A Sin-Theta-Theorem

The following theorem is a special case of Theorem 6.2 in the book by Davis and Kahan (1970).

Theorem 2 Let A be a symmetric n×n-matrix with eigendecomposition A = ULU>. Let U and L
be partitioned as follows:

U = [U1 U2], L =

[

L1 0
0 L2

]

,

where U1 is an n× k-matrix, L1 is a k× k-matrix, U2 is an n× n− k-matrix, and L2 is an n− k×
n− k-matrix. Furthermore, let E be another symmetric n× n-matrix, and Ã = A + E. Let l̃ be an
eigenvalue of Ã and x̃ an associated unit-length eigenvector. Then,

‖U>2 x̃‖ ≤ ‖E‖
min

n−k≤i≤n
|l̃− li|

.

The proof of this theorem can also be found in the thesis of Braun (2005), Lemma 4.50, p. 70.

References

Gilles Blanchard, Olivier Bousquet, and Laurent Zwald. Statistical properties of kernel principal
component analysis. Machine Learning, 66(2–3):259–294, 2007.

Mikio L. Braun. Accurate error bounds for the eigenvalues of the kernel matrix. Journal of Machine
Learning Research, 7:2303–2328, Nov 2006.

Mikio L. Braun. Spectral Properties of the Kernel Matrix and Their Application to Kernel Meth-
ods in Machine Learning. PhD thesis, University of Bonn, 2005. Available electronically at
http://hss.ulb.uni-bonn.de/diss online/math nat fak/2005/braun mikio.

Chris J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and
Knowledge Discovery, 2(2):121–167, 1998.

Chandler Davis and William M. Kahan. The rotation of eigenvectors by a perturbation, iii. SIAM
Journal of Numerical Analysis, 7:1–46, 1970.

Theodoros Evgeniou and Massimiliano Pontil. On the Vγ dimension for regression in reproducing
kernel hilbert spaces. In Proceedings of Algorithmic Learning Theory, 1999.

Edwin T. Jaynes. Information theory and statistical mechanics. Physical Review, 160(620–630),
1957.

Vladimir Koltchinskii and Evariste Giné. Random matrix approximation of spectra of integral
operators. Bernoulli, 6(1):113–167, 2000.

1906

ON RELEVANT DIMENSIONS IN KERNEL FEATURE SPACES

Vladimir I. Koltchinskii. Asymptotics of spectral projections of some random matrices approximat-
ing integral operators. Progress in Probability, 43:191–227, 1998.

Sebastian Mika. Kernel Fisher Discriminants. PhD thesis, Technische Universität Berlin, December
2002.

Klaus-Robert Müller, Sebastian Mika, Gunnar Rätsch, Koji Tsuda, and Bernhard Schölkopf. An
introduction to kernel-based learning algorithms. IEEE Transaction on Neural Networks, 12(2):
181–201, May 2001.

Gunnar Rätsch, Takashi Onoda, and Klaus-Robert Müller. Soft margins for AdaBoost. Machine
Learning, 42(3):287–320, March 2001.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels. MIT Press, 2002.

Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. Nonlinear component analysis
as a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

Bernhard Schölkopf, Sebastian Mika, Christopher J. C. Burges, Philipp Knirsch, Klaus-Robert
Müller, Gunnar Rätsch, and Alex J. Smola. Input space vs. feature space in kernel-based methods.
IEEE Transactions on Neural Networks, 10(5):1000–1017, 1999.

John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, and Martin Anthony. Structural risk
minimization over date-dependent hierarchies. IEEE Transactions on Information Theory, 44(5):
1926–1940, 1998.

John Shawe-Taylor, Christopher K. I. Williams, Nello Christianini, and Jaz Kandola. On the eigen-
spectrum of the Gram matrix and the generalization error of kernel-PCA. IEEE Transactions on
Information Theory, 51(7):2510–2522, July 2005.

Alex J. Smola, Bernhard Schölkopf, and Klaus-Robert Müller. The connection between regulariza-
tion operators and support vector kernels. Neural Networks, 11(4):637–649, 1998.

Sören Sonnenburg, Gunnar Rätsch, and Bernhard Schölkopf. Large scale genomic sequence SVM
classifiers. In Proceedings of the 22nd International Machine Learning Conference, pages 848–
855. ACM Press, 2005.

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

Vladimir Vapnik. Statistical Learning Theory. Wiley, 1998.

Régis Vert, Laurent Zwald, Gilles Blanchard, and Pascal Massart. Kernel projection machine: a
new tool for pattern recognition. In Advances in Neural Information Processing Systems (NIPS
2004), pages 1649–1656. 2005, 2005.

Ulrike von Luxburg. Statistical Learning with Similarity and Dissimilarity Functions. PhD thesis,
Technische Universität Berlin, 2004.

Grace Wahba. Spline Models For Observational Data. Society for Industrial and Applied Mathe-
matics, 1990.

1907

BRAUN, BUHMANN AND MÜLLER

Robert C. Williamson, Alex J. Smola, and Bernhard Schölkopf. Generalization bounds for regular-
ization networks and support vector machines via entropy numbers of compact operators. IEEE
Transaction on Information Theory, 47(6):2516–2532, 2001.

Tong Zhang. Learning bounds for kernel regression using effective data dimensionality. Neural
Computation, 17:2077–2098, 2005.

Laurent Zwald and Gilles Blanchard. On the convergence of eigenspaces in kernel principal compo-
nents analysis. In Advances in Neural Information Processing Systems (NIPS 2005), volume 18,
2006.

1908

Journal of Machine Learning Research 9 (2008) 1909-1939 Submitted 12/07; Revised 5/08; Published 8/08

Manifold Learning: The Price of Normalization

Yair Goldberg YAIRGO@CC.HUJI.AC.IL

Department of Statistics
The Hebrew University
91905 Jerusalem, Israel

Alon Zakai ALONZAKA@POB.HUJI.AC.IL

Interdisciplinary Center for Neural Computation
The Hebrew University
91905 Jerusalem, Israel

Dan Kushnir DAN.KUSHNIR@WEIZMANN.AC.IL

Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science
76100 Rehovot, Israel

Ya’acov Ritov YAACOV.RITOV@HUJI.AC.IL

Department of Statistics
The Hebrew University
91905 Jerusalem, Israel

Editor: Sam Roweis

Abstract
We analyze the performance of a class of manifold-learning algorithms that find their output by
minimizing a quadratic form under some normalization constraints. This class consists of Locally
Linear Embedding (LLE), Laplacian Eigenmap, Local Tangent Space Alignment (LTSA), Hessian
Eigenmaps (HLLE), and Diffusion maps. We present and prove conditions on the manifold that
are necessary for the success of the algorithms. Both the finite sample case and the limit case are
analyzed. We show that there are simple manifolds in which the necessary conditions are violated,
and hence the algorithms cannot recover the underlying manifolds. Finally, we present numerical
results that demonstrate our claims.
Keywords: dimensionality reduction, manifold learning, Laplacian eigenmap, diffusion maps,
locally linear embedding, local tangent space alignment, Hessian eigenmap

1. Introduction

Many seemingly complex systems described by high-dimensional data sets are in fact governed by a
surprisingly low number of parameters. Revealing the low-dimensional representation of such high-
dimensional data sets not only leads to a more compact description of the data, but also enhances
our understanding of the system. Dimension-reducing algorithms attempt to simplify the system’s
representation without losing significant structural information. Various dimension-reduction al-
gorithms were developed recently to perform embeddings for manifold-based data sets. These in-
clude the following algorithms: Locally Linear Embedding (LLE, Roweis and Saul, 2000), Isomap
(Tenenbaum et al., 2000), Laplacian Eigenmaps (LEM, Belkin and Niyogi, 2003), Local Tangent
Space Alignment (LTSA, Zhang and Zha, 2004), Hessian Eigenmap (HLLE, Donoho and Grimes,

c©2008 Yair Goldberg, Alon Zakai, Dan Kushnir and Ya’acov Ritov.

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

2004), Semi-definite Embedding (SDE, Weinberger and Saul, 2006) and Diffusion Maps (DFM,
Coifman and Lafon, 2006).

These manifold-learning algorithms compute an embedding for some given input. It is assumed
that this input lies on a low-dimensional manifold, embedded in some high-dimensional space.
Here a manifold is defined as a topological space that is locally equivalent to a Euclidean space. It
is further assumed that the manifold is the image of a low-dimensional domain. In particular, the
input points are the image of a sample taken from the domain. The goal of the manifold-learning
algorithms is to recover the original domain structure, up to some scaling and rotation. The non-
linearity of these algorithms allows them to reveal the domain structure even when the manifold is
not linearly embedded.

The central question that arises when considering the output of a manifold-learning algorithm
is, whether the algorithm reveals the underlying low-dimensional structure of the manifold. The
answer to this question is not simple. First, one should define what “revealing the underlying lower-
dimensional description of the manifold” actually means. Ideally, one could measure the degree
of similarity between the output and the original sample. However, the original low-dimensional
data representation is usually unknown. Nevertheless, if the low-dimensional structure of the data is
known in advance, one would expect it to be approximated by the dimension-reducing algorithm, at
least up to some rotation, translation, and global scaling factor. Furthermore, it would be reasonable
to expect the algorithm to succeed in recovering the original sample’s structure asymptotically,
namely, when the number of input points tends to infinity. Finally, one would hope that the algorithm
would be robust in the presence of noise.

Previous papers have addressed the central question posed earlier. Zhang and Zha (2004) pre-
sented some bounds on the local-neighborhoods’ error-estimation for LTSA. However, their analysis
says nothing about the global embedding. Huo and Smith (2006) proved that, asymptotically, LTSA
recovers the original sample up to an affine transformation. They assume in their analysis that the
level of noise tends to zero when the number of input points tends to infinity. Bernstein et al. (2000.)
proved that, asymptotically, the embedding given by the Isomap algorithm (Tenenbaum et al., 2000)
recovers the geodesic distances between points on the manifold.

In this paper we develop theoretical results regarding the performance of a class of manifold-
learning algorithms, which includes the following five algorithms: Locally Linear Embedding
(LLE), Laplacian Eigenmap (LEM), Local Tangent Space Alignment (LTSA), Hessian Eigenmaps
(HLLE), and Diffusion maps (DFM).

We refer to this class of algorithms as the normalized-output algorithms. The normalized-output
algorithms share a common scheme for recovering the domain structure of the input data set. This
scheme is constructed in three steps. In the first step, the local neighborhood of each point is
found. In the second step, a description of these neighborhoods is computed. In the third step,
a low-dimensional output is computed by solving some convex optimization problem under some
normalization constraints. A detailed description of the algorithms is given in Section 2.

In Section 3 we discuss informally the criteria for determining the success of manifold-learning
algorithms. We show that one should not expect the normalized-output algorithms to recover
geodesic distances or local structures. A more reasonable criterion for success is a high degree
of similarity between the output of the algorithms and the original sample, up to some affine trans-
formation; the definition of similarity will be discussed later. We demonstrate that under certain cir-
cumstances, this high degree of similarity does not occur. In Section 4 we find necessary conditions
for the successful performance of LEM and DFM on the two-dimensional grid. This section serves

1910

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

as an explanatory introduction to the more general analysis that appears in Section 5. Some of the
ideas that form the basis of the analysis in Section 4 were discussed independently by both Gerber
et al. (2007) and ourselves (Goldberg et al., 2007). Section 5 finds necessary conditions for the suc-
cessful performance of all the normalized-output algorithms on general two-dimensional manifolds.
It should be noted that the necessary conditions are hard to verify in practice. However, they serve as
an analytic tool to prove that there are general classes of manifolds on which the normalized-output
algorithms fail. Moreover, the numerical examples in this section show that the class of manifolds
on which the normalized-output algorithms fail is wide and includes non-isometrically manifolds
and real-world data. In Section 6 we discuss the performance of the algorithms in the asymptotic
case. Concluding remarks appear in Section 7. The detailed proofs appear in the Appendix.

Our paper has two main results. First, we give well-defined necessary conditions for the suc-
cessful performance of the normalized-output algorithms. Second, we show that there exist simple
manifolds that do not fulfill the necessary conditions for the success of the algorithms. For these
manifolds, the normalized-output algorithms fail to generate output that recovers the structure of
the original sample. We show that these results hold asymptotically for LEM and DFM. Moreover,
when noise, even of small variance, is introduced, LLE, LTSA, and HLLE will fail asymptotically
on some manifolds. Throughout the paper, we present numerical results that demonstrate our claims.

2. Description of Output-normalized Algorithms

In this section we describe in short the normalized-output algorithms. The presentation of these
algorithms is not in the form presented by the respective authors. The form used in this paper
emphasizes the similarities between the algorithms and is better-suited for further derivations. In
Appendix A.1 we show the equivalence of our representation of the algorithms and the representa-
tions that appear in the original papers.

Let X = [x1, . . . ,xN]′, xi ∈ R
D be the input data where D is the dimension of the ambient space

and N is the size of the sample. The normalized-output algorithms attempt to recover the underlying
structure of the input data X in three steps.

In the first step, the normalized-output algorithms assign neighbors to each input point xi based
on the Euclidean distances in the high-dimensional space.1 This can be done, for example, by choos-
ing all the input points in an r-ball around xi or alternatively by choosing xi’s K-nearest-neighbors.
The neighborhood of xi is given by the matrix Xi = [xi,xi,1, . . . ,xi,K]′ where xi, j : j = 1, . . . ,K are
the neighbors of xi. Note that K = K(i) can be a function of i, the index of the neighborhood, yet
we omit this index to simplify the notation. For each neighborhood, we define the radius of the
neighborhood as

r(i) = max
j,k∈{0,...,K}

∥∥xi, j − xi,k
∥∥

where we define xi,0 = xi. Finally, we assume throughout this paper that the neighborhood graph is
connected.

In the second step, the normalized-output algorithms compute a description of the local neigh-
borhoods that were found in the previous step. The description of the i-th neighborhood is given by
some weight matrix Wi. The matrices Wi for the different algorithms are presented.

1. The neighborhoods are not mentioned explicitly by Coifman and Lafon (2006). However, since a sparse optimization
problem is considered, it is assumed implicitly that neighborhoods are defined (see Sec. 2.7 therein).

1911

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

• LEM and DFM: Wi is a K × (K +1) matrix,

Wi =

w1/2
i,1 −w1/2

i,1 0 · · · 0

w1/2
i,2 0 −w1/2

i,2
. . .

...
...

...
. 0

w1/2
i,K 0 · · · 0 −w1/2

i,K

.

For LEM wi, j = 1 is a natural choice, yet it is also possible to define the weights as w̃i, j =

e−‖xi−xi, j‖2
/ε, where ε is the width parameter of the kernel. For the case of DFM,

wi, j =
kε(xi,xi, j)

qε(xi)αqε(xi, j)α , (1)

where kε is some rotation-invariant kernel, qε(xi) = ∑ j kε(xi,xi, j) and ε is again a width pa-
rameter. We will use α = 1 in the normalization of the diffusion kernel, yet other values of
α can be considered (see details in Coifman and Lafon, 2006). For both LEM and DFM, we
define the matrix D to be a diagonal matrix where dii = ∑ j wi, j.

• LLE: Wi is a 1× (K +1) matrix,

Wi =
(

1 −wi,1 · · · −wi,K
)

.

The weights wi, j are chosen so that xi can be best linearly reconstructed from its neighbors.
The weights minimize the reconstruction error function

∆i (wi,1, . . . ,wi,K) = ‖xi −∑
j

wi, jxi, j‖2

under the constraint ∑ j wi, j = 1. In the case where there is more than one solution that mini-
mizes ∆i, regularization is applied to force a unique solution (for details, see Saul and Roweis,
2003).

• LTSA: Wi is a (K +1)× (K +1) matrix,

Wi = (I −PiPi
′)H .

Let UiLiVi
′ be the SVD of Xi −1x̄′i where x̄i is the sample mean of Xi and 1 is a vector of ones

(for details about SVD, see, for example, Golub and Loan, 1983). Let Pi = [u(1), . . . ,u(d)]
be the matrix that holds the first d columns of Ui where d is the output dimension. The
matrix H = I − 1

K 11′ is the centering matrix. See also Huo and Smith (2006) regarding this
representation of the algorithm.

• HLLE: Wi is a d(d +1)/2× (K +1) matrix,

Wi = (0,H i)

where 0 is a vector of zeros and H i is the d(d+1)
2 ×K Hessian estimator.

The estimator can be calculated as follows. Let UiLiVi
′ be the SVD of Xi −1x̄′i. Let

Mi = [1,U (1)
i , . . . ,U (d)

i ,diag(U (1)
i U (1)

i
′),diag(U (1)

i U (2)
i

′), . . . ,diag(U (d)
i U (d)

i
′)] ,

1912

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

where the operator diag returns a column vector formed from the diagonal elements of the
matrix. Let M̃i be the result of the Gram-Schmidt orthonormalization on Mi. Then H i is
defined as the transpose of the last d(d +1)/2 columns of M̃i.

The third step of the normalized-output algorithms is to find a set of points Y = [y1, . . . ,yN]′, yi ∈
R

d where d ≤ D is the dimension of the manifold. Y is found by minimizing a convex function
under some normalization constraints, as follows. Let Y be any N × d matrix. We define the i-th
neighborhood matrix Yi = [yi,yi,1, . . . ,yi,K]′ using the same pairs of indices i, j as in Xi. The cost
function for all of the normalized-output algorithms is given by

Φ(Y) =
N

∑
i=1

φ(Yi) =
N

∑
i=1

‖WiYi‖2
F , (2)

under the normalization constraints
{

Y ′DY = I
Y ′D1 = 0

for LEM and DFM,

{
Cov(Y) = I

Y ′1 = 0
for LLE, LTSA and HLLE, (3)

where ‖ ‖F stands for the Frobenius norm, and Wi is algorithm-dependent.
Define the output matrix Y to be the matrix that achieves the minimum of Φ under the normaliza-

tion constraints of Eq. 3 (Y is defined up to rotation). Then we have the following: the embeddings
of LEM and LLE are given by the according output matrices Y ; the embeddings of LTSA and HLLE
are given by the according output matrices 1√

N
Y ; and the embedding of DFM is given by a linear

transformation of Y as discussed in Appendix A.1. The discussion of the algorithms’ output in this
paper holds for any affine transformation of the output (see Section 3). Thus, without loss of gen-
erality, we prefer to discuss the output matrix Y directly, rather than the different embeddings. This
allows a unified framework for all five normalized-output algorithms.

3. Embedding Quality

In this section we discuss possible definitions of “successful performance” of manifold-learning
algorithms. To open our discussion, we present a numerical example. We chose to work with LTSA
rather arbitrarily. Similar results can be obtained using the other algorithms.

The example we consider is a uniform sample from a two-dimensional strip, shown in Fig. 1A.
Note that in this example, D = d; that is, the input data is identical to the original data. Fig. 1B
presents the output of LTSA on the input in Fig. 1A. The most obvious difference between input
and output is that while the input is a strip, the output is roughly square. While this may seem to be
of no importance, note that it means that the algorithm, like all the normalized-output algorithms,
does not preserve geodesic distances even up to a scaling factor. By definition, the geodesic distance
between two points on a manifold is the length of the shortest path on the manifold between the two
points. Preservation of geodesic distances is particularly relevant when the manifold is isometrically
embedded. In this case, assuming the domain is convex, the geodesic distance between any two
points on the manifold is equal to the Euclidean distance between the corresponding domain points.
Geodesic distances are conserved, for example, by the Isomap algorithm (Tenenbaum et al., 2000).

Figs. 1E and 1F present closeups of Figs. 1A and 1B, respectively. Here, a less obvious phe-
nomenon is revealed: the structure of the local neighborhood is not preserved by LTSA. By local
structure we refer to the angles and distances (at least up to a scale) between all points within each

1913

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

A B C D

E F G

Figure 1: The output of LTSA (B) for the (two-dimensional) input shown in (A), where the input
is a uniform sample from the strip [0,1]× [0,6]. Ideally one would expect the two to be
identical. The normalization constraint shortens the horizontal distances and lengthens
the vertical distances, leading to the distortion of geodesic distances. (E) and (F) focus
on the points shown in black in (A) and (B), respectively. The (blue) triangles pointing
downwards in (E) and (F) are the 8-nearest-neighborhood of the point denoted by the
full black circle. The (red) triangles pointing upwards in (F) indicate the neighborhood
computed for the corresponding point (full black circle) in the output space. Note that
less than half of the original neighbors of the point remain neighbors in the output space.
The input (A) with the addition of Gaussian noise normal to the manifold and of variance
10−4 is shown in (C). The output of LTSA for the noisy input is shown in (D). (G) shows
a closeup of the neighborhood of the point indicated by the black circle in (D).

local neighborhood. Mappings that preserve local structures up to a scale are called conformal
mappings (see for example de Silva and Tenenbaum, 2003; Sha and Saul, 2005). In addition to
the distortion of angles and distances, the K-nearest-neighbors of a given point on the manifold do
not necessarily correspond to the K-nearest-neighbors of the respective output point, as shown in
Figs. 1E and 1F. Accordingly, we conclude that the original structure of the local neighborhoods is
not necessarily preserved by the normalized-output algorithms.

The above discussion highlights the fact that one cannot expect the normalized-output algo-
rithms to preserve geodesic distances or local neighborhood structure. However, it seems reasonable
to demand that the output of the normalized-output algorithms resemble an affine transformation of
the original sample. In fact, the output presented in Fig. 1B is an affine transformation of the
input, which is the original sample, presented in Fig. 1A. A formal similarity criterion based on
affine transformations is given by Huo and Smith (2006). In the following, we will claim that a

1914

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

normalized-output algorithm succeeds (or fails) based on the existence (or lack thereof) of resem-
blance between the output and the original sample, up to an affine transformation.

Fig. 1D presents the output of LTSA on a noisy version of the input, shown in Fig. 1C. In
this case, the algorithm prefers an output that is roughly a one-dimensional curve embedded in R

2.
While this result may seem incidental, the results of all the other normalized-output algorithms for
this example are essentially the same.

Using the affine transformation criterion, we can state that LTSA succeeds in recovering the
underlying structure of the strip shown in Fig. 1A. However, in the case of the noisy strip shown in
Fig. 1C, LTSA fails to recover the structure of the input. We note that all the other normalized-output
algorithms perform similarly.

For practical purposes, we will now generalize the definition of failure of the normalized-output
algorithms. This definition is more useful when it is necessary to decide whether an algorithm has
failed, without actually computing the output. This is useful, for example, when considering the
outputs of an algorithm for a class of manifolds.

We now present the generalized definition of failure of the algorithms. Let X = XN×d be the
original sample. Assume that the input is given by ψ(X) ⊂ R

D , where ψ : R
d → R

D is some
smooth function, and D ≥ d is the dimension of the input. Let Y = YN×d be an affine transformation
of the original sample X , such that the normalization constraints of Eq. 3 hold. Note that Y is
algorithm-dependent, and that for each algorithm, Y is unique up to rotation and translation. When
the algorithm succeeds it is expected that the output will be similar to a normalized version of X ,
namely to Y . Let Z = ZN×d be any matrix that satisfies the same normalization constraints. We say
that the algorithm has failed if Φ(Y) > Φ(Z), and Z is substantially different from Y , and hence
also from X . In other words, we say that the algorithm has failed when a substantially different
embedding Z has a lower cost than the most appropriate embedding Y . A precise definition of
“substantially different” is not necessary for the purposes of this paper. It is enough to consider Z
substantially different from Y when Z is of lower dimension than Y , as in Fig. 1D.

We emphasize that the matrix Z is not necessarily similar to the output of the algorithm in
question. It is a mathematical construction that shows when the output of the algorithm is not likely
to be similar to Y , the normalized version of the true manifold structure. The following lemma
shows that if Φ(Y) > Φ(Z), the inequality is also true for a small perturbation of Y . Hence, it is not
likely that an output that resembles Y will occur when Φ(Y) > Φ(Z) and Z is substantially different
from Y .

Lemma 3.1 Let Y be an N ×d matrix. Let Ỹ = Y +εE be a perturbation of Y , where E is an N ×d
matrix such that ‖E‖F = 1 and where ε > 0. Let S be the maximum number of neighborhoods to
which a single input point belongs. Then for LLE with positive weights wi, j, LEM, DFM, LTSA, and
HLLE, we have

Φ(Ỹ) > (1− ε)Φ(Y)− εCaS ,

where Ca is a constant that depends on the algorithm.

The use of positive weights in LLE is discussed in Saul and Roweis (2003, Section 5); a similar
result for LLE with general weights can be obtained if one allows a bound on the values of wi, j. The
proof of Lemma 3.1 is given in Appendix A.2.

1915

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

A B CA B CA B CA B CA B C

Figure 2: (A) The input grid. (B) Embedding Y , the normalized grid. (C) Embedding Z, a curve
that satisfies Cov(Z) = I.

4. Analysis of the Two-Dimensional Grid

In this section we analyze the performance of LEM on the two-dimensional grid. In particular,
we argue that LEM cannot recover the structure of a two-dimensional grid in the case where the
aspect ratio of the grid is greater than 2. Instead, LEM prefers a one-dimensional curve in R

2.
Implications also follow for DFM, as explained in Section 4.3, followed by a discussion of the other
normalized-output algorithms. Finally, we present empirical results that demonstrate our claims.

In Section 5 we prove a more general statement regarding any two-dimensional manifold. Nec-
essary conditions for successful performance of the normalized-output algorithms on such mani-
folds are presented. However, the analysis in this section is important in itself for two reasons.
First, the conditions for the success of LEM on the two-dimensional grid are more limiting. Sec-
ond, the analysis is simpler and points out the reasons for the failure of all the normalized-output
algorithms when the necessary conditions do not hold.

4.1 Possible Embeddings of a Two-Dimensional Grid

We consider the input data set X to be the two-dimensional grid [−m, . . . ,m]× [−q, . . . ,q], where
m ≥ q. We denote xi j = (i, j). For convenience, we regard X = (X (1),X (2)) as an N × 2 matrix,
where N = (2m+1)(2q+1) is the number of points in the grid. Note that in this specific case, the
original sample and the input are the same.

In the following we present two different embeddings, Y and Z. Embedding Y is the grid itself,
normalized so that Cov(Y) = I. Embedding Z collapses each column to a point and positions the
resulting points in the two-dimensional plane in a way that satisfies the constraint Cov(Z) = I (see
Fig. 2 for both). The embedding Z is a curve in R

2 and clearly does not preserve the original
structure of the grid.

We first define the embeddings more formally. We start by defining Ŷ = X(X ′DX)−1/2. Note that
this is the only linear transformation of X (up to rotation) that satisfies the conditions Ŷ ′D1 = 0 and
Ŷ ′DŶ = I, which are the normalization constraints for LEM (see Eq. 3). However, the embedding
Ŷ depends on the matrix D, which in turn depends on the choice of neighborhoods. Recall that the
matrix D is a diagonal matrix, where dii equals the number of neighbors of the i-th point. Choose r
to be the radius of the neighborhoods. Then, for all inner points xi j, the number of neighbors K(i, j)
is a constant, which we denote as K. We shall call all points with less than K neighbors boundary

1916

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

points. Note that the definition of boundary points depends on the choice of r. For inner points of
the grid we have dii ≡ K. Thus, when K � N we have X ′DX ≈ KX ′X .

We define Y = XCov(X)−1/2. Note that Y ′1 = 0, Cov(Y) = I and for K � N, Y ≈
√

KNŶ .
In this section we analyze the embedding Y instead of Ŷ , thereby avoiding the dependence on the
matrix D and hence simplifying the notation. This simplification does not significantly change the
problem and does not affect the results we present. Similar results are obtained in the next section
for general two-dimensional manifolds, using the exact normalization constraints (see Section 5.2).

Note that Y can be described as the set of points [−m/σ, . . . ,m/σ]× [−q/τ, . . . ,q/τ], where
yi j = (i/σ, j/τ). The constants σ2 = Var(X (1)) and τ2 = Var(X (2)) ensure that the normalization
constraint Cov(Y) = I holds. Straightforward computation (see Appendix A.3) shows that

σ2 =
(m+1)m

3
; τ2 =

(q+1)q
3

. (4)

The definition of the embedding Z is as follows:

zi j =

(
i
σ , −2i

ρ − z̄(2)
)

i ≤ 0

(
i
σ , 2i

ρ − z̄(2)
)

i ≥ 0

,

where z̄(2) = (2q+1)2
Nρ ∑m

i=1(2i) ensures that Z′1 = 0, and σ (the same σ as before; see below) and ρ
are chosen so that sample variance of Z(1) and Z(2) is equal to one. The symmetry of Z(1) about
the origin implies that Cov(Z(1),Z(2)) = 0, hence the normalization constraint Cov(Z) = I holds. σ
is as defined in Eq. 4, since Z(1) = Y (1) (with both defined similarly to X (1)). Finally, note that the
definition of zi j does not depend on j.

4.2 Main Result for LEM on the Two-Dimensional Grid

We estimate Φ(Y) by Nφ(Yi j) (see Eq. 2), where yi j is an inner point of the grid and Yi j is the
neighborhood of yi j; likewise, we estimate Φ(Z) by Nφ(Zi j) for an inner point zi j. For all inner
points, the value of φ(Yi j) is equal to some value φ. For boundary points, φ(Yi j) is bounded by φ
multiplied by some constant that depends only on the number of neighbors. Hence, for large m and
q, the difference between Φ(Y) and Nφ(Yi j) is negligible.

The main result of this section states:

Theorem 4.1 Let yi j be an inner point and let the ratio m
q be greater than 2. Then

φ(Yi j) > φ(Zi j)

for neighborhood-radius r that satisfies 1 ≤ r ≤ 3, or similarly, for K-nearest neighborhoods where
K = 4,8,12.

This indicates that for aspect ratios m
q that are greater than 2 and above, mapping Z, which is essen-

tially one-dimensional, is preferred to Y , which is a linear transformation of the grid. The case of
general r-ball neighborhoods is discussed in Appendix A.4 and indicates that similar results should
be expected.

1917

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

Figure 3: (A) The normalized grid at an inner point yi j. The 4-nearest-neighbors of yi j are marked
in blue. Note that the neighbors from the left and from the right are at a distance of
1/σ, while the neighbors from above and below are at a distance of 1/τ. The value of
φ(Yi j) is equal to the sum of squared distances of yi j to its neighbors. Hence, we obtain
that φ(Yi j) = 2/σ2 +2/τ2 when K = 4 and φ(Yi j) = 2/σ2 +2/τ2 +4(1/σ2 +1/τ2) when
K = 8. (B) The curve embedding at an inner point zi j. The neighbors of zi j from the left
and from the right are marked in red. The neighbors from above and below are embedded
to the same point as zi j. Note that the squared distance between zi j and z(i±1) j equals
1/σ2 +4/ρ2. Hence, φ(Zi j) = 2(1/σ2 +4/ρ2) when K = 4, and φ(Zi j) = 6(1/σ2 +4/ρ2)
when K = 8.

The proof of the theorem is as follows. It can be shown analytically (see Fig. 3) that

φ(Yi j) = F(K)

(
1

σ2 +
1
τ2

)
, (5)

where
F(4) = 2; F(8) = 6; F(12) = 14 .

For higher K, F(K) can be approximated for any r-ball neighborhood of yi j (see Appendix A.4).
It can be shown (see Fig. 3) that

φ(Zi j) = F̃(K)

(
1

σ2 +
4
ρ2

)
, (6)

where F̃(K) = F(K) for K = 4,8,12. For higher K, it can be shown (see Appendix A.4) that
F̃(K) ≈ F(K) for any r-ball neighborhood.

A careful computation (see Appendix A.5) shows that

ρ > σ , (7)

and therefore

φ(Zi j) <
5F(K)

σ2 . (8)

1918

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

Assume that m
q > 2. Since both m and q are integers, we have that m + 1 ≥ 2(q + 1). Hence,

using Eq. 4 we have

σ2 =
m(m+1)

3
>

4q(q+1)

3
= 4τ2 .

Combining this result with Eqs. 5 and 8 we have

m
q

> 2 ⇒ φ(Yi j) > φ(Zi j)

which proves Theorem 4.1.

4.3 Implications to Other Algorithms

We start with implications regarding DFM. There are two main differences between LEM and DFM.
The first difference is the choice of the kernel. LEM chooses wi, j = 1, which can be referred to as
the “window” kernel (a Gaussian weight function was also considered by Belkin and Niyogi, 2003).
DFM allows a more general rotation-invariant kernel, which includes the “window” kernel of LEM.
The second difference is that DFM renormalizes the weights kε(xi,xi, j) (see Eq. 1). However, for
all the inner points of the grid with neighbors that are also inner points, the renormalization factor
(qε(xi)

−1qε(xi, j)
−1) is a constant. Therefore, if DFM chooses the “window” kernel, it is expected

to fail, like LEM. In other words, when DFM using the “window” kernel is applied to a grid with
aspect ratio slightly greater than 2 or above, DFM will prefer the embedding Z over the embedding
Y (see Fig 2). For a more general choice of kernel, the discussion in Appendix A.4 indicates that
a similar failure should occur. This is because the relation between the estimations of Φ(Y) and
Φ(Z) presented in Eqs. 5 and 6 holds for any rotation-invariant kernel (see Appendix A.4). This
observation is also evident in numerical examples, as shown in Figs. 4 and 5.

In the cases of LLE with no regularization, LTSA, and HLLE, it can be shown that Φ(Y) ≡ 0.
Indeed, for LTSA and HLLE, the weight matrix Wi projects on a space that is perpendicular to the
SVD of the neighborhood Xi, thus ‖WiXi‖2

F = 0. Since Yi = XiCov(X)−1/2, we have ‖WiYi‖2
F = 0,

and, therefore, Φ(Y)≡ 0. For the case of LLE with no regularization, when K ≥ 3, each point can be
reconstructed perfectly from its neighbors, and the result follows. Hence, a linear transformation of
the original data should be the preferred output. However, the fact that Φ(Y)≡ 0 relies heavily on the
assumption that both the input X and the output Y are of the same dimension (see Theorem 5.1 for
manifolds embedded in higher dimensions), which is typically not the case in dimension-reducing
applications.

4.4 Numerical Results

For the following numerical results, we used the Matlab implementation written by the respective
algorithms’ authors as provided by Wittman (retrieved Jan. 2007) (a minor correction was applied
to the code of HLLE).

We ran the LEM algorithm on data sets with aspect ratios above and below 2. We present results
for both a grid and a uniformly sampled strip. The neighborhoods were chosen using K-nearest
neighbors with K = 4,8,16, and 64. We present the results for K = 8; the results for K = 4,16,
and 64 are similar. The results for the grid and the random sample are presented in Figs. 4 and 5,
respectively.

1919

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

Figure 4: The output of LEM on a grid of dimensions 81× 41 is presented in (A). The result of
LEM for the grid of dimensions 81×39 is presented in (B). The number of neighbors in
both computations is 8. The output for DFM on the same data sets using σ = 2 appears
in (C) and (D), respectively.

We ran the DFM algorithm on the same data sets. We used the normalization constant α = 1
and the kernel width σ = 2; the results for σ = 1,4, and 8 are similar. The results for the grid and
the random sample are presented in Figures 4 and 5, respectively.

Both examples clearly demonstrate that for aspect ratios sufficiently greater than 2, both LEM
and DFM prefer a solution that collapses the input data to a nearly one-dimensional output, normal-
ized in R

2. This is exactly as expected, based on our theoretical arguments.

Finally, we ran LLE, HLLE, and LTSA on the same data sets. In the case of the grid, both
LLE and LTSA (roughly) recovered the grid shape for K = 4,8,16, and 64, while HLLE failed to
produce any output due to large memory requirements. In the case of the random sample, both LLE
and HLLE succeeded for K = 16,64 but failed for K = 4,8. LTSA succeeded for K = 8,16, and 64
but failed for K = 4. The reasons for the failure for lower values of K are not clear, but may be due
to roundoff errors. In the case of LLE, the failure may also be related to the use of regularization in
LLE’s second step.

5. Analysis for General Two-Dimensional Manifolds

The aim of this section is to present necessary conditions for the success of the normalized-output
algorithms on general two-dimensional manifolds embedded in high-dimensional space. We show
how this result can be further generalized to manifolds of higher dimension. We demonstrate the
theoretical results using numerical examples.

1920

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

0 20 40 60 80

0

20

41

0 20 40 60 80

0

20

39

A B C

D E F

Figure 5: (A) and (D) show the same 3000 points, uniformly-sampled from the unit square, scaled
to the areas [0,81]× [0,41] and [0,81]× [0,39], respectively. (B) and (E) show the outputs
of LEM for inputs (A) and (D), respectively. The number of neighbors in both computa-
tions is 8. (C) and (F) show the output for DFM on the same data sets using σ = 2. Note
the sharp change in output structure for extremely similar inputs.

5.1 Two Different Embeddings for a Two-Dimensional Manifold

We start with some definitions. Let X = [x1, . . . ,xN]′, xi ∈ R
2 be the original sample. Without loss

of generality, we assume that

x̄ = 0; Cov(X) ≡ Σ =

(
σ2 0
0 τ2

)
.

As in Section 4, we assume that σ > τ. Assume that the input for the normalized-output algorithms is
given by ψ(X) ⊂ R

D where ψ : R
2 → R

D is a smooth function and D ≥ 2 is the dimension of the
input. When the mapping ψ is an isometry, we expect Φ(X) to be small. We now take a close look
at Φ(X).

Φ(X) =
N

∑
i=1

‖WiXi‖2
F =

N

∑
i=1

∥∥∥WiX
(1)
i

∥∥∥
2
+

N

∑
i=1

∥∥∥WiX
(2)
i

∥∥∥
2
,

where X (j)
i is the j-th column of the neighborhood Xi. Define e(j)

i =
∥∥∥WiX

(j)
i

∥∥∥
2
, and note that e(j)

i

depends on the different algorithms through the definition of the matrices Wi. The quantity e(j)
i is the

portion of error obtained by using the j-th column of the i-th neighborhood when using the original
sample as output. Denote ē(j) = 1

N ∑i e(j)
i , the average error originating from the j-th column.

1921

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

We define two different embeddings for ψ(X), following the logic of Sec. 4.1. Let

Y = XΣ−1/2 (9)

be the first embedding. Note that Y is just the original sample up to a linear transformation that
ensures that the normalization constraints Cov(Y) = I and Y ′1 = 0 hold. Moreover, Y is the only
transformation of X that satisfies these conditions, which are the normalization constraints for LLE,
HLLE, and LTSA. In Section 5.2 we discuss the modified embeddings for LEM and DFM.

The second embedding, Z, is given by

zi =

(
x(1)

i
σ ,

−x(1)
i

ρ − z̄(2)

)
x(1)

i < 0

(
x(1)

i
σ ,

κx(1)
i

ρ − z̄(2)

)
x(1)

i ≥ 0

. (10)

Here

κ =
(

∑
i:x(1)

i <0

(
x(1)

i

)2)1/2(
∑

i:x(1)
i ≥0

(
x(1)

i

)2)−1/2
(11)

ensures that Cov(Z(1),Z(2)) = 0, and z̄(2) = 1
N (∑x(1)

i ≥0
κx(1)

i
ρ + ∑x(1)

i <0
−x(1)

i
ρ) and ρ are chosen so that

the sample mean and variance of Z(2) are equal to zero and one, respectively. We assume without
loss of generality that κ ≥ 1.

Note that Z depends only on the first column of X . Moreover, each point zi is just a linear
transformation of x(1)

i . In the case of neighborhoods Zi, the situation can be different. If the first

column of Xi is either non-negative or non-positive, then Zi is indeed a linear transformation of X (1)
i .

However, if X (1)
i is located on both sides of zero, Zi is not a linear transformation of X (1)

i . Denote by

N0 the set of indices i of neighborhoods Zi that are not linear transformations of X (1)
i . The number

|N0| depends on the number of nearest neighbors K. Recall that for each neighborhood, we defined
the radius r(i) = max j,k∈{0,...,K}

∥∥xi, j − xi,k
∥∥. Define rmax = maxi∈N0 r(i) to be the maximum radius

of neighborhoods i, such that i ∈ N0.

5.2 The Embeddings for LEM and DFM

So far we have claimed that given the original sample X , we expect the output to resemble Y (see
Eq. 9). However, Y does not satisfy the normalization constraints of Eq. 3 for the cases of LEM
and DFM. Define Ŷ to be the only affine transformation of X (up to rotation) that satisfies the
normalization constraint of LEM and DFM. When the original sample is given by X , we expect
the output of LEM and DFM to resemble Ŷ . We note that unlike the matrix Y that was defined in
terms of the matrix X only, Ŷ depends also on the choice of neighborhoods through the matrix D
that appears in the normalization constraints.

We define Ŷ more formally. Denote X̃ = X − 1
1′D1 11′DX . Note that X̃ is just a translation of X

that ensures that X̃ ′D1 = 0. The matrix X̃ ′DX̃ is positive definite and therefore can be presented by
ΓΣ̂Γ′ where Γ is a 2×2 orthogonal matrix and

Σ̂ =

(
σ̂2 0
0 τ̂2

)
,

1922

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

where σ̂ ≥ τ̂. Define X̂ = X̃Γ; then Ŷ = X̂ Σ̂−1/2 is the only affine transformation of X that satisfies
the normalization constraints of LEM and DFM; namely, we have Ŷ ′DŶ = I and Ŷ ′D1 = 0.

We define Ẑ similarly to Eq. 10,

ẑi =

(
x̂(1)

i
σ̂ ,

−x̂(1)
i

ρ̂ − ˆ̄z(2)

)
x̂(1)

i < 0

(
x̂(1)

i
σ̂ ,

κ̂x̂(1)
i

ρ̂ − ˆ̄z(2)

)
x̂(1)

i ≥ 0

,

where κ̂ is defined by Eq. 11 with respect to X̂ , ˆ̄z(2) = 1
N (∑x(1)

i ≥0
diiκ̂x(1)

i
ρ + ∑x(1)

i <0
−diix

(1)
i

ρ) and ρ̂2 =

κ2 ∑x̂(1)
i ≥0

dii

(
x̂(1)

i

)2
+∑x̂(1)

i ≤0
dii

(
x̂(1)

i

)2
.

A similar analysis to that of Y and Z can be performed for Ŷ and Ẑ. The same necessary
conditions for success are obtained, with σ, τ, and ρ replaced by σ̂, τ̂, and ρ̂, respectively. In the
case where the distribution of the original points is uniform, the ratio σ̂

τ̂ is close to the ratio σ
τ and

thus the necessary conditions for the success of LEM and DFM are similar to the conditions in
Corollary 5.2.

5.3 Characterization of the Embeddings

The main result of this section provides necessary conditions for the success of the normalized-
output algorithms. Following Section 3, we say that the algorithms fail if Φ(Y) > Φ(Z), where Y
and Z are defined in Eqs. 9 and 10, respectively. Thus, a necessary condition for the success of the
normalized-output algorithms is that Φ(Y) ≤ Φ(Z).

Theorem 5.1 Let X be a sample from a two-dimensional domain and let ψ(X) be its embedding in
high-dimensional space. Let Y and Z be defined as above. Then

κ2

ρ2

(
ē(1) +

|N0|
N

car2
max

)
<

ē(2)

τ2 =⇒ Φ(Y) > Φ(Z) , (12)

where ca is a constant that depends on the specific algorithm. For the algorithms LEM and DFM a
more restrictive condition can be defined:

κ2

ρ2 ē(1) <
ē(2)

τ2 =⇒ Φ(Y) > Φ(Z) .

For the proof, see Appendix A.6.
Note that the bound in Eq. 12 depends on the radii of the neighborhoods, and when the maxi-

mum radius is large, the bound is less effective. However, there is a tradeoff between enlarging the
radius and improving the description of the neighborhoods, that is, reducing ē(2). In other words,
when the neighborhoods are large, one can expect a large average error in the description of the
neighborhoods, since the Euclidian approximation of the neighborhoods is less accurate for neigh-
borhoods of large radius.

Adding some assumptions, we can obtain a simpler criterion. First note that, in general, ē(1)

and ē(2) should be of the same order, since it can be assumed that, locally, the neighborhoods are

1923

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

uniformly distributed. Second, following Lemma A.2 (see Appendix A.8), when X (1) is a sample
from a symmetric unimodal distribution it can be assumed that κ ≈ 1 and ρ2 > σ2

8 . Then we have
the following corollary:

Corollary 5.2 Let X ,Y,Z be as in Theorem 5.1. Let c = σ/τ be the ratio between the variance of
the first and second columns of X. Assume that ē(1) <

√
2ē(2), κ < 4

√
2, and ρ2 > σ2

8 . Then

4

(
1+

|N0|
N

car2
max√

2ē(2)

)
< c ⇒ Φ(Y) > Φ(Z) .

For LEM and DFM, we can write

4 < c ⇒ Φ(Y) > Φ(Z) .

We emphasize that both Theorem 5.1 and Corollary 5.2 do not state that Z is the output of the
normalized-output algorithms. However, when the difference between the right side and the left
side of the inequalities is large, one cannot expect the output to resemble the original sample (see
Lemma 3.1). In these cases we say that the algorithms fail to recover the structure of the original
domain.

5.4 Generalization of the Results to Manifolds of Higher Dimensions

The discussion above introduced necessary conditions for the normalized-output algorithms’ suc-
cess on two-dimensional manifolds embedded in R

D . Necessary conditions for success on general
d-dimensional manifolds, d ≥ 3, can also be obtained. We present here a simple criterion to demon-
strate the fact that there are d-dimensional manifolds that the normalized-output algorithms cannot
recover.

Let X = [X (1), . . . ,X (d)] be a N×d sample from a d-dimensional domain. Assume that the input
for the normalized-output algorithms is given by ψ(X)⊂ R

D where ψ : R
d → R

D is a smooth func-
tion and D ≥ d is the dimension of the input. We assume without loss of generality that X ′1 = 0 and
that Cov(X) is a diagonal matrix. Let Y = XCov(X)−1/2. We define the matrix Z = [Z(1), . . . ,Z(d)]
as follows. The first column of Z, Z(1), equals the first column of Y , namely, Z(1) = Y (1). We define
the second column Z(2) similarly to the definition in Eq. 10:

Z(2)
i =

−x(1)
i

ρ − z̄(2) x(1)
i < 0

κx(1)
i

ρ − z̄(2) x(1)
i ≥ 0

, (13)

where κ is defined as in Eq. 11, and z̄(2) and ρ are chosen so that the sample mean and variance of
Z(2) are equal to zero and one, respectively. We define the next d −2 columns of Z by

Z(j) =
Y (j)−σ2 jZ(2)

√
1−σ2

2 j

; j = 3, . . . ,d ,

where σ2 j = Z(2)′Y (j). Note that Z′1 = 0 and Cov(Z) = I. Denote σmax = max j∈{3,...,d} σ2 j.

1924

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

We bound Φ(Z) from above:

Φ(Z) = Φ(Y (1))+Φ(Z(2))+
N

∑
i=1

(
1

1−σ2
2 j

)
d

∑
j=3

∥∥∥Wi

(
Y (j)

i −σ2 jZ
(2)
i

)∥∥∥
2

≤ Φ(Y (1))+Φ(Z(2))+
1

1−σ2
max

N

∑
i=1

d

∑
j=3

∥∥∥WiY
(j)
i

∥∥∥
2
+

σ2
max

1−σ2
max

N

∑
i=1

d

∑
j=3

∥∥∥WiZ
(2)
i

∥∥∥
2

= Φ(Y (1))+
1+(d −3)σ2

max

1−σ2
max

Φ(Z(2))+
1

1−σ2
max

d

∑
j=3

Φ(Y (j)) .

Since we may write Φ(Y) = ∑d
j=1 Φ(Y (j)), we have

1+(d −3)σ2
max

1−σ2
max

Φ(Z(2)) < Φ(Y (2))+
σ2

max

1−σ2
max

d

∑
j=3

Φ(Y (j)) ⇒ Φ(Z) < Φ(Y) .

When the sample is taken from a symmetric distribution with respect to the axes, one can expect
σmax to be small. To see this, note that by symmetry and Eq. 13, Z(2)

i ≈ |Y (1)
i |, and by assumption

Cov(Y (1),Y (j)) = 0 for j = 3, . . . ,d. Hence, by the symmetry of Y (j), σ2 j is expected to be small.
In the specific case of the d-dimensional grid, σmax = 0. Indeed, Y (j) is symmetric around zero,
and all values of Z(2) appear for a given value of Y (j). Hence, both LEM and DFM are expected to
fail whenever the ratio between the length of the grid in the first and second coordinates is slightly
greater than 2 or more, regardless of the length of grid in the other coordinates, similar to the result
presented in Theorem 4.1. Corresponding results for the other normalized-output algorithms can
also be obtained, similar to the derivation of Corollary 5.2.

5.5 Numerical Results

We ran all five normalized-output algorithms, along with Isomap, on three data sets. We used the
Matlab implementations written by the algorithms’ authors as provided by Wittman (retrieved Jan.
2007).

The first data set is a 1600-point sample from the swissroll as obtained from Wittman (retrieved
Jan. 2007). The results for the swissroll are given in Fig. 7, A1-F1. The results for the same
swissroll, after its first dimension was stretched by a factor 3, are given in Fig. 7, A2-F2. The
original and stretched swissrolls are presented in Fig. 6A. The results for K = 8 are given in Fig. 7.
We also checked for K = 12,16; but “short-circuits” occur (see Balasubramanian et al., 2002, for a
definition and discussion of “short-circuits”).

The second data set consists of 2400 points, uniformly sampled from a “fishbowl”, where a
“fishbowl” is a two-dimensional sphere minus a neighborhood of the northern pole (see Fig. 6B
for both the “fishbowl” and its stretched version). The results for K = 8 are given in Fig. 8. We
also checked for K = 12,16; the results are roughly similar. Note that the “fishbowl” is a two-
dimensional manifold embedded in R

3, which is not an isometry.
The third data set consists of 900 images of the globe, each of 100× 100 pixels (see Fig. 6C).

The images, provided by Hamm et al. (2005), were obtained by changing the globe’s azimuthal and
elevation angles. The parameters of the variations are given by a 30×30 array that contains −45 to
45 degrees of azimuth and −30 to 60 degrees of elevation. We checked the algorithms both on the

1925

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

60/−45 60/−41.9 60/−38.79 60/−35.69 60/−32.59 60/−29.48

56.9/−45 56.9/−41.9 56.9/−38.79 56.9/−35.69 56.9/−32.59 56.9/−29.48

53.79/−45 53.79/−41.9 53.79/−38.79 53.79/−35.69 53.79/−32.59 53.79/−29.48

50.69/−45 50.69/−41.9 50.69/−38.79 50.69/−35.69 50.69/−32.59 50.69/−29.48

A

B

C

Figure 6: The data sets for the first example appear in panel A. In the left appears the 1600-point
original swissroll and in the right appears the same swissroll, after its first dimension was
stretched by a factor of 3. The data for the second example appear in panel B. In the
left appears a 2400-point uniform sample from the “fishbowl”, and in the right appears
the same “fishbowl”, after its first dimension was stretched by a factor of 4. In panel C
appears the upper left corner of the array of 100×100 pixel images of the globe. Above
each image we write the elevation and azimuth.

entire set of images and on a strip of 30×10 angular variations. The results for K = 8 are given in
Fig. 9. We also checked for K = 12,16; the results are roughly similar.

1926

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

A1 B1 C1 D1 F1E1

A2 B2 C2 D2 F2E2

Figure 7: The output of LEM on 1600 points sampled from a swissroll is presented in A1. The
output of LEM on the same swissroll after stretching its first dimension by a factor of
3 is presented in A2. Similarly, the outputs of DFM, LLE, LTSA, HLLE, and Isomap
are presented in B1-2, C1-2, D1-2, E1-2, and F1-2, respectively. We used K = 8 for all
algorithms except DFM, where we used σ = 2.

These three examples, in addition to the noisy version of the two-dimensional strip discussed
in Section 3 (see Fig. 1), clearly demonstrate that when the aspect ratio is sufficiently large, all the
normalized-output algorithms prefer to collapse their output.

6. Asymptotics

In the previous sections we analyzed the phenomenon of global distortion obtained by the normalized-
output algorithms on a finite input sample. However, it is of great importance to explore the limit
behavior of the algorithms, that is, the behavior when the number of input points tends to infinity.
We consider the question of convergence in the case of input that consists of a d-dimensional man-
ifold embedded in R

D , where the manifold is isometric to a convex subset of Euclidean space. By
convergence we mean recovering the original subset of R

d up to a non-singular affine transforma-
tion.

Some previous theoretical works presented results related to the convergence issue. Huo and
Smith (2006) proved convergence of LTSA under some conditions. However, to the best of our
knowledge, no proof or contradiction of convergence has been given for any other of the normalized-
output algorithms. In this section we discuss the various algorithms separately. We also discuss the
influence of noise on the convergence. Using the results from previous sections, we show that there

1927

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

A1 B1 C1 D1 F1E1

A2 B2 C2 D2 F2E2

Figure 8: The output of LEM on 2400 points sampled from a “fishbowl” is presented in A1. The
output of LEM on the same “fishbowl” after stretching its first dimension by a factor of
4 is presented in A2. Similarly, the outputs of DFM, LLE, LTSA, HLLE, and Isomap
are presented in B1-2, C1-2, D1-2, E1-2, and F1-2, respectively. We used K = 8 for all
algorithms except DFM, where we used σ = 2.

are classes of manifolds on which the normalized-output algorithms cannot be expected to recover
the original sample, not even asymptotically.

6.1 LEM and DFM

Let x1,x2, . . . be a uniform sample from the two-dimensional strip S = [0,L]× [0,1]. Let Xn =
[x1, . . . ,xn]

′ be the sample of size n. Let K = K(n) be the number of nearest neighbors. Then when
K � n there exists with probability one an N, such that for all n > N the assumptions of Corollary 5.2
hold. Thus, if L > 4 we do not expect either LEM or DFM to recover the structure of the strip as
the number of points in the sample tends to infinity. Note that this result does not depend on the
number of neighbors or the width of the kernel, which can be changed as a function of the number
of points n, as long as K � n. Hence, we conclude that LEM and DFM generally do not converge,
regardless of the choice of parameters.

In the rest of this subsection we present further explanations regarding the failure of LEM and
DFM based on the asymptotic behavior of the graph Laplacian (see Belkin and Niyogi, 2003, for
details). Although it was not mentioned explicitly in this paper, it is well known that the outputs of
LEM and DFM are highly related to the lower non-negative eigenvectors of the normalized graph
Laplacian matrix (see Appendix A.1). It was shown by Belkin and Niyogi (2005), Hein et al.
(2005), and Singer (2006) that the graph Laplacian operator converges to the continuous Laplacian

1928

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

A1 B1 C1 D1 F1E1

A2 B2 C2 D2 F2E2

Figure 9: The output of LEM on the 30×30 array of the globe rotation images is presented in A1;
the output of LEM on the array of 30× 10 is presented in A2. Similarly, the outputs of
DFM, LLE, LTSA, HLLE, and Isomap are presented in B1-2, C1-2, D1-2, E1-2, and F1-2
respectively. We used K = 8 for all algorithms except DFM, where we chose σ to be the
root of the average distance between neighboring points.

operator. Thus, taking a close look at the eigenfunctions of the continuous Laplacian operator may
reveal some additional insight into the behavior of both LEM and DFM.

Our working example is the two-dimensional strip S = [0,L]× [0,1], which can be considered as
the continuous counterpart of the grid X defined in Section 4. Following Coifman and Lafon (2006)
we impose the Neumann boundary condition (see details therein). The eigenfunctions ϕi, j(x1,x2)
and eigenvalues λi, j on the strip S under these conditions are given by

ϕi, j(x1,x2) = cos

(
iπ
L

x1

)
cos(jπx2) λi, j =

(
iπ
L

)2

+(jπ)2 for i, j = 0,1,2,

When the aspect ratio of the strip satisfies L > M ∈ N, the first M non-trivial eigenfunctions are
ϕi,0, i = 1, . . . ,M, which are functions only of the first variable x1. Any embedding of the strip
based on the first M eigenfunctions is therefore a function of only the first variable x1. Specifically,
whenever L > 2 the two-dimensional embedding is a function of the first variable only, and therefore
clearly cannot establish a faithful embedding of the strip. Note that here we have obtained the same
ratio constant L > 2 computed for the grid (see Section 4 and Figs. 4 and 5) and not the looser
constant L > 4 that was obtained in Corollary 5.2 for general manifolds.

1929

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

6.2 LLE, LTSA and HLLE

As mentioned in the beginning of this section, Huo and Smith (2006) proved the convergence of the
LTSA algorithm. The authors of HLLE proved that the continuous manifold can be recovered by
finding the null space of the continuous Hessian operator (see Donoho and Grimes, 2004, Corollary).
However, this is not a proof that the algorithm HLLE converges. In the sequel, we try to understand
the relation between Corollary 5.2 and the convergence proof of LTSA.

Let x1,x2, . . . be a sample from a compact and convex domain Ω in R
2. Let Xn = [x1, . . . ,xn]

′ be
the sample of size n. Let ψ be an isometric mapping from R

2 to R
D , where D > 2. Let ψ(Xn) be

the input for the algorithms. We assume that there is an N such that for all n > N the assumptions
of Corollary 5.2 hold. This assumption is reasonable, for example, in the case of a uniform sample
from the strip S. In this case Corollary 5.2 states that Φ(Zn) < Φ(Yn) whenever

4

(
1+

|n0|
n

car2
max,n√
2ē(2)

n

)
< cn ,

where cn is the ratio between the variance of X (1)
n and X (2)

n assumed to converge to a constant c. The
expression |n0|

n is the fraction of neighborhoods Xi,n such that X (1)
i,n is located on both sides of zero.

rmax,n is the maximum radius of neighborhood in n0. Note that we expect both |n0|
n and rmax,n to

be bounded whenever the radius of the neighborhoods does not increase. Thus, Corollary 5.2 tells
us that if {ē(2)

n } is bounded from below, we cannot expect convergence from LLE, LTSA or HLLE
when c is large enough.

The consequence of this discussion is that a necessary condition for the convergence of LLE,
LTSA and HLLE is that {ē(2)

n } (and hence, from the assumptions of Corollary 5.2, also {ē(1)
n }) con-

verges to zero. If the two-dimensional manifold ψ(Ω) is not contained in a linear two-dimensional

subspace of R
D , the mean error ē(2)

n is typically not zero due to curvature. However, if the radii
of the neighborhoods tend to zero while the number of points in each neighborhood tends to infin-
ity, we expect ē(2)

n → 0 for both LTSA and HLLE. This is because the neighborhood matrices Wi

are based on the linear approximation of the neighborhood as captured by the neighborhood SVD.
When the radius of the neighborhood tends to zero, this approximation gets better and hence the
error tends to zero. The same reasoning works for LLE, although the use of regularization in the
second step of LLE may prevent ē(2)

n from converging to zero (see Section 2).
We conclude that a necessary condition for convergence is that the radii of the neighborhoods

tend to zero. In the presence of noise, this requirement cannot be fulfilled. Assume that each input
point is of the form ψ(xi)+ εi where εi ∈ R

D is a random error that is independent of ε j for j 6= i.
We may assume that εi ∼ N(0,α2I), where α is a small constant. If the radius of the neighborhood
is smaller than α, the neighborhood cannot be approximated reasonably by a two-dimensional pro-
jection. Hence, in the presence of noise of a constant magnitude, the radii of the neighborhoods
cannot tend to zero. In that case, LLE, LTSA and HLLE might not converge, depending on the ratio
c. This observation seems to be known also to Huo and Smith (2006), who wrote:

“... we assume α = o(r); that is, we have α
r → 0, as r → 0.

It is reasonable to require that the error bound (α) be smaller than the size of the neigh-
borhood (r), which is reflected in the above condition. Notice that this condition is also

1930

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

somewhat nonstandard, since the magnitude of the errors is assumed to depend on n,
but it seems to be necessary to ensure the consistency of LTSA.”2

Summarizing, convergence may be expected when n → ∞, if no noise is introduced. If noise is
introduced and if σ/τ is large enough (depending on the level of noise α), convergence cannot be
expected (see Fig. 1).

7. Concluding Remarks

In the introduction to this paper we posed the following question: Do the normalized-output al-
gorithms succeed in revealing the underlying low-dimensional structure of manifolds embedded in
high-dimensional spaces? More specifically, does the output of the normalized-output algorithms
resemble the original sample up to affine transformation?

The answer, in general, is no. As we have seen, Theorem 5.1 and Corollary 5.2 show that
there are simple low-dimensional manifolds, isometrically embedded in high-dimensional spaces,
for which the normalized-output algorithms fail to find the appropriate output. Moreover, the dis-
cussion in Section 6 shows that when noise is introduced, even of small magnitude, this result
holds asymptotically for all the normalized-output algorithms. We have demonstrated these results
numerically for four different examples: the swissroll, the noisy strip, the (non-isometrically em-
bedded) “fishbowl”, and a real-world data set of globe images. Thus, we conclude that the use of
the normalized-output algorithms on arbitrary data can be problematic.

The main challenge raised by this paper is the need to develop manifold-learning algorithms
that have low computational demands, are robust against noise, and have theoretical convergence
guarantees. Existing algorithms are only partially successful: normalized-output algorithms are
efficient, but are not guaranteed to converge, while Isomap is guaranteed to converge, but is com-
putationally expensive. A possible way to achieve all of the goals simultaneously is to improve the
existing normalized-output algorithms. While it is clear that, due to the normalization constraints,
one cannot hope for geodesic distances preservation nor for neighborhoods structure preservation,
success as measured by other criteria may be achieved. A suggestion of improvement for LEM
appears in Gerber et al. (2007), yet this improvement is both computationally expensive and lacks
a rigorous consistency proof. We hope that future research finds additional ways to improve the
existing methods, given the improved understanding of the underlying problems detailed in this
paper.

Acknowledgments

We are grateful to the anonymous reviewers of present and earlier versions of this manuscript for
their helpful suggestions. We thank an anonymous referee for pointing out errors in the proof of
Lemma 3.1. We thank J. Hamm for providing the database of globe images. This research was
supported in part by Israeli Science Foundation grant and in part by NSF, grant DMS-0605236.

2. We replaced the original τ and σ with r and α respectively to avoid confusion with previous notations.

1931

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

Appendix A. Detailed Proofs and Discussions

This section contains detailed proofs of Equations 4 and 7, Lemmas 3.1 and A.2, and Theorem 5.1.
It also contains discussions regarding the equivalence of the normalized-output algorithms’ repre-
sentations, and the estimation of F(K) and F̃(K) for a ball of radius r (see Section 4).

A.1 The Equivalence of the Algorithms’ Representations

For LEM, note that according to our representation, one needs to minimize

Φ(Y) =
N

∑
i=1

‖WiYi‖2
F =

N

∑
i=1

K

∑
j=1

wi, j‖yi − yi, j‖2 ,

under the constraints Y ′D1 = 0 and Y ′DY = I. Define ŵrs = wr, j if s is the j-th neighbor of r and
zero otherwise. Define D̂ to be the diagonal matrix such that drr = ∑N

s=1 ŵrs; note that D̂ = D. Using
these definitions, one needs to minimize Φ(Y) = ∑r,s ŵrs‖yr − ys‖2 under the constraints Y ′D̂1 = 0
and Y ′D̂Y = I, which is the the authors’ representation of the algorithm.

For DFM, as for LEM, we define the weights ŵrs. Define the N ×N matrix Ŵ = (ŵrs). Define
the matrix D−1Ŵ ; note that this matrix is a Markovian matrix and that v(0) ≡ 1 is its eigenvector
corresponding to eigenvalue 1, which is the largest eigenvalue of the matrix. Let v(p), p = 1, . . . ,d
be the next d eigenvectors, corresponding to the next d largest eigenvalues λp, normalized such that
v(p)′Dv(p) = 1. Note that the vectors v(0), . . . ,v(d) are also the eigenvectors of I−D−1W correspond-
ing to the d +1 lowest eigenvalues. Thus, the matrix [v(1), . . . ,v(d)] (up to rotation) can be computed
by minimizing tr(Y ′(D−W)Y) under the constraints Y ′DY = I and Y ′D1 = 0. Simple compu-
tation shows (see Belkin and Niyogi, 2003, Eq. 3.1) that tr(Y ′(D−W)Y) = 1

2 ∑r,s ŵrs‖yr − ys‖2.
We already showed that Φ(Y) = ∑r,s ŵrs‖yr − ys‖2. Hence, minimizing tr(Y ′(D−W)Y) under
the constraints Y ′DY = I and Y ′D1 = 0 is equivalent to minimizing Φ(Y) under the same con-
straints. The embedding suggested by Coifman and Lafon (2006) (up to rotation) is the matrix[

λ1
v(1)

‖v(1)‖ , . . . ,λd
v(d)

‖v(d)‖

]
. Note that this embedding can be obtained from the output matrix Y by a

simple linear transformation.
For LLE, note that according to our representation, one needs to minimize

Φ(Y) =
N

∑
i=1

‖WiYi‖2
F =

N

∑
i=1

‖yi −
K

∑
j=1

wi, jyi, j‖2

under the constraints Y ′1 = 0 and Cov(Y) = I, which is the minimization problem given by Roweis
and Saul (2000).

The representation of LTSA is similar to the representation that appears in the original paper,
differing only in the weights’ definition. We defined the weights Wi following Huo and Smith
(2006), who showed that both definitions are equivalent.

For HLLE, note that according to our representation, one needs to minimize

Φ(Y) =
N

∑
i=1

‖WiYi‖2
F =

N

∑
i=1

tr
(
Y ′

i H ′
i HiYi

)

under the constraint Cov(Y) = I. This is equivalent (up to a multiplication by
√

(N)) to minimizing
tr(Y ′H Y) under the constraint Y ′Y = I, where H is the matrix that appears in the original definition

1932

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

of the algorithm. This minimization can be calculated by finding the d + 1 lowest eigenvectors of
H , which is the embedding suggested by Donoho and Grimes (2004).

A.2 Proof of Lemma 3.1

We begin by estimating Φ(Ỹ).

Φ(Ỹ) =
N

∑
i=1

‖WiYi + εWiEi‖2
F =

N

∑
i=1

K

∑
j=0

∥∥Wiyi, j + εWiei, j
∥∥2

(14)

≥
N

∑
i=1

K

∑
j=0

(∥∥Wiyi, j
∥∥2 −2ε|(Wiyi, j)

′Wiei, j|
)

≥
N

∑
i=1

K

∑
j=0

(
(1− ε)

∥∥Wiyi, j
∥∥2 − ε

∥∥Wiei, j
∥∥2
)

= (1− ε)
N

∑
i=1

‖WiYi‖2
F − ε

N

∑
i=1

‖WiEi‖2
F

≥ (1− ε)Φ(Y)− ε
N

∑
i=1

‖Wi‖2
F ‖Ei‖2

F ,

where ei, j denotes the j-th row of Ei.
We bound ‖Wi‖2

F for each of the algorithms by a constant Ca. It can be shown that for LEM and

DFM, Ca ≤ 2K; for LTSA, Ca ≤ K; for HLLE Ca ≤ d(d+1)
2 . For LLE in the case of positive weights

wi, j, we have Ca ≤ 2. Thus, substituting Ca in Eq. 14, we obtain

Φ(Ỹ) ≥ (1− ε)Φ(Y)− εCa

N

∑
i=1

K

∑
j=0

∥∥ei, j
∥∥2

≥ (1− ε)Φ(Y)− εCaS‖E‖2
F = (1− ε)Φ(Y)− εCaS .

The last inequality holds true since S is the maximum number of neighborhoods to which a single
observation belongs.

A.3 Proof of Equation 4

By definition σ2 = Var(X (1)) and hence,

σ2 =
1
N

m

∑
i=−m

q

∑
j=−q

(
x(1)

i j

)2

=
1

(2m+1)(2q+1)

m

∑
i=−m

q

∑
j=−q

i2

=
2

2m+1

m

∑
i=1

i2

=
2

2m+1
(2m+1)(m+1)m

6

=
(m+1)m

3
.

1933

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

The computation for τ is similar.

A.4 Estimation of F(K) and F̃(K) for a Ball of Radius r

Calculation of φ(Yi j) for general K can be different for different choices of neighborhoods. There-
fore, we restrict ourselves to estimating φ(Yi j) when the neighbors are all the points inside an r-ball
in the original grid. Recall that φ(Yi j) for an inner point is equal to the sum of the squared distance
between yi j and its neighbors. The function

f (x1,x2) =
(x1

σ

)2
+
(x2

τ

)2

agrees with the squared distance for points on the grid, where x1 and x2 indicate the horizontal and
vertical distances from xi j in the original grid, respectively. We estimate φ(Yi j) using integration of
f (x1,x2) on B(r), a ball of radius r, which yields

φ(Yi j) ≈
Z

(x2
1+x2

2)<r2

f (x1,x2)dx1dx2 =
πr4

4

(
1

σ2 +
1
τ2

)
. (15)

Thus, we obtain F(K) ≈ πr4

4 .
We estimate φ(Zi j) similarly. We define the continuous version of the squared distance in the

case of the embedding Z by

g(x1,x2) = x2
1

(
1

σ2 +
4
ρ2

)
.

Integration yields

φ(Zi j) ≈
Z

(x2
1+x2

2)<r2

g(x1,x2)dx1dx2 =
πr4

4

(
1

σ2 +
4
ρ2

)
. (16)

Hence, we obtain F̃(K) ≈ πr4

4 and the relations between Eqs. 5 and 6 are preserved for a ball of
general radius.

For DFM, a general rotation-invariant kernel was considered for the weights. As with Eqs. 15
and 16, the approximations of φ(Yi j) and φ(Zi j) for the general case with neighborhood radius r are
given by

Z

(x2
1+x2

2)<r2

f (x1,x2)k(x1,x2)dx1dx2 =

π

Z

0<t<r

k(t2)t3dt

(

1
σ2 +

1
τ2

)

and
Z

(x2
1+x2

2)<r2

g(x1,x2)k(x1,x2)dx1dx2 =

π

Z

0<t<r

k(t2)t3dt

(

1
σ2 +

4
ρ2

)
.

Note that the ratio between these approximations of φ(Yi j) and φ(Zi j) is preserved. In light of these
computations it seems that for the general case of rotation-invariant kernels, φ(Yi j) > φ(Zi j) for
aspect ratio sufficiently greater than 2.

1934

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

A.5 Proof of Equation 7

Direct computation shows that

z̄(2) =
(2q+1)2

Nρ

m

∑
i=1

(2i) =
2m(m+1)

(2m+1)ρ
.

Recall that by definition ρ ensures that Var(Z(2)) = 1. Hence,

1 =
1
N

m

∑
i=−m

q

∑
j=−q

(2i)2

ρ2 −
(

z̄(2)
)2

=
2

2m+1
4m(m+1)(2m+1)

6ρ2 − 4m2(m+1)2

(2m+1)2ρ2

=
4m(m+1)

3ρ2 − 4m2(m+1)2

(2m+1)2ρ2 .

Further computation shows that

(m+1)m >
4(m+1)2m2

(2m+1)2 .

Hence,

ρ2 >
4(m+1)m

3
− (m+1)m = σ2 .

A.6 Proof of Theorem 5.1

The proof consists of computing Φ(Y) and bounding Φ(Z) from above. We start by computing
Φ(Y).

Φ(Y) =
N

∑
i=1

‖WiYi‖2
F =

N

∑
i=1

∥∥∥WiX
(1)
i /σ

∥∥∥
2
+

N

∑
i=1

∥∥∥WiX
(2)
i /τ

∥∥∥
2

= N
ē(1)

σ2 +N
ē(2)

τ2 .

The computation of Φ(Z) is more delicate because it involves neighborhoods Zi that are not linear
transformations of their original sample counterparts.

Φ(Z) =
N

∑
i=1

‖WiZi‖2
F =

N

∑
i=1

∥∥∥WiZ
(1)
i

∥∥∥
2
+

N

∑
i=1

∥∥∥WiZ
(2)
i

∥∥∥
2

= N
ē(1)

σ2 + ∑
i:x(1)

i <0 , i/∈N0

∥∥∥WiX
(1)
i /ρ

∥∥∥
2
+ ∑

i:x(1)
i >0 , i/∈N0

∥∥∥κWiX
(1)
i /ρ

∥∥∥
2
+ ∑

i∈N0

∥∥∥WiZ
(2)
i

∥∥∥
2

(17)

< N
ē(1)

σ2 +N
κ2ē(1)

ρ2 + ∑
i∈N0

∥∥∥WiZ
(2)
i

∥∥∥
2
. (18)

Note that max j,k∈{0,...,K}
∥∥zi, j − zi,k

∥∥≤ κr(i)/ρ. Hence, using Lemma A.1 we get

∥∥∥WiZ
(2)
i

∥∥∥
2
<

caκ2r(i)2

ρ2 , (19)

1935

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

where ca is a constant that depends on the specific algorithm. Combining Eqs. 18 and 19 we obtain

Φ(Z) < N
ē(1)

σ2 +N
κ2ē(1)

ρ2 + |N0|car2
max

κ2

ρ2 .

In the specific case of LEM and DFM, a tighter bound can be obtained for
∥∥∥WiZ

(2)
i

∥∥∥
2
. Note that for

LEM and DFM
∥∥∥WiZ

(2)
i

∥∥∥
2

= ∑
j=1K

wi, j(z
(2)
i − z(2)

i, j)2

≤
K

∑
j=1

wi, j
κ2

ρ2 (x(2)
i − x(2)

i, j)2 =
κ2

ρ2 e(1)
i .

Combining Eq. 17 and the last inequality we obtain in this case that

Φ(Z) ≤ N
ē(1)

σ2 +N
κ2ē(1)

ρ2 ,

which completes the proof.

A.7 Lemma A.1

Lemma A.1 Let Xi = [xi,xi,1, . . . ,xi,K]′ be a local neighborhood. Let ri = max j,k
∥∥xi, j − xi,k

∥∥. Then

‖WiXi‖2
F < car2

i ,

where ca is a constant that depends on the algorithm.

Proof We prove this lemma for each of the different algorithms separately.

• LEM and DFM:

‖WiXi‖2
F =

K

∑
j=1

wi, j
∥∥xi, j − xi

∥∥2 ≤
(

K

∑
j=1

wi, j

)
r2

i ≤ Kr2
i ,

where the last inequality holds since wi, j ≤ 1. Hence ca = K.

• LLE:

‖WiXi‖2
F =

∣∣∣
∣∣∣

K

∑
j=1

wi, j(xi, j − xi)
∣∣∣
∣∣∣
2
≤
∣∣∣
∣∣∣ 1
K

K

∑
j=1

(xi, j − xi)
∣∣∣
∣∣∣
2

≤ 1
K2

K

∑
j=1

∥∥xi, j − xi
∥∥2 ≤ r2

i

K
,

where the first inequality holds since wi, j were chosen to minimize
∥∥∑K

j=1 w̃i, j(xi, j − xi)
∥∥2

.
Hence ca = 1/K.

1936

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

• LTSA:

‖WiXi‖2
F =

∥∥(I −PiP
′
i)HXi

∥∥2
F ≤

∥∥(I −PiP
′
i)
∥∥2

F ‖HXi‖2
F

≤ K ∑
j

∥∥xi, j − x̄i
∥∥2 ≤ K2r2

i .

The first equality is just the definition of Wi (see Sec. 2). The matrix I −PiP′
i is a projection

matrix and its square norm is the dimension of its range, which is smaller than K +1. Hence
ca = K2.

• HLLE:

‖WiXi‖2
F = ‖WiHXi‖2

F ≤ ‖Wi‖2
F ‖HXi‖2

F ≤ d(d +1)

2
(K +1)r2

i .

The first equality holds since WiH = Wi(I − 1
K 11′) = Wi, since the rows of Wi are orthogonal

to the vector 1 by definition (see Sec. 2). Hence ca = d(d+1)
2 (K +1).

A.8 Lemma A.2

Lemma A.2 Let X be a random variable symmetric around zero with unimodal distribution. As-
sume that Var(X) = σ2. Then Var(|X |) ≥ σ2

4 .

Proof First note that that the equality holds for X ∼U(−
√

3σ,
√

3σ), where U denotes the uniform
distribution. Assume by contradiction that there is a random variable X , symmetric around zero and
with unimodal distribution such that Var(|X |) < σ2

4 − ε, where ε > 0. Since Var(|X |) = E(|X |2)−
E(|X |)2, and E(|X |2) = E(X2) = Var(X) = σ2, we have E(|X |)2 > 3σ2

4 + ε.
We approximate X by Xn, where Xn is a mixture of uniform random variables, defined as follows.

Define Xn ∼ ∑n
i=1 pn

i U(−cn
i ,c

n
i) where pn

i > 0, ∑n
i=1 pn

i = 1. Note that E(Xn) = 0 and that Var(Xn) =

∑n
i=1 pn

i (c
n
i)

2/3. For large enough n, we can choose pn
i and cn

i such that Var(Xn) = σ2 and E(|X −
Xn|) < ε

2E(|X |) .
Consider the random variable |Xn|. Note that using the definitions above we may write |Xn| =

∑n
i=1 pn

i U(0,cn
i), hence E(|Xn|) = 1

2 ∑n
i=1 pn

i cn
i . We bound this expression from below. We have

E(|Xn|)2 = E(|Xn −X +X |)2 ≥ (E(|X |)−E(|Xn −X |))2 (20)

≥ E(|X |)2 −2E(|X |)E(|Xn −X |) >
3σ2

4
.

Let Xn−1 = ∑n−1
i=1 pn−1

i U(−cn−1
i ,cn−1

i) where

pn−1
i =

{
pn

i i < n−1
pn

n−1 + pn
n i = n−1

,

and

cn−1
i =

{
cn

i i < n−1√(
(cn

n−1

)2
+(cn

n)
2 i = n−1

.

1937

GOLDBERG, ZAKAI, KUSHNIR AND RITOV

Note that Var(Xn−1) = σ2 by construction and Xn−1 is symmetric around zero with unimodal distri-
bution. Using the triangle inequality we obtain

E(|Xn−1|) =
1
2

n−1

∑
i=1

pn−1
i cn−1

i ≥ 1
2

n

∑
i=1

pn
i cn

i = E(|Xn|) .

Using the same argument recursively, we obtain that E(|X1|) ≥ E(|Xn|). However, X1 ∼
U(−

√
3σ,

√
3σ) and hence E(|X1|)2 = 3σ2

4 . Since by Eq. 20, E(|Xn|)2 > 3σ2

4 we have a contra-
diction.

References

M. Balasubramanian, E. L. Schwartz, J. B. Tenenbaum, V. de Silva, and J. C. Langford. The isomap
algorithm and topological stability. Science, 295(5552):7, 2002.

M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based manifold methods.
In COLT, pages 486–500, 2005.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Comp., 15(6):1373–1396, 2003.

M. Bernstein, V. de Silva, J. C. Langford, and J. B. Tenenbaum. Graph approximations to
geodesics on embedded manifolds. Technical report, Stanford University, Stanford, Available
at http://isomap.stanford.edu, 2000.

R. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic Analysis, 21
(1):5–30, 2006.

V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction.
In Advances in Neural Information Processing Systems 15, volume 15, pages 721–728. MIT
Press, 2003.

D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding techniques for high-
dimensional data. Proc. Natl. Acad. Sci. U.S.A., 100(10):5591–5596, 2004.

S. Gerber, T. Tasdizen, and R. Whitaker. Robust non-linear dimensionality reduction using suc-
cessive 1-dimensional Laplacian eigenmaps. In Zoubin Ghahramani, editor, Proceedings of the
24th Annual International Conference on Machine Learning (ICML 2007), pages 281–288. Om-
nipress, 2007.

Y. Goldberg, A. Zakai, and Y. Ritov. Does the Laplacian Eigenmap algorithm work? Unpublished,
May, 2007.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore,
Maryland, 1983.

J. Hamm, D. Lee, and L. K. Saul. Semisupervised alignment of manifolds. In Robert G. Cowell
and Zoubin Ghahramani, editors, Proceedings of the Tenth International Workshop on Artificial
Intelligence and Statistics, pages 120–127, 2005.

1938

MANIFOLD LEARNING: THE PRICE OF NORMALIZATION

M. Hein, J. Y. Audibert, and U. von Luxburg. From graphs to manifolds - weak and strong pointwise
consistency of graph Laplacians. In COLT, pages 470–485, 2005.

X. Huo and A. K. Smith. Performance analysis of a manifold learning algorithm in dimension
reduction. Technical Paper, Statistics in Georgia Tech, Georgia Institute of Technology, March
2006.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000.

L. K. Saul and S. T. Roweis. Think globally, fit locally: unsupervised learning of low dimensional
manifolds. J. Mach. Learn. Res., 4:119–155, 2003.

F. Sha and L. K. Saul. Analysis and extension of spectral methods for nonlinear dimensionality
reduction. In Machine Learning, Proceedings of the Twenty-Second International Conference
(ICML), pages 784–791, 2005.

A. Singer. From graph to manifold Laplacian: the convergence rate. Applied and Computational
Harmonic Analysis, 21(1):135–144, 2006.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, 2000.

K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite pro-
gramming. International Journal of Computer Vision, 70(1):77–90, 2006.

T. Wittman. MANIfold learning matlab demo. http://www.math.umn.edu/˜wittman/mani/,
retrieved Jan. 2007.

Z. Y. Zhang and H. Y. Zha. Principal manifolds and nonlinear dimensionality reduction via tangent
space alignment. SIAM J. Sci. Comp, 26(1):313–338, 2004.

1939

Journal of Machine Learning Research 9 (2008) 1941-1979 Submitted 6/07; Revised 2/08; Published 9/08

Complete Identification Methods for the Causal Hierarchy

Ilya Shpitser ILYAS@CS.UCLA.EDU

Judea Pearl JUDEA@CS.UCLA.EDU

Cognitive Systems Laboratory
Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90095, USA

Editor: Peter Spirtes

Abstract
We consider a hierarchy of queries about causal relationships in graphical models, where each level
in the hierarchy requires more detailed information than the one below. The hierarchy consists of
three levels: associative relationships, derived from a joint distribution over the observable vari-
ables; cause-effect relationships, derived from distributions resulting from external interventions;
and counterfactuals, derived from distributions that span multiple “parallel worlds” and resulting
from simultaneous, possibly conflicting observations and interventions. We completely character-
ize cases where a given causal query can be computed from information lower in the hierarchy, and
provide algorithms that accomplish this computation. Specifically, we show when effects of in-
terventions can be computed from observational studies, and when probabilities of counterfactuals
can be computed from experimental studies. We also provide a graphical characterization of those
queries which cannot be computed (by any method) from queries at a lower layer of the hierarchy.
Keywords: causality, graphical causal models, identification

1. Introduction

The human mind sees the world in terms of causes and effects. Understanding and mastering our en-
vironment hinges on answering questions about cause-effect relationships. In this paper we consider
three distinct classes of causal questions forming a hierarchy.

The first class of questions involves associative relationships in domains with uncertainty, for
example, “I took an aspirin after dinner, will I wake up with a headache?” The tools needed to
formalize and answer such questions are the subject of probability theory and statistics, for they
require computing or estimating some aspects of a joint probability distribution. In our aspirin
example, this requires estimating the conditional probability P(headache|aspirin) in a population
that resembles the subject in question, that is, sharing age, sex, eating habits and any other traits
that can be measured. Associational relationships, as is well known, are insufficient for establishing
causation. We nevertheless place associative questions at the base of our causal hierarchy, because
the probabilistic tools developed in studying such questions are instrumental for computing more
informative causal queries, and serve therefore as an easily available starting point from which such
computations can begin.

The second class of questions involves responses of outcomes of interest to outside interven-
tions, for instance, “if I take an aspirin now, will I wake up with a headache?” Questions of this type
are normally referred to as causal effects, sometimes written as P(headache|do(aspirin)). They

c©2008 Ilya Shpitser and Judea Pearl.

SHPITSER AND PEARL

differ, of course from the associational counterpart
P(headache|aspirin), because all mechanisms which normally determine aspirin taking behavior,
for example, taste of aspirin, family advice, time pressure, etc. are irrelevant in evaluating the effect
of a new decision.

To estimate effects, scientists normally perform randomized experiments where a sample of
units drawn from the population of interest is subjected to the specified manipulation directly. In
our aspirin example, this might involve treating a group of subjects with aspirin and comparing their
response to untreated subjects, both groups being selected at random from a population resembling
the decision maker in question. In many cases, however, such a direct approach is not possible due
to expense or ethical considerations. Instead, investigators have to rely on observational studies
to infer effects. A fundamental question in causal analysis is to determine when effects can be
inferred from statistical information, encoded as a joint probability distribution, obtained under
normal, intervention-free behavior. A key point here is that in order to make causal inferences
from statistics, additional causal assumptions are needed. This is because without any assumptions
it is possible to construct multiple “causal stories” which can disagree wildly on what effect a
given intervention can have, but agree precisely on all observables. For instance, smoking may be
highly correlated with lung cancer either because it causes lung cancer, or because people who are
genetically predisposed to smoke may also have a gene responsible for a higher cancer incidence
rate. In the latter case there will be no effect of smoking on cancer. Distinguishing between such
causal stories requires additional, non-statistical language. In this paper, the language that we use
for this purpose is the language of graphs, and our causal assumptions will be encoded by a special
directed graph called a causal diagram.

The use of directed graphs to represent causality is a natural idea that arose multiple times in-
dependently: in genetics (Wright, 1921), econometrics (Haavelmo, 1943), and artificial intelligence
(Pearl, 1988; Spirtes et al., 1993; Pearl, 2000). A causal diagram encodes variables of interest as
nodes, and possible direct causal influences between two variables as arrows. Associated with each
node in a causal diagram is a stable causal mechanism which determines its value in terms of the
values of its parents. Unlike Bayesian networks (Pearl, 1988), the relationships between variables
are assumed to be deterministic and uncertainty arises due to the presence of unobserved variables
which have influence on our domain.

The first question we consider is under what conditions the effect of a given intervention can be
computed from just the joint distribution over observable variables, which is obtainable by statis-
tical means, and the causal diagram, which is either provided by a human expert, or inferred from
experimental studies. This identification problem has received consideration attention in the statis-
tics, epidemiology, and causal inference communities (Pearl, 1993a; Spirtes et al., 1993; Pearl and
Robins, 1995; Pearl, 1995; Kuroki and Miyakawa, 1999; Pearl, 2000). In the subsequent sections,
we solve the identification problem for causal effects by providing a graphical characterization for
all non-identifiable effects, and an algorithm for computing all identifiable effects. Note that this
identification problem actually involves two “worlds:” the original world where no interventions
took place furnishes us with a probability distribution from which to make inferences about the sec-
ond, post-intervention world. The crucial feature of causal effect queries which distinguishes them
from more complex questions in our hierarchy is that they are restricted to the post-intervention
world alone.

The third and final class of queries we consider are counterfactual or “what-if” questions which
arise when we simultaneously ask about multiple hypothetical worlds, with potentially conflicting

1942

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

interventions or observations. An example of such a question would be “I took an aspirin, and my
headache is gone; would I have had a headache had I not taken that aspirin?” Unlike questions
involving interventions, counterfactuals contain conflicting information: in one world aspirin was
taken, in another it was not. It is unclear therefore how to set up an effective experimental procedure
for evaluating counterfactuals, let alone how to compute counterfactuals from observations alone.
If everything about our causal domain is known, in other words if we have knowledge of both
the causal mechanisms and the distributions over unobservable variables, it is possible to compute
counterfactual questions directly (Balke and Pearl, 1994b). However, knowledge of precise causal
mechanisms is not generally available, and the very nature of unobserved variables means their
stochastic behavior cannot be estimated directly. We therefore consider the more practical question
of how to compute counterfactual questions from both experimental studies and the structure of the
causal diagram.

It may seem strange, in light of what we said earlier about the difficulty of conducting experi-
mental studies, that we take such studies as given. It is nevertheless important that we understand
when it is that “what-if” questions involving multiple worlds can be inferred from quantities com-
putable in one world. Our hierarchical approach to identification allows us to cleanly separate
difficulties that arise due to multiplicity of worlds from those involved in the identification of causal
effects. We provide a complete solution to this version of the identification problem by giving algo-
rithms which compute identifiable counterfactuals from experimental studies, and provide graphical
conditions for the class of non-identifiable counterfactuals, where our algorithms fail. Our results
can, of course, be combined to give conditions where counterfactuals can be computed from obser-
vational studies.

The paper is organized as follows. Section 2 introduces the notation and mathematical machin-
ery needed for causal analysis. Section 3 considers the problem of identifying causal effects from
observational studies. Section 4 considers identification of counterfactual queries, while Section 5
summarizes the conclusions. Most of the proofs are deferred to the appendix. This paper consoli-
dates and expands previous results (Shpitser and Pearl, 2006a,b, 2007). Some of the results found
in this paper were also derived independently elsewhere (Huang and Valtorta, 2006b,a).

2. Notation and Definitions

The primary object of causal inquiry is a probabilistic causal model. We will denote variables by
uppercase letters, and their values by lowercase letters. Similarly, sets of variables will be denoted
by bold uppercase, and sets of values by bold lowercase.

Definition 1 A probabilistic causal model (PCM) is a tuple M = 〈U,V,F,P(u)〉, where

• U is a set of background or exogenous variables, which cannot be observed or experimented
on, but which affect the rest of the model.

• V is a set {V1, ...,Vn} of observable or endogenous variables. These variables are functionally
dependent on some subset of U∪V.

• F is a set of functions { f1, ..., fn} such that each fi is a mapping from a subset of U∪V\{Vi}
to Vi, and such that

S

F is a function from U to V.

• P(u) is a joint probability distribution over U.

1943

SHPITSER AND PEARL

The set of functions F in this definition corresponds to the causal mechanisms, while U rep-
resents the background context that influences the observable domain of discourse V, yet remains
outside it. Our ignorance of the background context is represented by a distribution P(u). This
distribution, together with the mechanisms in F, induces a distribution P(v) over the observable do-
main. The causal diagram, our vehicle for expressing causal assumptions, is defined by the causal
model as follows. Each observable variable Vi ∈ V corresponds to a vertex in the graph. Any two
variables Vi ∈U∪V, V j ∈V such that Vi appears in the description of f j are connected by a directed
arrow from Vi to Vj. Furthermore, we make two additional assumptions in this paper. The first is that
P(u) = ∏ui∈u P(ui), and each Ui ∈ U is used in at most two functions in F .1 The second is that all
induced graphs must be acyclic. Models in which these two assumptions hold are called recursive
semi-Markovian. A graph defined as above from a causal model M is said to be a causal diagram
induced by M. Graphs induced by semi-Markovian models are themselves called semi-Markovian.
Fig. 1 and Fig. 2 show some examples of causal diagrams of recursive semi-Markovian models.

The functions in F are assumed to be modular in a sense that changes to one function do not
affect any other. This assumption allows us to model how a PCM would react to changes imposed
from the outside. The simplest change that is possible for causal mechanisms of a variable set X
would be one that removes the mechanisms entirely and sets X to a specific value x. This change,
denoted by do(x) (Pearl, 2000), is called an intervention. An intervention do(x) applied to a model
M results in a submodel Mx. The effects of interventions will be formulated in several ways. For any
given u, the effect of do(x) on a set of variables Y will be represented by counterfactual variables
Yx(u), where Y ∈ Y. As U varies, the counterfactuals Yx(u) will vary as well, and their interven-
tional distribution, denoted by P(y|do(x)) or Px(y) will be used to define the effect of x on Y. We
will denote the event “variable Y attains value y in Mx” by the shorthand yx.

Interventional distributions are a mathematical formalization of an intuitive notion of effect of
action. We now define joint probabilities on counterfactuals, in multiple worlds, which will serve
as the formalization of counterfactual queries. Consider a conjunction of events γ = y1

x1 ∧ ...∧ yk
xk .

If all the subscripts xi are the same and equal to x, γ is simply a set of assignments of values to
variables in Mx, and P(γ) = Px(y1, ...,yk). However, if the actions do(xi) are not the same, and
potentially contradictory, a single submodel is no longer sufficient. Instead, γ is really invoking
multiple causal worlds, each represented by a submodel Mxi . We assume each submodel shares
the same set of exogenous variables U, corresponding to the shared causal context or background
history of the hypothetical worlds. Because the submodels are linked by common context, they can
really be considered as one large causal model, with its own induced graph, and joint distribution
over observable variables. P(γ) can then be defined as a marginal distribution in this causal model.
Formally, P(γ) = ∑{u|u|=γ}P(u), where u |= γ is taken to mean that each variable assignment in
γ holds true in the corresponding submodel of M when the exogenous variables U assume values
u. In this way, P(u) induces a distribution on all possible counterfactual variables in M. In this
paper, we will represent counterfactual utterances by joint distributions such as P(γ) or conditional
distributions such as P(γ|δ), where γ and δ are conjunctions of counterfactual events. Pearl (2000)
discusses counterfactuals, and their probabilistic representation used in this paper in greater depth.

1. Our results are generalizable to other P(u) distributions which may not have such a simple form, but which can be
represented by a set of bidirected arcs in such a way that whenever two sets of U variables are d-separated from each
other, they are marginally independent. However, the exact conditions under which this graphical representation is
valid are beyond the scope of this paper.

1944

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

A fundamental question in causal inference is whether a given causal question, either inter-
ventional or counterfactual in nature, can be uniquely specified by the assumptions embodied in
the causal diagram, and easily available information, usually statistical, associated with the causal
model. To get a handle on this question, we introduce an important notion of identifiability (Pearl,
2000).

Definition 2 (identifiability) Consider a class of models M with a description T , and objects φ and
θ computable from each model. We say that φ is θ-identified in T if φ is uniquely computable from
θ in any M ∈M. In this case all models in M which agree on θ will also agree on φ.

If φ is θ-identifiable in T , we write T,θ `id φ. Otherwise, we write T,θ 6`id φ. The above
definition leads immediately to the following corollary which we will use to prove non-identifiability
results.

Corollary 3 Let T be a description of a class of models M. Assume there exist M1,M2 ∈M that
share objects θ, while φ in M1 is different from φ in M2. Then T,θ 6`id φ.

In our context, the objects φ,θ are probability distributions derived from the PCM, where θ
represents available information, while φ represents the quantity of interest. The description T is a
specification of the properties shared all causal models under consideration, or, in other words, the
set of assumptions we wish to impose on those models. Since we chose causal graphs as a language
for specifying assumptions, T corresponds to a given graph.

Graphs earn their ubiquity as a specification language because they reflect in many ways the
way people store experiential knowledge, especially cause-effect relationships. The ease with which
people embrace graphical metaphors for causal and probabilistic notions—ancestry, neighborhood,
flow, and so on—are proof of this affinity, and help ensure that the assumptions specified are mean-
ingful and reliable. A consequence of this is that probabilistic dependencies among variables can be
verified by checking if the flow of influence is blocked along paths linking the variables. By a path
we mean a sequence of distinct nodes where each node is connected to the next in the sequence by
an edge. The precise way in which the flow of dependence can be blocked is defined by the notion
of d-separation (Pearl, 1986; Verma, 1986; Pearl, 1988). Here we generalize d-separation somewhat
to account for the presence of bidirected arcs in causal diagrams.

Definition 4 (d-separation) A path p in G is said to be d-separated by a set Z if and only if either

1 p contains one of the following three patterns of edges: I→M→ J, I↔M→ J, or I←M→
J, such that M ∈ Z, or

2 p contains one of the following three patterns of edges: I→M← J, I↔M← J, I↔M↔ J,
such that De(M)G∩Z = /0.

Two sets X,Y are said to be d-separated given Z in G if all paths from X to Y in G are d-
separated by Z. Paths or sets which are not d-separated are said to be d-connected. What allows
us to connect this notion of blocking of paths in a causal diagram to the notion of probabilistic
independence among variables is that the probability distribution over V and U in a causal model
can be represented as a product of factors, such that each observable node has a factor corresponding

1945

SHPITSER AND PEARL

(e)

Z
X

Y

Z1
Z2

X

Y

(g)(f)

Y

Z

X

Y

(h)

Z

W

X

X

Y

(a) (b)

X

Y

Z

X

Y

Z

(c) (d)

Y

Z
X

Figure 1: Causal graphs where P(y|do(x)) is not identifiable

to its conditional distribution given the values of its parents in the graph. In other words, P(v,u) =

∏i P(xi|pa(xi)G).
Whenever the above factor decomposition holds for a distribution P(v,u) and a graph G, we

say G is an I-map of P(v,u). The following theorem links d-separation of vertex sets in an I-map G
with the independence of corresponding variable sets in P.

Theorem 5 If sets X and Y are d-separated by Z in G, then X is independent of Y given Z in every
P for which G is an I-map. Furthermore, the causal diagram induced by any semi-Markovian PCM
M is an I-map of the distribution P(v,u) induced by M.

Note that it’s easy to rephrase the above theorem in terms of ordinary directed acyclic graphs,
since each semi-Markovian graph is really an abbreviation where each bidirected arc stands for
two directed arcs emanating from a hidden common cause. We will abbreviate this statement of
d-separation, and corresponding independence by (X ⊥⊥ Y|Z)G, following the notation of Dawid
(1979). For example in the graph shown in Fig. 6 (a), X 6⊥⊥ Y and X ⊥⊥ Y |Z, while in Fig. 6 (b),
X ⊥⊥ Y and X 6⊥⊥ Y |Z.

Finally we consider the axioms and inference rules we will need. Since PCMs contain proba-
bility distributions, the inference rules we would use to compute queries in PCMs would certainly
include the standard axioms of probability. They also include a set of axioms which govern the be-
havior of counterfactuals, such as Effectiveness, Composition, etc. (Galles and Pearl, 1998; Halpern,
2000; Pearl, 2000). However, in this paper, we will concentrate on a set of three identities applicable
to interventional distributions known as do-calculus (Pearl, 1993b, 2000):

• Rule 1: Px(y|z,w) = Px(y|w) if (Y⊥⊥ Z|X,W)Gx

• Rule 2: Px,z(y|w) = Px(y|z,w) if (Y⊥⊥ Z|X,W)Gx,z

1946

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

• Rule 3: Px,z(y|w) = Px(y|w) if (Y⊥⊥ Z|X,W)G
x,z(w)

where Z(W) = Z \An(W)GX
, and Gx,y stands for a directed graph obtained from G by removing

all incoming arrows to X and all outgoing arrows from Y. The rules of do-calculus provide a way
of linking ordinary statistical distributions with distributions resulting from various manipulations.

In the remainder of this section we will introduce relevant graphs and graph-theoretic terminol-
ogy which we will use in the rest of the paper. First, having defined causal diagrams induced by
natural causal models, we consider the graphs induced by models derived from interventional and
counterfactual queries. We note that in a given submodel Mx, the mechanisms determining X no
longer make use of the parents of X to determine their values, but instead set them independently to
constant values x. This means that the induced graph of Mx derived from a model M inducing graph
G can be obtained from G by removing all arrows incoming to X, in other words Mx induces Gx.
A counterfactual γ = y1

x1 ∧ ...∧ yk
xk , as we already discussed invokes multiple hypothetical causal

worlds, each represented by a submodel, where all worlds share the same background context U. A
naive way to graphically represent these worlds would be to consider all the graphs G

X i and have
them share the U nodes. It turns out this representation suffers from certain problems. In Section
4 we discuss this issue in more detail and suggest a more appropriate graphical representation of
counterfactual situations.

We denote Pa(.)G,Ch(.)G,An(.)G,De(.)G as the sets of parents, children, ancestors, and descen-
dants of a given set in G. We denote GX to be the subgraph of G containing all vertices in X, and
edges between these vertices, while the set of vertices in a given graph G is given by ver(G). As
a shorthand, we denote Gver(G)\ver(G′) as G\G′ or G\X, if X = ver(G′), and G′ is a subgraph of
G. We will call the set {X ∈ G|De(X)G = /0} the root set of G. A path connecting X and Y which
begins with an arrow pointing to X is called a back-door path from X , while a path beginning with
an arrow pointing away from X is called a front-door path from X .

The goal of this paper is a complete characterization of causal graphs which permit the answer-
ing of causal queries of a given type. This characterization requires the introduction of certain key
graph structures.

Definition 6 (tree) A graph G such that each vertex has at most one child, and only one vertex
(called the root) has no children is called a tree.

Note that this definition reverses the usual direction of arrows in trees as they are generally
understood in graph theory. If we ignore bidirected arcs, graphs in Fig. 1 (a), (b), (d), (e), (f), (g),
and (h) are trees.

Definition 7 (forest) A graph G such that each vertex has at most one child is called a forest.

Note that the above two definitions reverse the arrow directionality usual for these structures.

Definition 8 (confounded path) A path where all directed arrowheads point at observable nodes,
and never away from observable nodes is called a confounded path.

The graph in Fig. 1 (g) contains a confounded path from Z1 to Z2.

Definition 9 (c-component) A graph G where any pair of observable nodes is connected by a con-
founded path is called a c-component (confounded component).

1947

SHPITSER AND PEARL

X

Y

(a)

Y

Z
X

(d)

X

Y

X

Y

Z

Z1

Z2

Y

(g)

Z3

XX

Y

Z

(e)

X

Y

Z

(b) (c)

Z1

Z2

(f)

Figure 2: Causal graphs admitting identifiable effect P(y|do(x))

Graphs in Fig. 1 (a), (d), (e), (f), and (h) are c-components. Some graphs contain multiple c-
components, for example the graph in Fig. 1 (b) has two maximal c-components: {Y}, and {X ,Z}.
We will denote the set of maximal c-components of a given graph G by C(G). The importance of
c-components stems from the fact that that the observational distribution P(v) can be expressed as
a product of factors Pv\s(s), where each s is a set of nodes forming a c-component. This impor-
tant property is known as c-component factorization, and we will this property extensively in the
remainder of the manuscript to decompose identification problems into smaller subproblems.

In the following sections, we will show how the graph structures we defined in this section are
key for characterizing cases when Px(y) and P(γ) can be identified from available information.

3. Identification of Causal Effects

Like probabilistic dependence, the notion of causal effect of X on Y has an interpretation in terms
of flow. Intuitively, X has an effect on Y if changing X causes Y to change. Since intervening on X
cuts off X from the normal causal influences of its parents in the graph, we can interpret the causal
effect of X on Y as the flow of dependence which leaves X via outgoing arrows only.

Recall that our ultimate goal is to express distributions of the form P(y|do(x)) in terms of the
joint distribution P(v). The interpretation of effect as downward dependence immediately suggests
a set of graphs where this is possible. Specifically, whenever all d-connected paths from X to Y are
front-door from X, the causal effect P(y|do(x)) is equal to P(y|x). In graphs shown in Fig. 2 (a)
and (b) causal effect P(y|do(x)) has this property.

In general, we don’t expect acting on X to produce the same effect as observing X due to the
presence of back-door paths between X and Y. However, d-separation gives us a way to block
undesirable paths by conditioning. If we can find a set Z that blocks all back-door paths from X
to Y, we obtain the following: P(y|do(x)) = ∑z P(y|z,do(x))P(z|do(x)). The term P(y|z,do(x))
is reduced to P(y|z,x) since the influence flow from X to Y is blocked by Z. However, the act of

1948

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

adjusting for Z introduced a new effect we must compute, corresponding to the term P(z|do(x)). If
it so happens that no variable in Z is a descendant of X, we can reduce this term to P(z) using the
intuitive argument that acting on effects should not influence causes, or a more formal appeal to rule
3 of do-calculus. Computing effects in this way is always possible if we can find a set Z blocking
all back-door paths which contains no descendants of X. This is known as the back-door criterion
(Pearl, 1993a, 2000). Figs. 2 (c) and (d) show some graphs where the node z satisfies the back-door
criterion with respect to P(y|do(x)), which means P(y|do(x)) is identifiable.

The back-door criterion can fail—a common way involves a confounder that is unobserved,
which prevents adjusting for it. Surprisingly, it is sometimes possible to identify the effect of X on
Y even in the presence of such a confounder. To do so, we want to find a set Z located downstream
of X but upstream of Y, such that the downward flow of the effect of X on Y can be decomposed
into the flow from X to Z, and the flow from Z to Y. Clearly, in order for this to happen Z must
d-separate all front-door paths from X to Y. However, in order to make sure that the component
effects P(z|do(x)) and P(y|do(z)) are themselves identifiable, and combine appropriately to form
P(y|do(x)), we need two additional assumptions: there are no back-door paths from X to Z, and
all back-door paths from Z to Y are blocked by X. It turns out that these three conditions imply
that P(y|do(x)) = ∑z P(y|do(z))P(z|do(x)), and the latter two conditions further imply that the first
term is identifiable by the back-door criterion and equal to ∑z P(y|z,x)P(x), while the second term
is equal to P(z|x). Whenever these three conditions hold, the effect of X on Y is identifiable. This
is known as the front-door criterion (Pearl, 1995, 2000). The front-door criterion holds in the graph
shown in Fig. 2 (e).

Unfortunately, in some graphs neither the front-door, nor the back-door criterion holds. The
simplest such graph, known as the bow arc graph due to its shape, is shown in Fig. 1 (a). The
back-door criterion fails since the confounder node is unobservable, while the front-door criterion
fails since no intermediate variables between X and Y exist in the graph. While the failure of these
two criteria does not imply non-identification, in fact the effect P(y|do(x)) is identifiable in Fig. 2
(f), (g) despite this failure, a simple argument shows that P(y|do(x)) is not identifiable in the bow
arc graph.

Theorem 10 P(v),G 6`id P(y|do(x)) in G shown in Fig. 1 (a).

Since we are interested in completely characterizing graphs where a given causal effect P(y|do(x))
is identifiable, it would be desirable to list difficult graphs like the bow arc graph which prevent iden-
tification of causal effects, in the hope of eventually making such a list complete and finding a way
to identify effects in all graphs not on the list. We start constructing this list by considering graphs
which generalize the bow arc graph since they can contain more than two nodes, but which also
inherit its difficult structure. We call such graphs C-trees.

Definition 11 (C-tree) A graph G which is both a C-component and a tree is called a C-tree.

We call a C-tree with a root node Y Y -rooted. The graphs in Fig. 1 (a), (d), (e), (f), and (h) are
Y -rooted C-trees. It turns out that in any Y -rooted C-tree, the effect of any subset of nodes, other
than Y , on the root Y is not identifiable.

Theorem 12 Let G be a Y -rooted C-tree. Let X be any subset of observable nodes in G which does
not contain Y . Then P(v),G 6`id P(y|do(x)).

1949

SHPITSER AND PEARL

C-trees play a prominent role in the identification of direct effects. Intuitively, the direct effect
of X on Y exists if there is an arrow from X to Y in the graph, and corresponds to the flow of
influence along this arrow. However, simply considering changes in Y after fixing X is insufficient
for isolating direct effect, since X can influence Y along other, longer front-door paths than the
direct arrow. In order to disregard such influences, we also fix all other parents of Y (which as noted
earlier removes all arrows incoming to these parents and thus to Y). The expression corresponding
to the direct effect of X on Y is then P(y|do(pa(y))). The following theorem links C-trees and direct
effects.

Theorem 13 P(v),G 6`id P(y|do(pa(y))) if and only if there exists a subgraph of G which is a Y -
rooted C-tree.

This theorem might suggest that C-trees might play an equally strong role in identifying arbitrary
effects on a single variable, not just direct effects. Unfortunately, this turns out not to be the case,
due to the following lemma.

Lemma 14 (downward extension lemma) Let V be the set of observable nodes in G, and P(v) the
observable distribution of models inducing G. Assume P(v),G 6`id P(y|do(x)). Let G′ contain all
the nodes and edges of G, and an additional node Z which is a child of all nodes in Y. Then if P(v,z)
is the observable distribution of models inducing G′, then P(v,z),G′ 6`id P(z|do(x)).

Proof Let |Z| = ∏Yi∈Y |Yi| = n. By construction, P(z|do(x)) = ∑y P(z|y)P(y|do(x)). Due to the
way we set the arity of Z, P(Z|Y) is an n by n matrix which acts as a linear map which transforms
P(y|do(x)) into P(z|do(x)). Since we can arrange this linear map to be one to one, any proof of non-
identifiability of P(y|do(x)) immediately extends to the proof of non-identifiability of P(z|do(x)).

What this lemma shows is that identification of effects on a singleton is not any simpler than
the general problem of identification of effect on a set. To find difficult graphs which prevent
identification of effects on sets, we consider a multi-root generalization of C-trees.

Definition 15 (c-forest) A graph G which is both a C-component and a forest is called a C-forest.

If a given C-forest has a set of root nodes R, we call it R-rooted. Graphs in Fig. 3 (a), (b) are
{Y 1,Y 2}-rooted C-forests. A naive way to generalize Theorem 12 would be to state that if G is an
R-rooted C-forest, then the effect of any set X that does not intersect R is not identifiable. However,
as we later show, this is not true. Specifically, we later prove that P(y1,y2|do(x)) in the graph in
Fig. 3 (a) is identifiable. To formulate the correct generalization of Theorem 12, we must understand
what made C-trees difficult for the purposes of identifying effects on the root Y . It turned out that
for particular function choices, the effects of ancestors of Y on Y precisely cancelled themselves out
so even though Y itself was dependent on its parents, it was observationally indistinguishable from
a constant function. To get the same canceling of effects with C-forests, we must define a more
complex graphical structure.

Definition 16 (hedge) Let X,Y be sets of variables in G. Let F,F ′ be R-rooted C-forests in G such
that F ′ is a subgraph of F, X only occur in F, and R ∈ An(Y)Gx . Then F and F ′ form a hedge for
P(y|do(x)).

1950

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

(a) (b)

W1
X

Y1

W2 Y2

W1
X

Y1

W2 Y2

Figure 3: (a) A graph hedge-less for P(y|do(x)). (b) A graph containing a hedge for P(y|do(x)).

The graph in Fig. 3 (b) contains a hedge for P(y1,y2|do(x)). The mental picture for a hedge is
as follows. We start with a C-forest F ′. Then, F ′ grows new branches, while retaining the same root
set, and becomes F . Finally, we “trim the hedge,” by performing the action do(x) which has the
effect of removing some incoming arrows in F \F ′ (the subgraph of F consisting of vertices not a
part of F ′). Note that any Y -rooted C-tree and its root node Y form a hedge. The right generalization
of Theorem 12 can be stated on hedges.

Theorem 17 Let F,F ′ be subgraphs of G which form a hedge for P(y|do(x)). Then P(v),G 6`id

P(y|do(x)).

Proof outline As before, assume binary variables. We let the causal mechanisms of one of the mod-
els consists entirely of bit parity functions. The second model also computes bit parity for every
mechanism, except those nodes in F ′ which have parents in F ignore the values of those parents. It
turns out that these two models are observationally indistinguishable. Furthermore, any intervention
in F \F ′ will break the bit parity circuits of the models. This break will be felt at the root set R of
the first model, but not of the second, by construction.

Unlike the bow arc graph, and C-trees, hedges prevent identification of effects on multiple
variables at once. Certainly a complete list of all possible difficult graphs must contain structures
like hedges. But are there other kinds of structures that present problems? It turns out that the
answer is “no,” any time an effect is not identifiable in a causal model (if we make no restrictions
on the type of function that can appear), there is a hedge structure involved. To prove that this is so,
we need an algorithm which can identify any causal effect lacking a hedge. This algorithm, which
we call ID, and which can be viewed as a simplified version of the identification algorithm due to
Tian (2002), appears in Fig. 4.

We will explain why each line of ID makes sense, and conclude by showing the operation of
the algorithm on an example. The formal proof of soundness of ID can be found in the appendix.
The first line merely asserts that if no action has been taken, the effect on Y is just the marginal
of the observational distribution P(v) on Y. The second line states that if we are interested in the
effect on Y, it is sufficient to restrict our attention on the parts of the model ancestral to Y. One
intuitive argument for this is that descendants of Y can be viewed as ’noisy versions’ of Y and so
any information they may impart which may be helpful for identification is already present in Y. On
the other hand, variables which are neither ancestors nor descendants of Y lie outside the relevant
causal chain entirely, and have no useful information to contribute.

Line 3 forces an action on any node where such an action would have no effect on Y—assuming
we already acted on X. Since actions remove incoming arrows, we can view line 3 as simplifying

1951

SHPITSER AND PEARL

function ID(y, x, P, G)
INPUT: x,y value assignments, P a probability distribution, G a
causal diagram.
OUTPUT: Expression for Px(y) in terms of P or FAIL(F,F’).

1 if x = /0 return ∑v\y P(v).

2 if V\An(Y)G 6= /0
return ID(y,x∩An(Y)G,∑v\An(Y)G

P,GAn(Y)).

3 let W = (V\X)\An(Y)Gx .
if W 6= /0, return ID(y,x∪w,P,G).

4 if C(G\X) = {S1, ...,Sk}
return ∑v\(y∪x) ∏i ID(si,v\ si,P,G).

if C(G\X) = {S}

5 if C(G) = {G}, throw FAIL(G,G∩S).

6 if S ∈C(G) return ∑s\y ∏{i|Vi∈S}P(vi|v
(i−1)
π).

7 if (∃S′)S⊂ S′ ∈C(G) return ID(y,x∩S′,

∏{i|Vi∈S′}P(Vi|V
(i−1)
π ∩S′,v(i−1)

π \S′),GS′).

Figure 4: A complete identification algorithm. FAIL propagates through recursive calls like an
exception, and returns the hedge which witnesses non-identifiability. V (i−1)

π is the set of
nodes preceding Vi in some topological ordering π in G.

the causal graph we consider by removing certain arcs from the graph, without affecting the overall
answer. Line 4 is the key line of the algorithm, it decomposes the problem into a set of smaller
problems using the key property of c-component factorization of causal models. If the entire graph
is a single C-component already, further problem decomposition is impossible, and we must provide
base cases. ID has three base cases. Line 5 fails because it finds two C-components, the graph G
itself, and a subgraph S that does not contain any X nodes. But that is exactly one of the properties of
C-forests that make up a hedge. In fact, it turns out that it is always possible to recover a hedge from
these two c-components. Line 6 asserts that if there are no bidirected arcs from X to the other nodes
in the current subproblem under consideration, then we can replace acting on X by conditioning,
and thus solve the subproblem. Line 7 is the most complex case where X is partitioned into two
sets, W which contain bidirected arcs into other nodes in the subproblem, and Z which do not.
In this situation, identifying P(y|do(x)) from P(v) is equivalent to identifying P(y|do(w)) from
P(V|do(z)), since P(y|do(x)) = P(y|do(w),do(z)). But the term P(V|do(z)) is identifiable using
the previous base case, so we can consider the subproblem of identifying P(y|do(w)).

We give an example of the operation of the algorithm by identifying Px(y1,y2) from P(v) in the
graph shown in in Fig. 3 (a). Since G = GAn({Y1,Y2}),C(G\{X}) = {G}, and W = {W1}, we invoke
line 3 and attempt to identify Px,w(y1,y2). Now C(G\{X ,W}) = {Y1,W2→ Y2}, so we invoke line

1952

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

W1
X

Y1

(a) (b)

W1 Y1

Figure 5: Subgraphs of G used for identifying Px(y1,y2).

4. Thus the original problem reduces to identifying ∑w2
Px,w1,w2,y2(y1)Pw,x,y1(w2,y2). Solving for the

second expression, we trigger line 2, noting that we can ignore nodes which are not ancestors of W2

and Y2, which means Pw,x,y1(w2,y2) = P(w2,y2). Solving for the first expression, we first trigger line
2 also, obtaining Px,w1,w2,y2(y1) = Px,w(y1). The corresponding G is shown in Fig. 5 (a). Next, we
trigger line 7, reducing the problem to computing Pw(y1) from P(Y1|X ,W1)P(W1). The correspond-
ing G is shown in Fig. 5 (b). Finally, we trigger line 2, obtaining Pw(y1) = ∑w1

P(y1|x,w1)P(w1).
Putting everything together, we obtain: Px(y1,y2) = ∑w2

P(y1,w2)∑w1
P(y1|x,w1)P(w1).

As mentioned earlier, whenever the algorithm fails at line 5, it is possible to recover a hedge
from the C-components S and G considered for the subproblem where the failure occurs. In fact,
it can be shown that this hedge implies the non-identifiability of the original query with which the
algorithm was invoked, which implies the following result.

Theorem 18 ID is complete.

The completeness of ID implies that hedges can be used to characterize all cases where effects
of the form P(y|do(x)) cannot be identified from the observational distribution P(v).

Theorem 19 (hedge criterion) P(v),G 6`id P(y|do(x)) if and only if G contains a hedge for some
P(y′|do(x′)), where y′ ⊆ y, x′ ⊆ x.

We close this section by considering identification of conditional effects of the form P(y|do(x),z)
which are defined to be equal to P(y,z|do(x))/P(z|do(x)). Such expressions are a formalization of
an intuitive notion of “effect of action in the presence of non-contradictory evidence,” for instance
the effect of smoking on lung cancer incidence rates in a particular age group (as opposed to the
effect of smoking on cancer in the general population). We say that evidence z is non-contradictory
since it is conceivable to consider questions where the evidence z stands in logical contradiction to
the proposed hypothetical action do(x): for instance what is the effect of smoking on cancer among
the non-smokers. Such counterfactual questions will be considered in the next section. Condition-
ing can both help and hinder identifiability. P(y|do(x)) is not identifiable in the graph shown in Fig.
6 (a), while it is identifiable in the graph shown in Fig. 6 (b). Conditioning reverses the situation.
In Fig. 6 (a), conditioning on Z renders Y independent of any changes to X , making Px(y|z) equal to
P(y|z). On the other hand, in Fig. 6 (b), conditioning on Z makes X and Y dependent, resulting in
Px(y|z) becoming non-identifiable.

We would like to reduce the problem of identifying conditional effects to the familiar problem
of identifying causal effects without evidence for which we already have a complete algorithm.
Fortunately, rule 2 of do-calculus provides us with a convenient way of converting the unwanted
evidence z into actions do(x) which we know how to handle. The following convenient lemma
allows us to remove as many evidence variables as possible from a conditional effect.

1953

SHPITSER AND PEARL

(a) (b)

X
X

Z
Z

Y

Y

Figure 6: (a) Causal graph with an identifiable conditional effect P(y|do(x),z). (b) Causal graph
with a non-identifiable conditional effect P(y|do(x),z).

function IDC(y, x, z, P, G)
INPUT: x,y,z value assignments, P a probability distribution, G a
causal diagram (an I-map of P).
OUTPUT: Expression for Px(y|z) in terms of P or FAIL(F,F’).

1 if (∃Z ∈ Z)(Y⊥⊥ Z|X,Z\{Z})Gx,z
,

return IDC(y,x∪{z},z\{z},P,G).

2 else let P′ = ID(y∪ z,x,P,G).
return P′/∑y P′.

Figure 7: A complete identification algorithm for conditional effects.

Theorem 20 For any G and any conditional effect Px(y|w) there exists a unique maximal set Z =
{Z ∈W|Px(y|w) = Px,z(y|w\{z})} such that rule 2 applies to Z in G for Px(y|w). In other words,
Px(y|w) = Px,z(y|w\ z).

Of course Theorem 20 does not guarantee that the entire set z can be handled in this way.
In many cases, even after rule 2 is applied, some set of evidence will remain in the expression.
Fortunately, the following result implies that identification of unconditional causal effects is all we
need.

Theorem 21 Let Z ⊆ W be the maximal set such that Px(y|w) = Px,z(y|w \ z). Then Px(y|w) is
identifiable in G if and only if Px,z(y,w\ z) is identifiable in G.

The previous two theorems suggest a simple addition to ID, which we call IDC, shown in Fig.
7, which handles identification of conditional causal effects.

Theorem 22 IDC is sound and complete.

Proof This follows from Theorems 20 and 21.

We conclude this section by showing that our notion of a causal theory as a set of independencies
embodied by the causal graph, together with rules of probability and do-calculus is complete for
computing causal effects, if we also take statistical data embodied by P(v) as axiomatic.

1954

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

(a) (b)

A

H H H*

A=false A*=true

Figure 8: (a) A causal graph for the aspirin/headache domain (b) A corresponding twin network
graph for the query P(H∗a∗=true|A = f alse).

Theorem 23 The rules of do-calculus are complete for identifying effects of the form P(y|do(x),z),
where x,y,z are arbitrary sets.

Proof The proofs of soundness of ID and IDC in the appendix use do-calculus. This implies every
line of the algorithms we presented can be rephrased as a sequence of do-calculus manipulations.
But ID and IDC are also complete, which implies the conclusion.

4. Identification of Counterfactuals

While effects of actions have an intuitive interpretation as downward flow, the interpretation of
counterfactuals, or what-if questions is more complex. An informal counterfactual statement in
natural language such as “would I have a headache had I taken an aspirin” talks about multiple
worlds: the actual world, and other, hypothetical worlds which differ in some small respect from the
actual world (e.g., the aspirin was taken), while in most other respects are the same. In this paper,
we represent the actual world by a causal model in its natural state, devoid of any interventions,
while the alternative worlds are represented by submodels Mx where the action do(x) implements
the hypothetical change from the actual state of affairs considered. People make sense of informal
statements involving multiple, possibly conflicting worlds because they expect not only the causal
rules to be invariant across these worlds (e.g., aspirin helps headaches in all worlds), but the worlds
themselves to be similar enough where evidence in one world has ramifications in another. For
instance, if we find ourselves with a headache, we expect the usual causes of our headache to also
operate in the hypothetical world, interacting there with the preventative influence of aspirin. In
our representation of counterfactuals, we model this interaction between worlds by assuming that
the world histories or background contexts, represented by the unobserved U variables are shared
across all hypothetical worlds.

We illustrate the representation method for counterfactuals we introduced in Section 2 by mod-
eling our example question “would I have a headache had I taken an aspirin?” The actual world
referenced by this query is represented by a causal model containing two variables, headache and
aspirin, with aspirin being a parent of headache, see Fig. 8 (a). In this world, we observe that
aspirin has value false. The hypothetical world is represented by a submodel where the action
do(aspirin = true) has been taken. To distinguish nodes in this world we augment their names
with an asterisk. The two worlds share the background variables U, and so can be represented by a

1955

SHPITSER AND PEARL

single causal model with the graph shown in Fig. 8 (b). Our query is represented by the distribution
P(H∗a∗=true|A = f alse), where H is headache, and A is aspirin. Note that the nodes A∗ = true and
A = f alse in Fig. 8 (b) do not share a bidirected arc. This is because an intervention do(a∗ = true)
removes all incoming arrows to A∗, which removes the bidirected arc between A∗ and A.

The graphs representing two hypothetical worlds invoked by a counterfactual query like the one
shown in Fig. 8 (b) are called twin network graphs, and were first proposed as a way to represent
counterfactuals by Balke and Pearl (1994b) and Balke and Pearl (1994a). In addition, Balke and
Pearl (1994b) proposed a method for evaluating expressions like P(H∗a∗=true|A = f alse) when all
parameters of a causal model are known. This method can be explained as follows. If we forget the
causal and counterfactual meaning behind the twin network graph, and simply view it as a Bayesian
network, the query P(H∗a∗=true|A = f alse) can be evaluated using any of the standard inference
algorithms available, provided we have access to all conditional probability tables generated by F
and U of a causal model which gave rise to the twin network graph. In practice, however, complete
knowledge of the model is too much to ask for; the functional relationships as well as the distribution
P(u) are not known exactly, though some of their aspects can be inferred from the observable
distribution P(v).

Instead, the typical state of knowledge of a causal domain is the statistical behavior of the ob-
servable variables in the domain, summarized by the distribution P(v), together with knowledge of
causal directionality, obtained either from expert judgment (e.g., we know that visiting the doctor
does not make us sick, though disease and doctor visits are highly correlated), or direct experi-
mentation (e.g., it’s easy to imagine an experiment which establishes that wet grass does not cause
sprinklers to turn on). We already used these two sources of knowledge in the previous section as a
basis for computing causal effects. Nevertheless, there are reasons to consider computing counter-
factual quantities from experimental, rather than observational studies. In general, a counterfactual
can posit worlds with features contradictory to what has actually been observed. For instance, ques-
tions resembling the headache/aspirin question we used as an example are actually frequently asked
in epidemiology in the more general form where we are interested in estimating the effect of a treat-
ment x on the outcome variable Y for the patients that were not treated (x′). In our notation, this
is just our familiar expression P(Yx|X = x′). The problem with questions such as these is that no
experimental setup exists in which someone is both given and not given treatment. Therefore, it
makes sense to ask under what circumstances we can evaluate such questions even if we are given
as input every experiment that is possible to perform in principle on a given causal model. In our
framework the set of all experiments is denoted as P∗, and is formally defined as {Px|x is any set of
values of X⊆V}. The question that we ask in this section, then, is whether it is possible to identify
a query P(γ|δ), where γ,δ are conjunctions of counterfactual events (with δ possibly empty), from
the graph G and the set of all experiments P∗. We can pose the problem in this way without loss of
generality since we already developed complete methods for identifying members of P∗ from G and
P(v). This means that if for some reason using P∗ as input is not realistic we can combine the meth-
ods which we will develop in this section with those in the previous section to obtain identification
results for P(γ|δ) from G and P(v).

Before tackling the problem of identifying counterfactual queries from experiments, we extend
our example in Fig. 8 (b) to a general graphical representation for worlds invoked by a counterfac-
tual query. The twin network graph is a good first attempt at such a representation. It is essentially
a causal diagram for a model encompassing two potential worlds. Nevertheless, the twin network
graph suffers from a number of problems. Firstly, it can easily come to pass that a counterfactual

1956

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

Y

ZW

Y

ZW

X

x

x

x

(b)

D
x

D

Y

ZW

X
d

d d

d

U
w

U
z

d
U

U

U

Y

ZW

X

U

(a)

D x d

Y

ZW

X

x

(c)

U

x

Dx
_ _ _

(d)

Y

zW

X

x,z
U

x,z

x
_

_

Figure 9: Nodes fixed by actions denoted with an overline, signifying that all incoming arrows are
cut. (a) Original causal diagram (b) Parallel worlds graph for P(yx|x′,zd,d) (the two nodes
denoted by U are the same). (c) Counterfactual graph for P(yx|x′,zd,d). (d) Counterfac-
tual graph for P(yx,z|x′).

query of interest would involve three or more worlds. For instance, we might be interested in how
likely the patient would be to have a symptom Y given a certain dose x of drug X , assuming we
know that the patient has taken dose x′ of drug X , dose d of drug D, and we know how an interme-
diate symptom Z responds to treatment d. This would correspond to the query P(yx|x′,zd,d), which
mentions three worlds, the original model M, and the submodels Md,Mx. This problem is easy to
tackle—we simply add more than two submodel graphs, and have them all share the same U nodes.
This simple generalization of the twin network model was considered by Avin et al. (2005), and
was called there the parallel worlds graph. Fig. 9 shows the original causal graph and the parallel
worlds graph for γ = yx∧ x′∧ zd ∧d.

The other problematic feature of the twin network graph, which is inherited by the parallel
worlds graph, is that multiple nodes can sometimes correspond to the same random variable. For
example, in Fig. 9 (b), the variables Z and Zx are represented by distinct nodes, although it’s easy
to show that since Z is not a descendant of X , Z = Zx. These equality constraints among nodes
can make the d-separation criterion misleading if not used carefully. For instance, Yx ⊥⊥ Dx|Z
even though using d-separation in the parallel worlds graph suggests the opposite. This sort of
problem is fairly common in causal models which are not faithful (Spirtes et al., 1993) or stable
(Pearl, 2000), in other words in models where d-separation statements in a causal diagram imply
independence in a distribution, but not vice versa. However, lack of faithfulness usually arises due
to “numeric coincidences” in the observable distribution. In this case, the lack of faithfulness is
“structural,” in a sense that it is possible to refine parallel worlds graphs in such a way that the node
duplication disappears, and the attendant independencies not captured by d-separation are captured
by d-separation in refined graphs.

This refinement has two additional beneficial side effects. The first is that by removing node
duplication, we also determine which syntactically distinct counterfactual variables correspond to
the same random variable. By identifying such equivalence classes of counterfactual variables, we
guarantee that syntactically different variables are in fact different, and this makes it simpler to rea-
son about counterfactuals in order to identify them. For instance, a counterfactual P(yx,y′) may
either be non-identifiable or inconsistent (and so identifiable to equal 0), depending on whether Yx

and Y are the same variable. The second benefit of this refinement is that resulting graphs are gen-

1957

SHPITSER AND PEARL

erally much smaller and less cluttered than parallel worlds graphs, and so are easier to understand.
Compare, for instance, the graphs in Fig. 9 (b) and Fig. 9 (c). To rid ourselves of duplicates, we
need a formal way of determining when variables from different submodels are in fact the same.
The following lemma does this.

Lemma 24 Let M be a model inducing G containing variables α,β with the following properties:

• α and β have the same domain of values.

• There is a bijection f from Pa(α) to Pa(β) such that a parent γ and f (γ) have the same domain
of values.

• The functional mechanisms of α and β are the same (except whenever the function for α uses
the parent γ, the corresponding function for β uses f (γ)).

Assume an observable variable set Z was observed to attain values z in Mx, the submodel obtained
from M by forcing another observable variable set X to attain values x. Assume further that for
each γ ∈ Pa(α), either f (γ) = γ, or γ and f (γ) attain the same values (whether by observation or
intervention). Then α and β are the same random variable in Mx with observations z.

Proof This follows from the fact that variables in a causal model are functionally determined from
their parents.

If two distinct nodes in a causal diagram represent the same random variable, the diagram con-
tains redundant information, and the nodes must be merged. If two nodes, say corresponding to
Yx,Yz, are established to be the same in G, they are merged into a single node which inherits all
the children of the original two. These two nodes either share their parents (by induction) or their
parents attain the same values. If a given parent is shared, it becomes the parent of the new node.
Otherwise, we pick one of the parents arbitrarily to become the parent of the new node. This oper-
ation is summarized by the following lemma.

Lemma 25 Let Mx be a submodel derived from M with set Z observed to attain values z, such that
Lemma 24 holds for α,β. Let M′ be a causal model obtained from M by merging α,β into a new
node ω, which inherits all parents and the functional mechanism of α. All children of α,β in M ′

become children of ω. Then Mx,M′x agree on any distribution consistent with z being observed.

Proof This is a direct consequence of Lemma 24.

The new node ω we obtain from Lemma 25 can be thought of as a new counterfactual variable.
As mentioned in section 2, such variables take the form Yx where Y is the variable in the original
causal model, and x is a subscript specifying the action which distinguishes the counterfactual.
Since we only merge two variables derived from the same original, specifying Y is simple. But
what about the subscript? Intuitively, the subscript of ω contains those fixed variables which are
ancestors of ω in the graph G′ of M′. Formally the subscript is w, where W = An(ω)G′ ∩ sub(γ),
where the sub(γ) corresponds to those nodes in G′ which correspond to subscripts in γ. Since we
replaced α,β by ω, we replace any mention of α,β in our given counterfactual query P(γ) by ω.

1958

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

function make-cg(G,γ)
INPUT: G a causal diagram, γ a conjunction of counterfactual events
OUTPUT: A counterfactual graph Gγ, and either a set of events γ′ s.t. P(γ′) = P(γ) or
INCONSISTENT

• Construct a submodel graph Gxi for each action do(xi) mentioned in γ. Construct the parallel
worlds graph G′ by having all such submodel graphs share their corresponding U nodes.

• Let π be a topological ordering of nodes in G′, let γ′ := γ.

• Apply Lemmas 24 and 25, in order π, to each observable node pair α,β derived from the same
variable in G. For each α,β that are the same, do:

– Let G′ be modified as specified in Lemma 25.

– Modify γ′ by renaming all occurrences of β to α.

– If val(α) 6= val(β), return G′,INCONSISTENT.

• return (G′An(γ′),γ
′), where An(γ′) is the set of nodes in G′ ancestral to nodes corresponding to

variables mentioned in γ′.

Figure 10: An algorithm for constructing counterfactual graphs

Note that since α,β are the same, their value assignments must be the same (say equal to y). The
new counterfactual ω inherits this assignment.

We summarize the inductive applications of Lemma 24, and 25 by the make-cg algorithm,
which takes γ and G as arguments, and constructs a version of the parallel worlds graph without
duplicate nodes. We call the resulting structure the counter f actual graph of γ, and denote it by Gγ.
The algorithm is shown in Fig. 10.

There are three additional subtleties in make-cg. The first is that if variables Yx,Yz were judged
to be the same by Lemma 24, but γ assigns them different values, this implies that the original set
of counterfactual events γ is inconsistent, and so P(γ) = 0. The second is that if we are interested
in identifiability of P(γ), we can restrict ourselves to the ancestors of γ in G′. We can justify this
using the same intuitive argument we used in Section 3 to justify Line 2 in ID. The formal proof
for line 2 we provide in the appendix applies with little change to make-cg. Finally, because the
algorithm can make an arbitrary choice picking a parent of ω each time Lemma 25 is applied, both
the counterfactual graph G′, and the corresponding modified counterfactual γ′ are not unique. This
does not present a problem, however, as any such graph is acceptable for our purposes.

We illustrate the operation of make-cg by showing how the graph in Fig. 9 (c) is derived from
the graph in Fig. 9 (b). We start the application of Lemma 24 from the topmost observable nodes,
and conclude that the node pairs Dx,D, and Xd,X have the same functional mechanisms, and the
same parent set (in this case the parents are unobservable nodes Ud for the first pair, and U for the
second). We then use Lemma 25 to obtain the graph shown in Fig. 11 (a). Since the node pairs are
the same, we pick the name of one of the nodes of the pair to serve as the name of the new node. In
our case, we picked D and X . Note that for this graph, and all subsequent intermediate graphs we
generate, we use the convention that if a merge creates a situation where an unobservable variable

1959

SHPITSER AND PEARL

Y

ZW

Y

ZW
x

x

x

(a)

Y

ZW
d d

d

U
w

U
z

U

x d
_ _

D

Y

ZW

Y

W

x

x

(b)

x
_

X
D X

U
w

U

Y
d Y

ZW

Y

W

x

x

(c)

x
_

D X
U

w

U

Figure 11: Intermediate graphs obtained by make-cg in constructing the counterfactual graph for
P(yx|x′,zd,d) from Fig. 9 (b).

has a single child, that variable is omitted from the graph. For instance, in Fig. 11 (a), the variable
Ud , and its corresponding arrow to D omitted.

Next, we apply Lemma 24 for the node pair Wd ,W . In this case, the functional mechanisms
are once again the same, while the parents of Wd ,W are X and Uw. We can also apply Lemma 24
twice to conclude that Z,Zx and Zd are in fact the same node, and so can be merged. The functional
mechanisms of these three nodes are the same, and they share the parent Uz. As far as the parents of
this triplet, the Uz parent is shared by all three, while Z,Zx share the parent D, and Zd has a separate
parent d, fixed by intervention. However, in our counterfactual query, which is P(yx|x′,zd,d), the
variable D happens to be observed to attain the value d, the same as the intervention value for the
parent of Zd . This implies that for the purposes of the Z,Zx,Zd triplet, their D-derived parents share
the same value, which allows us to conclude they are the same random variable. The intuition here
is that while intervention and observation are not the same operation, they have the same effect if
the relevant U variables happen to react in the same way to both the given intervention, and the
given observation (this is the essence of the Axiom of Composition discussed by Pearl (2000).) In
our case, U variables react the same way because the parallel worlds share all unobserved variables.

There is one additional subtlety in performing the merge of the triplet Z,Zx,Zd . If we examine
our query P(yx|x′,zd,d), we notice that Zd , or more precisely its value, appears in it. When we
merge nodes, we only use one name out of the original two. It’s possible that some of the old names
appear in the query, which means we must replace all references to the old, pre-merge nodes with
the new post-merge name we picked. Since we picked the name Z for the newly merged node, we
replace the reference to Zd in our query by the reference to Z, so our modified query is P(yx|x′,z,d).
Since the variables were established to be the same, this is a safe syntactic transformation.

After Wd ,W , and the Z,Zx,Zd triplet are merged, we obtain the graph in Fig. 11 (b). Finally,
we apply Lemma 24 one more time to conclude Y and Yd are the same variable, using the same
reasoning as before. After performing this final merge, we obtain the graph in Fig. 11 (c). It’s easy to
see that Lemma 24 no longer applies to any node pair: W and Wx differ in their X-derived parent, and
Y , and Yx differ on their W -derived parent, which was established inductively. The final operation
which make-cg performs is restricting the graph in Fig. 11 (b) to variables actually relevant for
computing the (potentially syntactically modified) query it was given as input, namely P(yx|x′,z,d).
These relevant variables are ancestral to variables in the query in the final intermediate graph we

1960

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

function ID*(G,γ)
INPUT: G a causal diagram, γ a conjunction of counterfactual events
OUTPUT: an expression for P(γ) in terms of P∗ or FAIL

1 if γ = /0, return 1

2 if (∃xx′.. ∈ γ), return 0

3 if (∃xx.. ∈ γ), return ID*(G,γ\{xx..})

4 (G′,γ′) = make-cg(G,γ)

5 if γ′ = INCONSISTENT, return 0

6 if C(G′) = {S1, ...,Sk},
return ∑V (G′)\γ′ ∏i ID*(G,si

v(G′)\si)

7 if C(G′) = {S} then,

8 if (∃x,x′) s.t. x 6= x′,x ∈ sub(S),x′ ∈ ev(S),
throw FAIL

9 else, let x =
S

sub(S)
return Px(var(S))

function IDC*(G,γ,δ)
INPUT: G a causal diagram, γ,δ conjunctions of counterfactual events
OUTPUT: an expression for P(γ|δ) in terms of P∗, FAIL, or
UNDEFINED

1 if ID*(G,δ) = 0, return UNDEFINED

2 (G′,γ′∧δ′) = make-cg(G,γ∧δ)

3 if γ′∧δ′ = INCONSISTENT, return 0

4 if (∃yx ∈ δ′) s.t. (Yx ⊥⊥ γ′)G′yx ,

return IDC*(G,γ′yx ,δ′ \{yx})

5 else, let P′ = ID*(G,γ′∧δ′). return P′/P′(δ)

Figure 12: Counterfactual identification algorithms.

obtained. In our case, we remove nodes W and Y (and their adjacent edges) from consideration, to
finally obtain the graph in Fig. 9 (c), which is a counterfactual graph for our query.

Having constructed a graphical representation of worlds mentioned in counterfactual queries,
we can turn to identification. We construct two algorithms for this task, the first is called ID* and
works for unconditional queries, while the second, IDC*, works on queries with counterfactual
evidence and calls the first as a subroutine. These are shown in Fig. 12.

1961

SHPITSER AND PEARL

These algorithms make use of the following notation: sub(.) returns the set of subscripts, var(.)
the set of variables, and ev(.) the set of values (either set or observed) appearing in a given coun-
terfactual conjunction (or set of counterfactual events), while val(.) is the value assigned to a given
counterfactual variable. This notation is used to extract variables and values present in the original
causal model from a counterfactual which refers to parallel worlds. As before, C(G′) is the set of
maximal C-components of G′, except we don’t count nodes in G′ fixed by interventions as part of
any C-component. V (G′) is the set of observable nodes of G′ not fixed by interventions. Follow-
ing Pearl (2000), G′yx is the graph obtained from G′ by removing all outgoing arcs from Yx; γ′yx is

obtained from γ′ by replacing all descendant variables Wz of Yx in γ′ by Wz,y. A counterfactual sr,
where s,r are value assignments to sets of nodes, represents the event “the node set S attains values
s under intervention do(r).” For instance, the term si

v(g′)\si stands for the event “the node set Si

attains values si under the intervention do(v(g′)\ si),” in other words under the intervention where
we fix the values of all observable nodes in G′ except those in Si. Finally, we take xx.. to mean some
counterfactual variable derived from X where x appears in the subscript (the rest of the subscript
can be arbitrary), which also attains value x.

The notation used in these algorithms is somewhat intricate, so we give an intuitive description
of each line. We start with ID*. The first line states that if γ is an empty conjunction, then its prob-
ability is 1, by convention. The second line states that if γ contains a counterfactual which violates
the Axiom of Effectiveness (Pearl, 2000), then γ is inconsistent, and we return probability 0. The
third line states that if a counterfactual contains its own value in the subscript, then it is a tautolog-
ical event, and it can be removed from γ without affecting its probability. Line 4 invokes make-cg
to construct a counterfactual graph G′, and the corresponding relabeled counterfactual γ′. Line 5
returns probability 0 if an inconsistency was found during the construction of the counterfactual
graph, for example, if two variables found to be the same in γ had different value assignments. Line
6 is analogous to Line 4 in the ID algorithm, it decomposes the problem into a set of subproblems,
one for each C-component in the counterfactual graph. In the ID algorithm, the term corresponding
to a given C-component Si of the causal diagram was the effect of all variables not in Si on variables
in Si, in other words Pv\si

(si), and the outermost summation on line 4 was over values of variables
not in Y,X. Here, the term corresponding to a given C-component Si of the counterfactual graph
G′ is the conjunction of counterfactual variables where each variable contains in its subscript all
variables not in the C-component Si, in other words v(G′)\ si, and the outermost summation is over
observable variables not in γ′, that is over v(G′)\γ′, where we interpret γ′ as a set of counterfactuals,
rather than a conjunction. Line 7 is the base case, where our counterfactual graph has a single C-
component. There are two cases, corresponding to line 8 and line 9. Line 8 says that if γ′ contains a
“conflict,” that is an inconsistent value assignment where at least one value is in the subscript, then
we fail. Line 9 says if there are no conflicts, then its safe to take the union of all subscripts in γ′, and
return the effect of the subscripts in γ′ on the variables in γ′.

The IDC*, like its counterpart IDC, is shorter. The first line fails if δ is inconsistent. IDC did
not have an equivalent line, since we can assume P(v) is positive. The problem with counterfactual
distributions is there is no simple way to prevent non-positive distributions spanning multiple worlds
from arising, even if the original P(v) was positive—hence the explicit check. The second line
constructs the counterfactual graph, except since make-cg can only take conjunctions, we provide
it with a joint counterfactual γ∧ δ. Line 3 returns 0 if an inconsistency was detected. Line 4 of
IDC* is the central line of the algorithm and is analogous to line 1 of IDC. In IDC, we moved a

1962

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

value assignment Z = z from being observed to being fixed if there were no back-door paths from
Z to the outcome variables Y given the context of the effect of do(x). Here in IDC*, we move a
counterfactual value assignment Yx = y from being observed (that is being a part of δ), to being
fixed (that is appearing in every subscript of γ′) if there are no back-door paths from Yx to the
counterfactual of interest γ′. Finally, line 5 of IDC* is the analogue of line 2 of IDC, we attempt to
identify a joint counterfactual probability, and then obtain a conditional counterfactual probability
from the result.

We illustrate the operation of these algorithms by considering the identification of a query
P(yx|x′,zd,d) we mentioned earlier. Since P(x′,zd,d) is not inconsistent, we proceed to construct
the counterfactual graph on line 2. Suppose we produce the graph in Fig. 9 (c), where the corre-
sponding modified query is P(yx|x′,z,d). Since P(yx,x′,z,d) is not inconsistent we proceed to the
next line, which moves z,d (with d being redundant due to graph structure) to the subscript of yx,
to obtain P(yx,z|x′), and calls IDC* with this query recursively. Note that since the subscripts in
one of the variables of our query changed, the counterfactual graph generated will change as well.
In particular, the invocation of make-cg with the joint distribution from which P(yx,z|x′) is derived,
namely P(yx,z,x′), will result in the graph shown in Fig. 9 (d). Since X ′ has a back-door path to Yx,z

in this graph, we can no longer call IDC* recursively, so we invoke ID* with the query P(yx,z,x′).
The first interesting line in ID* is line 6, which first computes P(yx,z,wx,z,x′) by C-component

factorization, and then computes P(yx,z,x′) from P(yx,z,wx,z,x′) by marginalizing over Wx,z.2 Since
the counterfactual graph for this query (Fig. 9 (d)) has two C-components, {Yx,z,X} and {Wx,z},
P(yx,z,wx,z,x′) = P(yx,z,w,x′w)P(wx,z), which can be simplified by removing redundant subscripts to
P(yz,w,x′)P(wx). Line 6 then recursively calls ID* with P(yx,z,w,x′) and P(wx), multiplies the results
and marginalizes over Wx. The first recursive call reaches line 9 with P(yz,w,x′), which is identifiable
as Pz,w(y,x′) from P∗. The second term is trivially identifiable as Px(w), which means our query is
identifiable as P′ = ∑w Pz,w(y,x′)Px(w), and the conditional query is equal to P′/P′(x′).

The definitions of ID*, and IDC* reveal their close similarity to algorithms ID and IDC in
the previous section. The major differences lie in the failure and success base cases, and slightly
different subscript notation. This is not a coincidence, since a counterfactual graph can be thought
of as a causal graph for a particular large causal model which happens to have some distinct nodes
share the same causal mechanisms. This means that all the theorems and definitions used in the
previous sections for causal diagrams transfer over without change to counterfactual graphs. Using
this fact, we will show that ID*, and IDC* are sound and complete for identifying P(γ), and P(γ|δ)
respectively.

Theorem 26 (soundness) If ID* succeeds, the expression it returns is equal to P(γ) in a given
causal graph. Furthermore, if IDC* does not output FAIL, the expression it returns is equal to
P(γ|δ) in a given causal graph, if that expression is defined, and UNDEFINED otherwise.

Proof outline The first line merely states that the probability of an empty conjunction is 1, which
is true by convention. Lines 2 and 3 follow by the Axiom of Effectiveness (Galles and Pearl, 1998).
The soundness of make-cg has already been established, which implies the soundness of line 4.
Line 6 decomposes the problem using c-component factorization. The soundness proof for this
decomposition, also used in the previous section, is in the appendix. Line 9 asserts that if a set

2. Note that since Wx,z is a counterfactual variable derived from W , it shares its domain with W . Therefore it makes
sense when marginalizing to operate over the values of W , denoted by w in the subscript of the summation.

1963

SHPITSER AND PEARL

of counterfactual events does not contain conflicting value assignments to any variable, obtained
either by observation or intervention, then taking the union of all actions of the events results in a
consistent action. The probability of the set of events can then be computed from a submodel where
this consistent action has taken place. A full proof of this is in the appendix.

To show completeness, we follow the same strategy we used in the previous section. We cata-
logue all difficult counterfactual graphs which arise from queries which cannot be identified from
P∗. We then show these graphs arise whenever ID* and IDC* fail. This, together with the soundness
theorem we already proved, implies that these algorithms are complete.

The simplest difficult counterfactual graph arises from the query P(yx,y′x′) named “probability of
necessity and sufficiency” by Pearl (2000). This graph, shown in Fig. 8 (b) with variable relabeling,
is called the “w-graph” due to its shape (Avin et al., 2005). This query is so named because if
P(yx,y′x′) is high, this implies that if the variable X is forced to x, variable Y is likely to be y, while
if X is forced to some other value, Y is likely to not be y. This means that the action do(x) is likely a
necessary and sufficient cause of Y assuming value y, up to noise. The w-graph starts our catalogue
of bad graphs with good reason, as the following lemma shows.

Lemma 27 Assume X is a parent of Y in G. Then P∗,G 6`id P(yx,y′x′),P(yx,y′) for any value pair
y,y′.

Proof See Avin et al. (2005).

The intuitive explanation for this result is that P(yx,y′x′) is derived from the joint distribution over
the counterfactual variables in the w-graph, while if we restrict ourselves to P∗, we only have access
to marginal distributions—one marginal for each possible world. Because counterfactual variables
Yx and Yx′ share an unobserved parent U , they are dependent, and their joint distribution cannot be
decomposed into a product of marginals. This means that the information encoded in the marginals
is insufficient to uniquely determine the joint we are interested in. This intuitive argument can be
generalized to a counterfactual graph with more than two nodes, the so-called “zig-zag graphs” an
example of which is shown in Fig. 13 (b).

Lemma 28 Assume G is such that X is a parent of Y and Z, and Y and Z are connected by a
bidirected path with observable nodes W 1, ...,W k on the path. Then P∗,G 6`id P(yx,w1, ...,wk,zx′),
P(yx,w1, ...,wk,z) for any value assignments y,w1, ...,wk,z.

The w-graph in Fig. 8 (b) and the zig-zag graph in Fig. 13 (b) have very special structure, so
we don’t expect our characterization to be complete with just these graphs. In order to continue, we
must provide two lemmas which allow us to transform difficult graphs in various ways by adding
nodes and edges, while retaining the non-identifiability of the underlying counterfactual from P∗.

Lemma 29 (downward extension lemma) Assume P∗,G 6`id P(γ). Let {y1
x1 , ...,yn

xm} be a subset
of counterfactual events in γ. Let G′ be a graph obtained from G by adding a new child W of
Y 1, ...,Y n, and let P′∗ be the set of all interventional distributions in models inducing G′. Let γ′ =
(γ\{y1

x1 , ...,yn
xm})∪{wx1 , ...,wxm}, where w is an arbitrary value of W. Then P′∗,G

′ 6`id P(γ′).

1964

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

(a)

X

Y ZW W
1 2

(b)

Y ZW W1 2

x x’

Figure 13: (a) Causal diagram (b) Corresponding counterfactual graph for the non-identifiable
query P(Yx,W 1,W 2,Zx′).

The first result states that non-identification on a set of parents (causes) translates into non-
identification on children (effects). The intuitive explanation for this is that it is possible to construct
a one-to-one function from the space of distributions on causes to the space of distributions on
effects. If a given P(γ) cannot be identified from P∗, this implies that there exist two models which
agree on P∗, but disagree on P(γ), where γ is a set of counterfactual causes. It is then possible to
augment these models using the one-to-one function in question to obtain disagreement on P(δ),
where δ is a set of counterfactual effects of γ. A more detailed argument is found in the appendix.

Lemma 30 (contraction lemma) Assume P∗,G 6`id P(γ). Let G′ be obtained from G by merging
some two nodes X ,Y into a new node Z where Z inherits all the parents and children of X ,Y ,
subject to the following restrictions:

• The merge does not create cycles.

• If (∃ws ∈ γ) where x ∈ s, y 6∈ s, and X ∈ An(W)G, then Y 6∈ An(W)G.

• If (∃ys ∈ γ) where x ∈ s, then An(X)G = /0.

• If (Yw,Xs ∈ γ), then w and s agree on all variable settings.

Assume |X | × |Y | = |Z| and there’s some isomorphism f assigning value pairs x,y to a value
f (x,y) = z. Let γ′ be obtained from γ as follows. For any ws ∈ γ:

• If W 6∈ {X ,Y}, and values x,y occur in s, replace them by f (x,y).

• If W 6∈ {X ,Y}, and the value of one of X ,Y occur in s, replace it by some z consistent with the
value of X or Y .

• If X ,Y do not occur in γ, leave γ as is.

• If W = Y and x ∈ s, replace ws by f (x,y)s\{x}.

• otherwise, replace every variable pair of the form Yr = y,Xs = x by Zr,s = f (x,y).

Then P∗,G′ 6`id P(γ′).

1965

SHPITSER AND PEARL

This lemma has a rather complicated statement, but the basic idea is very simple. If we have
a causal model with a graph G where some counterfactual P(γ) is not identifiable, then a coarser,
more “near-sighted” view of G which merges two distinct variables with their own mechanisms
into a single variable with a single mechanism will not render P(γ) identifiable. This is because
merging nodes in the graph does not alter the model, but only our state of knowledge of the model.
Therefore, whatever model pair was used to prove P(γ) non-identifiable will remain the same in the
new, coarser graph. The complicated statement of the lemma is due to the fact that we cannot allow
arbitrary node merges, we must satisfy certain coherence conditions. For instance, the merge cannot
create directed cycles in the graph.

It turns out that whenever ID* fails on P(γ), the corresponding counterfactual graph contains a
subgraph which can be obtained by a set of applications of the previous two lemmas to the w-graph
and the zig-zag graphs. This allows an argument that shows P(γ) cannot be identified from P∗.

Theorem 31 (completeness) If ID* or IDC* fail, then the corresponding query is not identifiable
from P∗.

Since ID* is complete for P(γ) queries, we can give a graphical characterization of counterfac-
tual graphs where P(γ) cannot be identified from P∗.

Theorem 32 Let Gγ,γ′ be obtained from make-cg(G,γ). Then P∗,G 6`id P(γ) if and only if there
exists a C-component S⊆ An(γ′)Gγ where some X ∈ Pa(S) is set to x while at the same time either X
is also a parent of another node in S and is set to another value x′, or S contains a variable derived
from X which is observed to be x′.

Proof This follows from Theorem 31 and the construction of ID*.

5. Conclusions

This paper considers a hierarchy of queries about relationships among variables in graphical causal
models: associational relationships which can be obtained from observational studies, cause-effect
relationships obtained by experimental studies, and counterfactuals, which are derived from par-
allel worlds resulting from hypothetical actions, possibly conflicting with available evidence. We
consider the identification problem for this hierarchy, the task of computing a query from the given
causal diagram and available information lower in the hierarchy.

We provide sound and complete algorithms for this identification problem, and a graphical char-
acterization of non-identifiable queries where these algorithms must fail. Specifically, we provide
complete algorithms for identifying causal effects and conditional causal effects from observational
studies, and show that a graphical structure called a hedge completely characterizes all cases where
causal effects are non-identifiable. As a corollary, we show that the three rules of do-calculus are
complete for identifying effects. We also provide complete algorithms for identifying counterfac-
tual queries (possibly conditional) from experimental studies. If we view the structure of the causal
graph as experimentally testable, as is often the case in practice, this result can be viewed as giving
a full characterization of testable counterfactuals assuming structural semantics.

These results settle important questions in causal inference, and pave the way for computing
more intricate causal queries which involve nested counterfactuals, such as those defining direct

1966

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

and indirect effects (Pearl, 2001), and path-specific effects (Avin et al., 2005). The characterization
of non-identifiable queries we provide defines precisely the situations when such queries cannot
be computed precisely, and must instead by approximated using methods such as bounding (Balke
and Pearl, 1994a), instrumental variables (Pearl, 2000), or additional assumptions, such as linearity,
which can make identification simpler.

Acknowledgments

The authors would like to thank Eleazar Eskin and Eun Yong Kang for discussing earlier versions
of this work. This work was supported in part by AFOSR grant #F49620-01-1-0055, NSF grant
#IIS-0535223, MURI grant #N00014-00-1-0617, and NLM grant #T15 LM07356.

Appendix A.

Here, we augment the intuitive proof outlines we gave in the main body of the paper with more
formal arguments. We start with a set of results which were used to classify graphs with non-
identifiable effects. In the proofs presented here, we will construct the distributions which make
up our set of premises to be positive. This is because non-positive distributions present a number
of technical difficulties, for instance d-separation and independence are not related in a straight-
forward way in such distributions, and conditional distributions may not be defined. We should
mention, however, that distributions which span multiple hypothetical worlds which we discussed
in Section 4 may be non-positive by definition.

Theorem 5 If sets X and Y are d-separated by Z in G, then X is independent of Y given Z in every
P for which G is an I-map. Furthermore, the causal diagram induced by any semi-Markovian PCM
M is a semi-Markovian I-map of the distribution P(v,u) induced by M.

Proof It is not difficult to see that if we restrict d-separation queries to a subset of variables W in
some graph G, the corresponding independencies in P(w) will only hold whenever the d-separation
statements hold. Furthermore, if we replace G by a latent projection L (Pearl, 2000), where we
view variables V\W as hidden, independencies in P(w) will only hold whenever the corresponding
d-separation statement (extended to include bidirected arcs) holds in L.

Theorem 10 P(v),G 6`id P(y|do(x)) in G shown in Fig. 1 (a).

Proof We construct two causal models M1 and M2 such that P1(X ,Y) = P2(X ,Y), and P1
x (Y) 6=

P2
x (Y). The two models agree on the following: all 3 variables are boolean, U is a fair coin, and

fX(u) = u. Let ⊕ denote the exclusive or (XOR) function. Then the value of Y is determined by
the function u⊕ x in M1, while Y is set to 0 in M2. Then P1(Y = 0) = P2(Y = 0) = 1, P1(X = 0) =
P2(X = 0) = 0.5. Therefore, P1(X ,Y) = P2(X ,Y), while P2

x (Y = 0) = 1 6= P1
x (Y = 0) = 0.5. Note

that while P is non-positive, it is straightforward to modify the proof for the positive case by let-
ting fY functions in both models return 1 half the time, and the values outlined above half the time.

1967

SHPITSER AND PEARL

Theorem 12 Let G be a Y -rooted C-tree. Let X be any subset of observable nodes in G which does
not contain Y . Then P(v),G 6`id P(y|do(x)).

Proof We generalize the proof for the bow arc graph. We can assume without loss of generality
that each unobservable U in G has exactly two observable children. We construct two models with
binary nodes. In the first model, the value of all observable nodes is set to the bit parity (sum modulo
2) of the parent values. In the second model, the same is true for all nodes except Y , with the latter
being set to 0 explicitly. All U nodes in both models are fair coins. Since G is a tree, and since every
U ∈ U has exactly two children in G, every U ∈ U has exactly two distinct downward paths to Y in
G. It’s then easy to establish that Y counts the bit parity of every node in U twice in the first model.
But this implies P1(Y = 1) = 0.

Because bidirected arcs form a spanning tree over observable nodes in G, for any set of nodes
X such that Y 6∈X, there exists U ∈U with one child in An(X)G and one child in G\An(X)G. Thus
P1

x(Y = 1) > 0, but P2
x(Y = 1) = 0. It is straightforward to generalize this proof for the positive P(v)

in the same way as in Theorem 10.

Theorem 13 P(v),G 6`id P(y|do(pa(y))) if and only if there exists a subgraph of G which is a Y -
rooted C-tree.

Proof From Tian (2002), we know that whenever there is no subgraph G′ of G, such that all nodes
in G′ are ancestors of Y , and G′ is a C-component, Ppa(Y)(Y) is identifiable. From Theorem 12,
we know that if there is a Y -rooted C-tree containing a non-empty subset S of parents of Y , then
Ps(Y) is not identifiable. But it is always possible to extend the counterexamples which prove non-
identification of Ps(Y) with additional variables which are independent.

Theorem 17 Let F,F ′ be subgraphs of G which form a hedge for P(y|do(x)). Then P(v),G 6`id

P(y|do(x)).

Proof We first show Px(r) is not identifiable in F . As before, we assume each U has two observable
children. We construct two models with binary nodes. In M1 every variable in F is equal to the bit
parity of its parents. In M2 the same is true, except all nodes in F ′ disregard the parent values in
F \F ′. All U are fair coins in both models.

As was the case with C-trees, for any C-forest F , every U ∈ U∩F has exactly two downward
paths to R. It is now easy to establish that in M1, R counts the bit parity of every node in U1 twice,
while in M2, R counts the bit parity of every node in U2∩F ′ twice. Thus, in both models with no
interventions, the bit parity of R is even.

Next, fix two distinct instantiations of U that differ by values of U∗. Consider the topmost node
W ∈ F with an odd number of parents in U∗ (which exists because bidirected edges in F form a
spanning tree). Then flipping the values of U∗ once will flip the value W once. Thus the function
from U to V induced by a C-forest F in M1 and M2 is one to one.

The above results, coupled with the fact that in a C-forest, |U|+ 1 = |V| implies that any as-
signment where ∑r (mod 2) = 0 is equally likely, and all other node assignments are impossi-
ble in both F and F ′. Since the two models agree on all functions and distributions in F \ F ′,
∑ f ′ P

1 = ∑ f ′ P
2. It follows that the observational distributions are the same in both models.

1968

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

As before, we can find U ∈ U with one child in An(X)F , and one child in F \An(X)F , which
implies the probability of odd bit parity of R is 0.5 in M1, and 0 in M2.

Next, we note that the construction so far results in a non-positive distribution P. To rid our
proof of non-positivity, we “soften” our two models with new unobservable binary UR for every
R ∈ R which assumes value 1 with very small probability p. Whenever UR is 1, the node R flips its
value, otherwise it keeps the value as defined above. Note that P(v) will remain the same in both
models because our augmentation is the same, and the previous unsoftened models agreed on P(v).
It’s easy to see that the bit parity of R in both models will be odd only when an odd number of UR

assume values of 1. Because p is arbitrarily small, the probability of an odd parity is far smaller than
the probability of even parity. Now consider what happens after do(x). In M2, the probability of
odd bit parity stays the same. In M1 before the addition of UR, the probability was 0.5. But it’s easy
to see that UR nodes change the bit parity of R in a completely symmetric way, so the probability of
even parity remains 0.5.

This implies Px(r) is not identifiable. Finally, to see that Px(y) is not identifiable, augment our
counterexample by nodes in I = An(Y)∩De(R). Without loss of generality, assume every node in
I has at most one child. Let each node I in I be equal to the bit parity of its parents. Moreover, each
I has an exogenous parent UI independent of the rest of U which, with small probability p causes it
to flip it’s value. Then the bit parity of Y is even if and only if an odd number of UI turn on. More-
over, it’s easy to see P(I|R) is positive by construction. We can now repeat the previous argument.

Next, we provide the proof of soundness of ID and IDC using do-calculus. This both simplifies
the proofs and allows us to infer do-calculus is complete from completeness of our algorithms. We
will invoke do-calculus rules by just using their number, for instance “by rule 2.” First, we prove that
a joint distribution in a causal model can be represented as a product of interventional distributions
corresponding to the set of c-component in the graph induced by the model.

Lemma 33 (c-component factorization) Let M be a causal model with graph G. Let y,x be value
assignments. Let C(G\X) = {S1, ...,Sk}. Then Px(y) = ∑v\(y∪x) ∏i Pv\si

(si).

Proof A proof of this was derived by Tian (2002). Nevertheless, we reprove this result using
do-calculus to help with our subsequent completeness results. Assume X = /0, Y = V, C(G) =
{S1, ...,Sk}, and let Ai = An(Si)G \Si. Then

∏
i

Pv\si
(si) = ∏

i
Pai(si) = ∏

i
∏

V j∈Si

Pai(v j|v
(j−1)
π \ai)

= ∏
i

∏
V j∈Si

P(v j|v
(j−1)
π) = ∏

i
P(vi|v

(i−1)
π) = P(v).

The first identity is by rule 3, the second is by chain rule of probability. To prove the third
identity, we consider two cases. If A ∈ Ai \V (j−1)

π , we can eliminate the intervention on A from the

expression Pai(v j|v
(j−1)
π) by rule 3, since (V j ⊥⊥ A|V (j−1)

π)Gai
.

If A ∈ Ai∩V (j−1)
π , consider any back-door path from Ai to Vj. Any such path with a node not in

V (j−1)
π will be d-separated because, due to recursiveness, it must contain a blocked collider. Further,

this path must contain bidirected arcs only, since all nodes on this path are conditioned or fixed.

1969

SHPITSER AND PEARL

Because Ai∩Si = /0, all such paths are d-separated. The identity now follows from rule 2. The last
two identities are just grouping of terms, and application of chain rule.

Having proven that c-component factorization holds for P(v), we want to extend the result
to Px(y). First, let’s consider Px(v \ x). This is just the distribution of the submodel Mx. But
Mx is just an ordinary causal model inducing G \X, so we can apply the same reasoning to ob-
tain Px(v \ x) = ∏i Pv\si

(si), where C(G \X) = {S1, ...,Sk}. As a last step, it’s easy to verify that
Px(y) = ∑v\(x∪y) Px(v\x).

Lemma 34 Let X′ = X∩An(Y)G. Then Px(y) obtained from P in G is equal to P′x′(y) obtained from
P′ = P(An(Y)) in An(Y)G.

Proof Let W = V \An(Y)G. Then the submodel Mw induces the graph G \W = An(Y)G, and its
distribution is P′ = Pw(An(Y)) = P(An(Y)) by rule 3. Now Px(y) = Px′(y) = Px′,w(y) = P′x′(y)
by rule 3.

Lemma 35 Let W = (V\X)\An(Y)Gx . Then Px(y) = Px,w(y), where w are arbitrary values of W.

Proof Note that by assumption, Y⊥⊥W|X in Gx,w. The conclusion follows by rule 3.

Lemma 36 When the conditions of line 6 are satisfied, Px(y) = ∑s\y ∏Vi∈S P(vi|v
(i−1)
π).

Proof If line 6 preconditions are met, then G local to that recursive call is partitioned into S and X,
and there are no bidirected arcs from X to S. The conclusion now follows from the proof of Lemma
33.

Lemma 37 Whenever the conditions of the last recursive call of ID are satisfied, Px obtained from

P in the graph G is equal to P′x∩S′ obtained from P′ = ∏Vi∈S′ P(Vi|V
(i−1)
π ∩S′,v(i−1)

π \S′) in the graph
S′.

Proof It is easy to see that when the last recursive call executes, X and S partition G, and X ⊂
An(S)G. This implies that the submodel Mx\S′ induces the graph G\ (X\S′) = S′. The distribution
Px\S′ of Mx\S′ is equal to P′ by the proof of Lemma 33. It now follows that Px = Px∩S′,x\S′ = P′x∩S′ .

Theorem 38 (soundness) Whenever ID returns an expression for Px(y), it is correct.

Proof If x = /0, the desired effect can be obtained from P by marginalization, thus this base case
is clearly correct. The soundness of all other lines except the failing line 5 has already been estab-
lished.

1970

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

Having established soundness, we show that whenever ID fails, we can recover a hedge for an
effect involving a subset of variables involved in the original effect expression P(y|do(x)). This in
turn implies completeness.

Theorem 39 Assume ID fails to identify Px(y) (executes line 5). Then there exist X′ ⊆ X, Y′ ⊆ Y
such that the graph pair G,S returned by the fail condition of ID contain as edge subgraphs C-
forests F,F ′ that form a hedge for Px′(y′).

Proof Consider line 5, and G and y local to that recursive call. Let R be the root set of G. Since G
is a single C-component, it is possible to remove a set of directed arrows from G while preserving
the root set R such that the resulting graph F is an R-rooted C-forest.

Moreover, since F ′ = F ∩S is closed under descendants, and since only single directed arrows
were removed from S to obtain F ′, F ′ is also a C-forest. F ′∩X = /0, and F ∩X 6= /0 by construction.
R⊆ An(Y)Gx by lines 2 and 3 of the algorithm. It’s also clear that y,x local to the recursive call in
question are subsets of the original input.

Theorem 18 ID is complete.

Proof By the previous theorem, if ID fails, then Px′(y′) is not identifiable in a subgraph H =
GAn(Y)∩De(F) of G. Moreover, X∩H = X′, by construction of H. As such, it is easy to extend the
counterexamples in Theorem 39 with variables independent of H, with the resulting models induc-
ing G, and witnessing the non-identifiability of Px(y).

Next, we prove the results necessary to establish completeness of IDC.

Lemma 40 If rule 2 of do-calculus applies to a set Z in G for Px(y|w) then there are no d-connected
paths to Y that pass through Z in neither G1 = G\X given Z,W nor in G2 = G\ (X∪Z) given W.

Proof Clearly, there are no d-connected paths through Z in G2 given W. Consider a d-connected
path through Z ∈ Z to Y in G1, given Z,W. Note that this path must either form a collider at Z or a
collider which is an ancestor of Z. But this must mean there is a back-door path from Z to Y, which
is impossible, since rule 2 is applicable to Z in G for Px(y|w). Contradiction.

Theorem 20 For any G and any conditional effect Px(y|w) there exists a unique maximal set
Z = {Z ∈W|Px(y|w) = Px,z(y|w \ {z})} such that rule 2 applies to Z in G for Px(y|w). In other
words, Px(y|w) = Px,z(y|w\ z).

Proof Fix two maximal sets Z1,Z2 ⊆W such that rule 2 applies to Z1,Z2 in G for Px(y|w). If
Z1 6= Z2, fix Z ∈ Z1 \Z2. By Lemma 40, rule 2 applies for {Z}∪Z2 in G for Px(y|w), contradicting
our assumption.

Thus if we fix G and Px(y|w), any set to which rule 2 applies must be a subset of the unique
maximal set Z. It follows that Z = {Z ∈W|Px(y|w) = Px,z(y|w\{z})}.

1971

SHPITSER AND PEARL

Y’

Y

H

(a)

W W’

Y’

H

(b)

W W’

Y

p
p

X X

Figure 14: Inductive cases for proving non-identifiability of Px(y|w,w′).

Lemma 41 Let F,F ′ form a hedge for Px(y). Then F ⊆ F ′∪X.

Proof It has been shown that ID fails on Px(y) in G and returns a hedge if and only if Px(y) is
not identifiable in G. In particular, edge subgraphs of the graphs G and S returned by line 5 of ID
form the C-forests of the hedge in question. It is easy to check that a subset of X and S partition G.

We rephrase the statement of Theorem 21 somewhat, to reduce “algebraic clutter.”

Theorem 21 Let Px(y|w) be such that every W ∈ W has a back-door path to Y in G \X given
W\{W}. Then Px(y|w) is identifiable in G if and only if Px(y,w) is identifiable in G.

Proof If Px(y,w) is identifiable in G, then we can certainly identify Px(y|w) by marginalization
and division. The difficult part is to prove that if Px(y,w) is not identifiable then neither is Px(y|w).

Assume Px(w) is identifiable. Then if Px(y|w) were identifiable, we would be able to compute
Px(y,w) by the chain rule. Thus our conclusion follows.

Assume Px(w) is not identifiable. We also know that every W ∈W contains a back-door path to
some Y ∈Y in G\X given W\{W}. Fix such W and Y , along with a subgraph p of G which forms
the witnessing back-door path. Consider also the hedge F,F ′ which witnesses the non-identifiability
of Px′(w′), where X′ ⊆ X,W′ ⊆W.

Let H = G
De(F)∪An(W′

)Gx′
. We will attempt to show that Px′(Y |w) is not identifiable in H ∪ p.

Without loss of generality, we make the following three assumptions. First, we restrict our attention
to W′′ ⊆W that occurs in H∪ p. Second, we assume p is a path segment which starts at H and ends
at Y , and does not intersect H. Third, we assume all observable nodes in H have at most one child.

Consider the models M1,M2 from the proof of Theorem 17 which induce H. We extend the
models by adding to them binary variables in p. Each variable X ∈ p is equal to the bit parity of its
parents, if it has any. If not, X behaves as a fair coin. If Y ∈ H has a parent X ∈ p, the value of X is
added to the bit parity computation Y makes.

Call the resulting models M1
∗ ,M

2
∗ . Because M1,M2 agreed on P(H), and variables and functions

in p are the same in both models, P1
∗ = P2

∗ . We will assume w′′ assigns 0 to every variable in W′′.
What remains to be shown is that P1

∗x(y|w′′) 6= P2
∗x(y|w′′). We will prove this by induction on the

path structure of p. We handle the inductive cases first. In all these cases, we fix a node Y ′ that
is between Y and H on the path p, and prove that if Px′(y′|w′′) is not identifiable, then neither is
Px′(y|w′′).

1972

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

Y

H

(a)

W W’

Y’

C

p

Y

H

(b)

W W’

Y’ p

X X

Figure 15: Inductive cases for proving non-identifiability of Px(y|w,w′).

Y

H

(a)

W W’

Y’

(c)

W W’

Y’

Y

H
X X

Y

(b)

W

Y’

H’
X

p’

Figure 16: Base cases for proving non-identifiability of Px(y|w,w′).

Assume neither Y nor Y ′ have descendants in W′′. If Y ′ is a parent of Y as in Fig. 14 (a), then
Px′(y|w′′) = ∑y′ P(y|y′)Px′(y′|w′′). If Y is a parent of Y ′, as in Fig. 14 (b) then the next node in p
must be a child of Y ′. Therefore, Px′(y|w′′) = ∑y′ P(y|y′)Px′(y′|w′′). In either case, by construction
P(Y |Y ′) is a 2 by 2 identity matrix. This implies that the mapping from Px′(y′|w′′) to Px′(y|w′′) is
one to one. If Y ′ and Y share a hidden common parent U as in Fig. 15 (b), then our result follows
by combining the previous two cases.

The next case is if Y and Y have a common child C which is either in W′′ or has a descendant
in W′′, as in Fig. 15 (a). Now Px′(y|w′′) = ∑y′ P(y|y′,c)Px′(y′|w′′). Because all nodes in W′′ were
observed to be 0, P(y|y′,c) is again a 2 by 2 identity matrix.

Finally, we handle the base cases of our induction. In all such cases, Y is the first node not in H
on the path p. Let Y ′ be the last node in H on the path p.

Assume Y is a parent of Y ′, as shown in Fig. 16 (a). By Lemma 41, we can assume Y 6∈ An(F \
F ′)H . By construction, (∑W′′ = Y + 2 ∗∑U) (mod 2) in M1

∗ , and (∑W′′ = Y + 2 ∗∑(U∩F ′))
(mod 2) in M2

∗ . If every variable in W′′ is observed to be 0, then Y = (2 ∗∑U) (mod 2) in M1
∗ ,

and Y = (2 ∗∑(U∩F ′)) (mod 2) in M2
∗ . If an intervention do(x) is performed, (∑W′′ = Y +

2 ∗∑(U∩F ′)) (mod 2) in M2
∗x, by construction. Thus if W′′ are all observed to be zero, Y = 0

with probability 1. Note that in M1
x as constructed in the proof of Theorem 17, (∑w′′ = x + ∑U′)

(mod 2), where U′ ⊆ U consists of unobservable nodes with one child in An(X)F and one child in
F \An(X)F .

Because Y 6∈ An(F \F ′)H , we can conclude that if W′′ are observed to be 0, Y = (x + ∑U′)
(mod 2) in M1

∗x′ . Thus, Y = 0 with probability 0.5. Therefore, P1
∗x′(y|w

′′) 6= P2
∗x′(y|w

′′) in this case.
Assume Y is a child of Y ′. Now consider a graph G′ which is obtained from H ∪ p by removing

the (unique) outgoing arrow from Y ′ in H. If Px′(Y |w′′) is not identifiable in G′, we are done.

1973

SHPITSER AND PEARL

Assume Px′(Y |w′′) is identifiable in G′. If Y ′ ∈ F , and R is the root set of F , then removing the
Y ′-outgoing directed arrow from F results in a new C-forest, with a root set R∪{Y ′}. Because Y
is a child of Y ′, the new C-forests form a hedge for Px′(y,w′′). If Y ′ ∈ H \F , then removing the
Y ′-outgoing directed arrow results in substituting Y for W ∈W′′∩De(Y ′)H . Thus in G′, F,F ′ form
a hedge for Px′(y,w′′ \{w}). In either case, Px′(y,w′′) is not identifiable in G′.

If Px′(w′′) is identifiable in G′, we are done. If not, consider a smaller hedge H ′ ⊂H witnessing
this fact. Now consider the segment p′ of p between Y and H ′. We can repeat the inductive argument
for H ′, p′ and Y . See Fig. 16 (b).

If Px′(w′′) is identifiable in G′, we are done. If not, consider a smaller hedge H ′ ⊂H witnessing
this fact. Now consider the segment p′ of p between Y and H ′. We can repeat the inductive argument
for H ′, p′ and Y . See Fig. 16 (b). If Y and Y ′ have a hidden common parent, as is the case in Fig.
16 (c), we can combine the first inductive case, and the first base case to prove our result.

We conclude the proof by introducing a slight change to rid us of non-positivity in the distri-
butions P1,P2 in our counterexamples. Specifically, for every node I in p∪ (De(R)∩An(Y)), add
a new binary exogenous parent UI which is independent of other nodes in U, and has an arbitrar-
ily small probability of assuming the value 1, and causing its child to flip its current value. We
let Podd be the probability an odd number of UI nodes assume the value 1. Because P(UI = 1) is
vanishingly small for every I, Podd is much smaller than 0.5. It’s easy to see that P is positive in
counterexamples augmented in this way. In the base case when Y is a parent of Y ′, we modify our
equations to account for the addition of UI . Specifically, (∑W′′ = Y + 2 ∗∑U + ∑UI) (mod 2)
in M1

∗ , and (∑W′′ = Y + 2 ∗∑(U∩F ′) + ∑UI) (mod 2) in M2
∗ , where UU is the set of nodes

added. If every variable in W′′ is observed to be 0, then Y = (2 ∗∑U + ∑UI) (mod 2) in M1
∗ ,

and Y = (2∗∑(U∩F ′)+∑UI) (mod 2) in M2
∗ . So prior to the intervention, P(Y = 1|w′′) = Podd .

But because P1
x′(Y = 1|w′′) = 0.5, adding UI nodes to the model does not change this probability.

Because P2(Y = 1|w′′) = P2
x(Y = 1|w′′), our conclusion follows.

In the inductive cases above, we showed that Px(Y ′ = Y |W′′) = 1 in our counterexamples. It’s
easy to see that with the addition of UI , Px(Y ′ = Y |W′′) = Podd . This implies that if P1

x(Y ′|W′′) 6=
P2

x(Y ′|W′′), then P1
x(Y |W′′) 6= P2

x(Y |W′′).
This completes the proof.

What remains for us to show are the theorems which imply the soundness and completeness
results in Section 4. The most important point in these proofs is that counterfactual graphs are
generally no different from causal diagrams discussed in Sections 2 and 3, with their only special
feature being that by construction, some nodes in the graph happen to share functions. This means
that a lot of results we already proved for Section 3 can be reused without change.

Lemma 42 If the preconditions of line 7 are met, P(S) = Px(var(S)), where x =
S

sub(S).

Proof Let x =
S

sub(S). Since the preconditions are met, x does not contain conflicting assign-
ments to the same variable, which means do(x) is a sound action in the original causal model. Note
that for any variable Yw in S, any variable in (Pa(S)\S)∩An(Yw)S is already in w, while any vari-
able in (Pa(S) \ S) \An(Yw)S can be added to the subscript of Yw without changing the variable.
Since Y ∩X = /0 by assumption, Yw = Yx. Since Yw was arbitrary, our result follows.

For convenience, we show the soundness of ID* and IDC* asserted in Theorem 26 separately.

1974

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

Theorem 26 (a) If ID* succeeds, the expression it returns is equal to P(γ) in a given causal graph.

Proof The proof outline in Section 3 is sufficient for everything except the base cases. In particular,
line 6 follows by Lemma 33. For soundness, we only need to handle the positive base case, which
follows from Lemma 42.

The soundness of IDC* is also fairly straightforward.

Theorem 26 (b) If IDC* does not output FAIL, the expression it returns is equal to P(γ|δ) in a
given causal graph, if that expression is defined, and UNDEFINED otherwise.

Proof Theorem 20 shows how an operation similar to line 4 is sound by rule 2 of do-calculus (Pearl,
1995) when applied in a causal diagram. But we know that the counterfactual graph is just a causal
diagram for a model where some nodes share functions, so the same reasoning applies. The rest is
straightforward.

To show completeness of ID* and IDC*, we first prove a utility lemma which will make it easier
to construct counterexamples which agree on P∗ but disagree on a given counterfactual query.

Lemma 43 Let G be a causal graph partitioned into a set {S1, ...,Sk} of C-components. Then two
models M1,M2 which induce G agree on P∗ if and only if their submodels M1

v\si
,

M2
v\si

agree on P∗ for every C-component Si, and value assignment v\ si.

Proof This follows from C-component factorization: P(v) = ∏i Pv\si
(si). This implies that for

every do(x), Px(v) can be expressed as a product of terms Pv\(si\x)(si \x), which implies the result.

The next result generalizes Lemma 27 to a wider set of counterfactual graphs which result from
non-identifiable queries.
Lemma 28 Assume G is such that X is a parent of Y and Z, and Y and Z are connected by a
bidirected path with observable nodes W 1, ...,W k on the path. Then P∗,G 6`id P(yx,w1, ...,wk,zx′),
P(yx,w1, ...,wk,z) for any value assignments y,w1, ...,wk,z.

Proof We construct two models with graph G as follows. In both models, all variables are binary,
and P(u) is uniform. In M1, each variable is set to the bit parity of its parents. In M2, the same is true
except Y and Z ignore the values of X . To prove that the two models agree on P∗, we use Lemma
43. Clearly the two models agree on P(X). To show that the models also agree on Px(V\X) for all
values of x, note that in M2 each value assignment over V\X with even bit parity is equally likely,
while no assignment with odd bit parity is possible. But the same is true in M1 because any value
of x contributes to the bit parity of V\X exactly twice. The agreement of M1

x ,M
2
x on P∗ follows by

the graph structure of G.
To see that the result is true, we note firstly that P(ΣiW i +Yx +Zx′ (mod 2) = 1) = P(ΣiW i +

Yx +Z (mod 2) = 1) = 0 in M2, while the same probabilities are positive in M1, and secondly that
in both models distributions P(yx,w1, ...,wk,zx′) and P(yx,w1, ..,wk,z) assign equal probabilities to

1975

SHPITSER AND PEARL

outcomes with positive probabilities, while we just established that the set of these possible out-
comes differs in M1 and M2. Note that the proof is easy to generalize for positive P∗ by adding a
small probability for Y to flip its normal value.

To obtain a full characterization of non-identifiable counterfactual graphs, we augment the dif-
ficult graphs we obtained from the previous two results using certain graph transformation rules
which preserve non-identifiability. These rules are given in the following two lemmas.
Lemma 29 Assume P∗,G 6`id P(γ). Let {y1

x1 , ...,yn
xm} be a subset of counterfactual events in γ.

Let G′ be a graph obtained from G by adding a new child W of Y 1, ...,Y n, and let P′∗ be the set of
all interventional distributions in models inducing G′. Let γ′ = (γ\{y1

x1 , ...,yn
xm})∪{wx1 , ...,wxm},

where w is an arbitrary value of W. Then P′∗,G
′ 6`id P(γ′).

Proof Let M1,M2 witness P∗,G 6`id P(γ). We will extend these models to witness P′∗,G
′ 6`id P(γ′).

Since the function of a newly added W will be shared, and M1,M2 agree on P∗ in G, the extensions
will agree on P′∗ by Lemma 43. We have two cases.

Assume there is a variable Y i such that yi
x j ,yi

xk are in γ. By Lemma 27, P∗,G 6`id P(yi
x j ,yi

xk).
Then let W be a child of just Y i, and assume |W | = |Y i| = c. Let W be set to the value of Y i

with probability 1− ε, and otherwise it is set to a uniformly chosen random value of Y i among the
other c−1 values. Since ε is arbitrarily small, and since Wx j and Wxk pay attention to the same U
variable, it is possible to set ε in such a way that if P1(Y i

x j ,Y i
xk) 6= P2(Y i

x j ,Y i
xk), however minutely,

then P1(Wx j ,Wxk) 6= P2(Wx j ,Wxk).
Otherwise, let |W | = ∏i |Y

i|, and let P(W |Y 1, ...,Y n) be an invertible stochastic matrix. Our
result follows.

Lemma 30 Assume P∗,G 6`id P(γ). Let G′ be obtained from G by merging some two nodes X ,Y
into a new node Z where Z inherits all the parents and children of X ,Y , subject to the following
restrictions:

• The merge does not create cycles.

• If (∃ws ∈ γ) where x ∈ s, y 6∈ s, and X ∈ An(W)G, then Y 6∈ An(W)G.

• If (∃ys ∈ γ) where x ∈ s, then An(X)G = /0.

• If (Yw,Xs ∈ γ), then w and s agree on all variable settings.

Assume |X | × |Y | = |Z| and there’s some isomorphism f assigning value pairs x,y to a value
f (x,y) = z. Let γ′ be obtained from γ as follows. For any ws ∈ γ:

• If W 6∈ {X ,Y}, and values x,y occur in s, replace them by f (x,y).

• If W 6∈ {X ,Y}, and the value of one of X ,Y occur in s, replace it by some z consistent with the
value of X or Y .

• If X ,Y do not occur in γ, leave γ as is.

• If W = Y and x ∈ s, replace ws by f (x,y)s\{x}.

1976

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

• otherwise, replace every variable pair of the form Yr = y,Xs = x by Zr,s = f (x,y).

Then P∗,G′ 6`id P(γ′).

Proof Let Z be the Cartesian product of X ,Y , and fix f . We want to show that the proof of non-
identification of P(γ) in G carries over to P(γ′) in G′.

We have five modification conditions which can apply to a variable ws ∈ γ. However, since γ is
left alone if X ,Y do not occur in γ (the third condition), only the remaining four of these conditions
result in an actual modification of a counterfactual variable in γ.

We go through these remaining conditions one by one. The first clearly results in the same
counterfactual variable. For the second, due to the restrictions we imposed, wz = wz,y,x, which
means we can apply the first modification.

For the fourth, we have P(γ) = P(δ,yx,z). By our restrictions, and rule 2 of do-calculus (Pearl,
1995), this is equal to P(δ,yz|xz). Since this is not identifiable, then neither is P(δ,yz,xz). Now it’s
clear that our modification is equivalent to one applied after the fifth condition.

The fifth modification is simply a merge of events consistent with a single causal world into a
conjunctive event, which does not change the overall expression.

We are now ready to show the main completeness results for counterfactual identification algo-
rithms. Again, we prove this results separately for ID* and IDC* for convenience.

Theorem 31 (a) ID* is complete.

Proof We want to show that if line 8 fails, the original P(γ) cannot be identified. There are two
broad cases to consider. If Gγ contains the w-graph, the result follows by Lemmas 27 and 29. If not,
we argue as follows.

Fix some X which witnesses the precondition on line 8. We can assume X is a parent of some
nodes in S. Assume no other node in sub(S) affects S (effectively we delete all edges from parents
of S to S except from X). Because the w-graph is not a part of Gγ, this has no ramifications on edges
in S. Further, we assume X has two values in S.

If X 6∈ S, fix Y,W ∈ S∩Ch(X). Assume S has no directed edges at all. Then P∗,G 6`id P(S) by
Lemma 28. The result now follows by Lemma 29, and by construction of Gγ, which implies all
nodes in S have some descendant in γ.

If S has directed edges, we want to show P∗,G 6`id P(R(S)), where R(S) is the subset of S with
no children in S. We can recover this from the previous case as follows. Assume S has no edges
as before. For a node Y ∈ S, fix a set of childless nodes X ∈ S which are to be their parents. Add
a virtual node Y ′ which is a child of all nodes in X. Then P∗,G 6`id P((S \X)∪Y ′) by Lemma 29.
Then P∗,G 6`id P(R(S′)), where S′ is obtained from S by adding edges from X to Y by Lemma 30,
which applies because no w-graph exists in Gγ. We can apply this step inductively to obtain the
desired forest (all nodes have at most one child) S while making sure P∗,G 6`id P(R(S)).

If S is not a forest, we can simply disregard extra edges so effectively it is a forest. Since the
w-graph is not in Gγ this does not affect edges from X to S.

If X ∈ S, fix Y ∈ S∩Ch(X). If S has no directed edges at all, replace X by a new virtual node Y ,
and make X be the parent of Y . By Lemma 28, P∗,G 6`id P((S \ x)∪ yx). We now repeat the same
steps as before, to obtain that P∗,G 6`id P((R(S)\ x)∪ yx) for general S. Now we use Lemma 30 to

1977

SHPITSER AND PEARL

obtain P∗,G 6`id P(R(S)). Having shown P∗,G 6`id P(R(S)), we conclude our result by inductively
applying Lemma 29.

Theorem 31 (b) IDC* is complete.

Proof The difficult step is to show that after line 5 is reached, if P∗,G 6`id P(γ,δ) then P∗,G 6`id

P(γ|δ). If P∗,G `id P(δ), this is obvious. Assume P∗,G 6`id P(δ). Fix the S which witnesses that for
δ′ ⊆ δ, P∗,G 6`id P(δ′). Fix some Y such that a back-door, that is, starting with an incoming arrow,
path exists from δ′ to Y in Gγ,δ. We want to show that P∗,G 6`id P(Y |δ′). Let G′ = GAn(δ′)∩De(S).

Assume Y is a parent of a node D ∈ δ′, and D ∈G′. Augment the counterexample models which
induce counterfactual graph G′ with an additional binary node for Y , and let the value of D be set
as the old value plus Y modulo |D|. Let Y attain value 1 with vanishing probability ε. That the
new models agree on P∗ is easy to establish. To see that P∗,G 6`id P(δ′) in the new model, note that
P(δ′) in the new model is equal to P(δ′ \D,D = d)∗(1−ε)+P(δ′ \D,D = (d−1) (mod |D|))∗ε.
Because ε is arbitrarily small, this implies our result. To show that P∗,G 6`id P(Y = 1|δ′), we must
show that the models disagree on P(δ′|Y = 1)/P(δ′). But to do this, we must simply find two
consecutive values of D, d,d + 1 (mod |D|) such that P(δ′ \D,d + 1 (mod |D|))/P(δ′ \D,d) is
different in the two models. But this follows from non-identification of P(δ′).

If Y is not a parent of D ∈ G′, then either it is further along on the back-door path or it’s a child
of some node in G′. In case 1, we must construct the distributions along the back-door path in such
a way that if P∗,G 6`id P(Y ′|δ′) then P∗,G 6`id P(Y |δ′), where Y ′ is a node preceding Y on the path.
The proof follows closely the one in Theorem 21. In case 2, we duplicate the nodes in G′ which lead
from Y to δ′, and note that we can show non-identification in the resulting graph using reasoning in
case 1. We obtain our result by applying Lemma 30.

References

Chen Avin, Ilya Shpitser, and Judea Pearl. Identifiability of path-specific effects. In International Joint
Conference on Artificial Intelligence, volume 19, pages 357–363, 2005.

Alexander Balke and Judea Pearl. Counterfactual probabilities: Computational methods, bounds and appli-
cations. In Proceedings of UAI-94, pages 46–54, 1994a.

Alexander Balke and Judea Pearl. Probabilistic evaluation of counterfactual queries. In Proceedings of
AAAI-94, pages 230–237, 1994b.

Alexander Philip Dawid. Conditional independence in statistical theory. Journal of the Royal Statistical
Society, 41:1–31, 1979.

David Galles and Judea Pearl. An axiomatic characterization of causal counterfactuals. Foundation of Sci-
ence, 3:151–182, 1998.

Trygve Haavelmo. The statistical implications of a system of simultaneous equations. Econometrica, 11:
1–12, 1943.

Joseph Halpern. Axiomatizing causal reasoning. Journal of A.I. Research, pages 317–337, 2000.

1978

COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

Yimin Huang and Marco Valtorta. Pearl’s calculus of interventions is complete. In Twenty Second Conference
On Uncertainty in Artificial Intelligence, 2006a.

Yimin Huang and Marco Valtorta. Identifiability in causal bayesian networks: A sound and complete algo-
rithm. In Twenty-First National Conference on Artificial Intelligence, 2006b.

Manabu Kuroki and Masami Miyakawa. Identifiability criteria for causal effects of joint interventions. Jour-
nal of Japan Statistical Society, 29:105–117, 1999.

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000. ISBN 0-521-
77362-8.

Judea Pearl. Direct and indirect effects. In Proceedings of UAI-01, pages 411–420, 2001.

Judea Pearl. Fusion, propagation, and structuring in belief networks. Artificial Intelligence, 29:241–288,
1986.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan and Kaufmann, San Mateo, 1988.

Judea Pearl. Graphical models, causality, and intervention. Statistical Science, 8:266–9, 1993a.

Judea Pearl. A probabilistic calculus of actions. In Uncertainty in Artificial Intelligence (UAI), volume 10,
pages 454–462, 1993b.

Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–709, 1995. URL
citeseer.ist.psu.edu/55450.html.

Judea Pearl and James M. Robins. Probabilistic evaluation of sequential plans from causal models with
hidden variables. In Uncertainty in Artificial Intelligence, volume 11, pages 444–453, 1995.

Ilya Shpitser and Judea Pearl. Identification of joint interventional distributions in recursive semi-markovian
causal models. In Twenty-First National Conference on Artificial Intelligence, 2006a.

Ilya Shpitser and Judea Pearl. Identification of conditional interventional distributions. In Uncertainty in
Artificial Intelligence, volume 22, 2006b.

Ilya Shpitser and Judea Pearl. What counterfactuals can be tested. In Twenty Third Conference on Uncertainty
in Artificial Intelligence, forthcoming. Morgan Kaufmann, 2007.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. Springer Verlag,
New York, 1993.

Jin Tian. Studies in Causal Reasoning and Learning. PhD thesis, Department of Computer Science, Univer-
sity of California, Los Angeles, 2002.

Thomas S. Verma. Causal networks: semantics and expressiveness. Technical Report R-65, Cognitive Sys-
tems Laborator, University of California, Los Angeles, 1986.

Sewall Wright. Correlation and causation. Journal of Agricultural Research, 20:557–585, 1921.

1979

Journal of Machine Learning Research 9 (2008) 1981-2014 Submitted 5/07; Revised 6/08; Published 9/08

Mixed Membership Stochastic Blockmodels

Edoardo M. Airoldi∗ EAIROLDI@PRINCETON.EDU

David M. Blei BLEI@CS.PRINCETON.EDU

Department of Computer Science
Princeton University
Princeton, NJ 08544, USA

Stephen E. Fienberg† FIENBERG@STAT.CMU.EDU

Department of Statistics
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Eric P. Xing EPXING@CS.CMU.EDU

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Editor: Tommi Jaakkola

Abstract
Consider data consisting of pairwise measurements, such as presence or absence of links between
pairs of objects. These data arise, for instance, in the analysis of protein interactions and gene
regulatory networks, collections of author-recipient email, and social networks. Analyzing pair-
wise measurements with probabilistic models requires special assumptions, since the usual inde-
pendence or exchangeability assumptions no longer hold. Here we introduce a class of variance
allocation models for pairwise measurements: mixed membership stochastic blockmodels. These
models combine global parameters that instantiate dense patches of connectivity (blockmodel) with
local parameters that instantiate node-specific variability in the connections (mixed membership).
We develop a general variational inference algorithm for fast approximate posterior inference. We
demonstrate the advantages of mixed membership stochastic blockmodels with applications to so-
cial networks and protein interaction networks.
Keywords: hierarchical Bayes, latent variables, mean-field approximation, statistical network
analysis, social networks, protein interaction networks

1. Introduction

The problem of modeling relational information among objects, such as pairwise relations repre-
sented as graphs, arises in a number of settings in machine learning. For example, scientific litera-
ture connects papers by citations, the Web connects pages by links, and protein-protein interaction
data connects proteins by physical binding records. In these settings, we often wish to infer hidden
attributes of the objects from the observed measurements on pairwise properties. For example, we
might want to compute a clustering of the web-pages, predict the functions of a protein, or assess

∗. Also in the Lewis-Sigler Institute for Integrative Genomics. Address correspondence to 228 Carl Icahn Laboratory,
Princeton University.

†. Also in the School of Computer Science.

c©2008 Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg and Eric P. Xing.

AIROLDI, BLEI, FIENBERG AND XING

the degree of relevance of a scientific abstract to a scholar’s query. Unlike traditional data collected
from individual objects, relational data violate the classical independence or exchangeability as-
sumptions made in machine learning and statistics. The observations are dependent because of the
way they are connected. This interdependence suggests that a different set of assumptions is more
appropriate.

There is a history of research devoted to analyzing relational data. One well-studied problem is
clustering, grouping the objects to uncover a structure based on the observed patterns of interactions.
Standard model-based clustering methods, for example, mixture models, are not immediately ap-
plicable to relational data because they assume that the objects are conditionally independent given
their cluster assignments. Rather, the latent stochastic blockmodel (Wang and Wong, 1987; Snijders
and Nowicki, 1997) is an adaptation of mixture modeling to relational data. In that model, each ob-
ject belongs to a cluster and the relationships between objects are governed by the corresponding
pair of clusters. With posterior inference, one identifies a set of latent roles which govern the ob-
jects relationships with each other. A recent extension of this model relaxed the finite-cardinality
assumption on the latent clusters with a nonparametric hierarchical Bayesian model based on the
Dirichlet process prior (Kemp et al., 2004, 2006; Xu et al., 2006).

The latent stochastic blockmodel suffers from a limitation that each object can only belong to
one cluster, or in other words, play a single latent role. However, many relational data sets are
multi-facet. For example, when a protein or a social actor interacts with different partners, different
functional or social contexts may apply and thus the protein or the actor may be acting according to
different latent roles they can possible play. In this paper, we relax the assumption of single-latent-
role for actors, and develop a mixed membership model for relational data. Mixed membership
models, such as latent Dirichlet allocation (Blei et al., 2003), have re-emerged in recent years as a
flexible modeling tool for data where the single cluster assumption is violated by the heterogeneity
within of a data point. For almost two decades, these models have been successfully applied in many
domains, such as surveys (Berkman et al., 1989; Erosheva, 2002), population genetics (Pritchard
et al., 2000), document analysis (Minka and Lafferty, 2002; Blei et al., 2003; Buntine and Jakulin,
2006), image processing (Li and Perona, 2005), and transcriptional regulation (Airoldi et al., 2007).

The mixed membership model associates each unit of observation with multiple clusters rather
than a single cluster, via a membership probability-like vector. The concurrent membership of
a data in different clusters can capture its different aspects, such as different underlying topics
for words constituting each document. This is also a natural idea for relational data, where the
objects can bear multiple latent roles or cluster-memberships that influence their relationships to
others. As we will demonstrate, a mixed membership approach to relational data lets us describe
the interaction between objects playing multiple roles. For example, some of a protein’s interactions
may be governed by one function; other interactions may be governed by another function.

Existing mixed membership models are not appropriate for relational data because they assume
that the data are conditionally independent given their latent membership vectors. In relational data,
where each object is described by its relationships to others, we would like to assume that the en-
semble of mixed membership vectors help govern the relationships of each object. The conditional
independence assumptions of modern mixed membership models do not apply.

1982

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

.

.

.

y
11

21

31

N1

y

y

y

.

.

.

y
12

22

32

N2

y

y

y

.

.

.

y
13

23

33

N3

y

y

y

.

.

.

y
1N

2N

3N

NN

y

y

y

. . .

. . .

. . .

. . .

.
.

.

B

.

.

.

1

2

3

n

z
1 1

y
11

z
1 1

z
1 2

y
12

z
1 2

z
1 3

y
13

z
1 3

z
1 N

y
1N

z
1 N

. . .

z
2 1

y
21

z
2 1

z
2 2

y
22

z
2 2

z
2 3

y
23

z
2 3

z
2 N

y
2N

z
2 N

. . .

z
3 1

y
31

z
3 1

z
3 2

y
32

z
3 2

z
3 3

y
33

z
3 3

z
3 N

y
3N

z
3 N

. . .

z
N 1

y
N1

z
N 1

z
N 2

y
N2

z
N 2

z
1 1

y
N3

z
N 3

z
N N

y
NN

z
N N

. . .

.

.

.

.

.

.

.

.

.

.

.

.
.

.
..

.

.

1

2

3

n

B

Figure 1: Two graphical model representations of the mixed membership stochastic blockmodel
(MMB). Intuitively, the MMB summarized the variability of a graph with the blockmodel
B and node-specific mixed membership vectors (left). In detail, a mixed membership,
πn(k), quantifies the expected proportion of times node n instantiates the connectivity
pattern of group k, according to the blockmodel. In any given interaction, Y (n,m), how-
ever, node n instantiates the connectivity pattern of a single group, zn→m(k). (right). We
did not draw all the arrows out of the block model B for clarity; all interactions depend
on it.

In this paper, we develop mixed membership models for relational data.1 Models in this family
include parameters to reduce bias due to sparsity, and can be used to analyze multiple collections
of paired measurements, and collections of non-binary and multivariate paired measurements. We
develop a fast nested variational inference algorithm that performs well in the relational setting and
is parallelizable. We demonstrate the application of our technique to large-scale protein interaction
networks and social networks. Our model captures the multiple roles that objects exhibit in interac-
tion with others, and the relationships between those roles in determining the observed interaction
matrix.

Mixed membership and the latent block structure can be recovered from relational data (Section
4.1). The application to a friendship network among students tests the model on a real data set where
a well-defined latent block structure exists (Section 4.2). The application to a protein interaction
network tests to what extent our model can reduce the dimensionality of the data, while revealing
substantive information about the functionality of proteins that can be used to inform subsequent
analyses (Section 4.3).

1983

AIROLDI, BLEI, FIENBERG AND XING

2. The Mixed Membership Stochastic Blockmodel

In this section, we describe the modeling assumptions if the mixed membership model of relational
data. We represent observed relational data as a graph G = (N ,Y), where Y (p,q) maps pairs of
nodes to values, that is, edge weights. We consider binary matrices, where Y (p,q) ∈ {0,1}. The
data can be thought of as a directed graph.

As a running example, we consider the monk data of Sampson (1968). Sampson measured a
collection of sociometric relations among a group of monks by repeatedly asking questions such as
“whom do you like?” and “whom do you dislike?” to determine asymmetric social relationships
within the group. The questionnaire was repeated at four subsequent epochs. Information about
these repeated, asymmetric relations was collapsed into a square binary table that encodes the di-
rected connections between monks by Breiger et al. (1975). In analyzing this data, the goal is to
determine the social structure within the monastery.

In the context of the monastery example, we assume K factions, that is, latent groups, exist in the
monastery, and the observed network is generated according to distributions of group-membership
for each monk and a matrix of group-group interaction strength. The per-monk distributions are
specified by latent simplicial vectors. Each monk is associated with a randomly drawn vector ~πi

for monk i, where πi,g denotes the probability of monk i belonging to group g. That is, each monk
can simultaneously belong to multiple groups with different degrees of affiliation strength. The
probabilities of interactions between different groups are defined by a matrix of Bernoulli rates
B(K×K), where B(g,h) represents the probability of having a link between a monk from group g and
a monk from group h.

For each monk, the indicator vector~zp→q denotes the group membership of monk p when he
responds to survey questions about monk q and~zp←q denotes the group membership of monk q when
he responds to survey questions about node p.2 N denotes the number of monks in the monastery,
and recall that K denotes the number of distinct groups a monk can belong to.

More in general, monks can be represented by nodes in a graph, where directed (binary) edges
represent positive responses to survey questions about a specific sociometric relation. In this abstract
setting, the mixed membership stochastic blockmodel (MMB) posits that a graph G = (N ,Y) is
drawn from the following procedure.

• For each node p ∈N :

– Draw a K dimensional mixed membership vector~πp ∼ Dirichlet (~α).

• For each pair of nodes (p,q) ∈N ×N :

– Draw membership indicator for the initiator,~zp→q ∼Multinomial (~πp).

– Draw membership indicator for the receiver,~zq→p ∼Multinomial (~πq).

– Sample the value of their interaction, Y (p,q)∼ Bernoulli (~z >p→qB~zp←q).

1. In previous work we combined mixed membership and blockmodels to perform analyses of a single collection of bi-
nary, paired measurements; namely, hypothesis testing, predicting and de-noising interactions within an unsupervised
learning setting (Airoldi et al., 2005).

2. An indicator vector is used to denote membership in one of the K groups. Such a membership-indicator vector is
specified as a K-dimensional vector of which only one element equals to one, whose index corresponds to the group
to be indicated, and all other elements equal to zero.

1984

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

This process is illustrated as a graphical model in Figure 1. Note that the group membership of each
node is context dependent. That is, each node may assume different membership when interacting
to or being interacted by different peers. Statistically, each node is an admixture of group-specific
interactions. The two sets of latent group indicators are denoted by {~zp→q : p,q ∈ N } =: Z→ and
{~zp←q : p,q ∈N }=: Z←. Also note that the pairs of group memberships that underlie interactions
need not be equal; this fact is useful for characterizing asymmetric interaction networks. Equality
may be enforced when modeling symmetric interactions.

Under the MMB, the joint probability of the data Y and the latent variables {~π1:N ,Z→,Z←} can
be written in the following factored form,

p(Y,~π1:N ,Z→,Z←|~α,B)

= ∏
p,q

P(Y (p,q)|~zp→q,~zp←q,B)P(~zp→q|~πp)P(~zp←q|~πq)∏
p

P(~πp|~α). (1)

This model generalizes to two important cases. First, multiple networks among the same actors
can be generated by the same latent vectors. This may be useful, for instance, to analyze multivariate
sociometric relations. Second, in the MMB the data generating distribution is a Bernoulli, but B can
be a matrix that parameterizes any kind of distribution. This may be useful, for instance, to analyze
collections of paired measurements, Y , that take values in an arbitrary metric space. We elaborate
on this in Section 5.

2.1 Modeling Sparsity

Adjacency matrices encoding binary pairwise measurements are often sparse, that is, they contain
many zeros or non-interactions. It is useful to distinguish two sources of non-interaction: they may
be the result of the rarity of interactions in general, or they may be an indication that the pair of
relevant blocks rarely interact. In applications to social sciences, for instance, nodes may represent
people and blocks may represent social communities. It is reasonable to expect that a large portion
of the non-interactions is due to limited opportunities of contact between people rather than due to
deliberate choices, the structure of which the blockmodel is trying to estimate. It is useful to account
for these two sources of sparsity at the model level. A good estimate of the portion of zeros that
should not be explained by the blockmodel B reduces the bias of the estimates of its elements.

Thus, we introduce a sparsity parameter ρ∈ [0,1] in the MMB to characterize the source of non-
interaction. Instead of sampling a relation Y (p.q) directly the Bernoulli with parameter specified
as above, we down-weight the probability of successful interaction to (1− ρ) ·~z >p→qB~zp←q. This
is the result of assuming that the probability of a non-interaction comes from a mixture, 1−σpq =
(1− ρ) ·~z >p→q(1−B) ~zp←q + ρ, where the weight ρ capture the portion zeros that should not be
explained by the blockmodel B. A large value of ρ will cause the interactions in the matrix to be
weighted more than non-interactions, in determining plausible values for {~α,B,~π1:N}.

The sparsity parameter ρ can be estimated. Its maximum likelihood estimate provides the best
data-driven guess about the proportion of zeros that the blockmodel can explain. Introducing ρ
provides a strategy to rescale B, by separating zeros in the adjacency matrix into those that are
likely to be due to the blockmodel and those that are not.

1985

AIROLDI, BLEI, FIENBERG AND XING

2.2 Summarizing and De-Noising Pairwise Measurements

It is useful to distinguish two types of data analysis that can be performed with the mixed-membership
blockmodel. First, MMB can be used to summarize the data, Y , in terms of the global blockmodel,
B, and the node-specific mixed memberships, Πs. Second, MMB can be used to de-noise the data,
Y , in terms of the global blockmodel, B, and interaction-specific single memberships, Zs. In both
cases the model depends on a small set of unknown constants to be estimated: α, and B. The like-
lihood is the same in both cases, although, the rationale for including the set of latent variables Zs
differs. When summarizing data, we could integrate out the Zs analytically; this leads to numerical
optimization of a smaller set of variational parameters, Γs. We choose to keep the Zs to simplify
inference. When de-noising, the Zs are instrumental in estimating posterior expectations of each
interactions individually—a network analog to the Kalman Filter. The posterior expectations of an
interaction is computed as follows, in the two cases,

E [Y (p,q) = 1]≈ ~̂πp
′ B̂ ~̂πq and E [Y (p,q) = 1]≈~̂φp→q

′ B̂ ~̂φp←q.

2.3 An Illustration: Crisis in a Cloister

To illustrate the MMB, we return to an analysis of the monk data described above. Sampson (1968)
surveyed 18 novice monks in a monastery and asked them to rank the other novices in terms of four
sociometric relations: like/dislike, esteem, personal influence, and alignment with the monastic
credo. We consider Breiger’s collation of Sampson’s data (Breiger et al., 1975). The original graph
of monk-monk interaction is illustrated in Figure 2 (left).

Sampson spent several months in a monastery in New England, where novice monks were
preparing to join a monastic order. Sampson’s original analysis was rooted in direct anthropological
observations. He suggested the existence of tight factions among the novices: the loyal opposition
(whose members joined the monastery first), the young turks (who joined later on), the outcasts (who
were not accepted in the two main factions), and the waverers (who did not take sides). The events
that took place during Sampson’s stay at the monastery supported his observations—members of
the young turks resigned or were expelled over religious differences (John and Gregory). We shall

Figure 2: Original adjacency matrix of whom-do-like sociometric relations (left), relations pre-
dicted using approximate MLEs for~π1:N and B (center), and relations de-noised using the
model including Zs indicators (right).

1986

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

refer to the labels assigned by Sampson to the novices in the analysis below. For more analyses, we
refer to Fienberg et al. (1985), Davis and Carley (2006) and Handcock et al. (2007).

Using the algorithms presented in Section 3, we fit the monks to MMB models for different
numbers of groups, providing model estimates {α̂, B̂} and posterior mixed membership vectors ~πn

for each monk. Here, we use the following approximation to BIC to choose the number of groups
in the MMB:

BIC = 2 · log p(Y)≈ 2 · log p(Y |~̂π, Ẑ,~̂α, B̂)−|~α,B| · log |Y |,

which selects three groups, where |~α,B| is the number of hyper-parameters in the model, and |Y | is
the number of positive relations observed (Volinsky and Raftery, 2000; Handcock et al., 2007). Note
that this is the same number of groups that Sampson identified. We illustrate the fit of model fit via
the predicted network in Figure 2 (Right). The three panels contrast the different resolution of the
original adjacency matrix of whom-do-like sociometric relations (left panel) obtained in different
uses of MMB. If the goal of the analysis if to find a parsimonious summary of the data, the amount
of relational information that is captured by in α̂, B̂, and E[~π|Y] leads to a coarse reconstruction
of the original sociomatrix (central panel). If the goal of the analysis if to de-noising a collection
of pairwise measurements, the amount of relational information that is revealed by α̂, B̂,E[~π|Y]
and E[Z→,Z←|Y] leads to a finer reconstruction of the original sociomatrix, Y —relations in Y are
re-weighted according to how much they make sense to the model (right panel).

 1 2

3

4

 5 6

 7

 8

9

 10

 11

 12

 13

 14

 15

 16

17

 18

Outcasts

Loyal
Opposition

Young

Turks

Waverers

1 Ambrose

2 Boniface

3 Mark

4 Winfrid

5 Elias

6 Basil

7 Simplicius

8 Berthold

9 John Bosco

10 Victor

11 Bonaventure

12 Amand

13 Louis

14 Albert

15Ramuald

16 Peter

17 Gregory

18 Hugh

Figure 3: Posterior mixed membership vectors, ~π1:18, projected in the simplex. Numbered points
can be mapped to monks’ names using the legend on the right. The colors identify the
four factions defined by Sampson’s anthropological observations.

1987

AIROLDI, BLEI, FIENBERG AND XING

Young Turks

Loyal

Opposition

Outcasts

0.9

0.9 0.5

0.3

0.4

Figure 4: Estimated blockmodel in the monk data, B̂.

The MMB provides interesting descriptive statistics about the actors in the observed graph. In
Figure 3 we illustrate the the posterior means of the mixed membership scores, E[~π|Y], for the 18
monks in the monastery. Note that the monks cluster according to Sampson’s classification, with
Young Turks, Loyal Opposition, and Outcasts dominating each corner respectively. We can see the
central role played by John Bosco and Gregory, who exhibit relations in all three groups, as well
as the uncertain affiliations of Ramuald and Victor. (Amand’s uncertain affiliation, however, is not
captured.) The estimated blockmodel is shown in Figure 4.

3. Parameter Estimation and Posterior Inference

Two computational problems are central to the MMB: posterior inference of the per-node mixed
membership vectors and per-pair roles, and parameter estimation of the Dirichlet parameters and
Bernoulli rate matrix. We derive empirical Bayes estimates of the parameters (~α,B), and employ a
mean-field approximation scheme for posterior inference.

3.1 Posterior Inference

The posterior inference problem is to compute the posterior distribution of the latent variables given
a collection of observations. The normalizing constant of the posterior distribution is the marginal
probability of the data, which requires an integral over the simplicial vectors~πp,

p(Y |~α,B) =
Z

Π
∑
Zs

(

∏
p,q

P(Y (p,q)|~zp→q,~zp←q,B)P(~zp→q|~πp)P(~zp←q|~πq)∏
p

P(~πp|~α)

)
d~π,

which is not solvable in closed form (Blei et al., 2003). A number of approximate inference al-
gorithms for mixed membership models have appeared in recent years, including mean-field vari-
ational methods (Blei et al., 2003; Teh et al., 2007), expectation propagation (Minka and Lafferty,
2002), and Monte Carlo Markov chain sampling (MCMC) (Erosheva and Fienberg, 2005; Griffiths
and Steyvers, 2004).

1988

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

We appeal to variational methods (Jordan et al., 1999; Wainwright and Jordan, 2003). The
main idea behind variational methods is to first posit a distribution of the latent variables with free
parameters, and then fit those parameters such that the distribution is close in Kullback-Leibler
divergence to the true posterior. The variational distribution is simpler than the true posterior so that
the optimization problem can be approximately solved. Good reviews of variational methods can be
found in Wainwright and Jordan (2003), Xing et al. (2003), Bishop et al. (2003) and Airoldi (2007).

In the MMB, we begin by bounding the log of the marginal probability of the data with Jensen’s
inequality,

log p(Y |α,B)≥ Eq [log p(Y,~π1:N ,Z→,Z←|α,B)]−Eq [logq(~π1:N ,Z→,Z←)] .

We have introduced a distribution of the latent variables q that depends on a set of free parameters.
We specify q as the mean-field fully-factorized family,

q(~π1:N ,Z→,Z←|~γ1:N ,Φ→,Φ←) = ∏
p

q1(~πp|~γp) ∏
p,q

(
q2(~zp→q|~φp→q) q2(~zp←q|~φp←q)

)
,

where q1 is a Dirichlet, q2 is a multinomial, and {~γ1:N ,Φ→,Φ←} are the set of free variational
parameters that are optimized to tighten the bound.

Tightening the bound with respect to the variational parameters is equivalent to minimizing the
KL divergence between q and the true posterior. When all the nodes in the graphical model are
conjugate pairs or mixtures of conjugate pairs, we can directly write down a coordinate ascent algo-
rithm for this optimization to reach a local maximum of the bound. The updates for the variational
multinomial parameters are

φ̂p→q,g ∝ e Eq[logπp,g] ·∏
h

(
B(g,h)Y (p,q)· (1−B(g,h))1−Y (p,q)

)φp←q,h

(2)

φ̂p←q,h ∝ e Eq[logπq,h] ·∏
g

(
B(g,h)Y (p,q)· (1−B(g,h))1−Y (p,q)

)φp→q,g

, (3)

for g,h = 1, . . . ,K. The update for the variational Dirichlet parameters γp,k is

γ̂p,k = αk +∑
q

φp→q,k +∑
q

φp←q,k, (4)

for all nodes p = 1, . . . ,N and k = 1, . . . ,K. The complete coordinate ascent algorithm is described
in Figure 5.

To improve convergence, we employed a nested variational inference scheme based on an al-
ternative schedule of updates to the traditional ordering. In a typical schedule for coordinate ascent
(which we call “naı̈ve variational inference”), one initializes the variational Dirichlet parameters
~γ1:N and the variational multinomial parameters (~φp→q,~φp←q) to non-informative values, and then
iterates the following two steps until convergence: (i) update ~φp→q and φp←q for all edges (p,q),
and (ii) update~γp for all nodes p ∈ N . In such algorithm, at each variational inference cycle we
need to allocate NK +2N2K scalars.

In our experiments, the naı̈ve variational algorithm often converged only after many iterations.
We attribute this behavior to the dependence between ~γ1:N and B, which is not satisfied by the
naı̈ve algorithm. Some intuition about why this may happen follows. From a purely algorithmic

1989

AIROLDI, BLEI, FIENBERG AND XING

1. initialize~γ0
pk = 2N

K for all p,k
2. repeat
3. for p = 1 to N
4. for q = 1 to N
5. get variational~φt+1

p→q and~φt+1
p←q = f (Y (p,q),~γt

p,~γt
q,B

t)

6. partially update ~γt+1
p , ~γt+1

q and Bt+1

7. until convergence

5.1. initialize φ0
p→q,g = φ0

p←q,h = 1
K for all g,h

5.2. repeat
5.3. for g = 1 to K
5.4. update φs+1

p→q ∝ f1 (~φs
p←q,~γp,B)

5.5. normalize~φs+1
p→q to sum to 1

5.6. for h = 1 to K
5.7. update φs+1

p←q ∝ f2 (~φs
p→q,~γq,B)

5.8. normalize~φs+1
p←q to sum to 1

5.9. until convergence

Figure 5: Top: The two-layered variational inference for (~γ,φp→q,g,φp←q,h) and M = 1. The in-
ner algorithm consists of Step 5. The function f is described in details in the bottom
panel. The partial updates in Step 6 for~γ and B refer to Equation 4 of Section B.4 and
Equation 5 of Section B.5, respectively. Bottom: Inference for the variational parame-
ters (~φp→q,~φp←q) corresponding to the basic observation Y (p,q). This nested algorithm
details Step 5 in the top panel. The functions f1 and f2 are the updates for φp→q,g and
φp←q,h described in Equations 2 and 3 of Section B.4.

perspective, the naı̈ve variational EM algorithm instantiates a large coordinate ascent algorithm,
where the parameters can be divided into blocks. Blocks are processed in a specific order, and the
parameters within each block get all updated each time.3 At every new iteration the naı̈ve algorithm
sets all the elements of~γt+1

1:N equal to the same constant. This dampens the likelihood by suddenly

breaking the dependence between the estimates of parameters in ~̂γ
t

1:N and in B̂t that was being
inferred from the data during the previous iteration.

Instead, the nested variational inference algorithm maintains some of this dependence that is
being inferred from the data across the various iterations. This is achieved mainly through a different

3. Within a block, the order according to which (scalar) parameters get updated is not expected to affect convergence.

1990

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

scheduling of the parameter updates in the various blocks. To a minor extent, the dependence
is maintained by always keeping the block of free parameters, (~φp→q,~φp←q), optimized given the
other variational parameters. Note that these parameters are involved in the updates of parameters
in~γ1:N and in B, thus providing us with a channel to maintain some of the dependence among them,
that is, by keeping them at their optimal value given the data.

Furthermore, the nested algorithm has the advantage that it trades time for space thus allowing
us to deal with large graphs; at each variational cycle we need to allocate NK + 2K scalars only.
The increased running time is partially offset by the fact that the algorithm can be parallelized and
leads to empirically observed faster convergence rates.

An alternative strategy to perform inference is given by Monte Carlo Markov chain (e.g., see
Griffiths and Steyvers, 2004; Kemp et al., 2004). While powerful in some settings, MCMC is
impractical here. There are too many variables to sample. The proposed nested variational EM
algorithm outperforms MCMC variations (i.e., blocked and collapsed Gibbs samplers) in terms of
memory requirements and convergence rates.

3.2 Parameter Estimation

We compute the empirical Bayes estimates of the model hyper-parameters {~α,B} with a variational
expectation-maximization (EM) algorithm. Alternatives to empirical Bayes have been proposed to
fix the hyper-parameters and reduce the computation. The results, however, are not always sat-
isfactory and often times cause of concern, since the inference is sensitive to the choice of the
hyper-parameters (Joutard et al., 2007). Empirical Bayes, on the other hand, guides the posterior
inference towards a region of the hyper-parameter space that is supported by the data.

Variational EM uses the lower bound in Equation 5 as a surrogate for the likelihood. To find a
local optimum of the bound, we iterate between fitting the variational distribution q to approximate
the posterior and maximizing the corresponding bound with respect to the parameters. The latter
M-step is equivalent to finding the MLE using expected sufficient statistics under the variational
distribution. We consider the maximization step for each parameter in turn.

A closed form solution for the approximate maximum likelihood estimate of ~α does not exist
(Minka, 2003). We use a linear-time Newton-Raphson method, where the gradient and Hessian are

∂L~α
∂αk

= N

(
ψ (∑

k

αk)−ψ(αk)

)
+∑

p

(
ψ(γp,k)−ψ (∑

k

γp,k)

)
,

∂L~α
∂αk1αk2

= N

(
I(k1=k2) ·ψ

′(αk1)−ψ′ (∑
k

αk)

)
.

The approximate MLE of B is

B̂(g,h) =
∑p,qY (p,q) ·φp→qg φp←qh

(1−ρ) ·∑p,q φp→qg φp←qh
,

for every index pair (g,h) ∈ [1,K]× [1,K]. Finally, the approximate MLE of the sparsity parameter
ρ is

ρ̂ =
∑p,q (1−Y (p,q)) · (∑g,h φp→qg φp←qh)

∑p,q ∑g,h φp→qg φp←qh
.

1991

AIROLDI, BLEI, FIENBERG AND XING

Alternatively, we can fix ρ prior to the analysis; the density of the interaction matrix is estimated
with d̂ = ∑p,qY (p,q)/N2, and the sparsity parameter is set to ρ̃ = (1− d̂). This latter estimator
attributes all the information in the non-interactions to the point mass, that is, to latent sources other
than the block model B or the mixed membership vectors ~π1:N . It does however provide a quick
recipe to reduce the computational burden during exploratory analyses.4

Several model selection strategies are available for complex hierarchical models (Joutard et al.,
2007). In our setting, model selection translates into the determination of a plausible value of the
number of groups K. In the various analyses presented, we selected the optimal value of K according
to two strategies. On large networks, we selected K corresponding to the highest averaged held-out
likelihood in a cross-validation experiment. On small networks—where cross-validation cannot be
expected to work well, as we discuss in Section 5—we selected K using an approximation to BIC.

4. Experiments and Results

We present a study of simulated data and applications to social and protein interaction networks.
Simulations are performed in Section 4.1 to show that both mixed membership, ~π1:N , and the

latent block structure, B, can be recovered from data, when they exist, and that the nested variational
inference algorithm is faster than the naı̈ve implementation while reaching the same peak in the
likelihood—all other things being equal.

The application to a friendship network among students in Section 4.2 tests the model on a real
data set where we expect a well-defined latent block structure to inform the observed connectivity
patterns in the network. In this application, the blocks are interpretable in terms of grades. We
compare our results with those that were recently obtained with a simple mixture of blocks (Doreian
et al., 2007) and with a latent space model (Handcock et al., 2007) on the same data.

The application to a protein interaction network in Section 4.3 tests the model on a real data set
where we expect a noisy, vague latent block structure to inform the observed connectivity patterns
in the network to some degree. In this application, the blocks are interpretable in terms functional
biological contexts. This application tests to what extent our model can reduce the dimensionality
of the data, while revealing substantive information about the functionality of proteins that can be
used to inform subsequent analyses.

4.1 Exploring Expected Model Behavior with Simulations

In developing the MMB and the corresponding computation, our hope is the the model can recover
both the mixed membership of nodes to clusters and the latent block structure among clusters in
situations where a block structure exists and the relations are measured with some error. To sub-
stantiate this claim, we sampled graphs of 100,300, and 600 nodes from blockmodels with 4,10,
and 20 clusters, respectively, using the MMB. We used different values of α to simulate a range of
settings in terms of membership of nodes to clusters—from unique (α = 0.05) to mixed (α = 0.25).

Recovering the truth. The variational EM algorithm successfully recovers both the latent block
model B and the latent mixed membership vectors ~π1:N . In Figure 6 we show the adjacency matri-
ces of binary interactions where rows, that is, nodes, are reordered according to their most likely
membership. The estimated reordering reveals the block model that was originally used to simulate

4. Note that ρ̃ = ρ̂ in the case of single membership. In fact, that implies φm
p→qg = φm

p←qh = 1 for some (g,h) pair, for
any (p,q) pair.

1992

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

the interactions. As α increases, each node is likely to belong to more clusters. As a consequence,
they express interaction patterns of clusters. This phenomenon reflects in the reordered interaction
matrices as the block structure is less evident.

Nested variational inference. The nested variational algorithm drives the log-likelihood to con-
verge faster to its peak than the naı̈ve algorithm. In Figure 7 (left panel) we compare the running
times of the nested variational-EM algorithm versus the naı̈ve implementation. The nested algo-
rithm, which is more efficient in terms of space, converged faster. Furthermore, the nested varia-
tional algorithm can be parallelized given that the updates for each interaction (i, j) are independent
of one another.

Choosing the number of blocks. The right panel of Figure 7 shows an example where cross-
validation is sufficient to perform model selection for the MMB. The example shown corresponds
to a network among 300 nodes with K = 10 clusters. We measure the number of latent clusters

Figure 6: Adjacency matrices of corresponding to simulated interaction graphs with 100 nodes and
4 clusters, 300 nodes and 10 clusters, 600 nodes and 20 clusters (top to bottom) and
α equal to 0.05,0.1 and 0.25 (left to right). Rows, which corresponds to nodes, are
reordered according to their most likely membership. The estimated reordering accurately
reveals the original blockmodel.

1993

AIROLDI, BLEI, FIENBERG AND XING

on the X axis and the average held-out log-likelihood, corresponding to five-fold cross-validation
experiments, on the Y axis. The nested variational EM algorithm was xrun until convergence, for
each value of K we tested, with a tolerance of ε = 10−5. Our estimate for K occurs at the peak in
the average held-out log-likelihood, and equals the correct number of clusters, K∗ = 10

4.2 Application to Social Network Analysis

We considered a friendship network among a group of 69 students in grades 7–12. The analysis
here directly compares clustering results obtained by MMB to published clustering results obtained
by competing models, in a setting where a fair amount of social segregation is expected (Doreian
et al., 2007; Handcock et al., 2007).

The National Longitudinal Study of Adolescent Health is nationally representative study that
explores the how social contexts such as families, friends, peers, schools, neighborhoods, and com-
munities influence health and risk behaviors of adolescents, and their outcomes in young adulthood
(Harris et al., 2003; Udry, 2003). As part of the survey, a questionnaire was administered to a sam-
ple of students in each school, who were allowed to nominate up to 10 friends. We analyzed a
friendship network among the students, at the same school that was considered by Handcock et al.
(2007) and discussants. Friendship nominations were collected among 71 students in grades 7 to 12;
two students did not nominate any friends. The network of binary, asymmetric friendship relations
among the remaining 69 students that constitutes our data is shown in Figure 9 (left).

0 50 100 150

-9000

-8000

-7000

-6000

-5000

Time (in seconds)

H
el
d
-O
u
t
 L
o
g
 L
ik
el
ih
o
o
d

5 10 15 20 25 30 35 40

-12K

-10K

-8K

-6K

-4K

Number of latent groups

H
el
d
-O
u
t
 L
o
g
 L
ik
el
ih
o
o
d

Figure 7: Left: The running time of the naı̈ve variational inference (dashed, red line) against the
running time of our enhanced (nested) variational inference algorithm (solid, black line),
on a graph with 100 nodes and 4 clusters. We measure the number of seconds on the
X axis and the log-likelihood on the Y axis. The two curves are averages over 26 ex-
periments, and the error bars are at three standard deviations. Each of the 26 pairs of
experiments was initialized with the same values for the parameters. Right: The held-out
log-likelihood is indicative of the true number of latent clusters, on simulated data. We
measure the number of latent clusters on the X axis and the log-likelihood on a test set
on the Y axis. In the example shown, the peak identifies the correct number of clusters,
K∗ = 10

1994

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

Figure 8: The posterior mixed membership scores,~π, for the 69 students. Each panel correspond to
a student; we order the clusters 1 to 6 on the X axis, and we measure the student’s grade
of membership to these clusters on the Y axis.

Given the size of the network we used BIC to perform model selection, as in the monks example
of Section 2.3. The results suggest a model with K∗ = 6 groups. (We fix K∗ = 6 in the analyses
that follow.) The hyper-parameters estimated with the nested variational EM. They are α̂ = 0.0487,
ρ̂ = 0.936, and a fairly diagonal blockmodel,

B̂ =

0.3235 0.0 0.0 0.0 0.0 0.0
0.0 0.3614 0.0002 0.0 0.0 0.0
0.0 0.0 0.2607 0.0 0.0 0.0002
0.0 0.0 0.0 0.3751 0.0009 0.0
0.0 0.0 0.0 0.0002 0.3795 0.0
0.0 0.0 0.0 0.0 0.0 0.3719

.

Figure 8 shows the expected posterior mixed membership scores for the 69 students in the sam-
ple; few students display mixed membership. The rarity of mixed membership in this context is
expected, while mixed membership may signal unexpected social situations for further investiga-
tion. For instance, it may signal a family bond such as brotherhood, or a student that is repeating
a grade and is thus part of a broader social clique. In Figure 9, we contrast the friendship relation
data (left) to the estimates obtained by thresholding the estimated probabilities of a relation, using
the blockmodel and the node-specific latent variables (center) and the interactions-specific latent
variables (right). The model provides a good summary of the social structure in the school; students

1995

AIROLDI, BLEI, FIENBERG AND XING

tend to befriend other students in the same grade, with a few exceptions. The low degree of mixed
membership explains the absence of obvious differences between the model-based reconstructions
of the friendship relations with the two model variants (center and right).

Figure 9: Original matrix of friensdhip relations among 69 students in grades 7 to 12 (left),
and friendship estimated relations obtained by thresholding the posterior expectations
~πp
′B~πq|Y (center), and~φp

′B~φq|Y (right).

Next, we attempted a quantitative evaluation of the goodness of fit. In this data, the blocks
are clearly interpretable a-posteriori in terms of grades. The mixed membership vectors provide a
mapping between grades and blocks. Conditionally on such a mapping, we assign students to the
grade they are most associated with, according to their posterior-mean mixed membership vectors,
E[~πn|Y]. To be fair in the comparison with competing models, we assign students to a unique
grade—despite MMB allows for mixed membership. Table 1 computes the correspondence of
grades to blocks by quoting the number of students in each grade-block pair, for MMB versus
the mixture blockmodel (MB) in Doreian et al. (2007), and the latent space cluster model (LSCM)
in Handcock et al. (2007). The higher the sum of counts on diagonal elements is the better is the
correspondence, while the higher the sum of counts off diagonal elements is the worse is the cor-
respondence. MMB performs best by allocating 63 students to their grades, versus 57 of MB, and
37 of LSCM. Correspondence only partially captures goodness of fit, however, it is a good metric
in the setting we consider, where a fair amount of clustering is present. The results suggest that the
extra-flexibility MMB offers over MB and LSCM reduces bias in the prediction of the membership
of students to blocks. In other words, mixed membership does not absorb noise in this example;
rather it accommodates variability in the friendship relation that is instrumental in producing better
predictions.

Concluding this example, we note how the model decouples the observed friendship patterns
into two complementary sources of variability. On the one hand, the connectivity matrix B is a
global, unconstrained set of hyper-parameters. On the other hand, the mixed membership vectors
~π1:N provide a collection of node-specific latent vectors, which inform the directed connections in
the graph in a symmetric fashion.

4.3 Application to Protein Interactions in Saccharomyces Cerevisiae

We considered physical interactions among 871 proteins in yeast. The analysis allows us to evalu-
ate the utility of MMB in summarizing and de-noising complex connectivity patterns quantitatively,
using an independent set of functional annotations. For instance, between two models that sug-

1996

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

MMB Clusters MSB Clusters LSCM Clusters
Grade 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

7 13 1 0 0 0 0 13 1 0 0 0 0 13 1 0 0 0 0
8 0 9 2 0 0 1 0 10 2 0 0 0 0 11 1 0 0 0
9 0 0 16 0 0 0 0 0 10 0 0 6 0 0 7 6 3 0

10 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 0 3 7
11 0 0 1 0 11 1 0 0 1 0 11 1 0 0 0 0 3 10
12 0 0 0 0 0 4 0 0 0 0 0 4 0 0 0 0 0 4

Table 1: Grade levels versus (highest) expected posterior membership for the 69 students, accord-
ing to three alternative models. MMB is the proposed mixed membership stochastic block-
model, MSB is a simpler stochastic block mixture model (Doreian et al., 2007), and LSCM
is the latent space cluster model (Handcock et al., 2007).

gest different sets of interactions as reliable, we prefer the model that reveals functionally relevant
interactions—as measured using the annotations.

Protein interactions (PPI) form the physical basis for the formation of stable protein complexes
(i.e., protein clusters) and signaling pathways (i.e., cascades of protein interaction events) that carry
out all major biological processes in the cell. A number of high-throughput experimental tech-
nologies have been devised to determine the set of interacting proteins on a global scale in yeast.
These include two-hybrid (Y2H) screens and mass spectrometry methods (Gavin et al., 2002; Ho
et al., 2002; Krogan et al., 2006). High-throughput technologies, however, often miss to identify
interactions that are not present under the given conditions. Specific wet-lab methods employed by
a certain technology, such as tagging, may disturb the formation of a stable protein complex, and
weakly associated components may dissociate and escape detection. Statistical models that encode
information about functional processes with high precision are an essential tool for carrying out
probabilistic de-noising of biological signals from high-throughput experiments.

The goal of the analysis of protein interactions with MMB is to reveal the proteins’ diverse
functional roles by analyzing their local and global patterns of interaction. The biochemical compo-
sition of individual proteins make them suitable for carrying out a specific set of cellular operations,
or functions. The main intuition behind our methodology is that pairs of protein interact because
they participate in the same cellular process, as part of the same stable protein complex, that is,
co-location, or because they are part of interacting protein complexes, as they carry out compatible
cellular operations (Alberts et al., 2002). Below, we describe the MIPS protein interactions data and
the possible interpretations of the blocks in MMB in terms of biological functions, and we report
results of two experiments.

4.3.1 PROTEIN INTERACTION DATA AND FUNCTIONAL ANNOTATION DATA

The Munich Institute for Protein Sequencing (MIPS) database was created in 1998 based on ev-
idence derived from a variety of experimental techniques (Mewes et al., 2004). It includes a
hand-curated collection of protein interactions that does not include interactions obtained with high-
throughput technologies. The collection covers about 8000 protein complex associations in yeast.

1997

AIROLDI, BLEI, FIENBERG AND XING

We analyzed a subset of this collection containing 871 proteins, the interactions amongst which
were hand-curated.

The MIPS institute also provides a set of functional annotations for each protein. These anno-
tations are organized in a tree, with 15 nodes (i.e., high-level functions) at the first level, 72 nodes
(i.e., the mid-level functions) at the second level, and 255 nodes (i.e., the low-level functions) at the
the leaf level. We mapped the 871 proteins in our collections to the high-level functions of the MIPS
annotation tree. Table 2 quotes the number of proteins annotated to each of these 15 functions. Most
proteins participate in more than one functional category, with an average of≈ 2.4 functional anno-
tations for each protein.. The relative importance of functional categories in our collection, in terms
of the number of proteins involved, is similar to the relative importance of functional categories
over the entire MIPS collection. We can also represent each protein in terms of its MIPS functional
annotations. This leads to a 15-dimensional, binary representation for each protein, ~bp, where a
component ~bp(k) = 1 indicates that protein p is annotated with function k in Table 2. Figure 10
shows the binary representations,~b1:871, of the proteins in our collections; each panel corresponds
to a protein; the 15 functional categories are ordered as in Table 2 on the X axis, whereas the pres-
ence or absence of the corresponding functional annotation is displayed on the Y axis. In Section
4.3.2, we fit a mixed membership blockmodel with K = 15, and we explore the direct correspon-
dence between protein-specific mixed memberships to blocks, ~π1:871, and MIPS-derived functional
annotations,~b1:871.

An alternative source of functional annotations is the gene ontology (GO), distributed as part
of the Saccharomyces genome database (Ashburner et al., 2000). GO provides vocabularies for
describing the molecular function, biological process, and cellular component of gene products—
such as proteins. Terms are organized in a directed acyclic graph. Terms at the top represent
broader, more general concepts, terms lower down represent more specific concepts. There are
two different relationship types between (parent-child) terms: “is a” and “part of”. Proteins are
annotated to terms, and, most importantly, a protein is typically annotated to multiple terms, in
different portions of the GO annotation graph. We restrict our evaluations to a collection of GO
terms that is specific enough for a co-annotation (i.e., two proteins annotated to the same term) to
be functionally relevant to molecular biologists (Myers et al., 2006). In Section 4.3.3, we select
the mixed membership blockmodel best for predicting out-of-sample interactions, corresponding to

Category Count # Category Count
1 Metabolism 125 9 Interaction w/ cell. environment 18
2 Energy 56 10 Cellular regulation 37
3 Cell cycle & DNA processing 162 11 Cellular other 78
4 Transcription (tRNA) 258 12 Control of cell organization 36
5 Protein synthesis 220 13 Sub-cellular activities 789
6 Protein fate 170 14 Protein regulators 1
7 Cellular transportation 122 15 Transport facilitation 41
8 Cell rescue, defence & virulence 6

Table 2: The 15 high-level functional categories obtained by cutting the MIPS annotation tree at
the first level and how many proteins (out of 871) participate in each.

1998

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

K∗= 50, and we explore its goodness-of-fit indirectly—rather than attempting a direct interpretation
of the model’s parameters—, in terms of the number of predicted interactions that are functionally
relevant according to GO functional annotations.

4.3.2 DIRECT EVALUATION: THE MODEL CAPTURES SUBSTANTIVE BIOLOGY

In the first experiment, we fit a model with K = 15 blocks, and we attempt a direct interpretation
of the blocks in terms of the 15 high-level functional categories in the MIPS annotation tree—
separate from the MIPS protein interaction data, and independently conceived. We discuss results

1 3 5 7 9 11 13 15

0.2

0.4

0.6

0.8

1

SPO7 POP5 PTA1

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

Figure 10: By mapping individual proteins to the 15 general functions in Table 2, we obtain a 15-
dimensional representation for each protein. Here, each panel corresponds to a protein;
the 15 functional categories are displayed on the X axis, whereas the presence or absence
of the corresponding functional annotation is displayed on the Y axis. The plots at the
bottom zoom into three example panels (proteins).

1999

AIROLDI, BLEI, FIENBERG AND XING

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Functional category

M
ar
g
in
al
 f
re
q
u
en
cy

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
st
im
at
ed
 m
ar
g
in
al
 f
re
q
u
en
cy

Functional category given estimated identification

Figure 11: The mapping of blocks to functions is estimated by maximizing the accuracy of the pre-
dicted annotations of 87 proteins. We plot marginal frequencies of proteins’ membership
to true functions (left) and to predicted functions (right).

that portray the relevance of mixed membership, the resolution of the identification of blocks with
functional categories, and selected predictions.

We want to compute the correspondence between protein-specific mixed memberships to blocks,
~π1:871, and MIPS-derived functional annotations, ~b1:871. The K = 15 blocks in the blockmodel B
are not directly identifiable in terms of functional categories. In other words, we need to estimate
a permutation of the components of ~πn in order to be able to interpret E[πn(k)|Y] as the expected
degree of membership of protein n in function k of Table 2—rather than simply the expected degree
of membership of protein n in block k, out of 15. To estimate the permutation that best identifies
blocks to functions, we proceeded as follows. We sampled 87 proteins and their corresponding
MIPS annotations,~b1:87. We predicted membership of the 87 proteins by thresholding their mixed
membership representations,

b̂n(k) =

{
1 if πn(k) > τ
0 otherwise,

where τ is the 95th percentile of the ensemble of elements of~π1:87, corresponding to the 87 proteins
in the training set. We then greedily identified the mapping that maximizing the accuracy of the
predicted annotations of 87 proteins. We used this mapping to compare predicted versus known
functional annotations for all proteins; in Figure 11 we plot marginal frequencies of proteins’ mem-
bership to true functions (left panel) and to predicted functions (right panel). The accuracy on the
90% testing set is about 87%. An algorithm that randomly guesses annotations, knowing the right
proportions of annotations in each category, leads to a baseline accuracy of about 70%. Figure 12
shows predicted mixed memberships (dashed, red lines) versus the true annotations (solid, black
lines), given the estimated mapping of blocks to functions, for six example proteins.

4.3.3 INDIRECT EVALUATION: FUNCTIONAL CONTENT OF PREDICTED INTERACTIONS

In the second experiment, we selected the mixed membership blockmodel best for predicting out-
of-sample interactions, and we explored its goodness-of-fit indirectly, in terms of the number of

2000

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

predicted interactions that are functionally relevant according to GO present in estimated protein
interaction networks obtained with the two types of analyses that MMB supports; summarization
and de-noising.

We fit models with K ranging between 2 and 255. We selected the best model (K = 50) using
cross-validated held-out log likelihood, as in Figure 7. This finding supports the hypothesis that
proteins derived from the MIPS data are interpretable in terms functional biological contexts. Al-
ternatively, the blocks might encode signal at a finer resolution, such as that of protein complexes.

0.2

0.4

0.6

0.8

1

NAT1

NOP1

MET31

GAL4

TAF3

NOP58

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 142 4 6 8 10 12 14

2 4 6 8 10 12 14 2 4 6 8 10 12 14

2 4 6 8 10 12 142 4 6 8 10 12 14

Figure 12: Predicted mixed-memberships (dashed, red lines) versus binary manually curated func-
tional annotations (solid, black lines) for six example proteins, given the estimated map-
ping of blocks to functions in Figure 11.

2001

AIROLDI, BLEI, FIENBERG AND XING

Recall (unnormalized) 100 1K 10K 100K 1ML

P
re

c
is

io
n

0.1

0.3

0.5

0.7

0.9
Gavin et al. (2002, Aff. Precipitation)

Ho et al. (2002, Aff. Precipitation)

Tong et al. (2004, Synthetic Lethality)

Uetz et al. (2000, Two Hybrid)

Ito et al. (2000, Two Hybrid)

Ito et al. (2001, Two Hybrid)

Tong et al. (2002, Two Hybrid)

Fromont-Racine et al. (Two Hybrid)

Drees et al. (2001, Two Hybrid)

Gasch et al. (2001, Expression Microarray)

Gasch et al. (2000, Expression Microarray)

Spellman et al. (1998, Expression Microarray)

Mewes et al. (2004, MIPS database)

MMB (MIPS data de-noised with Zs & B, 50 blocks)

MMB (MIPS data summarized with Πs & B, 50 blocks)

Random

2

3 1

Figure 13: In the top panel we measure the functional content of the the MIPS collection of pro-
tein interactions (yellow diamond), and compare it against other published collections of
interactions and microarray data, and to the posterior estimates of the MMB models—
computed as described in Section 4.3.3. A breakdown of three estimated interaction
networks (the points annotated 1, 2, and 3) into most represented gene ontology cate-
gories is detailed in Table 3.

If that was the case, however, we would expect the optimal number of blocks to be significantly
higher; 871/5≈ 175, given an average size of five proteins in a complex (Krogan et al., 2006).

Using this model, we computed posterior model-based expectations of each interaction as fol-
lows,

E [Y (p,q)]≈~̂πp
′ B̂ ~̂πq and E [Y (p,q)]≈~̂φp→q

′ B̂ ~̂φp←q.

These computations lead to two estimated protein interaction networks with expected probabilities
of interactions taking values in [0,1]. We obtained binary protein interaction networks by thresh-
olding these expected probabilities at ten different values. In terms of the two analyses described
in Section 2.2, this amount to either (i)predicting physical interactions by thresholding the posterior
expectations computed using blockmodel B and mixed membership map ~πs, essentially a predic-
tion task, or (ii) we de-noise the observed interactions Y using the blockmodel B and interaction-
specific membership indicators Zs, essentially a de-noising task. We use the independent set of
functional annotations from the gene ontology to decide which interactions are functionally mean-
ingful; namely those between pairs of proteins that share at least one functional annotation (Myers
et al., 2006). In this sense, between two models that suggest different sets of interactions as reliable,
our evaluation assigns a higher score to the model that reveals functionally relevant interactions.
Figure 13 shows the functional content of the original MIPS collection of physical interactions
(point no.2), and of the collections of interactions computed using (B,Πs), the light blue (−×)
line, and using (B,Zs), the dark blue (−+) line, thresholded at ten different levels—precision-recall
curves. The posterior means of Πs provide a parsimonious representation for the MIPS collection,
and lead to precise interaction estimates, in moderate amount (−× line). The posterior means of Zs
provide a richer representation for the data, and describe most of the functional content of the MIPS
collection with high precision (−+ line). Figure 13 also shows the functional content of the original
MIPS collection (the yellow diamond). Most importantly, notice the estimated protein interaction

2002

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

networks, that is, ex-es and crosses, corresponding to lower levels of recall feature a more precise
functional content than the original. This means that the proposed latent block structure is helpful in
summarizing the collection of interactions—by ranking them properly. On closer inspection, dense
blocks of predicted interactions contain known functional predictions that were not in the MIPS
collection, thus effectively improving the quality of the data that instantiate activity specific to few
biological contexts, such as biopolymer catabolism and homeostasis. In conclusion, results suggest
that MMB successfully reduces the dimensionality of the data, while revealing substantive informa-
tion about the multiple functionality of proteins that can be used to inform subsequent analyses.

Table 3 provides more information about three instances of predicted interaction networks dis-
played in Figure 13; those corresponding the points annotated 1, 2, and 3. Specifically, the table
shows a breakdown of the predicted (posterior) collections of interactions in each example network
into the gene ontology categories. A count in the table corresponds to the fact that both proteins are
annotated with the same GO functional category.5

In this application, the MMB learned information about (i) the mixed membership of objects to
latent groups, and (ii) the connectivity patterns among latent groups. These estimates were useful
in describing and summarizing the functional content of the MIPS collection of protein interac-
tions. This suggests the use of MMB as a dimensionality reduction approach that may be useful for
performing model-driven de-noising of new collections of interactions, such as those measured via
high-throughput experiments.

5. Discussion

Modern probabilistic models for relational data analysis are rooted in the stochastic blockmodels
for psychometric and sociological analysis, pioneered by Lorrain and White (1971) and by Holland
and Leinhardt (1975). In statistics, this line of research has been extended in various contexts
over the years (Fienberg et al., 1985; Wasserman and Pattison, 1996; Snijders, 2002; Hoff et al.,
2002; Doreian et al., 2004). In machine learning, the related technique of Markov random networks
(Frank and Strauss, 1986) have been used for link prediction (Taskar et al., 2003) and the traditional
blockmodels have been extended to include nonparametric Bayesian priors (Kemp et al., 2004,
2006; Xu et al., 2006) and to integrate relations and text (McCallum et al., 2007).

There is a close relationship between the MMB and the latent space models (Hoff et al., 2002;
Handcock et al., 2007). In the latent space models, the latent vectors are drawn from Gaussian
distributions and the interaction data is drawn from a Gaussian with mean ~πp

′
I~πq. In the MMB,

the marginal probability of an interaction takes a similar form, ~πp
′B~πq, where B is the matrix of

probabilities of interactions for each pair of latent groups. Two major differences exist between
these approaches. In MMB, the distribution over the latent vectors is a Dirichlet and the underlying
data distribution is arbitrary—we have chosen Bernoulli. The posterior inference in latent space
models (Hoff et al., 2002; Handcock et al., 2007) is carried out via MCMC sampling, while we have
developed a scalable variational inference algorithm to analyze large network structures. (It would
be interesting to develop a variational algorithm for the latent space models as well.) A number
of well-designed numerical investigations and comparisons between variational EM and variants of
MCMC have been performed in existing literature; for instance, see Buntine and Jakulin (2006),6

5. Note that, in GO, proteins are typically annotated to multiple functional categories.
6. See corresponding slides with additional results. (http://www.hiit.fi/˜buntine/dpca_slides.pdf)

2003

AIROLDI, BLEI, FIENBERG AND XING

GO Term Description Pred. Tot.
1 GO:0043285 Biopolymer catabolism 561 17020
1 GO:0006366 Transcription from RNA polymerase II promoter 341 36046
1 GO:0006412 Protein biosynthesis 281 299925
1 GO:0006260 DNA replication 196 5253
1 GO:0006461 Protein complex assembly 191 11175
1 GO:0016568 Chromatin modification 172 15400
1 GO:0006473 Protein amino acid acetylation 91 666
1 GO:0006360 Transcription from RNA polymerase I promoter 78 378
1 GO:0042592 Homeostasis 78 5778
2 GO:0043285 Biopolymer catabolism 631 17020
2 GO:0006366 Transcription from RNA polymerase II promoter 414 36046
2 GO:0016568 Chromatin modification 229 15400
2 GO:0006260 DNA replication 226 5253
2 GO:0006412 Protein biosynthesis 225 299925
2 GO:0045045 Secretory pathway 151 18915
2 GO:0006793 Phosphorus metabolism 134 17391
2 GO:0048193 Golgi vesicle transport 128 9180
2 GO:0006352 Transcription initiation 121 1540
3 GO:0006412 Protein biosynthesis 277 299925
3 GO:0006461 Protein complex assembly 190 11175
3 GO:0009889 Regulation of biosynthesis 28 990
3 GO:0051246 Regulation of protein metabolism 28 903
3 GO:0007046 Ribosome biogenesis 10 21528
3 GO:0006512 Ubiquitin cycle 3 2211

Table 3: Breakdown of three example interaction networks into most represented gene ontology
categories—see text for more details. The digit in the first column indicates the example
network in Figure 13 that any given line refers to. The last two columns quote the number
of predicted, and possible pairs for each GO term.

and Braun and McAuliffe (2007). We refer readers interested in the comparison between variational
vs. MCMC to these resources.

The model decouples the observed connectivity patterns into two sources of variability, B,Πs,
that are apparently in competition for explaining the data, possibly raising an identifiability issue.
This is not the case, however, as the blockmodel B captures global/asymmetric relations, while
the mixed membership vectors Πs capture local/symmetric relations. This difference practically
eliminates the issue, unless there is no signal in the data to begin with.

A recurring question, which bears relevance to mixed membership models in general, is why
we do not integrate out the single membership indicators—(~zp→q,~zp←q). While this may lead to
computational efficiencies we would often lose interpretable quantities that are useful for making
predictions, for de-noising new measurements, or for performing other tasks. In fact, the posterior
distributions of such quantities typically carry substantive information about elements of the appli-

2004

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

cation at hand. In the application to protein interaction networks of Section 4.3, for example, they
encode the interaction-specific memberships of individual proteins to protein complexes.

In the relational setting, cross-validation is feasible if the blockmodel estimated on training data
can be expected to hold on test data; for this to happen the network must be of reasonable size,
so that we can expect members of each block to be in both training and test sets. In this setting,
scheduling of variational updates is important; nested variational scheduling leads to efficient and
parallelizable inference.

A limitation of our model can be best appreciated in a simulation setting. If we consider struc-
tural properties of the network MMB is capable of generating, we count a wide array of local and
global connectivity patterns. But the model does not readily generate hubs, that is, nodes con-
nected with a large number of directed or undirected connections, or networks with skewed degree
distributions.

From a data analysis perspective, we speculate that the value of MMB in capturing substan-
tive information about a problem will increase in semi-supervised setting—where, for example,
information about the membership of genes to functional contexts is included in the form of prior
distributions. In such a setting we may be interested in looking at the change between prior and
posterior membership; a sharp change may signal biological phenomena worth investigating. We
need not assume that the number of groups/blocks, K, is finite. It is possible, for example, to posit
that the mixed-membership vectors are sampled form a stochastic process, in the nonparametric set-
ting. To maintain mixed membership of nodes to groups/blocks in such setting, we need to sample
them from a hierarchical Dirichlet process (Teh et al., 2006), rather than from a Dirichlet Process
(Escobar and West, 1995).

MMB generalizes to two important cases. First, multiple data collections Y1:M on the same
objects can be generated by the same latent vectors. This might be useful, for example, for simul-
taneously analyzing the relational measurements about esteem and disesteem, liking and disliking,
positive influence and negative influence, praise and blame, for example, see Sampson (1968), or
those about the collection of 17 relations measured by Bradley (1987). Second, in the MMB the
data generating distribution is a Bernoulli, but B can be a matrix that parameterizes any kind of
distribution. For example, technologies for measuring interactions between pairs of proteins such
as mass spectrometry (Ho et al., 2002) and tandem affinity purification (Gavin et al., 2002) return a
probabilistic assessment about the presence of interactions, thus setting the range of Y (p,q) to [0,1].
This is not the case for the manually curated collection of interactions we analyze in Section 4.3.

6. Conclusions

In this paper we introduced mixed membership stochastic blockmodels, a novel class of latent vari-
able models for relational data. These models provide exploratory tools for scientific analyses in
applications where the observations can be represented as a collection of unipartite graphs. The
nested variational inference algorithm is parallelizable and allows fast approximate inference on
large graphs.

Acknowledgments

2005

AIROLDI, BLEI, FIENBERG AND XING

This work was partially supported by National Institutes of Health under Grant No. R01 AG023141-
01, by the Office of Naval Research under Contracts N00014-02-1-0973 and 175-6343, by the Na-
tional Science Foundation under Grants No. DMS-0240019, IIS-0218466, IIS-0745520and DBI-
0546594, by the Pennsylvania Department of Health’s Health Research Program under Grant No.
2001NF-Cancer Health Research Grant ME-01-739, and by the Department of Defense, all to
Carnegie Mellon University. The authors would like to thank David Banks and Jim Berger at Duke
University, Alan Karr at the National Institute of Statistical Sciences for insight and advice, and
acknowledge generous support from the Statistical and Applied Mathematical Sciences Institute.

Appendix A. General Model Formulation

In general, mixed membership stochastic blockmodels can be specified in terms of assumptions at
four levels: population, node, latent variable, and sampling scheme level.

A.1 Population Level

Assume that there are K classes or sub-populations in the population of interest. We denote by
f (Y (p,q) | B(g,h)) the probability distribution of the relation measured on the pair of nodes
(p,q), where the p-th node is in the h-th sub-population, the q-th node is in the h-th sub-population,
and B(g,h) contains the relevant parameters. The indices i, j run in 1, . . . ,N, and the indices g,h run
in 1, . . . ,K.

A.2 Node Level

The components of the membership vector~πp = [~πp(1), . . . ,~πp(k)]′ encodes the mixed membership
of the n-th node to the various sub-populations. The distribution of the observed response Y (p,q)
given the relevant, node-specific memberships, (~πp,~πq), is then

Pr (Y (p,q) |~πp,~πq,B) =
K

∑
g,h=1

~πp(g) f (Y (p,q) | B(g,h))~πq(h).

Conditional on the mixed memberships, the response edges y jnm are independent of one another,
both across distinct graphs and pairs of nodes.

A.3 Latent Variable Level

Assume that the mixed membership vectors~π1:N are realizations of a latent variable with distribution
D~α, with parameter vector ~α. The probability of observing Y (p,q), given the parameters, is then

Pr (Y (p,q) |~α,B) =
Z

Pr (Y (p,q) |~πp,~πq,B) D~α(d~π).

A.4 Sampling Scheme Level

Assume that the M independent replications of the relations measured on the population of nodes
are independent of one another. The probability of observing the whole collection of graphs, Y1:M ,
given the parameters, is then given by the following equation.

Pr (Y1:M |~α,B)=
M

∏
m=1

N

∏
p,q=1

Pr (Ym(p,q) |~α,B) .

2006

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

Full model specifications immediately adapt to the different kinds of data, for example, multiple
data types through the choice of f , or parametric or semi-parametric specifications of the prior on
the number of clusters through the choice of a distribution for the πs, Dα.

Appendix B. Details of the Variational Approximation

Here we present more details about the derivation of the variational EM algorithm presented in
Section 3. Furthermore, we address a setting where M replicates are available about the paired
measurements, G1:M = (N,Y1:M), and relations Ym(p,q) take values into an arbitrary metric space
according to f (Ym(p,q) | ..). An extension of the inference algorithm to address the case or
multivariate relations, say J-dimensional, and multiple blockmodels B1:J each corresponding to a
distinct relational response, can be derived with minor modifications of the derivations that follow.

B.1 Variational Expectation-Maximization

We begin by briefly summarizing the general strategy we intend to use. The approximate variant of
EM we describe here is often referred to as Variational EM (Beal and Ghahramani, 2003). Recall
that Y denotes the data. Rewrite X = (~π1:N ,Z→,Z←) for the latent variables, and Θ = (~α,B) for the
model’s parameters. Briefly, it is possible to lower bound the likelihood, p(Y |Θ), making use of
Jensen’s inequality and of any distribution on the latent variables q(X),

p(Y |Θ) = log
Z

X
p(Y,X |Θ) dX

= log
Z

X
q(X)

p(Y,X |Θ)

q(X)
dX (for any q)

≥
Z

X
q(X) log

p(Y,X |Θ)

q(X)
dX (Jensen’s)

= Eq [log p(Y,X |Θ)− logq(X)] =: L(q,Θ)

In EM, the lower bound L(q,Θ) is then iteratively maximized with respect to Θ, in the M step, and
q in the E step (Dempster et al., 1977). In particular, at the t-th iteration of the E step we set

q(t) = p(X |Y,Θ(t−1)), (5)

that is, equal to the posterior distribution of the latent variables given the data and the estimates of
the parameters at the previous iteration.

Unfortunately, we cannot compute the posterior in Equation 5 for the admixture of latent blocks
model. Rather, we define a direct parametric approximation to it, q̃ = q∆(X), which involves an
extra set of variational parameters, ∆, and entails an approximate lower bound for the likelihood
L∆(q,Θ). At the t-th iteration of the E step, we then minimize the Kullback-Leibler divergence

between q(t) and q(t)
∆ , with respect to ∆, using the data.7 The optimal parametric approximation is,

in fact, a proper posterior as it depends on the data Y , although indirectly, q(t)≈ q(t)
∆∗(Y)(X) = p(X |Y).

B.2 Lower Bound for the Likelihood

According to the mean-field theory (Jordan et al., 1999), one can approximate an intractable distri-
bution such as the one defined by Equation (1) by a fully factored distribution q(~π1:N ,Z→1:M,Z←1:M)

7. This is equivalent to maximizing the approximate lower bound for the likelihood, L∆(q,Θ), with respect to ∆.

2007

AIROLDI, BLEI, FIENBERG AND XING

defined as follows:

q(~π1:N ,Z→1:M,Z←1:M|~γ1:N ,Φ→1:M,Φ←1:M)

= ∏
p

q1(~πp|~γp) ∏
m

∏
p,q

(
q2(~z

m
p→q|~φ

m
p→q,1) q2(~z

m
p←q|~φ

m
p←q,1)

)
,

where q1 is a Dirichlet, q2 is a multinomial, and ∆ = (~γ1:N ,Φ→1:M,Φ←1:M) represent the set of free
variational parameters need to be estimated in the approximate distribution.

Minimizing the Kulback-Leibler divergence between this q(~π1:N ,Z→1:M,Z←1:M|∆) and the original
p(~π1:N ,Z→1:M,Z←1:M defined by Equation (1) leads to the following approximate lower bound for the
likelihood.

L∆(q,Θ) = Eq
[

log∏
m

∏
p,q

p1(Ym(p,q)|~zm
p→q,~z

m
p←q,B)

]

+ Eq
[

log∏
m

∏
p,q

p2(~z
m
p→q|~πp,1)

]
+Eq

[
log∏

m
∏
p,q

p2(~z
m
p←q|~πq,1)

]

+ Eq
[

log∏
p

p3(~πp|~α)
]
−Eq

[
∏

p
q1(~πp|~γp)

]

− Eq
[

log∏
m

∏
p,q

q2(~z
m
p→q|~φ

m
p→q,1)

]
−Eq

[
log∏

m
∏
p,q

q2(~z
m
p←q|~φ

m
p←q,1)

]
.

Working on the single expectations leads to

L∆(q,Θ) = ∑
m

∑
p,q

∑
g,h

φm
p→q,gφm

p←q,h · f
(

Ym(p,q),B(g,h)
)

+ ∑
m

∑
p,q

∑
g

φm
p→q,g

[
ψ(γp,g)−ψ(∑

g
γp,g)

]

+ ∑
m

∑
p,q

∑
h

φm
p←q,h

[
ψ(γp,h)−ψ(∑

h

γp,h)
]

+ ∑
p

logΓ(∑
k

αk)−∑
p,k

logΓ(αk)+∑
p,k

(αk−1)
[

ψ(γp,k)−ψ(∑
k

γp,k)
]

− ∑
p

logΓ(∑
k

γp,k)+∑
p,k

logΓ(γp,k)−∑
p,k

(γp,k−1)
[

ψ(γp,k)−ψ(∑
k

γp,k)
]

− ∑
m

∑
p,q

∑
g

φm
p→q,g logφm

p→q,g−∑
m

∑
p,q

∑
h

φm
p←q,h logφm

p←q,h

where

f (Ym(p,q),B(g,h))= Ym(p,q) logB(g,h)+ (1−Ym(p,q)) log (1−B(g,h));

m runs over 1, . . . ,M; p,q run over 1, . . . ,N; g,h,k run over 1, . . . ,K; and ψ(x) is the derivative of
the log-gamma function, d logΓ(x)

dx .

B.3 The Expected Value of the Log of a Dirichlet Random Vector

The computation of the lower bound for the likelihood requires us to evaluate Eq [log~πp] for
p = 1, . . . ,N. Recall that the density of an exponential family distribution with natural parameter~θ
can be written as

p(x|α) = h(x) · c(α) · exp {∑
k

θk(α) · tk(x) }

= h(x) · exp {∑
k

θk(α) · tk(x)− logc(α) } .

2008

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

Omitting the node index p for convenience, we can rewrite the density of the Dirichlet distribution
p3 as an exponential family distribution,

p3(~π|~α) = exp

{
∑
k

(αk−1) log(πk)− log
∏k Γ(αk)

Γ(∑k αk)

}
,

with natural parameters θk(~α) = (αk − 1) and natural sufficient statistics tk(~π) = log(πk). Let
c′(~θ) = c(α1(~θ), . . . ,αK(~θ)); using a well known property of the exponential family distributions
(Schervish, 1995) we find that

Eq [logπk] = E~θ [log tk(x)]= ψ (αk)−ψ (∑
k

αk),

where ψ(x) is the derivative of the log-gamma function, d logΓ(x)
dx .

B.4 Variational E Step

The approximate lower bound for the likelihood L∆(q,Θ) can be maximized using exponential
family arguments and coordinate ascent (Wainwright and Jordan, 2003).

Isolating terms containing φm
p→q,g and φm

p←q,h we obtain Lφm
p→q,g

(q,Θ) and Lφm
p→q,g

(q,Θ). The
natural parameters ~gm

p→q and ~gm
p←q corresponding to the natural sufficient statistics log(~zm

p→q) and
log(~zm

p←q) are functions of the other latent variables and the observations. We find that

gm
p→q,g = logπp,g +∑

h

zm
p←q,h · f (Ym(p,q),B(g,h)),

gm
p←q,h = logπq,h +∑

g
zm

p→q,g · f (Ym(p,q),B(g,h)),

for all pairs of nodes (p,q) in the m-th network; where g,h = 1, . . . ,K, and

f (Ym(p,q),B(g,h))= Ym(p,q) logB(g,h)+ (1−Ym(p,q)) log (1−B(g,h)) .

This leads to the following updates for the variational parameters (~φm
p→q,~φm

p←q), for a pair of nodes
(p,q) in the m-th network:

φ̂m
p→q,g ∝ e Eq[gm

p→q,g]

= e Eq[logπp,g] · e ∑h φm
p←q,h· Eq[f(Ym(p,q),B(g,h))]

= e Eq[logπp,g] ·∏
h

(
B(g,h)Ym(p,q)· (1−B(g,h))1−Ym(p,q)

)φm
p←q,h

,

φ̂m
p←q,h ∝ e Eq[gm

p←q,h]

= e Eq[logπq,h] · e ∑g φm
p→q,g· Eq[f(Ym(p,q),B(g,h))]

= e Eq[logπq,h] ·∏
g

(
B(g,h)Ym(p,q)· (1−B(g,h))1−Ym(p,q)

)φm
p→q,g

,

for g,h = 1, . . . ,K. These estimates of the parameters underlying the distribution of the nodes’ group
indicators~φm

p→q and~φm
p←q need be normalized, to make sure ∑k φm

p→q,k = ∑k φm
p←q,k = 1.

2009

AIROLDI, BLEI, FIENBERG AND XING

Isolating terms containing γp,k we obtain Lγp,k(q,Θ). Setting
∂Lγp,k

∂γp,k
equal to zero and solving for

γp,k yields:

γ̂p,k = αk +∑
m

∑
q

φm
p→q,k +∑

m
∑
q

φm
p←q,k,

for all nodes p ∈ P and k = 1, . . . ,K.
The t-th iteration of the variational E step is carried out for fixed values of Θ(t−1) =

(~α(t−1),B(t−1)), and finds the optimal approximate lower bound for the likelihood L∆∗(q,Θ(t−1)).

B.5 Variational M Step

The optimal lower bound L∆∗(q(t−1),Θ) provides a tractable surrogate for the likelihood at the t-th
iteration of the variational M step. We derive empirical Bayes estimates for the hyper-parameters
Θ that are based upon it.8 That is, we maximize L∆∗(q(t−1),Θ) with respect to Θ, given expected
sufficient statistics computed using L∆∗(q(t−1),Θ(t−1)).

Isolating terms containing ~α we obtain L~α(q,Θ). Unfortunately, a closed form solution for the
approximate maximum likelihood estimate of ~α does not exist (Blei et al., 2003). We can produce
a Newton-Raphson method that is linear in time, where the gradient and Hessian for the bound L~α
are

∂L~α
∂αk

= N

(
ψ (∑

k

αk)−ψ(αk)

)
+∑

p

(
ψ(γp,k)−ψ (∑

k

γp,k)

)
,

∂L~α
∂αk1αk2

= N

(
I(k1=k2) ·ψ

′(αk1)−ψ′ (∑
k

αk)

)
.

Isolating terms containing B we obtain LB, whose approximate maximum is

B̂(g,h) =
1
M ∑

m

(∑p,qYm(p,q) ·φm
p→qg φm

p←qh

(1−ρ) ·∑p,q φm
p→qg φm

p←qh

)
,

for every index pair (g,h) ∈ [1,K]× [1,K].
In Section 2.1 we introduced an extra parameter, ρ, to control the relative importance of presence

and absence of interactions in likelihood, that is, the score that informs inference and estimation.
Isolating terms containing ρ we obtain Lρ. We may then estimate the sparsity parameter ρ by

ρ̂ =
1
M ∑

m

(∑p,q (1−Ym(p,q)) · (∑g,h φm
p→qg φm

p←qh)

∑p,q ∑g,h φm
p→qg φm

p←qh

)
.

Alternatively, we can fix ρ prior to the analysis; the density of the interaction matrix is estimated
with d̂ = ∑m,p,qYm(p,q)/(N2M), and the sparsity parameter is set to ρ̃ = (1− d̂). This latter estima-
tor attributes all the information in the non-interactions to the point mass, that is, to latent sources
other than the block model B or the mixed membership vectors ~π1:N . It does, however, provide a
quick recipe to reduce the computational burden during exploratory analyses.9

8. We could term these estimates pseudo empirical Bayes estimates, since they maximize an approximate lower bound
for the likelihood, L∆∗ .

9. Note that ρ̃ = ρ̂ in the case of single membership. In fact, that implies φm
p→qg = φm

p←qh = 1 for some (g,h) pair, for
any (p,q) pair.

2010

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

References

E. M. Airoldi. Getting started in probabilistic graphical models. PLoS Computational Biology, 3
(12):e252, 2007.

E. M. Airoldi, D. M. Blei, E. P. Xing, and S. E. Fienberg. A latent mixed-membership model
for relational data. In ACM SIGKDD Workshop on Link Discovery: Issues, Approaches and
Applications, 2005.

E. M. Airoldi, S. E. Fienberg, and E. P. Xing. Mixed membership analysis of expression studies—
attribute data. Manuscript, 2007. URL http://arxiv.org/abs/0711.2520/.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell.
Garland, 4th edition, 2002.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski,
S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C.
Matese, J. E. Richardson, M. Ringwald, G. M. Rubinand, and G. Sherlock. Gene ontology: Tool
for the unification of biology. The gene ontology consortium. Nature Genetics, 25(1):25–29,
2000.

M. J. Beal and Z. Ghahramani. The variational Bayesian EM algorithm for incomplete data: With
application to scoring graphical model structures. In J. M. Bernardo, M. J. Bayarri, J. O. Berger,
A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, editors, Bayesian Statistics, volume 7,
pages 453–464. Oxford University Press, 2003.

L. Berkman, B. H. Singer, and K. Manton. Black/white differences in health status and mortality
among the elderly. Demography, 26(4):661–678, 1989.

C. Bishop, D. Spiegelhalter, and J. Winn. VIBES: A variational inference engine for Bayesian
networks. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information
Processing Systems 15, pages 777–784. MIT Press, Cambridge, MA, 2003.

D. M. Blei, A. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

R. T. Bradley. Charisma and Social Structure. Paragon House, 1987.

M. Braun and J. McAuliffe. Variational inference for large-scale models of discrete choice.
Manuscript, 2007. URL http://arxiv.org/abs/0712.2526/.

R. L. Breiger, S. A. Boorman, and P. Arabie. An algorithm for clustering relational data with
applications to social network analysis and comparison to multidimensional scaling. Journal of
Mathematical Psychology, 12:328–383, 1975.

W. L. Buntine and A. Jakulin. Discrete components analysis. In C. Saunders, M. Grobelnik,
S. Gunn, and J. Shawe-Taylor, editors, Subspace, Latent Structure and Feature Selection Tech-
niques. Springer-Verlag, 2006. URL http://arxiv.org/abs/math.ST/0604410/.

G. B. Davis and K. M. Carley. Clearing the FOG: Fuzzy, overlapping groups for social networks.
Manuscript, 2006.

2011

AIROLDI, BLEI, FIENBERG AND XING

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B, 39:1–38, 1977.

P. Doreian, V. Batagelj, and A. Ferligoj. Generalized Blockmodeling. Cambridge University Press,
2004.

P. Doreian, V. Batagelj, and A. Ferligoj. Discussion of “Model-based clustering for social net-
works”. Journal of the Royal Statistical Society, Series A, 170, 2007.

E. A. Erosheva. Grade of Membership and Latent Structure Models with Application to Disability
Survey Data. PhD thesis, Carnegie Mellon University, Department of Statistics, 2002.

E. A. Erosheva and S. E. Fienberg. Bayesian mixed membership models for soft clustering and
classification. In C. Weihs and W. Gaul, editors, Classification—The Ubiquitous Challenge,
pages 11–26. Springer-Verlag, 2005.

M. Escobar and M. West. Bayesian density estimation and inference using mixtures. Journal of the
American Statistical Association, 90:577–588, 1995.

S. E. Fienberg, M. M. Meyer, and S. Wasserman. Statistical analysis of multiple sociometric rela-
tions. Journal of the American Statistical Association, 80:51–67, 1985.

O. Frank and D. Strauss. Markov graphs. Journal of the American Statistical Association, 81:
832–842, 1986.

A. C. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, and et. al. Func-
tional organization of the yeast proteome by systematic analysis of protein complexes. Nature,
415:141–147, 2002.

T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National Academy of
Sciences, 101(Suppl. 1):5228–5235, 2004.

M. S. Handcock, A. E. Raftery, and J. M. Tantrum. Model-based clustering for social networks.
Journal of the Royal Statistical Society, Series A, 170:1–22, 2007.

K. M. Harris, F. Florey, J. Tabor, P. S. Bearman, J. Jones, and R. J. Udry. The national longitudi-
nal study of adolescent health: research design. Technical report, Caorlina Population Center,
University of North Carolina, Chapel Hill, 2003.

Y. Ho, A. Gruhler, A. Heilbut, G. D. Bader, L. Moore, S. L. Adams, A. Millar, P. Taylor, K. Ben-
nett, and K. Boutilier et. al. Systematic identification of protein complexes in saccharomyces
cerevisiae by mass spectrometry. Nature, 415:180–183, 2002.

P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent space approaches to social network analysis.
Journal of the American Statistical Association, 97:1090–1098, 2002.

P. W. Holland and S. Leinhardt. Local structure in social networks. In D. Heise, editor, Sociological
Methodology, pages 1–45. Jossey-Bass, 1975.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. Introduction to variational methods for graph-
ical models. Machine Learning, 37:183–233, 1999.

2012

MIXED MEMBERSHIP STOCHASTIC BLOCKMODELS

C. Joutard, E. M. Airoldi, S. E. Fienberg, and T. M. Love. Discovery of latent patterns with hi-
erarchical bayesian mixed-membership models and the issue of model choice. In Data Mining
Patterns, New Methods and Applications, 2007. Forthcoming.

C. Kemp, T. L. Griffiths, and J. B. Tenenbaum. Discovering latent classes in relational data. Tech-
nical Report AI Memo 2004-019, MIT, 2004.

C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N. Ueda. Learning systems of concepts
with an infinite relational model. In Proceedings of the 21st National Conference on Artificial
Intelligence, 2006.

N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu, N. Datta, A. P.
Tikuisis, T. Punna, J. M. Peregrin-Alvarez, M. Shales, X. Zhang, M. Davey, M. D. Robinson,
A. Paccanaro, J. E. Bray, A. Sheung, B. Beattie, D. P. Richards, V. Canadien, A. Lalev, F. Mena,
P. Wong, A. Starostine, M. M. Canete, J. Vlasblom, S. Wu, C. Orsi, S. R. Collins, S. Chandran,
R. Haw, J. J. Rilstone, K. Gandi, N. J. Thompson, G. Musso, P. St Onge, S. Ghanny, M. H. Y.
Lam, G. Butland, A. M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O’Shea, J. S. Weissman, C. J.
Ingles, T. R. Hughes, J. Parkinson, M. Gerstein, S. J. Wodak, A. Emili, and J. F. Greenblatt.
Global landscape of protein complexes in the yeast Saccharomyces Cerevisiae. Nature, 440
(7084):637–643, 2006.

F.-F. Li and P. Perona. A Bayesian hierarchical model for learning natural scene categories. IEEE
Computer Vision and Pattern Recognition, 2005.

F. Lorrain and H. C. White. Structural equivalence of individuals in social networks. Journal of
Mathematical Sociology, 1:49–80, 1971.

A. McCallum, X. Wang, and N. Mohanty. Joint group and topic discovery from relations and text.
In Statistical Network Analysis: Models, Issues and New Directions, Lecture Notes in Computer
Science. Springer-Verlag, 2007.

H. W. Mewes, C. Amid, R. Arnold, D. Frishman, U. Guldener, and et. al. Mips: analysis and
annotation of proteins from whole genomes. Nucleic Acids Research, 32:D41–44, 2004.

T. Minka. Estimating a Dirichlet distribution. Manuscript, 2003.

T. Minka and J. Lafferty. Expectation-propagation for the generative aspect model. In Uncertainty
in Artificial Intelligence, 2002.

C. L. Myers, D. A. Barret, M. A. Hibbs, C. Huttenhower, and O. G. Troyanskaya. Finding function:
An evaluation framework for functional genomics. BMC Genomics, 7(187), 2006.

J. K. Pritchard, M. Stephens, N. A. Rosenberg, and P. Donnelly. Association mapping in structured
populations. American Journal of Human Genetics, 67:170–181, 2000.

F. S. Sampson. A Novitiate in a Period of Change: An Experimental and Case Study of Social
Relationships. PhD thesis, Cornell University, 1968.

Mark J. Schervish. Theory of Statistics. Springer, 1995.

2013

AIROLDI, BLEI, FIENBERG AND XING

T. A. B. Snijders. Markov chain monte carlo estimation of exponential random graph models.
Journal of Social Structure, 2002.

T. A. B. Snijders and K. Nowicki. Estimation and prediction for stochastic blockmodels for graphs
with latent block structure. Journal of Classification, 14:75–100, 1997.

B. Taskar, M. F. Wong, P. Abbeel, and D. Koller. Link prediction in relational data. In Neural
Information Processing Systems 15, 2003.

Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of
the American Statistical Association, 101(476):1566–1581, 2006.

Y. W. Teh, D. Newman, and M. Welling. A collapsed variational bayesian inference algorithm for
latent dirichlet allocation. In Advances in Neural Information Processing Systems, volume 19,
2007.

R. J. Udry. The national longitudinal study of adolescent health: (add health) waves i and ii, 1994–
1996; wave iii 2001–2002. Technical report, Caorlina Population Center, University of North
Carolina, Chapel Hill, 2003.

C. T. Volinsky and A. E. Raftery. Bayesian information criterion for censored survival models.
Biometrics, 56:256–262, 2000.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families and variational infer-
ence. Technical Report 649, Department of Statistics, University of California, Berkeley, 2003.

Y. J. Wang and G. Y. Wong. Stochastic blockmodels for directed graphs. Journal of the American
Statistical Association, 82:8–19, 1987.

S. Wasserman and P. Pattison. Logit models and logistic regression for social networks: I. an
introduction to markov graphs and p∗. Psychometrika, 61:401–425, 1996.

E. P. Xing, M. I. Jordan, and S. Russell. A generalized mean field algorithm for variational inference
in exponential families. In Uncertainty in Artificial Intelligence, volume 19, 2003.

Z. Xu, V. Tresp, K. Yu, and H.-P. Kriegel. Infinite hidden relational models. In Uncertainty in
Artificial Intelligence, 2006.

2014

Journal of Machine Learning Research 9 (2008) 2015-2033 Submitted 1/08; Revised 5/08; Published 9/08

Consistency of Random Forests and Other Averaging Classifiers

Gérard Biau GERARD.BIAU@UPMC.FR

LSTA & LPMA
Université Pierre et Marie Curie – Paris VI
Boı̂te 158, 175 rue du Chevaleret
75013 Paris, France

Luc Devroye LUC@CS.MCGILL.CA

School of Computer Science
McGill University
Montreal, Canada H3A 2K6

Gábor Lugosi LUGOSI@UPF.ES

ICREA and Department of Economics
Pompeu Fabra University
Ramon Trias Fargas 25-27
08005 Barcelona, Spain

Editor: Peter Bartlett

Abstract
In the last years of his life, Leo Breiman promoted random forests for use in classification. He
suggested using averaging as a means of obtaining good discrimination rules. The base classifiers
used for averaging are simple and randomized, often based on random samples from the data. He
left a few questions unanswered regarding the consistency of such rules. In this paper, we give a
number of theorems that establish the universal consistency of averaging rules. We also show that
some popular classifiers, including one suggested by Breiman, are not universally consistent.
Keywords: random forests, classification trees, consistency, bagging

This paper is dedicated to the memory of Leo Breiman.

1. Introduction

Ensemble methods, popular in machine learning, are learning algorithms that construct a set of many
individual classifiers (called base learners) and combine them to classify new data points by taking
a weighted or unweighted vote of their predictions. It is now well-known that ensembles are often
much more accurate than the individual classifiers that make them up. The success of ensemble
algorithms on many benchmark data sets has raised considerable interest in understanding why
such methods succeed and identifying circumstances in which they can be expected to produce good
results. These methods differ in the way the base learner is fit and combined. For example, bagging
(Breiman, 1996) proceeds by generating bootstrap samples from the original data set, constructing
a classifier from each bootstrap sample, and voting to combine. In boosting (Freund and Schapire,
1996) and arcing algorithms (Breiman, 1998) the successive classifiers are constructed by giving
increased weight to those points that have been frequently misclassified, and the classifiers are
combined using weighted voting. On the other hand, random split selection (Dietterich, 2000)

c©2008 Gérard Biau, Luc Devroye and Gábor Lugosi.

BIAU, DEVROYE AND LUGOSI

grows trees on the original data set. For a fixed number S, at each node, S best splits (in terms of
minimizing deviance) are found and the actual split is randomly and uniformly selected from them.
For a comprehensive review of ensemble methods, we refer the reader to Dietterich (2000a) and the
references therein.

Breiman (2001) provides a general framework for tree ensembles called “random forests”. Each
tree depends on the values of a random vector sampled independently and with the same distribution
for all trees. Thus, a random forest is a classifier that consists of many decision trees and outputs the
class that is the mode of the classes output by individual trees. Algorithms for inducing a random
forest were first developed by Breiman and Cutler, and “Random Forests” is their trademark. The
web page

http://www.stat.berkeley.edu/users/breiman/RandomForests

provides a collection of downloadable technical reports, and gives an overview of random forests as
well as comments on the features of the method.

Random forests have been shown to give excellent performance on a number of practical prob-
lems. They work fast, generally exhibit a substantial performance improvement over single tree
classifiers such as CART, and yield generalization error rates that compare favorably to the best
statistical and machine learning methods. In fact, random forests are among the most accurate
general-purpose classifiers available (see, for example, Breiman, 2001).

Different random forests differ in how randomness is introduced in the tree building process,
ranging from extreme random splitting strategies (Breiman, 2000; Cutler and Zhao, 2001) to more
involved data-dependent strategies (Amit and Geman, 1997; Breiman, 2001; Dietterich, 2000). As
a matter of fact, the statistical mechanism of random forests is not yet fully understood and is still
under active investigation. Unlike single trees, where consistency is proved letting the number of
observations in each terminal node become large (Devroye, Györfi, and Lugosi, 1996, Chapter 20),
random forests are generally built to have a small number of cases in each terminal node. Although
the mechanism of random forest algorithms appears simple, it is difficult to analyze and remains
largely unknown. Some attempts to investigate the driving force behind consistency of random
forests are by Breiman (2000, 2004) and Lin and Jeon (2006), who establish a connection between
random forests and adaptive nearest neighbor methods. Meinshausen (2006) proved consistency of
certain random forests in the context of so-called quantile regression.

In this paper we offer consistency theorems for various versions of random forests and other
randomized ensemble classifiers. In Section 2 we introduce a general framework for studying clas-
sifiers based on averaging randomized base classifiers. We prove a simple but useful proposition
showing that averaged classifiers are consistent whenever the base classifiers are.

In Section 3 we prove consistency of two simple random forest classifiers, the purely random
forest (suggested by Breiman as a starting point for study) and the scale-invariant random forest
classifiers.

In Section 4 it is shown that averaging may convert inconsistent rules into consistent ones.

In Section 5 we briefly investigate consistency of bagging rules. We show that, in general, bag-
ging preserves consistency of the base rule and it may even create consistent rules from inconsistent
ones. In particular, we show that if the bootstrap samples are sufficiently small, the bagged version
of the 1-nearest neighbor classifier is consistent.

2016

CONSISTENCY OF RANDOM FORESTS

Finally, in Section 6 we consider random forest classifiers based on randomized, greedily grown
tree classifiers. We argue that some greedy random forest classifiers, including Breiman’s random
forest classifier, are inconsistent and suggest a consistent greedy random forest classifier.

2. Voting and Averaged Classifiers

Let (X ,Y),(X1,Y1), . . . ,(Xn,Yn) be i.i.d. pairs of random variables such that X (the so-called feature
vector) takes its values in R

d while Y (the label) is a binary {0,1}-valued random variable. The
joint distribution of (X ,Y) is determined by the marginal distribution µ of X (i.e., P{X ∈ A} = µ(A)
for all Borel sets A ⊂ R

d) and the a posteriori probability η : R
d → [0,1] defined by

η(x) = P{Y = 1|X = x} .

The collection (X1,Y1), . . . ,(Xn,Yn) is called the training data, and is denoted by Dn. A classifier gn

is a binary-valued function of X and Dn whose probability of error is defined by

L(gn) = P(X ,Y){gn(X ,Dn) 6= Y}

where P(X ,Y) denotes probability with respect to the pair (X ,Y) (i.e., conditional probability, given
Dn). For brevity, we write gn(X) = gn(X ,Dn). It is well-known (see, for example, Devroye, Györfi,
and Lugosi, 1996) that the classifier that minimizes the probability of error, the so-called Bayes
classifier is g∗(x) =

�

{η(x)≥1/2}. The risk of g∗ is called the Bayes risk: L∗ = L(g∗).
A sequence {gn} of classifiers is consistent for a certain distribution of (X ,Y) if L(gn) → L∗ in

probability.
In this paper we investigate classifiers that calculate their decisions by taking a majority vote

over randomized classifiers. A randomized classifier may use a random variable Z to calculate
its decision. More precisely, let Z be some measurable space and let Z take its values in Z. A
randomized classifier is an arbitrary function of the form gn(X ,Z,Dn), which we abbreviate by
gn(X ,Z). The probability of error of gn becomes

L(gn) = P(X ,Y),Z{gn(X ,Z,Dn) 6= Y} = P{gn(X ,Z,Dn) 6= Y |Dn} .

The definition of consistency remains the same by augmenting the probability space appropriately
to include the randomization.

Given any randomized classifier, one may calculate the classifier for various draws of the ran-
domizing variable Z. It is then a natural idea to define an averaged classifier by taking a majority
vote among the obtained random classifiers. Assume that Z1, . . . ,Zm are identically distributed draws
of the randomizing variable, having the same distribution as Z. Throughout the paper, we assume
that Z1, . . . ,Zm are independent, conditionally on X , Y , and Dn. Letting Zm = (Z1, . . . ,Zm), one may
define the corresponding voting classifier by

g(m)
n (x,Zm,Dn) =

{
1 if 1

m ∑m
j=1 gn(x,Z j,Dn) ≥ 1

2 ,

0 otherwise.

By the strong law of large numbers, for any fixed x and Dn for which PZ{gn(x,Z,Dn) = 1} 6= 1/2, we

have almost surely limm→∞ g(m)
n (x,Zm,Dn) = gn(x,Dn), where gn(x,Dn) = gn(x) =

�

{EZgn(x,Z)≥1/2}

2017

BIAU, DEVROYE AND LUGOSI

is a (non-randomized) classifier that we call the averaged classifier. (Here PZ and EZ denote proba-
bility and expectation with respect to the randomizing variable Z, that is, conditionally on X , Y , and
Dn.)

gn may be interpreted as an idealized version of the classifier g(m)
n that draws many independent

copies of the randomizing variable Z and takes a majority vote over the resulting classifiers.
Our first result states that consistency of a randomized classifier is preserved by averaging.

Proposition 1 Assume that the sequence {gn} of randomized classifiers is consistent for a certain

distribution of (X ,Y). Then the voting classifier g(m)
n (for any value of m) and the averaged classifier

gn are also consistent.

Proof Consistency of {gn} is equivalent to saying that EL(gn) = P{gn(X ,Z) 6= Y} → L∗. In fact,
since P{gn(X ,Z) 6= Y |X = x} ≥ P{g∗(X) 6= Y |X = x} for all x ∈R

d , consistency of {gn} means that
for µ-almost all x,

P{gn(X ,Z) 6= Y |X = x}→ P{g∗(X) 6= Y |X = x} = min(η(x),1−η(x)) .

Without loss of generality, assume that η(x) > 1/2. (In the case of η(x) = 1/2 any classifier has a
conditional probability of error 1/2 and there is nothing to prove.) Then P{gn(X ,Z) 6= Y |X = x} =
(2η(x)−1)P{gn(x,Z) = 0}+1−η(x), and by consistency we have P{gn(x,Z) = 0}→ 0.

To prove consistency of the voting classifier g(m)
n , it suffices to show that P{g(m)

n (x,Zm) = 0}→ 0
for µ-almost all x for which η(x) > 1/2. However,

P{g(m)
n (x,Zm) = 0} = P

{
(1/m)

m

∑
j=1

�

{gn(x,Z j)=0} > 1/2

}

≤ 2E

[
(1/m)

m

∑
j=1

�

{gn(x,Z j)=0}

]

(by Markov’s inequality)

= 2P{gn(x,Z) = 0}→ 0 .

Consistency of the averaged classifier is proved by a similar argument.
�

3. Random Forests

Random forests, introduced by Breiman, are averaged classifiers in the sense defined in Section 2.
Formally, a random forest with m trees is a classifier consisting of a collection of randomized

base tree classifiers gn(x,Z1), . . . ,gn(x,Zm) where Z1, . . . ,Zm are identically distributed random vec-
tors, independent conditionally on X , Y , and Dn.

The randomizing variable is typically used to determine how the successive cuts are performed
when building the tree such as selection of the node and the coordinate to split, as well as the
position of the split. The random forest classifier takes a majority vote among the random tree
classifiers. If m is large, the random forest classifier is well approximated by the averaged classifier

2018

CONSISTENCY OF RANDOM FORESTS

gn(x) =
�

{EZgn(x,Z)≥1/2}. For brevity, we state most results of this paper for the averaged classifier

only, though by Proposition 1 various results remain true for the voting classifier g(m)
n as well.

In this section we analyze a simple random forest already considered by Breiman (2000), which
we call the purely random forest.

The random tree classifier gn(x,Z) is constructed as follows. Assume, for simplicity, that µ is
supported on [0,1]d . All nodes of the tree are associated with rectangular cells such that at each
step of the construction of the tree, the collection of cells associated with the leaves of the tree (i.e.,
external nodes) forms a partition of [0,1]d . The root of the random tree is [0,1]d itself. At each step
of the construction of the tree, a leaf is chosen uniformly at random. The split variable J is then
selected uniformly at random from the d candidates x(1), . . . ,x(d). Finally, the selected cell is split
along the randomly chosen variable at a random location, chosen according to a uniform random
variable on the length of the chosen side of the selected cell. The procedure is repeated k times
where k ≥ 1 is a deterministic parameter, fixed beforehand by the user, and possibly depending on
n.

The randomized classifier gn(x,Z) takes a majority vote among all Yi for which the correspond-
ing feature vector Xi falls in the same cell of the random partition as x. (For concreteness, break ties
in favor of the label 1.)

The purely random forest classifier is a radically simplified version of random forest classifiers
used in practice. The main simplification lies in the fact that recursive cell splits do not depend
on the labels Y1, . . . ,Yn. The next theorem mainly serves as an illustration of how the consistency
problem of random forest classifiers may be attacked. More involved versions of random forest
classifiers are discussed in subsequent sections.

Theorem 2 Assume that the distribution of X is supported on [0,1]d . Then the purely random forest
classifier gn is consistent whenever k → ∞ and k/n → 0 as k → ∞.

Proof By Proposition 1 it suffices to prove consistency of the randomized base tree classifier gn.
To this end, we recall a general consistency theorem for partitioning classifiers proved in (De-
vroye, Györfi, and Lugosi, 1996, Theorem 6.1). According to this theorem, gn is consistent if both
diam(An(X ,Z)) → 0 in probability and Nn(X ,Z) → ∞ in probability, where An(x,Z) is the rectan-
gular cell of the random partition containing x and

Nn(x,Z) =
n

∑
i=1

�

{Xi∈An(x,Z)}

is the number of data points falling in the same cell as x.
First we show that Nn(X ,Z) → ∞ in probability. Consider the random tree partition defined by

Z. Observe that the partition has k + 1 rectangular cells, say A1, . . . ,Ak+1. Let N1, . . . ,Nk+1 denote
the number of points of X ,X1, . . . ,Xn falling in these k +1 cells. Let S = {X ,X1, . . . ,Xn} denote the
set of positions of these n+1 points. Since these points are independent and identically distributed,
fixing the set S (but not the order of the points) and Z, the conditional probability that X falls in the
i-th cell equals Ni/(n+1). Thus, for every fixed t > 0,

P{Nn(X ,Z) < t} = E [P{Nn(X ,Z) < t|S,Z}]

= E

[

∑
i:Ni<t

Ni

n+1

]
≤ (t −1)

k +1
n+1

2019

BIAU, DEVROYE AND LUGOSI

which converges to zero by our assumption on k.
It remains to show that diam(An(X ,Z)) → 0 in probability. To this aim, let Vn = Vn(x,Z) be the

size of the first dimension of the rectangle containing x. Let Tn = Tn(x,Z) be the number of times
that the box containing x is split when we construct the random tree partition.

Let Kn be binomial (Tn,1/d), representing the number of times the box containing x is split
along the first coordinate.

Clearly, it suffices to show that Vn(x,Z) → 0 in probability for µ-almost all x, so it is enough to
show that for all x, E[Vn(x,Z)] → 0. Observe that if U1,U2, . . . are independent uniform [0,1], then

E[Vn(x,Z)] ≤ E

[
E

[
Kn

∏
i=1

max(Ui,1−Ui)

∣∣∣∣∣Kn

]]

= E

[
E [max(U1,1−U1)]

Kn
]

= E
[
(3/4)Kn

]

= E

[(
1− 1

d
+

3
4d

)Tn
]

= E

[(
1− 1

4d

)Tn
]

.

Thus, it suffices to show that Tn → ∞ in probability. To this end, note that the partition tree is
statistically related to a random binary search tree with k + 1 external nodes (and thus k internal
nodes). Such a tree is obtained as follows. Initially, the root is the sole external node, and there are
no internal nodes. Select an external node uniformly at random, make it an internal node and give
it two children, both external. Repeat until we have precisely k internal nodes and k + 1 external
nodes. The resulting tree is the random binary search tree on k internal nodes (see Devroye 1988
and Mahmoud 1992 for more equivalent constructions of random binary search trees). It is known
that all levels up to ` = b0.37logkc are full with probability tending to one as k → ∞ (Devroye,
1986). The last full level Fn is called the fill-up level. Clearly, the partition tree has this property.
Therefore, we know that all final cells have been cut at least ` times and therefore Tn ≥ ` with
probability converging to 1. This concludes the proof of Theorem 3.1. �

Remark 3 We observe that the largest first dimension among external nodes does not tend to zero
in probability except for d = 1. For d ≥ 2, it tends to a limit random variable that is not atomic at
zero (this can be shown using the theory of branching processes). Thus the proof above could not
have used the uniform smallness of all cells. Despite the fact that the random partition contains
some cells of huge diameter of non-shrinking size, the rule based on it is consistent.

Next we consider a scale-invariant version of the purely random forest classifier. In this variant
the root cell is the entire feature space and the random tree is grown up to k cuts. The leaf cell to
cut and the direction J in which the cell is cut are chosen uniformly at random, exactly as in the
purely random forest classifier. The only difference is that the position of the cut is now chosen in
a data-based manner: if the cell to be cut contains N of the data points X ,X1, . . . ,Xn, then a random
index I is chosen uniformly from the set {0,1, . . . ,N} and the cell is cut so that, when ordered by
their J-th components, the points with the I smallest values fall in one of the subcells and the rest in

2020

CONSISTENCY OF RANDOM FORESTS

the other. To avoid ties, we assume that the distribution of X has non-atomic marginals. In this case
the random tree is well-defined with probability one. Just like before, the associated classifier takes
a majority vote over the labels of the data points falling in the same cell as X . The scale-invariant
random forest classifier is defined as the corresponding averaged classifier.

Theorem 4 Assume that the distribution of X has non-atomic marginals in R
d . Then the scale-

invariant random forest classifier gn is consistent whenever k → ∞ and k/n → 0 as k → ∞.

Proof Once again, we may use Proposition 1 and (Devroye, Györfi, and Lugosi, 1996, Theorem 6.1)
to prove consistency of the randomized base tree classifier gn. The proof of the fact that Nn(X ,Z)→
∞ in probability is the same as in Theorem 2.

To show that diam(An(X ,Z)) → 0 in probability, we begin by noting that, just as in the case
of the purely random forest classifier, the partition tree is equivalent to a binary search tree, and
therefore with probability converging to one, all final cells have been cut at least ` = b0.37logkc
times.

Since the classification rule is scale-invariant, we may assume, without loss of generality, that
the distribution of X is concentrated on the unit cube [0,1]d .

Let ni denote the cardinality of the i-th cell in the partition, 1 ≤ i ≤ k +1, where the cardinality
of a cell C is |C∩{X ,X1, . . . ,Xn}|. Thus, ∑k+1

i=1 ni = n + 1. Let Vi be the first dimension of the i-th
cell. Let V (X) be the first dimension of the cell that contains X . Clearly, given the ni’s, V (X) = Vi

with probability ni/(n+1). We need to show that E[V (X)] → 0. But we have

E[V (X)] = E

[
∑k+1

i=1 niVi

n+1

]
.

So, it suffices to show that E[∑i niVi] = o(n).
It is worthy of mention that the random split of a box can be imagined as follows. Given that

we split along the s-th coordinate axis, and that a box has m points, then we select one of the m+1
spacings defined by these m points uniformly at random, still for that s-th coordinate. We cut that
spacing properly but are free to do so anywhere. We can cut in proportions λ,1−λ with λ ∈ (0,1),
and the value of λ may vary from cut to cut and even be data-dependent. In fact, then, each internal
and external node of our partition tree has associated with it two important quantities, a cardinality,
and its first dimension. If we keep using i to index cells, then we can use ni and Vi for the i-th cell,
even if it is an internal cell.

Let A be the collection of external nodes in the subtree of the i-th cell. Then trivially,

∑
j∈A

n jVj ≤ niVi ≤ n.

Thus, if E is the collection of all external nodes of a partition tree, ` is at most the minimum path
distance from any cell in E to the root, and L is the collection of all nodes at distance ` from the
root, then, by the last inequality,

∑
i∈E

niVi ≤ ∑
i∈L

niVi.

Thus, using the notion of fill-up level Fn of the binary search tree, and setting ` = b0.37logkc, we
have

E

[

∑
i∈E

niVi

]
≤ nP{Fn < `}+E

[

∑
i∈L

niVi

]
.

2021

BIAU, DEVROYE AND LUGOSI

We have seen that the first term is o(n). We argue that the second term is not more than n(1−
1/(8d))`, which is o(n) since k → ∞. That will conclude the proof.

It suffices now to argue recursively and fix one cell of cardinality n and first dimension V . Let
C be the collection of its children. We will show that

E

[

∑
i∈C

niVi

]
≤
(

1− 1
8d

)
nV.

Repeating this recursively ` times shows that

E

[

∑
i∈L

niVi

]
≤ n

(
1− 1

8d

)`

because V = 1 at the root.
Fix that cell of cardinality n, and assume without loss of generality that V = 1. Let the spacings

along the first coordinate be a1, . . . ,an+1, their sum being one. With probability 1− 1/d, there the
first axis is not cut, and thus, ∑i∈C niVi = n. With probability 1/d, the first axis is cut in two parts.
We will show that conditional on the event that the first direction is cut,

E

[

∑
i

niVi

]
≤ 7n

8
.

Unconditionally, we have

E

[

∑
i

niVi

]
≤
(

1− 1
d

)
n+

1
d
· 7n

8
=

(
1− 1

8d

)
n ,

as required. So, let us prove the conditional result.
Using δ j to denote numbers drawn from (0,1), possibly random, we have

E

[

∑
i

niVi

]

=
1

n+1
E

[n+1

∑
j=1

[(j−1)(a1 + · · ·+a j−1 +a jδ j)

+(n+1− j)(a j(1−δ j)+a j+1 + · · ·+an+1)
]]

=
1

n+1
E

[
n+1

∑
k=1

ak

(

∑
k< j≤n+1

(j−1)

+ ∑
1≤ j<k

(n+1− j)+δk(k−1)+(1−δk)(n+1− k)

)]

≤ 1
n+1

(
n+1

∑
k=1

ak

(
n(n+1)− k(k−1)

2

−(n− k +1)(n− k +2)

2
+max(k−1,n+1− k)

))

2022

CONSISTENCY OF RANDOM FORESTS

=
1

n+1

(
n+1

∑
k=1

ak

(
n(n+1)

2
+(k−1)(n+1− k)+max(k−1,n+1− k)

))

≤ 1
n+1

((
n(n+1)

2
+
(n

2

)2
+n

) n+1

∑
k=1

ak

)

= n

(
3n/4+(3/2)

n+1

)

≤ 7n
8

if n > 4.

�

Our definition of the scale-invariant random forest classifier permits cells to be cut such that one
of the created cells becomes empty. One may easily prevent this by artificially forcing a minimum
number of points in each cell. This may be done by restricting the random position of each cut so
that both created subcells contain at least, say, m points. By a minor modification of the proof above
it is easy to see that as long as m is bounded by a constant, the resulting random forest classifier
remains consistent under the same conditions as in Theorem 4.

4. Creating Consistent Rules by Randomization

Proposition 1 shows that if a randomized classifier is consistent, then the corresponding averaged
classifier remains consistent. The converse is not true. There exist inconsistent randomized classi-
fiers such that their averaged version becomes consistent. Indeed, Breiman’s (2001) original random
forest classifier builds tree classifiers by successive randomized cuts until the cell of the point X to
be classified contains only one data point, and classifies X as the label of this data point. Breiman’s
random forest classifier is just the averaged version of such randomized tree classifiers. The ran-
domized base classifier gn(x,Z) is obviously not consistent for all distributions.

This does not imply that the averaged random forest classifier is not consistent. In fact, in this
section we will see that averaging may “boost” inconsistent base classifiers into consistent ones.
We point out in Section 6 that there are distributions of (X ,Y) for which Breiman’s random forest
classifier is not consistent. The counterexample shown in Proposition 8 is such that the distribution
of X doesn’t have a density. It is possible, however, that Breiman’s random forest classifier is
consistent whenever the distribution of X has a density. Breiman’s rule is difficult to analyze as
each cut of the random tree is determined by a complicated function of the entire data set Dn (i.e.,
both feature vectors and labels). However, in Section 6 below we provide arguments suggesting that
Breiman’s random forest is not consistent when a density exists. Instead of Breiman’s rule, next we
analyze a stylized version by showing that inconsistent randomized rules that take the label of only
one neighbor into account can be made consistent by averaging.

For simplicity, we consider the case d = 1, though the whole argument extends, in a straightfor-
ward way, to the multivariate case. To avoid complications introduced by ties, assume that X has a
non-atomic distribution. Define a randomized nearest neighbor rule as follows: for a fixed x ∈ R,
let X(1)(x),X(2)(x), . . . ,X(n)(x) be the ordering of the data points X1, . . . ,Xn according to increasing
distances from x. Let U1, . . . ,Un be i.i.d. random variables, uniformly distributed over [0,1]. The
vector of these random variables constitutes the randomization Z of the classifier. We define gn(x,Z)

2023

BIAU, DEVROYE AND LUGOSI

to be equal to the label Y(i)(x) of the data point X(i)(x) for which

max(i,mUi) ≤ max(j,mU j) for all j = 1, . . . ,n

where m ≤ n is a parameter of the rule. We call X(i)(x) the perturbed nearest neighbor of x. Note that
X(1)(x) is the (unperturbed) nearest neighbor of x. To obtain the perturbed version, we artificially add
a random uniform coordinate and select a data point with the randomized rule defined above. Since
ties occur with probability zero, the perturbed nearest neighbor classifier is well defined almost
surely. It is clearly not, in general, a consistent classifier.

Call the corresponding averaged classifier gn(x) =
�

{EZgn(x,Z)≥1/2} the averaged perturbed near-
est neighbor classifier.

In the proof of the consistency result below, we use Stone’s (1977) general consistency theorem
for locally weighted average classifiers, see also (Devroye, Györfi, and Lugosi, 1996, Theorem 6.3).
Stone’s theorem concerns classifiers that take the form

gn(x) =
�

{∑n
i=1 YiWni(x)≥∑n

i=1(1−Yi)Wni(x)}

where the weights Wni(x) = Wni(x,X1, . . . ,Xn) are non-negative and sum to one. According to
Stone’s theorem, consistency holds if the following three conditions are satisfied:

(i)

lim
n→∞

E

[
max
1≤i≤n

Wni(X)

]
= 0.

(ii) For all a > 0,

lim
n→∞

E

[
n

∑
i=1

Wni(X)
�

{‖Xi−X‖>a}

]
= 0.

(iii) There is a constant c such that, for every non-negative measurable function f satisfying
E f (X) < ∞,

E

[
n

∑
i=1

Wni(X) f (Xi)

]
≤ cE f (X).

Theorem 5 The averaged perturbed nearest neighbor classifier gn is consistent whenever the pa-
rameter m is such that m → ∞ and m/n → 0.

Proof If we define

Wni(x) = PZ{Xi is the perturbed nearest neighbor of x}

then it is clear that the averaged perturbed nearest neighbor classifier is a locally weighted average
classifier and Stone’s theorem may be applied. It is convenient to introduce the notation

pni(x) = PZ{X(i)(x) is the perturbed nearest neighbor of x}

and write Wni(x) = ∑n
j=1

�

{Xi=X(j)(x)}pn j(x).

2024

CONSISTENCY OF RANDOM FORESTS

To check the conditions of Stone’s theorem, first note that

pni(x) = P{mUi ≤ i ≤ min
j<i

mU j}+P{i < mUi ≤ min
j≤n

max(j,mU j)}

=
�

{i≤m}
i
m

(
1− i

m

)i−1

+P{i < mUi ≤ min
j≤n

max(j,mU j)} .

Now we are prepared to check the conditions of Stone’s theorem. To prove that (i) holds, note
that by monotonicity of pni(x) in i, it suffices to show that pn1(x) → 0.

But clearly, for m ≥ 2,

pn1(x) ≤ 1
m

+P

{
U1 ≤ min

j≤m
max

(
j

m
,U j

)}

=
1
m

+E

[
m

∏
j=2

P

{
U1 ≤ max

(
j

m
,U j

)
|U1

}]

=
1
m

+E

[
m

∏
j=2

[
1− �

{U1> j/m}U1
]
]

≤ 1
m

+E
[
(1−U1)

mU1−2 �

{bmU1c≥3}
]
+P{bmU1c < 3}

which converges to zero by monotone convergence as m → ∞.

(ii) follows by the condition m/n → 0 since ∑n
i=1Wni(X)

�

{‖Xi−X‖>a} = 0 whenever the distance
of m-th nearest neighbor of X to X is at most a. But this happens eventually, almost surely, see
(Devroye, Györfi, and Lugosi, 1996, Lemma 5.1).

Finally, to check (iii), we use again the monotonicity of pni(x) in i. We may write pni(x) =
ai + ai+1 + · · ·+ an for some non-negative numbers a j,1 ≤ j ≤ n, depending upon m and n but not
x. Observe that ∑n

j=1 ja j = ∑n
i=1 pni(x) = 1. But then

E

[
n

∑
i=1

Wni(X) f (Xi)

]

= E

[
n

∑
i=1

pni(X) f (X(i))

]

= E

[
n

∑
i=1

n

∑
j=i

a j f (X(i))

]

= E

[
n

∑
j=1

a j

j

∑
i=1

f (X(i))

]

=
n

∑
j=1

a jE

[
j

∑
i=1

f (X(i))

]

2025

BIAU, DEVROYE AND LUGOSI

≤ c
n

∑
j=1

a j jE f (X)

(by Stone’s (1977) lemma, see (Devroye, Györfi, and Lugosi, 1996, Lemma 5.3),

where c is a constant)

= cE f (X)
n

∑
j=1

a j j = cE f (X)

as desired. �

5. Bagging

One of the first and simplest ways of randomizing and averaging classifiers in order to improve their
performance is bagging, suggested by Breiman (1996). In bagging, randomization is achieved by
generating many bootstrap samples from the original data set. Breiman suggests selecting n training
pairs (Xi,Yi) at random, with replacement from the bag of all training pairs {(X1,Y1), . . . ,(Xn,Yn)}.
Denoting the random selection process by Z, this way one obtains new training data Dn(Z) with
possible repetitions and given a classifier gn(X ,Dn), one can calculate the randomized classifier
gn(X ,Z,Dn) = gn(X ,Dn(Z)). Breiman suggests repeating this procedure for many independent

draws of the bootstrap sample, say m of them, and calculating the voting classifier g(m)
n (X ,Zm,Dn)

as defined in Section 2.
In this section we consider a generalized version of bagging predictors in which the size of the

bootstrap samples is not necessary the same as that the original sample. Also, to avoid complications
and ambiguities due to replicated data points, we exclude repetitions in the bootstrapped data. This
is assumed for convenience but sampling with replacement can be treated by minor modifications
of the arguments below.

To describe the model we consider, introduce a parameter qn ∈ [0,1]. In the bootstrap sample
Dn(Z) each data pair (Xi,Yi) is present with probability qn, independently of each other. Thus, the
size of the bootstrapped data is a binomial random variable N with parameters n and qn. Given a
sequence of (non-randomized) classifiers {gn}, we may thus define the randomized classifier

gn(X ,Z,Dn) = gN(X ,Dn(Z)) ,

that is, the classifier is defined based on the randomly re-sampled data. By drawing m independent
bootstrap samples Dn(Z1), . . . ,Dn(Zm) (with sizes N1, . . . ,Nm), we may define the bagging classi-

fier g(m)
n (X ,Zm,Dn) as the voting classifier based on the randomized classifiers gN1(X ,Dn(Z1)), . . . ,

gNm(X ,Dn(Zm)) as in Section 2. For the theoretical analysis it is more convenient to consider the
averaged classifier gn(x,Dn) =

�

{EZgN(x,Dn(Z))≥1/2} which is the limiting classifier one obtains as the
number m of the bootstrap replicates grows to infinity.

The following result establishes consistency of bagging classifiers under the assumption that the
original classifier is consistent. It suffices that the expected size of the bootstrap sample goes to
infinity. The result is an immediate consequence of Proposition 1. Note that the choice of m does
not matter in Theorem 6. It can be one, constant, or a function of n.

Theorem 6 Let {gn} be a sequence of classifiers that is consistent for the distribution of (X ,Y).

Consider the bagging classifiers g(m)
n (x,Zm,Dn) and gn(x,Dn) defined above, using parameter qn.

If nqn → ∞ as n → ∞ then both classifiers are consistent.

2026

CONSISTENCY OF RANDOM FORESTS

If a classifier is insensitive to duplicates in the data, Breiman’s original suggestion is roughly
equivalent to taking qn ≈ 1−1/e.

However, it may be advantageous to choose much smaller values of qn. In fact, small values
of qn may turn inconsistent classifiers into consistent ones via the bagging procedure. We illustrate
this phenomenon on the simple example of the 1-nearest neighbor rule.

Recall that the 1-nearest neighbor rule sets gn(x,Dn) = Y(1)(x) where Y(1)(x) is the label of the
feature vector X(1)(x) whose Euclidean distance to x is minimal among all X1, . . . ,Xn. Ties are
broken in favor of smallest indices. It is well-known that gn is consistent only if either L∗ = 0
or L∗ = 1/2, otherwise its asymptotic probability of error is strictly greater than L∗. However, by
bagging one may turn the 1-nearest neighbor classifier into a consistent one, provided that the size of
the bootstrap sample is sufficiently small. The next result characterizes consistency of the bagging
version of the 1-nearest neighbor classifier in terms of the parameter qn.

Theorem 7 The bagging averaged 1-nearest neighbor classifier gn(x,Dn) is consistent for all dis-
tributions of (X ,Y) if and only if qn → 0 and nqn → ∞.

Proof It is obvious that both qn → 0 and nqn → ∞ are necessary for consistency for all distributions.
Assume now that qn → 0 and nqn → ∞. The key observation is that gn(x,Dn) is a locally

weighted average classifier for which Stone’s consistency theorem, recalled in Section 4, applies.
Recall that for a fixed x ∈ R, X(1)(x),X(2)(x), . . . ,X(n)(x) denotes the ordering of the data points

X1, . . . ,Xn according to increasing distances from x. (Points with equal distances to x are ordered
according to their indices.) Observe that gn may be written as

gn(x,Dn) =
�

{∑n
i=1 YiWni(x)≥∑n

i=1(1−Yi)Wni(x)}

where Wni(x) = ∑n
j=1

�

{Xi=X(j)(x)}pn j(x) and pni(x) = (1−qn)
i−1qn is defined as the probability (with

respect to the random selection Z of the bootstrap sample) that X(i)(x) is the nearest neighbor of x in
the sample Dn(Z). It suffices to prove that the weights Wni(X) satisfy the three conditions of Stone’s
theorem.

Condition (i) obviously holds because max1≤i≤nWni(X) = pn1(X) = qn → 0.

To check condition (ii), define kn =
⌈√

n/qn

⌉
. Since nqn → ∞ implies that kn/n → 0, it

follows from (Devroye, Györfi, and Lugosi, 1996, Lemma 5.1) that eventually, almost surely,
‖X −X(kn)(X)‖ ≤ a and therefore

n

∑
i=1

Wni(X)
�

{‖Xi−X‖>a} ≤
n

∑
i=kn+1

pni(X)

=
n

∑
i=kn+1

qn(1−qn)
i−1

≤ (1−qn)
kn

≤ (1−qn)
√

n/qn

≤ e−
√

nqn

where we used 1− qn ≤ e−qn . Therefore, ∑n
i=1Wni(X)

�

{‖Xi−X‖>a} → 0 almost surely and Stone’s
second condition is satisfied by dominated convergence.

2027

BIAU, DEVROYE AND LUGOSI

Finally, condition (iii) follows from the fact that pni(x) is monotone decreasing in i, after using
an argument as in the proof of Theorem 5. �

6. Random Forests Based on Greedily Grown Trees

In this section we study random forest classifiers that are based on randomized tree classifiers that
are constructed in a greedy manner, by recursively splitting cells to minimize an empirical error
criterion. Such greedy forests were introduced by Breiman (2001, 2004) and have shown excellent
performance in many applications. One of his most popular classifiers is an averaging classifier, gn,
based on a randomized tree classifier gn(x,Z) defined as follows. The algorithm has a parameter
1 ≤ v < d which is a positive integer. The feature space R

d is partitioned recursively to form a
tree partition. The root of the random tree is R

d . At each step of the construction of the tree,
a leaf is chosen uniformly at random. v variables are selected uniformly at random from the d
candidates x(1), . . . ,x(d). A split is selected along one of these v variables to minimize the number of
misclassified training points if a majority vote is used in each cell. The procedure is repeated until
every cell contains exactly one training point Xi. (This is always possible if the distribution of X has
non-atomic marginals.)

In some versions of Breiman’s algorithm, a bootstrap subsample of the training data is selected
before the construction of each tree to increase the effect of randomization.

As observed by Lin and Jeon (2006), Breiman’s classifier is a weighted layered nearest neighbor
classifier, that is, a classifier that takes a (weighted) majority vote among the layered nearest neigh-
bors of the observation x. Xi is called a layered nearest neighbor of x if the rectangle defined by x
and Xi as their opposing vertices does not contain any other data point X j (j 6= i). This property of
Breiman’s random forest classifier is a simple consequence of the fact that each tree is grown until
every cell contains just one data point. Unfortunately, this simple property prevents the random tree
classifier from being consistent for all distributions:

Proposition 8 There exists a distribution of (X ,Y) such that X has non-atomic marginals for which
Breiman’s random forest classifier is not consistent.

Proof The proof works for any weighted layered nearest neighbor classifier. Let the distribution
of X be uniform on the segment {x = (x(1), . . . ,x(d)) : x(1) = · · · = x(d),x(1) ∈ [0,1]} and let the
distribution of Y be such that L∗ 6= {0,1/2}. Then with probability one, X has only two layered
nearest neighbors and the classification rule is not consistent. (Note that Problem 11.6 in Devroye,
Györfi, and Lugosi 1996 erroneously asks the reader to prove consistency of the (unweighted) lay-
ered nearest neighbor rule for any distribution with non-atomic marginals. As the example in this
proof shows, the statement of the exercise is incorrect. Consistency of the layered nearest neighbor
rule is true however, if the distribution of X has a density.) �

One may also wonder whether Breiman’s random forest classifier is consistent if instead of
growing the tree down to cells with a single data point, one uses a different stopping rule, for
example if one fixes the total number of cuts at k and let k grow slowly as in the examples of
Section 3. The next two-dimensional example provides an indication that this is not necessarily the
case. Consider the joint distribution of (X ,Y) sketched in Figure 1. X has a uniform distribution
on [0,1]× [0,1]∪ [1,2]× [1,2]∪ [2,3]× [2,3]. Y is a function of X , that is η(x) ∈ {0,1} and L∗ =
0. The lower left square [0,1]× [0,1] is divided into countably infinitely many vertical stripes in

2028

CONSISTENCY OF RANDOM FORESTS

Figure 1: An example of a distribution for which greedy random forests are inconsistent. The
distribution of X is uniform on the union of the three large squares. White areas represent
the set where η(x) = 0 and on the grey regions η(x) = 1.

which the stripes with η(x) = 0 and η(x) = 1 alternate. The upper right square [2,3]× [2,3] is
divided similarly into horizontal stripes. The middle rectangle [1,2]× [1,2] is a 2×2 checkerboard.
Consider Breiman’s random forest classifier with v = 1 (the only possible choice when d = 2).

For simplicity, consider the case when, instead of minimizing the empirical error, each tree is
grown by minimizing the true probability of error at each split in each random tree. Then it is easy
to see that no matter what the sequence of random selection of split directions is and no matter for
how long each tree is grown, no tree will ever cut the middle rectangle and therefore the probability
of error of the corresponding random forest classifier is at least 1/6.

It is not so clear what happens in this example if the successive cuts are made by minimizing
the empirical error. Whether the middle square is ever cut will depend on the precise form of the
stopping rule and the exact parameters of the distribution. The example is here to illustrate that
consistency of greedily grown random forests is a delicate issue. Note however that if Breiman’s
original algorithm is used in this example (i.e., when all cells with more than one data point in it are
split) then one obtains a consistent classification rule. If, on the other hand, horizontal or vertical
cuts are selected to minimize the probability of error, and k → ∞ in such a way that k = O(n1/2−ε)
for some ε > 0, then, as errors on the middle square are never more than about O(1/

√
n) (by the

limit law for the Kolmogorov-Smirnov statistic), we see that thin strips of probability mass more
than 1/

√
n are preferentially cut. By choosing the probability weights of the strips, one can easily

see that we can construct more than 2k such strips. Thus, when k = O(n1/2−ε), no consistency is
possible on that example.

We note here that many versions of random forest classifiers build on random tree classifiers
based on bootstrap subsampling. This is the case of Breiman’s principal random forest classifier.

2029

BIAU, DEVROYE AND LUGOSI

1

4

44c1

2

2

4c2c

3

6

8

5

7

87

9

9

6c3

8c67c59 5 3 1
c c c c

3c

5c

9c

1

2
3

4

5

6

7
8

9

1c

Figure 2: A tree based on partitioning the plane into rectangles. The right subtree of each internal
node belongs to the inside of a rectangle, and the left subtree belongs to the complement
of the same rectangle (ic denotes the complement of i). Rectangles are not allowed to
overlap.

Breiman suggests to take a random sample of size n drawn with replacement from the original
data. While this may result in an improved behavior in some practical instances, it is easy to see
that such a subsampling procedure does not vary the consistency property of any of the classifiers
studied in this paper. For example, non-consistency of Breiman’s random forest classifier with
bootstrap resampling for the distribution considered in the proof of Proposition 8 follows from the
fact that the two layered nearest neighbors on both sides are included in the bootstrap sample with
a probability bounded away from zero and therefore the weight of these two points is too large,
making consistency impossible.

In order to remedy the inconsistency of greedily grown tree classifiers, (Devroye, Györfi, and
Lugosi, 1996, Section 20.14) introduce a greedy tree classifier which, instead of cutting every cell
along just one direction, cuts out a whole hyper-rectangle from a cell in a way to optimize the em-
pirical error. The disadvantage of this method is that in each step, d parameters need to be optimized
jointly and this may be computationally prohibitive if d is not very small. (The computational com-
plexity of the method is O(nd).) However, we may use the methodology of random forests to define
a computationally feasible consistent greedily grown random forest classifier.

In order to define the consistent greedy random forest, we first recall the tree classifier of (De-
vroye, Györfi, and Lugosi, 1996, Section 20.14).

The space is partitioned into rectangles as shown in Figure 2.
A hyper-rectangle defines a split in a natural way. A partition is denoted by P , and a decision

on a set A ∈ P is by majority vote. We write gP for such a rule:

gP (x) =
�

{∑i:Xi∈A(x)Yi>∑i:Xi∈A(x)(1−Yi)}

where A(x) denotes the cell of the partition containing x. Given a partition P , a legal hyper-rectangle
T is one for which T ∩A = /0 or T ⊆ A for all sets A ∈ P . If we refine P by adding a legal rectangle
T somewhere, then we obtain the partition T . The decision gT agrees with gP except on the set
A ∈ P that contains T .

2030

CONSISTENCY OF RANDOM FORESTS

Introduce the convenient notation

ν j(A) = P{X ∈ A,Y = j}, j ∈ {0,1},

ν j,n(A) =
1
n

n

∑
i=1

I{Xi∈A,Yi= j}, j ∈ {0,1}.

The empirical error of gP is

L̂n(P)
def
= ∑

R∈P
L̂n(R),

where

L̂n(R) =
1
n

n

∑
i=1

I{Xi∈R,gP (Xi)6=Yi} = min(ν0,n(R),ν1,n(R)).

We may similarly define L̂n(T). Given a partition P , the greedy classifier selects that legal rectangle
T for which L̂n(T) is minimal (with any appropriate policy for breaking ties). Let R be the set of P
containing T . Then the greedy classifier picks that T for which

L̂n(T)+ L̂n(R−T)− L̂n(R)

is minimal. Starting with the trivial partition P0 = {Rd}, we repeat the previous step k times, leading
thus to k +1 regions. The sequence of partitions is denoted by P0,P1, . . . ,Pk.

(Devroye, Györfi, and Lugosi, 1996, Theorem 20.9) establish consistency of this classifier. More
precisely, it is shown that if X has non-atomic marginals, then the greedy classifier with k → ∞ and

k = o
(√

n/ logn
)

is consistent.

Based on the greedy tree classifier, we may define a random forest classifier by considering its
bagging version. More precisely, let qn ∈ [0,1] be a parameter and let Z = Z(Dn) denote a random
subsample of size binomial (n,qn) of the training data (i.e., each pair (Xi,Yi) is selected at random,
without replacement, from Dn, with probability qn) and let gn(x,Z) be the greedy tree classifier (as
defined above) based on the training data Z(Dn). Define the corresponding averaged classifier gn.
We call gn the greedy random forest classifier. Note that gn is just the bagging version of the greedy
tree classifier and therefore Theorem 6 applies:

Theorem 9 The greedy random forest classifier is consistent whenever X has non-atomic marginals

in R
d , nqn → ∞, k → ∞ and k = o

(√
nqn/ log(nqn)

)
as n → ∞.

Proof This follows from Theorem 6 and the fact that the greedy tree classifier is consistent (see
Theorem 20.9 of Devroye, Györfi, and Lugosi (1996)). �

Observe that the computational complexity of building the randomized tree classifier gn(x,Z)

is O((nqn)
d). Thus, the complexity of computing the voting classifier g(m)

n is m(nqn)
d . If qn � 1,

this may be a significant speed-up compared to the complexity O(nd) of computing a single tree
classifier using the full sample. Repeated subsampling and averaging may make up for the effect of
decreased sample size.

2031

BIAU, DEVROYE AND LUGOSI

Acknowledgments

We thank James Malley for stimulating discussions. We also thank three referees for valuable
comments and insightful suggestions.

The second author’s research was sponsored by NSERC Grant A3456 and FQRNT Grant 90-
ER-0291. The third author acknowledges support by the Spanish Ministry of Science and Tech-
nology grant MTM2006-05650 and by the PASCAL Network of Excellence under EC grant no.
506778.

References

Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. Neural Com-
putation, 9:1545–1588, 1997.

L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

L. Breiman. Arcing classifiers. The Annals of Statistics, 24:801–849, 1998.

L. Breiman. Some infinite theory for predictor ensembles. Technical Report 577, Statistics Depart-
ment, UC Berkeley, 2000. http://www.stat.berkeley.edu/̃ breiman .

L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

L. Breiman. Consistency for a simple model of random forests. Technical Report 670, Statistics
Department, UC Berkeley, 2004.

A. Cutler and G. Zhao. Pert – Perfect random tree ensembles, Computing Science and Statistics,
33:490–497, 2001.

L. Devroye. Applications of the theory of records in the study of random trees. Acta Informatica,
26:123–130, 1988.

L. Devroye. A note on the height of binary search trees. Journal of the ACM, 33:489–498, 1986.

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-
Verlag, New York, 1996.

T.G. Dietterich. An experimental comparison of three methods for constructing ensembles of deci-
sion trees: bagging, boosting, and randomization. Machine Learning, 40:139–157, 2000.

T.G. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli (Eds.), First Inter-
national Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science, pp. 1–15,
Springer-Verlag, New York, 2000.

Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In L. Saitta (Ed.), Machine
Learning: Proceedings of the 13th International Conference, pp. 148–156, Morgan Kaufmann,
San Francisco, 1996.

Y. Lin and Y. Jeon. Random forests and adaptive nearest neighbors. Journal of the American
Statistical Association, 101:578–590, 2006.

2032

CONSISTENCY OF RANDOM FORESTS

N. Meinshausen. Quantile regression forests. Journal of Machine Learning Research, 7:983–999,
2006.

H.M. Mahmoud. Evolution of Random Search Trees. John Wiley, New York, 1992.

C. Stone. Consistent nonparametric regression. The Annals of Statistics, 5:595–645, 1977.

2033

Journal of Machine Learning Research 9 (2008) 2035-2078 Submitted 8/07; Revised 4/08; Published 10/08

Approximations for Binary Gaussian Process Classification

Hannes Nickisch HN@TUEBINGEN.MPG.DE

Max Planck Institute for Biological Cybernetics
Spemannstraße 38
72076 Tübingen, Germany

Carl Edward Rasmussen∗ CER54@CAM.AC.UK

Department of Engineering
University of Cambridge
Trumpington Street
Cambridge, CB2 1PZ, UK

Editor: Carlos Guestrin

Abstract

We provide a comprehensive overview of many recent algorithms for approximate inference in
Gaussian process models for probabilistic binary classification. The relationships between several
approaches are elucidated theoretically, and the properties of the different algorithms are corrobo-
rated by experimental results. We examine both 1) the quality of the predictive distributions and
2) the suitability of the different marginal likelihood approximations for model selection (selecting
hyperparameters) and compare to a gold standard based on MCMC. Interestingly, some methods
produce good predictive distributions although their marginal likelihood approximations are poor.
Strong conclusions are drawn about the methods: The Expectation Propagation algorithm is almost
always the method of choice unless the computational budget is very tight. We also extend existing
methods in various ways, and provide unifying code implementing all approaches.

Keywords: Gaussian process priors, probabilistic classification, Laplaces’s approximation, ex-
pectation propagation, variational bounding, mean field methods, marginal likelihood evidence,
MCMC

1. Introduction

Gaussian processes (GPs) can conveniently be used to specify prior distributions for Bayesian infer-
ence. In the case of regression with Gaussian noise, inference can be done simply in closed form,
since the posterior is also a GP. For non-Gaussian likelihoods, such as e.g., in binary classification,
exact inference is analytically intractable.

One prolific line of attack is based on approximating the non-Gaussian posterior with a tractable
Gaussian distribution. One might think that finding such an approximating GP is a well-defined
problem with a largely unique solution. However, we find no less than three different types of solu-
tion in the recent literature: Laplace Approximation (LA) (Williams and Barber, 1998), Expectation
Propagation (EP) (Minka, 2001a) and Kullback-Leibler divergence (KL) minimization (Opper and
Archambeau, 2008) comprising Variational Bounding (VB) (Gibbs and MacKay, 2000) as a special

∗. Also at Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen, Germany.

c©2008 Hannes Nickisch and Carl Edward Rasmussen.

NICKISCH AND RASMUSSEN

case. Another approach is based on a factorial approximation, rather than a Gaussian (Csató et al.,
2000).

Practical applications reflect the richness of approximate inference methods: LA has been used
for sequence annotation (Altun et al., 2004) and prostate cancer prediction (Chu et al., 2005), EP for
affect recognition (Kapoor and Picard, 2005), VB for weld cracking prognosis (Gibbs and MacKay,
2000), Label Regression (LR) serves for object categorization (Kapoor et al., 2007) and MCMC
sampling is applied to rheuma diagnosis (Schwaighofer et al., 2002). Brain computer interfaces
(Zhong et al., 2008) even rely on several (LA, EP, VB) methods.

In this paper, we compare these different approximations and provide insights into the strengths
and weaknesses of each method, extending the work of Kuss and Rasmussen (2005) in several di-
rections: We cover many more approximation methods (VB,KL,FV,LR), put all of them in common
framework and provide generic implementations dealing with both the logistic and the cumula-
tive Gaussian likelihood functions and clarify the aspects of the problem causing difficulties for
each method. We derive Newton’s method for KL and VB. We show how to accelerate MCMC
simulations. We highlight numerical problems, comment on computational complexity and supply
runtime measurements based on experiments under a wide range of conditions, including different
likelihood and different covariance functions. We provide deeper insights into the methods behavior
by systematically linking them to each other. Finally, we review the tight connections to methods
from the literature on Statistical Physics, including the TAP approximation and TAPnaive.

The quantities of central importance are the quality of the probabilistic predictions and the suit-
ability of the approximate marginal likelihood for selecting parameters of the covariance function
(hyperparameters). The marginal likelihood for any Gaussian approximate posterior can be lower
bounded using Jensen’s inequality, but the specific approximation schemes also come with their
own marginal likelihood approximations.

We are able to draw clear conclusions. Whereas every method has good performance under
some circumstances, only a single method gives consistently good results. We are able to theoreti-
cally corroborate our experimental findings; together this provides solid evidence and guidelines for
choosing an approximation method in practice.

2. Gaussian Processes for Binary Classification

We describe probabilistic binary classification based on Gaussian processes in this section. For
a graphical model representation see Figure 1 and for a 1d pictorial description consult Figure 2.
Given data points xi from a domain X with corresponding class labels yi ∈ {−1,+1}, one would
like to predict the class membership probability for a test point x∗. This is achieved by using a
latent function f whose value is mapped into the unit interval by means of a sigmoid function
sig : R→ [0,1] such that the class membership probability P(y = +1|x) can be written as sig(f (x)).
The class membership probability must normalize ∑y P(y|x) = 1, which leads to P(y = +1|x) = 1−
P(y = −1|x). If the sigmoid function satisfies the point symmetry condition sig(t) = 1− sig(−t),
the likelihood can be compactly written as

P(y|x) = sig(y · f (x)) .

2036

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

In this paper, two point symmetric sigmoids are considered

siglogit(t) :=
1

1+ e−t

sigprobit(t) :=
Z t

−∞
N (τ|0,1)dτ.

The two functions are very similar at the origin (showing locally linear behavior around sig(0) =
1/2 with slope 1/4 for siglogit and 1/

√
2π for sigprobit) but differ in how fast they approach 0/1 when

t goes to infinity. For large negative values of t, we have the asymptotics

siglogit(t) ≈ exp(−t) and sigprobit(t) ≈ exp(−1
2

t2 +0.158t −1.78), for t � 0.

Linear decay of ln(siglogit) corresponds to a weaker penalty for wrongly classified examples than
the quadratic decay of ln(sigprobit) .

For notational convenience, the following shorthands are used: The matrix X = [x1, . . . ,xn] of
size n× d collects the training points, the vector y = [y1, . . . ,yn]

> of size n× 1 collects the target
values and latent function values are summarized by f = [f1, . . . , fn]

> with fi = f (xi). Observed data
is written as D = {(xi,yi) |i = 1, . . . ,n} = (X,y). Quantities carrying an asterisk refer to test points,
that is, f∗ contains the latent function values for test points [x∗,1, . . . ,x∗,m] = X∗ ⊂ X . Covariances
between latent values f and f∗ at data points x and x∗ follow the same notation, namely [K∗∗]i j =
k(x∗,i,x∗, j), [K∗]i j = k(xi,x∗, j), [k∗]i = k(xi,x∗) and k∗∗ = k(x∗,x∗), where [A]i j denotes the entry
Ai j of the matrix A.

Given the latent function f , the class labels are assumed to be Bernoulli distributed and inde-
pendent random variables, which gives rise to a factorial likelihood, factorizing over data points
(see Figure 1)

P(y| f) = P(y|f) =
n

∏
i=1

P(yi| fi) =
n

∏
i=1

sig(yi fi) . (1)

A GP (Rasmussen and Williams, 2006) is a stochastic process fully specified by a mean function
m(x) = E [f (x)] and a positive definite covariance function k(x,x′) = V [f (x), f (x′)]. This means
that a random variable f (x) is associated to every x ∈ X , such that for any set of inputs X ⊂ X ,
the joint distribution P(f|X,θ) = N (f|m0,K) is Gaussian with mean vector m0 and covariance
matrix K. The mean function and covariance functions may depend on additional hyperparameters
θ. For notational convenience we will assume m(x) ≡ 0 throughout. Thus, the elements of K are
Ki j = k(xi,x j,θ).

By application of Bayes’ rule, one gets an expression for the posterior distribution over the
latent values f

P(f|y,X,θ) =
P(y|f)P(f|X,θ)

R

P(y|f)P(f|X,θ)df
=

N (f|0,K)

P(y|X,θ)

n

∏
i=1

sig(yi fi) , (2)

where Z = P(y|X,θ) =
R

P(y|f)P(f|X,θ)df denotes the marginal likelihood or evidence for the hy-
perparameter θ. The joint prior over training and test latent values f and f∗ given the corresponding
inputs is

2037

NICKISCH AND RASMUSSEN

P(f∗, f|X∗,X,θ) = N
([

f
f∗

]∣
∣
∣
∣
0,

[
K K∗
K>

∗ K∗∗

])

.

When making predictions, we marginalize over the training set latent variables

P(f∗|X∗,y,X,θ) =
Z

P(f∗, f|X∗,y,X,θ)df =
Z

P(f∗|f,X∗,X,θ)P(f|y,X,θ)df, (3)

where the joint posterior is factored into the product of the posterior and the conditional prior

P(f∗|f,X∗,X,θ) = N
(

f∗|K>
∗ K−1f,K∗∗−K>

∗ K−1K∗
)

.

Finally, the predictive class membership probability p∗ := P(y∗ = 1|x∗,y,X,θ) is obtained by aver-
aging out the test set latent variables

P(y∗|x∗,y,X,θ) =
Z

P(y∗| f∗)P(f∗|x∗,y,X,θ)d f∗ =
Z

sig(y∗ f∗)P(f∗|x∗,y,X,θ)d f∗. (4)

The integral is analytically tractable for sigprobit (Rasmussen and Williams, 2006, Ch. 3.9) and can
be efficiently approximated for siglogit (Williams and Barber, 1998, App. A).

Figure 1: Graphical Model for binary Gaussian process classification: Circles represent unknown
quantities, squares refer to observed variables. The horizontal thick line means fully
connected latent variables. An observed label yi is conditionally independent of all other
nodes given the corresponding latent variable fi. Labels yi and latent function values
fi are connected through the sigmoid likelihood; all latent function values f i are fully
connected, since they are drawn from the same GP. The labels yi are binary, whereas the
prediction p∗ is a probability and can thus have values from the whole interval [0,1].

2.1 Stationary Covariance Functions

In preparation for the analysis of the approximation schemes described in this paper, we investigate
some simple properties of the posterior for stationary covariance functions in different regimes

2038

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

encountered in classification. Stationary covariances of the form k(x,x′,θ) = σ2
f g(|x− x′|/`) with

g : R → R a monotonously decreasing function1 and θ = {σ f , `} are widely used. The following
section supplies a geometric intuition of that specific prior in the classification scenario by analyzing
the limiting behavior of the covariance matrix K as a function of the length scale ` and the limiting
behavior of the likelihood as a function of the latent function scale σ f . A pictorial illustration of the
setting is given in Figure 3.

2.1.1 LENGTH SCALE

Two limiting cases of “ignorance with respect to the data” with marginal likelihood Z = 2−n can be
distinguished, where

�
= [1, . . .1]> and I is the identity matrix (see Appendix B.1)

lim
`→0

K = σ2
f I,

lim
`→∞

K = σ2
f
��� >.

For very small length scales (` → 0), the prior is simply isotropic as all points are deemed to be
far away from each other and the whole model factorizes. Thus, the (identical) posterior moments
can be calculated dimension-wise. (See Figure 3, regimes 1, 4 and 7.)

For very long length scales (` → ∞), the prior becomes degenerate as all datapoints are deemed
to be close to each other and takes the form of a cigar along the hyper-diagonal. (See Figure 3,
regimes 3, 6 and 9.) A 1d example of functions drawn from GP priors with different lengthscales `
is shown in Figure 2 on the left. The lengthscale has to be suited to the data; if chosen too small, we
will overfit, if chosen too high underfitting will occur.

2.1.2 LATENT FUNCTION SCALE

The sigmoid likelihood function sig(yi fi) measures the agreement of the signs of the latent function
and the label in a smooth way, that is, values close to one if the signs of yi and fi are the same and | fi|
is large, and values close to zero if the signs are different and | fi| is large. The latent function scale
σ f of the data can be moved into the likelihood ˜sigσ f

(t) = sig(σ2
f t), thus σ f models the steepness of

the likelihood and finally the smoothness of the agreement by interpolation between the two limiting
cases “ignorant” and “hard cut”

lim
σ f →0

sig(t) ≡ 1
2

“ignorant",

lim
σ f→∞

sig(t) ≡ step(t) :=
{

0, t < 0; 1
2 , t = 0; 1, 0 < t “hard cut".

In the case of very small latent scales (σ f → 0), the likelihood is flat causing the posterior to
equal the prior. The marginal likelihood is again Z = 2−n. (See Figure 3, regimes 7, 8 and 9.)

In the case of large latent scales (σ f � 1), the likelihood approaches the step function. (See
Figure 3, regimes 1, 2 and 3.) A further increase of the latent scale does not change the model
anymore. The model is effectively the same for all σ f above a threshold.

1. Furthermore, we require g(0) = 1 and limt→∞ g(t) = 0.

2039

NICKISCH AND RASMUSSEN

0 2 4 6 8 10
−4

−2

0

2

4

a) Prior lengthscales

0 2 4 6 8 10
−4

−2

0

2

4

b) f~Prior

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

c) sig(f), f~Prior

0 2 4 6 8 10
−4

−2

0

2

4

d) f~Posterior, n=7

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

e) sig(f), n=7

0 2 4 6 8 10
−4

−2

0

2

4

f) f~Posterior, n=20

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

g) sig(f), n=20

Figure 2: Pictorial illustration of binary Gaussian process classification in 1d: Plot a) shows 3 sam-
ple functions drawn from GPs with different lengthscales `. Then, three pairs of plots
show distributions over functions f : R → R and sig(f) : R → [0,1] occurring in GP clas-
sification. b+c) the prior, d+e) a posterior with n = 7 observations and f+g) a posterior
with n = 20 observations along with the n observations with binary labels. The thick black
line is the mean, the gray background is the ± standard deviation and the thin lines are
sample functions. With more and more data points observed, the uncertainty is gradually
shrunk. At the decision boundary the uncertainty is smallest.

2.2 Gaussian Approximations

Unfortunately, the posterior over the latent values (Equation 2) is not Gaussian due to the non-
Gaussian likelihood (Equation 1). Therefore, the latent distribution (Equation 3), the predictive
distribution (Equation 4) and the marginal likelihood Z cannot be written as analytical expressions.
To obtain exact answers, one can resort to sampling algorithms (MCMC). However, if sig is con-
cave in the logarithmic domain, the posterior can be shown to be unimodal motivating Gaussian
approximations to the posterior. Five different Gaussian approximations corresponding to methods
explained later onwards in the paper are depicted in Figure 4.

A quadratic approximation to the log likelihood φ(fi) := lnP(yi| fi) at f̃i

φ(fi) ≈ φ(f̃i)+φ′(f̃i)(fi − f̃i)+
1
2

φ′′(f̃i)(fi − f̃i)
2 = −1

2
wi f 2

i +bi fi + const fi

motivates the following approximate posterior Q(f|y,X,θ)

lnP(f|y,X,θ)
(2)
= −1

2
f>K−1f+

n

∑
i=1

lnP(yi| fi)+ constf

quad. approx.
≈ −1

2
f>K−1f− 1

2
f>Wf+b>f+ constf

m:=(K−1+W)−1b
= −1

2
(f−m)>

(
K−1 +W

)
(f−m)+ constf

= lnN (f|m,V) =: lnQ(f|y,X,θ) , (5)

2040

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

Prior

l2 small

Prior

l2 medium

Prior

l2 large

Lik.

σ
f
2 large

Lik.

σ
f
2 medium

Lik.

σ
f
2 small

1 2 3

4 5 6

7 8 9

Figure 3: Gaussian Process Classification: Prior, Likelihood and exact Posterior: Nine num-
bered quadrants show posterior obtained by multiplication of different priors and like-
lihoods. The leftmost column illustrates the likelihood function for three different
steepness parameters σ f and the upper row depicts the prior for three different length
scales `. Here, we use σ f as a parameter of the likelihood. Alternatively, rows cor-
respond to “degree of Gaussianity” and columns stand for “degree of isotropy“. The
axes show the latent function values f1 = f (x1) and f2 = f (x2). A simple toy exam-
ple employing the cumulative Gaussian likelihood and a squared exponential covariance
k(x,x′) = σ2

f exp(−‖x−x′‖2 /2`2) with length scales ln` = {0,1,2.5} and latent func-

tion scales lnσ f = {−1.5,0,1.5} is used. Two data points x1 =
√

2, x2 = −
√

2 with
corresponding labels y1 = 1, y2 = −1 form the data set.

where V−1 = K−1 +W and W denotes the precision of the effective likelihood (see Equation 7). It
turns out that the methods discussed in the following sections correspond to particular choices of m
and V.

Let us assume, we have found such a Gaussian approximation to the posterior with mean m
and (co)variance V. Consequently, the latent distribution for a test point becomes a tractable one-
dimensional Gaussian P(f∗|x∗,y,X,θ) = N (f∗|µ∗,σ2

∗) with the following moments (Rasmussen
and Williams, 2006, p. 44 and 56):

µ∗ = k>
∗ K−1m = k>

∗ α, α = K−1m,

σ2
∗ = k∗∗−k>

∗
(
K−1 −K−1VK−1

)
k∗ = k∗∗−k>

∗
(
K+W−1

)−1 k∗.
(6)

Since Gaussians are closed under multiplication, one can—given the Gaussian prior P(f|X,θ)
and the Gaussian approximation to the posterior Q(f|y,X,θ)—deduce the Gaussian factor Q(y|f)
such that Q(f|y,X,θ) ∝ Q(y|f)P(f|X,θ). Consequently, this Gaussian factor can be thought of as
an effective likelihood. Five different effective likelihoods, corresponding to methods discussed sub-

2041

NICKISCH AND RASMUSSEN

best Gaussian posterior, KL=0.118

−5 0 5 10

−10

−5

0

5

LA posterior, KL=0.557

−5 0 5 10

−10

−5

0

5

EP posterior, KL=0.118

−5 0 5 10

−10

−5

0

5

VB posterior, KL=3.546

−5 0 5 10

−10

−5

0

5

KL posterior, KL=0.161

−5 0 5 10

−10

−5

0

5

Figure 4: Five Gaussian Approximations to the Posterior (exact Posterior and mode in gray): Dif-
ferent Gaussian approximations to the exact posterior using the regime 2 setting of Figure
3 are shown. The exact posterior is represented in gray by a cross at the mode and a sin-
gle equiprobability contour line. From left to right: The best Gaussian approximation
(intractable) matches the moments of the true posterior, the Laplace approximation does
a Taylor expansion around the mode, the EP approximation iteratively matches marginal
moments, the variational method maximizes a lower bound on the marginal likelihood
and the KL method minimizes the Kullback-Leibler to the exact posterior. The axes show
the latent function values f1 = f (x1) and f2 = f (x2).

sequently in the paper, are depicted in Figure 5. By “dividing” the approximate Gaussian posterior
(see Appendix B.2) by the true Gaussian prior we find the contribution of the effective likelihood
Q(y|f):

Q(y|f) ∝
N (f|m,V)

N (f|0,K)
∝ N

(

f|(KW)−1 m+m,W−1
)

. (7)

We see (also from Equation 5) that W models the precision of the effective likelihood. In general, W
is a full matrix containing n2 parameters.2 However, all algorithms maintaining a Gaussian posterior
approximation work with a diagonal W to enforce the effective likelihood to factorize over examples
(as the true likelihood does, see Figure 1) in order to reduce the number of parameters. We are not
aware of work quantifying the error made by this assumption.

2.3 Log Marginal Likelihood

Prior knowledge over the latent function f is encoded in the choice of a covariance function k con-
taining hyperparameters θ. In principle, one can do inference jointly over f and θ e.g., by sampling
techniques. Another approach to model selection is maximum likelihood type II also known as
the evidence framework (MacKay, 1992), where the hyperparameters θ are chosen to maximize
the marginal likelihood or evidence P(y|X,θ). In other words, one maximizes the agreement be-
tween observed data and the model. Therefore, one has a strong motivation to estimate the marginal
likelihood.

Geometrically, the marginal likelihood measures the volume of the prior times the likelihood.
High volume implies a strong consensus between our initial belief and our observations. In GP clas-
sification, each data point xi gives rise to a dimension fi in latent space. The likelihood implements
a mechanism, for smoothly restricting the posterior along the axis of fi to the side corresponding

2. Numerical moment matching with K =

[
7 6
6 7

]

, y1 = y2 = 1 and sigprobit leads to W =

[
0.142 −0.017

−0.017 0.142

]

.

2042

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

best Gaussian likelihood

−5 0 5 10

−10

−5

0

5

LA likelihood

−5 0 5 10

−10

−5

0

5

EP likelihood

−5 0 5 10

−10

−5

0

5

VB likelihood

−5 0 5 10

−10

−5

0

5

KL likelihood

−5 0 5 10

−10

−5

0

5

Figure 5: Five Effective Likelihoods (exact Prior/Likelihood in gray): A Gaussian approximation
to the posterior induces a Gaussian effective likelihood (Equation 7). Different effective
likelihoods are shown; order and setting are the same as described in Figure 4. The axes
show the latent function values f1 = f (x1) and f2 = f (x2). The effective likelihood re-
places the non-Gaussian likelihood (indicated by three gray lines). A good replacement
behaves like the exact likelihood in regions of high prior density (indicated by gray el-
lipses). EP and KL yield a good coverage of that region. However LA and VB yield too
concentrated replacements.

to the sign of yi . Thus, the latent space Rn is softly cut down to the orthant given by the values in
y. The log marginal likelihood measures, what fraction of the prior lies in that orthant. Finally, the
value Z = 2−n corresponds to the case, where half of the prior lies on either side along each axis in
latent space. Consequently, successful inference is characterized by Z > 2−n.

Some posterior approximations (Sections 3 and 4) provide an approximation to the marginal
likelihood, other methods provide a lower bound (Sections 5 and 6). Any Gaussian approximation
Q(f|θ) = N (f|m,V) to the posterior P(f|y,X,θ) gives rise to a lower bound ZB to the marginal
likelihood Z by application of Jensen’s inequality. This bound has been used in the context of
sparse approximations (Seeger, 2003).

lnZ = lnP(y|X,θ) = ln
Z

P(y|f)P(f|X,θ)df = ln
Z

Q(f|θ)
P(y|f)P(f|X,θ)

Q(f|θ)
df

Jensen
≥

Z

Q(f|θ) ln
P(y|f)P(f|X,θ)

Q(f|θ)
df =: lnZB. (8)

Some algebra (Appendix B.3) leads to the following expression for lnZB:

n

∑
i=1

Z

N (f |,0,1) lnsig
(
yi
{√

Vii f +mi
})

df

︸ ︷︷ ︸

1) data fit

+
1
2
[n−m>K−1m

︸ ︷︷ ︸

2) data fit

+ ln
∣
∣VK−1

∣
∣− tr

(
VK−1)

︸ ︷︷ ︸

3) regularizer

]. (9)

Model selection means maximization of lnZB. Term 1) is a sum of one-dimensional Gaussian
integrals of sigmoid functions in the logarithmic domain with adjustable offset and steepness. The
integrals can be numerically computed in an efficient way using Gauss-Hermite quadrature (Press
et al., 1993, §4.5). As the sigmoid in the log domain takes only negative values, the first term will
be negative. That means, maximization of the first term is done by shifting the log-sigmoid such
that the high-density region of the Gaussian is multiplied by small values. Term 2) is the equivalent

2043

NICKISCH AND RASMUSSEN

of the data-fit term in GP regression (Rasmussen and Williams, 2006, Ch. 5.4.1). Thus, the first
and the second term encourage fitting the data by favouring small variances Vii and large means mi

having the same sign as yi. The third term can be rewritten as − ln |I+KW|− tr
(
(I+KW)−1

)
and

yields −∑n
i=1 ln(1 + λi)+ 1

1+λi
with λi ≥ 0 being the eigenvalues of KW. Thus, term 3) keeps the

eigenvalues of KW small, thereby favouring a smaller class of functions—this can be seen as an
instance of Occam’s razor.

Furthermore, the bound

lnZB =
Z

Q(f|θ) ln
P(f|y,X,θ)P(y|X)

Q(f|θ)
df = lnZ −KL(Q(f|θ) ‖ P(f|y,X,θ)) (10)

can be decomposed into the exact marginal likelihood minus the Kullback-Leibler (KL) diver-
gence between the exact posterior and the approximate posterior. Thus by maximizing the lower
bound lnZB on lnZ, we effectively minimize the KL-divergence between P(f|y,X,θ) and Q(f|θ) =
N (f|m,V). The bound is tight if and only if Q(f|θ) = P(f|y,X,θ).

3. Laplace Approximation (LA)

A second order Taylor expansion around the posterior mode m leads to a natural way of constructing
a Gaussian approximation to the log-posterior Ψ(f) = lnP(f|y,X,θ) (Williams and Barber, 1998;
Rasmussen and Williams, 2006, Ch. 3). The mode m is taken as the mean of the approximate
Gaussian. Linear terms of Ψ vanish because the gradient at the mode is zero. The quadratic term of
Ψ is given by the negative Hessian W, which - due to the likelihood’s factorial structure - turns out
to be diagonal. The mode m is found by Newton’s method.

3.1 Posterior

P(f|y,X,θ) ≈ N (f|m,V) = N
(

f|m,
(
K−1 +W

)−1
)

,

m = argmax
f∈Rn

P(y|f)P(f|X,θ) ,

W = − ∂2 lnP(y|f)
∂f∂f>

∣
∣
∣
∣
f=m

= −
[

∂2 lnP(yi| fi)

∂ f 2
i

∣
∣
∣
∣

fi=mi

]

ii

.

3.2 Log Marginal Likelihood

The unnormalized posterior P(y|f)P(f|X,θ) has its maximum h = exp(Ψ(m)) at its mode m,
where the gradient vanishes. A Taylor expansion of Ψ is then given by Ψ(f)≈ h− 1

2(f−m)>(K−1 +
W)(f−m). Consequently, the log marginal likelihood can be approximated by plugging in the ap-
proximation of Ψ(f).

lnZ = lnP(y|X,θ) = ln
Z

P(y|f)P(f|X,θ)df = ln
Z

exp(Ψ(f))df

≈ lnh+ ln
Z

exp

(

−1
2

(f−m)>
(
K−1 +W

)
(f−m)

)

df

= lnP(y|m)− 1
2

m>K−1m+
1
2

ln |I+KW| .

2044

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

4. Expectation Propagation (EP)

EP (Minka, 2001b) is an iterative method to find approximations based on approximate marginal
moments, which can be applied to Gaussian processes. See (Rasmussen and Williams, 2006, Ch. 3)
for details. The individual likelihood terms are replaced by site functions ti(fi) being unnormalized
Gaussians

P(yi| fi) ≈ ti
(

fi,µi,σ2
i ,Zi

)
:= ZiN

(
fi|µi,σ2

i

)

such that the approximate marginal moments of Q(fi) :=
R

N (f|0,K)∏n
j=1 Z jN

(

f j|µ j,σ2
j

)

df¬i

agree with the marginals of
R

N (f|0,K)P(yi| fi)∏ j 6=i Z jN
(

f j|µ j,σ2
j

)

df¬i of the approximation

based on the exact likelihood term P(y j| f j). That means, there are 3n quantities µi, σ2
i and Zi

to be iteratively optimized. Convergence of EP is not generally guaranteed, but there always exists
a fixed-point for the EP updates in GP classification (Minka, 2001a). If the EP iterations converge,
the solution obtained is a saddle point of a special energy function (Minka, 2001a). However, an
EP update does not necessarily imply a decrease in energy. For our case of log-concave likelihood
functions, we always observed convergence, but we are not aware of a formal proof.

4.1 Posterior

Based on these local approximations, the approximate posterior can be written as:

P(f|y,X,θ) ≈ N (f|m,V) = N
(

f|m,
(
K−1 +W

)−1
)

,

W =
[
σ−2

i

]

ii ,

m = VWµ =
[

I−K
(
K+W−1)−1

]

KWµ, µ = (µ1, . . . ,µn)
> .

4.2 Log Marginal Likelihood

>From the likelihood approximations, one can directly obtain an expression for the approximate log
marginal likelihood

lnZ = lnP(y|X,θ) = ln
Z

P(y|f)P(f|X,θ)df

≈ ln
Z n

∏
i=1

t
(

fi,µi,σ2
i ,Zi

)
P(f|X,θ)df

=
n

∑
i=1

lnZi −
1
2
µ> (K+W−1)−1

µ− 1
2

ln
∣
∣K+W−1

∣
∣− n

2
ln2π

=
n

∑
i=1

ln
Zi√
2π

− 1
2

m> (K−1 +K−1W−1K−1)m− 1
2

ln
∣
∣K+W−1

∣
∣=: lnZEP.

The lower bound provided by Jensen’s inequality ZB (Equation 9) is known to be below the approx-
imation ZEP obtained by EP (Opper and Winther, 2005, page 2183). From ZEP ≥ ZB and Z ≥ ZB it
is not clear, which value one should use. In principle, ZEP could be a bad approximation. However,
our experimental findings and extensive Monte Carlo simulations suggest that ZEP is very accurate.

2045

NICKISCH AND RASMUSSEN

4.3 Thouless, Anderson & Palmer method (TAP)

Based on ideas rooted in Statistical Physics, one can approach the problem from a slightly different
angle (Opper and Winther, 2000). Individual Gaussian approximations N (f i|µ¬i,σ2

¬i) are only made
to predictive distributions P

(
fi|xi,y\i,X\i,θ

)
for data points xi that have been previously removed

from the training set. Based on µ¬i and σ2
¬i one can derive explicit expressions for (α,W

1
2), our

parameters of interest.

αi ≈
R ∂

∂ fi
P(yi| fi)N (fi|µ¬i,σ2

¬i)d fi
R

P(yi| fi)N (fi|µ¬i,σ2
¬i)d fi

,

[
W−1]

ii ≈ σ2
¬i

(
1

αi [Kα]i
−1

)

. (11)

In turn, the 2n parameters (µ¬i,σ2
¬i) can be expressed as a function of α, K and W

1
2 .

σ2
¬i = 1/

[(
K+W−1)−1

]

ii
−
[
W−1]

ii ,

µ¬i = [Kα]i −σ2
¬iαi. (12)

As a result, a system (Equations 11/12) of nonlinear equations in µ¬i and σ2
¬i has to be solved

by iteration. Each step involves a matrix inversion of cubic complexity. A faster “naïve” variant
updating only n parameters has also been proposed (Opper and Winther, 2000) but it does not lead
to the same fixed point. As in the FV algorithm (Section 7), a formal complex transformation leads
to a simplified version by fixing σ2

¬i = Kii, called (TAPnaive) in the sequel.
Finally, for prediction, the predictive posterior P(f∗|x∗,y,X,θ) is approximated by a Gaussian

N (f∗|µ∗,σ2
∗) at a test point x∗ based on the parameters (α,W

1
2) and according to equation (6).

A fixed-point of the TAP mean-field equations is also a fixed-point of the EP algorithm (Minka,
2001a). This theoretical result was confirmed in our numerical simulations. However, the EP algo-
rithm is more practical and typically much faster. For this reason, we are not going to treat the TAP
method as an independent algorithm in this paper.

5. KL-Divergence Minimization (KL)

In principle, we simply want to minimize a dissimilarity measure between the approximate posterior
Q(f|θ) = N (f|m,V) and the exact posterior P(f|y,X,θ). One quantity to minimize is the KL-
divergence

KL(P(f|y,X,θ) ‖ Q(f|θ)) =
Z

P(f|y,X,θ) ln
P(f|y,X,θ)

Q(f|θ)
df.

Unfortunately, this expression is intractable. If instead, we measure the reverse KL-divergence, we
regain tractability

KL(Q(f|θ) ‖ P(f|y,X,θ)) =
Z

N (f|m,V) ln
N (f|m,V)

P(f|y,X,θ)
df =: KL(m,V).

2046

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

A similar approach has been followed for regression with Laplace or Cauchy noise (Opper and
Archambeau, 2008). Finally, we minimize the following objective (see Appendix B.3) with respect
to the variables m and V. Constant terms have been dropped from the expression:

KL(m,V)
c
= −

Z

N (f)

[
n

∑
i=1

lnsig(
√

viiyi f +miyi)

]

d f − 1
2

ln |V|+ 1
2

m>K−1m+
1
2

tr
(
K−1V

)
.

We refer to the first term of KL(m,V) as a(m,V) to keep the expressions short. We calculate first
derivatives and equate them with zero to obtain necessary conditions that have to be fulfilled at a
local optimum (m∗,V∗)

∂KL
∂m

=
∂a
∂m

−K−1m = 0 ⇒ K−1m =
∂a
∂m

= α,

∂KL
∂V

=
∂a
∂V

+
1
2

V−1 − 1
2

K−1 = 0 ⇒ V =

(

K−1 −2
∂a
∂V

)−1

=
(
K−1 −2Λ

)−1

which defines Λ. If the approximate posterior is parametrized by (m,V), there are in principle in
the order of n2 parameters. But if the necessary conditions for a local minimum are fulfilled (i.e., the
derivatives ∂KL/∂m and ∂KL/∂V vanish), the problem can be re-parametrized in terms of (α,Λ).
Since Λ = ∂a/∂V is a diagonal matrix (see Equation 17), the optimum is characterized 2n free
parameters. This fact was already pointed out by Manfred Opper (personal communication) and
Matthias Seeger (Seeger, 1999, Ch. 5.21, Eq. 5.3). Thus, a minimization scheme based on Newton
iterations on the joint vector ξ := [α>,Λii]

> takes O(8 ·n3) operations. Details about the derivatives
∂KL/∂ξ and ∂2KL/∂ξ∂ξ> are provided in Appendix A.2.

5.1 Posterior

Based on these local approximations, the approximate posterior can be written as:

P(f|y,X,θ) ≈ N (f|m,V) = N
(

f|m,
(
K−1 +W

)−1
)

,

W = −2Λ,

m = Kα.

5.2 Log Marginal Likelihood

Since the method inherently maximizes a lower bound on the marginal likelihood, this bound (Equa-
tion 9) is used as approximation to the marginal likelihood.

6. Variational Bounds (VB)

The following variational bounding method (Gibbs and MacKay, 2000) is a special case of the KL
method. Instead of optimizing a bound on the joint (Eq. 8), they impose the bounding condition on
each likelihood term individually. Here, we treat parametrization based on quadratic lower bounds
on the individual likelihoods in the logarithmic domain. We first derive all calculations based on

2047

NICKISCH AND RASMUSSEN

general likelihoods. Individual likelihood bounds

P(yi| fi) ≥ exp
(
ai f 2

i +biyi fi + ci
)
, ∀ fi ∈ R∀i

⇒ P(y|f) ≥ exp
(

f>Af+(b�y)> f+ c>
�
)

=: Q(y|f,A,b,c) , ∀f ∈ R

are defined in terms of coefficients ai,bi and ci, where � denotes the element-wise product of two
vectors. This lower bound on the likelihood induces a lower bound on the marginal likelihood.

Z =
Z

P(f|X)P(y|f)df ≥
Z

P(f|X)Q(y|f,A,b,c)df = ZB.

Carrying out the Gaussian integral

ZB =
Z

N (f|0,K)exp
(

f>Af+(b�y)> f+ c>
�
)

df

leads to (see Appendix B.4)

lnZB = c>
�
+

1
2

(b�y)>
(
K−1 −2A

)−1
(b�y)− 1

2
ln |I−2AK| (13)

which can now be maximized with respect to the coefficients ai,bi and ci. In order to get an efficient
algorithm, one has to calculate the first and second derivatives ∂ lnZB/∂ς , ∂2 lnZB/∂ς∂ς> (as done
in Appendix A.1). Hyperparameters can be optimized using the gradient ∂ lnZB/∂θ.

6.1 Logit Bound

Optimizing the logistic likelihood function (Gibbs and MacKay, 2000), we obtain the necessary
conditions

Aς := −Λς ,

bς :=
1
2
�
,

cς,i := ς2
i λ(ςi)−

1
2

ςi + lnsiglogit(ςi)

where we define λ(ςi) =
(
2siglogit(ςi)−1

)
/(4ςi) and Λς = [λ(ςi)]ii. This shows, that we only have

to optimize with respect to n parameters ς . We apply Newton’s method for this purpose. The bound
is symmetric and tight at f = ±ς .

6.2 Probit Bound

For reasons of completeness, we derive similar expressions (Appendix B.5) for the cumulative Gaus-
sian likelihood sigprobit(fi) with necessary conditions

aς := −1
2
�
, (14)

bς,i := ςi +
N (ςi)

sigprobit(ςi)
,

cς,i :=
(ςi

2
−bi

)

ςi + ln
(
sigprobit(ςi)

)

which again depend only on a single vector of parameters we optimize using Newton’s method. The
bound is tight for f = ς .

2048

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

6.3 Posterior

Based on these local approximations, the approximate posterior can be written as

P(f|y,X,θ) ≈ N (f|m,V) = N
(

f|m,
(
K−1 +W

)−1
)

,

W = −2Aς ,

m = V(y�bς) =
(
K−1 −2Aς

)−1
(y�bς) ,

where we have expressed the posterior parameters directly as a function of the coefficients. Finally,
we deal with an approximate posterior Q(f|θ) = N (f|mς ,Vς) only depending on a vector ς of
n variational parameters and a mapping ς 7→ (mς ,Vς). In the KL method, every combination of
values m and W is allowed, in the VB method, mς and Vς cannot be chosen independently, since
the have to be compatible with the bounding requirements. Therefore, the variational posterior is
more constrained than the general Gaussian posterior and thus easier to optimize.

6.4 Log Marginal Likelihood

It turns out, that the approximation to the marginal likelihood (Equation 13) is often quite poor and
the more general Jensen bound approach (Equation 9) is much tighter. In practice, one would have
to evaluate both of them and keep the maximum value.

7. Factorial Variational Method (FV)

Instead of approximating the posterior P(f|y,X,θ) by the closest Gaussian distribution, one can use
the closest factorial distribution Q(f|y,X,θ) = ∏i Q(fi), also called ensemble learning (Csató et al.,
2000). Another kind of factorial approximation Q(f) = Q(f+)Q(f−)—a posterior factorizing over
classes—is used in multi-class classification (Girolami and Rogers, 2006).

7.1 Posterior

As a result of free-form minimization of the Kullback-Leibler divergence KL(Q(f|y,X,θ) ‖ P(f|y,X,θ))
by equating its functional derivative δKL/δQ(fi) with the zero function (Appendix B.6), one finds
the best approximation to be of the following form:

Q(fi) ∝ N
(

fi
∣
∣µi,σ2

i

)
P(yi| fi) ,

µi = mi −σ2
i

[
K−1m

]

i = [Kα]i −σ2
i αi,

σ2
i =

[
K−1]−1

ii ,

mi =
Z

fiQ(fi)d fi. (15)

In fact, the best product distribution consists of a factorial Gaussian times the original likelihood.
The Gaussian has the same moments as the Leave-One-Out prediction (Sundararajan and Keerthi,
2001). Since the posterior is factorial, the effective likelihood of the factorial approximation has an
odd shape. It effectively has to annihilate the correlations in the prior, and these correlations are
usually what allows learning to happen in the first place. However, the best fitting factorial is still
able to ensure that the latent means have the right signs. Even though all correlations are neglected,

2049

NICKISCH AND RASMUSSEN

it is still possible that the model picks up the most important structure, since the expectations are
coupled. Of course, at test time, it is essential that correlations are taken into account again using
Equation 6, as it would otherwise be impossible to inject any knowledge into the predictive dis-
tribution. For predictions we use the Gaussian N (f|m,Dg(v)) instead of Q(f). This is a further
approximation, but it allows to stay inside the Gaussian framework.

Parameters µi and mi are found by the following algorithm. Starting from m = 0, iterate the
following until convergence; (1) compute µi, (2) update mi by taking a step in the direction towards
mi as given by Equation 15. Stepsizes are adapted.

7.2 Log Marginal Likelihood

Surprisingly, one can obtain a lower bound on the marginal likelihood (Csató et al., 2000):

lnZ ≥
n

∑
i=1

lnsig

(
yimi

σi

)

− 1
2
α>
(

K−Dg(
[
σ2

1, . . . ,σ
2
n

]>
)
)

α− 1
2

ln |K|+
n

∑
i=1

lnσi.

8. Label Regression Method (LR)

Classification has also been treated using label regression or least squares classification (Rifkin and
Klautau, 2004). In its simplest form, this method simply ignores the discreteness of the class labels
at the cost of not being able to provide proper probabilistic predictions. However, we treat LR
as a heuristic way of choosing α and W, which allows us to think of it as yet another Gaussian
approximation to the posterior allowing for valid predictions of class probabilities.

8.1 Posterior

After inference, according to Equation 6, the moments of the (Gaussian approximation to the) pos-
terior GP can be written as µ∗ = k>

∗ α and σ2
∗ = k∗∗−k>

∗
(
K+W−1

)−1 k∗. Fixing

W−1 = σ2
nI and α =

(
K+W−1)−1 (

K+W−1)α =
(
K+W−1)−1

y,

we obtain GP regression from data points xi ∈ X to real labels yi ∈ R with noise of variance σ2
n

as a special case. In regression, the posterior moments are given by µ∗ = k>
∗
(
K+σ2

nI
)−1 y and

σ2
∗ = k∗∗−k>

∗
(
K+σ2

nI
)−1 k∗ (Rasmussen and Williams, 2006). The arbitrary scale of the discrete

y can be absorbed by the hyperparameters. There is an additional parameter σn, describing the width
of the effective likelihood. In experiments, we selected σn ∈ [0.5,2] to maximise the log marginal
likelihood.

8.2 Log Marginal Likelihood

There are two ways of obtaining an estimate of the log marginal likelihood. One can simply ignore
the binary nature and use the regression marginal likelihood lnZreg as proxy for lnZ—an approach
we only mention but not use in the experiments

lnZreg = −1
2
α> (K+σ2

nI
)
α− 1

2
ln
∣
∣K+σ2

nI
∣
∣− n

2
ln2π.

Alternatively, the Jensen bound (8) yields a lower bound lnZ ≥ lnZB—which seems more in line
with the classification scenario than lnZreg.

2050

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

9. Relations Between the Methods

All considered approximations can be separated into local and global methods. Local methods
exploit properties (such as derivatives) of the posterior at a special location only. Global methods
minimize the KL-divergence KL(Q||P) =

R

Q(f) lnQ(f)/P(f)df between the posterior P(f) and a
tractable family of distributions Q(f). Often this methodology is also referred to as a variational
algorithm.

assumption relation conditions approx. posterior Q(f) name

Q(f) = N (f|m,V) →
m = argmaxf P(f)

W = − ∂2 lnP(y|f)
∂f∂f>

N (f|m,(K−1+W)−1) LA

Q(f) = ∏i qi(fi) → δKL
δqi(fi)

≡ 0 ∏i N (fi|µi,σ2
i)P(yi| fi) FV

↘
〈

f d
i

〉

qi(fi)
=
〈

f d
i

〉

Q(fi)
N
(
f|m,(K−1+W)−1

)
EP

↗
Q(f) = N (f|m,V) → ∂KL

∂V,m = 0 N
(
f|m,(K−1+W)−1

)
KL

↘
P(yi| fi) ≥ N (fi|µςi ,σ2

ςi
) → ∂KL

∂ς∗
= 0 N

(
f|mς∗ ,(K

−1+Wς∗)
−1
)

VB

P(yi| fi) := N (fi|yi,σ2
n) → m = (I+σ2

nK−1)−1y N (f|m,(K−1+σ−2
n I)−1) LR

The only local method considered is the LA approximation matching curvature at the posterior
mode. Common tractable distributions for global methods include factorial and Gaussian distri-
butions. They have their direct correspondent in the FV method and the KL method. Individual
likelihood bounds make the VB method a more constrained and easier-to-optimize version of the
KL method. Interestingly, EP can be seen in some sense as a hybrid version of FV and KL, com-
bining the advantages of both methods. Within the Expectation Consistence framework (Opper and
Winther, 2005), EP can be thought of as an algorithm that implicitly works with two distributions—a
factorial and a Gaussian—having the same marginal moments

〈
f d
i

〉
. By means of iterative updates,

one keeps these expectations consistent and produces a posterior approximation.

In the divergence measure and message passing framework (Minka, 2005), EP is cast as a mes-
sage passing algorithm template: Iterative minimization of local divergences to a tractable family
of distributions yields a small global divergence. From that viewpoint, FV and KL are considered
as special cases with divergence measure KL(Q||P) combined with factorial and Gaussian distribu-
tions.

There is also a link between local and global methods, namely from the KL to the LA method.
The necessary conditions for the LA method do hold on average for the KL method (Opper and
Archambeau, 2008).

Finally, LR neither qualifies as local nor global—it is just a heuristic way of setting m and W.

2051

NICKISCH AND RASMUSSEN

10. Markov Chain Monte Carlo (MCMC)

The only way of getting a handle on the ground truth for the moments Z, m and V is by applying
sampling techniques. In the limit of long runs, one is guaranteed to get the right answer. But in
practice, these methods can be very slow, compared to analytic approximations discussed previ-
ously. MCMC runs are rather supposed to provide a gold standard for the comparison of the other
methods.

It turns out to be most challenging to obtain reliable marginal likelihood estimates as it is equiv-
alent to solving the free energy problem in physics. We employ Annealed Importance Sampling
(AIS) and thermodynamic integration to yield the desired marginal likelihoods. Instead of starting
annealing from the prior distribution, we propose to directly start from an approximate posterior in
order to speed up the sampling process.

Accurate estimates of the first and second moments can be obtained by sampling directly from
the (unnormalized) posterior using Hybrid Monte Carlo methods (Neal, 1993).

10.1 Thermodynamic Integration

The goal is to calculate the marginal likelihood Z =
R

P(y|f)P(f|X)df. AIS (Neal, 1993, 2001)
works with intermediate quantities Zt :=

R

P(y|f)τ(t)
P(f|X)df. Here, τ : N ⊃ [0,T] → [0,1] ⊂ R

denotes an inverse temperature schedule with the properties τ(0) = 0, τ(T) = 1 and τ(t +1) ≥ τ(t)
leading to Z0 =

R

P(f|X)df = 1 and ZT = Z.
On the other hand, we have Z = ZT /Z0 = ∏T

t=1 Zt/Zt−1—an expanded fraction. Each factor
Zt/Zt−1 can be approximated by importance sampling with samples fs from the “intermediate pos-
terior” P(f|y,X, t −1) := P(y|f)τ(t−1)

P(f|X)/Zt−1 at time t.

Zt

Zt−1
=

R

P(y|f)τ(t)
P(f|X)df

Zt−1
=

Z

P(y|f)τ(t)

P(y|f)τ(t−1)

P(y|f)τ(t−1)
P(f|X)

Zt−1
df

=
Z

P(y|f)∆τ(t)
P(f|y,X, t −1)df

≈ 1
S

S

∑
s=1

P(y|fs)
∆τ(t) , fs ∼ P(f|y,X, t −1) .

This works fine for small temperature changes ∆τ(t) := τ(t)− τ(t − 1). In the limit, we smoothly
interpolate between P(y|f)0

P(f|X) and P(y|f)1
P(f|X), that is, we start by sampling from the prior

and finally approach the posterior. Note that sampling is algorithmically possible even though the
distribution is only known up to a constant factor.

10.2 Amelioration Using an Approximation to the Posterior

In practice, the posterior can be quite different from the prior. That means that individual fractions
Zt/Zt−1 may be difficult to estimate. One can make these fractions more similar by increasing the
number of steps T or by “starting” from a distribution close to the posterior rather than from the
prior. Let Q(f) = N (f|m,V) ≈ P(f|y,X,T) = P(y|f)P(f|X)/ZT denote an approximation to the
posterior. Setting N (f|m,V) = Q(y|f)P(f|X), one can calculate the effective likelihood Q(y|f) by
division (see Appendix B.2).

For the integration we use Zt =
R

P(y|f)τ(t)
Q(y|f)1−τ(t)

P(f|X)df where Z0 =
R

Q(y|f)P(f|X)df
can be computed analytically. Again, each factor Zt

Zt−1
of the expanded fraction can be approximated

2052

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

by importance sampling from the modified intermediate posterior:

P(f|y,X, t −1) = P(y|f)τ(t−1)
Q(y|f)1−τ(t−1)

P(f|X)/Zt−1

=

[
P(y|f)
Q(y|f)

]τ(t−1)

Q(y|f)P(f|X)/Zt−1,

Zt

Zt−1
=

R

P(y|f)τ(t)
Q(y|f)1−τ(t)

P(f|X)df
Zt−1

=
Z

P(y|f)τ(t)
Q(y|f)1−τ(t)

P(y|f)τ(t−1)
Q(y|f)1−τ(t−1)

P(y|f)τ(t−1)
Q(y|f)1−τ(t−1)

P(f|X)

Zt−1
df

=
Z

[
P(y|f)
Q(y|f)

]∆τ(t)
P(f|y,X, t −1)df

≈ 1
S

S

∑
s=1

[
P(y|fs)

Q(y|fs)

]∆τ(t)
, fs ∼ P(f|y,X, t −1) .

The choice of Q(f) to be a good approximation to the true posterior makes the fraction P(y|f)/Q(y|f)
as constant as possible, which in turn reduces the error due to the finite step size in thermodynamical
integration.

10.3 Algorithm

If only one sample ft is used per temperature τ(t), the value of the entire fraction is obtained as

ln
Zt

Zt−1
= ∆τ(t) [lnP(y|ft)− lnQ(y|ft)]

which gives rise to the full estimate

lnZ ≈
T

∑
t=1

ln
Zt

Zt−1
= lnZQ +

T

∑
t=1

∆τ(t)
[

lnP(y|ft)+
1
2

(ft − m̃)> W(ft − m̃)

]

for a single run r. The finite temperature change bias can be removed by combining results Zr from
R different runs by their arithmetic mean 1

R ∑r Zr (Neal, 2001)

lnZ = ln
Z

P(y|f)P(f|X)df ≈ ln

(

1
R

R

∑
r=1

Zr

)

.

Finally, the only primitive needed to obtain MCMC estimates of Z, m and V is an efficient
sampler for the “intermediate” posterior P(f|y,X, t −1). We use Hybrid Monte Carlo sampling
(Neal, 1993).

10.4 Results

If the posterior is very close to the prior (as in regimes 7-9 of Figure 3), it does not make a dif-
ference, which we start from. However, if the posterior can be well approximated by a Gaussian

2053

NICKISCH AND RASMUSSEN

(regimes 4-6), but is sufficiently different from the prior, then the method decreases variance and
consequently improves runtimes of AIS. Different approximation methods lead also to differences
in the improvement. Namely, the Laplace approximation performs worse than the approximation
found by Expectation Propagation because Laplace’s method approximates around the mode which
can be far away from the mean.

For our evaluations of the approximations to the marginal likelihood, however we started the
algorithm from the prior. Otherwise, one might be worried of biasing the MCMC simulation towards
the initial distribution in cases where the chain fails to mix properly.

11. Implementation

Implementations of all methods discussed are provided at http://www.kyb.mpg.de/~hn/approxXX.
tar.gz. The code is designed as an extension to the Gaussian Processes for Machine Learning
(GPML) (Rasmussen and Williams, 2006) Matlab Code.3 Approximate inference for Gaussian
processes is done by the binaryGP.m function, which takes as arguments the covariance func-
tion, the likelihood function and the approximation method. The existing GPML package provides
approxLA.m for Laplace’s method and approxEP.m for Expectation Propagation. These implemen-
tations are generic to the likelihood function. We provide cumGauss.m and logistic.m that were
designed to avoid numerical problems. In the extension, approxKL.m, approxVB.m, approxFV.m
and approxTAP.m are included, among others not discussed here, for example sparse and online
methods outside the scope of the current investigation. The implementations are straight-forward,
although special care has been taken to avoid numerical problems e.g., situations where K is close
to singular. More concretely, we use the well-conditioned matrix4 B = W

1
2 KW

1
2 + I = LL> and

its Cholesky decomposition to calculate V =
(
K−1 +W

)−1
or k>

∗
(
K+W−1

)−1 k∗. The posterior
mean is represented in terms of α to avoid multiplications with K−1 and facilitate predictions.

Especially LA and EP show a high level of robustness along the full spectrum of possible hyper-
parameters. KL uses Gauss-Hermite quadrature; we did not notice problems stemming therefrom.
The FV and TAP methods work very reliably, although, we had to add a small (10−6) ridge for FV
to regularize K. As a general statement, we did not observe any numerical problems for a wide
range of hyperparameters reaching from reasonable values to very extreme scales.

In addition to the code for the algorithms, we provide also a tarball containing all necessary
scripts to reproduce the figures of the paper. We offer two versions: The first version contains only
the code for running the experiments and drawing the figures.5 The second version additionally
includes the results of the experiments.6

12. Experiments

The purpose of the experiments is to illustrate the strengths and weaknesses of the different approxi-
mation methods. First of all, the quality of the approximation itself in terms of posterior moments Z,

3. The package is available at http://www.gaussianprocess.org/gpml/code.
4. All eigenvalues λ of B satisfy 1 ≤ λ ≤ 1+ n

4 maxi j Ki j , thus B−1 and |B| can be safely computed.
5. The code base (∼ 9Mb) can be obtained from http://www.kyb.mpg.de/~hn/supplement_code.tar.gz.
6. The complete code base (∼ 400Mb) including all simulation results and scripts to generate figures is stored at

http://www.kyb.mpg.de/~hn/supplement_all.tar.gz.

2054

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

m and V is studied. At a second level, building on the “low-level” features, we compare predictive
performance in terms of the predictive probability p∗ given by (Equations 4 and 6):

p∗ := P(y∗ = 1|x∗,y,X,θ) ≈
Z

sig(f∗)N
(

f∗|µ∗,σ2
∗
)

d f∗. (16)

On a third level, we assess higher order properties such as the information score, describing how
much information the model managed to extract about the target labels, and the error rate—a binary
measure of whether a test input is assigned the right class. Uncertainty predictions provided by the
model are not captured by the error rate.

Accurate marginal likelihood estimates Z are a key to hyperparameter learning. In that respect,
Z can be seen as a high-level feature and as the “zeroth” posterior moment at the same time.

A summary of the whole section is provided in Table 1.

12.1 Data Sets

One main idea of the paper is to study the general behavior of approximate GP classification. Our
results for the different approximation methods are not specific to a particular data set but apply to a
wide range of application domains. This is reflected by the choice of our reference data sets, widely
used in the machine learning literature. Due to limited space, we don’t include the full experiments
on all data sets in this paper. However, we have verified that the same qualitative conclusions hold
for all the data sets considered. The full results are available via the web.7

Data set ntrain ntest d Brief description of problem domain

Breast 300 383 9 Breast cancer8

Crabs 100 100 6 Sex of Leptograpsus crabs9

Ionosphere 200 151 34 Classification of radar returns from the ionosphere10

Pima 350 418 8 Diabetes in Pima Indians11

Sonar 108 100 60 Sonar signals bounced by a metal or rock cylinder12

USPS 3 vs. 5 767 773 256 Binary sub-problem of the USPS handwritten digit data set13

12.2 Results

In the following, we report our experimental results covering posterior moments and predictive per-
formance. Findings for all 5 methods are provided to make the methods as comparable as possible.

7. See links in Footnotes 5 and 6.
8. Data set at http://mlearn.ics.uci.edu/databases/breast-cancer-wisconsin/.
9. Data set at http://www.stats.ox.ac.uk/pub/PRNN/.

10. Data set at http://mlearn.ics.uci.edu/databases/ionosphere/.
11. Data set at http://mlearn.ics.uci.edu/databases/pima-indians-diabetes/.
12. Data set at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/undocumented/

connectionist-bench/sonar/.
13. Data set at http://www.gaussianprocess.org/gpml/data/.

2055

NICKISCH AND RASMUSSEN

Training marginals

−200 0 200
−200

0

200

µ for LA

−200 0 200
−200

0

200

µ for EP

−200 0 200
−200

0

200

µ for VB

−200 0 200
−200

0

200

µ for KL

−200 0 200
−200

0

200

µ for FV

0 20 40
0

20

40

σ for LA

0 20 40
0

20

40

σ for EP

0 20 40
0

20

40

σ for VB

0 20 40
0

20

40

σ for KL

0 20 40
0

20

40

σ for FV

0 0.5 1

0

0.5

1

p for LA

0 0.5 1

0

0.5

1

p for EP

0 0.5 1

0

0.5

1

p for VB

0 0.5 1

0

0.5

1

p for KL

0 0.5 1

0

0.5

1

p for FV

Test marginals

−200 0 200
−200

0

200

µ for LA

−200 0 200
−200

0

200

µ for EP

−200 0 200
−200

0

200

µ for VB

−200 0 200
−200

0

200

µ for KL

−200 0 200
−200

0

200

µ for FV

0 20 40
0

20

40

σ for LA

0 20 40
0

20

40

σ for EP

0 20 40
0

20

40

σ for VB

0 20 40
0

20

40

σ for KL

0 20 40
0

20

40

σ for FV

0 0.5 1

0

0.5

1

p for LA

0 0.5 1

0

0.5

1

p for EP

0 0.5 1

0

0.5

1

p for VB

0 0.5 1

0

0.5

1

p for KL

0 0.5 1

0

0.5

1

p for FV

Figure 6: Marginals of USPS 3 vs. 5 for a highly non-Gaussian posterior: Each row consists of
five plots showing MCMC ground truth on the x-axis and LA, EP, VB, KL and FV on
the y-axis. Based on the logistic likelihood function and the squared exponential covari-
ance function with parameters ln` = 2.25 and lnσ f = 4.25 we plot the marginal means,
standard deviations and resulting predictive probabilities in rows 1-3. We are working
in regime 2 of Figure 3 that means the posterior is highly non-Gaussian. The upper part
shows marginals of training points and the lower part shows test point marginals.

2056

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

LA EP* VB
logit|probit

KL FV MCMC

idea quadratic

expansion

around the

mode

marginal

moment

matching

lower bound

on indiv.

likelihoods

KL minim.,

average w.r.t.

wrong Q(f)

best

free-form

factorial

sampling,

thermo-

dynamic

integration

algorithm Newton steps iterative

matching

Newton steps Newton steps fixed-point

iteration

Hybrid MC,

AIS

complexity O(n3) O(n3) O(n3) O(8n3) O(n3) O(n3)

speed very fast fast fast slow very fast very slow

running
time

1 10 8 150 4 >500

likelihood
properties

1st-3rd log.

derivative

N -integrals lower bound simple

evaluation

N -integrals 1st log

derivative

evidence Z – ≈ – – – – – – =

mean m – – ≈ ++| – – + – =

covariance
V

– ≈ – – – – – =

information
I

– ≈ ≈| – ≈ – =

PRO speed practical

accuracy

principled

method

speed theoretical

accuracy

CON mean6=mode,

low info I

speed strong over-

confidence

overconfidence factorizing

approxima-

tion

very slow

Table 1: Feature summary of the considered algorithms: For each of the six algorithms under con-
sideration, the major properties are listed in the above table. The basic idea of the method
along with its computational algorithm and complexity is summarized, the requirements to
the likelihood functions are given, the accuracy of evidence and moment estimates as well
as information is outlined and some striking advantages and drawbacks are compared. Six
relations characterize accuracy: – – – extreme underestimation, – – heavy underestimation,
– underestimation, = ground truth, ≈ good approximation, + overestimation and ++ heavy
overestimation. Running times were calculated by running each algorithm for 9 different
hyperparameter regimes and both likelihoods on all data sets. An average running time
per data set was calculated for each method and scaled to yield 1 for LA. In the table, the
average of these numbers are shown. We are well aware of the fact, that these numbers
also depend on our Matlab implementations and choices of convergence thresholds.

12.2.1 MEAN m AND (CO)VARIANCE V

The posterior process, or equivalently the posterior distribution over the latent values f, is deter-
mined by its location parameter m and its width parameter V. In that respect, these two low-level
quantities are the basis for all further calculations. In general, one can say that the methods show

2057

NICKISCH AND RASMUSSEN

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

marginal # 353

best N(µ,σ2)
MC
LA
EP
KL
VB

Figure 7: Marginals USPS 3 vs. 5 for digit #353 ≡ : Posterior marginals for one special training
point from Figure 6 is shown. Ground truth in terms of true marginal and best Gaus-
sian marginal (matching the moments of the true marginal) are plotted in gray, Gaussian
approximations are visualized as lines. For multivariate Gaussians N (m,V), the i-th
marginal is given by N ([m]i, [V]ii). Thus, the mode mi of marginal i coincides with the i-
th coordinate of the mode of the joint [m]i. This relation does not hold for general skewed
distribution. Therefore, the marginal given by the Laplace approximation is not centered
at the mode of the true marginal.

significant differences in the case of highly non-Gaussian posteriors (regimes 1-5 of Figure 3). Even
in the two-dimensional toy example of Figures 4 and 5, significant differences are apparent. The
means are inaccurate for LA and VB; whereas the variances are somewhat underestimated by LA
and KL and severely so by VB. Marginal means m and variances dg(V) for USPS 3 vs. 5 are
shown in Figure 6; an exemplary marginal is pictured in Figure 7 for all approximate methods and
the MCMC estimate. Along the same lines, a close-to-Gaussian posterior is illustrated in Figure 8.
We chose the hyperparameters for the non Gaussian case of Figure 6 to maximize the EP marginal
likelihood (see Figure 9), whereas the hyperparameters of Figure 8 were selected to yield a posterior
that is almost Gaussian but still has reasonable predictive performance.

The LA method has the principled weakness of expanding around the mode. In high-dimensional
spaces, the mode can be very far away from the mean (Kuss and Rasmussen, 2005). The absolute
value of the mean is strongly underestimated. Furthermore, the posterior is highly curved at its
mode which leads to an underestimated variance, too. These effects can be seen in the first column
of Figures 6 and 7, although in the close-to-Gaussian regime LA works well, Figure 8. For large
latent function scales σ2

f , in the limit σ2
f → ∞, the likelihood becomes a step function, the mode ap-

proaches the origin and the curvature at the mode becomes larger. Thus the approximate posterior
as found by LA becomes a zero-mean Gaussian which is much too narrow.

The EP method almost perfectly agrees with the MCMC estimates, second column of Figure
6. That means, iterative matching of approximate marginal moments leads to accurate marginal
moments of the posterior.

The KL method minimizes the KL-divergence KL(Q(f) ‖ P(f)) =
R

Q(f) ln Q(f)
P(f) df with the av-

erage taken to the approximate distribution Q(f). The method is zero-forcing i.e., in regions where
P(f) is very small, Q(f) has to be very small as well. In the limit that means P(f) = 0 ⇒ Q(f) = 0.

2058

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

Training ≈ Test marginals

−4 −2 0 2 4

−4

−2

0

2

4

µ for LA

−4 −2 0 2 4

−4

−2

0

2

4

µ for EP

−4 −2 0 2 4

−4

−2

0

2

4

µ for VB

−4 −2 0 2 4

−4

−2

0

2

4

µ for KL

−4 −2 0 2 4

−4

−2

0

2

4

µ for FV

0 0.2 0.4 0.6
0

0.2

0.4

0.6

σ for LA

0 0.2 0.4 0.6
0

0.2

0.4

0.6

σ for EP

0 0.2 0.4 0.6
0

0.2

0.4

0.6

σ for VB

0 0.2 0.4 0.6
0

0.2

0.4

0.6

σ for KL

0 0.2 0.4 0.6
0

0.2

0.4

0.6

σ for FV

0 0.5 1

0

0.5

1

p for LA

0 0.5 1

0

0.5

1

p for EP

0 0.5 1

0

0.5

1

p for VB

0 0.5 1

0

0.5

1

p for KL

0 0.5 1

0

0.5

1

p for FV

Figure 8: Marginals of USPS 3 vs. 5 for a close-to-Gaussian posterior: Using the squared ex-
ponential covariance and the logistic likelihood function with parameters ln` = 3 and
lnσ f = 0.5, we plot the marginal means, standard deviations and resulting predictive
probabilities in rows 1-3. Only the quantities for the trainings set are shown, because the
test set results are very similar. We are working in regime 8 of Figure 3 that means the
posterior is of rather Gaussian shape. Each row consists of five plots showing MCMC
ground truth on the x-axis and LA, EP, VB, KL and FV on the y-axis.

Thus, the support of Q(f) is smaller than the support of P(f) and hence the variance is underesti-
mated. Typically, the posterior has a long tail away from zero as seen in Figure 3 regimes 1-5. The
zero forcing property shifts the mean of the approximation away from the origin, which results in a
slightly overestimated mean, fourth column of Figure 6.

Finally, the VB method can be seen as a more constrained version of the KL method with
deteriorated approximation properties. The variance underestimation and mean overestimation is
magnified, third column of Figure 6. Due to the required lower bounding property of each individual
likelihood term, the approximate posterior has to obey severe restrictions. Especially, the lower
bound to the cumulative Gaussian cannot adjust its width since the asymptotic behavior does not
depend on the variational parameter (Equation 14).

The FV method has a special rôle because it does not lead to a Gaussian approximation to
the posterior but to the closest (in terms of KL-divergence) factorial distribution. If the prior is
quite isotropic (regimes 1,4 and 7 of Figure 3), the factorial approximation provides a reasonable
approximation. If the latent function values are correlated, the approximation fails. Because of
the zero forcing property, mentioned in the discussion of the KL method, both the means and the
variances are underestimated. Since a factorial distribution cannot capture correlations, the effect
can be severe. It is worth mentioning that there is no difference whether the posterior is close to a

2059

NICKISCH AND RASMUSSEN

Gaussian or not. In that respect, the FV method complements the LA method, which has difficulties
in regimes 1, 2 and 4 of Figure 3.

12.2.2 PREDICTIVE PROBABILITY p∗ AND INFORMATION SCORE I

Low-level features like posterior moments are not a goal per se, they are only needed for the purpose
of calculating predictive probabilities. Figures 4 and 6 show predictive probabilities in the last row.

In principle, a bad approximation in terms of posterior moments can still provide reasonable
predictions. Consider the predictive probability from Equation 16 using a cumulative Gaussian
likelihood

p∗ =
Z

sigprobit(f∗)N (f∗|µ∗,σ2
∗)d f∗ = sigprobit(µ∗/

√

1+σ2∗).

It is easy to see that the predictive probability p∗ is constant if µ∗/
√

1+σ2∗ is constant. That
means, moving mean µ∗ and standard deviation σ∗ along the hyperbolic curve µ2

∗/C2 − σ2
∗ = 1,

while keeping the sign of µ∗ fixed, does not affect the probabilistic prediction. In the limit of large
µ∗ and large σ∗, rescaling does not change the prediction.

Summarizing all predictive probabilities pi we consider the scaled information score I. As a
baseline model we use the best model ignoring the inputs xi. This model simply returns predictions
matching the class frequencies of the training set

B = − ∑
y={+1,−1}

ny
test

n+1
test +n−1

test
log2

ny
train

n+1
train +n−1

train

≤ 1[bit].

We take the difference between the baseline B (entropy) and the average negative log predictive
probabilities log2 P(y∗|x∗,y,X) to obtain the information score

I = B+
1

2ntest

ntest

∑
i=1

(1+ yi) log2 (pi)+(1− yi) log2 (1− pi) ,

which is 1[bit] for perfect (and confident) prediction and 0[bits] for random guessing (for equiprob-
able classes). Figures 9(c), 10(middle) and 11(c) contain information scores for 5 different approx-
imation methods on two different data sets as a function of the hyperparameters of the covariance
function. According to the EP and KL plots (most prominently in Figure 11(c)), there are two
strategies for a model to achieve good predictive performance:

• Find a good length scale ` (e.g., ln` ≈ 2) and choose a latent function scale σ f above some
threshold (e.g., lnσ f > 3).

• Start from a good set of hyperparameters (e.g., ln` ≈ 2, lnσ f ≈ 2) and compensate a harder
cutting likelihood (σ2

f ↑) by making the data points more similar to each other (`2 ↑).

The LA method heavily underestimates the marginal means in the non-Gaussian regime (regimes
1-5 of Figure 3). As a consequence, the predictive probabilities are strongly under-confident in the
non-Gaussian regime, first column of Figure 6. The information score’s value is too small in the
non-Gaussian regime, Figures 9(c) and 11(c).

2060

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

−
13

0

−130
−1

15
−115

−1
05

−10
5

−100

−
20

0

−200

−1
60

−160

log Evidence for LA

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

−130

−130

−
11

5

−115

−
10

5

−105−
10

0

−1
00−
95 −
92

−
200

−200

−
160

−160

log Evidence for EP

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

−1
30

−130

−1
15

−115−105

−105

−100

−200

−200−
16

0

−160

log Evidence for KL

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

−200

−200

−1
60

−160

log Evidence for VB

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

(a) Evidence

−130

−130

−115

−115

−200

−200

−200

−160

−160

−160

log Evidence for LA

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

−1
30

−130

−1
15

−115

−105

−105

−100

−
20

0

−200−160

−160

log Evidence for EP

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

−1
30

−130

−1
15

−115

−105

−105

−1
00

−200

−200

−1
60

−160

log Evidence for KL

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

−130

−130

−20
0

−200

−200

−160

−160

log Evidence for VB

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

(b) Lower bound on evidence

0.7

0.7

0.7

0.
8

0.8

0.
84

0.2
5

0.250.5

0.5

0.5

Information [bits] for LA

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

0.7

0.7

0.8 0.8

0.84

0.
840.86

0.
86

0.
88

0.250.5

0.5

Information [bits] for EP

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

0.7

0.7

0.8

0.8

0.84

0.84

0.86

0.86

0.88
0.89

0.25

0.5

0.5

Information [bits] for KL

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

0.7

0.7

0.7

0.8

0.8

0.80.84

0.84

0.
840.86

0.86

0.88

0.88

0.89

0.25

0.5

0.5

Information [bits] for VB

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

(c) Information in bits

16

18 18

18

20 20

20

25

25

2530

30

30

3035

35

35

40

40

45

45

50

50

No test errors for LA

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

1818

18 18

20

20

25

25

30

30

35 40

45
50

No test errors for EP

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

18

18 18

18

18

20

25

25

30

30

35
40 45 50

No test errors for KL

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5
16

1820

20

25

25

30

30
30
30

35

35

40

45 50

No test errors for VB

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

(d) Number of errors

Figure 9: Evidence and classification performance for LA, EP, KL & VB on USPS 3 vs. 5: The
length scale ` and the latent scale σ f determine the working regime (1-9) of the Gaussian
Process as drafted in Figure 3. We use the logistic likelihood and the squared exponential
covariance function to classify handwritten digits. The four panels illustrate the model
performance in terms of evidence, information and classification errors over the space
of hyperparameters (`,σ f). For better visibility we choose a logarithmic scale of the
axes. Panel (a) shows the inherent evidence approximation of the four methods and panel
(b) contains the Jensen lower bound (Equation 9) on the evidence used in KL method.
Both panels share the same contour levels for all four methods. Note that for the VB
method, the general lower bound is a better evidence estimate than the bound provided
by the method itself. Panel (c) and (d) show the information score and the number of
misclassifications. One can read-off the divergence between posterior and approximation
by recalling KL(Q||P) = lnZ − lnZB from Equation 10 and assuming lnZEP ≈ lnZ. In
the figure this corresponds to subtracting Subplots (b, LA-VB) from Subplots (a, EP).
Obviously, the divergence vanishes for close-to-Gaussian posteriors (regimes 3,5-6,7-9).

2061

NICKISCH AND RASMUSSEN

−2
50 −7

50

−
50

0

−
400

−
30

0

log Evidence for FV

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

0.7

0.
7

0.8 0.
8

0.84
0.86

0.88

0.
25

0.
5

Information [bits] for FV

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

16

1618

18

18

20

25

2530

30

30 3035

35

3540 40

45

45

50

50

No test errors for FV

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

Figure 10: Evidence and classification performance for FV on USPS 3 vs. 5: The plots are a sup-
plement to Figure 9 in that they make the factorial variational method comparable, even
though we use the cumulative Gaussian likelihood. The levels of the contour lines for
the information score and the number of misclassifications are the same as in Figure 9.
For the marginal likelihood other contours are shown, since it has significantly different
values.

Since the EP algorithm yields marginal moments very close to the MCMC estimates (second
column of Figure 6), its predictive probabilities and information score is consequently also very
accurate, Figures 9(c) and 11(c). The plots corresponding to EP can be seen as the quasi gold
standard (Kuss and Rasmussen, 2005, Figures 4 and 5).

The KL method slightly underestimates the variance and slightly overestimates the mean which
leads to slightly overconfident predictions, fourth column of Figure 6. Overconfidence, in general,
leads to a degradation of the information score, however in this example, the information score is
very close to the EP values and at the peak it is even slightly (0.01[bits]) higher, Figures 9(c) and
11(c).

The VB method, again, has the same problems as the KL method only amplified. The predic-
tions are overconfident, third column of Figure 6. Consequently, the information measured score
in the non-Gaussian regime is too small. The logistic likelihood function (Figure 9(c)) yields much
better results than the cumulative Gaussian likelihood function (Figure 11(c)).

Finally, as the FV method is accurate if the prior is isotropic, predictive probabilities and in-
formation scores are very high in regimes 1, 4 and 7 of Figure 3. For correlated priors, the FV
method achieves only low information scores, Figure 10(middle). The method seems to benefit
from the “hyperbolic scaling invariance” of the predictive probabilities mentioned earlier in that
section because both the mean and the variance are strongly underestimated.

12.2.3 NUMBER OF ERRORS E

If one is only interested in the actual class and not in the associated confidence level, one can simply
measure the number of misclassifications. Results for 5 approximation methods and 2 data sets are
shown in Figures 9(d), 10(right) and 11(d).

Interestingly, all four Gaussian approximation have very similar error rates. The reason is
mainly due to the fact that all methods manage to compute the right sign of the marginal mean.
Only the FV method with cumulative Gaussian likelihood seems a bit problematic, even though the

2062

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

−65

−65

−65

−60

−60

−60
−8

0
−7

5

−
75

−7
0

−70

−70

log Evidence for LA

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

−65

−65

−
60

−60

−60

−
55

−
55

−7
5

−
70

−70

log Evidence for EP

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

−65

−65

−65

−60

−60

−60

−55
−80

−75

−7
5−
70

−70

−70

log Evidence for KL

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

−80

−80

−75

−75

−7
5

−70

−70

log Evidence for VB

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

(a) Evidence

−65

−6
5

−65

−60

−
60

−60

−80

−80

−75

−75

−
75

−70

−70

−70

log Evidence for LA

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

−65

−6
5

−65

−60

−6
0

−60

−80

−80

−75

−75

−
75

−7
0

−70

−70

log Evidence for EP

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

−65

−
65

−65

−60

−6
0

−60

−55

−8
0

−7
5

−
75−

70

−70

−70

log Evidence for KL

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

−65

−6
5

−65

−80

−80

−75

−75

−7
5

−70

−70

−70

log Evidence for VB

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

(b) Lower bound on evidence

0.3

0.
3 0.3

0.
05

0.05

0.
1

0.1

0.2

0.
2

0.2

Information [bits] for LA

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

0.3
0.3

0.3

0.4

0.4

0.05

0.1

0.1

0.2 0.2

0.2

Information [bits] for EP

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

0.3

0.3

0.3

0.4

0.4

0.5

0.05

0.1

0.1

0.1

0.2

0.2

0.2

Information [bits] for KL

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

0.3

0.3

0.3

0.4

0.
05

0.05

0.05

0.
1

0.1

0.1

0.2 0.2

0.
2

Information [bits] for VB

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

(c) Information in bits

13 15

15

17

17

20

20

25

25

25

25
25

30 35

No test errors for LA

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

15

17 17

20

20

20

25

25

25

30

30
35

No test errors for EP

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5
15

17

20

20

25

25

25

30

30

30
35

No test errors for KL

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

13

15

15

17

17

20

20

25

25

25

25

25

30

35

No test errors for VB

ln(l)

ln
(σ

f)

1 2 3 4 5

0

1

2

3

4

5

(d) Number of errors

Figure 11: Evidence and classification performance for LA, EP, KL & VB on Sonar: We show the
same quantities as in Figure 9, only for the Sonar Mines versus Rocks data set and using
the cumulative Gaussian likelihood function.

difference is only very small. Small error rates do not imply high information scores, it is rather the
other way round. In Figure 9(d) at ln` = 2 and lnσ f = 4 only 16 errors are made by the LA method
while the information score (Figure 9(c)) is only of 0.25[bits].

Even the FV method yields very accurate classes, having only small error rates.

2063

NICKISCH AND RASMUSSEN

12.2.4 MARGINAL LIKELIHOOD Z

Agreement of model and data is typically measured by the marginal likelihood Z. Hyperparameters
can conveniently be optimized using Z not least because the gradient ∂ lnZ

∂θ
can be analytically and

efficiently computed for all methods. Formally, the marginal likelihood is the volume of the product
of prior and likelihood. In classification, the likelihood is a product of sigmoid functions (Figure
3), so that only the orthant {f|f�y ≥ 0 ∈ Rn} contains values P(f|y) ≥ 1

2 . In principle, evidences
are bounded by lnZ ≤ 0 where lnZ = 0 corresponds to a perfect model. As pointed out in Section
2.1.1, the marginal likelihood for a model ignoring the data and having equiprobable targets has the
value lnZ = −n ln2, which serves as a baseline.

Evidences provided by LA, EP and VB for two data sets are shown in Figures 9(a), 10(left) and
11(a). As the Jensen bound can be applied to any Gaussian approximation of the posterior, we also
report it in Figures 9(b) and 11(b).

The LA method strongly underestimates the evidence in the non-Gaussian regime, because it is
forced to center its approximation at the mode, Figures 9(a) and 11(a). Nevertheless, there is a good
agreement between the value of the marginal likelihood and the corresponding information score.
The Jensen lower bound is not tight for the LA approximation, Figures 9(b) and 11(b).

The EP method yields the highest values among all other methods. As described in Section
2.1.2, for high latent function scales σ2

f , the model becomes effectively independent of σ2
f . This

behavior is only to be seen for the EP method, Figures 9(a) and 11(a). Again, the Jensen bound
is not tight for the EP method, Figures 9(b) and 11(b). The difference between EP and MCMC
marginal likelihood estimate is vanishingly small (Kuss and Rasmussen, 2005, Figures 4 and 5).

The KL method directly uses the Jensen bound (Equation 8) which can only be tight for Gaus-
sian posterior distributions. If the posterior is very skew, the bound inherently underestimates the
marginal likelihood. Therefore, Figures 9(a) and 9(b) and Figures 11(a) and 11(b) show the same
values. The disagreement between information score and marginal likelihood makes hyperparame-
ter selection based on the KL method problematic.

The VB method’s lower bound on the evidence turns out to be very loose, Figures 9(a) and
11(a). Theoretically, it cannot be better than the more general Jensen bound due to the additional
constraints imposed by the individual bound on each likelihood factor, Figures 9(b) and 11(b). In
practice, one uses the Jensen bound for hyperparameter selection. Again, the maximum of the
bound to the evidence is not very helpful for finding regions of high information score.

Finally, the FV method only yields a poor approximation to the marginal likelihood due to the
factorial approximation, Figure 10. The more isotropic the model becomes (small `), the tighter
is the bound. For strongly correlated priors (large `) the evidence drops even below the baseline
lnZ =−n ln2. Thus, the bound is not adequate to do hyperparameter selection as its maximum does
not lie in regions with high information score.

12.2.5 CHOICE OF LIKELIHOOD

In the experiments, we worked with two different likelihood functions, namely the logistic and
the cumulative Gaussian likelihood. The two functions differ in their slope at the origin and their
asymptotic behavior. We did not find empirical evidence supporting the use of either likelihood.
Theoretically, the cumulative Gaussian likelihood should be less robust against outliers due to the
quadratic asymptotics. Practically, the different slopes result in a shift of the latent function length
scale in the order of ln 1

4 − ln 1√
2π ≈ 0.46 on a log scale in that the logistic likelihood prefers a

2064

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

bigger latent scale. Only for the VB method, differences were significant because the logistic bound
is more concise. Numerically, however the cumulative Gaussian is preferable.

12.3 Results Across Data Sets

We conclude with a quantitative summary of experiments conducted on 6 data sets (breast, crabs,
ionosphere, diabetes, sonar, USPS 3 vs. 5), two different likelihoods (cumulative Gaussian, logistic)
and 8 covariance functions (linear, polynomial of degree 1-3, Matérn ν ∈ { 3

2 , 5
2}, squared exponen-

tial and neural network) resulting in 96 trials. All 7 approximate classification methods were trained
on a 16× 16 grid of hyperparameters to compare their behavior under a wide range of conditions.
We calculated the maximum (over the hyperparameter grid) amount of information, every algorithm
managed to extract from the data in each of the 96 trials. The table shows the number of trials, where
the respective algorithm had a maximum information score that was above the mean/median (over
the 7 methods).

Test \ Method LA EP KL VB FV LR TAPnaive
trials, information below mean 31 0 0 6 34 92 31
trials, information below median 54 0 0 15 48 96 51

13. Conclusions

In the present paper we provide a comprehensive overview of methods for approximate Gaussian
process classification. We present an exhaustive analysis of the considered algorithms using the-
oretical arguments. We deliver thorough empirical evidence supporting our insights revealing the
strengths and weaknesses of the algorithms. Finally, we make a unified and modular implementation
of all methods available to the research community.

We are able to conclude that the Expectation Propagation algorithm is, in terms of accuracy,
always the method of choice, except when you cannot afford the slightly longer running time com-
pared to the Laplace approximation.

Our comparisons include the Laplace approximation and the Expectation Propagation algorithm
(Kuss and Rasmussen, 2005). We extend the latter to the logistic likelihood. We apply Kullback-
Leibler divergence minimization to Gaussian process classification and derive an efficient Newton
algorithm. Although the principles behind this method have been known for some time, we are
unaware that this method has been previously implemented for GPs in practise. The existing varia-
tional method (Gibbs and MacKay, 2000) is extended by a lower bound on the cumulative Gaussian
likelihood and we provide an implementation based on Newton’s method. Furthermore, we give a
detailed analysis of the Factorial Variational method (Csató et al., 2000).

All methods are considered in a common framework, approximation quality is assessed, predic-
tive performance is measured and model selection is benchmarked.

In practice, an approximation method has to satisfy a wide range of requirements. If runtime
is the major concern or one is interested in error rate only, the Laplace approximation or label
regression should be considered. Only Expectation Propagation and—although a lot slower—the
KL-method deliver accurate marginals as well as reliable class probabilities and allow for faithful
model selection.

If an application demands a non-standard likelihood function, this also affects the choice of
the algorithm: The Laplace approximation requires derivatives, Expectation Propagation and the

2065

NICKISCH AND RASMUSSEN

Factorial Variational method need integrability with respect to Gaussian measures. However, the
KL-method simply needs to evaluate the likelihood and known lower bounds naturally lead to the
VB algorithm.

Finally, if the classification problem contains a lot of label noise (σ f is small), the exact pos-
terior distribution is effectively close to Gaussian. In that case, the choice of the approximation
method is not crucial since in the Gaussian regime, they will give the same answer. For weakly
coupled training data, the Factorial Variational method can lead to quite reasonable approximations.

As a future goal remains an in-depth understanding of the properties of sparse and online ap-
proximations to the posterior and a coverage of a broader range of covariance functions. Also, the
approximation techniques discussed can be applied to other non-Gaussian inference problems be-
sides the narrow applications to binary GP classification discussed here, and there is hope that some
of the insights presented may be useful more generally.

Acknowledgments

Thanks to Manfred Opper for pointing us initially to the practical possibility of the KL method and
the three anonymous reviewers.

Appendix A. Derivatives

In the following, we provide the expressions for the derivatives needed to implement the VB and
the KL method.

A.1 Derivatives for VB

Some notational remarks. Partial derivatives w.r.t. one single parameter such as ∂Aς

∂ςi
or ∂bς

∂ςi
stay

matrices or vectors, respectively. Lowercase letters {a,b,c}ς indicate vectors, upper case letters
{A,B,C}ς stand for the corresponding diagonal matrices with the vector as diagonal. The dot
notation applies to both lower and uppercase letters and denote derivatives w.r.t. the variational
parameter vector ς

ȧς :=

[
∂aςi

∂ςi

]

i
=

∂aς

∂ς
, vector,

äς :=

[
∂2aςi

∂ς2
i

]

i

=
∂2aς

∂ς2 , vector,

Ȧς := Dg(ȧς) .

The operators Dg : Rn → Rn×n and dg : Rn×n → Rn manipulate matrix diagonals. The result of
Dg(x) is a diagonal matrix X containing x as diagonal, whereas dg(X) returns the diagonal of X as
a vector. Hence, we have Dg(dg(x)) = x, but in general dg(Dg(X)) = X does only hold true for
diagonal matrices.

2066

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

A.1.1 SOME SHORTCUTS USED LATER ONWARDS

K̃ς :=
(
K−1 −2Aς

)−1 condK small
= K−K

(

K− 1
2

A−1
ς

)−1

K,

b̃ς := Dg(y)bς = y�bς ,

lς := K̃ς b̃ς =
(
K−1 −2Aς

)−1
(y�bς) ,

∂lς
∂ς j

= K̃ς

(

2
∂Aς

∂ς j
lς +y� ∂bς

∂ς j

)

,

∂lς
∂θi

= K̃ςK−1 ∂K
∂θi

K−1K̃ς (y�bς) ,

L̇ς :=
∂lς
∂ς>

= K̃ς

(
2Dg(lς)Ȧς +Dg(y)Ḃς

)
,

rς := ḃς �y� lς +dg
(

lς l>ς Ȧς

)

= ḃς �y� lς + lς � lς � ȧς ,

∂rς

∂ς j
= y� lς �

∂ḃς

∂ς j
+ ḃς �y� ∂lς

∂ς j
+2lς � ȧς �

∂lς
∂ς j

+ lς � lς �
∂ȧς

∂ς j
,

Ṙς :=
∂rς

∂ς>
= Dg

(
y� ḃς +2lς � ȧς

)
L̇ς +Dg

(
lς �

(
y� b̈ς + lς � äς

))

= Dg
(
y� ḃς +2lς � ȧς

)
K̃ςDg

(
y� ḃς +2lς � ȧς

)
+Dg

(
lς �

(
y� b̈ς + lς � äς

))
.

A.1.2 FIRST DERIVATIVES W.R.T. VARIATIONAL PARAMETERS ςi YIELDING THE GRADIENT

lnZB = c>ς
�
+

1
2

b̃>
ς K̃ς b̃ς −

1
2

ln |I−2AςK| ,
∂ lnZB

∂ςi
=

∂ci

∂ςi
+ b̃>

ς K̃ς

[

y� ∂bς

∂ςi
+

∂Aς

∂ςi
K̃ς b̃ς

]

+ tr

(

(I−2AςK)−> K
∂Aς

∂ςi

)

lς ,K̃ς
=

∂ci

∂ςi
+ l>ς

[

y� ∂bς

∂ςi
+

∂Aς

∂ςi
lς

]

+ tr

(

K̃ς

∂Aς

∂ςi

)

,

∂ lnZB

∂ς
=

[
∂ci

∂ςi

]

i
+ ḃς �y�

(
K̃ς b̃ς

)
+dg

(

K̃ς b̃ς b̃>
ς K̃ςȦς

)

+dg
(
K̃ςȦς

)

lς
=

[
∂ci

∂ςi

]

i
+ ḃς �y� lς +dg

(

lς l>ς Ȧς

)

+dg
(
K̃ςȦς

)

rς
=

[
∂ci

∂ςi

]

i
+ rς +dg

(
K̃ςȦς

)

= ċς + lς �
(
ḃς �y+ lς � ȧς

)
+dg

(
K̃ς

)
� ȧς .

2067

NICKISCH AND RASMUSSEN

A.1.3 SECOND DERIVATIVES W.R.T. VARIATIONAL PARAMETERS ςi YIELDING THE HESSIAN

∂2 lnZB

∂ς j∂ςi
=

∂2ci

∂ς j∂ςi
+

∂rς,i

∂ς j
+ tr

(

2K̃ς

∂Aς

∂ς j
K̃ς

∂Aς

∂ςi
+ K̃ς

∂2Aς

∂ς j∂ςi

)

,

∂2 lnZB

∂ς∂ς>
=

[
∂2ci

∂ς2
i

]

ii

+
∂rς

∂ς>
+2
(
K̃ς Ȧς

)
�
(
K̃ς Ȧς

)>
+Dg

(
dg(K̃ς)� äς

)

= C̈ς + Ṙς +2
(
K̃ςȦς

)
�
(
K̃ςȦς

)>
+Dg

(
dg(K̃ς)� äς

)
.

A.1.4 MIXED DERIVATIVES W.R.T. HYPER- θi AND VARIATIONAL PARAMETERS ςi

∂2 lnZB

∂θi∂ς
= ȧς �

∂
∂θi

(
lς � lς +dg

(
K̃ς

))
+ ḃς �y� ∂lς

∂θi

= ȧς �
(

2lς �
∂lς
∂θi

+dg

(

K̃ςK−1 ∂K
∂θi

K−1K̃ς

))

+ ḃς �y� ∂lς
∂θi

.

A.1.5 FIRST DERIVATIVES W.R.T. HYPERPARAMETERS θi:

For a gradient optimization with respect to θ, we need the gradient of the objective ∂ lnZB/∂θ.
Naïvely, the gradient is given by:

∂ lnZB

∂θi
=

1
2

b̃>
ς K̃ςK−1 ∂K

∂θi
K−1K̃ς b̃ς + tr

(

(I−2AςK)−> Aς

∂K
∂θi

)

lς
=

1
2

l>ς K−1 ∂K
∂θi

K−1lς + tr

(

(I−2AςK)−> Aς

∂K
∂θi

)

.

However, the optimal variational parameter ς∗ depends implicitly on the actual choice of θ and one
has to account for that in the derivative by adding an extra “implicit” term

∂ lnZB(θ,ς)

∂θi

∣
∣
∣
∣
ς=ς∗

=
∂ lnZB(θ,ς∗)

∂θi
+

n

∑
j=1

∂ lnZB(θ,ς∗)
∂ς∗j

∂ς∗j
∂θi

.

The question of how to find an expression for ∂ς∗
∂θ

can be solved by means of the implicit function
theorem for continuous and differentiable functions F:

F : Rp ×Rn → Rn, F(x,y) = 0 ⇒ ∂y
∂x

(x) = −
(

∂F
∂y

(x,y(x))

)−1 ∂F
∂x

(x,y(x)) if F(x,y(x)) = 0.

Setting F(x,y) ≡ ∂ lnZB
∂ς

(θ,ς) leads to

∂ς∗θ
∂θ> = −

(
∂2 lnZB(θ,ς∗θ)

∂ς∂ς>

)−1 ∂2 lnZB(θ,ς∗θ)

∂θ>∂ς

and in turn combines to

∂ lnZB

∂θi

∣
∣
∣
∣
ς=ς∗

=
∂ lnZB

∂θi
−
(

∂ lnZB

∂ς

)>(∂2 lnZB

∂ς∂ς>

)−1 ∂2 lnZB

∂θi∂ς

where all terms are known.

2068

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

A.2 Derivatives for KL

The lower bound lnZB to the log marginal likelihood lnZ is given by Equation 9 as

lnZ ≥ = lnZB(m,V) = a(y,m,V)+
1
2

ln
∣
∣VK−1

∣
∣+

n
2
− 1

2
m>K−1m− 1

2
tr
(
VK−1)

where we used the shortcut a(y,m,V) = ∑n
i=1

R

N (fi|mi,vii) lnsig(yi fi)d fi. As a first step, we calcu-
late the first derivatives of lnZB with respect to the posterior moments m and V to derive necessary
conditions for the optimum by equating them with zero:

∂ lnZB

∂V
=

∂a(y,m,V)

∂V
+

1
2

V−1 − 1
2

K−1 !
= 0 ⇒ V =

(

K−1 −2Dgdg
∂a
∂V

)−1

,

∂ lnZB

∂m
=

∂a(y,m,V)

∂m
−K−1m !

= 0 ⇒ m = K
∂a
∂m

.

These two expressions are plugged in the original expression for lnZB using A = (I−2KΛ)−1 and
Λ = Dgdg ∂a

∂V to yield:

lnZB(α,Λ) = a
(
y,Kα,(K−1 −2Λ)−1)+

1
2

ln |A|− 1
2

trA+
n
2
− 1

2
α>Kα.

Our algorithm uses the parameters α, Λ, so we calculate first and second derivatives to implement
Newton’s method.

A.2.1 FIRST DERIVATIVES W.R.T. PARAMETERS α, Λ YIELDING THE GRADIENT

∂ lnZB

∂λ
=

∂a
∂λ

+dg(V)−dg(VA>) and
∂ lnZB

∂α
=

∂a
∂α

−Kα.

Only the terms containing derivatives of a need further attention, namely

∂a
∂α

= K
∂a
∂m

and

d(dgV) = dg
[

d
(
K−1 −2Λ

)−1
]

= 2dg [V dΛV] = 2dg

[

∑
k

vkv>k dλk

]

= 2∑
k

(vk �vk)dλk

= 2(V�V)dλ ⇒ ∂dgV
∂λ> = 2V�V,

∂a
∂λ

= 2(V�V)
∂a(y,m,V)

∂dgV
.

As a last step, the derivatives w.r.t. m and the diagonal part of V yield

2069

NICKISCH AND RASMUSSEN

∂a
∂mi

=
Z ∂N (f |mi,vii)

∂mi
lnsig(yi f)d f =

Z

f −mi

vii
N (f |mi,vii) lnsig(yi f)d f

=
1√
vii

Z

f ·N (f) lnsig(
√

viiyi f +miyi)d f ,

∂a
∂vii

=
Z ∂N (f |mi,vii)

∂vii
lnsig(yi f)d f =

Z

(f −mi)

2

v
3
2
ii

− 1√
vii

N (f |mi,vii) lnsig(yi f)d f

=
1

2vii

Z

(
f 2 −1

)
·N (f) lnsig(

√
viiyi f +miyi)d f .

A.2.2 SECOND DERIVATIVES W.R.T. PARAMETERS α, Λ YIELDING THE HESSIAN

Again, we proceed in two steps, calculating derivatives w.r.t. α and Λ and by the chain rule compute
those w.r.t. m and V.

∂2 lnZB

∂α∂α> =
∂2a

∂α∂α> +K =
∂

∂α

[
∂a

∂m>
∂m

∂α>

]

+K =
∂

∂α

[
∂a

∂m> K
]

+K

=
∂

∂α

[
∂a

∂m>

]

K+K =
∂m>

∂α

∂
∂m

[
∂a

∂m>

]

K+K

= K
∂2a

∂m∂m>K+K,

∂2 lnZB

∂λ∂α> =
∂2a

∂λ∂α> =
∂

∂λ

[
∂a

∂m>

]

K =
∂(dgV)>

∂λ

∂
∂dgV

[
∂a

∂m>

]

K

= 2V�V
∂2a

∂dgV∂m> K,

∂2 lnZB

∂λ∂λ> =
∂2a

∂λ∂λ> +R, R := 2V� (V−AV>−VA>)

= 2
∂

∂λ

[

∂a

∂(dgV)>
V�V

]

+R

= 2
∂2a

∂λ∂(dgV)>
V�V+2

[

∂a

∂(dgV)>
∂V�V

∂λi

]

i

+R

= 2
∂(dgV)>

∂λ

∂2a

∂dgV∂(dgV)>
V�V+4

[

∂a

∂(dgV)>

(

V� ∂V
∂λi

)]

i

+R

= 4V�V
∂2a

∂dgV∂(dgV)>
V�V+8

[

∂a

∂(dgV)>

(

V�
(

viv>i
))
]

i

+R.

In the following, we abbreviate N (f |mi,vii) by Ni.

2070

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

∂2a

∂m2
i

=
Z ∂2Ni

∂m2
i

lnsig(yi f)d f =
Z

(f −mi)
2 − cii

v2
ii

Ni lnsig(yi f)d f

=
1
vii

Z

(
f 2 −1

)
·N (f) lnsig(

√
viiyi f +miyi)d f ,

∂2a
∂cii∂mi

=
Z ∂2Ni

∂vii∂mi
lnsig(yi f)d f =

Z

(f −mi)
3 −3(f −mi)vii

2v3
ii

Ni lnsig(yi f)d f

=
1

2v
3
2
ii

Z

(
f 3 −3 f

)
·N (f) lnsig(

√
viiyi f +miyi)d f ,

∂2a

∂v2
ii

=
Z ∂2Ni

∂v2
ii

lnsig(yi f)d f =
Z

(f −mi)
4 −6vii(f −mi)

2 +3v2
ii

4v4
ii

Ni lnsig(yi f)d f

=
1

4v2
ii

Z

(
f 4 −6 f 2 +3

)
·N (f) lnsig(

√
viiyi f +miyi)d f .

A.2.3 FIRST DERIVATIVES W.R.T. HYPERPARAMETERS θi:

The direct gradient is given by the following equation where we have marked the dependency of the
covariance K on θi by subscripts

∂ lnZB(α,Λ)

∂θi
= α> ∂Kθ

∂θi

∂a(y,m,V)

∂m
+dg

(

A
∂Kθ

∂θi
A>
)> ∂a(y,m,V)

∂dgV

+tr

(

A>
Λ

∂Kθ

∂θi

)

− tr

(

A
∂Kθ

∂θi
ΛA
)

− 1
2
α> ∂Kθ

∂θi
α.

Again we have would have to add an implicit term to the gradient, but in our implementation, we
forbore from doing so.

Appendix B. Auxiliary Calculations

In the following, we enumerate some calculations we removed from the main text in order to im-
prove on readability.

B.1 Limits of the Covariance Matrix and Corresponding Marginal Likelihood

We investigate the behavior of the covariance matrix K for extreme lengthscales `. The matrix is
given by [K]i j = σ2

f g(|xi − x j|/`) where g : R → R is monotonously decreasing and continuous
with g(0) = 1 and limt→∞ g(t) = 0. >From this definition we have [K]ii = σ2

f . We define ∆i j :=
|xi −x j|/` > 0 for i 6= j. From

lim
`→0

[K]i j
i6= j
= lim

`→0
σ2

f g(|xi −x j|/`) = σ2
f lim

∆i j→∞
g(∆i j) = 0,

lim
`→∞

[K]i j
i6= j
= lim

`→∞
σ2

f g(|xi −x j|/`) = σ2
f lim

∆i j→0
g(∆i j) = 1

we conclude

2071

NICKISCH AND RASMUSSEN

lim
`→0

K = σ2
f I,

lim
`→∞

K = σ2
f
��� >.

The sigmoids are normalized sig(− fi)+ sig(fi) = 1 and the Gaussian is symmetric N (fi) =
N (− fi). Consequently, we have

Z

sig(yi fi)N (fi|0,σ2
f)d fi =

Z

sig(fi)N (fi|0,σ2
f)d fi

=
Z 0

−∞
sig(fi)N (fi|0,σ2

f)d fi +
Z ∞

0
sig(fi)N (fi|0,σ2

f)d fi

=
Z ∞

0
sig(− fi)N (− fi|0,σ2

f)d fi +
Z ∞

0
sig(fi)N (fi|0,σ2

f)d fi

=
Z ∞

0
[sig(− fi)+ sig(fi)]N (fi|0,σ2

f)d fi

=
Z ∞

0
1 ·N (fi|0,σ2

f)d fi =
1
2

.

The marginal likelihood is given by

Z =
Z

P(y|f)P(f|X,θ)df

=
Z n

∏
i=1

sig(yi fi) |2πK|−
1
2 exp(−1

2
f>K−1f)df.

B.1.1 LENGTHSCALE TO ZERO

For K = σ2
f I the prior factorizes and we get

Z`→0 =
n

∏
i=1

Z

sig(yi fi)
1

√

2πσ2
f

exp(− f 2
i

2σ2
f

)d fi

(17)
=

n

∏
i=1

1
2

= 2−n.

2072

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

B.1.2 LENGTHSCALE TO INFINITY

To get K → σ2
f
��� > we write K = σ2

f 1 + ε2I with 1 =
��� > and let ε → 0. The eigenvalue decom-

position of K is written as K = ∑n
i=1 uiu>

i λi with u1 = 1√
n

�
, λ1 = σ2

f + ε2 and all other λi = ε2

Z 1
ε

K=UΛU>
=

Z n

∏
i=1

sig(yi fi) |2πΛ|−
1
2 exp(−1

2
f>UΛ

−1U>f)df

t=Λ
− 1

2 U>f
=

Z n

∏
i=1

sig
(

yi

√

λi · t>ui

)

|2πΛ|−
1
2 exp(−1

2
t>t)

∣
∣
∣Λ

1
2

∣
∣
∣dt

=
Z n

∏
i=1

sig
(

yi

√

λi · t>ui

)

N (ti)dt

=
Z

sig

√

σ2
f + ε2

n
· t> �

N (t1)
n

∏
i=2

[

sig
(

ε · t>ui

)]

N (ti)dt,

Z`→∞ = lim
ε→0

Z =
Z

sig

(
σ f√

n
· t> �

)

N (t1)
n

∏
i=2

[
1
2

]

N (ti)dt

(17)
= 2−n+1

Z

sig

(
σ f√

n
· t> �

)

N (t)dt

r=t> �
= 2−n+1

Z

sig

(
σ f√

n
· r
)

N (r)dr

(17)
= 2−n.

B.1.3 LATENT SCALE TO ZERO

We define σ2
f K̃ = K and σ f f̃ = f and derive

Zσ f =
Z n

∏
i=1

sig(yi fi) |2πK|−
1
2 exp(−1

2
f>K−1f)df

=
Z n

∏
i=1

sig
(
yiσ f f̃i

)
|2πK|−

1
2 exp(−

σ2
f

2
f̃>K−1f̃)σn

f df̃

=
Z n

∏
i=1

sig
(
yiσ f f̃i

)∣
∣2πσ2

f K̃
∣
∣
− 1

2 exp(−
σ2

f

2
f̃>σ−2

f K̃−1f̃)σn
f df̃

=
Z n

∏
i=1

[
sig
(
yiσ f f̃i

)]
N
(
f̃|0,K̃

)
df̃,

Zσ f→0 = lim
σ f→0

Z =
Z n

∏
i=1

[
1
2

]

N
(
f̃|0,K̃

)
df̃ = 2−n.

Note that the functions, we are using are all well-behaved, such that the limits do exist.

2073

NICKISCH AND RASMUSSEN

B.2 Posterior Divided by Prior = Effective Likelihood

Q(y|f) =
N (f|m,V)

P(f|X)
=

N
(

f|m,
(
K−1 +W

)−1
)

N (f|0,K)

=
N
(
f|m̃,W−1

)

N (m̃|0,K+W−1)
, m̃ = (KW)−1 m+m

=
(2π)−

n
2
∣
∣W−1

∣
∣−

1
2 exp

(

− 1
2 (f− m̃)> W(f− m̃)

)

(2π)−
n
2 |K+W−1|−

1
2 exp

(

− 1
2 m̃> (K+W−1)−1 m̃

)

=
√

|KW+ I|
exp
(

− 1
2 (f− m̃)> W(f− m̃)

)

exp
(

− 1
2 m̃> (K+W−1)−1 m̃

)

=:
1

ZQ

exp

(

−1
2

(f− m̃)> W(f− m̃)

)

,

lnZQ = −1
2

m̃> (K+W−1)−1
m̃− 1

2
ln |KW+ I|

B.3 Kullback-Leibler Divergence for KL method

We wish to calculate the divergence between the approximate posterior, a Gaussian, and the true
posterior

KL(Q(f|θ) ‖ P(f|y,X,θ)) =
Z

N (f|m,V) ln
N (f|m,V)

P(f|y,X,θ)
df

(2)
=

Z

N (f|m,V) ln
Z ·N (f|m,V)

N (f|m,V)∏n
i=1 P(yi| fi)

df

= lnZ +
Z

N (f|m,V) lnN (f|m,V)df

−
Z

N (f|m,V) ln
n

∏
i=1

P(yi| fi)df

−
Z

N (f|m,V) lnN (f|0,K)df.

There are three Gaussian integrals to evaluate; the entropy of the approximate posterior and two
other expectations

KL(Q(f|θ) ‖ P(f|y,X,θ)) = lnZ − 1
2

ln |V|− n
2
− n

2
ln2π

−
Z

N (f)

[
n

∑
i=1

lnsig(
√

viiyi f +miyi)

]

d f (17)

+
n
2

ln2π+
1
2

ln |K|+ 1
2

m>K−1m+
1
2

tr
(
K−1V

)
.

2074

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

Summing up and dropping the constant (w.r.t. m and V) terms, we arrive at

KL(m,V)
c
= −

Z

N (f)

[
n

∑
i=1

lnsig(
√

viiyi f +miyi)

]

d f − 1
2

ln |V|+ 1
2

m>K−1m+
1
2

tr
(
K−1V

)
.

B.4 Gaussian Integral for VB Lower Bound

ZB =
Z

P(f|X)Q(y|f,A,b,c)df =
Z

N (f|0,K)exp
(

f>Af+(b�y)> f+ c>
�
)

df

=
exp
(
c>
�)

√

(2π)n |K|

Z

exp

(

−1
2

f>
(
K−1 −2A

)
f+(b�y)> f

)

df

=
exp
(
c>
�)

√

(2π)n |K|

√

(2π)n

|K−1 −2A| exp

(
1
2

(b�y)>
(
K−1 −2A

)−1
(b�y)

)

=
exp
(
c>
�)

√

|I−2AK|
exp

(
1
2

(b�y)>
(
K−1 −2A

)−1
(b�y)

)

,

lnZB = c>
�
+

1
2

(b�y)>
(
K−1 −2A

)−1
(b�y)− 1

2
ln |I−2AK| .

B.5 Lower Bound for the Cumulative Gaussian Likelihood

A lower bound

sigprobit(yi fi) ≥ Q(yi| fi,ςi) = ai f 2
i +bi fi + ci

for the cumulative Gaussian likelihood function is derived by matching the function at one point ς

Q(yi = +1| fi,ςi) = sigprobit(ςi), ∀i

and by matching the first derivative

∂
∂ fi

lnQ(yi = +1| fi,ςi)

∣
∣
∣
∣
ςi

=
∂ lnsigprobit(yi fi)

∂ fi
=

N (ςi)

sigprobit(ςi)
, ∀i

at this point for a tight approximation. Solving for these constraints leads to the coefficients

asymptotic behavior ⇒ ai = −1
2
,

first derivative ⇒ bi = ςi +
N (ςi)

sigprobit(ςi)
,

point matching ⇒ ci =
(ςi

2
−bi

)

ςi + logsigprobit(ςi).

2075

NICKISCH AND RASMUSSEN

B.6 Free Form Optimization for FV

We make a factorial approximation P(f|y,X) ≈ Q(f) := ∏i Q(fi) to the posterior by minimizing

KL[Q(f) ||P(f)] =
Z n

∏
i=1

Q(fi) ln
Z ·∏n

i=1 Q(fi)

N (f|m,V)∏n
i=1 P(yi| fi)

df

= ∑
i

Z

Q(fi) ln
Q(fi)

P(yi| fi)
d fi +

1
2

Z n

∏
i=1

Q(fi) f>K−1fdf+ constf.

Free-form optimization proceeds by equating the functional derivative with zero

δKL
δQ(fi)

= lnQ(fi)+1− lnP(yi| fi)+
1
2

δ
δQ(fi)

Z n

∏
i=1

Q(fi) f>K−1fdf. (18)

We abbreviate the integral in the last term with ξ and rewrite it in terms of simple one-dimensional
integrals ml =

R

flQ(fl)d fl and vl =
R

f 2
l Q(fl)d fl −m2

l

ξ =
Z

∏
i

Qi ∑
j,k

f j
[
K−1]

jk fkdf

=
Z

∏
i6=l

Qi

[
Z

Ql

(

f 2
l

[
K−1]

ll +2 fl ∑
j 6=l

f j
[
K−1]

jl + ∑
j 6=l,k 6=l

f j
[
K−1]

jk fk

)

d fl

]

df¬l

=
Z

∏
i6=l

Qi

[
K−1]

ll

Z

f 2
l Qld fl

︸ ︷︷ ︸

vl+m2
l

+2(∑
j 6=l

f j
[
K−1]

jl)
Z

flQld fl
︸ ︷︷ ︸

ml

+ ∑
j 6=l,k 6=l

f j
[
K−1]

jk fk

df¬l

=
[
K−1]

ll (vl +m2
l)+2 ∑

j 6=l

m j
[
K−1]

jl ml +
Z

∏
i6=l

Qi ∑
j 6=l,k 6=l

f j
[
K−1]

jk fkdf¬l

= induction over l

= ∑
l

[
K−1]

ll (vl +m2
l)+2 ∑

j<l

m j
[
K−1]

jl ml .

Plugging this into Equation 18 and using δ
R

f p
l Q(fl)d fl

δQ(fl)
= f p

l , we find

δKL
δQ(fi)

= lnQ(fi)+1− lnP(yi| fi)+
1
2

fi
[
K−1]

ii fi + fi ∑
l

[
K−1]

il ml
!≡ 0

⇒ Q(fi) ∝ exp

(

−1
2

fi
[
K−1]

ii fi − fi ∑
l 6=i

[
K−1]

il ml

)

P(yi| fi)

⇒ Q(fi) ∝ N

(

fi

∣
∣
∣
∣
∣
mi −

[
K−1m

]

i

[K−1]ii
,
[
K−1]−1

ii

)

P(yi| fi)

as the functional form of the best possible factorial approximation, namely a product of the true
likelihood times a Gaussian with the same precision as the prior marginal.

2076

APPROXIMATE GAUSSIAN PROCESS CLASSIFICATION

References

Yasemin Altun, Thomas Hofmann, and Alex Smola. Gaussian process classification for segmenting
and annotating sequences. In International Conference on Machine Learning, 2004.

Wei Chu, Zoubin Ghahramani, Francesco Falciani, and David L. Wild. Biomarker discovery in
microarray gene expression data with gaussian processes. Bioinformatics, 21:3385–3393, 2005.

Lehel Csató, Ernest Fokoué, Manfred Opper, and Bernhard Schottky. Efficient Approaches to Gaus-
sian Process Classification. In Neural Information Processing Systems 12, pages 251–257. MIT
Press, 2000.

Mark N. Gibbs and David J. C. MacKay. Variational Gaussian Process Classifiers. IEEE Transac-
tions on Neural Networks, 11(6):1458–1464, 2000.

Mark Girolami and Simon Rogers. Variational Bayesian Multinomial Probit Regression with Gaus-
sian Process Priors. Neural Computation, 18:1790–1817, 2006.

Ashish Kapoor and Rosalind W. Picard. Multimodal affect recognition in learning environments.
In ACM international conference on Multimedia, 2005.

Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Darrell. Active learning with gaus-
sian processes for object categorization. In ICCV, 2007.

Malte Kuss and Carl Edward Rasmussen. Assessing Approximate Inference for Binary Gaussian
Process Classification. Journal of Machine Learning Research, 6:1679 – 1704, 10 2005.

David J. C. MacKay. Bayesian Interpolation. Neural Computation, 4(3):415–447, 1992.

Thomas P. Minka. Expectation Propagation for Approximate Bayesian Inference. In UAI, pages
362–369. Morgan Kaufmann, 2001a.

Thomas P. Minka. A Family of Algorithms for Approximate Bayesian Inference. PhD thesis, De-
partment of Electrical Engineering and Computer Science, MIT, 2001b.

Tom Minka. Divergence Measures and Message Passing. Technical report, Microsoft Research,
2005.

Radford M. Neal. Annealed Importance Sampling. Statistics and Computing, 11:125–139, 2001.

Radford M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods. Technical
Report CRG-TR-93-1, Department of Computer Science, University of Toronto, September 1993.

Manfred Opper and Cédric Archambeau. The Variational Gaussian Approximation Revisited. Neu-
ral Computation, accepted, 2008.

Manfred Opper and Ole Winther. Gaussian Processes for Classification: Mean Field Algorithms.
Neural Computation, 12(11):2655–2684, 2000.

Manfred Opper and Ole Winther. Expectation Consistent Approximate Inference. Journal of Ma-
chine Learning Research, 6:2177–2204, 2005.

2077

NICKISCH AND RASMUSSEN

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes in C. Cambridge University Press, 2nd edition, February 1993.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, Cambridge, MA, 2006.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. JMLR, 5:101–141, 2004.

Anton Schwaighofer, Volker Tresp, Peter Mayer, Alexander K. Scheel, and Gerhard Müller. The
RA scanner: Prediction of rheumatoid joint inflammation based on laser imaging. In NIPS, 2002.

Matthias Seeger. Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error Bounds
and Sparse Approximations. PhD thesis, University of Edinburgh, 2003.

Matthias Seeger. Bayesian Methods for Support Vector Machines and Gaussian Processes. Master’s
thesis, Universität Karlsruhe, 1999.

S. Sundararajan and S. S. Keerthi. Predictive Approaches for Choosing Hyperparameters in Gaus-
sian Processes. Neural Computation, 13:1103–1118, 2001.

Christopher K. I. Williams and David Barber. Bayesian Classification with Gaussian Processes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(20):1342–1351, 1998.

Mingjun Zhong, Fabien Lotte, Mark Girolami, and Anatole Lécuyer. Classifying eeg for brain
computer interfaces using gaussian processes. Pattern Recognition Letters, 29:354–359, 2008.

2078

Journal of Machine Learning Research 9 (2008) 2079-2111 Submitted 8/08; Published 10/08

Value Function Approximation using Multiple Aggregation for
Multiattribute Resource Management

Abraham George AGEORGE@PRINCETON.EDU

Warren B. Powell POWELL@PRINCETON.EDU

Department of Operations Research and Financial Engineering
Princeton University
Princeton, NJ 08544, USA

Sanjeev R. Kulkarni KULKARNI@PRINCETON.EDU

Department of Electrical Engineering
Princeton University
Princeton, NJ 08544, USA

Editor: Sridhar Mahadevan

Abstract

We consider the problem of estimating the value of a multiattribute resource, where the attributes
are categorical or discrete in nature and the number of potential attribute vectors is very large.
The problem arises in approximate dynamic programming when we need to estimate the value of
a multiattribute resource from estimates based on Monte-Carlo simulation. These problems have
been traditionally solved using aggregation, but choosing the right level of aggregation requires
resolving the classic tradeoff between aggregation error and sampling error. We propose a method
that estimates the value of a resource at different levels of aggregation simultaneously, and then
uses a weighted combination of the estimates. Using the optimal weights, which minimizes the
variance of the estimate while accounting for correlations between the estimates, is computationally
too expensive for practical applications. We have found that a simple inverse variance formula
(adjusted for bias), which effectively assumes the estimates are independent, produces near-optimal
estimates. We use the setting of two levels of aggregation to explain why this approximation works
so well.

Keywords: hierarchical statistics, approximate dynamic programming, mixture models, adaptive
learning, multiattribute resources

1. Introduction

We consider the problem of managing resources (people, equipment) that can be described using
a vector of attributes a = (a1,a2, . . . ,aM). Our work has grown out of a series of projects with
industry and the military that involve managing resources over time under uncertainty. In all of these
projects, we use algorithms that require estimating the marginal value of a resource with attribute
vector a. As these projects have made the transition from laboratory experiments to industrial
implementations, we have found that one and two dimensional attributes (for example, location and
possibly equipment type) quickly grow to five or ten dimensions, with an exponential growth in the
number of potential attributes. Examples of actual projects we have worked on which exhibit this
behavior include:

c©2008 Abraham George, Warren B. Powell and Sanjeev Kulkarni.

GEORGE, POWELL AND KULKARNI

• Managing pilots for business jets - The attributes of a pilot include elements such as home
city, number of days away from home and the equipment that he is trained to fly. Decisions
about pilots can include assigning a pilot to a particular flight, or a decision to send a pilot for
training on a new type of aircraft.

• Managing locomotives - The decision to assign a particular locomotive to a particular train
has to consider attributes such as the type of locomotive, the number of days until it has to be
maintained, its current location and its home maintenance shop.

• Managing a fleet of freight cars - Freight cars have attributes such as location, time until
arrival to a destination, loaded or empty status, ownership, and maintenance status.

• Managing a fleet of trucks to move loads - The truck can be described using attributes such
as its current location, the home domicile of the driver, the maintenance level and whether it
is being driven by a solo driver or a team of two drivers. Decisions include where to move to
and whether to move loaded or empty.

• Managing cargo aircraft for the military - We have to decide which aircraft should be assigned
to satisfy a particular requirement (a movement of freight or passengers). Choosing the best
aircraft requires knowing the value of an aircraft at the destination which depends on the
type of aircraft, cargo configuration, whether it is loaded or empty (and if loaded, the load
characteristics), and its maintenance status.

• Managing blood inventories - Blood is characterized by blood type, age, location, and whether
it has been frozen. New supplies of, and the demand for, blood is random.

All of these are examples of resource allocation problems where a decision has to be made now to
act on resources (trucks, jets, locomotives) which will bring about a change in their attributes. Let
a ∈ A be the attribute vector describing a resource now. If we act on the resource, we may produce
a resource with attribute a′ with value va′ . In a dynamic programming setting, the value va′ refers to
the solution of a finite horizon discounted reward dynamic program. In practical applications, we
cannot compute va′ exactly, so we resort to Monte Carlo methods where we might observe random
observations v̂a′ and use these to produce a statistical estimate va′ (see Bertsekas and Tsitsiklis
1996 and Sutton and Barto 1998 for an introduction to the techniques of approximate dynamic
programming). The problem is that in realistic problems, the attribute space A can be extremely
large, and we may obtain only a few observations of v̂a′ for a particular a′. As a result, the statistical
error in va′ can be quite large.

One of the standard strategies in approximate dynamic programming is to aggregate the state
(attribute) space. Instead of estimating va, we might define an aggregation function G(a) which
produces an aggregated attribute a which has fewer outcomes. For example, a five-digit zip code
can be aggregated up to a three-digit zip; a numerical attribute can be divided into fewer ranges;
or an attribute can be completely ignored. The resulting smaller attribute space produces more
observations of each attribute, but at a cost of aggregation error.

There are a variety of statistical strategies for estimating value functions which take advantage
of the structure of a specific attribute vector a. In a trucking problem, we might design a statistical
function that depends on the location of a driver, his days away from home, the fuel level of his tank
and his home domicile. However, after designing a statistical model that works for this application,

2080

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

we would have to start from scratch if we wished to switch to another application. In fact, simply
adding an attribute would require redesigning and refitting the statistical equation. This can be
particularly hard when several of the attributes are categorical, and which interact to determine the
effect of the attributes on the system. A truck driver might be characterized by his location and his
home domicile; the value of a driver at a location depends very much on where he lives.

We are interested in developing a method for estimating the value va of a resource with attribute
a, making minimal assumptions about the structure of the attribute space. We take advantage of
the fact that for every application with which we are familiar, it is quite easy to design a family of
aggregation functions G where G(g) : A → A (g) is an aggregation of the attribute space A . For ex-
ample, we can create an aggregation function simply by ignoring an attribute. Aside from assuming
the existence of this family of functions, we make no further assumptions about the nature of the
attribute space. For example, we do not even require the existence of a metric that would provide a
measure of the distance between two attribute vectors, which prevents the use of standard methods
such as non-parametric statistics or regression trees.

Aggregation has traditionally been a powerful technique in dynamic programming. A good
general review of aggregation techniques is given by Rogers et al. (1991). Aggregation strategies in
a dynamic programming setting may be governed by the desire to solve exactly a smaller dynamic
program, or by the iterative nature of the algorithms. Techniques range from picking a fixed level of
aggregation (Whitt, 1978; Bean et al., 1987; Athans et al., 1995; Zhang and Sethi, 1998; Wang and
Dietterich, 2000), or using adaptive techniques that change the level of aggregation as the sampling
process progresses (Mendelssohn, 1982; Bertsekas and Tsitsiklis, 1996; Luus, 2000; Kim and Dean,
2003), but which still use a single level of aggregation at any given time (many authors used a
fixed level of aggregation to produce a smaller Markov Decision Process (MDP) that can be solved
optimally). Tsitsiklis and Van Roy (1996) (see also Bertsekas and Tsitsiklis, 1996) show how value
functions can be approximated using a fixed set of features; this strategy encompasses both static and
hierarchical aggregation as special cases, but the use of these techniques in our setting is prohibitive
because of the extremely large number of values that need to be estimated. Feng et al. (2003)
presents a work that identifies state aggregations based on “structural similarity” where states are
considered similar if they have similar value estimates or similar sets of successor states, rather than
“input similarity” which is typically measured by some distance metric defined over the state space.
Bertsekas and Castanon (1989) introduces a creative approach which adaptively clusters states with
similar values of residual errors at each iteration, requiring no structure among the states of the
system. While we also do not have any structure, we do take advantage of the presence of a family
of aggregation functions, and our technique does not require the overhead of solving clustering
problems. A nice discussion of aggregation and abstraction techniques in an approximate dynamic
programming setting is given in Boutilier et al. (1999).

Instead of using a single level of aggregation, researchers have considered combining estimates
from all the levels of aggregation at once. In the literature, there exist several techniques for combin-
ing estimates to improve accuracy (see Wolpert, 1992; LeBlanc and Tibshirani, 1996; Yang, 2001).
It is well-known that if the estimates being combined are independent and unbiased, then it is opti-
mal to combine them in inverse proportion to their variances (Guttman et al., 1965). When different
estimates are based on different levels of aggregation, they are neither independent nor unbiased. It
is also possible to use a weighted combination of estimates where the weights are estimated using
regression techniques. For our application, there can be hundreds of thousands of such models,
making the updating of regression models computationally expensive.

2081

GEORGE, POWELL AND KULKARNI

In this paper, we solve the problem of optimally combining (correlated) value estimates at dif-
ferent levels of aggregation in an approximate dynamic programming setting and derive expressions
for optimal weights. The result generalizes a well-known result for optimally combining indepen-
dent estimates. We point out that the independence assumptions used for deriving the results are
true only in idealized regression settings, and not in an approximate dynamic programming setting.

The major contribution of this paper lies in finding that an inverse-variance weighting formula
(adjusted for bias), which is optimal only when the estimates are independent, proves to be near-
optimal even though estimates at different levels of aggregation are not independent. We explain
this behavior analytically for the case with two levels of aggregation. We show that if we compute
optimal weights (without assuming independence) and compare the results if we do assume inde-
pendence, the results are the same for two extremes: when the difference between the aggregate and
disaggregate value estimates is very large or very small. We show experimentally that the error for
intermediate values is extremely small.

We also show, in the context of a single vehicle routing problem, that our weighting method
produces value function estimates that are within five to ten percent of the optimal value functions,
outperforming other estimates. The method of weighting a family of aggregate estimates is shown to
naturally shift the weight from aggregate to disaggregate estimates as the algorithm progresses. We
also demonstrate that this method is easy to implement in large-scale, on-line learning applications
that arise in approximate dynamic programming, where it produces much faster convergence (which
implies approaching a consistently better solution quality in a fewer number of iterations) than
would be produced using a single, static level of aggregation. Further work on this application is
explained in detail in Simao et al. (2008).

The paper is organized as follows. In Section 2, we describe a generic approximate dynamic
programming technique, which estimates the value functions associated with various states. This
section provides an introduction to the context in which our statistical estimation problem arises.
The next three sections, however, focus purely on the statistics of aggregation outside of a dynamic
programming setting. Section 3 provides a theoretical model of the sampling process and defines
bias and variance for aggregated statistics. Then, Section 4 poses the problem of computing optimal
weights for combining estimates of values at different levels of aggregation. The problem with this
formula is that it is too expensive to use for our problem class. For this reason, we propose a simpler
formula that assumes that statistics from different levels of aggregation are independent. In Section
5, we compare the two weighting formulas (with and without the independence assumption) for the
special case where there are only two levels of aggregation which allows the optimal weights to
be computed analytically. We show theoretically that assuming independent estimates introduces
zero expected error at two extremes of the problem. We then show experimentally that ignoring the
dependence between the estimates gives results that are very similar. In Section 6, we demonstrate
our approximation method in the context of an approximate dynamic programming algorithm for
solving a multiattribute resource allocation problem. We use both a single truck problem, which
can be solved exactly, as well as a problem of managing a large fleet of trucks. We provide our
concluding remarks in Section 7.

2. Approximate Dynamic Programming

This section is designed as a brief introduction to approximate dynamic programming, and intro-
duces the context in which our problem arises. Our interest lies in the context of dynamic resource

2082

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

allocation problems. Dynamic programming techniques can be applied to solve these problems
which are typically modeled as MDPs. Using the notation of Powell (2007), we let St be the state
of our system. We also let d ∈ D be a type of a decision, and we let xd = 1 if we choose decision
d, and xd = 0 otherwise. xt = (xd)d∈D is the vector of decisions that we make at time t. Bellman’s
equation allows us to express the value of being in state St as

V (St) = max
xt

[C(St ,xt)+E{V (St+1(St ,xt ,Wt+1)) |St}] ,

where Wt+1 is a random variable representing new information that arrives between t and t + 1.
The exact values can be determined using traditional backward dynamic programming techniques
such as value iteration and policy iteration. In these methods, the values are computed recursively
starting from the final state, making use of the state transition probabilities.

When the state and action spaces become large, as in most real-life stochastic planning prob-
lems, it is not practical to enumerate the states to determine their values. In such problems, compact
feature-based representations of the MDP, also called factored MDPs (see Boutilier et al., 2000) can
be used to make the problem computationally tractable. Factored MDPs can be represented using
a factored state transition model and a reward function that is additive. In these representations,
a smaller set of variables (also called features or attributes) are used to describe the state of the
system.

Dynamic resource allocation problems span dynamic vehicle routing (Gendreau and Potvin,
1998; Ichoua et al., 2005), where there has been recent interest in the application of approximate
dynamic programming for the single vehicle routing problem (Secomandi, 2000, 2001). Powell
and Carvalho (1998) uses an approximate dynamic programming algorithm for a fleet management
problem, but the attributes of the vehicles were very simple. Powell et al. (2002) uses an approxi-
mate dynamic programming algorithm for multiattribute resources, but does not address statistical
sampling issues. Spivey and Powell (2004) applies approximate dynamic programming for opti-
mizing a fleet of vehicles, using a linear value function approximation that also requires estimating
the value of a resource characterized by a vector of attributes. This research estimated the value of
a resource at different levels of aggregation, but kept track of the variance of these estimates at each
level of aggregation and always used the estimate that provided the smallest variance.

Resource allocation problems can be modeled by letting a ∈ A be an attribute vector (a may
consist of categorical and numerical attributes), and by letting Rta be the number of resources with
attribute a. We then let Rt = Rta)a∈A be the resource state vector. This research addresses problems
where the vector a is large enough that the attribute space A becomes too large to enumerate. We
develop these ideas in the context of a single entity. If at is the attribute of the entity at time t, then
at is effectively our state variable.

In this section, we describe the basic approximate dynamic programming (ADP) strategy to
solve the problem of managing a single resource with multiple attributes, the nomadic trucker.
This is a single resource version of the dynamic fleet management problem, where there is a single
trucker who needs to move between various locations to cover loads that arise and gains rewards in
the process.

The state of the resource is defined by an attribute vector, a, composed of multiple attributes,
which may be numerical or categorical. For the nomadic trucker problem, examples of attributes
include the location of the truck, the home domicile of the driver and the number of hours driven.
We could represent the attribute vector as a = (alocation,atime,adomicile, . . .). The state space, A , for

2083

GEORGE, POWELL AND KULKARNI

this problem would consist of all possible combinations of the attributes of the trucker. We can let
the decision be represented by the vector (xd)d∈D , but for a single entity problem, ∑d∈D xd = 1,
which means we can also write the problem as choosing a decision d ∈ D . Typically, the set of
potential decisions depends on the current state (attributes) of our resource, so we let Da be the
decisions available to a resource with attribute a. We assume that the impact of a decision d on a
resource with attribute a is deterministic, and is given by the function a′ = aM(a,d).

In approximate dynamic programming, we sample the various states by choosing decisions that
are locally optimal based on current estimates of the value functions. For example, we could follow
a procedure where we choose a decision that maximizes the sum of the one-period rewards and the
future value (discounted by factor γ) as follows:

d(a,ω) = arg max
d∈Da(ω)

{
c(a,d,ω)+ γvaM(a,d)

}
.

Here, ω represents a sample realization of random information (for example, Da(ω) is a sample
realization of the decision set), aM(a,d) is the state at the destination and vaM(a,d) the value associ-
ated with aM(a,d). This model is easily generalized to handle stochastic transitions, but this is not
relevant to the focus of this paper.

We outline the steps of a typical approximate dynamic programming algorithm for the nomadic
trucker problem in Figure 1. This algorithm has two stages. In the forward pass, we use the current
estimates of the optimal value functions to simulate a sample trajectory of the truck. The next state
that is visited is determined using a transition function aM(am,dm), as depicted in Equation 2, where
the resource in state am undergoes a transformation to state am+1 = aM(am,dm) when acted upon
by decision dm. Once the end of the time horizon is reached, we perform a backward pass, where
we first compute the observations of values of the various states in the current sample path using
Equation 3. We point out that the estimates of the future values are discounted by a factor γ. We
then use these to update the value estimates, as in Equation 4, and the associated statistics (number
of observations and sample variance) of the states that are visited.

There are a number of variations of approximate dynamic programming. One family is known
as TD(λ)-learning (see Sutton, 1988; Sutton and Barto, 1998), typically parameterized by an artifi-
cial discount factor λ. Using a pure forward pass algorithm is equivalent to TD(0), while another
variation follows a policy (determined by the current set of approximations), and then does a back-
ward traversal to obtain updates of the estimate of the value of being in each state (this is equivalent
to T D(1)). Another popular strategy is Q-learning (see Watkins, 1989), where we estimate the quan-
tities Q(a,d) which is the value of being in a state a and making decision d. Since the statistical
problem of estimating the value of a state-action pair is, of course, even harder than the problem of
estimating the value of being in a state, we have not used this approach. Since Q-learning allows you
to determine a decision directly from the Q-factors (rather than solving an optimization problem),
it is typically presented as a “model-free” algorithm (that is, one that does not require an explicit
model of the transition function), although estimating the Q-factors does require some source that
determines the next state given a state and action. All of these methods can be used without an ex-
plicit model of the exogenous information process (for example, we do not use a one-step transition
function) as long as we have some mechanism for creating the sample realizations.

As with most ADP algorithms, the only way to obtain an estimate of the value of being in a
state is to actually visit the state. In real applications, there may be millions of states but we may be
limited to only thousands of observations. In practice, most states are never visited, and many are

2084

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

Step 0. Initialize an approximation for the value function v0
a for all attribute vector states a ∈ A

and set n = 1 .

Step 1. Iteration n:

Step 2. Forward pass: Set m = 0 and randomly sample attribute vector am, but fixing the
start time at the beginning of the time horizon.

Step 3. Obtain the set of possible decisions, Dam(ω).

Step 4. Solve for the optimal decision, given the current value function estimates.

dm(ω) = argmaxd∈Dam (ω)

[

c(am,d)+ γvn−1
aM(am,d)

]

(1)

Step 5. Evaluate the next state to visit:

am+1 = aM(am,dm) (2)

Step 6. If the end of the time horizon (T) is reached, then set m = m+1 and go to step
3, else go to step 7.

Step 7. Backward pass: For j = m−1,m−2, · · · ,0, update the value function estimates as
follows:

v̂n
a j

= c(a j,d j)+ γv̂n
a j+1

(3)

vn
a j

= (1−α)vn−1
a j

+αv̂n
a j

(4)

Step 8. Let n = n+1. If n < N go to step 1, else for each state a, return the value function vn
a.

Figure 1: An approximate dynamic programming algorithm using a backward pass for the nomadic
trucker problem

visited only a few times. As a result, there can be a high level of statistical noise in our estimates of
the value of being in a state.

This section provides the context in which our adaptive learning problem arises. The next three
sections consider the general problem of estimating a quantity (the value of a resource with attribute
a) outside of the context of approximate dynamic programming. We assume we have a source of
(unbiased) observations of the value associated with attribute a, from which we have to develop
statistically robust (i.e., low-variance) estimates of the value associated with attribute a. We then
use the method in the context of approximate dynamic programming to demonstrate that it produces
better results than other methods, even though we no longer have unbiased observations.

2085

GEORGE, POWELL AND KULKARNI

3. The Statistics of Aggregation

In this section, we investigate the statistics of aggregation by studying a sampling process where
at iteration n we first sample the attribute vector a = ân. We then use a sample realization of the
random information which provides us with an unbiased observation of the value of the resource
v̂n, producing a sequence of observations of (attribute vector, value) pairs. We wish to use this
information to produce a statistically reliable estimate of the true value associated with a. The
analysis in this section is not done in the context of dynamic programming (which allows us to
assume that our observations of values are unbiased). Rather, it is intended as a pure study of the
statistics of aggregation.

Our assumption that the observations of values, v̂n, are unbiased will not be true in a dynamic
programming setting, but allows us to focus on the tradeoff between bias and variance.

We begin by defining the following:

N = The set of indices corresponding to the observations of the attribute vectors and
values.

S = A sample of observations (ân, v̂n)n∈N .

νa = The true value associated with attribute vector a.

Na = The number of observations of attribute vector a given our sample S .

ân = The attribute vector at observation n.

v̂n = The observation of the value corresponding to index n.

1{ân=a} = 1, if the nth observation is of attribute vector a.

An estimate of νa can be obtained as an average across all the observations of values corre-
sponding to a:

va =
1

Na
∑

n∈N
v̂n1{ân=a}.

Throughout our presentation, we use the hat notation (as in v̂) to represent exogenous information,
and bars (as in v) to represent statistics derived from exogenous information.

Consider a case where the attribute vector has more than one dimension, with Ai denoting the
number of distinct states that attribute ai can assume. The number of values that need to be estimated
is ∏i Ai. Needless to say, as the attribute vector grows, the state space grows exponentially, making
it impossible to obtain statistically reliable estimates. One strategy is to resort to aggregation (such
as dropping one or more dimensions of a) which can quickly reduce the number of values but
introduces structural error. An alternative is to assume a structural property such as separability,
which reduces the number of values to be estimated to ∑i Ai. This has fewer values, but requires that
we introduce separability as an approximation. In one of our trucking applications, one attribute
is the location of the truck, while a second attribute is the driver’s home domicile. The value of
a driver in a location depends very much on his home domicile. Assuming these are independent
would introduce significant errors.

In general, aggregation of attribute vectors is performed using a collection of aggregation func-
tions, Gg : A → A (g), where A (g) represents the gth level of aggregation of the attribute space A .
We define the following:

a(g) = Gg(a), the gth level aggregation of the attribute vector a.

2086

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

Figure 2: Aggregation of the state space for a multiattribute problem.

G = The set of indices corresponding to the levels of aggregation.

Aggregation can thus be used to create a sequence of state spaces,
{

A (g),g = 1,2, . . . , |G |
}

,
with fewer elements than the original state space. This can be better illustrated using the example in
Figure 2, where we consider the nomadic trucker problem with the state of the truck defined by two
attributes - current location and capacity type. The number of possible states with three locations
(NY, NJ and PA), and three capacity types (C1, C2 and C3), is nine at the most disaggregate level.
The first-level aggregation function, G(1), involves aggregating the location to the regional level
which reduces the number of states to three. The second-level aggregation function, G(2), would
be defined as aggregating out the capacity type attribute completely, which leaves us with a single
state. As in this example and in the experimental work to follow, it is usually the case that the gth
level of aggregation acts on the (g−1)st level.

We let εn denote the error in the nth observation with respect to the true value associated with
ân (which, using the notation defined earlier in this section, would be represented using νân). For
analysis purposes, we assume that the elements of the sequence {εn}n∈N are independent and iden-
tically distributed, with a mean value of zero. This is, of course, an idealization, but it will help us
understand the tradeoffs between structural errors (due to aggregation) and statistical errors. We can
express the observed value as follows:

v̂n = νân + εn.

We define the following probability spaces,

Ωa = The set of outcomes of observations of attribute vectors.

Ωε = The set of outcomes of observations of the errors in the values.

Ω = The overall set of outcomes

= Ωa ×Ωε.

ω = (ωa,ωε)

= An element of the outcome space.

2087

GEORGE, POWELL AND KULKARNI

We now define the following terms which will be useful in obtaining an estimate of the value
associated with the attribute vector a at any level of aggregation:

N (g)
a = The set of indices that correspond to observations of the attribute vector a at the

gth level of aggregation

= {n | Gg(ân) = Gg(a)}.

N(g)
a =

∣
∣
∣N (g)

a

∣
∣
∣.

v(g)
a = The estimate of the value associated with the attribute vector a at the gth level of

aggregation, given the sample, N .

We can compute the estimate, v(g)
a , as

v(g)
a =

1

N(g)
a

∑
n∈N (g)

a

v̂n.

We provide a numerical example to illustrate the idea of forming estimates at different levels of
aggregation. Consider the state of a resource to be composed of two attributes, namely, location of
the resource and resource type. There are four locations, namely, New York, Philadelphia, Boston
and Washington. The type can be Single or Team. Thus, there are eight possible states. We use
aggregation functions that aggregate out the type attribute and then the location attribute to obtain
three different levels of aggregation. Suppose we have the following observations of state-value

a Location Type Na va N(1)
a v(1)

a N(2)
a v(2)

a

a1 New York Single 2 4.5
a2 New York Team 1 7.0 3 5.3
a3 Philadelphia Single 3 3.7
a4 Philadelphia Team 1 2.0 4 3.3 12 4.8
a5 Boston Single 2 8.5
a6 Boston Team 0 - 2 8.5
a7 Washington Single 1 1.0
a8 Washington Team 2 5.5 3 4.0

Table 1: Numerical example illustrating the computation of value estimates using aggregation. For
example, v(0)

a1 = (7+2)/2 = 4.5, and v(1)
a7 = (5+1+6)/3 = 4.0.

pairs - {(a3,4),(a4,2),(a1,7),(a5,8),(a3,2),(a8,5),(a7,1),(a5,9),(a8,6),(a2,7),(a3,5),(a1,2)}.
We can form estimates of the values of the various states at the different levels of aggregation as
illustrated in Table 1.

Now that we have an estimate of the value, νa, for each level of aggregation, the question arises
as to what is the best level of aggregation. A traditional strategy is to choose the right level of
aggregation by trading off statistical and structural errors to find a model with the least overall error.

2088

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

In order to better understand these two kinds of errors in an aggregation setting, we first let δ
(g)
a

denote the total error in the estimate, v(g)
a , from the true value associated with attribute vector a:

δ
(g)
a = v(g)

a −νa.

An important component of our prediction error will be aggregation bias. Consider our most re-
cently observed attribute vector ân and some other attribute a, where ân and a may aggregate up to
the same aggregated attribute at some level g ∈ G , that is, Gg(a) = Gg(ân) (for the moment, these
are simply two attribute vectors). In our derivations below, it is useful to define a bias term,

µn
a = νân −νa.

We can use this notation to rewrite v̂n as follows:

v̂n = νa +(νân −νa)+ εn

= νa +µn
a + εn ∀ a,n.

We can express v(g)
a in terms of its bias and noise components as follows:

v(g)
a =

1

N(g)
a

∑
n∈N (g)

a

(νa +µn
a + εn)

= νa +

1

N(g)
a

∑
n∈N (g)

a

µn
a

+

1

N(g)
a

∑
n∈N (g)

a

εn

 .

We let,

µ(g)
a =

1

N(g)
a

∑
n∈N (g)

a

µn
a,

ε(g)
a =

1

N(g)
a

∑
n∈N (g)

a

.εn.

This enables us to express the total error as follows:

δ
(g)
a = µ(g)

a + ε(g)
a (5)

where µ(g)
a gives an estimate of the bias between the values of a at the gth level of aggregation and

at the disaggregate level. µ(g)
a is a random variable that is a function of the set of points sampled.

ε(g)
a is an estimate of the random error that has zero expected value. By assumption, the variability

in ε(g)
a occurs because of the statistical noise in the observation of the values. We point out that the

terms, δ
(g)
a , µ(g)

a and ε(g)
a , are not statistical estimators, because a knowledge of the true values is

required for computing these. µ(g)
a is representative of the structural error that is introduced due to

aggregation, while ε(g)
a represents the statistical error due to noise in the observations. Moreover,

these two error terms need not be uncorrelated in a general setting.

2089

GEORGE, POWELL AND KULKARNI

In an approximate dynamic programming setting, the right tradeoff between statistical and struc-
tural errors will change as we collect more observations. Furthermore, we generally do not control
the sampling process of the attributes, and we will encounter instances where some regions of the
attribute space A will be sampled more than others. Although it is common in practice to choose
a single level of aggregation that produces the lower overall error, it can be useful to combine esti-
mates from several levels of aggregation.

4. Combining Estimates

In this section, we propose methods to compute weights to combine value estimates that have been
formed from a given set of observations. In the context of ADP, the weights are computed at a given
iteration of the algorithm in Figure 1.

We consider a set of estimates,
{

v(g)
a ,g ∈ G

}

, of a value, νa, at different levels of aggregation.

We let σ(g)
a denote the population standard deviation associated with the observations used to com-

pute v(g)
a . Breiman (1996) proposes a method called stacked regression which in our setting would

be equivalent to combining estimates at different levels of aggregation using

va = ∑
g∈G

w(g) · v(g)
a ,

where w(g) is a set of weights for each level of aggregation. This method ignores the important
feature that the best weighting depends on how many times we have observed a particular attribute.
We prefer to use the strategy suggested by LeBlanc and Tibshirani (1996) (Section 8), where the
weights depend on the attribute:

va = ∑
g∈G

w(g)
a · v(g)

a .

The practical challenge here is that we have to estimate a set of weights (w(g)
a) for each attribute

a (that we observe). If we use classical regression methods for our applications, this can mean
maintaining hundreds of thousands of regression models. Storing and updating these models is
computationally demanding for large industrial applications. In this section, we develop both exact
and approximate methods for estimating weights, where our approximation makes the assumption
that the estimates v(g)

a are independent. Section 5 presents theoretical and experimental arguments
supporting the accuracy of the weights when we assume independence (even when the assumption
is not even approximately true), which dramatically simplifies the procedure.

In Section 4.1, we formulate the problem of finding the optimal weights for the general case
where the estimates may be biased and dependent on each other, and later derive these weights.
However, the computation of these weights can prove cumbersome for large-scale problems. We
provide, in Section 4.2, a simpler formula for the weights which assumes that the estimates are
independent, but accounts for the possibility of biases in the estimates. In Section 4.3, we propose
an approximation of the weights derived in Section 4.2, for the case where the bias and variance of
the estimators are unknown.

2090

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

4.1 Optimal Weights

We begin by finding the weighting scheme that will optimally combine the estimates at the different
levels of aggregation, that is, the weights which give a combined estimate with the least squared
deviation from the true value associated with attribute vector a. We can formulate the problem as
follows:

min
w(g)

a ,g∈G
E

1
2

(

∑
g∈G

w(g)
a · v(g)

a −νa

)2

 , (6)

subject to:

∑
g∈G

w(g)
a = 1. (7)

In a setting where the estimates are unbiased, it is useful to have an affine combination of the
estimates (LeBlanc and Tibshirani, 1996, Section 2) since the individual estimates and hence the
affine combination are equal to the true value in expectation. Even though this is not necessarily
true in a general setting, we choose to retain this constraint.

We state the following proposition for computing the optimal weights that solves the problem
formulated in Equations 6-7:

Proposition 1 For a given attribute vector, a, the optimal weights, w(g)
a , g ∈ G , to combine indi-

vidual estimates that are correlated in a hierarchical fashion, are obtained by solving the following
system of linear equations in (w,λ):

∑
g∈G

w(g)
a E

[

δ
(g)
a δ

(g′)
a

]

−λ = 0 ∀ g′ ∈ G , (8)

∑
g∈G

w(g)
a = 1. (9)

If the bias error, µ(g)
a , is uncorrelated with the random error, ε(g)

a , then the coefficients of the weights
in Equation 8 can be expressed as follows:

E

[

δ
(g)
a δ

(g′)
a

]

= E

[

µ(g)
a µ(g′)

a

]

+
σ2

ε

N(g′)
a

∀g ≤ g′ and g,g′ ∈ G (10)

where σ2
ε denotes the variance of the statistical noise in the observations.

Proof: The proof is given in appendix A. The derivation of Equation 8 involves using the La-
grangian for the problem stated in Equations 6-7 and performing some simple arithmetic on the
corresponding first order optimality conditions. Equation 9 is identical to Equation 7 from the opti-
mization formulation.

In the remainder of this analysis, our computations will be conditional on a given sequence of
observed attribute vectors. In other words, all expectations and probabilities are computed with re-

spect to the probability space, Ωε. We prove Equation 10 by simplifying the expression E

[

δ
(g)
a δ

(g′)
a

]

using some properties of hierarchical aggregation. �

2091

GEORGE, POWELL AND KULKARNI

For the case where g = 0, we can use the result, E

[

µ(0)
a µ(g′)

a

]

= 0 (which follows from the

property: µ(0)
a = 0), to further simplify (10) and obtain the following result:

E

[

δ
(0)
a δ

(g′)
a

]

=
σ2

ε

N(g′)
a

. (11)

We refer to the optimal weighting scheme as WOPT.

4.2 An Approximation Assuming Independence

It is a well-known result in statistics that if the estimates
{

v(g)
a ,g ∈ G

}

were independent and unbi-

ased, then the optimal weights would be given by

w(g)
a =

1

σ(g)
a

2
/N(g)

a

 ∑
g′∈G

1

σ(g′)
a

2
/N(g′)

a

−1

. (12)

We can obtain this result from proposition 1 as follows. If we assume that the estimates
{

v(g)
a ,g ∈ G

}

are independent and unbiased, then the cross-terms in Equation 8 disappear, leav-

ing behind the following modified relation:

w(g)
a E

[(

δ
(g)
a

)2
]

−λ = 0 ∀ g ∈ G . (13)

Solving Equations 13 and 9 gives us weights that are inversely proportional to the expected squared

errors, E

[(

δ
(g)
a

)2
]

. For the case of independent, unbiased estimates, E

[(

δ
(g)
a

)2
]

is identical to the

variance, σ(g)
a

2
/N(g)

a .
Solving the system of equations in Proposition 1 can be computationally expensive since in

practice, there may be hundreds of thousands of models. For practical solutions, it will be useful to
have an expression along the lines of Equation 12 for computing the weights, even though neither
of the conditions (independence and absence of bias) holds true for estimates that arise from aggre-
gation due to structural errors introduced in the process of aggregation. In order to adapt the simpler
formula in (13) to the aggregation setting while acknowledging the bias, we first define:

µ(g)
a = Expected bias in the estimate, v(g)

a

= E

[

v(g)
a −νa

]

.

For biased estimates, the total squared error can be expressed as the sum of bias and variance
components, provided the bias and variance are independent of each other (Hastie et al., 2001, p.
24):

E

[(

δ
(g)
a

)2
]

=
σ(g)

a
2

N(g)
a

+µ(g)
a

2
. (14)

2092

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

We use this relation to modify the weights as follows:

w(g)
a =

1

σ(g)
a

2

N(g)
a

+µ(g)
a

2

 ∑

g′∈G

1

σ(g′)
a

2

N(g′)
a

+µ(g′)
a

2

−1

∀ g ∈ G . (15)

We call this weighting scheme, WIND.

4.3 Weighting by Inverse Mean Squared Errors

In the more realistic setting where the exact values of the parameters involved in the computation of
weights as in Equation 15 are unknown, we propose using the plug-in principle (see, for example,
Efron and Tibshirani 1993, chapter 4) where we use statistical estimates of the bias and variance
to produce approximations of the weights. We first compute estimates of the bias and the variance
using

s(g)
a

2
= The sample variance of the observations corresponding to the estimate v(g)

a

=
1

N(g)
a −1

∑
n∈N (g)

a

(

v̂n − v(g)
a

)2
.

µ̃(g)
a = An estimate of the bias in the estimated value (v(g)

a) from the true value

= v(g)
a − v(0)

a .

The approximate weights on the estimates at different levels of aggregation are inversely propor-
tional to the estimates of their mean squared deviations (obtained as the sum of the variances and
the biases) from the true value:

w(g)
a =

1

s(g)
a

2

N(g)
a

+ µ̃(g)2

a

 ∑

g′∈G

1

s(g′)
a

2

N(g′)
a

+ µ̃(g′)2

a

−1

∀ g ∈ G . (16)

We refer to this formula as weighting by inverse mean squared errors (WIMSE). In the event that
N(g)

a is too small or zero (which can happen in the early iterations and/or at the more disaggregate
levels), it is difficult to form meaningful estimates of the variance and bias. In such a situation, we
set the corresponding weight to zero.

Equation 16 is very easy to calculate even for large scale applications where we may observe
hundreds of thousands of attributes. However, it produces the best results only when the estimates
of values at different levels of aggregation are independent, an assumption that we cannot expect
to hold true. In the next section, we present theoretical and experimental evidence supporting the
claim that the error introduced from this assumption is negligible.

It is important to note that the use of the plug-in principle, which in this setting means using
statistical estimates of parameters (the bias and variance), may result in some unexpected behavior
when the number of observations is small. For example, the estimate of the total squared error
in Equation 14 would be expected to decrease with each additional observation. When we use
estimates of the bias and variance, this is no longer guaranteed, especially when N (g)

a is small.
However, our empirical evidence is that it seems to behave as expected in an aggregate sense.

2093

GEORGE, POWELL AND KULKARNI

5. The Case for Assuming Independence

In this section, we justify our decision to ignore the dependence between the estimates from hier-
archical aggregation, while combining them to form an improved estimate. We discuss the special
case where we combine estimates from only two levels of aggregation, which enables us to obtain
simple expressions for computing the various parameters. We assume that the statistical noise is
independent of the attribute vector sampled and also that we know the probability distributions of
the sampling of the attribute vectors and their values. These assumptions enable us to solve the
optimality equations to obtain a solution explicitly. In Section 5.1, we analytically compare the two
sets of equations (with and without assuming independence) for computing optimal weights. We
provide an experimental comparison of the two methods, demonstrating the similarity in results, in
section 5.2.

5.1 Analytical Comparison

For the two-level problem, we can obtain the optimal weights (WOPT) by solving the following
system of equations:

E

[

δ
(0)2

a

]

w(0)
a +E

[

δ
(0)
a δ

(1)
a

]

w(1)
a −λ = 0,

E

[

δ
(0)
a δ

(1)
a

]

w(0)
a +E

[

δ
(1)2

a

]

w(1)
a −λ = 0,

w(0)
a +w(1)

a = 1,

w(0)
a ,w(1)

a ≥ 0.

Since we are concerned with computing the weights for a particular attribute vector, we drop the
index a in the following analysis. We obtain the value of w(0) as,

w(0) =

E

[

δ
(1)2
]

−E

[

δ
(0)

δ
(1)
]

E

[

δ
(0)2
]

+E

[

δ
(1)2
]

−2E

[

δ
(0)

δ
(1)
] . (17)

By assumption, the estimate at the disaggregate level is unbiased, that is, µ(0) = 0. We let

µ2 = E

[

µ(1)2
]

denote the expected value of the square of the bias term at the aggregate level. Using

Equations 10 and 11, we may write,

E

[

δ
(0)

δ
(1)
]

=
σ2

ε
N(1)

,

E

[

δ
(0)2
]

=
σ2

ε
N(0)

,

E

[

δ
(1)2
]

= E

[

µ(1)2
]

+E

[

ε(1)2
]

= µ2 +
σ2

ε
N(1)

.

2094

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

These results enable us to rewrite Equation 17 for computing the weights on the disaggregate esti-
mate using the WOPT scheme (which we denote as wopt) as follows:

wopt =
1

1+
(

1
N(0) −

1
N(1)

)
σ2

ε
µ2

. (18)

The competing scheme, WIND, assumes independence of the estimates. The weights at the
disaggregate level are obtained using the formula:

wind =
1+ 1

N(1)

σ2
ε

µ2

1+
(

1
N(0) + 1

N(1)

)
σ2

ε
µ2

. (19)

We denote by ṽopt and ṽind the estimates computed using the two weighting schemes.

ṽopt = woptv(0) +(1−wopt)v(1),

ṽind = windv(0) +(1−wind)v(1).

We can write the difference between the estimates of the value obtained with and without the inde-
pendence assumption as ∆ = ṽopt − ṽind = ∆w ·∆v, where ∆w = wopt −wind and ∆v = v(0)−v(1). The
following proposition establishes that ∆ is small under certain conditions.

Proposition 2
(i) limµ→0 E [∆] = 0,
(ii) limµ→∞ ∆ = 0,
(iii) limσ2→0 ∆ = 0.

Proof:
(i) As µ → 0, wopt = 0 and wind = N(0)/

(
N(0) +N(1)

)
. wind attains a maximum value of 1/2 when

N(0) = N(1), but that would imply that v(0) = v(1) ⇒ ∆v = 0. At the other extreme, if N(0) = 0, then
wind = 0 ⇒ ∆w = 0. For intermediate values of N(0), it is no longer true that the random variable ∆v

will always be zero (for statistical reasons), but we can show that its expectation will be zero using

E [∆] = E{E[∆|N]},

E[∆|N] = E

[

∆v
N(0)

N(0) +N(1)
|N

]

= E [∆v]
N(0)

N(0) +N(1)

= 0.

Since µ2 = 0, E[∆v] = 0 and Equation 20 follows.
(ii) As µ → ∞, wind → wopt → 1, which can be easily obtained by applying the appropriate limits in
Equations 18 and 19. This is intuitive since with very high bias, the best strategy is to put all the
weight on the most disaggregate level. As a result, ∆w → 0.
(iii) As the variance goes to zero, w(ind) → w(opt) that again implies ∆w → 0. �

Thus, the error from the independence assumption is small when the bias is high or low, or when
the variance is low. The error will be highest for moderate values of the bias and higher values of
the variance. Given that the errors vanish for the extreme cases, it is perhaps not surprising that the
errors are never very large. We provide experimental evidence to support this conclusion in the next
section.

2095

GEORGE, POWELL AND KULKARNI

Aggregate cell 1

Aggregate cell 2

Aggregate cell 3

a

av

1 2 3 4 5 6 7 8 9 10

0
aV

1
aV

Figure 3: A piecewise constant function with its aggregate approximation. Estimates of values
of each attribute vector are computed at both the aggregate and disaggregate levels. A
weighted averaging is done to improve the estimates.

5.2 Experimental Results

In this section, we analyze the estimation of functions characterized by known parameters (which
effectively requires that we know the actual function) in order to demonstrate the effectiveness of
the optimal weighting strategy, as well as to serve as a benchmark for the strategy which assumes
independent estimates at different levels of aggregation. We observe that the weights given by
either method (Equations 18 and 19) are functions of the bias in the value at the aggregate level, the
variance of the statistical noise in the observation of the values and the number of observations at
either level. In order to compare the values of the weights from the competing strategies, we create
scenarios with different combinations of the parameters that would produce significant changes in
the weights. We then analyze how the variations in the weights given by WOPT and WIND affect
the actual function estimates computed using the two schemes.

We consider a piecewise constant monotone function and its aggregate version as shown in
Figure 3. We note that there are distinct regions in the domain where the bias is high, intermediate
and zero - we expect the relative weights to be very different in these three regions. Figure 4 gives the
weights (to be applied to the disaggregate level) produced by the optimal formula, WOPT, and the
formula assuming independence, WIND, for each attribute a. The weights are obtained by sampling
since the corresponding Equations (18 and 19) require the number of observations at the two levels
of aggregation, N(0) and N(1). As we would expect, the optimal weights at the disaggregate level
are zero when there is no structural error, in contrast to WIND. When the structural error is highest,
the weights produced by the two methods are very similar. Note, however (consistent with our
understanding from the previous section) that the weights are also quite different for the cells a = 2
and a = 5 where the aggregate and disaggregate functions are most similar (which means the bias is
small). It is also the case that the weight to be given to the disaggregate level is also smallest when
the bias is smallest.

2096

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

A
ve

ra
ge

 W
ei

gh
ts

Aggregate cell 1

Aggregate cell 2

Aggregate cell 3

WOPT
WIND

Figure 4: Comparison of the weights over the function domain

We have illustrated the difference in the weights produced by the two strategies, but less obvious
is the difference in the estimates of the underlying function. In order to compare the two schemes,
we developed a measure of the degree to which a weighting strategy reduced the variance of an
estimate. We define the following:

ṽs
a = The value of the attribute vector a as estimated by strategy s.

εs = The sum of squared errors as estimated by strategy s.

= ∑
a∈A

(ṽs
a −νa)

2

εG = The sum of squared errors using the static aggregation strategy which treats
the function as a constant over its domain.

θs = The performance measure for strategy s.

= 1−
εs

εG .

θs measures the degree of variability explained by a particular weighting strategy relative to using a
single constant which can be thought of as a default strategy where all observations are aggregated
together. θs is analogous to an R2 measure commonly used in statistics.

A major factor in the performance of a weighting strategy is the relative size of the structural
variation compared to the statistical noise. For this purpose, we define an index, ρ, that measures
the ratio of the noise to the bias.

Figure 5 compares the performances of the two weighting strategies for three levels of noise.
We observe that the performance of WOPT and WIND are almost identical even though there were
situations where the weights given by the two schemes were significantly different. The similarity
in the function estimates from the two strategies is explained by the analysis in Section 5.1.

We tested the relative performance of the two methods for other function classes. We summarize
the results in figure 6 where we plot the performance measure as a function of the average number of
observations per disaggregate cell. We observe that there is very little statistical difference between

2097

GEORGE, POWELL AND KULKARNI

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of observations

P
er

fo
rm

an
ce

 m
ea

su
re

 (θ
s)

ρ = 5

ρ = 2

ρ = 1

ρ = 1 WOPT
ρ = 1 WIND
ρ = 2 WOPT
ρ = 2 WIND
ρ = 5 WOPT
ρ = 5 WIND

Figure 5: Comparison of the performance, as measured by θs, of WOPT and WIND in estimating
the piecewise constant function

0 1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1

Average number of observations per disaggregate cell

P
er

fo
rm

an
ce

 m
ea

su
re

 (θ
s)

Random

Concave non−monotone

Concave

Sinusoidal

Linear

2 overlapping lines
denoting θ

s for
WOPT (solid line) &
WIND (dashed line)

Figure 6: Comparison of WOPT and WIND for various function types using expected values of
weights. The graph shows the average performance measure (θs) over 1000 samples for a
moderate value of ρ = 2. WOPT is represented using solid lines and WIND, with dashed
lines - the two are virtually indistinguishable.

the performance of the two methods. From this analysis, we conclude that WIND, which combines
estimates assuming independence, will generally be a close approximation of WOPT. Of particular
interest for our problem setting is that WIND is much easier to implement.

2098

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

6. Experiments in an ADP Application

We implemented the hierarchical weighting strategy in the approximate dynamic procedure for
solving the nomadic trucker problem described in Section 2. In Section 6.1, we describe the specifics
of the problem instances that we consider. We also state the competing strategies that we compare in
the experiments that follow. We then proceed to show the effectiveness of our hierarchical weighting
scheme using two sets of experiments. In Section 6.2, we report on experiments where the discount
factor is set to zero. In this case, the observations of values are unbiased, since they do not involve
the estimates of values of future states. In Section 6.3, we present the results of experiments with
positive discount factors. We have made available a collection of data sets used in these experiments
on the following webpage - http://castlelab.princeton.edu/. Finally, in Section 6.4, we
provide experimental results from applying our techniques on an industrial strength problem.

6.1 Experimental Design

We consider a problem where we specify the state of the truck using three attributes, namely, the
current location, the day of week and the number of days away from home. The problem is rich
enough to offer interesting opportunities for hierarchical aggregation, but small enough that we can
solve the problem to obtain the exact solution.

The decisions are to be made over a finite time horizon of 21 time periods. The location attribute
can be represented at two degrees of resolution - regions (eastern Pennsylvania, northern New Jer-
sey) or geographical areas (Northeast, Midwest and so on). There are 50 locations at the region
level which can be aggregated to 10 geographical areas.

The major contributor to the stochastic nature of the nomadic trucker problem is the uncer-
tainty in the availability of loads in any particular location to be moved to other locations. The
probability that a load is available to be moved from one location to another is dependent on the
origin-destination pair. Another factor that influences the load availability is the day of week. Loads
are more likely to appear during the beginning of the week (Mondays) and towards the end (Fri-
days). We use a probability distribution whereby the load availability dips during the middle of
the week and is lower over the weekends. We introduce further uncertainty into the problem by
allowing the one-period contributions to be moderately noisy.

The final attribute that we consider is the number of days that the driver is away from home.
There is a penalty that we impose on moves that keep the driver away from his home domicile,
which is a quadratic function of the number of days away from home. In order to keep the state
space manageable (so we can obtain optimal solutions), we cap the number of days away from home
at 12.

In Table 2, we list the aggregations that we use for the problem and the number of attribute states
at each level of aggregation. For example, at aggregation level 1, the location attribute is aggregated
from 50 regions to 10 geographical areas. We aggregate out the day-of-week attribute and retain
the days-away-from-home attribute. Adding in the factor for 21 time periods, we have a total of
2541 possible states. The apparent discrepancy in the size of the state space at levels 0 and 1 arises
because the days-away-from-home attribute is always set to 0 for the location corresponding to the
home of the driver, while for all the other locations it can be any number from 1 to 12.

In order to compute the true values associated with each attribute vector, we use a standard
backward dynamic programming algorithm. Our focus is on the problem of statistical estimation
of the true values of the various states. In order to form estimates of these values we incorporate

2099

GEORGE, POWELL AND KULKARNI

g Time Location Days-away-from-home Day-of-week |A |

0 * Region * * 86583
1 * Area * - 2541
2 * Area - - 210
3 * - - - 21

Table 2: Aggregations for the multiattribute nomadic trucker problem. A ‘∗’ corresponding to a
particular attribute indicates that the attribute is included in the attribute vector, and a ‘−’
indicates that it is aggregated out.

our aggregation strategies in the approximate dynamic programming algorithm outlined in Figure
1. The value function estimate in Equation 1 is obtained as a weighted sum of the value estimates
at various levels of aggregation:

vn−1
a′ = ∑

g∈G
w(g),n−1

a′ v(g),n−1
a′ where a′ = aM(a,d) ∀d ∈ Da

where w(g),n−1
a′ denotes the weight, at iteration (n−1), on the estimate of the value of attribute vector

a′ at the gth level of aggregation.
The methods that we compare use the following sets of weights:

1. Static Aggregation:

w(g),n−1
a′ =

{
1 if g is the fixed level of aggregation,
0 otherwise.

2. Dynamic Aggregation (MINV):

w(g),n−1
a′ =

{

1 if g = argming′∈G

(

s(g′),n−1
a′

)2

0 otherwise.

3. WIMSE: w(g),n−1
a′ is computed using Equation 16.

Equation 4 is replaced by a series of equations for updating the value function estimates at all
the levels of aggregation corresponding to the currently visited attribute vector:

v(g),n
a = (1−α)v(g),n−1

a +αv̂n
a, a ∈ A ,g ∈ G . (20)

In the early iterations, especially for the more disaggregate levels, we often encounter the situation
where the number of observations is too small (zero in certain cases) to form a meaningful estimate
of a value. In such instances, we ignore the estimate at that level of aggregation. While forming a
weighted sum of estimates, this usually results in all the weights being placed on the more aggregate
levels.

2100

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

For methods 2 and 3, we point out that the chosen level of aggregation and the weights on the
estimates at different levels are dynamic in nature, in that they change with each iteration. This is
brought out in the sections that follow.

The performance measure that we use for these experiments is based on the deviation of the
value function approximations from the optimal value functions which can be obtained using a
traditional backward dynamic programming algorithm such as value iteration. We first define

pa = The steady state probability of being in state (equivalent to, in this situation,
attribute vector) a.

Na = The number of observations of or visits to state a.

νa = The true value associated with state a.

ṽs
a = The value function approximation for state a estimate computed using

strategy s.

Using these we may define the following performance measures:

Es
1 = Error measure based on steady state probabilities, that is, a stationary dis-

tribution

=
∑a∈A pa (ṽs

a −νa)

∑a∈A paνa
×100%. (21)

Es
2 = Error measure based on the number of visits to each state

=
∑a∈A Na (ṽs

a −νa)

∑a∈A Naνa
×100%. (22)

6.2 Experiments on Myopic Data Sets

We first analyze the ability of our proposed method to make estimates from a purely statistical
perspective. For this purpose, we maintain a zero discount factor, which means that the downstream
values of the states are ignored while making the decisions at any time period. Instead the decisions
are based on the one-period rewards alone. Using a discount factor of zero eliminates the bias that
is introduced in the ADP procedure, which implies that the errors in the estimates are purely due to
the noise in the observations. We compare the different estimation techniques in Table 3 where we
tabulate the Es

2 values (as computed using Equation 22) for several problem instances. The static
aggregation strategies for g = 0,1 & 2 are denoted as Disaggregate, Aggregate1 and Aggregate2
respectively. We observe that WIMSE demonstrates lower errors than the other techniques.

6.3 Experiments on Non-myopic Data Sets

In this section, we discuss results obtained by using a positive discount factor. As such, the estimates
of the future values have an impact on the current decisions. Figure 7 illustrates the variation in
the weights on the estimates from different levels of aggregation, as a function of the number of
observations, computed using the WIMSE weighting scheme. As expected, in the early iterations
we place the highest weight on the most aggregate level since this offers the greatest statistical
reliability. As the algorithm progresses, higher weights are put on the more disaggregate levels,
with ultimately the highest weight on the most disaggregate level. It is interesting (and noteworthy)
that the weights on the higher levels of aggregation drop quickly at first, but then stabilize, dropping

2101

GEORGE, POWELL AND KULKARNI

Problem # Disaggregate Aggregate1 MINV WIMSE

1 6.89 0.07 18.06 0.06 7.84 0.13 5.54 0.08
2 9.47 0.07 18.39 0.12 11.99 0.28 7.88 0.09
3 2.92 0.04 17.81 0.07 4.04 0.07 2.95 0.04
4 5.74 0.08 18.06 0.09 8.02 0.16 5.56 0.07
5 2.70 0.05 17.25 0.07 3.27 0.11 2.44 0.05
6 5.52 0.09 17.50 0.09 7.26 0.10 5.10 0.10

Table 3: Comparison of techniques for different problem instances (Disaggregate: g = 0, Aggre-
gate1: g = 1). The performance measure used for each of the methods is the percentage
deviation from optimality. Figures in italics denote the standard deviations of the terms to
the left.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of observations per state

A
ve

ra
ge

 w
ei

gh
ts Disaggregate

Aggregate1
Aggregate2

Figure 7: Average weights using hierarchical aggregation. (Disaggregate: g = 0, Aggregate1: g =
1, Aggregate2: g = 2).

very slowly. This behavior primarily reflects attributes with very low bias where the weight on the
aggregate level will always remain fairly high.

In Figure 8, we compare the various techniques based on E s
1 values, that is, the percentage errors

in the estimates from the optimal values weighted by the steady state probabilities under an optimal
policy (see Equation 21). The steady state probabilities can be obtained in the process of computing
the optimal values. This error measure enables us to determine how close the policy produced by
the value function estimates is to an optimal policy. We see that the hierarchical weighting scheme
outperforms all the static aggregation strategies as well as the dynamic aggregation strategy which
picks the “best” level of aggregation, producing the least errors in the estimates.

2102

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Number of iterations (x 105)

P
er

ce
nt

ag
e

er
ro

r
w

ei
gh

te
d

by
 s

te
ad

y
st

at
e

pr
ob

ab
ili

tie
s

Disaggregate
Aggregate1
Aggregate2
MINV
WIMSE

Figure 8: Es
1 values as a function of the number of observations.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

Number of iterations (x 105)

P
er

ce
nt

ag
e

er
ro

r
w

ei
gh

te
d

 b
y

nu
m

be
r

of
 v

is
its

Disaggregate
Aggregate1
Aggregate2
MINV
WIMSE

Figure 9: Es
2 values as a function of the number of observations.

Figure 9 shows the relative performance of the various schemes with respect to the errors
weighted by the number of visits to the various states (E s

2 values). This error measure gives an
idea of how well a particular strategy is able to estimate correctly the optimal value of the various
states with higher weights on the errors in the estimates of states that are visited more frequently.

2103

GEORGE, POWELL AND KULKARNI

Problem # Iterations Disaggregate Aggregate1 MINV WIMSE

1 20000 5.5 0.1 7.2 0.1 4.1 0.0 2.9 0.0
50000 3.9 0.0 7.0 0.1 3.6 0.0 2.2 0.0

2 20000 5.3 0.1 6.8 0.1 4.8 0.1 2.9 0.1
50000 3.7 0.0 6.6 0.1 4.4 0.0 2.3 0.0

3 20000 6.8 0.1 7.2 0.1 6.3 0.1 4.3 0.0
50000 5.0 0.0 7.0 0.1 5.5 0.1 3.6 0.0

4 20000 11.0 0.1 9.8 0.1 7.0 0.2 4.8 0.1
50000 7.7 0.1 9.4 0.1 6.2 0.2 3.9 0.1

5 20000 9.8 0.1 9.0 0.2 6.6 0.1 5.0 0.1
50000 6.7 0.1 9.0 0.1 5.6 0.1 3.8 0.1

6 20000 9.9 0.1 8.3 0.2 7.1 0.1 4.8 0.2
50000 6.7 0.1 8.2 0.2 6.4 0.2 3.8 0.1

7 20000 12.0 0.1 10.0 0.2 7.3 0.1 5.7 0.2
50000 8.5 0.1 10.0 0.2 6.4 0.1 4.7 0.1

8 20000 11.0 0.2 8.6 0.1 7.9 0.2 5.6 0.2
50000 7.8 0.1 8.3 0.2 7.2 0.1 4.5 0.2

9 20000 14.5 0.4 13.4 0.3 10.6 0.5 8.4 0.3
50000 10.6 0.4 12.5 0.3 9.4 0.4 7.3 0.3

10 20000 13.8 0.2 13.1 0.5 10.6 0.2 8.3 0.3
50000 9.7 0.2 12.7 0.2 9.0 0.2 6.8 0.2

Table 4: Comparison of techniques for different instances of the nomadic trucker problem. Two
higher levels of aggregation are also used in the problem, but omitted from the tables, as
they give inferior results. Figures in italics denote the standard deviations of the terms to
the left.

Here again, WIMSE is found to consistently outperform the remaining techniques, producing error
values that are much lower.

We now compare the various techniques for several problem instances. The major parameters
that are varied to obtain the different problem sets are the discount factor, the probability distribution
of the load availability at the various locations and the level of uncertainty in the contributions
resulting from choosing a particular decision. We used discount factors of 0.80, 0.90 and 0.95, three
different load probability distributions and two levels of uncertainty in the rewards. The E s

2 values
for these problem instances are tabulated in Table 4. Here again, WIMSE outperforms all the other
schemes consistently, irrespective of the number of iterations.

6.4 Experiments with a Fleet of Trucks

The techniques in this paper were designed to be applied to approximate dynamic programming
algorithms for optimizing a fleet of trucks. To illustrate, we provide a very brief model of a multiat-
tribute resource allocation problem that can be applied to the management of large fleets of trucks,
freight cars, locomotives, military air cargo jets or business jets (we have industrial experience with

2104

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

all of these problems). Let

Ra = The number of resources with attribute a.

R = (Ra)a∈A

D = The set of different decision types that can be used to act on a resource
(e.g., moving from one location to another, repairing a vehicle).

xad = The number of times we act on a resource with attribute a using a decision
of type d ∈ D .

x = (xad)a∈A ,d∈D

cad = The contribution generated by xad .

For problems with moderately complex attribute vectors, we have found that we can obtain high
quality solutions using dynamic programming approximations by solving (at iteration n) approxi-
mations of the form,

Ṽ n(Rn) = max
x

(

∑
a∈A

∑
d∈D

cadxad + ∑
a′∈A

vn−1
a′ Rx

a′(x)

)

(23)

subject to,

∑
d∈D

xad = Rn
a ∀ a ∈ A , (24)

Rx
a′ = ∑

a∈A
∑

d∈D
δa′xad , (25)

xad ≥ 0. (26)

This is a fairly basic model, but it is enough to illustrate the application (for a more complete
description, see Spivey and Powell 2004). Problem 23 - 26 is a linear program, and returns a dual
variable that we denote v̂n

a for the resource constraint in Equation 24. In a real application, the
attribute space A is large enough that we do not generate Equation 24 for each a ∈ A . Instead, we
might generate the equation only if Rn

a > 0 (for example). We can then update our value function
approximation using

vn
a = (1−αn)v

n−1
a +αnv̂n

a.

The problem we encounter, just as in the earlier sections, is that real problems might have attribute
spaces with several million elements, and yet we can only run a few hundred iterations of the al-
gorithm. Many of the attributes are never sampled, while others will have only a few observations.
A small handful may receive dozens of observations. As a result, the statistical reliability of the
approximations vn

a can be quite low. The standard technique is to estimate the values at some aggre-
gate level that trades off between the statistical reliability and cost of bias introduced by aggregation.
The right level of aggregation depends not only on the specific attribute (some are sampled more
often than others) but also on the number of iterations we have run the algorithm.

We tested our multilevel weighting strategy using this model to simulate the operations of a
major truckload motor carrier. A detailed description of this problem can be found in Simao et al.
(2008). The most disaggregate attribute vector used for the value function captured the location

2105

GEORGE, POWELL AND KULKARNI

1400000

1450000

1500000

1550000

1600000

1650000

1700000

1750000

1800000

1850000

1900000

0 100 200 300 400 500 600 700 800 900 1000

Iterations

O
b
je

ct
iv

e
fu

n
ct

io
n

Weighted Combination

Aggregate

Disaggregate

Iterations

O
bj

ec
tiv

e
fu

nc
tio

n

Figure 10: Comparison of using a single level of aggregation (aggregate and disaggregate) against
a weighted aggregation strategy for optimizing a fleet of trucks.

of the driver (out of 100 regions), the driver’s home domicile (out of 100 regions), and whether
the driver was a single driver employed by the company, a contract driver, or a team (two drivers
working together). At the most disaggregate level, the attribute space consisted of 30,000 elements.
We considered an aggregate level which captured only the location of the driver (100 elements) and
a hierarchical strategy that used a weighted estimate across four levels of aggregation.

The results of the experiment are shown in Figure 10. For this problem, a single iteration of
the ADP algorithm can take 20 minutes. Even if we had confidence that the solution quality would
never be better, improving the rate of convergence is extremely important. Since it is required to
run this model continually to perform policy analyses, it would be extremely advantageous if we
could reduce the number of iterations needed for convergence from 1000 to 200. As expected,
if we use only an aggregate attribute vector, we obtain fast convergence but it levels off quickly.
Using the most disaggregate representation produces slow convergence but it eventually reaches
a better solution. By contrast, using a weighted combination of estimates at different levels of
aggregation produced the fastest convergence and the best results overall. We point out that faster
convergence to a better solution does not necessarily imply gains in running time. Even though
the weighted combination strategy has a greater number of computations per iteration compared
to static aggregation schemes, we have observed that the increase in running time for additional
computations is not significant.

2106

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

7. Conclusion

There is a vast range of problems that can be described as multiattribute resource allocation prob-
lems that can be modeled as stochastic dynamic programs. All of these problems pose the statistical
challenge of estimating the value of a resource as a function of a potentially complex vector of
attributes. Requiring no more than a set of aggregation functions which are typically quite easy
to design, we have proposed an adaptive weighting strategy that produces an estimate of the value
of a resource with a particular attribute. The weighting system is quite easy to compute, and is
implementable for very large scale problems with attribute spaces that are arbitrarily large, since
the computational complexity is a function of how many attributes you actually visit. The weights
adjust naturally as the number of observations change. Thus, it performs well in the early iterations
when there are very few observations. As more observations are made of particular attributes, the
weight given to disaggregate estimates increases, producing higher quality solutions.

Our most surprising result was the finding that a weighting system that assumed independence
of the estimates at each level of aggregation worked so well. This assumption is clearly not accurate.
However, our analysis showed that it had little or no effect on the accuracy of a prediction. If the
difference between a disaggregate estimate and the corresponding aggregate estimate was large,
the weights produced by our approximation closely matched the weights that would have been
produced had we properly accounted for the correlation. If the difference between the disaggregate
and aggregate estimates was small, the weights could be quite different, but in this case it did not
matter. The result is a weighting system that is easy to compute, scales well to very large scale
applications and provides very accurate estimates.

An interesting possibility for future work would be to analytically solve for the optimal weights
to combine estimates when there are more than two levels of aggregation. Further, the heuristic
techniques that we have proposed could be applied to a broader range of estimation problems, not
restricted to applications in approximate dynamic programming.

Acknowledgments

The authors would like to recognize the helpful comments of several referees. This research was
supported in part by grant AFOSR contract FA9550-08-1-0195, and by grant N00014-07-1-0150
from the Office of Naval Research through the Center for Dynamic Data Analysis.

Appendix A. Proof of Proposition 1:

We first prove (8). The Lagrangian for the problem formulated in (6)-(7) is

L(w,λ) = E

1
2

(

∑
g∈G

w(g)
a · v(g)

a −νa

)2

+λ

(

1− ∑
g∈G

w(g)
a

)

= E

1
2

(

∑
g∈G

w(g)
a

(

v(g)
a −νa

)
)2

+λ

(

1− ∑
g∈G

w(g)
a

)

.

2107

GEORGE, POWELL AND KULKARNI

The first order optimality conditions are easily shown to be

E

[

∑
g∈G

w(g)
a

(

v(g)
a −νa

)(

v(g′)
a −νa

)
]

−λ = 0 ∀ g′ ∈ G , (27)

∑
g∈G

w(g)
a −1 = 0.

To simplify Equation 27, we note that,

E

[

∑
g∈G

w(g)
a

(

v(g)
a −νa

)(

v(g′)
a −νa

)
]

= E

[

∑
g∈G

w(g)
a δ

(g)
a δ

(g′)
a

]

= ∑
g∈G

w(g)
a E

[

δ
(g)
a δ

(g′)
a

]

. (28)

Combining Equations 27 and 28 gives us Equation 8.
We now derive Equation 10. We assume that the bias error, µ(g)

a , is uncorrelated with the random
error, ε(g)

a . Using Equation 5, we obtain the relation,

E

[

δ
(g)
a δ

(g′)
a

]

= E

[

(µ(g)
a + ε(g)

a)(µ(g′)
a + ε(g′)

a)
]

= E

[

µ(g)
a µ(g′)

a +µ(g′)
a ε(g)

a +µ(g)
a ε(g′)

a + ε(g)
a ε(g′)

a

]

= E

[

µ(g)
a µ(g′)

a

]

+E

[

µ(g′)
a ε(g)

a

]

+E

[

µ(g)
a ε(g′)

a

]

+E

[

ε(g)
a ε(g′)

a

]

. (29)

We notice that, E

[

µ(g′)
a ε(g)

a

]

= E

[

µ(g′)
a

]

E

[

ε(g)
a

]

= 0. By a similar argument, E

[

µ(g)
a ε(g′)

a

]

= 0. This

enables us to rewrite Equation 29 as,

E

[

δ
(g)
a δ

(g′)
a

]

= E

[

µ(g)
a µ(g′)

a

]

+E

[

ε(g)
a ε(g′)

a

]

. (30)

Since g′ > g, the stochastic error term at level g′, ε(g′)
a , can be expressed as a combination of ε(g)

a
and some terms that are independent of it:

ε(g′)
a =

1

N(g′)
a

∑
n∈N (g′)

a

εn

=
1

N(g′)
a

 ∑
n∈N (g)

a

εn + ∑
n∈N (g′)

a \N (g)
a

εn

=
N(g)

a

N(g′)
a

ε(g)
a +

1

N(g′)
a

∑
n∈N (g′)

a \N (g)
a

εn. (31)

Using Equation 31, we can rewrite the second term on the right hand side of Equation 30 term as
follows:

E

[

ε(g)
a ε(g′)

a

]

= E

[

ε(g)
a ·

N(g)
a

N(g′)
a

ε(g)
a

]

+E

ε(g)
a ·

1

N(g′)
a

∑
n∈N (g′)

a \N (g)
a

εn

2108

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

=
N(g)

a

N(g′)
a

E

[

ε(g)
a ε(g)

a

]

+
1

N(g′)
a

E

ε(g)
a · ∑

n∈N (g′)
a \N (g)

a

εn

︸ ︷︷ ︸

I

.

Since the individual observations are assumed to be independent, the term I can be further simplified
as follows,

E

ε(g)
a · ∑

n∈N (g′)
a \N (g)

a

εn

 = E

[

ε(g)
a

]

E

 ∑
n∈N (g′)

a \N (g)
a

εn

= 0.

This implies that,

E

[

ε(g)
a ε(g′)

a

]

=
N(g)

a

N(g′)
a

E

[

ε(g)2

a

]

=
N(g)

a

N(g′)
a

Var
[

ε(g)
a

]

=
N(g)

a

N(g′)
a

1

N(g)
a

Var [εn]

=
1

N(g′)
a

σ2
ε . (32)

Combining Equations (30 and 32 gives us the result in Equation 10. This results generalizes for all
g ∈ G , since g and g′ can be interchanged when g > g′.

References

M. Athans, D. Bertsekas, W. McDermott, J. Tsitsiklis, and B. Van Roy. Intelligent optimal control.
Technical report, Laboratory for Information and Decision Systems, Massachusetts Institute of
Technology, Cambridge, MA, 1995.

J.C. Bean, J.R. Birge, and R.L. Smith. Aggregation in dynamic programming. Operations Research,
35:215–220, 1987.

D. Bertsekas and D. Castanon. Adaptive aggregation methods for infinite horizon dynamic pro-
gramming. IEEE Transactions on Automatic Control, 34(6):589–598, 1989.

D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Belmont, MA,
1996.

C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: structural assumptions and com-
putational leverage. J. of Artificial Intelligence, 11:1–94, 1999.

C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming
with factored representations. Artificial Intelligence, 121(1-2):49–107, 2000. URL
citeseer.ist.psu.edu/boutilier99stochastic.html.

2109

GEORGE, POWELL AND KULKARNI

L. Breiman. Stacked regression. Machine Learning, 24:49–64, 1996.

B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall/CRC, 1993.

Z. Feng, E. A. Hansen, and S. Zilberstein. Symbolic generalization for on-line planning. In Christo-
pher Meek and Uffe Kjærulff, editors, UAI, pages 209–216. Morgan Kaufmann, 2003. ISBN
0-127-05664-5.

M. Gendreau and J. Y. Potvin. Dynamic vehicle routing and dispatching. In T.G. Crainic and G. La-
porte, editors, Fleet Management and Logistics, pages 115–126. Kluwer Academic Publishers,
1998.

I. Guttman, S.S. Wilks, and J.S. Hunter. Introductory Engineering Statistics. John Wiley and Sons,
Inc., New York, NY, 1965.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer series in
Statistics, New York, NY, 2001.

S. Ichoua, M. Gendreau, and J.-Y. Potvin. Exploiting knowledge about future demands for real-time
vehicle dispatching. Transportation Science, 40(2):211–225, 2005.

K.E. Kim and T. Dean. Solving factored MDP’s using non-homogeneous partitions. Artificial
Intelligence, 147(1-2):225–251, 2003.

M. LeBlanc and R. Tibshirani. Combining estimates in regression and classification. Journal of the
American Statistical Association, 91:1641–1650, 1996.

R. Luus. Iterative Dynamic Programming. Chapman & Hall/CRC, New York, 2000.

R. Mendelssohn. An iterative aggregation procedure for Markov decision processes. Operations
Research, 30(1):62–73, 1982.

W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality. John
Wiley and Sons, New York, 2007.

W. B. Powell and T. A. Carvalho. Dynamic control of logistics queueing networks for large-scale
fleet management. Transportation Science, 32(2):90–109, 1998.

W. B. Powell, J. A. Shapiro, and H. P. Simão. An adaptive dynamic programming algorithm for the
heterogeneous resource allocation problem. Transportation Science, 36(2):231–249, 2002.

D. Rogers, R. Plante, R. Wong, and J. Evans. Aggregation and disaggregation techniques and
methodology in optimization. Operations Research, 39(4):553–582, 1991.

N. Secomandi. Comparing neuro-dynamic programming algorithms for the vehicle routing problem
with stochastic demands. Computers and Operations Research, 27(11):1201–1225, 2000.

N. Secomandi. A rollout policy for the vehicle routing problem with stochastic demands. Operations
Research, 49(5):796–802, 2001.

2110

FUNCTION APPROXIMATION WITH MULTIPLE AGGREGATION

H. P. Simao, J. Day, A. P. George, T. Gifford, J. Nienow, and W. B. Powell. An approximate dynamic
programming algorithm for large-scale fleet management: A case application. Transportation
Science, (to appear), 2008.

M. Spivey and W. B. Powell. The dynamic assignment problem. Transportation Science, 38(4):
399–419, 2004.

R.S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3:
9–44, 1988.

R.S. Sutton and A.G. Barto. Reinforcement Learning. The MIT Press, Cambridge, Massachusetts,
1998.

J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic programming.
Machine Learning, 22:59–94, 1996.

X. Wang and T. G. Dietterich. Efficient value function approximation using regression trees. In
J. Boyan, W. Buntine, and A. Jagota, editors, Statistical Machine Learning for Large Scale Opti-
mization, Neural Computing Surveys. 2000.

C.J.C.H. Watkins. Learning from delayed rewards. Ph.d. thesis, Cambridge University, Cambridge,
UK, 1989.

W. Whitt. Approximations of dynamic programs I. Mathematics of Operations Research, 3:231–
243, 1978.

D. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

Y. Yang. Adaptive regression by mixing. Journal of the American Statistical Association, 96, 2001.

Q. Zhang and S. P. Sethi. Near optimization of dynamic systems by decomposition and aggregation.
Journal of Optimization Theory and Applications, 99(1):1–22, 1998.

2111

Journal of Machine Learning Research 9 (2008) 2113-2139 Submitted 1/08; Published 10/08

Gradient Tree Boosting for Training Conditional Random Fields

Thomas G. Dietterich TGD@EECS.OREGONSTATE.EDU

Guohua Hao HAOG@EECS.OREGONSTATE.EDU

School of Electrical Engineering and Computer Science
Oregon State University
Corvallis, OR 97331, USA

Adam Ashenfelter ASHENFAD@CLEVERSET.COM

Cleverset, Inc.
Corvallis, OR 97330, USA

Editor: Michael Collins

Abstract

Conditional random fields (CRFs) provide a flexible and powerful model for sequence labeling
problems. However, existing learning algorithms are slow, particularly in problems with large
numbers of potential input features and feature combinations. This paper describes a new algo-
rithm for training CRFs via gradient tree boosting. In tree boosting, the CRF potential functions
are represented as weighted sums of regression trees, which provide compact representations of
feature interactions. So the algorithm does not explicitly consider the potentially large parameter
space. As a result, gradient tree boosting scales linearly in the order of the Markov model and in
the order of the feature interactions, rather than exponentially as in previous algorithms based on
iterative scaling and gradient descent. Gradient tree boosting also makes it possible to use instance
weighting (as in C4.5) and surrogate splitting (as in CART) to handle missing values. Experimental
studies of the effectiveness of these two methods (as well as standard imputation and indicator fea-
ture methods) show that instance weighting is the best method in most cases when feature values
are missing at random.

Keywords: sequential supervised learning, conditional random fields, functional gradient, gradi-
ent tree boosting, missing values

1. Introduction

Many applications of machine learning involve assigning labels collectively to sequences of objects.
For example, in natural language processing, the task of part-of-speech (POS) tagging is to label
each word in a sentence with a part of speech tag (“noun”, “verb” etc.) (Ratnaparkhi, 1996). In
computational biology, the task of protein secondary structure prediction is to assign a secondary
structure class to each amino acid residue in the protein sequence (Qian and Sejnowski, 1988).

We call this class of problems sequential supervised learning (SSL), and it can be formulated
as follows:

Given: A set of training examples of the form (Xi,Yi), where each Xi = (xi,1, . . . ,xi,Ti) is a sequence
of Ti feature vectors and each Yi = (yi,1, . . . ,yi,Ti) is a corresponding sequence of class labels,
where yi,t ∈ {1, . . . ,K}.

c©2008 Thomas G. Dietterich, Guohua Hao and Adam Ashenfelter.

DIETTERICH, HAO AND ASHENFELTER

Find: A classifier H that, given a new sequence X of feature vectors, predicts the corresponding
sequence of class labels Y = H(X) accurately.

Perhaps the most famous SSL problem is the NETtalk task of pronouncing English words by
assigning a phoneme and stress to each letter of the word (Sejnowski and Rosenberg, 1987). Other
applications of SSL arise in information extraction (McCallum et al., 2000) and handwritten word
recognition (Taskar et al., 2004).

Early attempts to apply machine learning to SSL problems were based on sliding windows.
To predict label yt , a sliding window method uses features drawn from some “window” of the X
sequence. For example, a 5-element window wt(X) would use the features xt−2,xt−1,xt ,xt+1,xt+2.
Sliding windows convert the SSL problem into a standard supervised learning problem to which
any ordinary machine learning algorithm can be applied. However, in most SSL problems, there
are correlations among successive class labels yt . For example, in part-of-speech tagging, adjectives
tend to be followed by nouns. In protein sequences, alpha helixes and beta structures always involve
multiple adjacent residues. These correlations can be exploited to increase classification accuracy.

The best-known method for capturing the yt−1 ↔ yt correlation is the hidden Markov model
(HMM) (Rabiner, 1989), which is a generative model of P(X ,Y), the joint distribution of the ob-
servation sequence and label sequence. In this model, the joint distribution is factored as P(X ,Y) =

∏t P(yt |yt−1)P(xt |yt), and the observation distribution is further factored as P(xt |yt) = ∏ j P(xt, j|yt).
This assumption of independence of each input feature xt, j conditioned on yt makes HMMs unable
to model arbitrary, non-independent input features, and this limits the accuracy and “engineerabil-
ity” of HMMs.

Recent research has instead focused on discriminative models, in which arbitrary and non-
independent observation features can be easily incorporated. Much machine learning research has
shown that discriminative models tend to be more accurate and more robust to incorrect modeling
assumptions (Ng and Jordan, 2002). McCallum and his collaborators introduced maximum entropy
Markov models (MEMMs) (McCallum et al., 2000) and conditional random fields (CRFs) (Lafferty
et al., 2001). MEMMs are directed graphical models of the form P(Y |X) = ∏t P(yt |yt−1,wt(X)),
where wt(X) is a sliding window over the X sequence. They are easy to train, but they suffer from
the label bias problem that results from the local normalization at each time step t. Conditional
random fields are undirected models of the form P(Y |X) = 1/Z(X)exp ∑t Ψ(yt ,yt−1,wt(X)), where
Z(X) is a global normalizing term and Ψ(yt ,yt−1,wt(X)) is a potential function that scores the com-
patibility of yt , yt−1, and wt(X). The global normalization avoids the label bias problem but makes
training much more computationally expensive. CRFs have been applied to many problems with
excellent results including POS tagging (Lafferty et al., 2001) and noun-phrase chunking (Sha and
Pereira, 2003).

Kernel-based methods have also been extended to the SSL case. The hidden Markov SVM (Al-
tun et al., 2003; Tsochantaridis et al., 2004) and max-margin Markov networks (Taskar et al., 2004)
learn a discriminant function F(X ,Y ′) that assigns a real valued score to each possible label se-
quence Y ′ to maximize the margin between the correct label sequence Y and all competing incorrect
label sequences.

Training CRFs is difficult for several reasons. First, as with all collective classification problems,
training requires performing inference. In particular, all algorithms must compute the conditional
log likelihood logP(Yi|Xi) for each training example (Xi,Yi) in each iteration. This is expensive, and
it dictates that training algorithms should try to minimize the number of iterations and maximize the
amount of progress made in each iteration. Second, in many SSL applications, the space of potential

2114

GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

features for describing the arguments of ψ (i.e., yt , yt−1, and wt(X)) is immense. Even in the simple
case where ψ is represented as a simple linear function W ·F(yt ,yt−1,wt(X)), there can be millions
of weights to learn in W . In POS tagging and semantic role labeling, for example, it is common
to have one feature (and hence, one weight) for every combination of a word and a pair of class
labels. Furthermore, in most applications, performance is improved if the algorithm can consider
combinations of these basic features (e.g., word n-grams, feature conjunctions and disjunctions,
etc.). If feature interactions are permitted, the number of parameters to be learned explodes. Finally,
in some problems, feature values can be missing, and this is difficult for discriminative training
algorithms to handle.

There has been steady progress in algorithms for training CRFs. The initial paper (Lafferty
et al., 2001) introduced an iterative scaling algorithm, which was reported to be exceedingly slow.
Several groups have implemented gradient ascent methods (such as Sha and Pereira, 2003), but
naive implementations are also very slow. McCallum’s Mallet system (McCallum, 2002) employs
the BFGS algorithm, which is an approximate second order method, to speed up the training of
CRFs and improve the prediction accuracy. More recently, Vishwanathan et al. (2006) proposed to
use stochastic gradient method to train CRFs, and accelerate this process via the Stochastic Meta-
Descent (SMD), which is a gain adaptation method. The resulting algorithm is much faster than the
BFGS algorithm and scales well on large data sets.

In this paper, we introduce a different approach for training the potential functions based on
Friedman’s gradient tree boosting algorithm (Friedman, 2001). In this method, the potential func-
tions are represented by sums of regression trees, which are grown stage-wise in the manner of
Adaboost (Freund and Schapire, 1996). Because each iteration adds an entire regression tree to
the potential function, each iteration can take a big step in parameter space, and hence, reduce the
number of iterations needed. Tree boosting also addresses the problem of dealing with feature in-
teractions. Each regression tree can be viewed as defining several new feature combinations—one
corresponding to each path in the tree from the root to a leaf. The resulting potential functions still
have the form of a linear combination of features, but the features can be quite complex. Another
advantage of tree boosting is that it is able to handle missing values in the inputs using clever meth-
ods specific to regression trees, such as the instance weighting method of C4.5 (Quinlan, 1993) and
the surrogate splitting method of CART (Breiman et al., 1984). Finally, the algorithm is fast and
straightforward to implement. In addition, there may be some tendency to avoid overfitting because
of the “ensemble effect” of combining multiple regression trees.

This paper describes the gradient tree boosting algorithm including methods for incorporating
weight penalties into the procedure. It then compares training time and generalization performance
against McCallum’s Mallet system. The results show that our implementation of tree boosting
is competitive with Mallet in both speed and accuracy and that additional improvements in our
implementation of the forward-backward algorithm would likely produce a system that is faster
than both systems. We also perform experiments to evaluate the effectiveness of four methods for
handling missing values (instance weighting, surrogate splits, indicator features, and imputation).
The results show that instance weighting works best, but that imputation also works surprisingly
well.

This leads to two conclusions. First, for CRF models, instance weighting combined with gradi-
ent tree boosting can be recommended as a good algorithm for learning in the presence of missing
values. Second, for all SSL methods, imputation can be employed to provide a reasonable missing
values method.

2115

DIETTERICH, HAO AND ASHENFELTER

2. Conditional Random Fields

Let (X ,Y) be a sequential labeled training example, where X = (x1, . . . ,xT) is the observation se-
quence and Y = (y1, . . . ,yT) is the sequence of labels, where yt ∈ {1, . . . ,K) for all t. A conditional
random field is a linear chain Markov random field (Geman and Geman, 1984) over the label se-
quence Y globally conditioned on the observation sequence X . The probability distribution can be
written as

P(Y |X) =
1

Z(X)
exp

[

∑
t

Ψt(yt ,X)+Ψt−1,t(yt−1,yt ,X)

]

,

where Ψt(yt ,X) and Ψt−1,t(yt−1,yt ,X) are potential functions that capture (respectively) the de-
gree to which yt is compatible with X and the degree to which yt is compatible with a tran-
sition from yt−1 and with X . These potential functions can be arbitrary real-valued functions.
The exponential function ensures that P(Y |X) is positive, and the normalizing constant Z(X) =

∑Y ′ exp[∑t Ψt(y′t ,X)+ Ψt−1,t(y′t−1,y
′
t ,X)] ensures that P(Y |X) sums to 1. If given sufficiently rich

potential functions, this model can represent any first-order Markov distribution P(Y |X) subject to
the assumption that P(Y |X) > 0 for all X and Y (Besag, 1974; Hammersley and Clifford, 1971).
Normally, it is assumed that the potential functions do not depend on t, and we will adopt this
assumption in this paper.

To apply a CRF to an SSL problem, we must choose a representation for the potential functions.
Lafferty et al. (2001) studied potential functions that are weighted combinations of binary features:

Ψt(yt ,X) = ∑
a

βaga(yt ,X) ,

Ψt−1,t(yt−1,yt ,X) = ∑
b

λb fb(yt−1,yt ,X) ,

where the βa’s and λb’s are trainable weights, and the features ga and fb are boolean functions. In
part-of-speech tagging, for example, g234(yt ,X) might be 1 when xt is the word “bank” and yt is the
class “noun” (and 0 otherwise). As with sliding window methods, it is natural to define features that
depend only on a sliding window wt(X) of X values. This linear parameterization can be seen as an
extension of logistic regression to the sequential case.

CRFs can be trained by maximizing the log likelihood of the training data, possibly with a
regularization penalty to prevent overfitting. Let Θ = {β1, . . . ,λ1, . . .} denote all of the tunable
parameters in the model. Then we seek to maximize the objective function

J(Θ) = log∏
i

P(Yi | Xi)

= ∑
i

log
1

Z(Xi)
exp

[

∑
t

Ψt(yi,t ,Xi)+Ψt−1,t(yi,t−1,yi,t ,Xi)

]

= ∑
i

∑
t

Ψt(yi,t ,Xi)+Ψt−1,t(yi,t−1,yi,t ,Xi)− logZ(Xi)

= ∑
i

∑
t

∑
a

βaga(yi,t ,Xi)+∑
b

λb fb(yi,t−1,yi,t ,Xi)− logZ(Xi) .

A drawback of this linear parameterization is that it assumes that each feature makes an inde-
pendent contribution to the potential functions. Of course it is possible to define more features to
capture combinations of the basic features, but this leads to a combinatorial explosion in the number

2116

GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

of features, and hence, in the dimensionality of the optimization problem. For example, in protein
secondary structure prediction, Qian and Sejnowski (1988) found that a 13-residue sliding window
gave best results for neural network methods. There are 32 ×13×20 = 2340 basic fb features that
can be defined over this window. If we consider fourth-order conjunctions of such features, we
obtain more than 1012 features. This is obviously infeasible.

McCallum’s Mallet system (McCallum, 2002) implements standard CRFs and CRFs with fea-
ture induction (McCallum, 2003). When feature induction is turned on, the learner starts with
a single constant feature and (every 8 iterations) introduces new feature conjunctions by taking
conjunctions of the basic features with features already in the model. Candidate conjunctions are
evaluated according to their incremental impact on the objective function. He demonstrates signif-
icant improvements in speed and classification accuracy compared to a CRF that only includes the
basic features. In this paper, we employ the gradient tree boosting method (Friedman, 2001) to con-
struct complex features from the basic features as part of a stage-wise construction of the potential
functions. The regression trees grown at each step are compact representations of complex features.

3. Gradient Tree Boosting

Suppose we wish to solve a standard supervised learning problem where the training examples have
the form (xi,yi), i = 1, . . . ,N and yi ∈ {1, . . . ,K}. We wish to fit a model of the form

P(y | x) =
expΨ(y,x)

∑y′ expΨ(y′,x)
.

Gradient tree boosting is based on the idea of functional gradient ascent. In ordinary gradient
ascent, we would parameterize Ψ in some way, for example, as a linear function,

Ψ(y,x) = ∑
a

βaga(y,x) .

Let Θ = {β1, . . .} represent all of the tunable parameters in this function. In gradient ascent, the
fitted parameter vector after iteration m, Θm, is a sum of an initial parameter vector Θ0 and a series
of gradient ascent steps δm:

Θm = Θ0 +δ1 + · · ·+δm ,

where each δm is computed as a step in the direction of the gradient of the log likelihood function:

δm = ηm ∇Θ ∑
i

logP(yi | xi;Θ)

∣

∣

∣

∣

∣

Θm−1

,

and ηm is a parameter that controls the step size.
Functional gradient ascent is a more general approach. Instead of assuming a linear parameter-

ization for Ψ, it just assumes that Ψ will be represented by a weighted sum of functions:

Ψm = Ψ0 +∆1 + · · ·+∆m .

Each ∆m is computed as a functional gradient:

∆m = ηm Ex,y

[

∇Ψ logP(y | x;Ψ)|Ψm−1

]

.

2117

DIETTERICH, HAO AND ASHENFELTER

The functional gradient indicates how we would like the function Ψm−1 to change in order to in-
crease the true log likelihood (i.e., on all possible points (x,y)). Unfortunately, we do not know the
joint distribution P(x,y), so we cannot evaluate the expectation Ex,y[·]. We do have a set of train-
ing examples sampled from this joint distribution, so we can compute the value of the functional
gradient at each of our training data points:

∆m(yi,xi) = ∇Ψ ∑
i

logP(yi | xi;Ψ)

∣

∣

∣

∣

∣

Ψm−1

.

We can then use these point-wise functional gradients to define a set of functional gradient training
examples, ((xi,yi),∆m(yi,xi)), and then train a function hm(y,x) so that it approximates ∆m(yi,xi).
Specifically, we can fit a regression tree hm to minimize

∑
i

[hm(yi,xi)−∆m(yi,xi)]
2 .

We can then take a step in the direction of this fitted function:

Ψm = Ψm−1 +ηhm .

Although the fitted function hm is not exactly the same as the desired ∆m, it will point in the same
general direction (assuming there are enough training examples). So ascent in the direction of hm

will approximate true functional gradient ascent.
A key thing to note about this approach is that it replaces the difficult problem of maximizing

the log likelihood of the data by the much simpler problem of minimizing squared error on a set of
training examples. Friedman (2001) suggests growing hm via a best-first version of the CART algo-
rithm (Breiman et al., 1984; Friedman et al., 2000) and stopping when the regression tree reaches a
pre-set number of leaves L. The pseudo-code of this algorithm is shown in Table 1. Overfitting is
controlled by tuning L (e.g., by internal cross-validation).

In our experience, using L to control overfitting is a blunt tool that is hard to calibrate. In this
paper, we instead introduce shrinkage into the algorithm for growing regression trees by adding a
quadratic weight penalty. For each leaf in the regression tree hm, the quantity that we minimize is
the squared error of the examples ((xi,yi),∆m(yi,xi)) falling into this leaf plus a quadratic penalty:

∑
i

(∆m(yi,xi)− δ̂)2 +λδ̂2 ,

where δ̂ is the output of this leaf and λ > 0 controls the strength of the penalty. Differentiating the
above objective function with respect to δ̂ shows that the minimum is achieved at

δ̂ =
∑i ∆m(yi,xi)

λ+N
, (1)

where N is the total number of examples falling into this leaf. This has the nice interpretation that λ
is an equivalent number of training examples with target values of 0. So this shrinks the leaf values
(learned weights) toward zero. With this method, we can select a large number for L (the maximum
number of leaves in the regression tree), and use λ to give fine control of overfitting. The algorithm
shown in Table 1 can be adapted by using Equation 1 in the computation of function OUTPUT and
function SQUAREDERROR. Experimental results show that this new algorithm works better and is
more efficient than the original best-first version of the CART algorithm.

2118

GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

FITREGRESSIONTREE(Data,L)
// Data = {(xi,yi) : i = 1, . . . ,N, xi = (xi1, . . . ,xip)}
// NodeQueue is a priority queue of tree nodes where the first node has the minimum SplitScore
Root := FINDBESTSPLITATTRIBUTE(Data,NodeQueue)
NumLeaves := 1
while ((NumLeaves < L) AND NOTEMPTY(NodeQueue))

Node := REMOVEFRONT(NodeQueue)
TrueData := examples in Node whose values of SplitFeature are true
FalseData := examples in Node whose values of SplitFeature are false
TrueChild := FINDBESTSPLITATTRIBUTE(TrueData,NodeQueue)
FalseChild := FINDBESTSPLITATTRIBUTE(FalseData,NodeQueue)
SETCHILDNODES (Node,TrueChild,FalseChild)
NumLeaves := NumLeaves+1

end
return Root
end FITREGRESSIONTREE

FINDBESTSPLITATTRIBUTE(Data,NodeQueue)
SplitScore := 0, SplitFeature := 0
for j from 1 to p

TrueData := {(xi,yi) ∈ Data : xi j = 1}
FalseData := {(xi,yi) ∈ Data : xi j = 0}
Gain := SQUAREDERROR(TrueData)+ SQUAREDERROR(FalseData)−SQUAREDERROR(Data)
if Gain < SplitScore

SplitScore := Gain, SplitFeature := j
end

end
Node := MAKELEAF(OUTPUT(Data),Data,SplitFeature,SplitScore)
if SplitFeature ≥ 1

INSERT(Node,NodeQueue)
end
return Node
end FINDBESTSPLITATTRIBUTE

Table 1: Best-first version of the CART algorithm.

4. Training CRFs with Gradient Tree Boosting

In principle, it is straightforward to apply functional gradient ascent to train CRFs. All we need to
do is to represent and train Ψ(yt ,X) and Ψ(yt−1,yt ,X) as weighted sums of regression trees. Let

Fyt (yt−1,X) = Ψ(yt ,X)+Ψ(yt−1,yt ,X)

be a function that computes the “desirability” of label yt given values for label yt−1 and the input
features X . There are K such functions F k, one for each class label k. With this definition, the CRF
has the form

P(Y |X) =
1

Z(X)
exp∑

t
Fyt (yt−1,X) .

2119

DIETTERICH, HAO AND ASHENFELTER

We now compute the functional gradient of logP(Y |X) with respect to F yt (yt−1,X). To simplify
the computation, we replace X by wt(X), which is a window into the sequence X centered at xt .
We will further assume, without loss of generality, that each window is unique, so there is only one
occurrence of wt(X) in each sequence X .

Proposition 1 The functional gradient of logP(Y |X) with respect to F v(u,wd(X)) is

∂ logP(Y |X)

∂Fv(u,wd(X))
= I(yd−1 = u,yd = v)−P(yd−1 = u,yd = v | wd(X)) ,

where I(yd−1 = u,yd = v) is 1 if the transition u → v is observed from position d−1 to position d in
the sequence Y and 0 otherwise, and where P(yd−1 = u,yd = v | wd(X)) is the predicted probability
of this transition according to the current potential functions.

To demonstrate this proposition, we must first introduce the forward-backward algorithm for
computing the normalizing constant Z(X). We will assume that yt takes the value ⊥ for t < 1.
Define the forward recursion by

α(k,1) = expFk(⊥,w1(X))

α(k, t) = ∑
k′

expFk(k′,wt(X)) ·α(k′, t −1) ,

and the backward recursion by

β(k,T) = 1

β(k, t) = ∑
k′

expFk′(k,wt+1(X)) ·β(k′, t +1) .

The variables k and k′ iterate over the possible class labels. The normalizer Z(X) can be computed
at any position t as

Z(X) = ∑
k

α(k, t)β(k, t) .

If we unroll the α recursion one step, we can also write this as

Z(X) = ∑
k

[

∑
k′

α(k′, t −1) ·
[

expFk(k′,wt(X))
]

]

β(k, t) .

Table 2 shows the derivation of the functional gradient. In Equation 2, exactly one of the
Fyt (yt−1,wt(X)) terms will match Fv(u,wd(X)), because wd(X) is unique. This term will have
a derivative of 1, so we represent this by the indicator function I(yd−1 = u,yd = v). In Equation 3,
we expand Z(X) at position d using the forward-backward algorithm. Again because wd(X) is
unique, only the product where k′ = u and k = v will give a non-zero derivative, so this gives us
Equation 4. The right-hand expression in Equation 4 is precisely the joint probability that yd−1 = u
and yd = v given X . Q.E.D.

If wd(X) occurs more than once in X , each match contributes separately to the functional gradi-
ent.

This functional gradient has a very satisfying interpretation: It is our error on a probability scale.
If the transition u → v is observed in the training example, then the predicted probability P(u,v | X)

2120

GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

∂ logP(Y |X)

∂Fv(u,wd(X))

=
∂

∂Fv(u,wd(X)) ∑
t

Fyt (yt−1,wt(X))− logZ(X)

= I(yd−1 = u,yd = v)−
∂ logZ(X)

∂Fv(u,wd(X))
(2)

= I(yd−1 = u,yd = v)−
1

Z(X)

∂Z(X)

∂Fv(u,wd(X))

= I(yd−1 = u,yd = v)−
1

Z(X)

∂
∂Fv(u,wd(X)) ∑

k

[

∑
k′

[

expFk(k′,wd(X))
]

·α(k′,d −1)

]

β(k,d) (3)

= I(yd−1 = u,yd = v)−
1

Z(X)
[expFv(u,wd(X))]α(u,d −1)β(v,d) (4)

= I(yd−1 = u,yd = v)−P(yd−1 = u,yd = v | X)

Table 2: Derivation of the functional gradient.

should be 1 in order to maximize the likelihood. If the transition is not observed, then the predicted
probability should be 0. Functional gradient ascent simply involves fitting regression trees to these
residuals.

The pseudo code for our gradient tree boosting algorithm is shown in Table 3. The potential
function for each class k is initialized to zero. Then M iterations of boosting are executed. In each
iteration, for each class k, a set S(k) of functional gradient training examples is generated. Each
example consists of a window wt(Xi) on the input sequence, a possible class label k′ at time t − 1,
and the target ∆ value. A regression tree having at most L leaves is fit to these training examples
to produce the function hm(k). This function is then added to the previous potential function to
produce the next function. In other words, we are setting the step size ηm = 1. We experimented
with performing a line search at this point to optimize ηm, but this is very expensive. So we rely on
the “self-correcting” property of tree boosting to correct any overshoot or undershoot on the next
iteration.

The sets of generated examples S(k) can become very large. For example, if we have 3 classes
and 100 training sequences of length 200, then the number of training examples for each class k is
3×100×200 = 60,000. Although regression tree algorithms are very fast, they still must consider
all of the training examples! Friedman (2001) suggests two tricks for speeding up the computation:
sampling and influence trimming. In sampling, a random sample of the training data is used for
training. In influence trimming, data points with ∆ values close to zero are ignored. We did not
apply either of these techniques in our experiments.

The most related work to ours is the virtual evidence boosting (VEB) algorithm developed by
Liao et al. (2007) for training CRFs. Both VEB and our approach use boosting for feature induction.
However, VEB is a “soft” version of maximum pseudo-likelihood training, where the observed
values of neighborhood labels are not used, but the probability distribution over neighborhood labels
is used as virtual evidence. Our approach is a true maximum log likelihood method that does not
depend on the pseudo-likelihood approximation. Another difference is that VEB only uses decision
stumps to induce simple features, while our approach uses regression trees to induce more complex
feature combinations.

2121

DIETTERICH, HAO AND ASHENFELTER

TREEBOOST(Data,L)
// Data = {(Xi,Yi) : i = 1, . . . ,N}
for each class k, initialize F k

0 (·, ·) = 0
for m = 1, . . . ,M

for class k from 1 to K
S(k) := GENERATEEXAMPLES(k,Data,Potm−1)

// where Potm−1 = {Fu
m−1 : u = 1, . . .K})

hm(k) := FITREGRESSIONTREE(S(k),L)
Fk

m := Fk
m−1 +hm(k)

end
end
return Fk

M for all k
end TREEBOOST

GENERATEEXAMPLES(k,Data,Potm)
S := {}
for example i from 1 to N

execute the forward-backward algorithm on (Xi,Yi)
to get α(k, t) and β(k, t) for all k and t

for t from 1 to Ti

for k′ from 1 to K
P(yi,t−1 = k′,yi,t = k | Xi) :=

α(k′, t −1)exp[Fk
m(k′,wt(Xi))]β(k, t)

Z(Xi)

∆(k,k′, i, t) := I(yi,t−1 = k′,yi,t = k)−
P(yi,t−1 = k′,yi,t = k | Xi)

insert ((wt(Xi),k′),∆(k,k′, i, t)) into S
end

end
end
return S
end GENERATEEXAMPLES

Table 3: Gradient tree boosting algorithm for CRFs.

5. Inference in CRFs

Once a CRF model has been trained, there are (at least) two possible ways to define a classifier
Y = H(X) for making predictions. First, we can predict the entire sequence Y that has the highest
probability:

H(X) = argmax
Y

P(Y |X) .

2122

GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

This makes sense in applications, such as part-of-speech tagging, where the goal is to make a co-
herent sequential prediction. This can be computed by the Viterbi algorithm (Rabiner, 1989), which
has the advantage that it does not need to compute the normalizer Z(X).

The second way to make predictions is to individually predict each yt according to

Ht(X) = argmax
v

P(yt = v|X) ,

and then concatenate these individual predictions to obtain H(X). This makes sense in applications
where the goal is to maximize the number of individual yt’s correctly predicted, even if the resulting
predicted sequence Y is incoherent. For example, a predicted sequence of parts of speech might
not be grammatically legal, and yet it might maximize the number of individual words correctly
classified. P(yt |X) can be computed by executing the forward-backward algorithm as

P(yt |X) =
α(yt , t)β(yt , t)

Z(X)
.

6. Handling Missing Values in CRFs with Gradient Tree Boosting

In some problem settings (e.g., activity recognition, sensor networks), the problem of missing values
in the inputs can arise. The values of input features can be missing for a wide variety of reasons.
Sensors may break or the sensor data feed may be lost or corrupted. Alternatively, input observations
may not have been measured in all cases because, for example, they are expensive to obtain. Many
methods for handling missing values have been developed for standard supervised learning, but
many of them have not been tested on SSL problems. Recently, Sutton et al. (2006) used feature
bagging method to deal with SSL problems where highly indicative features may be missing in
the test data. A single CRF trained on all the features will be less robust, because the weights of
weaker features will be undertrained. Feature bagging method divides all the original features into
a collection of complementary and possibly overlapped feature subsets. Separate CRFs are trained
on each subset and then combined.

With gradient tree boosting, a CRF is represented as a forest of regression trees. There exist very
good methods for handing missing values when growing regression trees, which include instance
weighting method of C4.5 (Quinlan, 1993) and surrogate splitting of CART (Breiman et al., 1984).
An advantage of training CRFs with gradient tree boosting is that these missing values methods can
be used directly in the process of generating regression trees over the functional gradient training
examples.

6.1 Instance Weighting

The instance weighting method (Quinlan, 1993), also known as “proportional distribution”, assigns
a weight to each training example, and all splitting decisions are based on weighted statistics. Ini-
tially, each example has a weight of 1.0. When selecting a feature to split on, each boolean feature
x j is evaluated based on the expected weighted squared error of the split using only the training
examples for which x j is not missing. The best feature x j∗ is chosen, and the training examples for
which x j∗ is not missing are sent to the appropriate child node. Suppose that nle f t examples are sent
to the left child and nright examples are sent to the right child. The remaining training examples
(i.e., those for which x j∗ is missing) are sent to both children, but with reduced weight. The weight

2123

DIETTERICH, HAO AND ASHENFELTER

of each example sent to the left child is multiplied by nle f t/(nle f t +nright). Similarly, the weight of
each example sent to the right child is multiplied by nright/(nle f t +nright).

At test time, when the test example reaches the test on feature x j∗, if the feature value is present,
then the example is routed left or right in the usual way. But if x j∗ is missing, then the example is
sent to both children (recursively). Let ŷle f t be the predicted value computed by the left subtree and
ŷright be the predicted value computed by the right subtree. Then the value predicted by node j∗ is
the weighted average of these predictions:

ŷ =
nle f t ŷle f t +nright ŷright

nle f t +nright
.

Instance weighting assumes that the training and test examples missing x j∗ will on average behave
exactly like the training examples for which x j∗ is not missing.

6.2 Surrogate Splitting

The surrogate splitting method (Breiman et al., 1984) involves separate procedures during training
and testing. During training, as the regression tree is being constructed (in the usual top-down,
greedy way), the key step in the learning algorithm is to choose which feature to split on. Each
boolean feature x j is evaluated based only on the training examples that have non-missing values
for that feature, and the best feature, x j∗ is chosen. Each of the remaining features j′ 6= j∗ is then
evaluated to determine how accurately it can predict the value of x j∗, and the features are sorted
according to their predictive power. This sorted list of features, called the surrogate splits, is stored
in the node.

At test time, when test example x is processed through the regression tree, if x j∗ is not missing,
then the example is processed as usual by sending it to the left child if x j∗ is false and to the right
child if x j∗ is true. However if x j∗ is missing, then surrogate split features are examined in order
until a feature j′ is found that is not missing. The value of this feature determines whether to branch
left or right.

7. Experimental Results

We implemented gradient tree boosting algorithm for CRFs and compared it to McCallum’s Mal-
let system (McCallum, 2002) on several data sets. We call our algorithm TREECRF. We use
TREECRF-FB for the TREECRF with forward-backward predictions and TREECRF-V for the
TREECRF with Viterbi predictions. MALLET denotes the Mallet package with McCallum’s feature
induction algorithm (McCallum, 2003) turned on. Similarly, we use MALLET-FB and MALLET-V
for the MALLET with forward-backward predictions and Viterbi predictions respectively. We also
used the Mallet package to train standard CRFs without feature induction. We call it BASELINE,
which serves as the baseline method. As before, BASELINE-FB donotes BASELINE with forward-
backward predictions and BASELINE-V denotes BASELINE with Viterbi predictions. Note that
MALLET-FB algorithm and BASELINE-FB algorithm are not implemented in the original Mallet
package. Instead we implemented them ourselves.

TREECRF, MALLET and BASELINE have parameters that must be set by the user. For all these
algorithms, the user must set (a) the window size, (b) the order of the Markov model, which is
set to be 1 in our experiments, and (c) the number of iterations to train. For TREECRF, the only

2124

GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

additional parameter is either the maximum number of leaves L in the regression trees using the best-
first version of CART, or the regularization constant λ for the shrinkage alternative. For MALLET,
the parameters are (a) the regularization penalty for squared weights (called the variance), (b) the
number of iterations between feature inductions (kept constant at 8), (c) the number of features
to add per feature induction (kept constant at 500), (d) the true label probability threshold (kept
constant at 0.95), (e) the training proportions (kept constant at 0.2, 0.5, and 0.8). For BASELINE,
the only additional parameter is the variance as in MALLET. Except for the variance, we kept
all of MALLET’s parameters fixed at the values recommended by Andrew McCallum (personal
communication). We did not optimize the window size, but instead employed values that have been
used in previous studies. The chosen sizes are given in the following section. To set the remaining
parameters, we manually tried the following settings and chose the setting that gave the best internal
cross-validation performance:

• Number of leaves in regression trees: 30, 50, 75, 100,

• TreeCRF regularization constant: 0, 5, 10, 20, 40, 80,

• Weight variance prior in Mallet package: 1, 5, 10, 20.

Throughout the experiments, we measured the performance by computing the prediction accu-
racy of individual labels, rather than individual sequences. McNemar’s test is employed to assess
the statistical significance of these results.

7.1 Data Sets

Protein Secondary Structure Benchmark (Qian and Sejnowski, 1988). Each observation se-
quence is a string of amino acid residues, and the corresponding output sequence is a string over the
3-letter alphabet {α,β,γ}, where α indicates alpha helix, β indicates a beta sheet or beta turn, and
γ indicates all other secondary structure types. There are 20 possible amino acid residues, and we
represent each residue by a set of 20 indicator variables. There is a training set of 111 sequences
and a test set of 17 sequences. An 11-residue sliding window is used in our experiments.

NETtalk Data Set. The original NETtalk task (Sejnowski and Rosenberg, 1987) is to assign
a combination of phoneme and stress to each letter of the word so that the word is pronounced
correctly. However, there are 140 legal phone-stress combinations, which gives a very large label
space. Neither TREECRF nor MALLET is sufficient enough to work with such a large label space.
Hence, we chose to study only the problem of assigning one of five possible stress labels to each
letter. The labels are ‘2’ (strong stress), ‘1’ (medium stress), ‘0’ (light stress), ’<’ (unstressed
consonant, center of syllable to the left), and ‘>’ (unstressed consonant, center of syllable to the
right).

Each input sequence is an English word, a string of letters over the 26 letter alphabet. Each
input observation is represented by 26 boolean indicator variables. There are 1000 training words
and 1000 test words in our standard training and test sets. We employed a window size of 13
(window width of 6).

Hyphenation Data Set. The hyphenation task is to insert hyphens into words at points where
it is legal to break a word for a new line. This problem appears widely in many word processing
programs. The input sequences are English words, encoded as for the NETtalk task. The output
class label has only two values to indicate whether or not a hyphen may legally follow the current

2125

DIETTERICH, HAO AND ASHENFELTER

TREECRF-FB TREECRF-V
Shrinkage Original Shrinkage Original

Protein 64.52** 62.70 62.05*** 59.20
NETtalk 85.18*** 84.08 85.20*** 84.18
Hyphen 92.20 92.20 91.76 92.07

FAQ ai-general 95.65 95.69 95.72 96.02***
FAQ ai-neural 99.02 98.97 99.20*** 99.05

FAQ aix 94.00 94.02 95.26* 95.15

Table 4: Performance comparison of TREECRF with different regression tree fitting algorithms. En-
tries marked with one or more stars are statistically significantly better than the alternative method.
Specifically, * means p < 0.025, ** means p < 0.005 and *** means p < 0.001 according to Mc-
Nemar’s test.

letter. We manually constructed a training set of 1951 words and a test set of 908 words. The input
window size is set to be 6 (i.e., 3 letters on either side of the potential hyphen location).

Usenet FAQs Data Sets. Each of the FAQ data sets consists of Frequently Asked Questions
files for a Usenet newsgroup (McCallum et al., 2000). The FAQs for each newsgroup are divided in
separate files: ai-general has 7 files, ai-neural has 7 files, and aix has 5 files. Every line of an FAQ
file is labeled as either part of the header, a question, an answer, or part of the tail. Hence, each
xt consists of a line in the FAQ file, and the corresponding yt ∈ {header, question, answer, tail}.
The measure of accuracy is the number of individual lines correctly classified. McCallum provided
us with the definitions of 20 features for each line xt . We made a slight correction to one of the
features, so our results are not directly comparable to his. The size of the sliding window used here
is 1. For each newsgroup, performance was measured by leave-1-out cross-validation: the CRF was
trained on all-but-one of the files and tested on the remaining file. This was repeated with each file,
and the results averaged.

7.2 Performance of Shrinkage in Regression Tree Generation

To evaluate the effectiveness of shrinkage in the regression tree fitting algorithm, we fixed L, the
maximum number of leaves in regression trees, to be 100, and applied internal cross-validation to
choose the best regularization constant λ. For purposes of comparison, we also implemented the
original best-first regression tree generation algorithm. Internal cross-validation was employed to
select the best value for L.

We ran these two implementations of TREECRF on each data set. The best performance of
both forward-backward predictions and Viterbi predictions are reported as percentages, as shown
in Table 4. There are 12 pairs of comparisons (6 data sets with 2 prediction algorithms). In six of
them, TREECRF with shrinkage does statistically better than TreeCRF without shrinkage. In five of
them, the performance of these two versions of TREECRF is statistically indistinguishable. In only
one of them, TREECRF without shrinkage does statistically better than TREECRF with shrinkage.
Based on the results of these experiments, we decided to only employ TREECRF with shrinkage in
the remaining experiments.

2126

GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

Protein NETtalk Hyphen FAQ ai-general FAQ ai-neural FAQ aix

TREECRF 64.52* 85.20** 92.20** 95.65 ** 99.20** 95.26**
Accuracy (%) MALLET 64.43* 85.94** 92.10** 92.70 99.31* 95.28**

BASELINE 62.44 82.81 88.86 92.70 99.41 94.04

Cumulative TREECRF 419.6 454.6 39.2 3921.9 2177.7 2636.1
CPU MALLET 786.9 941.4 66.4 484.1 237.2 125.5

Seconds BASELINE 32.8 13.7 8.8 63.0 40.3 34.1

TREECRF 142 169 58 214 84 158
Iterations MALLET 123 167 69 188 181 150

BASELINE 66 34 47 128–195 72–112 80–140

Table 5: Performance of TREECRF, MALLET, and BASELINE on each data set. Entries marked
with one or more stars are statistically significant than BASELINE. Specifically, * means p < 0.005,
** means p < 0.001 according to McNemar’s test. Bolded numbers indicate the statistically better
prediction accuracy between TREECRF and MALLET. The BASELINE method stops training if the
optimization of loss functions converges. So for each FAQ data set, different training set may have
different number of training iterations. Here we gave out the range of number of training iterations
for each FAQ data set.

7.3 Comparison between TREECRF and MALLET

TREECRF and MALLET are the two leading CRF training methods that have feature induction
capability. Here we compare the prediction accuracy and training speed of these two methods on
each available data set. We also compare TREECRF and MALLET with the BASELINE method.
For each method, internal cross-validation is applied to select the parameters that give the best
performance of both forward-backward predictions and Viterbi predictions. The results reported
here for each method are based on the prediction algorithm that gives higher prediction accuracy.
All experiments were run on machines with 2.4 GHz Intel Xeon processors, 512KB cache, and 4GB
memory.

Prediction Accuracy. Table 5 summarizes the prediction accuracy of TREECRF, MALLET,
and BASELINE on each data set. McNemar’s tests show that on four of the data sets, that is, protein,
hyphen, FAQ ai-neural and FAQ aix, the difference between the prediction accuracy of TREECRF
and MALLET is not statistically significant. On the FAQ ai-general data set, the prediction accuracy
of TREECRF is statistically better than that of MALLET(p < 0.001). Only on the NETtalk data set
is the prediction accuracy of MALLET statistically better than that of TREECRF (p < 0.05). In com-
parison with the baseline method, the prediction accuracy of TREECRF and MALLET is statistically
better than that of BASELINE in most cases. On the FAQ ai-general data set, the difference between
MALLET and BASELINE is not statistically significant. Only on the FAQ ai-neural data set is the
prediction accuracy of BASELINE statistically better than that of both TREECRF and MALLET.

Figure 1 plots the prediction accuracy of TREECRF, MALLET and BASELINE as a function of
the number of training iterations. One worrying aspect of MALLET is that the performance curve
exhibits a high degree of fluctuation, which is clearly shown on Figure 1a, 1d, 1e and 1f. This is
presumably due to the effect of introducing new features. But it also suggests that it will be difficult
to find the optimal stopping points for avoiding overfitting.

Training Speed. It is difficult to directly compare the CPU time of these two methods, because
TREECRF is written in C++ while MALLET is written in Java. However, comparing the CPU time

2127

DIETTERICH, HAO AND ASHENFELTER

 59

 60

 61

 62

 63

 64

 65

 66

 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Iterations

TreeCRF-FB
Mallet-FB

Baseline-FB

(a) Protein

 70

 72

 74

 76

 78

 80

 82

 84

 86

 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Iterations

TreeCRF-V
Mallet-FB

Baseline-FB

(b) NETtalk

 86

 87

 88

 89

 90

 91

 92

 93

 10 20 30 40 50 60 70 80 90 100

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Iterations

TreeCRF-FB
Mallet-FB

Baseline-FB

(c) Hyphen

 75

 80

 85

 90

 95

 100

 50 100 150 200 250

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Iterations

TreeCRF-FB
Mallet-V

Baseline-V

(d) FAQ ai-general

 75

 80

 85

 90

 95

 100

 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Iterations

TreeCRF-V
Mallet-FB

Baseline-V

(e) FAQ ai-neural

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Iterations

TreeCRF-V
Mallet-FB

Baseline-FB

(f) FAQ aix

Figure 1: Comparison of prediction accuracy on each data set.

2128

GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

 0

 200

 400

 600

 800

 1000

 1200

 20 40 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

C
P

U
 S

ec
on

ds

Iterations

TreeCRF-FB
Mallet-FB

Baseline-FB

(a) Protein

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 20 40 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

C
P

U
 S

ec
on

ds

Iterations

TreeCRF-V
Mallet-FB

Baseline-FB

(b) NETtalk

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

C
um

ul
at

iv
e

C
P

U
 S

ec
on

ds

Iterations

TreeCRF-FB
Mallet-FB

Baseline-FB

(c) Hyphen

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 50 100 150 200 250

C
um

ul
at

iv
e

C
P

U
 S

ec
on

ds

Iterations

TreeCRF-FB
Mallet-V

Baseline-V

(d) FAQ ai-general

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20 40 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

C
P

U
 S

ec
on

ds

Iterations

TreeCRF-V
Mallet-FB

Baseline-V

(e) FAQ ai-neural

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20 40 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

C
P

U
 S

ec
on

ds

Iterations

TreeCRF-V
Mallet-FB

Baseline-FB

(f) FAQ aix

Figure 2: Comparison of cumulative CPU time on each data set.

2129

DIETTERICH, HAO AND ASHENFELTER

Data Average Number of Forward-Backward Seconds Feature Induction Seconds
Set Length Features TREECRF MALLET TREECRF MALLET

Protein 163 231 1.493 0.736 1.433 48.889
NETtalk 7 351 0.622 0.589 2.049 25.983
Hyphen 6 162 0.324 0.307 0.332 4.621

FAQ ai-general 1580 20 18.927 0.780 1.562 1.211
FAQ ai-neural 1832 20 26.998 0.526 1.894 1.656

FAQ aix 1806 20 16.658 0.352 1.199 1.123

Table 6: Comparison of average CPU seconds spent per iteration on forward-backward algorithm
and feature induction algorithm in TREECRF and MALLET for each data set.

on different data sets can still give us some insight into the properties of these two methods. Figure 2
shows the number of cumulative CPU seconds consumed by these two methods on each data set.
First, we can see that TREECRF scales linearly in the number of training iterations, because the
cumulative CPU time has a constant slope. This makes sense, because for each potential function,
only one regression tree is generated in each training iteration. Regression tree evaluations from
previous iterations are cached so that they do not need to be re-evaluated. Without caching, the
cumulative CPU curves for TREECRF would rise quadratically. Second, as shown in Figure 2a, 2b
and 2c, TREECRF runs faster than MALLET on protein, NETtalk and hyphen data sets. But it is
much slower than MALLET on FAQ data sets as shown in Figure 2d, 2e and 2f. The actual time
required for each method to reach its peak performance on each data set is given in Table 5. Again
we see that on the protein, NETtalk, and hyphen data sets, the time required for MALLET to reach
its peak performance is about twice that of TREECRF. However, on the FAQ data sets, the time
required for TREECRF to reach its peak performance is about 10-20 times more than for MALLET.
BASELINE is faster than both TREECRF and MALLET as shown in Figure 2 and Table 5.

Analysis and Discussion. We can explain the training speed difference between TREECRF and
MALLET by examining the details of these two methods. In both of them, most of the CPU time is
spent on two major computations: forward-backward inference and feature induction/tree growing.
The relative proportion of these two computations varies from problem to problem. To measure
this, we instrumented both TREECRF and MALLET to track the amount of CPU time spent on each
of these two computations. Table 6 shows that on domains with short sequences (Protein, NETtalk,
and Hyphen), the time spent by both algorithms on forward-backward inference is about the same.
But for domains with very long sequences, TREECRF consumes much more CPU time in forward-
backward inference. Conversely, in domains with a small number of basic features (the FAQ data
sets), the two methods consume roughly the same amount of CPU time in feature induction. But in
domains with a large number of basic features, TREECRF is much more efficient than MALLET.

Why would the forward-backward cost of TREECRF be larger than for MALLET? TREECRF
and MALLET use almost the same implementation of forward-backward algorithm except that in
TREECRF the values of the potential functions at each position of the sequences are computed by
evaluating the gradient regression trees generated in the current training iteration, while in MALLET

those values are obtained by computing dot products of vectors, which is faster than tree evaluation.
We hypothesize that the regression trees are more expensive to evaluate, not only because dot prod-

2130

GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

ucts are easier to compute than tree evaluations, but also possibly because of the reduced memory
locality of regression trees.

Why would feature induction be more expensive in MALLET? In each feature induction it-
eration, MALLET considers conjoining all of the basic features to each of the existing compound
features. Hence, if there are n basic features and C compound features, this costs nC. Furthermore,
C grows over time, so the cost of feature induction gradually increases. In the cumulative CPU time
plots of Figure 2, the “steps’ in the “staircase” correspond to the feature induction iterations. In
TREECRF, the cost of feature induction is the cost of growing a regression tree, which depends on
the number of basic features n and the number of internal nodes in the tree L. This cost is nL, which
remains constant across the iterations.

To verify our conjectures about the computational complexity of TREECRF and MALLET, we
generated synthetic training data sets using a hidden Markov model (HMM) with 3 labels {l1, l2, l3}
and 24 possible observations {o1, . . . ,o24}. To specify the observation distribution, for each label li,
we randomly draw an observation from the set {oi∗8−7, . . . ,oi∗8} with probability 0.6 and randomly
draw an observation from the complement of this set with probability 0.4. The transition distribution
is defined as P(yt = li | yt−1 = li) = 0.6 and P(yt = l j | yt−1 = li) = 0.2 if i 6= j.

In order to measure the complexity of the forward-backward algorithm, we tried sequence
lengths of 10, 20, 40, 80, 160 and 320. For each sequence length, we generated a training data
set with 100 sequences and employed a sliding window of size 3. TREECRF and MALLET are run
on each of these training data sets. Figure 3a shows the average CPU seconds spent per iteration
on the forward-backward algorithm by these two methods. We see that the forward-backward algo-
rithm in TREECRF implementation scales faster than that in MALLET implementation as the length
of sequence increases.

In order to measure the complexity of the feature induction algorithms, we generated a training
data set with 100 sequences. The length of each sequences is 100. We tried sliding window sizes of
3, 5, 7, 9 and 11, so that the number of input features at each sequence position takes the values of
75, 125, 175, 225 and 275 (because each input observation is represented by 25 boolean indicator
variables). TREECRF and MALLET are run for each sliding window size. Figure 3b shows the
average CPU seconds spent per iteration on the feature induction algorithm by these two methods.
It is clear that the feature induction algorithm in MALLET spends more and more CPU time than
that in TREECRF as the number of basic features increases. In all the experiments on synthetic data
sets, TREECRF uses regression trees of maximum 100 leaves and shrinkage constant 40. MALLET

uses weight variance prior 20.

This analysis suggests that the performance of TREECRF could be improved by “flattening” the
ensemble of regression trees to compute the corresponding vector of features and vector of weights.
Then the cost of potential function evaluations would be similar to that of MALLET, and we would
have a method that was faster than both the current TREECRF and MALLET implementations.

7.4 Experimental Studies of Missing Values in TREECRF

We performed a series of experiments to evaluate the effectiveness of methods for handling missing
values in TREECRF algorithm. In addition to the instance weighting and surrogate splitting methods
described above, we also studied two simpler methods: imputation and indicator features. Let
xt j, j = 1, . . . ,n be the input features describing a particular input observation xt . Imputation and
indicator features are defined as follows:

2131

DIETTERICH, HAO AND ASHENFELTER

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

10 20 40 80 160 320

C
P

U
 S

ec
on

ds

Length of Sequence

TreeCRF
Mallet

(a) Forward-backward algorithm

 0

 5

 10

 15

 20

 25

75 125 175 225 275

C
P

U
 S

ec
on

ds

Number of Basic Features

TreeCRF
Mallet

(b) Feature induction algorithm

Figure 3: Comparison of average CPU seconds spent per iteration on forward-backward algorithms
and feature induction algorithms by TREECRF and MALLET.

Imputation: when a feature value xt j is missing, it is replaced with the most common value for
x j in the training data among those feature values that are not missing. This strategy can be
viewed as substituting the most likely value of x j a priori or alternatively as substituting the
value of x j least likely to be informative.

Indicator Features: a boolean feature x̃t j is introduced for each feature xt j such that if xt j is
present, x̃t j is false. But if xt j is missing, then x̃t j is true and xt j is set to a fixed chosen
value, typically 0. Indicator features make sense when the fact that a value is missing is itself
informative. For example, if xt j represents a temperature reading, it may be that extremely
cold temperature values tend to be missing because of sensor failure.

We adopted a first-order Markov model in all the following experiments and employed an in-
ternal hold-out method to set the other parameters: Two-thirds of the original training set was used
as sub-training set and the other one third was used as development set to choose parameter values.
Final training was performed using the entire training set.

For each learning problem, we took the chosen training and test sets and inject missing values at
rates of 5%, 10%, 20% and 40%. For a given missing rate, we generate five versions of the training
set and five versions of the test set. A CRF is then trained on each of the training sets and evaluated
on each of the test sets (for a total of 5 CRFs and 25 evaluations per missing rate). The label
sequences are predicted by the forward-backward algorithm (i.e., we compute ŷt = argmaxyt

P(yt |X)
for each t separately). Prediction accuracy is based on the number of individual labels correctly
predicted in the label sequences. The final prediction accuracy is the average of all 25 cases.

To test the statistical significance of the differences among the four methods, we performed an
analysis of deviance based on the generalized linear model discussed by Agresti (1996). We fit a
logistic regression model

log
P(yt = ŷt)

1−P(yt = ŷt)
= δ1m1 +δ2m2 +δ3m3 +∑̀σ`S` ,

2132

GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

 55

 56

 57

 58

 59

 60

 61

 62

 63

5 10 20 40

pr
ed

ic
tio

n
ac

cu
ra

cy
 (

%
)

missing rate (%)

instance weighting
surrogate splitting

imputation
indicator feature

(a) Protein

 72

 74

 76

 78

 80

 82

 84

 86

5 10 20 40

pr
ed

ic
tio

n
ac

cu
ra

cy
 (

%
)

missing rate (%)

instance weighting
surrogate splitting

imputation
indicator feature

(b) NETtalk

 86

 86.5

 87

 87.5

 88

 88.5

 89

 89.5

 90

 90.5

 91

 91.5

5 10 20 40

pr
ed

ic
tio

n
ac

cu
ra

cy
 (

%
)

missing rate (%)

instance weighting
surrogate splitting

imputation
indicator feature

(c) Hyphen

 96

 96.5

 97

 97.5

 98

 98.5

 99

 99.5

 100

5 10 20 40

pr
ed

ic
tio

n
ac

cu
ra

cy
 (

%
)

missing rate (%)

instance weighting
surrogate splitting

imputation
indicator feature

(d) FAQ ai-general

Figure 4: Performance of missing values methods for different missing rates.

where m1, m2, and m3 are boolean indicator variables that specify which missing values method we
are using and the S`’s are indicator variables that specify which of the five training sets we are using.
If m1 = m2 = m3 = 0, then we are using instance weighting, which serves as our baseline method.
If m1 = 1, this indicates surrogate splitting, m2 = 1 indicates imputation, and m3 = 1 indicates the
indicator feature method. Consequently, the fitted coefficients δ1, δ2, and δ3 indicate the change in
log odds (relative to the baseline) resulting from using each of these missing values methods. We
can then test the hypothesis δi 6= 0 against the null hypothesis δi = 0 to determine whether missing
values method i is different from the baseline method.

This statistical approach controls for variability due to the choice of the training set (through the
σ`’s) and variability due to the size of the test set.

Protein Secondary Structure Prediction. Figure 4a shows that instance weighting achieves
the best prediction accuracy for each of the different missing rates. Table 7a shows that the base line
missing values method, instance weighting, is statistically better than the other three missing values
methods in most cases. In other cases, it is as good as other methods.

2133

DIETTERICH, HAO AND ASHENFELTER

Missing Surrogate Indicator
rate splitting Imputation feature
5% −0.018 −0.072* −0.028*
10% −0.013 −0.040* 0.001
20% −0.025* −0.074* −0.020*
40% −0.041* −0.072* −0.020*

(a) Protein

Missing Surrogate Indicator
rate splitting Imputation feature
5% −0.051* −0.066* −0.064*
10% −0.051* −0.067* −0.059*
20% −0.069* −0.057* −0.052*
40% −0.080* −0.116* −0.111*

(b) NETtalk

Missing Surrogate Indicator
rate splitting Imputation feature
5% 0.036* 0.007 0.023
10% −0.031* −0.022 −0.027*
20% −0.071* −0.049* −0.040*
40% −0.024* −0.054* −0.047*

(c) Hyphen

Missing Instance Surrogate Indicator
rate weighting splitting feature
5% −8.824E−16 −0.043 −1.499*

10% −2.161* −1.867* −1.961*
20% −0.874* 0.072 0.100
40% −1.243* −0.584* −0.359*

(d) FAQ ai-general

Table 7: Estimation of the coefficients corresponding to different missing values methods and statis-
tical test results. In FAQ ai-general problem, imputation was the baseline method, so the coefficient
values give the log odds of the change in accuracy relative to imputation. * means that the parameter
value is statistically significantly different from zero (p < 0.05).

NETtalk Stress Prediction. In Figure 4b, we see that instance weighting does better than the
other three missing values methods for all the different missing rates. The statistical tests reported
in Table 7b show that the baseline method, instance weighting, is statistically better than each of the
other missing value methods in all cases.

Hyphenation. Figure 4c shows that instance weighting is the best missing values method except
for a missing rate of 5%. Statistical tests shown in Table 7c tell us that for missing rate of 5%,
surrogate splitting is the best missing values method and the other three methods are not statistically
significantly different from each other. For a missing rate of 10%, instance weighting and imputation
are statistically better than the other two methods (and indistinguishable from each other). For
missing rates of 20% and 40%, instance weighting is statistically better than the other three methods.

FAQ Document Segmentation. This task is based on the ai-general Usenet FAQ data set as
we discussed before. We treat the first 6 files as the training set and the seventh file as the test set.
The input window contains only the features corresponding to a single line in the file (window half-
width of 0). Unlike in the previous data sets, instance weighting is no longer the best missing values
method, as shown in Figure 4d. Instead, imputation performs very well for various missing value
rates. Table 7d shows that imputation is statistically the best missing values method. For missing
rates of 10% and 40%, it is statistically better than the other three methods. For a missing rate of
5%, it does as well as instance weighting and surrogate splitting. For a missing rate of 20%, it does
as well as surrogate splitting and indicator features.

Analysis and Discussion. The four missing values methods are based on different assump-
tions about the input data. Imputation assumes that the most frequent value of a feature is the least
informative and therefore presents the lowest risk of introducing errors into the learning process.
Missing values are injected prior to converting the input features to binary. Hence, in the protein
data set, missing values are introduced by choosing an amino acid residue position in the observa-

2134

GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

F
ra

ct
io

n
of

 ti
m

e
tr

ue

Feature Index

Figure 5: Fraction of the time that each FAQ feature is true (versus false). Features 1, 3, 4, 7, 8, 10,
11, 12, 16, 18, and 20 are rarely true.

tion sequence and setting all 20 boolean indicator features that represent that position to missing.
Similarly, in the NETtalk and hyphenation problems, a letter is made to be missing by setting all 26
indicator features for that letter to missing. Similarly, imputation is computed at the amino acid or
letter level, not at the level of boolean features. However, in the Usenet FAQ data set, since the bi-
nary features are not exclusive, imputation is computed at the level of boolean features. In the case
of protein sequences, imputation will replace missing values with the most frequently-occurring
amino acid, which is alanine, code ‘A’. Alanine tends to form alpha helices, so this may cause the
learning algorithms to over-predict the helix class, which may explain why imputation performed
worst on the protein data set. In the case of English words, the most common letter is ‘E’, and it does
not carry much information either about pronunciation or about hyphenation, so this may explain
why imputation worked well in the NETtalk and hyphenation problems. Finally, in the ai-general
FAQ data set, most of the features exhibit a highly skewed distribution, so that one feature value is
much more common than another, as shown in Figure 5. Hence, in most cases, imputation with the
most common feature value will supply the correct missing value. This may be why it worked best
on that data set.

The indicator feature approach is based on the assumption that the presence or absence of a
feature is meaningful (e.g., in medicine, a feature could be missing because a physician explicitly
chose not to measure it). Because features were marked as missing completely at random, this is not
true, so the indicator feature carries no positive information about the class label. However, in cases
where imputation causes problems, the indicator feature approach may help prevent those problems
by being more neutral. The learning algorithm can learn that if the indicator feature is set, then the
actual feature value should be ignored. This may explain why the indicator feature method works
slightly better in most cases than the imputation method.

2135

DIETTERICH, HAO AND ASHENFELTER

The surrogate splitting method assumes that the input features are correlated with one another,
so that if one feature is missing, its value can be computed from another feature. The protein,
NETtalk, and hyphenation data sets have a single input feature for each amino acid or letter. Hence,
if this input feature is missing, then there is no information about that position in the sequence. The
only exception to this would be if there were strong correlations between successive amino acids
or letters. However, such strong correlations do not exist much either in protein sequences or in
English, with the possible exception of the letter ‘q’, which is always followed by ‘u’. Note that the
converse is not true: ‘u’ is not always preceded by ‘q’. Based on these considerations, we would
not expect surrogate splitting to work well in these domains, and it does not.

In the FAQ data set, each line is described by 20 features computed from the words in that line.
In the experiment, each of these 20 features could be independently marked as missing, which is a
bit unrealistic, since presumably the real missing values would involve some loss or corruption of
the words making up the line, and this would affect multiple features. The 20 features do have some
redundancy, so we would expect that surrogate splitting should work well, and it does for 5% and
20% missing rates.

The instance weighting method assumes that the feature values are missing at random and that
the other features provide no redundant information, so the most sensible thing to do is to marginal-
ize away the uncertainty about the missing values. Our experiments show that this is a very good
strategy in all cases except for the FAQ data set, where the features are somewhat redundant.

8. Conclusions

In this paper, we presented TREECRF, a novel method for training conditional random fields based
on gradient tree boosting. TREECRF has the ability to construct very complex feature conjunctions
from basic features and scales much better than methods based on iterative scaling and simple
gradient descent. It appears to match the L-BFGS algorithm implemented in MALLET, which also
gives dramatic speedups when there are many potential features. In our experiments, TREECRF
is as accurate as MALLET on four data sets, more accurate on one data set and less accurate on
one data set. Its feature induction method is faster than that of MALLET for problems with a large
number of features. But its forward-backward implementation is slower than that of MALLET for
really long sequences. In addition, TREECRF is easier to implement and tune. It introduces only
one tunable parameter (either the maximum number of leaves permitted in each regression tree or
the regularization constant), whereas MALLET has many more parameters to consider. It is easier
for the TREECRF to find the optimal stopping point to avoid overfitting, since its performance
improves smoothly, while that of MALLET fluctuates wildly. Combining the benefit of these two
methods will be a promising direction to pursue.

TREECRF also provides us with extra ability to handle missing data with instance weighting
and surrogate splitting methods, which are not available in MALLET and other CRF training algo-
rithms. The experiments suggest that when the feature values are missing at random, the instance
weighting approach works very well. In the one domain where instance weighting did not work
well, imputation was the best method. The indicator feature method was also very robust. The
method of surrogate splitting was the most expensive method to run and the least accurate. Hence,
we do not recommend using surrogate splits with conditional random fields. The good perfor-
mance of the indicator features and imputation methods is encouraging, because these methods can
be applied with all known methods for sequential supervised learning, not only with gradient tree

2136

GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

boosting. Since there is no one best method for handling missing values, as with many other aspects
of machine learning, preliminary experiments on subsets of the training data are required to select
the most appropriate method.

Acknowledgments

The authors would like to thank the anonymous reviewers and the action editor for their constructive
input. We also gratefully acknowledge the support of NSF grants IIS-0083292 and IIS-0307592.
Some of the material in this paper was first published at ICML-2004 (Dietterich et al., 2004).

References

Alan Agresti. An Introduction to Categorical Data Analysis. Wiley, New York, 1996.

Yasemin Altun, Ioannis Tsochantaridis, and Thomas Hofmann. Hidden markov support vector
machines. In Tom Fawcett and Nina Mishra, editors, Proceedings of the 20th International Con-
ference on Machine Learning (ICML 2003), pages 3–10. AAAI Press, 2003.

Julian Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal
Statistical Society B, 36(2):192–236, 1974.

Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification and
Regression Trees. Wadsworth Publishing Company, 1984.

Thomas G. Dietterich, Adam Ashenfelter, and Yaroslav Bulatov. Training conditional random fields
via gradient tree boosting. In Proceedings of the 21st International Conference on Machine
Learning (ICML 2004), pages 217–224, Banff, Canada, 2004. ACM Press.

Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In Proceedings of
the 13th International Conference on Machine Learning (ICML 1996), pages 148–156. Morgan
Kaufmann, 1996.

Jerome Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189–1232, 2001.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a statistical
view of boosting. The Annals of Statistics, 38(2):337–374, 2000.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):
721–741, Nov. 1984.

John M. Hammersley and Peter Clifford. Markov fields on finite graphs and lattices. Technical
report, Unpublished, 1971.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of the 18th International
Conference on Machine Learning (ICML 2001), pages 282–289. Morgan Kaufmann, 2001.

2137

DIETTERICH, HAO AND ASHENFELTER

Lin Liao, Tanzeem Choudhury, Dieter Fox, and Henry A. Kautz. Training conditional random fields
using virtual evidence boosting. In Manuela M. Veloso, editor, Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2007), pages 2530–2535, Hyderabad,
India, January 6-12 2007.

Andrew McCallum. Efficiently inducing features of conditional random fields. In Christopher
Meek and Uffe Kjaerulff, editors, Proceedings of the 19th Conference on Uncertainty in Artificial
Intelligence (UAI 2003), pages 403–410. Morgan Kaufmann, 2003.

Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. Maximum entropy markov models
for information extraction and segmentation. In Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pages 591–598. Morgan Kaufmann, 2000.

Andrew Kachites McCallum. Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002.

Andrew Y. Ng and Michael Jordan. On discriminative vs. generative classifiers: A comparison
of logistic regression and naive Bayes. In Advances in Neural Information Processing Systems,
volume 14. MIT Press, 2002.

Ning Qian and Terrence J. Sejnowski. Predicting the secondary structure of globular proteins using
neural network models. Journal of Molecular Biology, 202:865–884, 1988.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco, CA,
1993.

Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Adwait Ratnaparkhi. A maximum entropy model for part-of-speech tagging. In Eric Brill and
Kenneth Church, editors, Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing, pages 133–142, Somerset, New Jersey, 1996. Association for Computational
Linguistics.

Terrence J. Sejnowski and Charles R. Rosenberg. Parallel networks that learn to pronounce english
text. Complex Systems, 1:145–168, 1987.

Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Marti Hearst
and Mari Ostendorf, editors, HLT-NAACL 2003: Main Proceedings, pages 213–220, Edmonton,
Alberta, Canada, May 27 – June 1 2003. Association for Computational Linguistics.

Charles Sutton, Michael Sindelar, and Andrew McCallum. Reducing weight undertraining in struc-
tured discriminative learning. In Proceedings of the main conference on Human Language Tech-
nology Conference of the North American Chapter of the Association of Computational Linguis-
tics, pages 89–95, Morristown, NJ, USA, 2006. Association for Computational Linguistics.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks. In Sebastian
Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Pro-
cessing Systems 16, pages 25–32. MIT Press, Cambridge, MA, 2004.

2138

GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support vector
machine learning for interdependent and structured output spaces. In Proceedings of the 21st
International Conference on Machine Learning (ICML 2004), pages 823–830, Banff, Canada,
2004. ACM Press.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark W. Schmidt, and Kevin P. Murphy. Accelerated
training of conditional random fields with stochastic gradient methods. In William W. Cohen and
Andrew Moore, editors, Proceedings of the 23rd International Conference on Machine learning
(ICML 2006), pages 969–976, New York, NY, USA, 2006. ACM.

2139

Journal of Machine Learning Research 9 (2008) 2141-2170 Submitted 9/07; Revised 3/08; Published 10/08

HPB: A Model for Handling BN Nodes with High Cardinality Parents

Jorge Jambeiro Filho JORGE.FILHO@JAMBEIRO.COM.BR

Alfândega do Aeroporto de Viracopos
Rodovia Santos Dummont, Km 66
Campinas-SP, Brazil, CEP 13055-900

Jacques Wainer WAINER@IC.UNICAMP.BR

Instituto de Computação
Universidade Estadual de Campinas
Caixa Postal 6176
Campinas - SP, Brazil, CEP 13083-970

Editor: Bianca Zadrozny

Abstract

We replaced the conditional probability tables of Bayesian network nodes whose parents have
high cardinality with a multilevel empirical hierarchical Bayesian model called hierarchical pattern
Bayes (HPB).1 The resulting Bayesian networks achieved significant performance improvements
over Bayesian networks with the same structure and traditional conditional probability tables, over
Bayesian networks with simpler structures like naı̈ve Bayes and tree augmented naı̈ve Bayes, over
Bayesian networks where traditional conditional probability tables were substituted by noisy-OR
gates, default tables, decision trees and decision graphs and over Bayesian networks constructed
after a cardinality reduction preprocessing phase using the agglomerative information bottleneck
method. Our main tests took place in important fraud detection domains, which are characterized
by the presence of high cardinality attributes and by the existence of relevant interactions among
them. Other tests, over UCI data sets, show that HPB may have a quite wide applicability.

Keywords: probabilistic reasoning, Bayesian networks, smoothing, hierarchical Bayes, empirical
Bayes

1. Introduction

In most countries, imported goods must be declared by the importer to belong to one of large set of
classes (customs codes). It is important that each good is correctly classified, because each of the
customs codes implies not only different customs duties but also different administrative, sanitary,
and safety requirements. The original goal of this work was to develop a tool that, considering four
explanatory attributes: declared custom code (DCC), importer (IMP), country of production (CP)
and entry point in the receiving country (EPR), will estimate, for each new example, the probability
that it involves a misclassification. Such estimates will be used later by a larger system that allocates
human resources for different types of anti-fraud operations.

Our main study data set contains 682226 examples of correct classification (which we will call
negative examples) and 6460 examples of misclassification (positive examples). In this data set, the

1. This paper is a an extended version of a conference paper (Jambeiro Filho and Wainer, 2007).

c©2008 Jorge Jambeiro Filho and Jacques Wainer.

JAMBEIRO AND WAINER

first attribute assumes 7608 distinct values, the second, 18846 values, the third, 161 values, and the
fourth 80 values. Thus, the domain is characterized by the presence of high cardinality attributes.

The data set is imbalanced, with only 0.93% of positive examples. This is usually handled with
different resampling strategies (Chawla et al., 2002). However, resampling requires retraining the
classifiers for each different assignment of costs for false positives and false negatives. In our con-
text, such costs are not known in advance (priorities change according to other anti-fraud demands)
and they vary from example to example (not all false negatives cost the same). These facts make
the use of resampling techniques unattractive.

On the other hand, if we can produce reliable probability estimates directly from the original
data set, the work of the human resource allocation system becomes much easier. It can at any time,
define a selection rate that matches the available human resources for the specific task of detecting
wrong customs codes considering all other anti-fraud demands at the moment. If the selection rate
is, for example, 10%, the examples to be verified will naturally be the 10% that are most likely to
involve a misclassification according to the calculated probability estimates. The allocation system
may also combine the probability estimates with costs that may vary from example to example
without any retraining. Thus, we decided to concentrate on Bayesian techniques.

Domain specialists claim that there are combinations of attribute values (some involving all of
them) that make the probability of an instance being positive significantly higher then it could be
expected looking at each value separately. They call such combinations critical patterns. To benefit
from critical patterns we would like to use the Bayesian network (BN) (Pearl, 1988) presented in
Figure 1, where all explanatory attributes are parents of the class attribute. We call a structure of
this kind a direct BN structure.

��
��
class

��
��

dcc ��
��

imp ��
��

cp ��
��

epr
Q

Q
Q

Qs
A
AU

�
�

�
�+
�

��

Figure 1: Direct BN structure for misclassification detection

In a BN, considering that x ji is a possible value for node X j and π jk is a complete combination
of values for Π j, the set of parents of node X j, the vector, θ jk, such that θ jki = P(x ji|π jk) is stored
in a table that is called conditional probability table (CPT) of node X j and is assessed from the
frequencies of the values of X j among the training instances where Π j = π jk. The distributions of
X j given any two different combinations of values for its parents are assumed to be independent
and a Dirichlet prior probability distribution for θ jk is usually adopted. Applying Bayes rule and
integrating over all possible values for θ jk it is found that

E(θ jki) = P(x ji|π jk) =
N jki +α jki

N jk +α jk
, (1)

2142

HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

where N jki is the number of simultaneous observations of x ji and π jk in the training set, N jk =

∑∀i N jki, α jki is the value of one of the parameters of the Dirichlet prior probability distribution and
α jk = ∑∀i α jki, the equivalent sample size of the prior probability distribution.

The Dirichlet prior probability distribution is usually assumed to be noninformative, thus

P(x ji|π jk) =
N jki +λ

N jk +λM j
, (2)

where all parameters of the Dirichlet distribution are equal to a small smoothing constant λ, and M j

is the number of possible values for node X j. We call this direct estimation (DE). DE is sometimes
called Lidstone estimate and if λ = 1 it is called Laplace estimate.

The conditional probability table of the class node of a BN with the structure in Figure 1 contains
more than 1.8×1012 parameters. It is clear that for rarely seen combinations of attributes the choice
of such structure and Equation (2) tends to produce unreliable probabilities whose calculation is
dominated by the noninformative prior probability distribution.

Instead of the structure in Figure 1, we can choose a network structure that does not lead to
too large tables. This can be achieved limiting the number of parents for a network node. Naı̈ve
Bayes(Duda and Hart, 1973) is an extreme example where the maximum number of parents is
limited to one (the class node is the only parent of any other node). Tree augmented naı̈ve Bayes
(TAN) (Friedman et al., 1997) adds a tree to the structure of naı̈ve Bayes connecting the explanatory
attributes and limits the maximum number of parent nodes to two. However, limiting the maximum
number of parents also limits the representational power of the Bayesian network(Boullé, 2005) and,
thus, limits our ability to capture interactions among attributes and benefit from critical patterns.
Therefore, we would prefer not to do it.

Since the high cardinality of our attributes is creating trouble, it is a reasonable idea to prepro-
cess the data, reducing the cardinality of the attributes. We can use, for example, the agglomerative
information bottleneck (AIBN) method (Slonim and Tishby, 1999) for this task. However, the pro-
cess of reducing the cardinality of one attribute is blind with respect to the others (except for the
class attribute) (Slonim and Tishby, 1999; Boullé, 2005; Micci-Barreca, 2001), and thus it is un-
likely that cardinality reduction will result in any significant improvement in the ability to capture
critical patterns, which always depend on more than one attribute.

When the number of probabilities to be estimated is too large if compared to the size of the train-
ing set and we cannot fill the traditional conditional probability tables satisfactorily, Pearl (1988)
recommends the adoption of a model that resorts to causal independence assumptions like the noisy-
OR gate. Using noisy-OR, the number of parameters required to represent the conditional probabil-
ity distribution (CPD) of a node given its parents, instead of being proportional to the product of the
cardinality of all parents attributes, becomes proportional to the sum of their cardinality. However,
causal independence assumptions are incompatible with our goal of capturing critical patterns.

It is possible to use more flexible representations for the conditional probability distributions
of a node given its parents, like default tables (DFs) (Friedman and Goldszmidt, 1996b), deci-
sion trees (DTs) (Friedman and Goldszmidt, 1996b) and decision graphs (DGs) (Chickering et al.,
1997). According to Friedman and Goldszmidt (1996b), using such representations together with
adequate learning procedures induces models that better emulate the real complexity of the inter-
actions present in the data and the resulting network structures tend to be more complex (in terms
of arcs) but require fewer parameters. Fewer parameters may result in more reliable probability
estimates.

2143

JAMBEIRO AND WAINER

Using traditional CPTs, we assume that the probability distributions for a node given any two
combinations of values for the parents are independent. If some of these distributions are actually
identical, DTs, DFs and DGs, can reflect it and represent the CPD using a variable number of
parameters that is only proportional to the number of actually different distributions.

On the other hand, using DTs, DFs or DGs to represent the conditional probability distributions
of a node given its parents, we assume that the probability distribution of the node given two differ-
ent combinations of values for the parents may be either identical or completely independent. It is
possible that neither of the two assumptions hold.

Gelman et al. (2003) assert that modeling hierarchical data nonhierarchically leads to poor re-
sults. With few parameters, nonhierarchical models cannot fit the data accurately. With many pa-
rameters they fit the existing data well but lead to inferior predictions for new data. In other words
they overfit the training set. In contrast, hierarchical models can fit the data well without overfitting.
They can reflect similarities among distributions without assuming equality.

The slight modification in Equation (2) used by Friedman et al. (1997) in the definition of a
smoothing schema for TAN shows that we can treat the data that is used to estimate a CPT as
hierarchical:

P(x ji|π jk) =
N jki +S ·P(x ji)

N jk +S
,

where S is a constant that defines the equivalent sample size of the prior probability distribution.
We call this almost direct estimation (ADE). ADE is the consequence of adopting an informative
Dirichlet prior probability distribution where α jki ∝ P(x ji), where P(x ji) is the unconditional proba-
bility of x ji (for the meaning of α jki, see Equation 1). ADE uses the probability distribution assessed
in a wider population (the whole training set) to build an informative prior probability distribution
for a narrower population and so it has a hierarchical nature. In the sense of Gelman et al. (2003)
ADE is an empirical hierarchical Bayesian model, not a full hierarchical Bayesian model. Probabil-
ity estimation methods which use such empirical models are popularly known as empirical Bayes
(EB) methods. ADE is also considered a m-estimation method (Cestnik, 1990; Zadrozny and Elkan,
2001).

We believe that ADE can get closer to the true probability distribution, but not that its discrimi-
nation power can be significantly better than DE’s. It is a linear combination of two factors N jki/N jk

and P(x ji). The second factor is closer to the true probability distribution than its constant coun-
terpart in direct estimation but it is still equal for any combination of values of Π j and thus has no
discrimination power.

ADE jumps from a very specific population (the set of training examples where Π j = π jk) to
a very general population (the whole training set). In contrast, we present a model, that we call
hierarchical pattern Bayes (HPB), which moves slowly from smaller populations to larger ones
benefiting from the discrimination power available at each level.

2. Hierarchical Pattern Bayes

HPB is an empirical Bayes method that generalizes ADE into an aggressive multilevel smoothing
strategy. Its name comes from the fact that it explores an hierarchy of patterns intensively, though it
is not a full hierarchical Bayesian model.

2144

HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

Given a pattern W and a training set, D, of pairs (Ut ,Ct), where Ut is the tth instance in D and
Ct is the class label of Ut , HPB calculates P(Cr|W) for any class Cr, where a pattern is as defined
below:

Definition 1 A pattern is a set of pairs of the form (Attribute = Value), where any attribute can
appear at most once.

An attribute that is not in the set is said to be undefined or missing. Before presenting HPB details
we need a few more definitions:

Definition 2 An instance U is a pair (iid,Pat(U)) where Pat(U) is a pattern and iid is an identifier
that makes each instance unique.

Definition 3 A pattern Y is more generic than a pattern W if and only if Y ⊆W

If Y is more generic than W , we say that W satisfies Y . If an instance Ut is such that W = Pat(Ut)
and W satisfies Y , we also say that Ut satisfies Y . It is worth noting that, if Y ⊆ W then SY ⊇ SW

where SY is the set of instances satisfying Y and SW is the set of instances satisfying W .

Definition 4 The level of a pattern W, level(W), is the number of attributes defined in W.

Definition 5 g(W) is the set of all patterns more generic than a pattern W whose elements have
level equal to level(W)−1.

For example, if W is {A = a,B = b,C = c}, g(W) is

{ {B = b,C = c},{A = a,C = c},{A = a,B = b} }.

2.1 The Hierarchical Model

HPB calculates the posterior probability P(Cr|W), using a strategy that is similar to almost direct
estimation, but the prior probabilities are considered to be given by P(Cr|g(W)).

The parameters of the Dirichlet prior probability distribution used by HPB are given by αr =
S ·P(Cr|g(W)), where S is a smoothing coefficient. Consequently,

P(Cr|W) =
Nwr +S ·P(Cr|g(W))

Nw +S
, (3)

where Nw is the number of instances in the training set satisfying the pattern W and Nwr is the
number of instances in the training set satisfying the pattern W whose class label is Cr.

Given Equation (3), the problem becomes to calculate P(Cr|g(W)). Our basic idea is to write
P(Cr|g(W)) as a function of the various P(Cr|Wj) where the W j are patterns belonging to g(W) and
calculate each P(Cr|Wj) recursively, using Equation (3).

2145

JAMBEIRO AND WAINER

{}

{A=a} {B=b} {C=c}

{A=a,B=b} {A=a,C=c} {B=b,C=c}

{A=a,B=b,C=c}

Figure 2: Example of HPB structure

Figure 2 shows a pattern hierarchy,2 where A, B and C are the attributes. Each pattern is repre-
sented by a node and the set of parents of a pattern W in the DAG presented in Figure 2 is g(W).
HPB combines the posterior predictive probability distributions, P(Cr|Wj), of the class given each
parent, W j, of a pattern W , to build the prior predictive probability distribution for the class given
W , P(Cr|g(W)).

The first step to write P(Cr|g(W)) as a function of all the P(Cr|Wj) is to apply Bayes theorem:

P(Cr|g(W)) =
P(g(W)|Cr)P(Cr)

P(g(W))

∝ P(W1,W2, . . . ,WL|Cr)P(Cr),

where W1,W2,. . . ,WL are the elements of g(W). Then we approximate the joint probability P(W1,W2,
. . . ,WL|Cr) by the product of the marginal probabilities:

P′(Cr|g(W)) ∝ P(Cr)
L

∏
j=1

P(Wj|Cr), (4)

Note that we do not assume any kind of independence when using Equation (3) to calculate posterior
predictive probabilities, but we do assume independence in a naı̈ve Bayes fashion when calculating
the prior probabilities using Equation (4). Naı̈ve Bayes is known to perform well with regard to
classification error (Domingos and Pazzani, 1997) and ranking (Zhang and Su, 2004), even when
its independence suppositions are violated. Assuming independence among overlapping patterns,
as Equation (4) does, is equivalent to assuming independence among attributes which are known to
be highly correlated, what may appear to be strange. However, naı̈ve Bayes has been reported to
perform better when attributes are highly correlated than when correlation is moderate (Rish et al.,
2001).

2. Note that the DAG in Figure 2 is not a Bayesian network and the dependencies among its nodes do not follow BN
conventions.

2146

HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

On the other hand, naı̈ve Bayes is known to produce extreme probabilities (Domingos and Paz-
zani, 1997), thus we apply a calibration mechanism (Bennett, 2000; Zadrozny, 2001), which is
expressed in Equation (5):

P′′(Cr|g(W)) = (1−A) ·P′(Cr|g(W))+A ·P(Cr), (5)

where A = B/(1 + B) and B is a calibration coefficient. We discuss this calibration mechanism in
Section 2.2. P′′(Cr|g(W)) is our best estimate for P(Cr|g(W)) and it is used in Equation (3) as if it
were the true value of P(Cr|g(W)).

Given Equations (4) and (5) we need to calculate P(W j|Cr). Applying Bayes theorem again,

P(Wj|Cr) =
P(Cr|Wj)P(W j)

P(Cr)
. (6)

We can estimate P(Cr) is using the maximum likelihood approach: P(Cr) = Nr/N, where Nr

is the number of examples in the training set whose class label is Cr, and N is the total number of
examples in the training set. If the class variable is binary, this strategy works well, but if the class
node has high cardinality it is better to employ a noninformative prior probability distribution:

P(Cr) =
Nr +SNI/Mc

N +SNI ,

where Mc is the number of classes and SNI is the smoothing constant that defines the equivalent
sample size of the noninformative distribution.

When we substitute P(W j|Cr) by the right side of Equation (6) into Equation (4) we are able to
clear out the factor P(W j) because it is identical for all classes:

P′(Cr|g(W)) ∝ P(Cr)
L

∏
j=1

P(Wj|Cr)

∝ P(Cr)
L

∏
j=1

P(Cr|Wj)P(W j)

P(Cr)

∝ P(Cr)
L

∏
j=1

P(Cr|Wj)

P(Cr)
,

so we do not need to worry about it.
Since W j is a pattern, the estimation of P(Cr|Wj) can be done recursively, using Equation (3).

The recursion ends when g(W) contains only the empty pattern. In this case P(Cr|g(W)) =
P(Cr|{{}}) = P(Cr).

2.2 Calibration Mechanism

Naı̈ve Bayes is known to perform well in what regards to classification error (Domingos and Paz-
zani, 1997) and ranking (Zhang and Su, 2004), even when its independence suppositions are vio-
lated. However, naı̈ve Bayes is also known to produce unbalanced probability estimates that are
typically too “extreme” in the sense that they are too close to zero or too close to one.

The reason why naı̈ve Bayes produces extreme probabilities is that it treats each attribute value
in a pattern as if it were new information. Since attributes are not really independent, a new attribute

2147

JAMBEIRO AND WAINER

value is not 100% new information, treating it as if it were completely new reinforces the previous
beliefs of naı̈ve Bayes towards either zero or one. This reuse of information is explained by Bennett
(2000) in the context of text classification.

In order to obtain better posterior probability distributions, calibration mechanisms which try
to compensate the overly confident predictions of naı̈ve Bayes have been proposed (Bennett, 2000;
Zadrozny, 2001).

Naı̈ve Bayes assumes that attributes are independent given the class. Equation (4) assumes that
some aggregations of attributes are independent given the class. Since many of these aggregations
have attributes in common, the use of Equation (4) is equivalent to assuming independence among
attributes which are known to be highly correlated. Naı̈ve Bayes has been reported to perform
better when attributes are highly correlated than when correlation is moderate (Rish et al., 2001),
but it is quite obvious that we are reusing a lot of information and that we can expect very extreme
probability estimates. Therefore, we need to use a calibration mechanism.

Our mechanism is simpler than the ones presented by Bennett (2000) and by Zadrozny and
Elkan (2002) and is unsupervised. This makes it very fast and easy to employ within each step of
HPB.

We just made a linear combination of the result of Equation (4) and P(Cr). We did that con-
sidering that if the estimates are more extreme than the true probabilities both near zero and near
one they must match the true probabilities at some point in the middle. We believe that this point is
somewhere near P(Cr).

Extreme probabilities are produced when evidence in favor or against a class is reused. P(Cr) is
a point where either there is no evidence or there is evidence in conflicting directions in such way
that the effect is null. Thus, such a point cannot be considered extreme. Our calibration mechanism
attenuates the probabilities when they are extreme without affecting them in the point P(Cr), where,
we believe, they are already correct.

In Figure 3 we show the effect of the calibration mechanism.

0
0 1

1

P′(Cr|g(W))

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

P′(Cr|g(W))

P(Cr|g(W))

P(Cr)

P(Cr)

���������������

A ·P(Cr)

1−A · (1−P(Cr))

P′′(Cr|g(W))

Figure 3: Effect of linear calibration over extreme probabilities

In the horizontal axis the non calibrated estimation P′(Cr|g(W)) is represented. The curved
line represents the true probability, P(Cr|g(W)), as a function of P′(Cr|g(W)). Since all informa-

2148

HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

tion about P′(Cr|g(W)) comes from a finite data set such function never hits one or zero. When
P′(Cr|g(W)) is near zero, P(Cr|g(W)) is not as near. The same happens when P(Cr|g(W)) is near
one.

The 45o straight line represents what would be our final estimation if we did not do any cali-
bration, that is, P′(Cr|g(W)) itself. The other oblique straight line is the result of our calibration
mechanism, P′′(Cr|g(W)). It is still a linear approximation but it is much closer from P(Cr|g(W))
than P′(Cr|g(W)).

2.3 Analyzing HPB

HPB tries to explore the training set as much as possible. If there are L attributes, HPB starts its
work capturing the influence of patterns of level L. At this level, all interactions among attributes
may be captured as long as there are enough training instances. However, no training set is so
large that we can expect that all level L patterns are well represented. Actually, if there are high
cardinality attributes, it is more likely that only a minority of them are represented well. For this
minority, level L dominates Equation (3) and prior probabilities are not very important. On the other
hand, prior probabilities are critical for the vast majority of cases where level L patterns are not well
represented in the training set. Then, HPB moves to level L−1. At this level, a greater fraction of
patterns are well represented and it is still possible to capture the majority of attribute interactions.
Many patterns of level L−1, however, are still not well represented and it is necessary to resort to
lower level patterns. The lower are the level of the patterns the weaker is HPB’s capacity to capture
interactions, but less common are problems with small sample sizes.

Equation (3) combines the influence of different level patterns in a way that the most specific
patterns always dominate if they are well represented. Equation (4) combines patterns in an naı̈ve
Bayes fashion, in spite of the fact that they are highly correlated. This results in extreme probability
estimates that are attenuated by the calibration mechanism in Equation (5).

Since the population of instances (both in the training and in the test set) satisfying a pattern
W is a subpopulation of the population of instances satisfying W j,∀Wj ∈ g(W), we can say that
HPB uses results previously assessed in a wider population to build informative prior probability
distributions for narrower populations. Therefore, HPB is a an empirical Bayesian model, not a full
hierarchical Bayesian model.

In the work of Gelman et al. (2003); Andreassen et al. (2003); Stewart et al. (2003) full hier-
archical Bayesian models are presented, but they have only two levels. HPB deals with a multi
level hierarchy recursively and also handles the fact that each subpopulation is contained by several
overlapping superpopulations and not only by one superpopulation. These facts make it more diffi-
cult to build a full model that allows the calculation of all involved probability distributions at once
considering all available evidence.

2.4 HPB as a Replacement for conditional probability tables

HPB’s original goal was to be a stand alone classifier well suited a to particular domain, but it is
much more relevant as a replacement for conditional probability tables.

HPB’s use of space and time is exponential in the number of attributes. Thus, in domains with
many attributes, it is not possible to use HPB directly. However, since the number of parents of any
node in a Bayesian network is usually small because the size of a CPT is exponential in the number

2149

JAMBEIRO AND WAINER

of parent nodes, HPB may be used as a replacement for Bayesian networks conditional probability
tables in almost any domain.

Space and time are frequently not the limiting factor for the number of parents of a BN node.
More parents usually mean less reliable probabilities (Keogh and Pazzani, 1999) and it is not un-
common to limit their number to two (Friedman and Goldszmidt, 1996a; Keogh and Pazzani, 1999;
Hamine and Helman, 2004). So, if HPB produces better probability estimates, it will actually allow
for the addition of more parent nodes.

If the BN structure is given, the use of HPB as a replacement of the CPT of any node, X j, is
straightforward. To calculate, P(x jk|π ji) it is just a matter of acting as if Cr = x jk and W = π ji,
ignoring all other attributes and using HPB to calculate P(Cr|W).

If the BN structure needs to be learned from data, it is necessary to choose a scoring metric that
can work together with HPB in the task of choosing among the possible BN structures. We propose
the use of the log-likelihood evaluated using leave-one-out cross validation:

LLLOO = ∑
t

logP(Ut |S,D−{Ut}) = ∑
t

∑
j

logP(x jt |πS
jt ,D−{Ut}),

where D is the training set, Ut is the tth instance of D, S is the BN structure being scored, x jt is
the value assumed by attribute X j in the instance Ut , πS

jt is the set of values assumed, in Ut , by
the parents of X j in S and P(x jt |πS

jt ,D−{Ut}) is the value calculated by HPB for P(x jt |πS
jt) using

D−{Ut} as the training set.
HPB uses the training set only through the frequencies Nwr and Nw in Equation (3). For fast

computation of LLLOO, we can assess these frequencies in D and rely on the relations:

ND−{Ut}
w =

{

ND
w −1 if W ⊂ πS

jt ;
ND

w otherwise;

ND−{Ut}
wr =

{

ND
wr −1 if W ⊂ πS

jt ∧ x jr = x jt ;
ND

wr otherwise.

2.5 Selecting HPB Coefficients

Equations (3) and (5) require respectively the specifications of coefficients S and B. In the classi-
fication of a single instance, these equations are applied by HPB in the calculation of P(Cr|W) for
several different patterns, W . The optimal values of S and B can be different for each pattern.

In the case of the B coefficients, we use a heuristic motivated by the fact that the level of any
pattern in g(W) is level(W)− 1. The higher such level is, the more attributes in common the
aggregations have, the more extreme probability estimates are and the stronger must be the effect of
the calibration mechanism. Thus, we made the coefficient B in Equation (5) equal to b(level(W)−
1), where b is an experimental constant.

In the case of the S coefficients, we can employ a greedy optimization approach, or, for faster
training, simply define S to be a constant.

The optimization process we propose uses the area under the hit curve(Zhu, 2004) as a scoring
metric. The hit curve of a classifier C over a data set D is a function, hC,D(r), where r is a selection
rate (a real number in the interval [0,1]). The classifier is used to assign to each example, Ut in D the
probability that Ut is a positive instance. The value of hC,D(r) is the number of positive instances
among the r · |D| instances that were considered the most likely to be positive by the classifier.

2150

HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

We employed hit curves, instead of the more popular Receiver Operating Characteristic Curves
(ROC) (Egan, 1975), because they match the interests of the user of a fraud detection system di-
rectly. Given a selection rate that reflects the available human resources, he/she wants to maximize
the number of detected frauds.

Since the concept of a positive instance only makes sense for binary class variables, the opti-
mization process only works for binary class problems.

When applicable, the process starts from the most general pattern family and moves toward the
more specific ones, where a pattern family is the set containing all patterns that define exactly the
same attributes (possibly with different values).

Assuming that the S coefficients have already been fixed for all pattern families that are more
generic than a family F , there is a single S coefficient that needs to be specified to allow the use of
Equation (3) to calculate P(Cr|W), where W is any pattern belonging to F .

This coefficient is selected in order to maximize the area under the hit curve that is induced
when, using leave-one-out cross validation, we calculate P(C0|W) for all training patterns, W , in F ,
where C0 is the class that is defined to be the positive class.

Calculating P(C0|W) using leave-one-out cross validation, means, as explained in Section 2.4,
simply subtracting one from some frequencies used by Equation (3).

2.6 Computational Complexity

The training phase of the version of HPB where constant smoothing coefficients are employed
consists solely in assessing the frequencies used by Equation (3). It is easy to see that each instance,
U , such that W = Pat(U), in the training set, D, requires that exactly 2L frequencies are incremented,
where L is the number of parent attributes. Thus, HPB training time is

O(Ntr ·2
L),

where Ntr in the number of training instances.
The test (or application) phase of HPB requires that, for each test instance, U , such that W =

Pat(U), the probability distribution for the class is computed given 2L patterns. Since each compu-
tation is proportional to the number of classes, HPB test time is

O(Nts ·Mc ·2
L),

where Nts in the number of test instances and Mc is the number of classes.
Note that, in both cases, HPB running time is exponential in the number of parent attributes,

linear in the number of instances and independent of the cardinality of the parent attributes.
When the S coefficients are chosen by the optimization process described in Section 2.5, HPB

test time does not change, but training requires that, for each pattern family, several S candidates are
tested. There are 2L pattern families and each test requires applying HPB to all training instances.
Thus, HPB training time becomes

O(Ntr ·2
L +Ncand ·2

L ·Ntr ·Mc ·2
L) = O(Ncand ·Ntr ·Mc ·2

2L),

where Ncand is the number of candidates considered to choose a single S coefficient, which depends
on the search algorithm.

HPB needs to save, for each training pattern, less than 2L frequencies. Thus HPB use of space
is

O(Ntr ·2
L).

2151

JAMBEIRO AND WAINER

3. Experimental Results

We evaluated HPB in three different contexts:

• misclassification detection: HPB’s motivation problem, an important classification problem
for Brazil’s Federal Revenue, where four high cardinality attributes which are supposed to
have relevant interactions are used to predict a binary class attribute;

• prediction of joint behavior: another problem originated from Brazil’s Federal Revenue where
two high cardinality attributes are used to predict a third high cardinality attribute;

• HPB as a general replacement for CPTs of Bayesian Networks: tests over several UCI data
sets comparing HPB to CPTs and other representations of the conditional probability distri-
bution of a BN node given its parents.

In all cases the classification methods were tested using the Weka Experimenter tool (Witten and
Frank, 1999) with five-fold cross validation. The machine used in the tests was an Intel Core 2 Duo
6300 with 2 GB of primary memory.

3.1 Misclassification Detection

This is the motivation problem for HPB. Considering four explanatory attributes: declared custom
code (DCC), importer (IMP), country of production (CP) and entry point in the receiving country
(EPR), we need to estimate, for each new example, the probability that it involves a misclassifica-
tion, that is, the probability that the DCC is not the correct custom code for the goods being traded.

Our data set has 682226 examples of correct classification (which we will call negative exam-
ples) and 6460 examples of misclassification (positive examples). In this data set, the first attribute
assumed 7608 distinct values, the second, 18846 values, the third, 161 values, and the fourth 80
values. There are no missing values.

We compared classifiers built using the following methods:

• HPB-OPT: BN with the direct BN structure (Figure 1), where the CPT of the class node was replaced
by HPB with selection of S coefficients by the optimization process described in Section 2.5.

• HPB: BN with the direct BN structure (Figure 1), where the CPT of the class node was replaced by
HPB with fixed S coefficients;

• NB: naı̈ve Bayes;

• Noisy-OR: BN with the direct BN structure (Figure 1) using a noisy-OR gate instead of a CPT;

• TAN: Smoothed version of tree augmented naı̈ve Bayes as described by Friedman et al. (1997) ;

• ADE: almost direct estimation. BN with the direct BN structure, traditional CPTs and the smoothing
schema described by Friedman et al. (1997);

• DE: direct estimation. BN with the direct BN structure (Figure 1) and traditional CPTs;

• DG: Decision Graph constructed following Chickering et al. (1997). In this larger experiment, devi-
ating from what was proposed by Chickering et al. (1997), we did not use DGs within BNs, but as
standalone classification methods.

2152

HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

• BN-HC-DT: BN with decision trees learned using hill climbing (HC) and MDL as the scoring metric
as described by Friedman and Goldszmidt (1996b);

• BN-HC-DF: BN with default tables learned using HC and MDL as described by Friedman and Gold-
szmidt (1996b);

• PRIOR: Trivial classifier that assigns the prior probability to every instance.

We were unable to build BNs with DGs replacing CPTs following Chickering et al. (1997)
because it took too long (more than one day without completing a single fold). We found that the
construction of a DG becomes very slow when the BN node in question has high cardinality and
its parents also have high cardinality. High cardinality parents imply many possible split/merge
operations to compare in each step of the learning algorithm and a high cardinality child implies
that each comparison requires a lot of calculation.

In some experiments in the same domain, with BNs with DGs applied over smaller data sets, we
found that in the global BN structures chosen by the search algorithm described by Chickering et al.
(1997), all four explanatory attributes were parents of the class attribute. This means that if we had
used a decision graph as a standalone classification method we would have had exactly the same
results. Thus we concluded that it was worth to test a DG as a standalone classification method over
our large data set. Since our class variable is binary the running time becomes acceptable.

We tried different parameterizations for each method and chose the parameter set that provided
the best results in the five-fold cross-validation process, where best results mean best area under the
hit curve up to 20% of selection rate. We ignored the area under the curve for selection rates above
20%, because all selection rates of interest are below this threshold.

Besides using the hit curve, we compared the probability distributions estimated by the models
with the distribution actually found in the test set using two measures: root mean squared error
(RMSE) and mean cross entropy (MCE):

RMSE =

√

√

√

√

√

N

∑
t=1

M

∑
r=1

(P′(Crt)−P(Crt))
2

MN , MCE =

N

∑
i=1

M

∑
t=1

−P(Crt) log2 P′(Crt)

MN ,

where N is the number of instances in the test set, M is the number of classes, P′(C jt) is the estimated
probability that the tth instance belongs to class Cr and P(Ctr) is the true probability that t th instance
belongs to class Cr. P(Cr) is always either 0 or 1.

Many of the methods tested require the specification of parameters and many of them are real
constants. We used a common strategy to chose such constants:

1. Based on experience, decide on a search interval, SI = [beg,end], within which we believe
the ideal constant is;

2. Build a search enumeration SE containing all powers of 10, all halves of powers of 10 and
quarters of powers of 10 within SI;

3. Try all constants in SE. If the method requires more than one constant try all possible combi-
nations exhaustively;

4. If the optimal constant, C is in the middle of SE take C as the final constant;

2153

JAMBEIRO AND WAINER

5. If the optimal constant, C is one of the extreme values of SE expand SE adding one more
value to it and try again. The value to be added is the real number that is the nearest to the
current optimal value that was not in SE and is a power of 10, a half of a power 10 or a quarter
of a power of 10.

By restricting ourselves to powers of 10, halves of powers of 10 and quarters of powers of 10
we try different orders of magnitude for the constants and avoid fine tuning them.

The smoothing coefficients employed by HPB-OPT are all automatically selected. The selection
involves a leave-one-out cross validation that takes place within the current training set (the five-
fold cross validation varies the current training set). The B coefficients are defined by the heuristic
described in Section 2.5 and by the constant b. The choice of b was done starting with SI = [0.5,2.5].
The value of SNI was set to zero.

HPB requires the specification of the S constant, which is used directly and the b constant which
defines the B coefficients through the heuristic in Section 2.5. The choice of b was done starting
with SI = [0.5,2.5]. To choose S we defined s = S/NumClasses = S/2 and chose s starting from
SI = [1.0,10.0]. The reason to introduce the constant s is just to follow the way Weka usually
handles smoothing constants. Again, the value of SNI was set to zero.

DGs have four parameters: the smoothing constant and three boolean parameters defining the
activation state of each of the possible operations, which are complete splits, binary splits and
merges. The smoothing constant was chosen starting from SI = [0.01,1.0]. We always kept com-
plete splits enabled and tried the variations resulted from enabling/disabling binary splits and merges
exhaustively for each smoothing constant.

Noisy-OR and PRIOR have no parameters. The optimization of all other methods involves only
the smoothing constant, which, in all cases, was chosen starting from SI = [0.01,2.5].

Below we report the optimal parameters for each method:

• HPB-OPT: b = 1.0;

• HPB: s = 5.0 and b = 1.0;

• NB: s = 0.1;

• TAN: s = 0.25 ;

• ADE: s = 0.01;

• DE: s = 2.5;

• DG CBM: s = 0.05, complete splits, binary splits and merges enabled;

• BN-HC-DT: s = 0.01;

• BN-HC-DF: s = 0.025;

In Figure 4, we show the hit curves produced by each classification method. We chose to
represent the Recall = NTruePositives/NPositives, in the vertical axis, instead of the absolute number
of hits, because this does not change the form of the curve and makes interpretation easier. We
represented the selection rate in log scale to emphasize the beginning of the curves. In Table 2 we
show the recall values for different selection rates.

2154

HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

In Table 1, we show the area under the hit curve (AUC), the area under the hit curve up to 20%
of selection rate (AUC20), the root mean squared error (RMSE), the mean cross entropy (MCE),3

the training time (TR) and the test time (TS) of each method. The presence of the symbol ! before
any result means that it is significantly worse than its counterpart in the first row of the table using
a 95% confidence t-test. Since HPB is in the first row, we can see that HPB is significantly better
than all other classifiers with regard to AUC, AUC20 and MCE. With regard to RMSE, HPB was
not better than BN-HC-DT, BN-HC-DF and PRIOR.

0 10 20 30 40 50 60 70 90

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

HPB
HPB−OPT
TAN
DG
BN−HC−DT
NB
PRIOR

R
ec

al
l

Selection rate

Figure 4: Misclassification detection - hit curves (to avoid pollution we only present curves related
to a subset of the tested methods)

3. For better visualization of the RMSE values, MCE values and their deviations, all RMSE and MCE values presented
in this paper were multiplied by 104.

2155

JAMBEIRO AND WAINER

1% 2% 5% 10% 20%
HPB 18.89±0.77 26.77±0.57 41.20±1.10 55.72±1.82 72.81±1.69
HPB-
OPT

17.41±1.55 25.08±1.10 39.76±0.61 54.70±1.44 71.45±1.74

TAN 12.06±0.59 19.26±0.70 34.52±1.32 48.70±1.82 63.52±1.06
ADE 13.32±1.37 15.06±1.46 20.70±1.65 30.61±1.18 49.39±1.06
DE 8.32±0.69 10.42±0.73 16.49±0.73 26.58±0.56 45.54±0.58
DG 15.47±1.29 20.76±0.61 31.12±1.61 43.36±2.19 62.03±1.41
BN-HC-
DT

4.68±0.23 8.20±0.62 18.54±0.51 30.14±1.13 48.78±1.32

BN-HC-
DF

4.44±0.39 8.22±0.49 18.45±0.44 30.06±0.30 47.45±0.98

NB 12.06±0.35 19.07±0.87 33.76±0.68 48.37±1.70 66.24±1.56
Noisy-Or 12.86±0.46 20.36±1.13 33.45±0.73 47.36±1.69 63.26±1.52
PRIOR 1.00±0.00 2.00±0.00 5.00±0.00 10.00±0.00 20.00±0.00

Table 1: Misclassification detection - other measures

AUC AUC20 RMSE(×104) MCE(×104) TR(s) TS(s)
HPB 83.17±0.73 53.34±1.37 986.05±3.82 347.54±4.01 9.84±0.55 7.79±1.03
HPB-OPT 84.47±0.70 52.21±1.21 !1006.26±5.24 !367.20±5.10 !517.66±4.76 !11.43±1.50
TAN !78.10±0.72 !45.78±1.17 !1155.36±5.26 !484.05±7.94 !43.67±0.12 1.34±0.01
ADE !74.96±0.19 !31.43±1.25 !1005.14±6.38 !459.39±4.46 4.04±0.12 0.34±0.09
DE !72.33±0.57 !27.37±0.40 !3462.81±2.93 !2825.06±3.79 4.35±0.11 0.28±0.00
DG !76.12±0.90 !42.89±1.55 !1007.47±6.90 !519.49±30.82 !577.78±29.29 4.47±0.48
BN-HC-
DT

!70.47±0.76 !29.95±0.85 960.89±0.25 !364.68±1.59 !125.01±1.21 !2446.17±113.19

BN-HC-DF !69.79±0.76 !29.63±0.43 960.78±0.26 !365.03±1.25 !2433.02±20.20 !265.02±3.41
NB !81.73±0.79 !46.33±1.08 !1120.25±6.84 !419.47±6.68 4.79±0.06 0.28±0.00
Noisy-Or !79.13±0.64 !45.07±1.09 !1016.06±5.08 !in f±0.00 4.73±0.07 0.28±0.00
PRIOR !50.48±0.01 !10.48±0.01 963.96±0.00 !383.27±0.00 4.87±0.46 0.28±0.00

Table 2: Misclassification detection - recall at different selection rates

The PRIOR method is very conservative, assigning the prior probability to every instance. In
this data set, such strategy results in a good MCE and a good RMSE. On the other hand, the PRIOR
method has absolutely no discrimination power, considering all instances to be equally likely to be
positive. In Figure 4 and Table 2, we can see that this results in random selection, just checking that
recall is always approximately equal to the selection rate.

BN-HC-DT and BN-HC-DF produced similar hit curves as can be seen in Table 2. In Figure 4
BN-HC-DT is the second worse method. The reason is that the construction of DTs and DFs
presented by Friedman and Goldszmidt (1996b) turned out to be very conservative, tending to prefer
simple structures: DFs with few rows and DTs with few splits. Observing the PRIOR method

2156

HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

results, it is not surprising that this conservative behavior results in a good MCE, a good RMSE and
an unsatisfactory hit curve in comparison to other methods.

At a selection rate of 1%, ADE performs better than NB, noisy-OR and TAN, but for higher
selection rates it is worse by a very significant margin. The reason is that critical patterns involving
all attributes are decisive in the very beginning of the curves. ADE treats all attributes at once and
thus can benefit from their presence, but soon ADE is forced to choose among test patterns for which
there are no identical training patterns. At this point it starts to choose at random (in the average,
17% of the positive test instances are identical to at least one training instance).

Using Decision Graphs (with binary splits enabled), the most critical patterns were separated
from the others and that resulted in a significant improvement in the beginning of the hit curve in
comparison to methods like NB, noisy-OR or TAN, which cannot capture the influence of many
attributes at once. However, the other patterns were clustered into few leaves in the graph. Within a
leaf all patterns are considered equally likely to be positive. This resulted in loss of discrimination
power for selection rates above 5%.

HPB (in both versions) benefits from critical patterns involving many or even all attributes, but
also considers the influence of less specific patterns. As a consequence, it performs well for any
selection rate. The version of HPB that uses a fixed value for the S coefficients is worse than NB
for selection rates above 45%, but at this point, recall is already of 87% for both methods and the
differences between them are never significant. Except for its non-optimized version, HPB-OPT is
better than any other method for all selection rates, but the optimization process makes it fifty times
slower than the simpler HPB.

It is worth noting that even the slower version of HPB is faster than the methods involving
decision graphs, decision trees and default tables.

Since the cardinality of the attributes is a problem in this domain, we decided to also test all
classification methods on a transformed data set where the cardinality of all attributes were reduced
by the agglomerative information bottleneck method (AIBN). To prevent AIBN from using infor-
mation from the test sets, we implemented a Weka meta classifier that applies AIBN immediately
before training the real classifier and after each training set was separated from its associated test
set in the five-fold cross validation process.

AIBN reduces the cardinality of an attribute by successively executing the merge of two values
that results in minimum mutual information lost. The process can continue till a single value lasts,
but can be stopped at any convenient point. We chose to limit the loss of mutual information to
1e−4, a very low value. In spite of this, the cardinality reduction was accentuated. Table 3 shows
the cardinality of the attributes before and after reduction.

Attribute Original Cardinality Final Cardinality
DCC 7608 101
IMP 18846 84
CP 161 50
EPR 80 28

Table 3: Cardinality reduction using AIBN

2157

JAMBEIRO AND WAINER

Because of the lower cardinality of the resulting attributes, it was possible to test BNs with DGs
instead of standalone DGs. Results are in Table 4, Figure 5 and Table 5.

1% 2% 5% 10% 20%
HPB 14.28±0.40 20.72±0.47 35.05±0.92 51.14±2.00 67.70±2.04
HPB-
OPT

10.86±0.51 17.74±0.73 34.00±1.06 50.08±2.09 67.76±2.12

TAN 10.11±0.67 17.66±0.90 32.15±1.54 46.78±1.70 63.78±0.76
ADE 13.10±0.53 16.36±1.20 20.42±1.34 33.82±1.44 55.72±1.06
DE 8.28±0.59 11.17±0.64 19.40±0.64 32.82±0.47 56.66±0.63
BN-DG 8.14±0.46 17.40±0.66 32.12±1.38 45.44±1.12 60.66±1.48
BN-HC-
DT

6.10±0.53 15.18±0.19 27.12±1.66 38.68±2.26 57.21±1.99

BN-HC-
DF

6.22±0.45 14.94±0.15 26.33±0.56 37.92±1.53 55.05±1.21

NB 10.22±0.55 17.09±0.83 31.50±0.84 46.28±1.73 64.14±1.85
Noisy-Or 4.84±0.26 14.80±0.52 29.79±0.87 44.70±1.72 62.78±1.97
PRIOR 1.00±0.00 2.00±0.00 5.00±0.00 10.00±0.00 20.00±0.00

Table 4: Misclassification detection with cardinality reduction - recall at different selection rates

HPB and HPB-OPT are still the best methods but they lose much of their ability to explore
critical patterns, and, at a selection rate of 1%, they do not perform nearly as well as they did
over the original data set. The reason is that AIBN joins attribute values looking at each attribute
separately and thus ignoring any interaction among them. In this case, relevant interactions were
lost.

BNs with DGs lost much of their ability to explore critical patterns too, which also resulted in a
much worse performance at a selection rate of 1%.

3.2 Prediction of Joint Behavior

In some problems of interest for Brazil’s Federal Revenue it is important to answer the following
question: what do two or more actors tend to do when they act together? When BNs are used to
model such problems, their structure tend to follow the sketch in Figure 6.

2158

HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

0 10 20 30 40 50 60 70 90

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1
HPB
HPB−OPT
TAN
BN−DG
BN−HC−DT
NB
PRIOR

R
ec

al
l

Selection rate

Figure 5: Misclassification detection with cardinality reduction - hit curves (to avoid pollution we
only present curves related to a subset of the tested methods)

Other Nodes

Observable effects

Actor in Role 1

Action

Actor in Role 2 ... Actor in Role N

Figure 6: actors Bayesian network

2159

JAMBEIRO AND WAINER

AUC AUC20 RMSE(×104) MCE(×104) TR(s) TS(s)
HPB 81.51±0.72 48.07±1.43 1037.82±3.51 385.10±4.59 8.30±0.07 5.74±0.03
HPB-OPT 82.16±0.85 47.28±1.44 956.09±1.06 350.67±1.98 !148.66±2.73 !6.32±0.02
TAN !80.27±0.61 !44.21±1.15 !1103.69±5.84 !419.30±5.32 !18.40±0.53 1.40±0.02
ADE !75.90±0.52 !35.05±1.20 953.39±1.38 354.56±2.25 2.96±0.02 0.69±0.01
DE !75.85±0.48 !34.45±0.47 !1967.97±7.53 !914.90±6.01 !17.90±0.14 0.70±0.03
BN-DG !78.98±0.84 !42.59±1.18 !1064.32±7.84 !393.07±8.34 !33.35±1.11 !7.84±0.09
BN-HC-
DT

!77.56±0.87 !37.72±1.73 !1065.34±6.17 !393.08±1.54 !154.79±9.83 !21.37±0.80

BN-HC-
DF

!77.09±0.68 !36.75±0.99 !1058.77±3.53 389.11±4.16 !234.64±56.99 !7.80±0.11

NB 81.11±0.84 !44.24±1.53 !1142.89±6.04 !429.37±6.61 !16.78±0.11 0.45±0.01
Noisy-Or !80.11±0.84 !42.15±1.48 !1122.98±5.38 !in f±0.00 !16.65±0.11 0.44±0.02
PRIOR !50.48±0.01 !10.48±0.01 963.96±0.00 383.27±0.00 !17.42±1.75 0.44±0.01

Table 5: Misclassification detection with cardinality reduction - other measures

Since the number of possible actors can be very big, but the number of roles is usually small,
it seems reasonable to replace the CPT of the Action node in Figure 6 with HPB. However, in
Section 3.1, HPB was used to predict a binary class. The number of possible actions can be high,
so we have a different challenge for HPB.

In this section, we present the performance of HPB in a standalone classification problem which
was built to resemble the problem of calculating the prior probability distribution of the Action
node in Figure 6. We used two high cardinality explanatory attributes: the importer (IMP) and the
exporter (EXP)4 to predict another high cardinality variable, the declared custom code (DCC). Note
that we are not predicting if there is a misclassification or not, but the DCC itself.

The importer attribute can assume 18846 values, the exporter attribute can assume 43880 values
and the declared custom code can assume 7608 values. There are no missing values.

The tested methods were:

• HPB: BN with a direct BN structure and HPB with fixed S coefficients;

• NB: naı̈ve Bayes;

• ADE: almost direct estimation. BN with a direct BN structure and the smoothing schema described by
Friedman et al. (1997);

• DE: direct estimation. BN with a direct BN structure and traditional CPTs;

• DE Imp: direct estimation, ignoring the exporter attribute;

• DE Exp: direct estimation, ignoring the importer attribute.

HPB-OPT was not tested because its optimization process requires a binary class variable. We
did not test DGs, DFs and DTs because the combination of high cardinality parents and a high
cardinality child makes them too slow.

4. The exporter attribute was not available when we ran the tests in Section 3.1, so we did not use it there.

2160

HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

The parameters for each method were chosen as in Section 3.1, but MCE was used as the
selection criterion. Below we present the initial search intervals and the optimal constants (s =
S/NumClasses = S/7608):

• HPB: The SI for the s constant was [1e− 4,1e− 03] and the optimal value for s was equal to 1e− 3.
The SI for the b constant was [0.5,2.5] and the optimal value for b was equal to 1.0. SNI was always
set to be equal to S;

• NB: SI = [1e−3,2.5], s = 0.05;

• ADE: SI = [1e−3,2.5], s = 1e−3;

• DE: SI = [1e−3,2.5], s = 1e−3;

• DE Imp: SI = [1e−3,2.5], s = 1e−3;

• DE Exp: SI = [1e−3,2.5], s = 2.5e−3;

Table 6 shows that HPB is the best method with regard to RMSE, MCE and number of correct
predictions (NC). The difference is significant with the exception that HPB was not significantly
better than NB with respect to number of correct assignments.

RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
HPB 108.37 ± 0.02 8.31 ± 0.00 26882.40 ± 89.76 19.51 ± 0.06 35.48 ± 0.17 1800.73 ± 2.99
DE !108.88 ± 0.02 !9.37 ± 0.01 !25796.20 ± 63.73 !18.72 ± 0.04 1.87 ± 0.05 39.82 ± 0.03
ADE !108.87 ± 0.01 !8.78 ± 0.01 !26039.20 ± 58.11 !18.90 ± 0.04 2.13 ± 0.01 46.17 ± 0.06
DE Exp !108.91 ± 0.01 !9.07 ± 0.01 !25257.60 ± 64.14 !18.33 ± 0.04 2.95 ± 0.15 77.03 ± 7.94
DE Imp !110.42 ± 0.01 !8.95 ± 0.01 !22077.60 ± 90.97 !16.02 ± 0.06 3.24 ± 0.20 73.50 ± 0.51
NB !111.89 ± 0.05 !9.23 ± 0.01 26803.00 ± 118.12 19.45 ± 0.08 4.01 ± 0.19 357.24 ± 1.18

Table 6: Prediction of joint behavior

3.3 HPB as a General Replacement for CPTs of Bayesian Networks

In this section we test HPB over UCI data sets. Our goal is to observe its performance in domains
whose characteristics are different from the ones which inspired its design. We evaluated the perfor-
mance of Bayesian networks where the usual CPTs were replaced with HPB models. For compar-
ison we also evaluated BNs using other representations for the conditional probability distribution
(CPD) of a node given its parents . Below we list all tested CPD representations:

• HPB: HPB as described in Section 2.4;

• DE: direct estimation, that is, traditional CPTs;

• ADE: almost direct estimation. Also CPTs but using the smoothing strategy presented by Friedman
et al. (1997);

• DG: decision graphs as presented by Chickering et al. (1997);

• DT: decision trees as presented by Friedman et al. (1997);

• DF: default tables as presented by Friedman et al. (1997).

2161

JAMBEIRO AND WAINER

In all cases, we learned the global BN structure using the hill climbing search algorithm im-
plemented in Weka 3.4.2 and used NB as the starting point. To guarantee that we would not have
excessively long execution times we limited the maximum number of parents to 10 and because
HPB does not handle continuous attributes we removed them all. We also removed all instances
with missing attributes.

Depending on the chosen representation for the CPDs, we employed different scoring metrics
in the BN structure search. Below we list our choices:

• HPB: log-likelihood evaluated using leave-one-out cross validation;

• DE: MDL;

• ADE: MDL;

• DGs: Bayesian Dirichlet scoring metric as presented by Chickering et al. (1997);

• DTs: MDL as presented by Friedman and Goldszmidt (1996b);

• DFs: MDL as presented by Friedman and Goldszmidt (1996b).

The tested data sets were: anneal, audiology, autos, breast-cancer, horse-colic, credit-rating,
german-credit, cleveland-14-heart-disease, hungarian-14-heart-disease, hepatitis, hypothyroid, kr-
vs-kp, labor, lymphography, mushroom, primary-tumor, sick, soybean, vote and zoo.

Before building a BN we decided on fixed equivalent sample size for the prior probability distri-
butions (this means a fixed S constant) and used it for all HPB’s instances inside the BN. Fortunately,
the optimal values for the equivalent sample sizes tend to be similar.

We chose S starting from SI = [1.0,25.0] and, forced the SNI be identical to the S. The b constant
was chosen starting from SI = [0.5,2.5].

We chose the s constant (s = S/NumClasses) for DGs starting from SI = [0.01,2.5]. We always
kept complete splits enabled and exhaustively varied the activation state of binary splits and merges.
We chose the s constant for the other methods starting from SI = [0.01,2.5].

In contrast to Sections 3.1 and 3.2 we did not expand the initial search intervals if the optimal
value for a constant turned out to be in one of its extreme points.

We compared the results using three criteria: number of correct classifications (NC), mean cross
entropy (MCE) and root mean squared error (RMSE). To save space we present only the numbers
of times where each method resulted in the best average performance. Since selecting the best
parameterization for each method using a criterion and comparing the methods using only the same
criterion would possibly not provide the reader enough information, we selected parameterizations
using all three criteria and compared the methods using also all the three criteria in exhaustive
combinations. In some cases, two or more classifiers resulted in exactly the same value for NC.
In these cases, if NC was the comparison criterion, we used MCE to decide who was the winner.
Results are in Table 7. Details are available in appendix A.

2162

HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

Sel.Crit. Comp.Crit. HPB DG DF DT ADE DE
NC NC 9 6 2 1 1 1
NC MCE 9 5 2 1 2 1
NC RMSE 7 6 4 1 1 1
MCE NC 9 5 2 0 3 1
MCE MCE 10 5 2 1 0 2
MCE RMSE 8 6 4 0 1 1
RMSE NC 7 7 4 0 1 1
RMSE MCE 9 5 2 1 1 2
RMSE RMSE 8 6 4 0 1 1

Table 7: Number of winning results in UCI data sets

HPB DG DF DT ADE DE
3.18 3.79 1.49 1.56 1.0 1.0

Table 8: Proportions among the number of arcs of BN structures

In Table 8 we show the average proportions between the number of arcs in the BN structures learned
using each CPD representation and the BN structures learned using direct estimation (traditional
CPTs). We can see that, as predicted by Friedman and Goldszmidt (1996b), the use of structures
like DFs, DTs and DGs does result in BNs with more arcs. The use of HPB has a similar effect.

As shown in Section 3.1, HPB is much faster than DGs, DTs and DFs in the task of handling
a small set of high cardinality explanatory attributes. However, in UCI tests, many BN structures
involved sets of low cardinality parents. This makes HPB comparatively slow. HPB was, in all
cases, the slowest method and in some of them more than 10 times slower than the second slowest
method.

Moreover, the advantage of HPB in all three criteria (MCE, RMSE and NC) was rarely statisti-
cally significant. Thus, we cannot recommend HPB as a general replacement for CPTs.

However, the vast majority of variables in the tested data sets have low cardinality (the highest
cardinality variable among all data sets is the audiology class variable with 24 possible values) and
many of them are binary. In spite of this, HPB’s are clearly the best results in Table 7 showing that
good prior probability distributions, can, many times, improve the quality of predictions.

We can say that a BN where CPDs are represented using HPB has a quite high probability
of producing better classification predictions than BNs employing other CPD representations. The
only explanation we found for this fact is that HPB represents some CPDs better than its alternatives
and that such better representations result in BNs with better classification predictions, even when
the characteristics of the attributes are opposite to the ones that inspired HPB.

This suggests that it should not be difficult to find problems where, if a BN is employed, there
will be one or more BN nodes where it will be worth using HPB.

2163

JAMBEIRO AND WAINER

4. Conclusions

We presented HPB a novel multilevel empirical hierarchical Bayesian model, which is intended to
replace conditional probability tables of Bayesian network nodes whose parents have high cardinal-
ity.

We presented HPB in two versions. The first version involves an optimization process to choose
the best smoothing coefficients for each family of patterns, while the second and simpler version
employs a fixed smoothing coefficient. We prefer the simpler version because it is much faster and
can handle non binary child nodes.

We evaluated HPB in the domain of preselection of imported goods for human verification using
hit curves, RMSE and MCE. In this domain, interactions among attributes have a great influence
over the probability of finding a positive instance of misclassification, but due to the high cardinality
of the attributes in this domain, exploiting such interactions is challenging.

Even the simpler version of HPB was shown capable of capturing the influence of interactions
among high cardinality attributes and achieved performance improvements over standard Bayesian
network methods like naı̈ve Bayes and tree augmented naı̈ve Bayes, over Bayesian networks where
traditional conditional probability tables were substituted by noisy-OR gates, default tables, decision
trees and decision graphs, and over Bayesian networks constructed after a cardinality reduction
preprocessing phase using the agglomerative information bottleneck method.

HPB’s execution time is exponential in the number of parents of a BN node but independent of
their cardinality. Since the number of parents of a BN node is almost always small, for nodes whose
parents have high cardinality, HPB, at least when its smoothing coefficients are fixed, is much faster
than default tables, decision trees or decision graphs when employed to represent the conditional
probability distribution of the node given its parents. This version of HPB uses the training set only
through frequencies, thus data can be added dynamically without any retraining procedures other
than some frequency increments.

We tested HPB in another classification problem: the prediction of the behavior of two ac-
tors when they act together. As a subproblem, this prediction is relevant in several fraud detection
domains and, if the general problem is modeled as a BN, generally appears as the the task of repre-
senting the CPD of a particular node given its parents. The results, again, favored HPB.

We also provide experimental results over UCI data sets, where Bayesian network classifiers
with different CPD representations are compared. Despite the fact that these data sets do not include
high cardinality attributes, HPB was the representation that resulted in more winnings than any other
representation in three comparison measures. The comparatively large execution times and the fact
that most differences in comparison measures were not significant, do not allow us to propose HPB
as a general replacement for CPTs. However, we can still conclude that BN nodes whose CPDs
given their parents are better represented by HPB than by other methods are not rare. This fact
indicates that HPB may have a quite wide applicability.

HPB can be very useful in practice. If specialists are handcrafting a Bayesian network structure,
they want it to reflect the structure of the target problem. If this results in a node with high cardinality
parents, they can just use HPB as a plug-in replacement for the CPT of the node and keep the
structure they want. Without a method like HPB the high cardinality parents could easily result
in unreliable probability estimates that could compromise the whole model. The specialists would
have to accept a BN structure that would not reflect the target problem as closely as the original one,
but which would avoid the use of high cardinality nodes as parents of the same node.

2164

HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

Full hierarchical Bayesian models have been widely used in the marketing community under the
name of Hierarchical Bayes (Allenby et al., 1999; Lenk et al., 1996). These models have also been
used in medical domains (Andreassen et al., 2003) and robotics (Stewart et al., 2003). However, we
are not aware of any hierarchical Bayesian model that can replace conditional probability tables of
Bayesian network nodes whose parents have high cardinality. Moreover, HPB deals with a multi
level hierarchy recursively and also handles the fact that the population of instances associated to
each pattern is contained by several overlapping superpopulations and not by a single one. It would
be very difficult to build a full hierarchical Bayesian model that can do the same.

As future work we leave the development of better mechanisms to select HPB coefficients.
Both optimization processes and heuristics should be considered. The first for the most reliable
predictions and the last for fast and acceptable ones.

The pattern hierarchy employed by HPB is fixed, symmetrical (all attributes are treated the
same way) and complete (all subsets of each pattern of interest are considered in the calculation of
the probability of a class given the pattern). It is possible that there exists an incomplete, possibly
asymmetrical hierarchy that would lead to better results. Developing an algorithm to search for such
hierarchy is also left as future work.

We compared HPB against algorithms which employ the best default tables, decision trees and
decision graphs chosen using some criterion. If instead of this we employed mixtures of probability
tables (Fujimoto and Murata, 2006) where default tables, decision trees or decision graphs were
used as category integration tables, results could be better. As a final future work we leave the
development of an algorithm that can build such a mixture model and the comparison of its results
to HPB’s ones.

Acknowledgments

This work is part of the HARPIA project and is supported by Brazil’s Federal Revenue.

Appendix A. Detailed Results over UCI Data Sets

In this appendix we detail the results of our tests over UCI data sets (see Section 3.3). To save space
we only present results where the number of correct classifications (NC) was used to select the best
parameterization for each method. The methods appear in the tables in decreasing order of NC. In
some cases, two or more classifiers resulted in exactly the same value for NC. In these cases, we
used MCE to decide the order. Results are in Table 9, Table 10 and Table 11.

2165

JAMBEIRO AND WAINER

ANNEAL RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-BDG 817.69 ± 123.19 199.99 ± 86.45 175.00 ± 2.54 97.43 ± 1.22 18.21 ± 0.75 0.04 ± 0.00
BN-HC-HPB 820.43 ± 69.84 182.20 ± 34.07 174.80 ± 1.09 97.32 ± 0.46 !314.35 ± 62.57 !6.24 ± 1.72
BN-HC-DF !1289.10 ± 117.59 !469.69 ± 86.02 !168.60 ± 2.07 !93.87 ± 1.11 2.56 ± 0.08 0.02 ± 0.00
BN-HC-DT !1486.14 ± 122.19 !610.11 ± 117.16 !166.00 ± 2.34 !92.42 ± 1.22 8.74 ± 0.36 0.04 ± 0.00
NB !1449.24 ± 131.34 !623.72 ± 158.70 !165.00 ± 1.58 !91.87 ± 0.75 0.06 ± 0.00 0.00 ± 0.00
BN-HC-DE !1565.84 ± 142.88 !625.42 ± 115.93 !162.60 ± 3.28 !90.53 ± 1.95 2.09 ± 0.10 0.01 ± 0.00
BN-HC-ADE !1529.27 ± 144.05 !604.07 ± 105.71 !159.19 ± 6.14 !88.63 ± 3.28 2.09 ± 0.09 0.02 ± 0.00
AUDIOLOGY RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 1062.27 ± 164.74 443.77 ± 168.94 37.40 ± 2.19 82.75 ± 5.01 1207.20 ± 207.25 19.39 ± 4.30
NB 1199.52 ± 141.70 !1034.56 ± 355.41 35.60 ± 2.50 78.76 ± 5.56 0.05 ± 0.00 0.00 ± 0.00
BN-HC-BDG 1200.72 ± 236.04 608.81 ± 271.34 35.40 ± 4.09 78.32 ± 9.18 64.59 ± 6.16 0.06 ± 0.00
BN-HC-DF !1343.05 ± 121.85 !728.90 ± 167.44 !32.20 ± 2.58 !71.23 ± 5.67 17.60 ± 1.97 0.04 ± 0.00
BN-HC-DE !1521.41 ± 39.31 !906.80 ± 44.24 !28.00 ± 0.70 !61.95 ± 1.68 14.18 ± 0.44 0.03 ± 0.00
BN-HC-ADE !1521.01 ± 39.43 !927.73 ± 51.99 !28.00 ± 0.70 !61.95 ± 1.68 14.22 ± 0.51 0.04 ± 0.00
BN-HC-DT !1559.49 ± 49.27 !970.53 ± 52.04 !26.40 ± 1.67 !58.39 ± 3.43 13.98 ± 1.06 0.07 ± 0.00
AUTOS RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 2704.17 ± 150.42 2021.03 ± 232.97 26.40 ± 1.67 64.39 ± 4.08 1.26 ± 0.34 0.09 ± 0.01
BN-HC-BDG 2804.60 ± 156.24 !2484.20 ± 367.24 26.40 ± 1.81 64.39 ± 4.43 0.70 ± 0.07 0.00 ± 0.00
NB 2806.48 ± 157.29 2296.88 ± 433.79 !24.80 ± 0.83 !60.48 ± 2.04 0.06 ± 0.00 0.00 ± 0.00
BN-HC-DF !3037.27 ± 123.34 !2518.42 ± 245.10 !20.60 ± 2.19 !50.24 ± 5.34 0.16 ± 0.01 0.00 ± 0.00
BN-HC-ADE !3124.67 ± 98.05 !2682.00 ± 226.16 !18.60 ± 2.19 !45.36 ± 5.34 0.12 ± 0.00 0.00 ± 0.00
BN-HC-DE !3124.67 ± 98.03 !2682.11 ± 226.19 !18.60 ± 2.19 !45.36 ± 5.34 0.12 ± 0.00 0.00 ± 0.00
BN-HC-DT !3124.67 ± 98.03 !2682.11 ± 226.19 !18.60 ± 2.19 !45.36 ± 5.34 0.20 ± 0.00 0.00 ± 0.00
BREAST-CANCER RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-BDG 4401.36 ± 208.72 4164.95 ± 318.23 42.60 ± 1.81 74.47 ± 3.16 0.18 ± 0.04 0.00 ± 0.00
NB 4429.70 ± 690.84 4467.29 ± 1408.44 42.20 ± 4.32 73.79 ± 7.75 0.05 ± 0.00 0.00 ± 0.00
BN-HC-HPB 4511.98 ± 380.22 4519.62 ± 716.09 42.20 ± 2.77 73.78 ± 5.03 !0.49 ± 0.03 !0.01 ± 0.00
BN-HC-DF 4454.83 ± 217.54 4240.36 ± 327.92 41.80 ± 1.78 73.07 ± 2.96 0.14 ± 0.00 0.00 ± 0.00
BN-HC-DT 4470.69 ± 281.55 4247.27 ± 402.75 40.20 ± 4.32 70.27 ± 7.54 !0.22 ± 0.01 0.00 ± 0.00
BN-HC-DE 4485.58 ± 234.38 4284.39 ± 352.75 39.40 ± 3.78 68.88 ± 6.60 0.12 ± 0.00 0.00 ± 0.00
BN-HC-ADE 4488.31 ± 248.77 4291.26 ± 377.44 39.40 ± 3.78 68.88 ± 6.60 0.12 ± 0.00 0.00 ± 0.00
HORSE-COLIC RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 3496.97 ± 528.93 2962.44 ± 762.94 62.00 ± 3.39 84.23 ± 4.45 4.35 ± 1.80 0.05 ± 0.00
BN-HC-DT 3580.15 ± 682.03 3689.41 ± 1470.42 62.00 ± 4.41 84.23 ± 5.87 0.51 ± 0.04 0.00 ± 0.00
BN-HC-BDG 3557.76 ± 367.29 3156.62 ± 608.12 61.60 ± 3.20 83.69 ± 4.36 2.49 ± 0.48 0.00 ± 0.00
BN-HC-DF 3488.76 ± 560.79 3072.05 ± 1039.40 61.20 ± 4.08 83.15 ± 5.60 0.31 ± 0.01 0.00 ± 0.00
BN-HC-DE 3630.07 ± 699.88 3907.53 ± 1591.14 61.20 ± 3.96 83.14 ± 5.22 0.21 ± 0.00 0.00 ± 0.00
BN-HC-ADE 3648.28 ± 683.27 3900.65 ± 1545.75 60.80 ± 3.70 82.60 ± 4.92 0.21 ± 0.00 0.00 ± 0.00
NB 3951.10 ± 596.02 !4951.78 ± 1805.65 60.40 ± 3.57 82.06 ± 4.81 0.05 ± 0.00 0.00 ± 0.00
CREDIT-RATING RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-BDG 3115.11 ± 216.95 2423.92 ± 284.79 120.80 ± 3.19 87.53 ± 2.31 0.69 ± 0.17 0.00 ± 0.00
BN-HC-HPB 3245.36 ± 289.67 2578.43 ± 364.32 120.20 ± 4.14 87.10 ± 3.00 1.05 ± 0.46 !0.06 ± 0.02
BN-HC-DE 3220.08 ± 205.71 2571.82 ± 353.12 119.20 ± 2.94 86.37 ± 2.13 0.15 ± 0.00 0.00 ± 0.00
BN-HC-ADE 3221.82 ± 212.88 2577.11 ± 357.98 119.20 ± 2.94 86.37 ± 2.13 0.16 ± 0.00 0.00 ± 0.00
BN-HC-DF 3224.01 ± 122.88 2527.08 ± 166.69 118.60 ± 1.67 85.94 ± 1.21 0.19 ± 0.00 0.00 ± 0.00
BN-HC-DT 3213.24 ± 224.72 2529.39 ± 292.68 118.60 ± 3.28 85.94 ± 2.38 0.36 ± 0.02 0.00 ± 0.00
NB 3304.10 ± 195.52 2754.44 ± 278.50 118.60 ± 1.67 85.94 ± 1.21 0.06 ± 0.00 0.00 ± 0.00
GERMAN-CREDIT RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
NB 4167.54 ± 164.17 3789.33 ± 258.83 149.80 ± 7.39 74.89 ± 3.69 0.06 ± 0.00 0.00 ± 0.00
BN-HC-DF 4166.08 ± 96.36 3788.58 ± 106.86 148.60 ± 6.14 74.30 ± 3.07 !0.40 ± 0.02 !0.00 ± 0.00
BN-HC-HPB 4244.67 ± 165.79 3934.53 ± 320.17 147.80 ± 2.94 73.90 ± 1.47 !4.69 ± 1.83 !0.13 ± 0.03
BN-HC-DT 4216.53 ± 111.46 3851.92 ± 172.64 147.60 ± 4.87 73.80 ± 2.43 !1.06 ± 0.03 !0.00 ± 0.00
BN-HC-BDG 4228.17 ± 121.41 3882.09 ± 227.78 146.60 ± 5.22 73.30 ± 2.61 !1.10 ± 0.18 0.00 ± 0.00
BN-HC-ADE 4230.48 ± 126.66 3876.35 ± 199.32 145.60 ± 6.02 72.80 ± 3.01 !0.37 ± 0.01 0.00 ± 0.00
BN-HC-DE 4223.58 ± 123.27 3855.98 ± 192.26 145.40 ± 6.84 72.70 ± 3.42 !0.36 ± 0.01 0.00 ± 0.00
CLEVELAND-14-
HEART-DISEASE

RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)

BN-HC-DF 2339.91 ± 113.39 1296.49 ± 119.09 49.80 ± 1.78 82.17 ± 2.72 0.09 ± 0.00 0.00 ± 0.00
BN-HC-BDG 2366.36 ± 154.85 1333.08 ± 182.49 49.60 ± 2.07 81.84 ± 3.28 !0.12 ± 0.01 0.00 ± 0.00
BN-HC-HPB 2381.80 ± 136.95 1299.65 ± 95.18 49.40 ± 1.14 81.51 ± 1.44 !0.20 ± 0.00 !0.05 ± 0.02
NB 2354.95 ± 182.24 1334.42 ± 181.36 49.40 ± 2.40 81.50 ± 3.61 0.06 ± 0.00 0.00 ± 0.00
BN-HC-DT 2362.61 ± 152.32 1338.52 ± 166.44 49.00 ± 2.54 80.84 ± 3.70 !0.13 ± 0.00 0.00 ± 0.00
BN-HC-DE !2487.86 ± 110.45 !1495.27 ± 134.98 47.60 ± 2.70 78.54 ± 4.22 0.09 ± 0.00 0.00 ± 0.00
BN-HC-ADE !2488.44 ± 116.62 1428.83 ± 142.14 47.40 ± 2.88 78.20 ± 4.46 0.09 ± 0.00 0.00 ± 0.00
HUNGARIAN-14-
HEART-DISEASE

RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)

BN-HC-HPB 2186.65 ± 256.16 1278.47 ± 198.23 49.20 ± 2.58 83.69 ± 4.82 0.30 ± 0.05 0.04 ± 0.00
NB 2184.21 ± 410.39 1163.94 ± 327.13 48.20 ± 4.43 82.01 ± 8.05 0.05 ± 0.00 0.00 ± 0.00
BN-HC-ADE 2289.01 ± 475.44 1251.44 ± 402.26 47.60 ± 4.39 80.98 ± 7.93 0.08 ± 0.00 0.00 ± 0.00
BN-HC-DE 2299.81 ± 486.99 1275.80 ± 426.23 47.60 ± 4.39 80.98 ± 7.93 0.08 ± 0.00 0.00 ± 0.00
BN-HC-BDG 2290.08 ± 331.60 1319.64 ± 275.60 47.40 ± 3.50 80.62 ± 6.13 0.26 ± 0.02 0.00 ± 0.00
BN-HC-DF 2305.03 ± 411.21 1275.65 ± 332.30 46.60 ± 4.15 79.28 ± 7.55 0.08 ± 0.00 0.00 ± 0.00
BN-HC-DT 2330.69 ± 360.65 1278.32 ± 273.29 46.40 ± 4.87 78.94 ± 8.72 0.12 ± 0.00 0.00 ± 0.00

Table 9: Comparisons over UCI data sets

2166

HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

HEPATITIS RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-ADE 3337.13 ± 410.16 2722.43 ± 691.25 26.60 ± 0.89 85.80 ± 2.88 0.15 ± 0.01 0.00 ± 0.00
BN-HC-DT 3343.89 ± 668.03 2800.25 ± 1027.57 26.60 ± 1.67 85.80 ± 5.39 !0.26 ± 0.01 0.00 ± 0.00
BN-HC-DE 3369.93 ± 385.56 2767.97 ± 708.74 26.40 ± 1.51 85.16 ± 4.89 0.14 ± 0.00 0.00 ± 0.00
NB 3605.14 ± 587.26 3782.49 ± 1160.16 26.40 ± 1.51 85.16 ± 4.89 0.06 ± 0.00 0.00 ± 0.00
BN-HC-HPB 3354.12 ± 303.11 2587.67 ± 413.88 26.20 ± 0.83 84.51 ± 2.69 !0.65 ± 0.07 !0.01 ± 0.00
BN-HC-BDG 3580.20 ± 601.23 3797.96 ± 1617.52 26.20 ± 1.30 84.51 ± 4.20 !0.33 ± 0.01 0.00 ± 0.00
BN-HC-DF 3540.69 ± 455.63 3069.03 ± 1017.49 25.80 ± 0.83 83.22 ± 2.69 0.16 ± 0.01 0.00 ± 0.00
HYPOTHYROID RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 1894.74 ± 13.90 1117.79 ± 33.44 696.20 ± 0.44 92.28 ± 0.05 395.15 ± 41.22 4.80 ± 0.36
BN-HC-DF 1895.51 ± 6.60 1130.20 ± 25.31 696.20 ± 0.44 92.28 ± 0.05 4.25 ± 0.04 0.04 ± 0.00
BN-HC-ADE 1898.35 ± 7.58 1135.40 ± 16.14 696.20 ± 0.44 92.28 ± 0.05 4.25 ± 0.14 0.04 ± 0.00
BN-HC-DE 1898.35 ± 7.58 1135.44 ± 16.11 696.20 ± 0.44 92.28 ± 0.05 4.25 ± 0.12 0.03 ± 0.00
BN-HC-DT 1906.34 ± 14.12 !1159.86 ± 26.54 696.20 ± 0.44 92.28 ± 0.05 22.10 ± 0.86 0.09 ± 0.00
BN-HC-BDG 1888.97 ± 20.46 1106.31 ± 51.51 696.00 ± 0.70 92.25 ± 0.07 35.19 ± 1.43 0.07 ± 0.00
NB 1895.38 ± 11.11 1134.41 ± 31.89 696.00 ± 0.70 92.25 ± 0.11 0.06 ± 0.00 0.00 ± 0.00
KR-VS-KP RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-BDG 1301.83 ± 192.75 505.85 ± 125.79 624.60 ± 4.61 97.71 ± 0.75 161.41 ± 4.41 0.05 ± 0.00
BN-HC-HPB 1404.34 ± 203.37 574.37 ± 157.82 624.00 ± 4.74 97.62 ± 0.69 !2241.20 ± 90.05 !15.30 ± 0.95
BN-HC-DF !1780.81 ± 276.91 !894.29 ± 172.35 !615.20 ± 8.64 !96.24 ± 1.35 20.74 ± 1.43 0.04 ± 0.00
BN-HC-DT !1696.09 ± 153.76 !727.22 ± 133.38 !614.79 ± 2.68 !96.18 ± 0.46 !187.80 ± 11.61 !0.10 ± 0.00
BN-HC-DE !1889.40 ± 142.39 !959.52 ± 142.96 !612.00 ± 6.00 !95.74 ± 0.90 14.04 ± 0.32 0.03 ± 0.00
BN-HC-ADE !1888.02 ± 135.00 !931.64 ± 141.25 !611.20 ± 4.26 !95.61 ± 0.62 14.05 ± 0.34 0.03 ± 0.00
NB !3022.02 ± 171.19 !2104.82 ± 196.02 !560.60 ± 10.23 !87.70 ± 1.54 0.06 ± 0.00 0.00 ± 0.00
LABOR RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-DT 2592.18 ± 1284.37 2068.30 ± 1725.01 10.40 ± 0.89 91.36 ± 8.73 0.09 ± 0.00 0.00 ± 0.00
BN-HC-HPB 2914.13 ± 937.77 2208.65 ± 1031.56 10.40 ± 0.89 91.36 ± 8.73 !0.26 ± 0.05 0.00 ± 0.00
BN-HC-DF 2695.25 ± 1514.59 2493.34 ± 2032.41 10.40 ± 0.89 91.36 ± 8.73 0.08 ± 0.00 0.00 ± 0.00
BN-HC-ADE 3005.58 ± 1228.36 2617.90 ± 1746.11 10.40 ± 0.89 91.36 ± 8.73 0.08 ± 0.02 0.00 ± 0.00
BN-HC-BDG 2836.04 ± 1381.80 2624.67 ± 2036.46 10.40 ± 0.89 91.36 ± 8.73 !0.14 ± 0.01 0.00 ± 0.00
BN-HC-DE 2763.72 ± 1490.36 2699.29 ± 2374.92 10.40 ± 0.89 91.36 ± 8.73 0.07 ± 0.00 0.00 ± 0.00
NB 2526.04 ± 1401.66 1968.36 ± 1567.61 10.00 ± 1.00 87.87 ± 9.65 0.06 ± 0.00 0.00 ± 0.00
LYMPHOGRAPHY RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 2512.72 ± 387.81 1824.09 ± 591.88 25.80 ± 2.16 87.12 ± 6.69 3.33 ± 1.62 0.06 ± 0.02
NB 2380.47 ± 450.03 1486.82 ± 544.14 25.60 ± 1.67 86.43 ± 4.36 0.06 ± 0.00 0.00 ± 0.00
BN-HC-BDG 2662.61 ± 659.37 2700.19 ± 1378.11 25.20 ± 2.48 85.10 ± 7.77 0.62 ± 0.12 0.00 ± 0.00
BN-HC-ADE 2754.23 ± 276.46 1944.44 ± 368.85 24.40 ± 1.94 82.36 ± 5.28 0.23 ± 0.06 0.00 ± 0.00
BN-HC-DE 2687.32 ± 344.42 1864.19 ± 420.07 24.20 ± 2.38 81.67 ± 6.86 0.18 ± 0.01 0.00 ± 0.00
BN-HC-DF 2718.45 ± 502.66 2131.58 ± 942.79 24.20 ± 1.92 81.70 ± 5.41 0.22 ± 0.01 0.00 ± 0.00
BN-HC-DT 2681.11 ± 276.46 1879.54 ± 408.83 !23.60 ± 1.14 !79.70 ± 2.65 0.41 ± 0.03 0.00 ± 0.00
MUSHROOM RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-DE 0.01 ± 0.01 0.00 ± 0.00 1624.80 ± 0.44 100.00 ± 0.00 10.50 ± 0.23 0.05 ± 0.00
BN-HC-ADE 0.01 ± 0.02 0.00 ± 0.00 1624.80 ± 0.44 100.00 ± 0.00 10.52 ± 0.26 0.05 ± 0.00
BN-HC-DF 0.08 ± 0.09 0.00 ± 0.00 1624.80 ± 0.44 100.00 ± 0.00 !14.70 ± 0.16 !0.07 ± 0.00
BN-HC-HPB 0.10 ± 0.13 0.00 ± 0.00 1624.80 ± 0.44 100.00 ± 0.00 !240.65 ± 50.90 !2.20 ± 0.20
BN-HC-BDG !0.41 ± 0.24 !0.03 ± 0.01 1624.80 ± 0.44 100.00 ± 0.00 !76.26 ± 4.26 !0.09 ± 0.00
BN-HC-DT 28.28 ± 54.93 0.80 ± 1.36 1624.60 ± 0.54 99.98 ± 0.02 !114.42 ± 4.39 !0.22 ± 0.00
NB !876.14 ± 56.96 !216.17 ± 36.18 !1609.00 ± 2.91 !99.02 ± 0.17 0.06 ± 0.00 0.00 ± 0.00
PRIMARY-TUMOR RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 1786.01 ± 53.39 1218.08 ± 52.72 32.60 ± 2.70 48.09 ± 4.08 11.06 ± 8.75 0.72 ± 0.04
NB 1792.85 ± 50.38 1296.85 ± 122.63 32.20 ± 2.28 47.48 ± 3.27 0.06 ± 0.00 0.00 ± 0.00
BN-HC-DF 1810.11 ± 71.59 1290.67 ± 124.59 29.80 ± 2.16 43.93 ± 2.93 0.40 ± 0.06 0.01 ± 0.00
BN-HC-BDG !1933.29 ± 66.50 !1978.04 ± 173.90 !28.60 ± 3.50 !42.16 ± 4.98 7.59 ± 0.67 0.03 ± 0.00
BN-HC-ADE !1983.01 ± 14.42 !1561.17 ± 33.06 !17.00 ± 0.70 !25.07 ± 1.05 0.46 ± 0.11 0.01 ± 0.00
BN-HC-DT !2011.13 ± 2.24 !1670.29 ± 10.79 !16.80 ± 0.44 !24.78 ± 0.71 1.04 ± 0.07 0.03 ± 0.00
BN-HC-DE !1984.37 ± 15.07 !1565.26 ± 39.21 !16.60 ± 1.14 !24.48 ± 1.71 0.47 ± 0.10 0.01 ± 0.00
SICK RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-BDG 2273.43 ± 31.56 1364.06 ± 55.35 708.40 ± 0.54 93.90 ± 0.09 34.73 ± 3.78 0.03 ± 0.00
BN-HC-HPB 2268.98 ± 21.24 1338.45 ± 23.39 708.20 ± 0.83 93.87 ± 0.10 !250.84 ± 98.29 !2.08 ± 0.85
BN-HC-ADE 2279.90 ± 16.33 1351.24 ± 43.58 708.20 ± 0.44 93.87 ± 0.05 4.15 ± 0.18 0.02 ± 0.00
BN-HC-DE 2280.38 ± 15.09 1354.35 ± 44.87 708.20 ± 0.44 93.87 ± 0.05 4.18 ± 0.13 0.01 ± 0.00
BN-HC-DF 2287.45 ± 30.30 1372.02 ± 53.92 708.20 ± 0.44 93.87 ± 0.05 4.24 ± 0.10 0.02 ± 0.00
BN-HC-DT 2283.19 ± 26.33 1346.01 ± 45.16 707.60 ± 0.89 93.79 ± 0.10 20.38 ± 0.78 !0.05 ± 0.00
NB !2380.36 ± 50.23 !1432.11 ± 53.36 !704.60 ± 2.07 !93.39 ± 0.32 0.06 ± 0.00 0.00 ± 0.00
SOYBEAN RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-BDG 549.80 ± 52.43 75.57 ± 12.73 131.80 ± 1.30 96.48 ± 0.80 25.50 ± 1.25 0.10 ± 0.00
BN-HC-HPB !648.62 ± 46.64 !115.11 ± 10.06 !129.40 ± 1.34 !94.72 ± 0.95 !525.54 ± 202.49 !17.23 ± 4.09
BN-HC-DF !682.22 ± 91.60 !152.13 ± 82.49 !129.00 ± 2.34 !94.43 ± 1.60 3.42 ± 0.19 0.06 ± 0.00
NB !730.32 ± 112.99 !267.33 ± 103.20 !128.80 ± 2.77 !94.28 ± 1.76 0.05 ± 0.00 0.00 ± 0.00
BN-HC-DE !808.74 ± 139.12 !312.35 ± 137.43 !126.40 ± 3.28 !92.52 ± 2.17 1.49 ± 0.03 0.05 ± 0.00
BN-HC-ADE !808.01 ± 138.81 !322.17 ± 135.10 !126.40 ± 3.28 !92.52 ± 2.17 1.48 ± 0.02 0.05 ± 0.00
BN-HC-DT !792.47 ± 50.65 !157.82 ± 18.19 !125.20 ± 2.38 !91.65 ± 1.53 14.10 ± 0.95 !0.15 ± 0.00

Table 10: Comparisons over UCI data sets

2167

JAMBEIRO AND WAINER

VOTE RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 1852.76 ± 389.88 954.62 ± 345.06 83.80 ± 1.92 96.32 ± 2.21 7.96 ± 4.79 0.08 ± 0.03
BN-HC-BDG 2078.01 ± 379.00 !1806.33 ± 890.10 83.00 ± 1.58 95.40 ± 1.81 2.85 ± 0.33 0.00 ± 0.00
BN-HC-DT 1985.64 ± 632.81 1190.27 ± 623.88 82.80 ± 2.38 95.17 ± 2.74 1.82 ± 0.12 0.00 ± 0.00
BN-HC-ADE 2143.81 ± 744.24 1376.41 ± 831.41 82.20 ± 3.27 94.48 ± 3.75 0.40 ± 0.02 0.00 ± 0.00
BN-HC-DE 2119.88 ± 719.66 1417.61 ± 816.58 82.20 ± 2.58 94.48 ± 2.97 0.40 ± 0.01 0.00 ± 0.00
BN-HC-DF 2261.07 ± 621.48 1494.57 ± 821.78 81.59 ± 2.70 93.79 ± 3.10 0.46 ± 0.03 0.00 ± 0.00
NB !2979.38 ± 540.11 !4398.98 ± 1905.74 !78.59 ± 2.60 !90.34 ± 2.99 0.05 ± 0.00 0.00 ± 0.00
ZOO RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 1076.29 ± 416.51 321.46 ± 226.17 19.20 ± 0.83 95.04 ± 3.53 1.15 ± 0.43 0.05 ± 0.01
BN-HC-DF 1000.05 ± 537.16 309.72 ± 236.93 19.00 ± 1.00 94.04 ± 4.19 0.17 ± 0.00 0.00 ± 0.00
NB 1106.38 ± 494.76 369.25 ± 238.98 19.00 ± 0.70 94.09 ± 4.07 0.05 ± 0.00 0.00 ± 0.00
BN-HC-BDG 1088.29 ± 614.67 436.05 ± 358.95 19.00 ± 1.00 94.04 ± 4.19 0.51 ± 0.04 0.00 ± 0.00
BN-HC-ADE 1007.12 ± 410.85 285.87 ± 166.44 18.80 ± 0.83 93.09 ± 4.39 0.14 ± 0.00 0.00 ± 0.00
BN-HC-DE 1108.85 ± 335.92 361.89 ± 143.52 18.80 ± 0.83 93.09 ± 4.39 0.13 ± 0.00 0.00 ± 0.00
BN-HC-DT 1303.27 ± 358.63 431.96 ± 241.95 !18.00 ± 1.00 !89.09 ± 4.21 0.40 ± 0.01 0.00 ± 0.00

Table 11: Comparisons over UCI data sets

References

Greg M. Allenby, Robert P. Leone, and Lichung Jen. A dynamic model of purchase timing with
application to direct marketing. Journal of the American Statistical Association, 94(446):365–
374, 1999.

Steen Andreassen, Brian Kristensen, Alina Zalounina, Leonard Leibovici, Uwe Frank, and Hen-
rik C. Schonheyder. Hierarchical dirichlet learning - filling in the thin spots in a database. In
Michel Dojat, Elpida T. Keravnou, and Pedro Barahona, editors, Proceedings of the 9th Confer-
ence on Artificial Intelligence in Medicine (AIME), volume 2780 of Lecture Notes in Computer
Science, pages 204–283. Springer, 2003.

Paul N. Bennett. Assessing the calibration of naive bayes’ posterior estimates. Technical Report
CMU-CS-00-155, School of Computer Science, Carnegie Mellon University, 2000.

Marc Boullé. A bayes optimal approach for partitioning the values of categorical attributes. Journal
of Machine Learning Research, 6:1431–1452, 2005.

Bojan Cestnik. Estimating probabilities: a crucial task in machine learning. In Proceedings of the
European Conference on Artificial Intelligence, pages 147–149, 1990.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote: Syn-
thetic minority over-sampling technique. Journal of Artificial Intelligence and Research, 16:
321–357, 2002.

David Maxwell Chickering, David Heckerman, and Christopher Meek. A bayesian approach to
learning bayesian networks with local structure. In Proceedings of the 13th Conference on Uncer-
tainty in Artificial Intelligence (UAI), pages 80–89, San Franscisco, CA, 1997. Morgan Kaufman.

Pedro Domingos and Michael J. Pazzani. On the optimality of the simple bayesian classifier under
zero-one loss. Machine Learning, 29(2-3):103–130, 1997.

Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. Wiley, New York,
1973.

James P. Egan. Signal Detection Theory and Roc Analysis. Academic Press, New York, 1975.

2168

HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

Nir Friedman and Moises Goldszmidt. Building classifiers using bayesian networks. In Proceedings
of the American Association for Artificial Intelligence (AAAI)/Innovative Applications of Artificial
Intelligence (IAAI), volume 2, pages 1277–1284, 1996a.

Nir Friedman and Moises Goldszmidt. Learning bayesian networks with local structure. In Pro-
ceedings of the Twelfth Conference on Uncertainty in Artificial Inteligence (UAI), pages 252–262,
San Francisco, CA, 1996b. Morgan Kaufmann Publishers.

Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classifiers. Machine Learn-
ing, 29(2-3):131–163, 1997.

Yu Fujimoto and Noboru Murata. Robust estimation for mixture of probability tables based on
beta-likelihood. In Joydeep Ghosh, Diane Lambert, David B. Skillicorn, and Jaideep Srivastava,
editors, Proceedings of the Sixth SIAM International Conference on Data Mining. SIAM, 2006.

Andrew B. Gelman, John S. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis.
Chapman and Hall, 2. edition, 2003.

V. Hamine and P. Helman. Learning optimal augmented bayes networks. Technical Report TR-CS-
2004-11, Computer Science Department, University of New Mexico, 2004.

Jorge Jambeiro Filho and Jacques Wainer. Using a hierarchical bayesian model to handle high
cardinality attributes with relevant interactions in a classification problem. In Proceedings of the
International Joint Conference of Artificial Intelligence (IJCAI). AAAI Press, 2007.

Eamonn J. Keogh and Michael J. Pazzani. Learning augmented bayesian classifiers: A comparison
of distribution-based and classification-based approaches. In Proceeeding of the Seventh Inter-
national Workshop on Artificial Intelligence and Statistics, pages 225–230, Ft. Lauderdale, FL,
1999.

Peter Lenk, Wayne DeSarbo, Paul Green, and Martin Young. Hierarchical bayes conjoint analysis:
recovery of part worth heterogeneity from reduced experimental designs. Marketing Science, 15:
173–191, 1996.

Daniele Micci-Barreca. A preprocessing scheme for high-cardinality categorical attributes in clas-
sification and prediction problems. SIGKDD Explor. Newsl., 3(1):27–32, 2001.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann Publishers Inc., 1988. ISBN 1558604790.

Irina Rish, Joseph Hellerstein, and Jayram Thathachar. An analysis of data characteristics that affect
naive bayes performance. Technical Report RC21993, Watson Research Center, 2001.

Noam Slonim and Naftali Tishby. Agglomerative information bottleneck. In Advances in Neural
Information Processing Systems 12 (NIPS), pages 617–623, Denver, Colorado, USA, 1999. The
MIT Press. ISBN 0-262-19450-3.

Benjamin Stewart, Jonathan Ko, Dieter Fox, and Kurt Konolige. The revisiting problem in mobile
robot map building: A hierarchical bayesian approach. In Christopher Meek and Uffe Kjærulff,
editors, Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence (UAI), pages
551–558, Acapulco, Mexico, 2003. Morgan Kaufmann. ISBN 0-127-05664-5.

2169

JAMBEIRO AND WAINER

Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann Publishers Inc., 1999.

Bianca Zadrozny. Reducing multiclass to binary by coupling probability estimates. In Proceedings
of the Advances in Neural Information Processing Systems 14 (NIPS), Cambridge, MA, 2001.
MIT Press.

Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass proba-
bility estimates. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 694–699. ACM Press, 2002.

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
and naive bayesian classifiers. In Proceedings of the Eighteenth International Conference on
Machine Learning (ICML), pages 609–616, MA, USA, 2001. Morgan Kaufmann. ISBN 1-55860-
778-1.

Harry Zhang and Jiang Su. Naive bayesian classifiers for ranking. Lecture Notes in Computer
Science, 3201:501–512, 2004.

Mu Zhu. Recall, precision and average precision. Technical Report 09, Department of Statistics &
Actuarial Science, University of Waterloo, 2004.

2170

Journal of Machine Learning Research 9 (2008) 2171-2185 Submitted 6/07; Revised 1/08; Published 10/08

A Moment Bound for Multi-hinge Classifiers

Bernadetta Tarigan TARIGAN@STAT.MATH.ETHZ.CH

Sara A. van de Geer GEER@STAT.MATH.ETHZ.CH

Seminar for Statistics
Swiss Federal Institute of Technology (ETH) Zurich
Leonhardstrasse 27, 8092 Zurich, Switzerland

Editor: Peter Bartlett

Abstract
The success of support vector machines in binary classification relies on the fact that hinge loss
employed in the risk minimization targets the Bayes rule. Recent research explores some extensions
of this large margin based method to the multicategory case. We show a moment bound for the so-
called multi-hinge loss minimizers based on two kinds of complexity constraints: entropy with
bracketing and empirical entropy. Obtaining such a result based on the latter is harder than finding
one based on the former. We obtain fast rates of convergence that adapt to the unknown margin.
Keywords: multi-hinge classification, all-at-once, moment bound, fast rate, entropy

1. Introduction

We consider multicategory classification with equal cost. Let Y ∈ {1, . . . ,m} denote one of the m
possible categories, and let X ∈ � d be a feature. We study the classification problem, where the
goal is to predict Y given X with small error. Let {(Xi,Yi)}n

i=1 be an independent and identically
distributed sample from (X ,Y). In the binary case (m = 2) a classifier f :

� d → �
can be obtained

by minimizing the empirical hinge loss

1
n

n

∑
i=1

(1−Yi f (Xi))+ (1)

over a given class of candidate classifiers f ∈ F , where (1−Y f (X))+ := max(0,1−Y f (X)) with
Y ∈ {±1}. Hinge loss in combination with a reproducing kernel Hilbert space (RKHS) regular-
ization penalty is called the support vector machine (SVM). See, for example, Evgeniou, Pontil,
and Poggio (2000). In this paper, we examine the generalization of (1) to the multicategory case
(m > 2). We refer to this classifier as the multi-hinge, although, instead of RKHS-regularization we
will assume a given model class F satisfying a complexity constraint. We show a moment bound
for the excess multi-hinge risk based on two kinds of complexity constraints: entropy with brack-
eting and empirical entropy. Obtaining such a result based on the latter is harder than finding one
based on the former. We obtain fast rates of convergence that adapt to the unknown margin.

There are two strategies to generalize the binary SVM to the multicategory SVM. One strategy
is by solving a series of binary problems; the other is by considering all of the categories at once.
For the first strategy, some popular methods are the one-versus-rest method and the one-versus-one
method. The one-versus-rest method constructs m binary SVM classifiers. The j-th classifier f j

is trained taking the examples from class j as positive and the examples from all other categories

c©2008 Bernadetta Tarigan and Sara A. van de Geer.

TARIGAN AND VAN DE GEER

as negative. A new example x is assigned to the category with the largest values of f j(x). The
one-versus-one method constructs one binary SVM classifier for every pair of distinct categories,
that is, all together m(m−1)/2 binary SVM classifiers are constructed. The classifier f i j is trained
taking the examples from category i as positive and the examples from category j as negative. For
a new example x, if fi j classifies x into category i then the vote for category i is increased by one.
Otherwise the vote for category j is increased by one. After each of the m(m− 1)/2 classifiers
makes its vote, x is assigned to the category with the largest number of votes. See Duan and Keerthi
(2005) and the references therein for an empirical study of the performance of these methods and
its variants.

An all-at-once strategy for SVM loss has been proposed by some authors. For examples, see
Vapnik (2000), Weston and Watkins (1999), Crammer and Singer (2000, 2001), and Guermeur
(2002). Roughly speaking, the idea is similar to the one-versus-rest approach but all the m classifiers
are obtained by solving one problem. (See Hsu and Lin, 2002, for details of the formulations.) Lee,
Lin, and Wahba (2004) (see also Lee, 2002) show that the relationship of the formulations of the
approaches above to the Bayes’ rule is not clear from the literature and that they do not always
implement the Bayes’ rule. They propose a new approach that has good theoretical properties. That
is, the defined loss is Bayes consistent and it provides a unifying framework for both equal and
unequal misclassification costs.

We consider the equal misclassification cost where a correct classification costs 0 and an incor-
rect classification costs 1. The target function f :

� d → � m is defined as an m-tuple of separating
functions with zero-sum constraint ∑m

j=1 f j(x) = 0, for any x ∈ � d . Hence, the classifier induced by
f (·) is

g(·) = arg max
j=1,...,m

f j(·) . (2)

Analogous to the binary case, when applying RKHS-regularization, each component f j(x) is con-

sidered as an element of a RKHS H K = {1}+ HK , for all j = 1, . . . ,m. That is, f j(x) is expressed

as h j(x)+b j with h j ∈ HK and b j some constant. To find f (·) = (f1(·), . . . , fm(·)) ∈ Πm
j=1H K with

the zero-sum constraint, the extension of SVM methodology is to minimize

1
n

n

∑
i=1

m

∑
j=1, j 6=Yi

(f j(Xi)+
1

m−1
)+ +

λ
2

m

∑
j=1

||h j||2HK
. (3)

Based on (3), the multi-hinge loss is now defined as

l(Y, f (X)) :=
m

∑
j=1, j 6=Y

(f j(X)+
1

m−1
)+ . (4)

The binary SVM loss (1) is a special case by taking m = 2. When Y = 1, l(1, f (X)) = (f2(X)+
1)+ = (1− f1(X))+. Similarly, when Y = −1, l(−1, f (X)) = (1 + f1(X))+. Thus, (4) is identical
with the binary SVM loss (1−Y f (X))+, where f1 plays the same role as f .

Using a classifier g defined as in (2), a misclassification occurs whenever g(X) 6= Y . Let P be
the unknown underlying measure of (X ,Y). The prediction error of g is P(g(X) 6= Y). Let p j(x)
denote the conditional probability of category j given x ∈ � d , j = 1, . . . ,m. The prediction error
is minimized by the Bayes classifier g∗ = argmax j=1,...,m p j, and the smallest prediction error is
P(g∗(X) 6= Y).

2172

A MOMENT BOUND MULTI-HINGE CLASSIFIERS

The theoretical multi-hinge risk is the expectation of the empirical multi-hinge loss with respect
to the measure P and is denoted by

R(f) :=
Z

l(y, f (x)) dP(x,y) , (5)

with l(Y, f (X)) defined as in (4). In this setting, Bayes’ rule f ∗ is then an m-tuple separating func-
tions with 1 in the kth coordinate and −1/(m− 1) elsewhere, whenever k = argmax j=1,...,m p j(x),
x ∈ � d . Lemma 1 below shows that multi-hinge loss (4) is Bayes consistent. That is, f ∗ minimizes
multi-hinge risk (5) over all possible classifiers. We write R∗ = R(f ∗), the smallest possible multi-
hinge risk. Lemma 1 is an extension of Bayes consistency of the binary SVM that has been shown
by, for example, Lin (2002), Zhang (2004a) and Bartlett, Jordan, and McAuliffe (2006).

Lemma 1. Bayes classifier f ∗ minimizes the multi-hinge risk R(f).

This lemma can be found in Lee, Lin, and Wahba (2004), Zhang (2004b,c), Tewari and Bartlett
(2005) and Zou, Zhu, and Hastie (2006). We give a self-contained proof in Appendix for com-
pleteness. They establish the conditions needed to achieve the consistency for a general fam-
ily of multicategory loss functions extended from various large margin binary classifiers. They
also show that the SVM-type losses proposed by Weston and Watkins (1999) and Crammer and
Singer (2001) are not Bayes consistent. Tewari and Bartlett (2005) and Zhang (2004b,c) also
show that the convergence to zero (in probability) of the excess multi-hinge risk R(f)−R∗ im-
plies the convergence to zero with the same rate (in probability) of the excess prediction error
P(g(f (X)) 6= Y)−P(g(f ∗(X)) 6= Y).

The RKHS-regularization (3) has attracted some interest. For example, Lee and Cui (2006)
study an algorithm of fitting the entire regularization path and Wang and Shen (2007) study the use
of l1 penalty in place of the l2 penalty. In this paper, we will not study the RKHS-regularization but
we take the minimization of the empirical multi-hinge loss over a given class of candidate classifiers
F satisfying a complexity constraint. That is, we do not invoke a penalization technique.

Let F be a model class of candidate classifiers. For j = 1, . . . ,m, we assume that each f j is a
member of the same class Fo = {h :

� d → �
,h∈ L2(Q)}, with Q the unknown marginal distribution

of X . That is,

F = { f = (f1, . . . , fm) :
m

∑
j=1

f j = 0, f j ∈ Fo} . (6)

Let Pn be the empirical distribution of (X ,Y) based on the observations {(Xi,Yi)}n
i=1 and Qn the

corresponding empirical distribution of X based on X1, . . . ,Xn. We endow F with the following
squared semi-metrics

‖ f − f̃‖2
2,Q :=

m

∑
j=1

Z

| f j − f̃ j|2 dQ , and

‖ f − f̃‖2
2,Qn

:=
m

∑
j=1

1
n

n

∑
i=1

| f j(Xi)− f̃ j(Xi)|2 ,

for all f , f̃ ∈ F . We impose a complexity constraint on the class Fo in term of either the entropy
with bracketing or the empirical entropy. Below we give the definitions of the entropies.

2173

TARIGAN AND VAN DE GEER

Definition of entropy. Let G be a subset of a metric space (Λ,d). Let

H(ε,G ,d) := logN(ε,G ,d) , for all ε > 0 ,

where N(ε,G ,d) is the smallest value of N for which there exist functions g1, . . . ,gN in G , such that
for each g ∈ G , there is a j = j(g) ∈ {1, . . . ,N}, such that

d(g,g j) ≤ ε .

Then N(ε,G ,d) is called the ε-covering number of G and H(ε,G ,d) is called the ε-entropy of G
(for the d-metric).

Definition of entropy with bracketing. Let G be a subset of a metric space (Λ,d) of real-valued
functions. Let

HB(ε,G ,d) := logNB(ε,G ,d) , for all ε > 0 ,

where NB(ε,G ,d) is the smallest value of N for which there exist pairs of functions
{[gL

1 ,g
U
1], . . . , [gL

N ,gU
N]} such that d(gL

j ,g
U
j) ≤ ε for all j = 1, . . . ,N, and such that for each g ∈ G ,

there is a j = j(g) ∈ {1, . . . ,N} such that

gL
j ≤ g ≤ gU

j .

Then NB(ε,G ,d) is called the ε-covering number with bracketing of G and HB(ε,G ,d) is called the
ε-entropy with bracketing of G (for the d-metric).

Let HB(ε,Fo,L2(Q)) and H(ε,Fo,L2(Qn)) denote the ε-entropy with bracketing and the empiri-
cal ε-entropy of the class Fo, respectively. The complexity of a model class can be summarized in a
complexity parameter ρ ∈ (0,1). Let A be some positive constant. We consider classes Fo satisfying
one of the following complexity constraints:

HB(ε,Fo,L2(Q)) ≤ Aε−2ρ , for all ε > 0 , or

H(ε,Fo,L2(Qn)) ≤ Aε−2ρ , for all ε > 0 , a.s. for all n ≥ 1 .

It is straightforward to show that for all ε > 0:

HB(ε,F ,‖ · ‖2,Q) ≤ (m−1) HB(ε(m−1)−1/2, Fo, L2(Q)) ,

H(ε,F ,‖ · ‖2,Qn) ≤ (m−1) H(ε(2(m−1))−1/2, Fo, L2(Qn)) .

We define the minimizer of the empirical multi-hinge loss (without penalty)

f̂n := argmin
f∈F

1
n

n

∑
i=1

m

∑
j=1, j 6=Yi

(f j(Xi)+
1

m−1
)+ , (7)

where the model class F defined as in (6) satisfies either an entropy with bracketing constraint or
an empirical entropy constraint described above.

Besides the model class complexity, the rate of convergence also depends on the so-called mar-
gin condition (see Condition A below) that quantifies the identifiability of the Bayes rule and is
summarized in a margin parameter (or noise level) κ ≥ 1. In Tarigan and van de Geer (2006), a

2174

A MOMENT BOUND MULTI-HINGE CLASSIFIERS

probability inequality has been obtained for l1-penalized excess hinge risk in the binary case that
adapts to the unknown parameters. In this paper, we show a moment bound for the excess multi-
hinge risk R(f̂n)−R∗ of f̂n over the model class F with rate of convergence n−κ/(2κ−1+ρ), which is
faster than n−1/2.

In Section 2 we present our main result based on the margin and complexity conditions. The
proof of the main result is given in Section 3, together with our supporting lemmas. For the sake
of completeness and to avoid distraction, we place the proof of some supporting lemmas in the
Appendix.

2. A Moment Bound for Multi-hinge Classifiers

We first state the margin and the complexity conditions.

Condition A (Margin condition). There exist constants σ > 0 and κ ≥ 1 such that for all f ∈ F ,

R(f)−R∗ ≥ 1
σκ

(m

∑
j=1

Z

| f j − f ∗j | dQ
)κ

.

Condition B1 (Complexity constraint under ε-entropy with bracketing). Let 0 < ρ < 1 and let A
be a positive constant. The ε-entropy with bracketing satisfies the inequality

HB(ε,Fo,L2(Q)) ≤ Aε−2ρ , for all ε > 0 .

Condition B2 (Complexity constraint under empirical ε-entropy). Let 0 < ρ < 1 and let A be a
positive constant. The empirical ε-entropy, almost surely for all n ≥ 1, satisfies the inequality

H(ε,Fo,L2(Qn)) ≤ Aε−2ρ , for all ε > 0 .

Now we come to the main result.

Theorem 2. Assume Condition A is met and that | f j − f ∗j | ≤ M for all j = 1, . . . ,m, and all f =

(f1, . . . , fm) ∈ F . Let f̂n be the multi-hinge loss minimizer defined in (7). Suppose that either
Condition B1 or Condition B2 holds. Then for small values of δ > 0,

�
[R(f̂n)−R∗] ≤ 1+δ

1−δ
inf

{

R(f)−R∗ +C0 n−
κ

2κ−1+ρ : f ∈ F
}

with C0 some constant depending only on m, M, κ, σ, A and ρ.

Condition A follows from the condition on the behaviour of the conditional probabilities p j.
We formulate this in Condition AA below. We require that, for a fixed x ∈ � d , there is no pair of
categories having the same conditional probabilities each of which stays away from 1. Originally

2175

TARIGAN AND VAN DE GEER

the terminology “margin condition” comes from the binary case of the prediction error considered
in the work of Mammen and Tsybakov (1999) and Tsybakov (2004), where the behaviour of p1,
the conditional probability of category 1, is restricted near {x : p1(x) = 1/2}. The “margin” set
{x : p1(x) = 1/2} identifies the Bayes predictor which assigns a new x to class 1 if p1(x) > 1/2
and class 2 otherwise. The margin condition is also called the condition on the noise level, and it is
summarized in a margin parameter κ. Boucheron, Bousquet, and Lugosi (2005, Section 5.2) discuss
the noise condition and its equivalent variants, corresponding to the fast rates of convergence, in the
binary case. Thus, Condition AA is a natural extension for the multicategory case wrt. hinge loss.
Lemma 3 below gives the connection between Condition A and Condition AA. We provide the
proof in the Appendix. For x ∈ X , let pk(x) = max j∈{1,...,m} p j(x) and define

τ(x) := min
j 6=k

{|p j(x)− pk(x)|,1− pk(x)} , (8)

where j and k take values in {1,2, . . . ,m}.

Condition AA. Let τ be defined in (8). There exist constants C ≥ 1 and γ ≥ 0 such that ∀z > 0,

Q({τ ≤ z}) ≤ (Cz)1/γ .

[Here we use the convention (Cz)1/γ = � {z ≥ 1/C} for γ = 0.]

Lemma 3. Suppose Condition AA is met. Then for all f ∈ F with | f j − f ∗j | ≤ M for all j = 1, . . . ,m,

R(f)−R∗ ≥ 1
σM

(m

∑
j=1

Z

| f j − f ∗j | dQ
)1+γ

,

where σM = C (mM(1/γ+1))γ (1+ γ). That is, Condition A holds with σ = (σM)1/κ and κ = 1+ γ.

Remark. In the definition of τ we have the extra piece 1− pk. It is needed for technical reason.
It forces that nowhere in the input space one class can clearly dominate. We refer to the work of
Bartlett and Wegkamp (2006, Section 4) and Tarigan and van de Geer (2006, Section 3.3.1) for
some ideas how to get around this difficulty.

The complexity constraints B1 and B2 cover some interesting classes, including
Vapnik-Chervonenkis (VC) subgraph classes and VC convex hull classes. See, for example, van der
Vaart and Wellner (1996, Section 2.7), van de Geer (2000, Sections 2.4, 3.7, 7.4, 10.1 and 10.3) and
Song and Wellner (2002). In the situation when the approximation error inf f∈F R(f)−R∗ is zero
(the model class F contains the Bayes classifier), Steinwart and Scovel (2005) obtain the same rate
of convergence for the excess hinge risk under the margin condition A and the complexity condition
B2. They consider the RKHS-regularization setting for the binary case instead.

We do not explore the behaviour of the approximation error inf f∈F R(f)−R∗. This problem is
still open and very hard to solve even in the binary case.

3. Proof of Theorem 2

Let f o := argmin f∈F R(f), the minimizer of the theoretical risk in the model class F . As shorthand
notation we write for the loss l f = l f (X ,Y) = l(Y, f (X)). We also write νn(l f) =

√
n (Rn(f)−R(f)).

2176

A MOMENT BOUND MULTI-HINGE CLASSIFIERS

Since Rn(f̂n)−Rn(f) ≤ 0 for all f ∈ F , we have

R(f̂n)−R∗ ≤ −[Rn(f̂n)−R(f̂n)]+ [Rn(f o)−R(f o)]+R(f o)−R∗

≤ |νn(l f̂n
)−νn(l f o)|/

√
n+R(f o)−R∗ . (9)

We call inequality (9) a basic-inequality, following van de Geer (2000). This upper bound enables
us to work with the increments of the empirical process {νn(l f)−νn(l f o) : l f ∈ L} indexed by the
multi-hinge loss l f ∈ L , where L = {l f : f ∈ F }.

The procedure of the proof is based on the proof of Lemma 2.1 in del Barrio et al. (2007), page
206. We write

Zn(l f) :=
|νn(l f)−νn(l f o)|

(

‖l f − l f o‖2,P ∨n−
1

2+2ρ
)1−ρ , l f ∈ L ,

where (a∨b) := max{a,b}, ‖l f ‖2
2,P :=

R

l2
f (x,y) dP(x,y) and ρ is from either Condition B1 or B2.

For short hand of notation, we also write Zn = Zn(l f̂n
). Then

R(f̂n)−R∗ ≤ (Zn/
√

n) (‖l f̂n
− l f o‖1−ρ

2,P ∨n−
1−ρ
2+2ρ) + R(f o)−R∗ . (10)

Applying the triangular inequality and Lemma 4 below gives

‖l f̂n
− l f o‖1−ρ

2,P ≤ (m−1)(1−ρ)/2 (

‖ f̂n − f ∗‖1−ρ
2,Q +‖ f o − f ∗‖1−ρ

2,Q

)

.

Observe that for any f ∈ F with | f j − f ∗j | ≤ M, and for all j, Condition A gives ‖ f − f ∗‖2
2,Q ≤

Mσ (R(f)−R∗)1/κ. Thus,

‖l f̂n
− l f o‖1−ρ

2,P ≤C1

{

[R(f̂n)−R∗](1−ρ)/2κ +[R(f o)−R∗](1−ρ)/2κ
}

,

with C1 = ((m− 1)Mσ)(1−ρ)/2. Denote by R the right hand side of the above inequality. Hence,
from (10) we have

R(f̂n)−R∗ ≤ (Zn/
√

n) (R ∨n−
1−ρ
2+2ρ)+R(f o)−R∗ .

We consider first the case (R ∨n−
1−ρ
2+2ρ) = R . That is,

R(f̂n)−R∗ ≤ Zn√
n

C1

{

[R(f̂n)−R∗](1−ρ)/2κ +[R(f o)−R(f ∗)](1−ρ)/2κ
}

+R(f o)−R∗ .

Two applications of Lemma 5 below yield for all 0 < δ < 1,

R(f̂n)−R∗ ≤ δ(R(f̂n)−R∗)+(1+δ)(R(f o)−R∗)+2
(

C1 Zn/
√

n
)

2κ
2κ−1+ρ δ−

1−ρ
2κ−1+ρ

≤ δ(R(f̂n)−R∗) +(1+δ)
(

R(f o)−R∗ +C2 Zr
n n−

κ
2κ−1+ρ

)

,

with C2 = 2 Cr
1 δ−

1−ρ
2κ−1+ρ and r = 2κ/(2κ−1+ρ). Now it is left to show that

�
[Zr

n] is bounded, say
by some constant C3. Then, C0 = C2C3 in Theorem 2.

To show that
�

[Zr
n] is bounded, we use an exponential tail probability of the supremum of the

weighted empirical process
{Zn(l f) : l f ∈ L} . (11)

2177

TARIGAN AND VAN DE GEER

We recall that HB(ε,F ,‖ · ‖2,Q) ≤ (m−1)HB(ε(m−1)−1/2,Fo,L2(Q)). A key observation is that

HB(ε,L ,L2(P)) ≤ (m−1) HB(ε(m−1)−1/2,F ,‖ · ‖2,Q) ,

by Lemma 4. It gives an upper bound for the ε-entropy with bracketing of the model class L :
HB(ε,L ,L2(P)) ≤ Aoε−2ρ, for all ε > 0, with Ao = A(m− 1)2+2ρ. Under Condition B1, an ap-
plication of Lemma 5.14 in van de Geer (2000), presented below in Lemma 6, gives the desired
exponential tail probability. Hence, for some positive constant c,

�
[Zr

n] =
Z c

0

�
(Zn ≥ t1/r) dt +

Z ∞

c

�
(Zn ≥ t1/r) dt

≤ c +
Z ∞

0
c exp(− t1/r

c2) dt = c+ rc2r+1Γ(r) .

For the case R ≤ n−(1−ρ)/(2+2ρ), we have

R(f̂n)−R∗ ≤ Zn n−1/(1+ρ) + R(f o)−R∗ .

We conclude by noting that n−1/(1+ρ) ≤ n−κ/(2κ−1+ρ), where κ ≥ 1 and 0 < ρ < 1.
Now we consider the case where Condition B2 holds instead of B1. By virtue of the proof

above, we need only to verify an exponential probability of the supremum of the process (11) under
Condition B2 instead of B1. This is done by employing Lemmas 7–9 below. Again, a key observa-
tion is that Lemma 4 and Condition B2 give us H(ε,L ,L2(Pn)) ≤ A(m−1)2+2ρε−2ρ. �

Lemma 4 gives an upper bound of the squared L2(P)-metric of the excess loss in terms of
‖ · ‖2,Q-metric.

Lemma 4.
�

[(l f (X ,Y)− l f ∗(X ,Y))2] ≤ (m−1)∑m
j=1

R | f j − f ∗j |2 dQ .

Proof. We write ∆(f , f ∗) =
�

Y |X [(l f (X ,Y)− l f ∗(X ,Y))2|X = x] and recall that p j(x) = P(Y = j|X =

x), for all j = 1, . . . ,m. We fix an arbitrary x ∈ � d . Definition of the loss gives

∆(f , f ∗) =
m

∑
j=1

p j

(

∑
i6= j

(fi +
1

m−1
)+− (f ∗i +

1
m−1

)+

)2

=
m

∑
j=1

p j

(

∑
i∈I+(j)

(fi − f ∗i)+ ∑
i∈I−(j)

(− 1
m−1

− f ∗i)
)2

,

where I+(j) = {i 6= j : fi ≥ −1/(m− 1), i = 1, . . . ,m} and I−(j) = {i 6= j : fi < −1/(m−
1), i = 1, . . . ,m}. Use the facts that (∑n

i=1 ai)
2 ≤ n∑n

i=1 a2
i for all n ∈ � and ai ∈

�
, and that

max{|I+(j)|, |I−(j)|} ≤ m−1, to obtain

∆(f , f ∗) ≤ (m−1)
m

∑
j=1

p j

(

∑
i∈I+(j)

(fi − f ∗i)2 + ∑
i∈I−(j)

(− 1
m−1

− f ∗i)2
)

.

Clearly, |−1/(m−1)− f ∗i | ≤ | fi − f ∗i | for all i ∈ I−(j). Hence,

∆(f , f ∗) ≤ (m−1)
m

∑
j=1

p j (∑
i6= j

| fi − f ∗i |2) = (m−1)
m

∑
j=1

(1− p j)| f j − f ∗j |2 ,

2178

A MOMENT BOUND MULTI-HINGE CLASSIFIERS

where the last equality is obtained using ∑m
j=1 p j = 1. We conclude the proof by bounding 1− p j

with 1 for all j and integrating over all x ∈ � d wrt. the marginal distribution Q. �

The technical lemma below is an immediate consequence of Young’s inequality (see, for ex-
ample, Hardy, Littlewood, and Pólya, 1988, Chapter 8.3), using some straightforward bounds to
simplify the expressions.

Lemma 5 (Technical Lemma). For all positive ν, t, δ and κ > β:

νtβ/κ ≤ δt + ν
κ

κ−β δ
−β

κ−β .

To ease the exposition, throughout Lemma 6 and Lemma 7 we write ‖ · ‖ = ‖ · ‖2,Q and ‖ · ‖n =
‖ · ‖2,Qn for the L2(Q)-norm and the L2(Qn)-norm, respectively.

Lemma 6 (van de Geer, 2000, Lemma 5.14). For a probability measure Q, let H be a class of
uniformly bounded functions h in L2(Q), say suph∈H |h−ho|∞ < 1, where ho is a fixed but arbitrary
function in H . Suppose that

HB(ε,H ,L2(Q)) ≤ Aoε−2ρ , for all ε > 0 ,

with 0 < ρ < 1 and Ao > 0. Then for some positive constants c and no depending only on ρ and Ao,

� (

sup
h∈H

|νn(h)−νn(ho)|
(

‖h−ho‖∨n−
1

2+2ρ
)1−ρ ≥ t

)

≤ c exp(−t/c2) ,

for all t > c and n > no.

Lemma 7. For a probability measure Q on (Z,A), let H be a class of uniformly bounded functions
h in L2(Q), say suph∈H |h−ho|∞ < 1, where ho is a fixed but arbitrary element in H . Suppose that

H(ε,H ,L2(Qn)) ≤ Aoε−2ρ , for all ε > 0 ,

with 0 < ρ < 1 and Ao > 0. Then for some positive constants c and no depending on ρ and Ao,

� (

sup
h∈H

|νn(h)−νn(ho)|
(

‖h−ho‖∨n−
1

2+2ρ
)1−ρ ≥ t

)

≤ c exp(−t/c2) ,

for all t > c and n > no.

Proof. For n≥ (t2/8)1+ρ/(1−ρ), Chebyshev’s inequality and a symmetrization technique (see, for ex-
ample, van de Geer, 2000, page 32) give

�
(

sup
h∈H

|νn(h)−νn(ho)|
(

‖h−ho‖∨n−1/(2+2ρ)
)1−ρ ≥ t

)

2179

TARIGAN AND VAN DE GEER

≤ 4
�

(

sup
h∈H

|νε
n(h)−νε

n(h
o)|

(

‖h−ho‖n ∨n−1/(2+2ρ)
)1−ρ ≥

√
t/4

)

(12)

+ 4
�

(

sup
h∈H

‖h−ho‖1−ρ
n

(

‖h−ho‖∨n−1/(2+2ρ)
)1−ρ ≥

√
t/4

)

, (13)

where νε
n(h) is the symmetrized version of the νn(h). That is, νε

n(h) = (1/
√

n)∑n
i=1 εih(Zi), where

{εi}n
i=1 are independent random variables, independent of {Zi}n

i=1, with
�

(εi = 1) =
�

(εi = −1) =
1/2 for all i = 1, . . . ,n.

To handle (12), we divide the class H into two disjoint classes where the empirical distance
‖h− ho‖n is smaller or larger than n−1/(2+2ρ). Write Hn = {h ∈ H : ‖h− ho‖n ≤ n−1/(2+2ρ)}. By
Lemma 5.1 in van de Geer (2000), stated below in Lemma 8, for some positive constant c1,

� (

sup
h∈Hn

|νε
n(h)−νε

n(h
o)|

n−(1−ρ)/(2+2ρ)
≥
√

t/4
)

≤ c1 exp
(

− t n1/(1+ρ)

64 c2
1

)

.

Let J = min{ j > 1 : 2− j < n−1/(2+2ρ)}. We apply the peeling device on the set {h ∈ H : 2− j ≤
‖h−ho‖n ≤ 2− j+1, j = 1, . . . ,J} to obtain that, for all t > 1,

� (

sup
h∈H c

n

|νε
n(h)−νε

n(h
o)|

‖h−ho‖1−ρ
n

≥
√

t/4
∣

∣

∣
Z1, . . . ,Zn

)

≤
J

∑
j=1

� (

sup
h∈H

‖h−ho‖n≤2− j+1

|νε
n(h)−νε

n(h
o)| ≥

√
t

4
2− j(1−ρ) | Z1, . . . ,Zn

)

≤
J

∑
j=1

c2 exp(− t 22ρ j

216 c2
2

) ≤ c exp(−t/c2) .

To handle (13), we use a modification of Lemma 5.6 in van de Geer (2000), stated below in
Lemma 9, where we take t such that (

√
t/4)1/(1−ρ) ≥ 14u. �

Lemma 8 (van de Geer, 2000, Lemma 5.1). Let Z1, . . . ,Zn, . . . be i.i.d. with distribution Q on
(Z,A). Let {εi}n

i=1 be independent random variables, independent of {Zi}n
i=1, with

�
(εi = 1) =�

(εi = −1) = 1/2 for all i = 1, . . . ,n. Let H ⊂ L2(Q) be a class of functions on Z. Write νε
n(h) :=

1√
n ∑n

i=1 εih(Zi), with h ∈ H . Let

H (δ) := {h ∈ H : ‖h−ho‖2,Q ≤ δ} , δ̂n := sup
h∈H (δ)

‖h−ho‖2,Qn ,

where ho is a fixed but arbitrary function in H and Qn is the corresponding empirical distribution

of Z based on {Zi}n
i=1. For a ≥ 8C

(

R δ̂n
a/(32

√
n)

H1/2(u,H ,Qn)du ∨ δ̂n

)

, where C is some positive

constant, we have

�
(

sup
h∈H (δ)

|νε
n(h)−νε

n(h
o)| ≥ a

4

∣

∣

∣

∣

Z1, . . . ,Zn

)

≤C exp(− a2

64C2δ̂2
n

) .

2180

A MOMENT BOUND MULTI-HINGE CLASSIFIERS

The following lemma is a modification of Lemma 5.6 in van de Geer (2000).

Lemma 9. For a probability measure S on (Z,A), let H be a class of uniformly bounded functions
independent of n with suph∈H |h|∞ ≤ 1. Suppose that almost surely for all n ≥ 1,

H(ε,H ,L2(Sn)) ≤ Aoε−2ρ, for all ε > 0 ,

with 0 < ρ < 1 and Ao > 0. Then, for all n,

� (

sup
h∈H

‖h‖2,Sn

‖h‖2,S ∨n−
1

2+2ρ
≥ 14u

)

≤ 4 exp(−u2 n
ρ

1+ρ) ,

for all u ≥ 1.

Proof. Let {δn} be a sequence with δn → 0, nδ2
n → ∞, nδ2

n ≥ 2AoH(δn) for all n with H(δn) = δ−2ρ
n .

We apply the randomization device in Pollard (1984, page 32), as follows. Let Zn+1, . . . ,Z2n be
an independent copy of Z1, . . . ,Zn. Let ω1, . . . ,ωn be independent random variables, independent
of Z1, . . . ,Z2n, with

�
(ωi = 1) =

�
(ωi = 0) = 1/2 for all i = 1, . . . ,n. Set Zi

′ = Z2i−1+ωi and
Zi

′′ = Z2i−ωi , i = 1, . . . ,n, and Sn
′ = (1/n)∑n

i=1 δZi
′ , Sn

′′ = (1/n)∑n
i=1 δZi

′′ , and S̄2n = (Sn
′ +Sn

′′)/2.
Since the class is uniformly bounded by 1, an application of Chebyshev’s inequality gives that for
each h in H ,

� (‖h‖2,Sn

‖h‖2,S ∨δn
≤ 2u

)

≥ 1− 1
4u2 ≥ 3/4,

for all u≥ 1. Use a symmetrization lemma of Pollard (1984, Lemma II.3.8), see Appendix, to obtain

� (

sup
h∈H

‖h‖2,Sn

‖h‖2,S ∨δn
≥ 14u

)

≤ 2
� (

sup
h∈H

|‖h‖2,Sn
′ −‖h‖2,Sn

′′ |
‖h‖2,S ∨δn

≥ 12u
)

.

The peeling device on the set

{h ∈ H : (2u) j−1δn ≤ ‖h‖2,S ≤ (2u) jδn , j = 1,2, . . .}

and the inequality in Pollard (1984, page 33) give

� (

sup
h∈H

|‖h‖2,Sn
′ −‖h‖2,Sn

′′ |
‖h‖2,S ∨δn

≥ 12u

∣

∣

∣

∣

Z1, . . . ,Zn

)

≤
∞

∑
j=1

� (

sup
h∈H

‖h‖2,S≤(2u) jδn

|‖h‖Sn
′ −‖h‖Sn

′′ | ≥ 6(2u) jδn | Z1, . . . ,Zn

)

≤
∞

∑
j=1

2exp
(

H(
√

2(2u) jδn,H , S̄2n)−2n(2u)2 jδ2
n

)

≤
∞

∑
j=1

2exp
(

H((2u) jδn,H ,Sn
′)+H((2u) jδn,H ,Sn

′′)−2n(2u)2 jδ2
n

)

2181

TARIGAN AND VAN DE GEER

≤
∞

∑
j=1

2exp
(

−n(2u)2 jδ2
n

)

, (14)

where the last inequality is obtained using that since nδ2
n ≥ 2AoH(δn), also nt2 ≥ 2AoH(t) for all

t ≥ δn (here t = (2u) jδn). Observe that, since (2u)2 j ≥ (2u)2 j > u2 j for all u ≥ 1 and j ≥ 1, we
have

∞

∑
j=1

exp(−n(2u)2 jδ2
n) ≤ 2exp(−u2nδ2

n) , (15)

whenever nδ2
n > log2. We finish the proof by combining (14) and (15), and taking δn = n−

1
2+2ρ . �

Appendix A.

Proof of Lemma 1. We write L(f (x)) =
�

Y |X [l(Y, f (X))|X = x] and recall that p j(x) = P(Y =
j|X = x) for all j = 1, . . . ,m, and that f = (f1, . . . , fm) with ∑m

j=1 f j = 0. Definition (4) of the loss
and the fact that ∑m

j=1 p j = 1 give

L(f) =
m

∑
j=1

p j(
m

∑
k=1, k 6= j

(fk +
1

m−1
)+) =

m

∑
j=1

(1− p j)(f j +
1

m−1
)+ .

Let pk = max j∈{1,...,m} p j. Here f ∗j = −1/(m− 1) for all j 6= k, and f ∗k = 1. Let J+(k) = { j 6=
k : f j ≥−1/(m−1) , j = 1, . . . ,m} and J−(k) = { j 6= k : f j <−1/(m−1) , j = 1, . . . ,m}. Write

∆(f) := L(f)−L(f ∗)

= ∑
j 6=k

(1− p j)(f j +
1

m−1
)+ + (1− pk)(fk +

1
m−1

)+ − (1− pk)(1+
1

m−1
) .

We first consider the case fk ≥−1/(m−1). Here,

∆(f) = (1− pk)(fk −1) + ∑
j 6=k

(1− p j)(f j +
1

m−1
)+ .

The zero-sum constraint ∑m
j=1 f j = 0 simply implies fk − 1 = −∑ j 6=k(f j +

1
m−1). Divide the sum

into the sets J+(k) and J−(k) to obtain

∆(f) = ∑
j∈J+(k)

(pk − p j) (f j +
1

m−1
) + (1− pk) ∑

j∈J−(k)

| f j +
1

m−1
| .

For the case fk < −1/(m−1), observe that

m
m−1

= ∑
j 6=k

(f j +
1

m−1
)+ fk +

1
m−1

< ∑
j 6=k

(f j +
1

m−1
)

to obtain

∆(f) = (1− pk) (− m
m−1

)+ ∑
j 6=k

(1− p j)(f j +
1

m−1
)+

> (pk −1) ∑
j 6=k

(f j +
1

m−1
)+ ∑

j 6=k

(1− p j)(f j +
1

m−1
)+

= ∑
j∈J+(k)

(pk − p j) (f j +
1

m−1
) + (1− pk) ∑

j∈J−(k)

| f j +
1

m−1
| .

2182

A MOMENT BOUND MULTI-HINGE CLASSIFIERS

In both cases clearly L(f)−L(f ∗) is always non-negative since pk− p j is non-negative for all j 6= k.
It follows that

R(f)−R(f ∗) =
m

∑
k=1

Z

(L(f)−L(f ∗)) � (pk = max
j=1,...,m

p j) dQ

is always non-negative, with Q the unknown marginal distribution of X . �

Proof of Lemma 3. Let τ be defined as in (8). We write L(f (x)) =
�

Y |X [l(Y, f (X))|X = x] and
recall that p j(x) = P(Y = j|X = x) for all j = 1, . . . ,m, and that f = (f1, . . . , fm) with ∑m

j=1 f j = 0.
From the proof of Lemma 1, clearly

(L(f)−L(f ∗)) � (pk = max
j=1,...,m

p j) ≥ τ ∑
j 6=k

| f j − f ∗j | ≥
τ
2

m

∑
j=1

| f j − f ∗j | ,

where the second inequality is obtained from the fact that | fk − f ∗k | ≤ ∑ j 6=k | f j − f ∗j |. That is, the
excess risk is lower bounded by

1
2

m

∑
j=1

Z

τ| f j − f ∗j |dQ .

It implies that, for all z > 0,

R(f)−R∗ ≥ z
2

m

∑
j=1

[

Z

| f j − f ∗j |dQ−
Z

τ≤z
| f j − f ∗j |dQ

]

.

Since | f j − f ∗j | ≤ M for all j, and by Condition AA, the second integral in the inequality above can

be upper bounded by M(Cz)1/γ. Thus, for all z > 0,

R(f)−R∗ ≥ z
2

m

∑
j=1

Z

| f j − f ∗j |dQ − z
2

mM(Cz)1/γ .

We take z =
(

∑m
j=1

R | f j − f ∗j |dQ
)γ

/
(

mMC1/γ(1+ γ−1)
)γ

when γ > 0, and z ↑ 1/C when γ = 0. �

Symmetrization lemma (Pollard, 1984, Lemma II.3.8). Let {Z(t) : t ∈ T} and {Z ′(t) : t ∈ T} be
independent stochastic process sharing an index set T . Suppose there exist constants β > 0 and
α > 0 such that

�
(|Z(t)| ≤ α) ≥ β for every t ∈ T . Then

� (

sup
t
|Z(t)| > ε

)

≤ β−1 � (

sup
t

|Z(t)−Z′(t)| > ε−α
)

.

References

Peter L. Bartlett and Marten H. Wegkamp. Classification with a reject option using a hinge loss.
Technical report, U.C. Berkeley, 2006.

Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification and risk bounds.
Journal of the American Statistical Association, 101(473):138–156, 2006.

2183

TARIGAN AND VAN DE GEER

Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: a survey of
some recent advances. ESAIM: Probability and Statistics, 9:323–375, 2005.

Koby Crammer and Yoram Singer. On the learnability and design of output codes for multiclass
problems. In Proceeding of the 13th Annual Conference on Computational Learning Theory,
pages 35–46. Morgan Kaufmann, 2000.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. Journal of Machine Learning Research, 2:265–292, 2001.

Eustasio del Barrio, Paul Deheuvels, and Sara A. van de Geer. Lectures on Empirical Processes.
EMS Series of Lectures in Mathematics. European Mathematical Society, 2007.

Kaibo Duan and S. Sathiya Keerthi. Which is the best multiclass svm method? an empirical study.
In Multiple Classifier Systems, number 3541 in Lecture Notes in Computer Science, pages 278–
285. Springer Berlin/Heidelberg, 2005.

Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. Regularization networks and sup-
port vector machines. Advances in Computational Mathematics, 13:1–50, 2000.

Yann Guermeur. Combining discriminant models with new multiclass svms. Pattern Analysis &
Applications, 5:168–179, 2002.

Godfrey H. Hardy, John E. Littlewood, and George Pólya. Inequalities. Cambridge University
Press, second edition, 1988.

Chih-Wei Hsu and Chih-Jen Lin. A comparison methods for multiclass support vector machines.
Neural Networks, IEEE Transactions on, 13(2):415–425, 2002.

Yoonkyung Lee. Multicategory Support Vector Machines, Theory and Application to the Classifi-
cation of Microarray Data and Satellite Radiance Data. PhD thesis, University of Wisconsin-
Madison, Departement of Statistics, 2002.

Yoonkyung Lee and Zhenhuan Cui. Characterizing the solution path of multicategory support vector
machines. Statistica Sinica, 16(2):391–409, 2006.

Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory support vector machines: Theory and
application to the classification of microarray data and satellite radiance data. Journal of the
American Statistical Association, 99(465):67–81, 2004.

Yi Lin. Support vector machines and the bayes rule in classification. Data Mining and Knowledge
Discovery, 6(3):259–275, 2002.

Enno Mammen and Alexandre B. Tsybakov. Smooth discrimination analysis. Ann. Statist., 27(6):
1808–1829, 1999.

David Pollard. Convergence of Stochastic Processes. Springer-Verlag New York Inc., 1984.

Shuguang Song and Jon A. Wellner. An upper bound for uniform entropy numbers.
Technical report, Departement of Statistics, University of Washington, 2002. URL
www.stat.washington.edu/www/research/reports/#2002/tr409.ps.

2184

A MOMENT BOUND MULTI-HINGE CLASSIFIERS

Ingo Steinwart and Clint Scovel. Fast rates for support vector machines. In P. Auer and R. Meir,
editors, COLT, volume 3559 of Lecture Notes in Computer Science, pages 279–294, 2005.

Bernadetta Tarigan and Sara A. van de Geer. Classifiers of support machine type with l1 complexity
regularization. Bernoulli, 12(6):1045–1076, 2006.

Ambuj Tewari and Peter L. Bartlett. On the consistency of multiclass classification methods. In
P. Auer and R. Meir, editors, COLT, volume 3559 of Lecture Notes in Computer Science, pages
143–157, 2005.

Alexandre B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statis-
tics, 32:135–166, 2004.

Sara A. van de Geer. Empirical Processes in M-estimation. Cambridge University Press, 2000.

Aad W. van der Vaart and Jon A. Wellner. Weak Convergence and Empirical Processes. Springer
Series in Statistics. Springer-Verlag, New York, 1996.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 2000.

Lifeng Wang and Xiaotong Shen. On l1-norm multiclass support vector machines: Methodology
and theory. Journal of the American Statistical Association, 102(478):583–594, 2007.

Jason Weston and Chris Watkins. Multi-class support vector machines. In Proceedings of ESANN99,
1999.

Tong Zhang. Statistical behaviour and consistency of classification methods based on convex risk
minimization. The Annals of Statistics, 32(1):56–134, 2004a. With discussion.

Tong Zhang. Statistical analysis of some multi-category large margin classification methods. Jour-
nal of Machine Learning Research, 5:1225–1251, 2004b.

Tong Zhang. Statistical analysis of some multi-category large margin classification methods. Jour-
nal of Machine Learning Research, 5:1225–1251, 2004c.

Hui Zou, Ji Zhu, and Trevor Hastie. The margin vector, admissible loss and multi-class margin-
based classifiers. Technical report, Statistics Departement, Stanford University, 2006.

2185

Journal of Machine Learning Research 9 (2008) 2187-2216 Submitted 4/07; Revised 6/08; Published 10/08

Ranking Individuals by Group Comparisons

Tzu-Kuo Huang R93002@CSIE.NTU.EDU.TW

Chih-Jen Lin CJLIN@CSIE.NTU.EDU.TW

Department of Computer Science
National Taiwan University
Taipei 106, Taiwan

Ruby C. Weng CHWENG@NCCU.EDU.TW

Department of Statistics
National Chengchi University
Taipei 116, Taiwan

Editor: Greg Ridgeway

Abstract
This paper proposes new approaches to rank individuals from their group comparison results. Many
real-world problems are of this type. For example, ranking players from team comparisons is im-
portant in some sports. In machine learning, a closely related application is classification using
coding matrices. Group comparison results are usually in two types: binary indicator outcomes
(wins/losses) or measured outcomes (scores). For each type of results, we propose new models for
estimating individuals’ abilities, and hence a ranking of individuals. The estimation is carried out
by solving convex minimization problems, for which we develop easy and efficient solution proce-
dures. Experiments on real bridge records and multi-class classification demonstrate the viability
of the proposed models.
Keywords: ranking, group comparison, binary/scored outcomes, Bradley-Terry model, multi-
class classification

1. Introduction

We address an interesting problem of estimating individuals’ abilities from their group comparison
results. This problem arises in some sports. One can evaluate a basketball player by his/her aver-
age points, but this criterion may be unfair as it ignores opponents’ abilities. Comparison results
in some sports, such as bridge, even do not reveal any direct information related to individuals’
abilities. In a bridge match two partnerships form a team to compete with another two. The match
record fairly reflects which two partnerships are better, but a partnership’s raw score, depending on
different boards, does not indicate its ability. Finding reasonable individual rankings using all group
comparison records is thus a challenging task. Another application in machine learning/statistics is
multi-class classification by coding matrices (Dietterich and Bakiri, 1995; Allwein et al., 2001).
This technique decomposes a multi-class problem into several two-class problems, each of which
is considered as the comparison between two disjoint subsets of class labels. The label with the
greatest ability then serves as the prediction.

This line of research stems from the study of paired comparisons (David, 1988), in which one
group/team consists of only one individual, and individuals’ abilities are estimated from paired
comparison results. Several models have been proposed, among which the most popular one is the

c©2008 Tzu-Kuo Huang, Chih-Jen Lin and Ruby C. Weng.

HUANG, LIN AND WENG

Bradley-Terry model (Bradley and Terry, 1952): suppose there are k individuals whose abilities are
indicated by a non-negative vector p = [p1 p2 . . . pk]

T . They proposed that

P(individual i beats j) =
pi

pi + p j
. (1)

If comparisons are independent, then the maximum likelihood estimate of p is obtained by solving

min
p

−∑
i6= j

ni j log
pi

pi + p j

subject to
k

∑
j=1

p j = 1, p j ≥ 0, j = 1, . . . ,k,
(2)

where ni j is the number of times individual i beats j. The normalizing constraint in (2) is imposed
because the objective function is scale-invariant. The solution to (2) can be found via a simple
iterative procedure, which converges to the unique global minimum under mild conditions. Detailed
discussions are in, for example, Hunter (2004).

Going from paired to group comparisons, we consider k individuals {1, . . . ,k} having m com-
parisons. The ith comparison setting involves a subset Ii, which is separated as two disjoint teams,
I+
i and I−i . They have ni = n+

i + n−i comparisons, among which I+
i and I−i win n+

i and n−i times,
respectively. Before seeking sophisticated models, an intuitive way to estimate the sth individual’s
ability is by the number of its winning comparisons normalized by the total number it involves:

∑i:s∈I+
i

n+
i +∑i:s∈I−i

n−i
∑i:s∈Ii

ni
. (3)

In the case of paired comparisons, several authors (David, 1988; Hastie and Tibshirani, 1998) have
shown that if

nsi > 0, nis > 0, and nsi +nis = constant,∀s, i, (4)

then the ranking by (3) is identical to that by the solution of (2). Note that under (4), the denominator
of (3) is the same over all s, so the calculation is simplified to

∑
i:i6=s

nsi,

Although the above property may provide some support of (3), this approach has several problems.
Firstly, (4) may not hold in most applications of paired comparisons. Secondly, (3) does not consider
teammates’ abilities, so strong players and weak ones receive the same credits. Because of these
deficiencies, we use (3) as a baseline in experiments in Section 4 to demonstrate the need for more
advanced methods. We refer to this approach as AVG.

As a direct extension of (1), Huang et al. (2006b) proposed a generalized Bradley-Terry model
for group comparisons:

P(I+
i beats I−i) =

∑ j: j∈I+
i

p j

∑ j: j∈Ii
p j

, (5)

2188

RANKING INDIVIDUALS BY GROUP COMPARISONS

which assumes that a team’s ability is the sum of its members’. Under the assumption that com-
parisons are independent, individuals’ abilities can be estimated by minimizing the negative log-
likelihood of (5):

min
p

−
m

∑
i=1

(

n+
i log

∑ j: j∈I+
i

p j

∑ j: j∈Ii
p j

+n−i log
∑ j: j∈I−i

p j

∑ j: j∈Ii
p j

)

subject to
k

∑
j=1

p j = 1, p j ≥ 0, j = 1, . . . ,k.

(6)

Huang et al. (2006b) pointed out that (6) may not be a convex optimization problem, so global
minima are not easy to obtain. Zadrozny (2002) was the first attempt to solve (6) by an iterative
procedure, which, however, may fail to converge to a stationary point (Huang et al., 2006b). The
algorithm of Huang et al. (2006b) converges to a stationary point under certain conditions. We refer
to this approach as GBT.ML (Generalized Bradley-Terry Model using Maximum Likelihood).

Both models (1) and (6) consider comparisons’ “binary” outcomes, that is, wins and losses.
However, in many comparisons, results are also quantities reflecting opponents’
performances/strengths, such as points in basketball or soccer games. Some work use these “mea-
sured” outcomes for paired comparisons; an example is Glickman (1993): instead of modeling the
probability that one individual beats another, he considers the difference in two individuals’ abili-
ties as a random variable, whose realization is the difference in two scores. Individuals’ abilities are
then estimated via maximizing the likelihood.

In this paper we focus on the batch setting, under which individuals’ abilities are not estimated
until all comparisons are finished. This setting is suitable for annual sports events, such as the
Bermuda Bowl for bridge considered in Section 4, where the goal is to rank participants according
to their performances in the event. However, in some applications, competitions continue to take
place without a clear end and a real-time ranking is required. An example is online gaming, where
players make teams to compete against one another anytime they wish and expect a real-time update
of their ranking right after a game is over. Several work deal with such an online scenario. For
example, Herbrich and Graepel (2007) proposed the TrueSkillTM system, which generalizes the Elo
system used in Chess (Elo, 1986). The system follows a Bayesian framework and obtains real-time
rankings by an online learning scheme called Gaussian density filtering (Minka, 2001). Menke
and Martinez (2007) re-parameterized the Bradley-Terry model (2) as a single-layer artificial neural
network (ANN) and extended it for group competitions. Individuals’ abilities are estimated by
training the ANN with the delta rule, a typical online or incremental learning technique.

We managed to advance the state of the art in two directions. On the one hand, for comparisons
with binary outcomes, we propose a new exponential model in Section 2. The main advantage over
Huang et al. (2006b) is that one can estimate individuals’ abilities by minimizing unconstrained
convex formulations. Hence global minima are easily obtained. On the other hand, we propose in
Section 3 two models for comparisons with measured outcomes, which we call scored outcomes.
The induced optimization problems are also unconstrained and convex; simple solution procedures
are presented. This section may be the first study on finding individuals’ abilities from scored group
comparisons. Section 4 ranks partnerships in real bridge matches with the proposed approaches.
Properties of different methods and their relations are studied in Section 5, which helps to explain
experimental results. Section 6 demonstrates applications in multi-class classification. Section 7
concludes the work and discusses possible future directions.

2189

HUANG, LIN AND WENG

Part of this work appears in a conference paper (Huang et al., 2006a).

2. Comparisons with Binary Outcomes

We denote individuals’ abilities as a vector v ∈ Rk, −∞ < vs < ∞, s = 1, . . . ,k. Unlike p used in (5),
v may have negative values. A team’s ability is then defined as the sum of its members’: for I+

i and
I−i , their abilities are respectively

T +
i ≡ ∑

s:s∈I+
i

vs and T−i ≡ ∑
s:s∈I−i

vs. (7)

We consider teams’ actual performances as random variables Y +
i and Y−i , 1≤ i≤ m and define

P(I+
i beats I−i)≡ P(Y +

i −Y−i > 0). (8)

The distribution of Y +
i and Y−i is generally unknown, but a reasonable choice should place the mode

(the value at which the density function is maximized) around T +
i and T−i . To derive a computation-

ally simple form for (8), we assume that Y +
i (and similarly Y−i) has a doubly-exponential extreme

value distribution with
P(Y +

i ≤ y) = exp(−e−(y−T +
i)), (9)

whose mode is exactly T +
i . Suppose Y +

i is independent of Y−i , from (8) and (9) we have

P(I+
i beats I−i) =

eT +
i

eT +
i + eT−i

. (10)

The derivation is in Appendix A. One may assume other distributions (e.g., normal) in (9), but
the resulting model is more complicated than (10). Such differences already occur for paired com-
parisons, where David (1988) gave some discussion. Thus (10) is our proposed model for binary
outcomes.

For paired comparisons (i.e., each individual forms a team), (10) reduces to

P(individual i beats individual j) =
evi

evi + ev j
,

which is an equivalent re-parameterization (David, 1988; Hunter, 2004) of the Bradley-Terry model
(1) by

pi ≡
evi

∑k
j=1 ev j

.

Therefore, our model (10) can also be considered as a generalized Bradley-Terry model. This
re-parameterization however does not extend to the case of group comparisons, so (10) and (5)
are different. Interestingly, (10) is a conditional exponential model or a maximum entropy model
(Jaynes, 1957a,b), which is commonly used in the computational linguistic community (Berger
et al., 1996). Thus we can use existing properties of this type of models.

Following the proposed model (10), we estimate v by using available comparison results. The
following two sub-sections give two approaches: one minimizes a regularized least square formula,
and the other minimizes the negative log-likelihood. Both are unconstrained convex optimization
problems. Their differences are discussed in Section 5.

2190

RANKING INDIVIDUALS BY GROUP COMPARISONS

2.1 Regularized Least Square (Ext-B.RLS)

Recall that n+
i and n−i are respectively the number of comparisons teams I+

i and I−i win. From (10),
we have

eT +
i

eT +
i + eT−i

≈
n+

i

n+
i +n−i

,

and therefore

eT +
i −T−i =

eT +
i

eT−i
≈

n+
i

n−i
.

If n+
i 6= 0 and n−i 6= 0, one can solve

min
v

m

∑
i=1

(

(T +
i −T−i)− log

n+
i

n−i

)2

(11)

to estimate the vector v of individuals’ abilities. In case of n+
i = 0 or n−i = 0, a simple solution is

adding a small number to all n+
i and n−i . This technique is widely used in the computational linguis-

tic community, known as the “add-one smoothing” for dealing with the zero-frequency problem. To
represent (11) in a simpler form, we define a vector d ∈ Rm with

di ≡ log
n+

i

n−i
,

and a “comparison setting matrix” G ∈ Rm×k with

Gi j ≡

1 if individual j ∈ I+
i ,

−1 if individual j ∈ I−i ,

0 if individual j 6∈ Ii.

(12)

Take bridge in teams of four as an example. An individual stands for a partnership, so G’s jth
column records the jth partnership’s team memberships in all m matches. Since a match is played
by four partnerships from two teams, each row of G has two 1’s, two −1’s and k−4 0’s. Thus, G
may look like

1 1 −1 −1 0 0 0 0
1 1 0 0 −1 −1 0 0
−1 −1 0 0 0 0 1 1

...
...

...
...

...
...

...
...

, (13)

read as “The first match: the 1st, 2nd partnerships versus the 3rd, 4th; the second match: the 1st,
2nd versus the 5th, 6th;”

With the help of d and G, we rewrite (11) as

min
v

(Gv−d)T (Gv−d), (14)

which is equivalent to solving the following linear system:

GT Gv = GT d. (15)

If GT G is not invertible, the linear system (15) may have multiple solutions, which lead to possibly
multiple rankings. To see when GT G is invertible, we prove the following result:

2191

HUANG, LIN AND WENG

Theorem 1 GT G is invertible if and only if rank(G) = k.

The proof is in Appendix B. This result shows that teams’ members should change frequently across
comparisons (as indicated by rank(G) = k) so that individuals’ abilities are uniquely determined.
To see how multiple rankings occur, consider an extreme case where several players always belong
to the same team. Under the model (10), they can be merged as a single virtual player. After solving
(14), their respective abilities can take any values but still remain optimal as long as the total ability
is equal to the virtual player’s. To handle such situations, we add a regularization term µvT v to (14):

min
v

(Gv−d)T (Gv−d)+µvT v,

where µ is a small positive number. Then a unique solution exists:

(

GT G+µI
)−1

GT d. (16)

The rationale of the regularization is that individuals have equal abilities before having compar-
isons. We refer to this approach as Ext-B.RLS (Extreme value model for Binary outcomes using
Regularized Least Square).

2.2 Maximum Likelihood (Ext-B.ML)

Under the assumption that comparisons are independent, the negative log-likelihood function is

l(v)≡−
m

∑
i=1

(

n+
i log

eT +
i

eT +
i + eT−i

+n−i log
eT−i

eT +
i + eT−i

)

, (17)

and we may estimate v by
argmin

v
l(v).

It is well known that the log-likelihood of a conditional exponential model is concave, and hence
l(v) is convex. However, if l(v) is not strictly convex, multiple global minima may result in multiple
rankings. The following theorem gives the sufficient and necessary condition for strict convexity:

Theorem 2 l(v) is strictly convex if and only if rank(G) = k.

The proof is in Appendix C. As discussed in Section 2.1, the condition may not hold, and a regular-
ization term is usually added to ensure the uniqueness of the optimal solution. Here we consider a
special one

µ
k

∑
s=1

(evs + e−vs), (18)

which is strictly convex and has unique minimum at vs = 0,s = 1, . . . ,k. Later we will see that this
function helps to derive a simple algorithm for maximizing the likelihood.

The modified negative log-likelihood is as the following:

l(v)≡−
m

∑
i=1

(

n+
i log

eT +
i

eT +
i + eT−i

+n−i log
eT−i

eT +
i + eT−i

)

+µ
k

∑
s=1

(evs + e−vs), (19)

2192

RANKING INDIVIDUALS BY GROUP COMPARISONS

where µ is a small positive number. We estimate individuals’ abilities by the unique global minimum

argmin
v

l(v), (20)

which satisfies the optimality condition:

∂l(v)

∂vs
= −

(

∑
i:s∈I+

i

n+
i + ∑

i:s∈I−i

n−i
)

+ ∑
i:s∈I+

i

nieT +
i

eT +
i + eT−i

+ ∑
i:s∈I−i

nieT−i

eT +
i + eT−i

+µ(evs− e−vs)

= 0, s = 1, . . . ,k.

Note that the strict convexity of (19) may not guarantee (20) to be attainable; we address this issue
later in Theorem 3. Since µ is small,

∑
i:s∈I+

i

n+
i + ∑

i:s∈I−i

n−i ≈ ∑
i:s∈I+

i

nieT +
i

eT +
i + eT−i

+ ∑
i:s∈I−i

nieT−i

eT +
i + eT−i

, (21)

which is a reasonable condition that the total number of observed wins of individual s is nearly the
expected number by the assumed model. Meanwhile, the last term in ∂l(v)/∂vs restricts the value
of vs from extremity, and thereby brings some robustness against huge n+

i or n−i .
Standard optimization methods (e.g., gradient or Newton’s method) can be used to find a solu-

tion of (19). For conditional exponential models, an alternative technique to maximize the likelihood
is the generalized iterative scaling by Darroch and Ratcliff (1972), which generates a sequence of
iterations {vt}∞

t=0. The improved iterative scaling (Pietra et al., 1997) speeds up the convergence,
but its update from vt to vt+1 requires the solution of k one-variable minimization problems, which,
however, usually do not have closed-form solutions. Goodman (2002) proposed the sequential con-
ditional generalized iterative scaling, which changes only one variable at a time with a closed-form
update rule. All the above techniques, however, need to be modified for solving (19) due to the reg-
ularization term (18). In the following we propose an iterative method that modifies one component
of v at a time. Let δ ≡ [0, . . . ,0,δs,0, . . . ,0]T indicate the change of the sth component. Using the
inequality logx≤ x−1, ∀x > 0,

l(v+δ)− l(v)

=−

 ∑
i:s∈I+

i

n+
i + ∑

i:s∈I−i

n−i

δs + ∑
i:s∈I+

i

ni log

(

eT +
i +δs + eT−i

eT +
i + eT−i

)

+ ∑
i:s∈I−i

ni log

(

eT +
i + eT−i +δs

eT +
i + eT−i

)

+µevs(eδs−1)+µe−vs(e−δs−1)

≤−

 ∑
i:s∈I+

i

n+
i + ∑

i:s∈I−i

n−i

δs +

 ∑
i:s∈I+

i

nieT +
i

eT +
i + eT−i

+ ∑
i:s∈I−i

nieT−i

eT +
i + eT−i

(eδs−1)

+µevs(eδs−1)+µe−vs(e−δs−1). (22)

If δs = 0, (22) = 0. We then minimize (22) to obtain the largest reduction. It is easy to see that
(22) is strictly convex. Taking the derivative with respect to δs to be zero, we find the root for a

2193

HUANG, LIN AND WENG

second-order polynomial of eδs , so the update rule is:

vs← vs + log
Bs +

√

B2
s +4µAse−vs

2As
, (23)

where

As ≡ µevs + ∑
i:s∈I+

i

nieT +
i

eT +
i + eT−i

+ ∑
i:s∈I−i

nieT−i

eT +
i + eT−i

, (24)

Bs ≡ ∑
i:s∈I+

i

n+
i + ∑

i:s∈I−i

n−i .

If using other regularization terms, minimizing (22) may not lead to a closed-form solution of δs.
The algorithm is as the following:

Algorithm 1
1. Start with v0 and obtain T 0,+

i ,T 0,−
i , i = 1, . . . ,m.

2. Repeat (t = 0,1, . . .)

(a) Let s = (t +1) mod k. Change the sth element of vt by (23) to obtain vt+1.

(b) Calculate T t+1,+
i ,T t+1,−

i , i = 1, . . . ,m.

until ∂l(vt)/∂v j = 0, j = 1, . . . ,k are satisfied.

Next we address the convergence issue. As As > 0, (23) is always well-defined. A formal proof of
Algorithm 1’s convergence is in the following theorem:

Theorem 3 The modified negative log-likelihood l(v) defined in (19) attains a unique global mini-
mum, and the sequence {vt} generated by Algorithm 1 converges to it.

The proof is in Appendix D. In Huang et al. (2006b), some assumptions are needed to ensure
their update rule to be well-defined as well as the convergence. In contrast, Algorithm 1 does not
require any assumption since the regularization term provides very nice properties. We refer to the
approach of minimizing (19) as Ext-B.ML (Extreme value distribution model for Binary outcomes
using Maximum Likelihood).

3. Comparisons with Scored Outcomes

This section proposes estimating individuals’ abilities based on measured outcomes, such as points
in basketball or soccer games. We still use random variables Y +

i and Y−i for team performances,
but give n+

i and n−i different meanings: they now denote scores of I+
i and I−i . Our idea is to view

n+
i − n−i as a realization of Y +

i −Y−i and maximize the resulting likelihood. Note that we model
difference in scores instead of the score itself. We propose two approaches in the following sub-
sections. One assumes normal distributions for Y +

i and Y−i , while the other assumes the same
extreme value distribution (9). Individuals’ abilities are estimated by maximizing the likelihood of
score differences. Properties of the two approaches are investigated in Section 5.

2194

RANKING INDIVIDUALS BY GROUP COMPARISONS

3.1 Normal Distribution Model (NM-S.ML)

As mentioned in Section 2, using normal distributions for comparisons with binary outcomes is
computationally more difficult due to a complicated form of P(I+

i beats I−i). However, for scored
paired comparisons, Glickman (1993) successfully applied normal distributions. He considers indi-
viduals’ performances as normally distributed random variables

Yi ∼ N(vi,σ2), i = 1, . . . ,k,

and view the score difference of individuals i and j as a realization of Yi−Yj. By assuming Yi and
Yj are independent for all individuals,

Yi−Yj ∼ N(vi− v j,2σ2), (25)

and individuals’ abilities are estimated by maximizing the likelihood. We extend this approach to
group comparisons. Recall that Y +

i and Y−i are random variables for two teams’ performances. With
the same assumption of independent normal distributions, we have

Y +
i ∼ N(T +

i ,σ2), Y−i ∼ N(T−i ,σ2).

and
Y +

i −Y−i ∼ N(T +
i −T−i ,2σ2).

Assuming comparisons are independent and defining a vector b with

bi ≡ n+
i −n−i ,

the negative log-likelihood then is

l(v,σ) = logσ+
1

4σ2

m

∑
i=1

(

T +
i −T−i − (n+

i −n−i)
)2

(26)

= logσ+
(Gv−b)T (Gv−b)

4σ2 ,

where G is the comparison setting matrix defined in (12). The maximum likelihood estimate of v is
obtained by solving ∂l(v,σ)/∂vs = 0 ∀s, which is the following linear system:

GT Gv = GT b. (27)

Similar to (14), (27) may have multiple solutions if GT G is not invertible. To overcome this problem,
we add a regularization term and solve

min
v

l(v,σ)+
µ

4σ2 vT v, (28)

where µ is small positive number. The unique solution of (28) then is

v̄≡ (GT G+µI)−1GT b. (29)

In addition, we also obtain an estimate of the variance by solving

∂
(

l(v,σ2)+ µ
4σ2 vT v

)

∂σ
= 0,

which leads to

σ̄2 ≡
(Gv̄−b)T (Gv̄−b)+µv̄T v̄

2
.

We refer to this method as NM-S.ML (Normal distribution-based Model for Scored outcomes using
Maximum Likelihood).

2195

HUANG, LIN AND WENG

3.2 Extreme Value Distribution Model (Ext-S.ML)

Instead of the normal distribution in (25), we now consider that Y +
i −Y−i is under the extreme value

distribution for binary outcomes. Appendix A shows that

P(Y +
i −Y−i ≤ y) =

eT−i

eT +
i −y + eT−i

, (30)

and hence the density function is

fY +
i −Y−i

(y) =
eT−i +T +

i −y

(eT +
i −y + eT−i)2

.

The negative log-likelihood function is

−
m

∑
i=1

log
eT +

i +T−i −(n+
i −n−i)

(

eT +
i −(n+

i −n−i) + eT−i
)2 . (31)

A similar proof to Theorem 2’s shows that (31) is convex and shares the same condition for strict
convexity in Section 2.2. Therefore, the problem of multiple solutions may also occur. We thus
adopt the same regularization term as in Section 2.2 and solve

min
v

l(v)≡−
m

∑
i=1

log
eT +

i +T−i −(n+
i −n−i)

(

eT +
i −(n+

i −n−i) + eT−i
)2 +µ

k

∑
s=1

(evs + e−vs). (32)

The unique global minimum satisfies for s = 1, . . . ,k,

∂l(v)

∂vs
=−ms +2

(

∑
i:s∈I+

i

eT +
i +n−i

eT +
i +n−i + eT−i +n+

i
+ ∑

i:s∈I−i

eT−i +n+
i

eT +
i +n−i + eT−i +n+

i

)

+µ(evs− e−vs)

= 0, (33)

where
ms ≡ ∑

i:s∈Ii

1.

From (30),

P(Y +
i −Y−i ≥ T +

i −T−i) =
1
2
, i = 1, . . . ,m. (34)

Since µ is small, (33) and (34) imply that for s = 1, . . . ,k,

∑
i:s∈I+

i

P(Y +
i −Y−i ≥ n+

i −n−i)+ ∑
i:s∈I−i

P(Y−i −Y +
i ≥ n−i −n+

i)

≈
m
2

= ∑
i:s∈I+

i

P(Y +
i −Y−i ≥ T +

i −T−i)+ ∑
i:s∈I−i

P(Y−i −Y +
i ≥ T−i −T +

i).

As (21) in Section 2.2, the above condition also indicates that models should be consistent with
observations. To solve (32), we use Algorithm 1 with a different update rule, which is in the form
of (23) but with

As ≡ µevs +2

(

∑
i:s∈I+

i

eT +
i +n−i

eT +
i +n−i + eT−i +n+

i
+ ∑

i:s∈I−i

eT−i +n+
i

eT +
i +n−i + eT−i +n+

i

)

,

Bs ≡ ms.

2196

RANKING INDIVIDUALS BY GROUP COMPARISONS

N

S

W E

N

S

W E

A1

A2

B2 B1

B3

B4

A4 A3

Figure 1: A typical bridge match setting. N, S, E and W stand for north, south, east, and west,
respectively.

The derivation is similar to (23)’s: let δ≡ [0, . . . ,0,δs,0, . . . ,0]T . Then

l(v+δ)− l(v)

=−msδs +2

(

∑
i:s∈I+

i

log
eT +

i +n−i +δs + eT−i +n+
i

eT +
i +n−i + eT−i +n+

i
+ ∑

i:s∈I−i

log
eT−i +n+

i +δs + eT +
i +n−i

eT +
i +n−i + eT−i +n+

i

)

+µevs(eδs−1)+µe−vs(e−δs−1)

≤−msδs +2

(

∑
i:s∈I+

i

eT +
i +n−i

eT +
i +n−i + eT−i +n+

i
+ ∑

i:s∈I−i

eT−i +n+
i

eT +
i +n−i + eT−i +n+

i

)

(eδs−1)

+µevs(eδs−1)+µe−vs(e−δs−1). (35)

Minimizing (35) leads to the update rule. Global convergence can be proved in a similar way to
Theorem 3. We refer to this approach as Ext-S.ML (Extreme value distribution model for Scored
outcomes using Maximum Likelihood).

4. Ranking Partnerships from Real Bridge Records

This section presents a real application: ranking partnerships from match records of Bermuda Bowl
2005,1 which is the most prestigious bridge event. In a match two partnerships (four players) from
a team compete with two from another team. The rules require mutual understanding within a
partnership, so partnerships are typically fixed while a team can send different partnerships for
different matches. To rank partnerships using our model, an individual stands for a partnership, and
every T +

i (or T−i) consists of two individuals. We caution the use of the term “team” here. Earlier
we refer to each T +

i as a team and in bridge the two partnerships (or four players) of T +
i are really

called a team. However, these four players are from a (super)-team (usually a country), which often
has six members. We use “team” in both situations, which are easily distinguishable.

4.1 Experimental Settings

We discuss why a partnership’s ability is not directly available from match results, and explain why
our model is applicable here. Figure 1 illustrates the match setting. A1,A2,A3,A4 and B1,B2,B3,B4

1. All match records are available at http://www.worldbridge.org/tourn/Estoril.05/Estoril.htm. The subset
used here is available at http://www.csie.ntu.edu.tw/˜cjlin/papers/genBTexp/Data.zip.

2197

HUANG, LIN AND WENG

Board Table I Table II IMPs

NS EW NS EW IN PT
1 1510 1510
2 100 650 11
3 630 630
4 650 660
5 690 690
6 420 50 10
7 140 600 10
8 420 100 8
9 460 400 2
10 110 140 1

Table 1: Records of the first ten boards between India (IN) and Portugal (PT). India: NS at Table
I and EW at Table II. The four columns in the middle are boards’ raw scores, and only
winners get points. For example, in the second board IN’s NS partnership won at Table I
and got 100 points while PT’s NS got 650 at Table II. Since PT got more points than IN,
it obtained IMPs.

are four players of Team A and Team B, sitting at two tables as depicted. A match consists of several
boards, each of which is played at both tables. An important feature is that a board’s four hands are
at identical positions of two tables, but a team’s two partnerships sit at complementary positions. In
Figure 1, A1 and A2 sit at the north (N) and the south (S) sides of one table, so A3 and A4 must sit
at the east (E) and the west (W) sides of the other table. This setting reduces the effect of uneven
hands.

On each board winning partnerships receive raw scores. Depending on the difference in two
teams’ total scores, the winning team gains International Match Points (IMPs). For example, Ta-
ble 1 shows records of the first ten boards of the match between two Indian partnerships and two
Portuguese partnerships. We can see that a larger difference in raw scores results in more IMPs for
the winner. IMPs are then converted to Victory Points (VP) for the team ranking.2 A quick look
at Table 1 may motivate the following straightforward approach: a partnership’s score in a match
is the sum of raw scores over all boards, and its ability is the average over the matches it plays.
However, this estimate is unfair due to raw scores’ dependency on boards and opponents. Summing
a partnership’s raw scores favors those who get better hands or play against weak opponents. More-
over, since boards are different across rounds and partnerships play in different rounds, the sum of
raw scores can be more unfair. The above analysis indicates that a partnership’s ability cannot be
obtained directly from group comparison results. Hence the proposed models can be helpful.

We consider qualifying games: 22 teams from all over the world had a round robin tournament,
which consisted of

(22
2

)

= 231 matches and each team played 21. Most teams had six players in three
fixed partnerships, and there were 69 partnerships in total. In order to obtain reasonable rankings,
each partnership should play enough matches. The last column of Table 3 shows each partnership’s

2. The IMP-to-VP conversion for Bermuda Bowl 2005 is on page 32, http://www.worldbridge.org/departments/
rules/GeneralConditionsOfContest2005.pdf.

2198

RANKING INDIVIDUALS BY GROUP COMPARISONS

number of matches. Most played 13 to 15 matches, which are close to the average (14=21×2/3) of
a team with three fixed partnerships. Thus these match records are reasonable for further analysis.

To use our model, the comparison setting matrix G defined in (12) is of size 231×69; as shown
in (13) each row records a match setting and has exactly two 1’s (two partnerships from one team),
two −1’s (two partnerships from another team) and 65 0’s (the remaining partnerships). The sum
of two rival teams’ scores (VPs) is generally 30, but occasionally between 25 to 30 as a team’s
maximal VP is 25. We use two rival teams’ VPs as n+

i and n−i , respectively. Several matches have
zero scores; we add one to all n+

i and n−i for Ext-B.RLS to avoid the numerical difficulties caused
by log(n+

i /n−i).

4.2 Evaluation and Results

In sport events, rankings serve two main purposes. On the one hand, they summarize the relative
performances of players or teams based on outcomes in the event, so that people may easily distin-
guish outstanding ones from poor ones. On the other hand, rankings in past events may indicate the
outcomes of future events, and can therefore become a basis for designing future event schedules.
Interestingly, we may connect these two purposes with two basic concepts in machine learning:
minimizing the empirical error and minimizing the generalization error. For the first purpose, a
good ranking must be consistent with available outcomes of the event, which relates to minimizing
errors on training data, while for the second, a good ranking must predict well on the outcomes of
future events, which is about minimizing errors on unseen data. We thus adopt these two principles
to evaluate the proposed approaches, and in the context of bridge matches, they translate into the
following evaluation criteria:

• Empirical Performance: How well do the estimated abilities and rankings fit the available
match records?

• Generalization Performance: How well do the estimated abilities and rankings predict the
outcomes of unseen matches?

Here we distinguish individuals’ abilities from their ranking: Abilities give a ranking, but not vice
versa. When we only have a ranking of individuals, groups’ strengths are not directly available
since the relation of individuals’ ranks to those of groups is unclear. In contrast, if individuals’
abilities are available, a group’s ability can be the sum of its members’. We thus propose different
error measures for abilities and rankings. Let {(I+

1 , I−1 ,n+
1 ,n−1), . . . ,(I+

m , I−m ,n+
m ,n−m)} be the group

comparisons of interest and their outcomes. For a vector v ∈ Rk of individuals’ abilities, we define
the

• Group Comparison Error:

GCE(v) ≡

m

∑
i=1

I
{

(n+
i −n−i)(T +

i −T−i)≤ 0
}

m
,

where I{·} is the indicator function; T +
i and T−i are predicted group abilities of I+

i and I−i , as defined
in (7). The GCE is essentially the proportion of wrongly predicted comparisons by the ability vector
v to the m comparisons.

In the error measure for rankings, we use r, a permutation of the k individuals, to denote a
ranking, where rs is the rank of individual s. Then we define the

2199

HUANG, LIN AND WENG

• Group Rank Error:

GRE(r) ≡

m

∑
i=1

(

I
{

n+
i > n−i and U+

i > L−i

}

+ I
{

n+
i < n−i and L+

i < U−i

})

m

∑
i=1

(

I
{

U+
i > L−i

}

+ I
{

L+
i < U−i

})

, (36)

in which

U+
i ≡min

j∈I+
i

r j, L+
i ≡max

j∈I+
i

r j,

U−i ≡min
j∈I−i

r j, L−i ≡max
j∈I−i

r j.

Since a smaller rank indicates more strength, the U+
i and L+

i defined above represent the best and
the weakest in I+

i , respectively. The denominator in (36) is thus the number of comparisons where
one group’s members are all ranked higher (or lower) than the members of the competing group,
and the numerator in (36) counts the number of wrong predictions, that is, comparisons in which
members of the winning group are all ranked lower than those of the defeated group. In other words,
GRE computes the error only on comparisons in which relative strengths of the participating groups
can be clearly determined by their members’ ranks, whereas GCE considers the error on all of the
comparisons. From this point of view, GRE is a more conservative error measure.

Combining the two error measures with the two evaluation criteria, we conducted four sets of
experiments: Empirical GCE, Empirical GRE, Generalization GCE, and Generalization GRE. We
compared six approaches, including the newly proposed Ext-B.RLS, Ext-B.ML, NM-S.ML, and
Ext-S.ML; the generalized Bradley-Terry model GBT.ML (Huang et al., 2006b), and AVG, the
simple approach (3) of summing individuals’ scores, which serves as a baseline.3 In the empirical
part, we applied each approach on the entire 231 matches to estimate partnerships’ abilities, and
computed the two errors. Since the goal in the empirical part is to fit available records well, we
set the regularization parameter µ for all approaches4 except AVG to a small value 10−3. In the
generalization part, we randomly split the entire set as a training set of 162 matches and a testing
set of 69 matches for 50 times. For each split, we searched for µ in [25,24, . . . ,2−8,2−9] by the
Leave-One-Out (LOO) validation on the training set, estimated partnerships’ abilities with the best
µ, and then computed GCE and GRE on the testing set.

Results are in Figures 2 and 3 for empirical and generalization performances, respectively. In
the empirical part, the four proposed approaches and GBT.ML perform obviously better than AVG,
and the improvement in GRE is very significant. In particular, Ext-B.ML, NM-S.ML, and Ext-S.ML
cause very small GREs, to the order of 10−1. These results show that the proposed approaches are
effective in fitting the available bridge match records. However, in the generalization part, all of
the approaches result in poor GCEs, nearly as large as a random predictor does, and the proposed
approaches did not improve over AVG. For GREs, values are smaller, but the improvements over

3. AVG gives individuals’ abilities. We then use the same summation assumption to obtain groups’ abilities for com-
puting GCEs.

4. In order to ensure the convergence of their algorithm, Huang et al. (2006b) added to the objective function (5) what
they called a “barrier term,” which is also controlled by a small positive number µ (See Eq. (14) in Huang et al.
2006b). Here we simply refer to it as a regularization parameter.

2200

RANKING INDIVIDUALS BY GROUP COMPARISONS

Ext−B.RLS Ext−B.ML GBT.ML NM−S.ML Ext−S.ML AVG
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

or
 r

at
e

(a) Group Comparison Error

Ext−B.RLS Ext−B.ML GBT.ML NM−S.ML Ext−S.ML AVG
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

or
 r

at
e

(b) Group Rank Error

Figure 2: Empirical performances of the six approaches.

Ext−B.RLS Ext−B.ML GBT.ML NM−S.ML Ext−S.ML AVG
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

E
rr

or
 r

at
e

(a) Group Comparison Error

Ext−B.RLS Ext−B.ML GBT.ML NM−S.ML Ext−S.ML AVG
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

E
rr

or
 r

at
e

(b) Group Rank Error

Figure 3: Generalization performances of the six approaches, averaged over 50 random testing sets.
Vertical bars indicate standard deviations.

2201

HUANG, LIN AND WENG

Ext-B.RLS Ext-B.ML GBT.ML NM-S.ML Ext-S.ML AVG
10/53 6/51 9/57 6/52 8/66 35/132

Table 2: Empirical Group Rank Errors in fraction.

5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8 −9

0

5

10

15

20

25

30

35

40

45

A
ve

ra
ge

 lo
o

tim
e

(s
ec

)

log2 µ

1

Ext−B.RLS
Ext−B.ML
GBT.ML
NM−S.ML
Ext−S.ML
AVG

Figure 4: Average LOO time (sec) over 50 training/testing splits. Vertical bars indicate standard
deviations.

AVG are rather marginal. In the following we give some accounts of the poor generalization perfor-
mances. As mentioned in Section 4.1, each match setting can be viewed as a vector in {1,0,−1}69,
in which only two dimensions have 1’s, and another two have−1’s. Moreover, we are using records
in the qualifying stage, a round-robin tournament in which every two teams (countries) played ex-
actly one match. Consequently, when a match is removed from the training set, the four competing
partnerships of that match have no chance to meet directly during the training stage. Indirect com-
parisons may only be marginally useful in predicting those partnerships’ competition outcomes due
to the lack of transitivity. In conclusion, the outcome of a match in this bridge data set may not
be well indicated by outcomes of the other matches, and therefore all of the approaches failed to
generalize well.

To further study the rankings by the six approaches, we show in Table 2 their empirical GREs.
Since GRE only looks at the subset of matches in which group members’ ranks clearly decide
groups’ relative strengths, the size of this subset, that is, the denominator in GRE, may also be a
performance indicator of each approach. We thus present GREs in fraction. It is clear that the
ranking by AVG is able to determine the outcomes of more matches, but at the same time causes
more errors. Similar results are also found in the generalization experiments. We may therefore say
that the proposed approaches and GBT.ML lead to rankings with more “precision,” in the sense that
they may not be able to decide groups’ relative performances in the majority of comparisons, but
once they do, their decisions are accurate.

In addition to the efficacy of the six approaches, we also reported their efficiency. Figure 4
shows the average LOO time over the 50 training/testing splits under different values of µ. We
obtained these timing results on an Intel R CoreTM2 Quad CPU (2.66GHz) machine with 8G main

2202

RANKING INDIVIDUALS BY GROUP COMPARISONS

memory; the linear systems of Ext-B.RLS and NM-S.ML were solved by Gaussian Elimination.
AVG,5 Ext-B.RLS, and NM-S.ML finished LOO almost instantly under all values of µ, while Ext-
B.ML, GBT.ML, and Ext-S.ML, the three approaches using iterative algorithms, took more time as
µ decreased. However, for large-scale problems with a huge k or m, traditional linear system solvers
may encounter memory or computational difficulties, and the efficiency of the proposed approaches
requires a more thorough study.

Finally, we list the top ten partnerships ranked by Ext-B.ML in Appendix F. Most of them are
famous bridge players.

5. Properties of Different Approaches

Although we distinguish binary comparisons from scored ones, they are similar in some situations.
On the one hand, if two teams had a series of comparisons, the number of victories can be viewed
as a team’s score in a super-game. On the other hand, scores in a game might be the sum of
binary outcomes; for example, scores in soccer games are total numbers of successful shots. It is
therefore interesting to study the properties of different methods and their relation. Table 3 lists
partnership rankings obtained by applying the six approaches to the entire set of match records.
We first investigate the similarity between these rankings by Kendall’s tau, a standard correlation
coefficient that quantifies the consistency between two rankings. We computed Kendall’s tau for
every pair of the six rankings and present them in Table 4, which indicates roughly three groups:
Ext-B.RLS, Ext-B.ML, GBT.ML and NM-S.ML give similar rankings; the one by Ext-S.ML is
quite different, while AVG seems to be uncorrelated with the others. We then measure the distance
between two groups of rankings g1 and g2: For each partnership,

d(ranks by g1, ranks by g2)

≡

min(ranks by g2)−max(ranks by g1) if ranks by g1 are all smaller,

min(ranks by g1)−max(ranks by g2) if ranks by g2 are all smaller,

0 otherwise.

(37)

For example, from Table 3 the second partnership of U.S.A.2 is ranked 67th/65th/67th/65th by
Ext-B.RLS/Ext-B.ML/GBT.ML/NM-S.ML and 25th by AVG. Therefore,

d({67,65,67,65},25) = min(67,65,67,65)−25 = 40.

Checking all 69 partnerships’ ranks gives

|d({Ext-B.RLS,Ext-B.ML,GBT.ML,NM-S.ML}, Ext-S.ML)≥ 20|= 6, (38)

|d({Ext-B.RLS,Ext-B.ML,GBT.ML,NM-S.ML}, AVG)≥ 20|= 11. (39)

In Table 3 we respectively underline and boldface partnerships satisfying (38) and (39). The eleven
ranks satisfying (39) shows that AVG’s ranking is closer to the team ranking:6 Partnerships satis-
fying (39) have higher ranks than those by the others when the team ranks are high, but have the
opposite when the team ranks are low. This observation indicates that AVG may fail to identify
weak (strong) individuals from strong (weak) groups.

5. Apparently there is no need to run LOO for AVG, which is independent of µ; we do it here only for timing compar-
isons.

6. Recall that in the beginning of Section 4, we mentioned that all teams, after the qualifying stage was over, were
ranked according to their total VPs gained in the tournament.

2203

HUANG, LIN AND WENG

Team (ordered by Partnership rankings
team rankings) Ext-B.RLS Ext-B.ML GBT.ML NM-S.ML Ext-S.ML AVG #match
Italy (IT) 14 18 11 7 14 21 4 12 19 6 18 22 7 4 40 5 4 11 15 14 13
U.S.A.2 (US2) 57 67 1 53 65 1 39 67 1 53 65 1 54 50 1 42 25 2 8 17 17
U.S.A.1 (US1) 8 27 37 11 17 38 11 13 38 11 14 38 35 9 16 23 6 10 18 10 14
Sweden (SE) 2 43 50 2 23 55 2 10 65 2 23 56 5 8 47 1 14 38 14 13 15
India (IN) 10 35 39 9 29 41 9 28 40 9 28 41 12 28 37 19 12 15 15 14 13
Argentina (AR) 29 25 28 27 20 30 25 23 34 26 19 30 41 10 52 16 18 26 15 14 13
Egypt (EG) 47 23 24 51 18 22 51 22 15 51 17 21 51 18 17 37 20 3 14 20 7

49 52 50 52 44 8 1
Brazil (BR) 31 4 66 28 8 59 24 8 63 29 7 58 26 57 11 28 13 31 11 18 13
Japan (JP) 5 65 38 3 67 39 3 68 27 3 68 40 3 68 15 7 44 46 14 14 14
Netherlands (NL) 16 52 17 32 43 31 30 45 33 32 43 31 30 34 49 36 32 24 15 15 12
China (CN) 51 48 7 45 44 6 47 46 7 45 44 8 43 31 21 30 52 9 13 14 15
South Africa (ZA) 45 30 20 49 26 15 52 26 20 50 24 15 55 29 13 49 35 27 15 13 14
Russia (RU) 34 21 42 35 16 46 36 16 49 36 16 47 48 6 23 39 21 53 14 14 14
Portugal (PT) 22 12 58 34 10 56 29 14 60 37 10 55 33 22 56 50 29 47 14 14 14
Australia (AU) 40 55 19 42 50 19 43 53 21 42 49 20 20 45 32 43 51 40 16 11 15
New Zealand (NZ) 68 41 3 68 48 5 66 42 5 66 48 5 66 58 2 64 41 17 9 16 17
England (UK) 9 33 61 12 36 64 17 32 64 13 35 63 36 25 64 48 22 55 17 12 13
Canada (CA) 13 36 56 13 40 58 18 35 62 12 39 57 19 24 67 34 45 62 14 16 12
Chinese Taipei (TW) 53 62 46 63 66 57 56 61 55 64 67 59 59 65 60 57 56 66 2 12 1

6 26 59 4 25 54 6 37 54 4 25 54 14 27 53 33 63 61 4 7 16
Poland (PL) 15 54 60 24 47 60 31 48 59 27 46 60 39 38 61 58 54 60 12 15 15
Guadeloupe (GP) 44 32 69 37 33 69 44 41 69 34 33 69 42 46 69 65 59 69 14 14 14
Jordan (JO) 63 64 62 61 57 58 61 62 62 63 67 68 21 21

Table 3: Partnerships’ rankings. A partnership corresponds to the same position in columns. For
example, Italy’s second partnership is ranked 18th, 14th, 12th, 18th, 4th and 4th by Ext-
B.RLS, Ext-B.ML, GBT.ML, NM-S.ML, Ext-S.ML and AVG, respectively, and it plays
14 matches. Rankings satisfying (38) and (39) are underlined and boldfaced, respectively.

Ext-B.RLS Ext-B.ML GBT.ML NM-S.ML Ext-S.ML AVG
Ext-B.RLS 1.00 0.84 0.79 0.82 0.50 0.44
Ext-B.ML 0.84 1.00 0.87 0.97 0.61 0.49
GBT.ML 0.79 0.87 1.00 0.86 0.62 0.53
NM-S.ML 0.82 0.97 0.86 1.00 0.60 0.49
Ext-S.ML 0.50 0.61 0.62 0.60 1.00 0.50
AVG 0.44 0.49 0.53 0.49 0.50 1.00

Table 4: Kendall’s tau (correlation coefficients).

The above results suggest that approaches based on different types of comparisons may produce
similar rankings, such as Ext-B.ML and NM-S.ML, while those based on the same type of outcomes
may lead to diverse results, such as NM-S.ML and Ext-S.ML. Therefore, in the next two subsections
we study their formulations and obtain the following results:

2204

RANKING INDIVIDUALS BY GROUP COMPARISONS

• When all ni’s are equal, that is, the number of games or the total score in every group com-
parison is the same, and estimated group abilities are approximately even, Ext-B.ML and
NM-S.ML give similar rankings.

• When all ni’s are equal, Ext-B.RLS is more sensitive than Ext-B.ML and NM-S.ML to ex-
treme outcomes (n+

i ≈ 0 or n+
i ≈ ni).

• For the two scored-outcome approaches, extreme outcomes have a greater impact on NM-
S.ML than on Ext-S.ML.

5.1 Comparing Binary- and Scored-outcome Approaches

Experimental results in Section 4 show that the binary-outcome approach Ext-B.ML and the scored-
outcome approach NM-S.ML give very similar rankings. By analyzing their optimization problems,
we find that

Claim 1 If all ni’s are equal and the optimal v for Ext-B.ML satisfies

T +
i ≈ T−i ∀i,

then Ext-B.ML and NM-S.ML give very close rankings.

The proof is in Appendix E. For the bridge data used in Section 4, ni’s are two rival teams’ total
VPs and are mostly 30; the average |T +

i −T−i | from the optimal v for Ext-B.ML is 0.3983.
However, in applications where ni’s are unequal, these two approaches may give different re-

sults. Clearly, they use different approximations:

eT +
i

eT−i
≈

n+
i

n−i
and T +

i −T−i ≈ n+
i −n−i . (40)

One considers the ratio, which is independent from the values of ni’s, but the other considers the
difference, whose value scales with those of ni’s. Therefore, the estimate by NM-S.ML may be
more biased than Ext-B.ML to fit comparison outcomes with large ni.

Another issue is the small but perceivable dissimilarity of the ranking by Ext-B.RLS from those
by Ext-B.ML and NM-S.ML, as revealed in the empirical GREs in Table 2 and the Kendall’s tau in
Table 4. Investigating them more carefully, we find that

|d(Ext-B.RLS,{Ext-B.ML, NM-S.ML})≥ 10|= 8, (41)

where the distance is defined in (37). Interestingly, five of these eight partnerships played matches
where weak teams beat strong teams by an extreme amount, such as Netherlands beating U.S.A.2 by
25:0, and Ext-B.RLS ranks them higher than Ext-B.ML and NM-S.ML do. This result suggests that
Ext-B.RLS is vulnerable to even only few extreme outcomes so as to change the overall ranking. We
verify this property by comparing the estimates by Ext-B.RLS and NM-S.ML. Suppose ni = n ∀i
(which is the case here), and then according to (16), the ability estimate of individual s by Ext-
B.RLS is

vs =
m

∑
i=1

Asi
(

logn+
i − logn−i

)

=
m

∑
i=1

Asi
(

logn+
i − log(n−n+

i)
)

,

2205

HUANG, LIN AND WENG

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

x

f(
x
)

(a) Loss function curves. Circles:
x2. Diamonds: x. Squares: log(1 +
cosh(x)).

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

(b) Error histogram for NM-S.ML

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

(c) Error histogram for Ext-S.ML

Figure 5: Error function curves and histograms. The x-axis of histograms is |T +
i −T−i −(n+

i −n−i)|.

where A =
(

GT G + µI
)−1

GT . To check the sensitivity of vs with respect to the change of n+
i , we

calculate
∂vs

∂n+
i

= Asi
(1

n+
i

+
1

n−n+
i

)

=
nAsi

n+
i (n−n+

i)
.

Clearly, the estimate vs is more sensitive to extreme values of n+
i , that is, n+

i ≈ 0 or n+
i ≈ n. However,

for NM-S.ML we have

vs =
m

∑
i=1

Asi(n
+
i −n−i) =

m

∑
i=1

Asi(2n+
i −n)

and
∂vs

∂n+
i

= 2Asi.

That is, different values of n+
i have equal impact on the estimate by NM-S.ML.

In conclusion, when ni remains a constant and the estimates by Ext-B.ML have T +
i ≈ T−i ∀i,

NM-S.ML and Ext-B.ML give similar estimates, which are less sensitive than that by Ext-B.RLS to
extreme outcomes. When ni’s are unequal, the discussion in (40) indicates that NM-S.ML is more
affected than Ext-B.ML.

5.2 Comparing the Two Scored-outcome Approaches

As shown in (38), the ranking by Ext-S.ML is rather diverse from those by Ext-B.RLS, Ext-B.ML,
and NM-S.ML. We explore this issue by first re-writing the objective functions of NM-S.ML and
Ext-S.ML respectively as

min
v

m

∑
i=1

(

T +
i −T−i − (n+

i −n−i)

)2

+µ
k

∑
s=1

v2
s

2206

RANKING INDIVIDUALS BY GROUP COMPARISONS

and

min
v

m

∑
i=1

log

(

1+ cosh
(

T +
i −T−i − (n+

i −n−i)
)

)

+µ
k

∑
s=1

(evs + e−vs),

where cosh is the hyperbolic cosine function. Although these two formulations are derived to max-
imize the likelihood, they can be viewed as minimizing estimation errors

∣

∣T +
i −T−i − (n+

i −n−i)
∣

∣

with two different loss functions. As µ is small, we ignore the effect of the regularization term. It is
easy to show that as

∣

∣T +
i −T−i − (n+

i −n−i)
∣

∣→ ∞,

log
(

1+ cosh
(

T +
i −T−i − (n+

i −n−i)
)

)

∣

∣T +
i −T−i − (n+

i −n−i)
∣

∣

→ 1.

To show the behaviors of the three functions: x2, x and log(1 + cosh(x)), we plot their curves in
Figure 5(a). One can see that log(1 + cosh(x)) increases almost linearly with x. In the machine
learning community, it is well known that quadratic loss functions may lead to a very different
estimation from linear ones. The reason is that quadratic loss functions penalize large errors more
severely than linear ones do; estimations are thus dominated by even only few extreme observations,
and as a side effect, may cause quite a few moderate errors. In contrast, estimations under linear loss
functions may allow several large errors in order to make most errors small. Figures 5(b) and 5(c)
are histograms of

∣

∣T +
i −T−i −(n+

i −n−i)
∣

∣ for NM-S.ML and Ext-S.ML, respectively; we see clearly
the aforementioned two error patterns: Compared with NM-S.ML, Ext-S.ML has a lot more errors
in the first bin and also some in the last two. In addition, we find that the empirical GRE of Ext-S.ML
in Section 4.2 is highly related to its error pattern: Among the 24 correct rank predictions7 produced
by Ext-S.ML but not by NM-S.ML, twelve have

∣

∣T +
i −T−i − (n+

i − n−i)
∣

∣ smaller than 3 (the first
bin of histograms); NM-S.ML has no

∣

∣T +
i −T−i − (n+

i − n−i)
∣

∣ larger than 27 (the last two bins of
histograms) while Ext-S.ML has four, among which the partnerships satisfying (38) participate in
three. Interestingly, the two types of loss functions seem to reflect two different ranking criteria: one
focuses more on performances against extreme opponents, so wins over strong opponents and losses
to weak opponents greatly influence the ranking; the other is less sensitive to extreme outcomes
and treat comparisons more evenly. Consequently, deciding which loss function, and hence which
approach to use may eventually be contingent on game-specific factors and subjective preferences.

6. Multi-class Classification

Multi-class classification using coding matrices (Dietterich and Bakiri, 1995; Allwein et al., 2001)
is a general scheme to decompose a problem into several two-class problems. The widely-used
methods “one-against-one” and “one-against-the rest” are special cases of this framework. The
decomposition is usually specified by a coding matrix G ∈ {1,0,−1}m×k, where k is the number
of classes and m is the number of two-class problems. Each row of G describes how the k classes
are separated to two groups: those with 1 are in one group while those with −1 are in the other;
those with 0 are not used in this two-class problem. The coding matrix in Table 5 illustrates four
common types of codes: one-against-one, one-against-all, dense, and sparse; their definitions are

7. Correct rank predictions are the denominator of GRE minus its numerator.

2207

HUANG, LIN AND WENG

One-against-one
One-against-the rest
Dense
Sparse
...

0 0 1 0 0 −1 0 0
−1 −1 −1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 0 0 1 0 0 −1
...

...
...

...
...

...
...

...

Table 5: A coding matrix (k = 8). The four rows illustrate four types of codes.

given by Items 1 to 4 on Page 2210. At the training stage, m binary classifiers are trained for the m
two-class problems. For an unlabeled instance, its label is predicted by combining results of the m
binary classifiers.

There are several schemes for deciding the final prediction. Dietterich and Bakiri (1995) pro-
posed choosing the class whose column in G has the smallest distance to the m binary decisions
on the instance. This method can correct errors made by some decision rules, and thus is called
error-correcting output codes (ECOC). Allwein et al. (2001) proposed a more general framework,
the loss-based decoding, which exploits not only binary decisions, but also decision values of binary
classifiers. In particular, they adopted the exponential loss-based decoding (EXPLOSS): let f̂i be
the decision function of the ith binary classifier, and f̂i(x) > 0 (< 0) specifies that an instance x to
be in classes of I+

i (I−i). Then,

predicted label ≡ argmin
s

(

m

∑
i=1

e−Gis f̂i
)

.

If Gis = 1 and f̂i(x) says s ∈ I+
i , then e−Gis f̂i gives a small loss. By using decision values, the loss-

based decoding incorporates the confidence of each binary prediction in making the final decision.

Table 5 is in the same format as our “comparison setting matrix” G defined in (12) and (13).
Huang et al. (2006b) (GBT.ML) thus consider classes as individuals and two-class problems as
group comparisons; the 1’s and −1’s in the ith row of G correspond to I+

i and I−i , respectively. The
group competition results n+

i and n−i are assumed to be available from two-class classifiers. For an
unlabeled instance, classes are ranked according to their estimated “abilities” and the highest one
(with the largest ability) serves as the prediction. All of our newly proposed models can be applied
in the same way, but there are two minor issues. Firstly, all of our proposed methods except Ext-
B.RLS assume that group comparisons are independent. This property does not hold for multi-class
classification since two-class classifiers involving the same classes share training data. Huang et al.
(2006b) pointed out that GBT.ML can be interpreted as minimizing the Kullback-Leibler distance
between the model and the observations. It is easy to see that their argument also applies to Ext-
B.ML but not to NM-S.ML nor Ext-S.ML. Secondly, the n+

i and n−i given by two-class classifiers
are real values, for which the binary-outcome approaches, according to their definition, may not be
suitable. Despite of these minor issues, as we will show, our proposed methods perform quite well
in practice.

We compare our methods with EXPLOSS and GBT.ML on six real data sets: waveform, satim-
age, segment, USPS, MNIST, and letter; numbers of classes range from 3 to 26. The settings of

2208

RANKING INDIVIDUALS BY GROUP COMPARISONS

1−vs−1 1−vs−the rest dense sparse
11.5

12

12.5

13

13.5

14

14.5

15

15.5

16
T

e
st

in
g

 e
rr

o
r

ra
te

 (
%

)

EXPLOSS

Ext−B.RLS

Ext−B.ML

GBT.ML

NM−S.ML

Ext−S.ML

(a) waveform (k = 3)

1−vs−1 1−vs−the rest dense sparse
10

10.5

11

11.5

12

12.5

13

13.5

T
e

st
in

g
 e

rr
o

r
ra

te
 (

%
)

EXPLOSS

Ext−B.RLS

Ext−B.ML

GBT.ML

NM−S.ML

Ext−S.ML

(b) satimage (k = 6)

1−vs−1 1−vs−the rest dense sparse
2.5

3

3.5

4

4.5

5

T
e

st
in

g
 e

rr
o

r
ra

te
 (

%
)

EXPLOSS

Ext−B.RLS

Ext−B.ML

GBT.ML

NM−S.ML

Ext−S.ML

(c) segment (k = 7)

1−vs−1 1−vs−the rest dense sparse
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

T
e

st
in

g
 e

rr
o

r
ra

te
 (

%
)

EXPLOSS

Ext−B.RLS

Ext−B.ML

GBT.ML

NM−S.ML

Ext−S.ML

(d) USPS (k = 10)

1−vs−1 1−vs−the rest dense sparse
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

T
e

st
in

g
 e

rr
o

r
ra

te
 (

%
)

EXPLOSS

Ext−B.RLS

Ext−B.ML

GBT.ML

NM−S.ML

Ext−S.ML

(e) MNIST (k = 10)

1−vs−1 1−vs−the rest dense sparse
17

18

19

20

21

22

23

24

25

T
e

st
in

g
 e

rr
o

r
ra

te
 (

%
)

EXPLOSS

Ext−B.RLS

Ext−B.ML

GBT.ML

NM−S.ML

Ext−S.ML

(f) letter (k = 26)

Figure 6: Testing error rates on the 800-training-1000-testing data sets by six approaches under four
codes: one-against-one (1-vs-1), one-against-the rest (1-vs-the rest), dense, and sparse.
Vertical bars indicate standard deviations.

2209

HUANG, LIN AND WENG

experiments are the same as those in Huang et al. (2006b). We use the 20 subsets of 800 training
and 1,000 testing instances8 and consider the same four types of coding matrices:

1. One-against-one: |I+
i |= |I

−
i |= 1, i = 1, . . . ,k(k−1)/2.

2. One-against-all: |I+
i |= 1, |I−i |= k−1, i = 1, . . . ,k.

3. Dense: |I+
i |= |I

−
i |= k/2, ∀i; m = [10log2 k].

4. Sparse: E(|I+
i |) = E(|I−i |) = k/4, ∀i; m = [15log2 k].

[x] rounds a real number x to its nearest integer. We choose support vector machines (SVM) (Boser
et al., 1992) with the RBF (Radial Basis Function) kernel e−γ‖xi−x j‖

2
as the two-class classifier,

where xi and x j are two training instances. An improved version (Lin et al., 2007) of Platt (2000)
generates n+

i and n−i = 1− n+
i from SVM decision values. We implement our methods by mod-

ifying LIBSVM (Chang and Lin, 2001). For all of the 20 subsets, we select SVM parameters by
cross validation before testing. Figures 6(a)-6(f) report the average testing error rates and stan-
dard deviations of the six methods: EXPLOSS, Ext-B.RLS, Ext-B.ML, GBT.ML, NM-S.ML and
Ext-S.ML. Each figure summarizes the results on one data set by six groups of colored error bars,
which represent the error rates of the six methods under the four types of codes. We can see that
EXPLOSS (black diamond) and Ext-B.RLS (red square) perform worse than the others under the
one-against-one and the sparse codes as k becomes large, while GBT.ML, Ext-B.ML, NM-S.ML
and Ext-S.ML are almost equally good. Regarding the performances of the four types of codes,
one-against-one and sparse are less effective for large values of k, an observation consistent with
the results in (Huang et al., 2006b). Recall that in Section 4.2 Ext-S.ML behaves differently from
the others, but here its predictions are similar to those of NM-S.ML and Ext-B.ML. The reason is
that the n+

i and n−i produced by (Lin et al., 2007) are probabilities satisfying n+
i +n−i = 1, so values

of |T +
i − T−i − (n+

i − n−i)| are mostly small and the difference between quadratic and linear loss
functions is negligible. Results here suggest that the proposed methods are useful for multi-class
classification with coding matrices.

7. Conclusions

We propose new and useful methods to rank individuals from group comparisons. For comparisons
with binary outcomes, earlier work solves non-convex problems, but here convex formulations with
easy solution procedures are developed. For scored outcomes, our formulations are probably the
first for this type of problems. Experiments show that the proposed approaches give reasonable
partnership rankings from bridge records and perform effectively in multi-class classification. We
give theoretical accounts for behaviors of proposed approaches, which demonstrate how different
models reflect diverse ranking criteria. We also develop techniques to evaluate different rankings,
which may be used in other ranking tasks.

Appendix A. Derivation of (10) from (8)

P(Y +
i −Y−i > 0)≡

Z ∞

−∞

Z ∞

y−
de−e−(y+−T+

i)

de−e−(y−−T−i)

. (42)

8. Available at http://www.csie.ntu.edu.tw/˜cjlin/papers/svmprob/data.

2210

RANKING INDIVIDUALS BY GROUP COMPARISONS

Let
x+ ≡ e−(y+−T +

i) and x− ≡ e−(y−−T−i).

Consequently,

de−e−(y+−T+
i)

=−e−x+
dx+ and de−e−(y−−T−i)

=−e−x−dx−.

Then,

(42) =
Z ∞

0
−e−x−

Z x−eT+
i −T−i

0
−e−x+

dx+dx−

=
eT +

i

eT +
i + eT−i

.

Appendix B. Proof of Theorem 1

If rank(G) < k, GT G is obviously not invertible; if rank(G) = k, the Singular Value Decomposition
of G can be written as

G = UΛV T ,

where U ∈ Rm×k and V ∈ Rk×k are orthonormal and Λ ∈ Rk×k is diagonal with

Λii 6= 0, i = 1, . . . ,k.

Therefore,
GT G = V ΛUTUΛV T = V Λ2V T

is invertible.

Appendix C. Proof of Theorem 2

We first rewrite l(v) as

l(v) =−
m

∑
i=1

(n+
i T +

i +n−i T−i)+
m

∑
i=1

ni log(eT +
i + eT−i).

The first summation is obviously convex. For the second summation, by using Hölder’s inequality
we have

m

∑
i=1

ni log
(

eλT +
i +(1−λ)T̃+

i + eλT−i +(1−λ)T̃−i
)

=
m

∑
i=1

ni log
(

(eT +
i)λ(eT̃ +

i)1−λ +(eT−i)λ(eT̃−i)1−λ
)

≤
m

∑
i=1

ni log
(

eT +
i + eT−i

)λ(
eT̃ +

i + eT̃−i
)1−λ

=
m

∑
i=1

niλ log
(

eT +
i + eT−i

)

+

m

∑
i=1

ni(1−λ) log
(

eT̃ +
i + eT̃−i

)

(43)

2211

HUANG, LIN AND WENG

for any v, ṽ and λ ∈ (0,1), and the equality holds if and only if

T +
i −T−i = T̃ +

i − T̃−i ∀i,

which can be re-written as
G(v− ṽ) = 0. (44)

If rank(G) = k, then (44) holds if and only if v = ṽ, so l(v) is strictly convex. If l(v) is strictly
convex, then the equality in (43) holds if and only if v = ṽ, so

G(v− ṽ) = 0⇔ v = ṽ,

which implies rank(G) = k.

Appendix D. Proof of Theorem 3

It is easy to verify that the level sets of l(v) are bounded. Since l(v) is strictly convex, it then
attains a unique global minimum. To prove the convergence of Algorithm 1, we first show that if
∂l(v)/∂vs 6= 0, then minimizing (22) leads to

l(v+δ) < l(v). (45)

From (23), if the optimal δs for (22) is zero, then

Bs +
√

B2
s +4µAse−vs

2As
= 1,

which implies

4As(µe−vs−As +Bs) =−4As
∂l(v)

∂vs
= 0. (46)

Since As 6= 0 throughout iterations, (46) implies ∂l(v)/∂vs = 0. Thus if ∂l(v)/∂vs 6= 0, the optimal
δs 6= 0. With (22) = 0 if δs = 0, (45) follows.

Next we show that the sequence {vt} generated by Algorithm 1 is bounded. If not, there must
exist j such that |vt

j| → ∞. Then

l(vt) ≥ µ
k

∑
s=1

(evt
s + e−vt

s)

= µ
k

∑
s=1

(e|v
t
s|+ e−|v

t
s|)

≥ µe|v
t
j|+ e−|v

t
j|

→ ∞,

which contradicts the fact that
l(v0) > l(vt) ∀t.

Since {vt} is bounded, it has limit points. For any limit point v∗, there is an infinite set N̄ such that

lim
t∈N̄,t→∞

vt = v∗.

2212

RANKING INDIVIDUALS BY GROUP COMPARISONS

Since v is finite dimensional, there is one component s updated in an infinite set N ⊂ N̄:

(t mod k)+1 = s for t ∈ N.

Because l(v) is convex, to prove that v∗ is a global minimum, it suffices to show that

∂l(v∗)
∂vs

= 0 for s = 1, . . . ,k. (47)

Suppose the contrary is true, then among s,s+1, . . . ,k,1, . . . ,s−1, there is s̄ such that

∂l(v∗)
∂vs

= · · ·=
∂l(v∗)
∂vs̄−1

= 0,
∂l(v∗)

∂vs̄
6= 0. (48)

From (45), updating v∗s̄ by (23) yields v∗+1 6= v∗ and

l(v∗+1) < l(v∗).

We have that ∂l(v∗)/∂vs = 0 implies

Bs +
√

B2
s +4µA∗s e−v∗s

2A∗s
= 1,

where A∗s is defined according to (24) and Bs is a constant independent of v. Therefore,

lim
t∈N,
t→∞

vt+1
s = lim

t∈N,
t→∞

(

vt
s + log

Bs +
√

B2
s +4µAt

se−vt
s

2At
s

)

= v∗s + log
Bs +

√

B2
s +4µA∗s e−v∗s

2A∗s
= v∗s , (49)

and
lim

t∈N,t→∞
vt+1 = lim

t∈N,t→∞
vt = v∗. (50)

Let t̄ be the iteration corresponding to s̄. Using (48), a similar derivation to (49) and (50) shows that

lim
t∈N,
t→∞

vt+1 = · · ·= lim
t∈N,
t→∞

vt̄ = v∗ and lim
t∈N,
t→∞

vt̄+1 = v∗+1;

consequently,
lim

t∈N,t→∞
l(vt̄+1) = l(v∗+1) < l(v∗),

which contradicts the fact that

l(v∗)≤ ·· · ≤ l(vt+1)≤ l(vt).

Thus (47) holds for all limit points. Since l(v) is strictly convex, every limit point is the unique
global minimum. Moreover, the sequence {vt} is bounded, so it globally converges to the global
minimum.

2213

HUANG, LIN AND WENG

Appendix E. Proof of Claim 1

From (29) it is clear that the ranking by NM-S.ML is invariant to the scale of ni; we thus assume

n+
i +n−i = 2,∀i.

Then (26) can be rewritten as

min
v

m

∑
i=1

(

(T +
i −T−i)2− (4n+

i −4)(T +
i −T−i)

)

.

For Ext-B.ML, as µ is small and can be ignored, we consider the objective function in (17), which
can be re-written as

m

∑
i=1

−n+
i (T +

i −T−i)+ni log(eT +
i −T−i +1) (51)

=
m

∑
i=1

−n+
i (T +

i −T−i)+2
(

log2+
1
2
(T +

i −T−i)+
1
8
(T +

i −T−i)2 +O
(

(T +
i −T−i)3)

)

(52)

≈
1
8

m

∑
i=1

(

(T +
i −T−i)2− (4n+

i −4)(T +
i −T−i)

)

.

From (51) to (52) we use the Taylor expansion of the function log(ex +1) at x = 0 and the assumption
that T +

i ≈ T−i ∀i. Therefore, the rankings by NM-S.ML and Ext-B.ML are similar.

Appendix F. Top 10 Partnerships by Ext-B.ML

Team Players
U.S.A.2 Eric Greco Geoff Hampson
Sweden Peter Bertheau Fredrik Nystrom
Japan Yoshiyuki Nakamura Yasuhiro Shimizu
Chinese Taipei Chih-Kuo Shen Jui-Yiu Shih
New Zealand Tom Jacob Malcolm Mayer
China Zhong Fu Jie Zhao
Italy Norberto Bocchi Giorgio Duboin
Brazil Gabriel Chagas Miguel Villas-boas
India Subhash Gupta Rajeshwar Tewari
Portugal Jorge Castanheira Sofia Pessoa

References

Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to binary: a unifying
approach for margin classifiers. Journal of Machine Learning Research, 1:113–141, 2001. ISSN
1533-7928.

Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. A maximum entropy approach
to natural language processing. Computational Linguistics, 22(1):39–71, 1996.

2214

RANKING INDIVIDUALS BY GROUP COMPARISONS

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
pages 144–152. ACM Press, 1992.

Ralph A. Bradley and Milton E. Terry. The rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39:324–345, 1952.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Machines, 2001.
Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

John N. Darroch and Douglas Ratcliff. Generalized iterative scaling for log-linear models. The
Annals of Mathematical Statistics, 43(5):1470–1480, 1972.

Herbert A. David. The Method of Paired Comparisons. Oxford University Press, second edition,
1988.

Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

Arpad E. Elo. The Rating of Chessplayers, Past and Present. Arco Pub., New York, 2nd edition,
1986.

Mark E. Glickman. Paired Comparison Models with Time-varying Parameters. PhD thesis, Depart-
ment of Statistics, Harvard University, 1993.

Joshua Goodman. Sequential conditional generalized iterative scaling. In ACL, pages 9–16, 2002.

Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling. The Annals of Statistics,
26(1):451–471, 1998.

Ralf Herbrich and Thore Graepel. TrueSkillTM: A Bayesian skill rating system. In Advances in
Neural Information Processing Systems 19. MIT Press, Cambridge, MA, 2007.

Tzu-Kuo Huang, Chih-Jen Lin, and Ruby C. Weng. Ranking individuals by group comparisons. In
Proceedings of the Twenty Third International Conference on Machine Learning (ICML), 2006a.

Tzu-Kuo Huang, Ruby C. Weng, and Chih-Jen Lin. Generalized Bradley-Terry models and multi-
class probability estimates. Journal of Machine Learning Research, 7:85–115, 2006b. URL
http://www.csie.ntu.edu.tw/˜cjlin/papers/generalBT.pdf.

David R. Hunter. MM algorithms for generalized Bradley-Terry models. The Annals of Statistics,
32:386–408, 2004.

Edwin T. Jaynes. Information theory and statistical mechanics. Physical Review, 106(4):620–630,
1957a.

Edwin T. Jaynes. Information theory and statistical mechanics ii. Physical Review, 108(2):171–190,
1957b.

Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng. A note on Platt’s probabilistic outputs for
support vector machines. Machine Learning, 68:267–276, 2007. URL http://www.csie.ntu.
edu.tw/˜cjlin/papers/plattprob.pdf.

2215

HUANG, LIN AND WENG

Joshua E. Menke and Tony R. Martinez. A Bradley-Terry artificial neural network model for indi-
vidual ratings in group competitions. Neural Computing and Applications, 2007. To appear.

Thomas Minka. A Family of Algorithms for Approximate Bayesian Inference. PhD thesis, MIT,
2001.

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of random fields.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393, 1997.

John Platt. Probabilistic outputs for support vector machines and comparison to regularized likeli-
hood methods. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances
in Large Margin Classifiers, Cambridge, MA, 2000. MIT Press.

Bianca Zadrozny. Reducing multiclass to binary by coupling probability estimates. In T. G. Di-
etterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing
Systems 14, pages 1041–1048. MIT Press, Cambridge, MA, 2002.

2216

Journal of Machine Learning Research 9 (2008) 2217-2250 Submitted 6/08; Revised 8/08; Published 10/08

Forecasting Web Page Views: Methods and Observations

Jia Li JIALI@STAT.PSU.EDU

Visiting Scientist∗

Google Labs, 4720 Forbes Avenue
Pittsburgh, PA 15213

Andrew W. Moore AWM@GOOGLE.COM

Engineering Director
Google Labs, 4720 Forbes Avenue
Pittsburgh, PA 15213.

Editor: Lyle Ungar

Abstract
Web sites must forecast Web page views in order to plan computer resource allocation and estimate
upcoming revenue and advertising growth. In this paper, we focus on extracting trends and seasonal
patterns from page view series, two dominant factors in the variation of such series. We investigate
the Holt-Winters procedure and a state space model for making relatively short-term prediction. It
is found that Web page views exhibit strong impulsive changes occasionally. The impulses cause
large prediction errors long after their occurrences. A method is developed to identify impulses and
to alleviate their damage on prediction. We also develop a long-range trend and season extraction
method, namely the Elastic Smooth Season Fitting (ESSF) algorithm, to compute scalable and
smooth yearly seasons. ESSF derives the yearly season by minimizing the residual sum of squares
under smoothness regularization, a quadratic optimization problem. It is shown that for long-
term prediction, ESSF improves accuracy significantly over other methods that ignore the yearly
seasonality.

Keywords: web page views, forecast, Holt-Winters, Kalman filtering, elastic smooth season fitting

1. Introduction

This is a machine learning application paper about a prediction task that is rapidly growing in im-
portance: predicting the number of visitors to a Web site or page over the coming weeks or months.
There are three reasons for this growth in importance. First, hardware and network bandwidth need
to be provisioned if a site is growing. Second, any revenue-generating site needs to predict its rev-
enue. Third, sites that sell advertising space need to estimate how many page views will be available
before they can commit to a contract from an advertising agency.

1.1 Background on Time Series Modeling

Time series are commonly decomposed into “trend”, “season”, and “noise”:

Xt = Lt + It +Nt , (1)

∗. Also, Associate Professor, Department of Statistics, The Pennsylvania State University.

c©2008 Jia Li and Andrew W. Moore.

LI AND MOORE

where Lt is trend, It is season, and Nt is noise. For some prediction methods, Lt is more than a global
growth pattern, in which case it will be referred to as “level” to distinguish from the global pattern
often called trend. These components of a time series need to be treated quite differently. The noise
Nt is often modeled by stationary ARMA (autoregressive moving average) process (Brockwell and
Davis, 2002; Wei, 2006). Before modeling the noise, the series needs to be “detrended” and “desea-
soned”. There are multiple approaches to trend and season removal (Brockwell and Davis, 2002).
In the well-known Box-Jenkins ARIMA (autoregressive integrated moving average) model (Box
and Jenkins, 1970), the difference between adjacent lags (i.e., time units) is taken as noise. The dif-
ferencing can be applied several times. The emphasis of ARIMA is still to predict noise. The trend
is handled in a rather rigid manner (i.e., by differencing). In some cases, however, trend and season
may be the dominant factors in prediction and require methods devoted to their extraction. A more
sophisticated approach to compute trend is by smoothing, for instance, global polynomial fitting,
local polynomial fitting, kernel smoothing, and exponential smoothing. Exponential smoothing is
generalized by the Holt-Winters (HW) procedure to include seasonality. Chatfield (2004) provides
practical accounts on when ARIMA model or methods aimed at capturing trend and seasonality
should be used.

Another type of model that offers the flexibility of handling trend, season, and noise together
is the state space model (SSM) (Durbin and Koopman, 2001). The ARIMA model can be cast into
an SSM, but SSM includes much broader non-stationary processes. SSM and its computational
method—the Kalman filter were developed in control theory and signal processing (Kalman, 1960;
Sage and Melsa, 1971; Anderson and Moore, 1979). For Web page view series, experiments suggest
that trend and seasonality are more important than the noise part for prediction. We thus investigate
the HW procedure and an SSM emphasizing trend and seasonality. Despite its computational sim-
plicity, HW has been successful in some scenarios (Chatfield, 2004). The main advantages of SSM
over HW are (a) some parameters in the model are estimated based on the series, and hence the
prediction formula is adapted to the series; (b) if one wants to modify the model, the general frame-
work of SSM and the related computational methods apply the same way, while HW is a relatively
specific static solution.

1.2 Web Page View Prediction

Web page view series exhibit seasonality at multiple time scales. For daily page view series, there
is usually a weekly season and sometimes a long-range yearly season. Both HW and SSM can
effectively extract the weekly season, but not the yearly season for several reasons elaborated in
Section 4. For this task, we develop the Elastic Smooth Season Fitting (ESSF) method. It is observed
that instead of being a periodic sequence, the yearly seasonality often emerges as a yearly pattern
that may scale differently across the years. ESSF takes into consideration the scaling phenomenon
and only requires two years of data to compute the yearly season. Experiments show that the
prediction accuracy can be improved remarkably based on the yearly season computed by ESSF,
especially for forecasting distant future.

To our best knowledge, existing work on forecasting Internet access data is mostly for network
traffic load. For short-term traffic, it is reasonable to assume that the random process is stationary,
and thus prediction relies on extracting the serial statistical dependence in the seemingly noisy
series. Stationary ARMA models are well suited for such series and have been exploited (Basu et
al., 1996; You and Chandra, 1999). A systematic study of the predictability of network traffic based

2218

FORECASTING WEB PAGE VIEWS

on stationary traffic models has been conducted by Sang and Li (2001). For long-term prediction
of large-scale traffic, because trends often dominate, prediction centers around extracting trends.
Depending on the characteristics of trends, different methods may be used. In some cases, trends
are well captured by growth rate and the main concern is to accurately estimate the growth rate,
for instance, that of the overall Internet traffic (Odlyzko, 2003). Self-similarity is found to exist
at multiple time scales of network traffic, and is exploited for prediction (Grossglauser and Bolot,
1999). Multiscale wavelet decomposition has been used to predict one-minute-ahead Web traffic
(Aussem and Murtagh, 2001), as well as Internet backbone traffic months ahead (Papagiannaki et
al., 2005). Neural networks have also been applied to predict short-term Internet traffic (Khotanzad
and Sadek, 2003). An extensive collection of work on modeling self-similar network traffic has
been edited by Park and Willinger (2000).

We believe Web page view series, although closely related to network traffic data, have particular
characteristics worthy of a focused study. The contribution of the paper is summarized as follows.

1. We investigate short-term prediction by HW and SSM. The advantages and disadvantages of
the two approaches in various scenarios are analyzed. It is also found that seasonality exists
at multiple time scales and is important for forecasting Web page view series.

2. Methods are developed to detect sudden massive impulses in the Web traffic and to remedy
their detrimental impact on prediction.

3. For long-term prediction several months ahead, we develop the ESSF algorithm to extract
global trends and scalable yearly seasonal effects after separating the weekly season using
HW.

1.3 Application Scope

The prediction methods in this paper focus on extracting trend and season at several scales, and are
not suitable for modeling stationary stochastic processes. The ARMA model, for which mature off-
the-shelf software is available, is mostly used for such processes. The trend extracted by HM or SSM
is the noise-removed non-season portion of a time series. If a series can be compactly described by a
growth rate, it is likely better to directly estimate the growth rate. However, HW and SSM are more
flexible in the sense of not assuming specific functional form for the trend on the observed series.
HW and SSM are limited for making long-term prediction. By HW, the predicted level term of the
page view at a future time is assumed to be the current level added by a linear function of the time
interval, or simply the current level if linear growth is removed, as in some reduced form of HW. If a
specifically parameterized function can be reliably assumed, it is better to estimate parameters in the
function and apply extrapolation accordingly. However, in the applications we investigated, there
is little base for choosing any particular function. The yearly season extraction by ESSF is found
to improve long-term prediction. The basic assumption of ESSF is that the time series exhibits a
yearly pattern, possibly scaled differently across the years. It is not intended to capture event driven
pattern. For instance, the search volume for Batman surges around the release of every new Batman
movie, but shows no clear yearly pattern.

In particular, we have studied two types of Web page view series: (a) small to moderate scale
Web sites; (b) dynamic Web pages generated by Google for given search queries. Due to the fast
changing pace of the Internet, page view series available for small to moderate scale Web sites
are usually short (e.g., shorter than two years). Therefore, the series are insufficient for exploiting

2219

LI AND MOORE

yearly seasonality in prediction. The most dramatic changes in those series are often the news-
driven surges. Without side information, such surges cannot be predicted from the page view series
alone. It is difficult for us to acquire page view data from Web sites with long history and very high
access volume because of privacy constraints. We expect the page views of large-scale Web sites to
be less impulsive in a relative sense because of their high base access. Moreover, large Web sites
are more likely to have existed long enough to form long-term, for example, yearly, access patterns.
Such characteristics are also possessed by the world-wide volume data of search queries, which we
use in our experiments.

The rest of the paper is organized as follows. In Section 2, the Holt-Winters procedure is in-
troduced. The effect of impulses on the prediction by HW is analyzed, based on which methods of
detection and correction are developed. In Section 3, we present the state space model and discuss
the computational issues encountered. Both HW and SSM aim at short-term prediction. The ESSF
algorithm for long-term prediction is described in Section 4. Experimental results are provided in
Section 5. We discuss predicting the noise part of the series by AR (autoregressive) models and
finally conclude in Section 6.

2. The Holt-Winters Procedure

Let the time series be {x1,x2, ...,xn}. The Holt-Winters (HW) procedure (Chatfield, 2004) decom-
poses the series into level Lt , season It , and noise. The variation of the level after one lag is assumed
to be captured by a local linear growth term Tt . Let the period of the season be d. The HW procedure
updates Lt , It , and Tt simultaneously by a recursion:

Lt = ζ(xt − It−d)+(1−ζ)(Lt−1 +Tt−1), (2)

Tt = κ(Lt −Lt−1)+(1−κ)Tt−1, (3)

It = δ(xt −Lt)+(1−δ)It−d (4)

where the pre-selected parameters 0 ≤ ζ ≤ 1, 0 ≤ κ ≤ 1, and 0 ≤ δ ≤ 1 control the smoothness of
updating. This is a stochastic approximation method in which the current level is an exponentially
weighted running average of recent season-adjusted observations. To better see this, let us assume
the season and linear growth terms are absent. Then Eq. (2) reduces to

Lt = ζxt +(1−ζ)Lt−1 (5)

= ζxt +(1−ζ)ζxt−1 +(1−ζ)2Lt−2

...

= ζxt +(1−ζ)ζxt−1 +(1−ζ)2ζxt−2 + · · ·+(1−ζ)t−1ζx1 +(1−ζ)tL0.

Suppose L0 is initialized to zero, the above equation is an on the fly exponential smoothing of the
time series, that is, a weighted average with the weights attenuating exponentially into the past. We
can also view Lt in Eq. (5) as a convex combination of the level indicated by the current observation
xt and the level suggested by the past estimation Lt−1. When the season is added, xt subtracted by
the estimated season at t becomes the part of Lt indicated by current information. At this point of
recursion, the most up-to-date estimation for the season at t is It−d under period d. When the linear
growth is added, the past level Lt−1 is expected to become Lt−1 + Tt−1 at t. Following the same
scheme of convex combination, Eq. (5) evolves into (2). Similar rationale applies to the update

2220

FORECASTING WEB PAGE VIEWS

0 2 4 6 8 10 12

−0.5

0

0.5

1

Original series
Predicted series
Error

0 2 4 6 8 10 12
−0.2

0

0.2

0.4

0.6

0.8

1

Original series
Predicted series

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

Original series

Predicted series

Error

(a) (b) (c)

Figure 1: Holt-Winters prediction for time series with abrupt changes. (a) Impulse effect on a
leveled signal: slow decaying tail; (b) Impulse effect on a periodic signal: ripple effect;
(c) Response to a step signal.

of Tt and It in Eqs. (3) and (4). Based on past information, Tt and It are expected to be Tt−1 and
It−d under the implicit assumption of constant linear growth and fixed season. On the other hand,
the current xt and the newly computed Lt suggest Tt to be Lt −Lt−1, and It to be xt −Lt . Applying
convex combination leveraging past and current information, we obtain Eqs. (3) and (4).

To start the recursion in the HW procedure at time t, initial values are needed for Lt−1, Tt−1,
and It−τ, τ = 1,2, ...,d. We use the first period of data {x1,x2, ...,xd} for initialization, and start the
recursion at t = d +1. Specifically, linear regression is conducted for {x1,x2, ...,xd} versus the time
grid {1,2, ...,d}. That is, xτ and τ, τ = 1, ...,d, are treated as dependent variable and independent
variable respectively. Suppose the regression function obtained is b1τ+b2. We initialize by setting
Lτ = b1τ+b2, Tτ = 0, and Iτ = xτ −Lτ, τ = 1,2, ...,d.

The forecasting of h time units forward at t, that is, the prediction of xt+h based on {x1,x2, ...,xt},
is

x̂t+h = Lt +hTt + It−d+h mod d ,

where mod is the modulo operation. The linear function of h, Lt +hTt , with slope given by the most
updated linear growth Tt , can be regarded as an estimation for Lt+h; while It−d+h mod d , the most
updated season at the same cyclic position as t +h, which is already available at t, is the estimation
for It+h.

Experiments using the HW procedure show that the local linear growth term, Tt , helps little in
prediction. In fact, for relatively distant future, the linear growth term degrades performance. This
is because for the Web page view series, we rarely see any linear trends visible over a time scale
from which the gradient can be estimated by HW. We can remove the term Tt in HW conveniently
by initializing it with zero and setting the corresponding smoothing parameter κ = 0.

Web page view series sometimes exhibit impulsive surges or dips. Such impulsive changes last
a short period of time and often bring the level of page views to a magnitude one or several orders
higher than the normal range. For instance, in Figure 5(a), the amount of page views for an example
Web site jumps tremendously at the 404th day and returns to normal one day later. Impulses are
triggered by external forces which are unpredictable based on the time series alone. One such
common external force is a news launch related to the Web site. Because it is extremely difficult if
possible at all to predict the occurrence of an impulse, we focus on preventing its after effect.

2221

LI AND MOORE

The influence of an impulse on the prediction by the HW procedure is elaborated in Figure 1. In
Figure 1(a), a flat leveled series with an impulse is processed by HW. The predicted series attempts
to catch up with the impulse after one lag. Although the impulse is over after one lag, the predicted
series attenuates slowly, causing large errors several lags later. The stronger the impulse is, the
slower the predicted series returns close to the original one. The prediction error consumes a positive
value and then a negative one, both of large magnitudes. Apparently, a negative impulse will result
in a reversed error pattern. Figure 1(b) shows the response of HW to an impulse added to a periodic
series. The prediction error still yields the pattern of switching signs and large magnitudes. To
reduce the influence of an impulse, it is important that we differentiate an impulse from a sudden
step-wise change in the series. When a significant step appears, we want the predicted series to
catch up with the change as fast as possible rather than hindering the strong response. Figure 1(c)
shows the prediction by HW for a series with a sudden positive step change. The prediction error
takes a large positive value and reduces gradually to zero without crossing into the negative side.

Based on the above observations, we detect an impulse by examining the co-existence of errors
with large magnitudes and opposite signs within a short window of time. In our experiments, the
window size is s1 = 10. The extremity of the prediction error is measured relatively with respect
to the standard deviation of prediction errors in the most recent past of a pre-selected length. In
the current experiment, this length is s2 = 50. The time units of s1 and s2 are the same as that
of the time series in consideration. Currently, we manually set the values of s1,2. The rationale for
choosing these values is that s1 implies the maximum length of an impulse; and s2 balances accurate
estimation of the noise variance and swift adaptation to the change of the variance over time. We
avoid setting s1 too high to ensure that a detected impulse is a short-lived, strong, and abrupt change.
If a time series undergoes a real sudden rising or falling trend, the prediction algorithm will capture
the trend but with a certain amount of delay, as shown by the response of HW to a step signal in
Figure 1(c). In a special scenario when an impulse locates right at the boundary of a large rising
trend, the measure taken to treat the impulse will further slow down the response to, but not prevent
the eventual catch-up of the rise.

At time t, let the prediction for xt based on the past series up to t − 1 be x̂t , and the prediction
error be et = xt − x̂t . We check whether an impulse has started at t ′, t−s1 +1 ≤ t ′ ≤ t−1, and ended
at t by the following steps.

1. Compute the standard deviation with removed outliers, σt−1, for the prediction errors
{et−s2 ,et−s2+1, ...,et−1}, which are known by time t. The motivation for removing the outliers
is that at any time an impulse exists, the prediction error will be unusually large, and hence
bias the estimated average amount of variation. In our experiments, 10% of the errors are
removed as outliers.

2. Compute the relative magnitude of et by θt = |et |
σt−1

.

3. Examine θt ′ in the window t ′ ∈ [t − s1 +1, t]. If there is a t ′, t − s1 +1 ≤ t ′ ≤ t −1, such that
θt ′ > ∆1 and θt > ∆2 and sign(et ′) 6= sign(et), the segment [t ′, t] is marked as an impulse. If et ′

is positive while et negative, the impulse is a surge; the reverse is a dip. The two thresholds
∆1 and ∆2 determine the sensitivity to impulses and are chosen around 2.5.

If impulse is not detected, the HW recursion is applied at the next time unit t +1. Otherwise, Lt , Tt ,
and It ′ for t ′ ∈ [t − s1 + 1, t], are revised as follows to reduce the effect of the impulse on the future
Lτ, Tτ, and Iτ, τ > t. Once the revision is completed, the HW recursion resumes at t +1.

2222

FORECASTING WEB PAGE VIEWS

L t T t I tUpdate , ,

I t I t−1 I t−s1+1

L t

Adjust , , ...,

and

Forecast future at t

t+1 −−> t

Does impulse exist?

Yes

No

Estimate parameters H and Q based
on series up to time t, using Kalman
filtering and the EM algorithm

Initialize Kalman filter at τ=1

τ =t?

t+1−−> t

No
τ+1−−> τ

Yes

Update Kalman filter at τ
based on that at τ−1

Kalman filtering result
Forecast future at t based on

Detect impulse and adjust the series
up to t, using the HW procedure

2D+1−−> t

L t I t

Apply HW recursion to
obtain and

Forecast at time t

a new year?
Does t enter

L τApply ESSF to in the immediate
past two years to obtain yearly season

Iτ τ =1,2,..., 2D
L τApply HW to obtain level

and weekly season at

Compute global linear trend using
level subtracted by yearly season

Yes

No

t+1−−> t

(a) (b) (c)

Figure 2: The schematic diagrams for the forecasting algorithms: (a) Holt-Winters with impulse
detection; (b) GLS; (c) ESSF.

1. For t ′ = t − s1 + 1, ..., t, set It ′ = It ′−d sequentially. This is equivalent to discarding the sea-
son computed during the impulse segment and using the most recent season right before the
impulse.

2. Let Lt = 1
2 Lt−s1 + 1

2(xt − It), where Lt−s1 is the level before the impulse and It is the already
revised season at t.

3. Let Tt = 0.

In this paper, we constrain our interest to reducing the adverse effect of an impulse on later predic-
tion after it has occurred and been detected. Predicting the arrival of impulses in advance using side
information, for instance, scheduled events impacting Web visits, is expected to be beneficial, but is
beyond our study here. A schematic diagram of the HW procedure is illustrated in Figure 2(a).

Holt-Winters and our impulse-resistant modification have the merit of being very cheap to up-
date and predict, requiring only a handful of additions and multiples. This may be useful in some
extremely high throughput situations, such as network routers. But in more conventional settings, it
leads to the question: can we do better with more extensive model estimation at each time step?

3. State Space Model

A state space model (SSM) assumes that there is an underlying state process for the series {x1, ...,xn}.
The states are characterized by a Markov process, and xt is a linear combination of the states added

2223

LI AND MOORE

with Gaussian noise. In general, an SSM can be represented in the following matrix form:

xt = Ztαt + εt , εt ∼ N(0,Ht), (6)

αt+1 = Ttαt +Rtηt , ηt ∼ N(0,Qt) , t = 1, ...,n,

α1 ∼ N(a1,P1)

where {α1,α2, ...,αn} is the state process. Each state is an m-dimensional column vector. Although
in our work, the observed series xt is univariate, SSM treats generally p-dimensional series. The
noise terms εt and ηt follow Gaussian distributions with zero mean and covariance matrices Ht and
Qt respectively. For clarity, we list the dimension of the matrices and vectors in (6) below.

observation xt p×1 Zt p×m
state αt m×1 Tt m×m
noise εt p×1 Ht p× p
noise ηt r×1 Rt m× r

Qt r× r
initial state mean a1 m×1 P1 m×m

We restrict our interest to time invariant SSM where the subscript t can be dropped for Z, T,
R, H, and Q. Matrices Z, T and R characterize the intrinsic relationship between the state and
the observed series, as well as the transition between states. They are determined once we decide
upon a model. The covariance matrices H and Q are estimated based on the time series using the
Maximum Likelihood (ML) criterion.

Next, we describe the Level with Season (LS) model, which decomposes xt in the same way as
the HW procedure in Eq. (2)∼(4), with the linear growth term removed. We discard the growth
term because, as mentioned previously, this term does not contribute in the HW procedure under
our experiments. However, if necessary, it would be easy to modify the SSM to include this term.
We then describe the Generalized Level with Season (GLS) model that can explicitly control the
smoothness of the level.

3.1 The Level with Season Model

Denote the level at t by µt and the season with period d by it . The LS model assumes

xt = µt + it + εt ,

it = −
d−1

∑
j=1

it− j +η1,t , (7)

µt = µt−1 +η2,t

where εt and η j,t , j = 1,2, are the Gaussian noises.
Comparing with the HW recursion equations (2)∼(4), Eq. (7) is merely a model specifying

the statistical dependence of xt on µt and it , both of which are unobservable random processes.
The Kalman filter for this model, playing a similar role as Eqs. (2)-(4) for HW, will be computed
recursively to estimate µt , it , and to predict future. Details on the Kalman filter are provided in
Appendix A. In its simplest form, with both the linear growth and season term removed, HW reduces
to exponential smoothing with recursion Lt = ζxt + (1− ζ)Lt−1. It can be shown that if we let
Lt = E(µt | x1, ...,xt−1), the recursion for Lt in HW is the same as that derived from the Kalman

2224

FORECASTING WEB PAGE VIEWS

filter for the LS model without season. The smoothing parameter ζ is determined by the parameters
of the noise distributions in LS. When season is added, there is no complete match between the
recursion of HW and that of the Kalman filter. In the LS model, it is assumed that ∑d

τ=1 it+τ = 0
up to white noise, but HW does not enforce the zero sum of one period of the season terms. The
decomposition of xt into level µt and season it by LS is however similar to that assumed by HW.

We can cast the LS model into a time invariant SSM following the notation of (6). The matrix
expansion according to (6) leads to the same set of equations in (7):

αt =

it
it−1
...
it−d+2

µt

, ηt =

(

η1,t

η2,t

)

,

Z = (1,0,0, · · · ,0,1)
d ×1

,
R =

1 0
0 0
0 0
...

...
0 0
0 1

d ×3

,
T =

−1 −1 −1 · · · −1 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
.

...
...

0 0 · · · 1 0 0
0 0 · · · 0 0 1

d ×d

.

3.2 Generalized Level with Season Model

We generalize the above LS model by imposing different extent of smoothness on the level term µt .
Specifically, let

xt = µt + it + εt , (8)

it = −
s−1

∑
j=1

it− j +η1,t ,

µt =
1
q

q

∑
j=1

µt− j +η2,t .

Here q≥ 1 controls the extent of smoothness. The higher the q, the smoother the level {µ1,µ2, ...,µn}.
We experiment with q = 1,3,7,14.

Again, we cast the model into an SSM. The dimension of the state vector is m = d −1+q.

αt =

it
...
it−d+2

µt
...
µt−q+1

, ηt =

(

η1,t

η2,t

)

.

2225

LI AND MOORE

We describe Z, R, T by the sparse matrix format. Denote the (i, j)th element of a matrix, for
example, T, by T(i, j) (one index for vectors). An element is zero unless specified.

Z = [Z(i, j)]1×m, Z(1) = 1, Z(d) = 1,

R = [R(i, j)]m×2, R(1,1) = 1, R(d,2) = 1,

T = [T(i, j)]m×m, T(1, j) = −1, j = 1,2, ...,d−1,

T(1+ j, j) = 1, j = 1,2, ...,d−2,

T(d,d −1+ j) =
1
q
, j = 1, ...,q,

T(d + j,d −1+ j) = 1, j = 1,2, ...,q−1, if q > 1.

We compare the LS and GLS models in Section 5 by experiments. It is shown that for distant
prediction, imposing smoothness on the level can improve performance.

In practice, the prediction of a future xt+h based on {x1,x2, ...,xt} comprises two steps:

1. Estimate H and Q in GLS (or SSM in general) using the past series {x1, ...,xt}.

2. Estimate xt+h by the conditional expectation E(xt+h | x1,x2, ...,xt) under the estimated model.

We may not need to re-estimate the model with every new coming xt , but update the model once
every batch of data. We estimate the model by the ML criterion using the EM algorithm. The
Kalman filter and smoother, which involve forward and backward recursion respectively, are the
core of the EM algorithm for SSM. Given an estimated model, the Kalman filter is used again to
compute E(xt+h | x1,x2, ...,xt), as well as the variance Var(xt+h | x1,x2, ...,xt): a useful indication for
the prediction accuracy. Details on the algorithms for estimating SSM and making prediction based
on SSM are provided in the Appendix. A thorough coverage on the theories of SSM and related
computational methods is referred to Durbin and Koopman (2001).

Because treating impulses improves prediction, as demonstrated by the experiments in Sec-
tion 5, it is conducted for the GLS approach. In particular, we invoke the impulse detection embed-
ded in HW. For any segment of time where an impulse is marked, the observed data xt are replaced
by Lt + It computed by HW. This modified series is then input to the GLS estimation and prediction
algorithms. The schematic diagram for forecasting using GLS is shown in Figure 2(b).

4. Long-range Trend and Seasonality

Web page views sometimes show long-range trend and seasonality. In Figure 7(a), three time series
over a period of four years are shown. Detailed description of the series is provided in Section 5.
Each time series demonstrates apparently a global trend and yearly seasonality. For instance, the
first series, namely amazon, grows in general over the years and peaks sharply every year around
December. Such long-range patterns can be exploited for forecasting, especially for distant future.
To effectively extract long-range trend and season, several needs ought to be addressed:

1. Assume the period of the long-range season is a year. Because the Internet is highly dynamic,
it is necessary to derive the yearly season using past data over recent periods and usually only
a few (e.g., two) are available.

2226

FORECASTING WEB PAGE VIEWS

2. A mechanism to control the smoothness of the long-range season is needed. By enforcing
smoothness, the extracted season tends to be more robust, a valuable feature especially when
given limited past data.

3. The magnitude of the yearly season may vary across the years. As shown in Figure 7(a),
although the series over different years show similar patterns, the patterns may be amplified
or shrunk over time. The yearly season thus should be allowed to scale.

The HW and GLS approaches fall short of meeting the above requirements. They exploit mainly
the local statistical dependence in the time series. Because HW (and similarly GLS) performs
essentially exponential smoothing on the level and linear growth terms, the effect of historic data
further away attenuates fast. HW is not designed to extract a global trend over multiple years.
Furthermore, HW requires a relatively large number of periods to settle to the intended season; and
importantly, HW assumes a fixed season over the years. Although HW is capable of adjusting with
a slowly changing season when given enough periods of data, it does not directly treat the scaling
of the season, and hence is vulnerable to the scaling phenomenon.

In our study, we adopt a linear regression approach to extract the long-range trend. We inject
elasticity into the yearly season and allow it to scale from a certain yearly pattern. The algorithm
developed is called Elastic Smooth Season Fitting (ESSF). The time unit of the series is supposed
to be a day.

4.1 Elastic Smooth Season Fitting

Before extracting long-range trend and season, we apply HW with impulse detection to obtain the
weekly season and the smoothed level series Lt , t = 1, ...,n. Recall that the HW prediction for
the level Lt+h at time t is Lt , assuming no linear growth term in our experiments. We want to
exploit the global trend and yearly season existing in the level series to better predict Lt+h based on
{L1,L2, ...,Lt}.

We decompose the level series Lt , t = 1, ...,n, into a yearly season, yt , a global linear trend ut ,
and a volatility part nt :

Lt = ut + yt +nt , t = 1,2, ...,n .

Thus the original series xt is decomposed into:

xt = ut + yt +nt + It +Nt , (9)

where It and Nt are the season and noise terms from HW. Let u = {u1,u2, ...,un} and y = {y1,y2, ...,yn}.
They are solved by the following iterative procedure. At this moment, we assume the ESSF algo-
rithm, to be described shortly, is available. We start by setting y(0) = 0. At iteration p, update y(p)

and u(p) by

1. Let gt = Lt − y(p−1)
t , t = 1, ...,n. Note gt is the global trend combined with noise, taking out

the current additive estimate of the yearly season.

2. Perform linear regression of g = {g1, ...,gn} on the time grid {1,2, ...,n}. Let the regressed

value at t be u(p)
t , t = 1,2, ...,n. Thus for some scalars b(p)

1 and b(p)
2 , u(p)

t = b(p)
1 t +b(p)

2 .

2227

LI AND MOORE

3. Let zt = Lt −u(p)
t , t = 1, ...,n. Here zt is the yearly season combined with noise, taking out the

current estimate of the global trend. Apply ESSF to z = {z1,z2, ...,zn}. Let the yearly season
derived by ESSF be y(p).

It is analytically difficult to prove the convergence of the above procedure. Experiments based
on three series show that the difference in y(p) reduces very fast. At iteration p, p ≥ 2, we measure
the relative change from y(p−1) to y(p) by

||y(p)−y(p−1)||

||y(p−1)||
, (10)

where || · || is the L2 norm. Detailed results are provided in Section 5. Because ESSF always has to
be coupled with global trend extraction, for brevity, we also refer to the entire procedure above as
ESSF when the context is clear, particularly, in Section 4.2 and Section 5.

We now present the ESSF algorithm for computing the yearly season based on the trend removed
z. For notational brevity, we re-index day t by double indices (k, j), which indicates day t is the jth
day in the kth year. Denote the residue zt = Lt − ut by zk, j, the yearly season yt by yk, j (we abuse
the notation here and assume the meaning is clear from the context), and the noise term nt by nk, j.
Suppose there are a total of K years and each contains D days. Because leap years contain one more
day, we take out the extra day from the series before applying the algorithm.

We call the yearly season pattern y = {y1,y2, ...,yD} the season template. Since we allow the
yearly season yk, j to scale over time, it relates to the season template by

yk, j = αk, jy j, k = 1,2, ...,K, j = 1, ...,D,

where αk, j is the scaling factor. One choice for αk, j is to let αk, j = ck, that is, a constant within
any given year. We call this scheme step-wise constant scaling since αk, j is a step function if single
indexed by time t. One issue with the step-wise constant scaling factor is that yk, j inevitably jumps
when entering a new year. To alleviate the problem, we instead use a piece-wise linear function for
αk, j. Let c0 = 1. Then

αk, j =
j−1
D

ck +
D− j +1

D
ck−1 , k = 1,2, ...,K, j = 1, ...,D. (11)

The number of scaling factors ck to be determined is still K. Let c = {c1, ...,cK}. At the first day of
each year, αk,1 = ck−1. We optimize over both the season template y j, j = 1, ...,D, and the scaling
factors ck, k = 1, ...,K.

We now have
zk, j = αk, jy j +nk, j ,

where zk, j’s are given, while ck, y j, and nk, j, k = 1, ...,K, j = 1, ...,D, are to be solved. A natural
optimization criterion is to minimize the sum of squared residues:

min
y,c

∑
k

∑
j

n2
k, j = min

y,c
∑
k

∑
j

(zk, j −αk, jy j)
2 .

If the number of years K is small, y obtained by the above optimization can be too wiggly. We
add a penalty term to ensure the smoothness of y. The discrete version of the second order derivative
for y j is

ÿ j = y j+1 + y j−1 −2y j ,

2228

FORECASTING WEB PAGE VIEWS

and ∑ j ÿ2
j is used as the smoothness penalty. Since y is one period of the yearly season, when j ′ is

out of the range [1,D], y j′ is understood as y j′mod D. For instance, y0 = yD, yD+1 = y1. We form the
following optimization criterion with a pre-selected regularization parameter λ:

min
y,c

G(y,c) = min
y,c

∑
k

∑
j

(zk, j −αk, jy j)
2 +λ∑

j

(y j+1 + y j−1 −2y j)
2 . (12)

To solve (12), we alternate the optimization of y and c. With either fixed, G(y,c) is a convex
quadratic function. Hence a unique minimum exists and can be solved by a multivariable linear
equation. The algorithm is presented in details in Appendix B.

Experiments show that allowing scalable yearly season improves prediction accuracy, so does
the smoothness regularization of the yearly season. As long as λ is not too small, the prediction
performance varies marginally for a wide range of values. The sensitivity of prediction accuracy to
λ is studied in Section 5.

A more ad-hoc approach to enforce smoothness is to apply moving average to the yearly season
extracted without smoothness regularization. We can further simplify the optimization criterion in
(12) by employing step-wise constant scaling factor, that is, let αk, j = ck, k = 1, ...,K. The jump
effect caused by the abrupt change of the scaling factor is reduced by the moving average as well.
Specifically, the optimization criterion becomes

min
y,c

G̃(y,c) = min
y,c

∑
k

∑
j

(zk, j − cky j)
2 . (13)

The above minimization is solved again by alternating the optimization of y and c. See Appendix
B for details. Comparing with Eq. (12), the optimization for (13) reduces computation significantly.
After acquiring y, we apply a double sided moving average. We call the optimization algorithm for
(13) combined with the post operation of moving average the fast version of ESSF. Experiments in
Section 5 show that ESSF Fast performs similarly to ESSF.

4.2 Prediction

We note again that ESSF is for better prediction of the level Lt obtained by HW. To predict xt , the
weekly season extracted by HW should be added to the level Lt . The complete process of prediction
is summarized below. We assume that prediction starts on the 3rd year since the first two years have
to serve as past data for computing the yearly season.

1. Apply HW to obtain the weekly season It , and the level Lt , t = 1,2, ...,n.

2. At the beginning of each year k, k = 3,4, ..., take the series of Lt’s in the past two years (year
k− 2 and k− 1) and apply ESSF to this series to solve the yearly season template y and the
scaling factors, c1 and c2 for year k− 2 and k− 1 respectively. Predict the yearly season for
future years k′ ≥ k by c2y. Denote the predicted yearly season at time t in any year k′ ≥ k by
Yt,k, where the second subscript clarifies that only the series before year k is used by ESSF.

3. Denote the year in which day t lies by ν(t). Let the yearly season removed level be L̃t = Lt −
Yt,ν(t). At every t, apply linear regression to {L̃t−2D+1, ..., L̃t} over the time grid {1,2, ...,2D}.
The slope of the regressed line is taken as the long-range growth term T̃t .

2229

LI AND MOORE

2006 Nov 2006 Dec 2007 Jan

0

0.1

0.2

0.3

0.4

0.5

Weekly season
Yearly season
Long−range growth

2006 Nov 2006 Dec 2007 Jan

1.4

1.6

1.8

2

2.2

2.4

Original series
ESSF
HW
Level

(a) (b)

Figure 3: Decomposition of the prediction terms for the amazon series in November and December
of 2006 based on data up to October 31, 2006: (a) The weekly season, yearly season, and
long-range linear growth terms in the prediction; (b) Comparison of the predicted series
by HW and ESSF.

Suppose at the end of day t (or beginning of day t + 1), we predict for the hth day ahead of t.
Let the prediction be x̂t+h. Also let r(t + h) be the smallest integer such that t + h− r(t + h) ·d ≤ t
(d is the weekly period). Then,

x̂t+h = L̃t +hT̃t +Yt+h,ν(t) + It+h−r(t+h)·d . (14)

Drawing a comparison between Eqs. (14) and (9), we see that L̃t + hT̃t is essentially the predic-
tion for the global linear trend term ut+h, Yt+h,ν(t) the prediction for the yearly season yt+h, and
It+h−r(t+h)·d the prediction for the weekly season It+h. The schematic diagram for forecasting by
ESSF is shown in Figure 2(c).

If day t +h is in the same year as t, Yt+h,ν(t) =Yt+h,ν(t+h) is the freshest possible prediction for the
yearly season at t +h. If instead ν(t) < ν(t +h), the yearly season at t +h is predicted based on data
more than one year ago. One might have noticed that we use only two years of data to extract the
yearly season regardless of the available amount of past data. This is purely an individual choice due
to our preference of using recent data. Experiments based on the series described in Section 5 show
that whether all the available past data are used by ESSF causes negligible difference in prediction
performance.

To illustrate the roles of the terms in the prediction formula (14), we plot them separately in
Figure 3(a) for the amazon series. The series up to October 31, 2006 is assumed to have been
observed, and the prediction is for November and December of 2006. Figure 3(a) shows that during
these two months, the predicted yearly season is much more prominent than the weekly season and
the slight linear growth. Figure 3(b) compares the prediction by ESSF and HW respectively. The
series predicted by HW is weekly periodic with a flat level, while that by ESSF incorporates the
yearly seasonal variation and is much closer to the original series, as one might have expected.

2230

FORECASTING WEB PAGE VIEWS

5. Experiments

We conduct experiments using twenty six time series. As a study of the characteristics of Web
page views, we examine the significance of the seasonal as well as impulsive variations. Three
relatively short series are used to assess the performance of short-term prediction by the HW and
GLS approaches. The other twenty three series are used to test the ESSF algorithm for long-term
prediction. In addition to comparing the different forecasting methods, we also present results to
validate the algorithmic choices made in ESSF.

5.1 Data Sets

We conduct experiments based on the time series described below.

1. The Auton series records the daily page views of the Auton Lab, headed by Andrew Moore,
in the Robotics Institute at the Carnegie Mellon University (http://www.autonlab.org). This
series spans from August 14, 2005 to May 1, 2007, a total of 626 days.

2. The Wang series records the daily page views of the Web site for the research group headed by
James Wang at the Pennsylvania State University (http://wang.ist.psu.edu). This series spans
from January 1, 2006 to February 1, 2008, a total of 762 days.

3. The citeseer series records the hourly page views to citeseer, an academic literature search
engine currently located at http://citeseer.ist.psu.edu. This series spans from 19 : 00 on Septem-
ber 6, 2005 to 4 : 00 on September 25, 2005, a total of 442 hours.

4. We acquired 23 relatively long time series from the site http://www.google.com/trends. This
Web site provides search volumes for user specified phrases. We treat the search volumes as
an indication of the page views to dynamically generated Web pages by Google. The series
record daily volumes from Jan, 2004 to December 30, 2007 (roughly four full years), a total
of 1460 days. The volumes for each phrase are normalized with respect to the average daily
volume of that phrase in the month of January 2004. The normalization will not affect the
prediction accuracy, which is measured relatively with respect to the average level of the
series. We also call the series collectively the g-trends series.

5.2 Evaluation

Let the prediction for xt be x̂t . Suppose prediction is provided for a segment of the series,
{xt0+1,xt0+2, ...,xt0+J}, where 0 ≤ t0 < n. We measure the prediction accuracy by the error rate
defined as

Re =

√

RSS
SSS

where RSS, the residual sum of squares is

RSS =
t0+J

∑
t=t0+1

(x̂t − xt)
2 (15)

and SSS, the series sum of squares is

SSS =
t0+J

∑
t=t0+1

x2
t . (16)

2231

LI AND MOORE

We call Re the prediction error rate. It is the reciprocal of the square root of the signal to noise ratio
(SNR), a measure commonly used in signal processing. We can also evaluate the effectiveness of a
prediction method by comparing RSS to SPV , the sum of predictive variation:

SPV =
t0+J

∑
t=t0+1

(xt − xt)
2 , xt =

∑t−1
τ=1 xτ

t −1
.

We can consider xt , the mean up to time t−1, as the simplest prediction of xt using past data. We call
this scheme of prediction Mean of Past (MP). SPV is essentially the RSS corresponding to the MP
method. The Re of MP is

√

SPV/SSS. We denote the ratio between the Re of a prediction method
and that of MP by Qe =

√

RSS/SPV , referred to as the error ratio. As a measure on the amount of
error, in practice, Re is more pertinent than Qe for users concerned with employing the prediction in
subsequent tasks. We thus use Re as the major performance measure in all the experimental results.
For comparison with baseline prediction methods, we also show Re of MP as well as that of the
Moving Average (MA). In the MA approach, considering the weekly seasonality, we treat Monday
to Sunday separately. Specifically, if a day to be predicted is a Monday, we forecast by the average
of the series on the past 4 Mondays. Similarly for the other days of a week. For the hourly page
view series with daily seasonality, MA predicts by the mean of the same hours in the past 4 days.

As discussed previously, Web page views exhibit impulsive changes. The prediction error during
an impulse is extraordinarily large, skewing the average error rate significantly even if impulses
only exist on a small fraction of the series. The bias caused by the outlier errors is especially strong
when the usual amount of page views is low. We reduce the effect of outliers by removing a small
percentage of large errors, in particular, 5% in our experiments. Without loss of generality, suppose
the largest (in magnitude) 5% errors are x̂t − xt at t0 +1 ≤ t ≤ t1. We adjust RSS and SSS by using
only x̂t − xt at t > t1 and compute the corresponding Re. Specifically,

RSSad j =
t0+J

∑
t=t1+1

(x̂t − xt)
2 , SSSad j =

t0+J

∑
t=t1+1

x2
t , Rad j

e =

√

RSSad j

SSSad j
.

We report both Re and Rad j
e to measure the prediction accuracy for the series Auton, Wang, and

citeseer. For the twenty three g-trends series, because there is no clear impulse, we use only
Re.

Because the beginning portion of the series with a certain length is needed for initialization in
HW, SSM, or ESSF, we usually start prediction after observing t0 > 0 time units. Moreover, we may
predict several time units ahead for the sum of the series over a run of multiple units. The ground
truth at t is not necessarily xt . In general, suppose prediction starts after t0 and is always for a stretch
of w time units that starts h time units ahead. We call w the window size of prediction and h the unit
ahead.

Let the whole series be {x1,x2, ...,xn}. In the special case when h = 1 and w = 1, after observing
the series up to t −1, we predict for xt , t = t0 +1, ...,n. The ground truth at t is xt . If h ≥ 1, w = 1,
we predict for xt , t = t0 + h, ...,n, after observing the series up to t − h. Let the predicted value be
x̂t,−h, where the subscript −h emphasizes that only data h time units ago are used. If h ≥ 1, w ≥ 1,
we predict for

x̃t =
t+w−1

∑
τ=t

xτ, t = t0 +h, ...,n−w+1,

2232

FORECASTING WEB PAGE VIEWS

after observing the series up to t −h. The predicted value at t is

ˆ̃xt =
t+w−1

∑
τ=t

x̂τ,−h .

To compute the error rate Re, we adjust RSS and SSS in Eq. (15) and (16) according to the ground
truth:

RSS =
n−w+1

∑
t=t0+h

(ˆ̃xt − x̃t)
2 , SSS =

n−w+1

∑
t=t0+h

x̃2
t .

For the series Auton, Wang, and citeseer, t0 = 4d, where d is the season period. The segment
{x1, ...,x4d} is used for initialization by both HW and SSM. For the g-trends series, t0 = 731. That
is, the first two years of data are used for initialization. Two years of past data are needed because
the ESSF algorithm requires at least two years of data to operate.

5.3 Results

For the series Auton, Wang, and citeseer, we focus on short-term prediction no greater than 30
time units ahead. Because the series are not long enough for extracting long-range trend and season
by the ESSF algorithm, we only test the HW procedure with or without impulse detection and the
GLS approach. For the twenty three g-trends series, we compare ESSF with HW for prediction
up to half a year ahead.

5.3.1 SHORT-TERM PREDICTION

Web page views often demonstrate seasonal variation, sometimes at multiple scales. The HW pro-
cedure given by Eq. (2)∼(4) and the GLS model specified in Eq. (8) both assume a season term
with period d. In our experiments, for the daily page view series Auton and Wang, d = 7 (a week),
while for the hourly series citeseer, d = 24 (a day). As mentioned previously, the local linear
growth term in Eq. (3) is removed in our experiments because it is found not helpful. The smooth-
ing parameters for the level and the season terms in Eq. (2) and (4) are set to ζ = 0.5 and δ = 0.25.
Because HW has no embedded mechanism to select these parameters, we do not aggressively tune
them and use the same values for all the experiments reported here.

To assess the importance of weekly (or daily) seasonality for forecasting, we compare HW
and and its reduced form without the season term. Similarly as the linear growth term, the season
term can be deleted by initializing it to zero and setting its corresponding smoothing parameter δ
in Eq. (4) to zero. The reduced HW procedure without the local linear growth and season terms
is essentially Exponential Smoothing (ES) (Chatfield, 2004). Figure 4(a) compares the prediction
performance in terms of Re and Rad j

e for the three series by HW and ES. Results for two versions of
HW, with and without treating impulses, are provided. The comparison of the two versions will be
discussed shortly. Results obtained from the two baseline methods MA and MP are also shown. For
each of the three series, HW (both versions), which models seasonality, consistently outperforms
ES, reflecting the significance of seasonality in these series. We also note that for the auton series,
Re is almost twice as large as Rad j

e although only 5% of outliers are removed. This dramatic skew
of the error rate is caused by the short but strong impulses occurred in this series.

To evaluate the impulse-resistant measure, described in Section 2, we compare HW with and
without impulse detection in Figure 4(a). Substantial improvement is achieved for the Auton series.

2233

LI AND MOORE

Auton Wang citeseer
0

10

20

30

40

50

60
E

rr
or

 r
at

e
(%

)

HW (Imp.), R

e
adj

HW (No imp.), R
e
adj

ES, R
e
adj

HW (Imp.), R
e

HW (No imp.), R
e

ES, R
e

MA, R
e

MP, R
e

1

−6

−4

−2

0

2

4

6

x 10
4

V
al

ue

Auton
1

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
4

Wang
1

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
4

Citeseer

(a) (b)

Figure 4: Compare the prediction performance in terms of Rad j
e and Re on the three series Auton,

Wang, and citeseer using different methods: HW with or without impulse detection, ES
without season, MA, and MP. (a) The error rates. (b) The box plots for the differences of
page views at adjacent time units.

The decrease in error rate for the other two series is small, a result of the fact there is no strong
impulse in them. To directly demonstrate the magnitude of the impulses, we compute the differences
in page view between adjacent time units, {x2 − x1,x3 − x2, ...,xn − xn−1}, and show the box plots
for their distributions in Figure 4(b). The stronger impulses in Auton are evident from the box plots.
Comparing with the other two series, the middle half of the Auton data (between the first and third
quartiles), indicated by the box in the plot, is much narrower relative to the overall range of the data.
In another word, the outliers deviate more severely from the majority mass of the data.

To illustrate the gain from treating impulses, we also show the predicted series for Auton in
Figure 5(a). For clarity of the plot, only a segment of the series around an impulse is shown. The
predicted series by HW with impulse detection returns close to the original series shortly after the
impulse, while that without ripples with large errors over several periods afterward. In the sequel,
for both HW and GLS, impulse detection is included by default.

Table 1 lists the error rates for the three series using different methods and under different pairs
of (h,w), where h is the unit ahead and w is the window size of prediction. We provide the error rate
Rad j

e in addition to Re to show the performance on impulse excluded portion of the series. For Auton
and Wang, (h,w) = (1,1),(1,7),(1,28). For citeseer, (h,w) = (1,1),(1,12),(1,24). For the GLS
model, a range of values for the smooth parameter q are tested. As shown by the table, when
(h,w) = (1,1), the performance of HW and that of GLS at the best q are close. When predicting
multiple time units, for example, w = 7,28 or w = 12,24, GLS with q > 1 achieves better accuracy.
For Wang and citeseer, at every increased w, the lowest error rates are obtained by GLS with
an increased q. This supports the heuristic that when predicting for a more distant time, smoother
prediction is preferred to reduce the influence of local fluctuations.

We compare the predicted series for Auton by GLS with q = 1 and q = 7 in Figure 5(b). Here,
the unit ahead h = 1, and the window size w = 7. The fluctuation of the predicted series obtained

2234

FORECASTING WEB PAGE VIEWS

400 410 420 430 440 450 460 470
0

1

2

3

4

5

6

7

8
x 10

4

Day

Nu
mb

er
 of

 da
ily

 pa
ge

 vi
ew

s

Original series
HW
HW impulse detection

(a)

50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Starting day

Nu
mb

er
 of

 w
ee

kly
 pa

ge
 vi

ew
s

True series
GLS q=1
GLS q=7

(b)

Figure 5: Compare predicted series for Auton: (a) Results obtained by HW with and without im-
pulse detection. The unit ahead h and window size w of prediction are 1; (b) Results
obtained by GLS with q = 1 and q = 7. The unit ahead is 1, and window size is 7 (a
week).

2235

LI AND MOORE

Error rate GLS
Re (%) HW q=1 q=3 q=7 q=14

Auton: 1 Day 38.60 41.46 40.05 41.10 41.74
7 Days 34.52 36.78 34.70 30.33 28.41
28 Days 32.34 34.63 32.60 25.80 21.93

Wang: 1 Day 26.99 26.19 26.24 26.51 26.77
7 Days 19.95 16.19 16.09 16.27 16.48
28 Days 21.11 16.44 16.30 16.31 16.05

citeseer: 1 Hour 13.55 13.18 14.01 15.00 16.29
12 Hours 15.04 14.63 13.66 12.96 13.10
24 Hours 15.47 15.87 14.88 14.00 13.80

Error rate GLS
Rad j

e (%) HW q=1 q=3 q=7 q=14
Auton: 1 Day 16.76 18.02 17.45 16.53 18.14

7 Days 15.60 15.63 14.55 12.94 13.45
28 Days 17.32 17.49 16.68 15.03 15.31

Wang: 1 Day 20.77 20.41 20.64 20.98 20.99
7 Days 16.29 13.52 13.38 13.44 13.55
28 Days 16.83 13.65 13.49 13.45 13.26

citeseer: 1 Hour 8.80 8.17 8.95 10.38 12.16
12 Hours 12.53 10.74 10.70 10.97 11.45
24 Hours 12.98 12.14 11.98 11.89 11.82

Table 1: The prediction error rates Re and Rad j
e for the three series Auton, Wang, and citeseer

obtained by several methods. The window size of prediction takes multiple values, while
the unit ahead is always 1. HW and the GLS model with several values of q are compared.

by q = 1 is more volatile than that by q = 7. The volatility of the predicted series by q = 7 is much
closer to that of the true series. As shown in Table 1, the error rate Rad j

e achieved by q = 7 is 12.94%,
while that by q = 1 is 15.63%.

Based on the GLS model, the variance of xt conditioned on the past {x1, ...,xt−1} can be com-
puted. The equations for the conditional mean E(xt | x1, ...,xt−1) (i.e., the predicted value) and
variance Var(xt | x1, ...,xt−1) are given in (19). Since the conditional distribution of xt is Gaussian,
we can thus calculate a confidence band for the predicted series, which may be desired in certain
applications to assess the potential deviation of the true values. Figure 6 shows the 95% confidence
band for citeseer with (h,w) = (1,1). The confidence band covers nearly the entire original series.

GLS is more costly in computation than HW. We conduct the experiments using Matlab codes on
2.4GHz Dell computer with Linux OS. At (h,w) = (1,28) for Auton and Wang, and (h,w) = (1,24)
for citeseer, the average user running time for sequential prediction along the whole series is
respectively 0.51, 56.38, 65.87, 72.10, and 86.76 seconds for HW, and GLS at q = 1,3,7,14. In
our experiments, the GLS models are re-estimated after every 4d units, where d is the period. The
computation in GLS is mainly spent on estimating the models and varies negligibly for different
pairs of (h,w).

2236

FORECASTING WEB PAGE VIEWS

100 150 200 250 300 350 400 450
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Hour

Nu
mb

er
 of

 ho
ur

ly
pa

ge
 vi

ew
s

Original series
Upper 95% CB
Lower 95% CB

Figure 6: The predicted 95% confidence band for citeseer obtained by GLS with q = 1. The unit
ahead h and window size w are 1.

5.3.2 LONG-TERM PREDICTION—A COMPREHENSIVE STUDY

We now examine the performance of ESSF based on the g-trends series. The first three series
are acquired by the search phrases amazon, Renoir (French impressionism artist), and greenhouse
effect, which will be used as the names for the series in the sequel. A comprehensive study with
detailed results is first presented using these three series. Then, we expand the experiments to twenty
additional g-trends series and present results on prediction accuracy and computational speed.

The original series of amazon, Renoir, and greenhouse effect averaged weekly are shown
in Figure 7(a). Due to the weekly season, without averaging, the original series are too wiggly for
clear presentation. Figure 7(c) and (d) show the yearly season templates extracted by ESSF from
year 2004 and 2005 with smoothing parameter λ = 0, 1000 respectively. As expected, at λ = 1000,
the yearly seasons are much smoother than those obtained at λ = 0, especially for the series Renoir
and greenhouse effect. Figure 7(b) shows the scaling factors of the yearly seasons obtained by
applying ESSF to the entire four years.

We compare the prediction obtained by ESSF with HW and the MA approach as a baseline.
For ESSF, we test both λ = 0 and 1000, and its fast version with moving average window size 15.
Prediction error rates are computed for the unit ahead h ranging from 1 to 180 days. We fix the
prediction window size w = 1.

The error rates Re obtained by the methods are compared in Figure 8(a), (b), (c) for amazon,
Renoir, greenhouse effect respectively. Comparing with the other methods, the difference in
the performance of HW and MA is marginal. When the unit ahead h is small, HW outperforms MA,
but the advantage diminishes when h is large. For Renoir and greenhouse effect, HW becomes
even inferior to MA when h is roughly above 60. ESSF with λ = 1000 and ESSF Fast perform

2237

LI AND MOORE

2004 Jan 2005 Jan 2006 Jan 2007 Jan
0

1

2

2004 Jan 2005 Jan 2006 Jan 2007 Jan
0

1

2

2004 Jan 2005 Jan 2006 Jan 2007 Jan
0

1

2

amazon

Renoir

greenhouse effect

2004 2005 2006 2007 2008
0.4

0.6

0.8

1

1.2

1.4

1.6

S
ca

lin
g

fa
ct

or
 fo

r
ye

ar
ly

 s
ea

so
n

amazon
Renoir
greenhouse effect

(a) (b)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

−0.2
0

0.2
0.4
0.6

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
−0.4
−0.2

0
0.2
0.4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

−0.5

0

0.5

amazon

Renoir

greenhouse effect

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

−0.2
0

0.2
0.4
0.6

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
−0.4

−0.2

0

0.2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

−0.5

0

0.5

amazon

Renoir

greenhouse effect

(c) (d)

Figure 7: Extract the yearly seasons by ESSF for the g-trends series amazon, Renoir, and
greenhouse effect: (a) The weekly averaged original series; (b) The scaling factor
for the yearly season; (c) The yearly season extracted without smoothing at λ = 0; (d)
The yearly season extracted with smoothing at λ = 1000.

2238

FORECASTING WEB PAGE VIEWS

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

Number of days ahead

E
rr

or
 r

at
e

(%
)

MA
HW
ESSF λ=1000
ESSF λ=0
ESSF Fast

0 20 40 60 80 100 120 140 160 180
10

12

14

16

18

20

22

24

26

28

30

Number of days ahead

E
rr

or
 r

at
e

(%
)

MA
HW
ESSF λ=1000
ESSF λ=0
ESSF Fast

(a) (b)

0 20 40 60 80 100 120 140 160 180
15

20

25

30

35

40

45

50

55

Number of days ahead

E
rr

or
 r

at
e

(%
)

MA
HW
ESSF λ=1000
ESSF λ=0
ESSF Fast

0 20 40 60 80 100 120 140 160 180

4

6

8

0 20 40 60 80 100 120 140 160 180
10

12

14

16

18

E
rr

or
 r

at
e

(%
)

0 20 40 60 80 100 120 140 160 180
15

20

25

Number of days ahead

amazon: scalable season
fixed season

Renoir: scalable season
fixed season

greenhouse effect: scalable season
fixed season

(c) (d)

Figure 8: Compare prediction error rates Re for three g-trends series using several methods. Pre-
diction is performed for the unit ahead h ranging from 1 to 180, and a fixed the window
size w = 1. Error rates obtained by MA, HW, ESSF with λ = 1000, 0, and the fast version
of ESSF with moving average window size 15, are shown for the three series (a) amazon,
(b) Renoir, (c) greenhouse effect respectively. The yearly season in ESSF is scal-
able. (d) Error rates obtained for the three series by ESSF, with λ = 1000, assuming a
scalable yearly season versus fixed season.

2239

LI AND MOORE

2 3 4 5
0

1

2

3

4

5

Iteration

C
ha

ng
e

ra
tio

 (
%

)

amazon
Renoir
greenhouse effect

0 20 40 60 80 100 120 140 160 180
2

4

6

8

10

0 20 40 60 80 100 120 140 160 180
10

12

14

16

18

E
rr

or
 r

at
e

(%
)

0 20 40 60 80 100 120 140 160 180
15

20

25

Number of days ahead

amazon, #ite=5
#ite=1

Renoir, #ite=5
#ite=1

greenhouse effect, #ite=5
#ite=1

(a) (b)

Figure 9: The effect of the number of iterations in the ESSF algorithm: (a) The change ratio in the
extracted yearly season over the iterations; (b) Compare the error rates Re obtained by
ESSF with 1 iteration and 5 iterations respectively.

nearly the same, both achieving error rates consistently lower than those by HW. The gap between
the error rates of ESSF and HW widens quickly with an increasing h. In general, when h increases,
the prediction is harder, and hence the error rate tends to increase. The increase is substantially
slower for ESSF than HW and MA. ESSF with λ = 0 performs considerably worse than λ = 1000
for Renoir and greenhouse effect, and closely for amazon. This demonstrates the advantage
of imposing smoothness on the yearly season. We will study more thoroughly the effect of λ on
prediction accuracy shortly.

Next, we experiment with ESSF under various setups and demonstrate the advantages of several
algorithmic choices. First, recall that the fitting of the yearly season and the long-range trend is
repeated multiple times, as described in Section 4.1. To study the effect of the number of iterations,
we plot in Figure 9(a) the ratio of change in the yearly season after each iteration, as given by Eq.
(10). For all the three series, the most prominent change occurs between iteration 1 and 2 and falls
below 1% for any later iterations. We also compare the prediction error rates for h = 1, ...,180
achieved by using only 1 iteration (essentially no iteration) versus 5 iterations. The results for the
three series are plotted in Figure 9(b). The most obvious difference is with amazon for large h.
At h = 180, the error rate obtained by 5 iterations is about 2% lower than by 1 iteration. On the
other hand, even with only 1 iteration, the error rate at h = 180 is below 10%, much lower than the
nearly 25% error rate obtained by HW or MA. For greenhouse effect, the difference is almost
imperceptible.

In ESSF, the yearly season is not assumed simply as a periodic series. Instead, it can scale
differently over the years based on the season template. To evaluate the gain, we compare ESSF
with scalable yearly seasons versus fixed seasons. Here, the fixed season can be thought of as a
special case of the scalable season with all the scaling parameters set to 1, or equivalently, the
yearly season is the plain repeat of the season template. Figure 8(d) compares the error rates under

2240

FORECASTING WEB PAGE VIEWS

10
−1

10
0

10
1

10
2

10
3

6.2

6.3

6.4

6.5

10
−1

10
0

10
1

10
2

10
3

15

16

17

18

19
A

ve
ra

ge
 e

rr
or

 r
at

e
(%

)

10
−1

10
0

10
1

10
2

10
3

22

24

26

λ

amazon

Renoir

greenhouse effect

Figure 10: The effect of the smoothing parameter λ in ESSF on prediction accuracy. At each λ, the
average of error rates Re across the unit ahead h = 1, ...,180 are shown.

the two schemes for the three series. Better performance is achieved by allowing scalable yearly
seasons for all the three series. The advantage is more substantial when predicting the distant future.

To examine the sensitivity of the prediction accuracy to the smoothing parameter λ, we vary λ
from 0.1 to 2000, and compute the error rates for h = 1, ...,180. For concise illustration, we present
the average of the error rates across h. Note that the results of λ = 0,1000 at every h are shown in
Figure 8, where λ = 0 is inferior. The variation of the average error rates with respect to λ (in log
scale) is shown in Figure 10. For amazon, the error rates with different λ’s lie in the narrow range of
[6.2%,6.45%], while for Renoir and greenhouse effect, the range is wider, roughly [15%,18%]
and [22%,25%] respectively. For all the three series, the decrease of the error rate is most steep
when λ increases from 0.1 to 10. For λ > 10 and as large as 2000, the change in error rate is minor,
indicating that the prediction performance is not sensitive to λ as long as it is not too small.

5.3.3 LONG-TERM PREDICTION—EXTENDED STUDY ON TWENTY TREND SERIES

We collect another twenty g-trends series with query phrases and corresponding series ID listed
in Table 2. The error rates Re achieved by the four methods: MA, HW, ESSF with λ = 1000, and
ESSF Fast, over the twenty series are compared in Figure 11. The four plots in this figure each
show results for predicting a single day in advance of h days, with h = 1,30,60,90 respectively. For
most series, MA is inferior to HW at every h. However, when h increases, the margin of HW over
MA decreases. At h = 1, HW performs similarly as ESSF and ESSF Fast. At h = 30,60,90, both
versions of ESSF, which achieve similar error rates between themselves, outperform HW.

To assess the predictability of the series, we compute the variation rates at h = 1,30,60,90,
shown in Figure 12(a). The variation rate at h is defined as

√

Var(xt+h − xt)/
√

Var(xt), where

2241

LI AND MOORE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

E
rr

or
 r

at
e

(%
)

Time series ID

MA
HW
ESSF λ=1000
ESSF Fast

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

90

100

E
rr

or
 r

at
e

(%
)

Time series ID

MA
HW
ESSF λ=1000
ESSF Fast

(a) (b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

120

E
rr

or
 r

at
e

(%
)

Time series ID

MA
HW
ESSF λ=1000
ESSF Fast

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

120

140

E
rr

or
 r

at
e

(%
)

Time series ID

MA
HW
ESSF λ=1000
ESSF Fast

(c) (d)

Figure 11: Compare the error rates by MA, HW, ESSF with λ = 1000, and ESSF Fast for twenty
g-trends series. (a)-(d): The unit ahead h = 1,30,60,90.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20

40

60

80

100

120

140

160

180

V
ar

ia
tio

n
ra

te
 (

%
)

Time series ID

h=1
h=30
h=60
h=90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y
ea

rly
 c

or
re

la
tio

n
co

ef
fic

ie
nt

Time series ID

(a) (b)

Figure 12: Predictability of twenty g-trends series. (a) The variation rates at h = 1,30,60,90; (b)
The average serial correlation coefficient between adjacent years.

2242

FORECASTING WEB PAGE VIEWS

ID Query phrase ID Query phrase
1 American idol 11 human population
2 Anthropology 12 information technology
3 Aristotle 13 martial art
4 Art history 14 Monet
5 Beethoven 15 National park
6 Confucius 16 NBA
7 Cosmology 17 photography
8 cure cancer 18 public health
9 democracy 19 Shakespeare
10 financial crisis 20 Yoga

Table 2: The query phrases for twenty g-trends series and their IDs.

Var(·) denotes the serial variance. This rate is the ratio between the standard deviation of the
change in page view h time units apart and that of the original series. A low variation rate indicates
the series is less volatile and hence likely to be easier to predict. For example, Art history (ID 4)
and National park (ID 15) have the lowest variation rates at h = 1, and they both yield relatively
low prediction error rates, as shown by Figure 11. We also compute the variation rates for the page
views of Web sites Auton, Wang, and citeseer at h = 1. They are respectively 100.0%, 88.1%,
and 48.2%. This shows that the volatility of page views at these Web sites is in a similar range as
that of the g-trends series.

In addition to the variation rate, the yearly correlation of the time series also indicates the po-
tential for accurate prediction. For each of the twenty g-trends series, we compute the average of
the correlation coefficients between segments of the series in adjacent years (i.e., 2004/05, 05/06,
06/07). Figure 12(b) shows the results. A series with high yearly correlation tends to benefit more
in prediction from the yearly season extraction of ESSF. For instance, martial art (ID 13) has
relatively low yearly correlation. The four prediction methods perform nearly the same for this se-
ries. In contrast, for NBA (ID 16) and democracy (ID 9), which have high yearly correlation, ESSF
achieves substantially better prediction accuracy than HW and MA at all the values of h.

To compare the computational load of the prediction algorithms, we acquire the average user
running time over the twenty g-trends series for one day ahead (h = 1) prediction at all the days
in the last two years, 2006 and 2007. Again, we use Matlab codes on 2.4GHz Dell computer with
Linux OS. The average time is respectively 0.11, 0.32, 0.59, and 3.77 seconds for MA, HW, ESSF
Fast, and ESSF with λ = 1000.

6. Discussion and Conclusions

We have so far focused on extracting the trend and season parts of a time series using either HW or
GLS, and have not considered predicting the noise part, as given in Eq. (1). We have argued that the
variation in Web page view series is dominated by that of the trend and season. To quantitatively
assess the potential gain from modeling and predicting the noise term in HW, we fit AR models to
the noise. Specifically, we compute the level Lt and the season It by HW and let the noise Nt =
xt −Lt − It . We then fit AR models of order p to the noise series using the Yule-Walker estimation
(Brockwell and Davis, 2002). We let p range from 1 to 10 and select an order p by the large-sample

2243

LI AND MOORE

motivated method described in Brockwell and Davis (1991, 2002). The fitted AR models are used
to predict the noise, and the predicted noise is added to the forecasting value by HW. Suppose we
want to predict xt+1 based on {x1,x2, ...,xt}. The formula given by HW is x̂t+1 = Lt + It+1−d . The
predicted noise at t + 1 given by the AR model is N̂t+1 = φ̂1Nt + φ̂2Nt−1 + · · ·+ φ̂pNt−p+1, where
φ̂ j, j = 1, ..., p, are estimated parameters in the AR model. We then adjust the prediction of HW by
x̂t+1 = Lt + It+1−d + N̂t+1.

In our experiments, the order of the AR model chosen for each of the three series Auton, Wang,
and citeseer is 5, 6, 9 respectively. The error rates Rad j

e obtained for Auton, Wang, and citeseer
are 17.16%, 20.30%, and 8.45%. As listed in Table 1, the error rates obtained by HW are 16.76%,
20.77%, and 8.80%. We see that the error rates for Wang and citeseer are improved via noise
prediction, but that for Auton is degraded. For every series, the difference is insignificant. This
shows that the gain from predicting the noise series is minor if positive at all. It is out of the
scope of this paper to investigate more sophisticated models for the noise series. We consider it an
interesting direction for future work.

To conclude, we have examined multiple approaches to Web page view forecasting. For short-
term prediction, the HW procedure and the GLS state space model are investigated. It is shown that
seasonal effect is important for page view forecasting. We developed a method to identify impulses
and to reduce the decrease in prediction accuracy caused by them. The HW procedure, although
computationally simple, performs closely to the GLS approach for predicting a small number of
time units ahead. For predicting moderately distant future, the GLS model with smoother level
terms tends to perform better. We developed the ESSF algorithm to extract global trend and scalable
long-range season with smoothness regularization. It is shown that for predicting the distant future,
ESSF outperforms HW significantly.

Acknowledgments

We thank Michael Baysek, C. Lee Giles, and James Wang for providing the logs of the Auton Lab,
citeseer, and the Wang Lab. We also thank Artem Boytsov and Eyal Molad for helping us access
the Google trends series, Robbie Sedgewick for suggestions on writing, and the reviewers for many
insightful and constructive comments.

Appendix A. Algorithms for the State Space Model

Several major issues can be studied under the state space model:

1. Filtering: obtain the conditional distribution of αt+1 given Xt for t = 1, ...,n where Xt =
{x1, ...,xt}. If we consider αt as the “true” signal, filtering is to discover the signal on the fly.

2. State smoothing: estimate αt , t = 1, ...,n, given the entire series {x1, ...,xn}. This is to discover
the signal in a batch mode.

3. Disturbance smoothing: estimate the disturbances ε̂t = E(εt |y1, ...,yn), η̂t = E(ηt |y1, ...,yn).
The estimation can be used to estimate the covariance matrices of the disturbances.

4. Forecasting: given {x1, ...,xn}, forecast xn+ j for j = 1, ...,J.

5. Perform the Maximum Likelihood (ML) estimation for the parameters based on {x1, ...,xn}.

2244

FORECASTING WEB PAGE VIEWS

The computation methods involved in the above problems are tightly related. Filtering is conducted
by forward recursion, while state smoothing is achieved by combining the forward recursion with
a backward recursion. Disturbance smoothing can be easily performed based on the results of
filtering and smoothing. ML estimation in turn relies on the result of disturbance smoothing. Next,
we present the algorithms to solve the above problems.

A.1 Filtering and Smoothing

Recall the SSM described by Eq. (6)

xt = Ztαt + εt , εt ∼ N(0,Ht),

αt+1 = Ttαt +Rtηt , ηt ∼ N(0,Qt) , t = 1, ...,n,

α1 ∼ N(a1,P1).

Suppose the goal is filtering, that is, to obtain the conditional distribution of αt+1 given Xt for t =
1, ...,n where Xt = {x1, ...,xt}. Since the joint distribution is Gaussian, the conditional distribution
is also Gaussian and hence is uniquely determined by the mean and covariance matrix. Moreover,
note that xt+1 is conditionally independent of Xt given αt+1. Let at = E(αt | Xt−1) and Pt = Var(αt |
Xt−1). Then αt | Xt−1 ∼ N(at ,Pt). It can be shown that at+1 and Pt+1 can be computed recursively
from at , Pt .

Let the one-step forecast error of xt given Xt−1 be vt and the variance of vt be Ft :

vt = xt −E(xt | Xt−1) = xt −Ztat ,

Ft = Var(vt) = ZtPtZt
t +Ht .

For clarity, also define

Kt = TtPtZt
tF

−1
t ,

Lt = Tt −KtZt .

Then at , Pt , t = 2, ...,n + 1 can be computed recursively by updating vt , Ft , Kt , Lt , at+1, Pt+1 as
follows. It is assumed that a1 and P1 are part of the model specification, and hence are known or
provided by initialization. Details on initialization are referred to Durbin and Koopman (2001). For
t = 1,2, ...,n,

vt = xt −Ztat , (17)

Ft = ZtPtZt
t +Ht ,

Kt = TtPtZt
tF

−1
t ,

Lt = Tt −KtZt ,

at+1 = Ttat +Ktvt ,

Pt+1 = TtPtLt
t +RtQtRt

t .

The above recursion is called Kalman filter. The dimensions for the above matrices are:

2245

LI AND MOORE

vt p×1 ,
Ft p× p ,
Kt m× p ,
Lt m×m ,
at m×1 ,
Pt m×m .

We are concerned with univariate forecasting here with p = 1.
We now consider the smooth estimation α̂t = E(αt | x1,x2, ...,xt−1,xt , ...,xn). Note its dif-

ference from the forward estimation at = E(αt | x1,x2, ...,xt−1). The smooth estimation takes
into consideration the series after t. Let the variance of the smooth estimation be Vt = Var(αt |
x1,x2, ...,xt−1,xt , ...,xn).

We can compute α̂t and Vt by the backwards recursion specified below. At t = n, set γn = [0]m×1

and Nn = [0]m×m. For t = n,n−1, ...,1,

γt−1 = Zt
tF

−1
t vt +Lt

tγt , (18)

Nt−1 = Zt
tF

−1
t Zt +Lt

tNtLt ,

α̂t = at +Ptγt−1,

Vt = Pt −PtNt−1Pt .

Note that Zt , Ft , Lt , and Pt are already acquired by the Kalman filter (17). Eq. (17) and (18) are
referred to as Kalman filter and smoother. The Kalman filter only involves forward recursion, while
the smoother involves both forward and backward recursions.

A.2 Disturbance Smoothing

Let the smoothed disturbances be ε̂t = E(εt |x1,x2, ...,xn), η̂t = E(ηt |x1,x2, ...,xn). Suppose Ft , Kt ,
Lt , t = 1, ...,n, have been obtained by the Kalman filter, and γt , Nt have been obtained by the Kalman
smoother. Then we have

ε̂t = Ht(F−1
t vt −Kt

tγt),

Var(εt |x1,x2, ...,xn) = Ht −Ht(F−1
t +Kt

tNtKt)Ht ,

η̂t = QtRt
tγt ,

Var(ηt |x1,x2, ...,xn) = Qt −QtRt
tNtRtQt .

A.3 Forecasting

Now suppose we want to forecast xn+ j, j = 1, ...,J, given {x1, ...,xn}. Let

xn+ j = E(xn+ j | x1,x2, ...,xn),

Fn+ j = Var(xn+ j | x1,x2, ...,xn) .

First, we compute an+ j and Pn+ j, j = 1, ...,J, by forward recursion similar to the Kalman filter in
Eq. (17). The slight difference is that when j = 1, ..., J−1, set vn+ j = 0 and Kn+ j = 0. Specifically,
set an+1 = an+1, Pn+1 = Pn+1. The recursion for an+ j+1 and Pn+ j+1 for j = 1, ...,J−1 is:

an+ j+1 = Tn+ jan+ j,

Pn+ j+1 = Tn+ jPn+ jTt
n+ j +Rn+ jQn+ jRt

n+ j .

2246

FORECASTING WEB PAGE VIEWS

Then we forecast

xn+ j = Zn+ jan+ j,

Fn+ j = Zn+ jPn+ jZt
n+ j +Hn+ j .

A.4 Maximum Likelihood Estimation

The parameters to be estimated in the SSM are Ht and Qt , t = 1,2, ...,n. The EM algorithm is used
to obtain the ML estimation. The missing data in EM in this case are the unobservable states αt ,
t = 1, ...,n. Denote the parameters to be estimated collectively by ψ and the parameters obtained
from the previous iteration by ψ̃. Let α = {α1,α2, ...,αn} and Xn = {x1,x2, ...,xn}. The update of
the EM algorithm comprises two steps:

1. Compute the expectation

Eψ̃,Xn [log p(α,Xn|ψ)] .

2. Maximize over ψ the above expectation.

It can be shown that

Eψ̃,Xn [log p(α,Xn|ψ)] = constant−
1
2

n

∑
t=1

[log |Ht |+ log |Qt−1|+

tr[(ε̂t ε̂t
t +Var(εt |Xn))H−1

t]+

tr[(η̂t−1η̂t
t−1 +Var(ηt−1|Xn))Q−1

t−1] | ψ]

where ε̂t , η̂t−1, Var(εt |Xn), and Var(ηt−1|Xn) are computed by disturbance smoothing under param-
eter ψ̃. In the special case, when Ht = H, Qt = Q, the maximization can be solved analytically:

H =
∑n

t=1[ε̂t ε̂t
t +Var(εt |Xn)]

n
,

Q =
∑n

t=2[η̂t−1η̂t
t−1 +Var(ηt−1|Xn)]

n−1
.

The formula can be further simplified if H and Q are assumed diagonal. Suppose

H = diag(σ2
ε,1,σ

2
ε,2, ...,σ

2
ε,p),

Q = diag(σ2
η,1,σ

2
η,2, ...,σ

2
η,r) .

Then

σ2
ε, j =

∑n
t=1[ε̂2

t, j +Var(εt, j|Xn)]

n
, j = 1, ..., p,

σ2
η, j =

∑n
t=2[η̂2

t−1, j +Var(ηt−1, j|Xn)]

n−1
, j = 1, ...,r .

2247

LI AND MOORE

Appendix B. The ESSF Algorithm and Its Fast Version

To solve miny,c G(y,c) in Eq. (12), we iteratively optimize over y and c. Given c, y is solved by

Ayy = by

where Ay is a D×D matrix with non-zero entries:

Ay(j, j) = ∑
k

α2
k, j +6λ , j = 1,2, ...,D,

Ay(j, j−1) = Ay(j, j +1) = −4λ , j = 1,2, ...,D,

Ay(j, j−2) = Ay(j, j +2) = λ , j = 1,2, ...,D,

and the column vector by = (∑k αk, jzk, j) j. Recall that αk, j is computed from c by Eq. (11).
Given y, c is solved by

Acc = bc

where Ac is a K ×K matrix. Define w1 = (0, 1
D , 2

D , ..., D−1
D)t and w2 = (1, D−1

D , D−2
D , ..., 1

D)t . Let
diagonal matrices W1 = diag(w1), W2 = diag(w2). Also define zk = (zk,1,zk,2, ...,zk,D)t . The non-
zero entries of Ac are:

Ac(k,k) = (W1y)tW1y+(W2y)tW2y , k = 1,2, ...,K−1,

Ac(K,K) = (W2y)tW2y,

Ac(k,k−1) = (W1y)tW2y , k = 2,3, ...,K,

Ac(k,k +1) = (W1y)tW2y , k = 1,2, ...,K−1,

and the column vector bc is given by:

bc(1) = (W1y)tz1 +(W2y)tz2 − (W1y)tW2y,

bc(k) = (W1y)tzk +(W2y)tzk+1 , k = 2,3, ...,K−1,

bc(K) = (W1y)tz1.

In summary, the ESSF algorithm iterates the following two steps with initialization c(0) = 1. At
iteration p ≥ 1:

1. Given c(p−1), compute Ay and by. Let y(p) = A−1
y by.

2. Given y(p), compute Ac and bc. Let c(p) = A−1
c bc.

For the fast version of ESSF, we need to solve miny,c G̃(y,c) in Eq. (13). We start with c(0) = 1.
Without loss of generality, we fix c1 = 1. At iteration p ≥ 1:

1. Given c(p−1), compute

y(p)
j =

∑k c(p−1)
k zk, j

‖ c(p−1) ‖2
, j = 1, ...,D.

2. Given y(p), compute

c(p)
k =

∑ j zk, jy
(p)
j

‖ y(p) ‖2
, k = 1, ...,K.

2248

FORECASTING WEB PAGE VIEWS

References

B. D. O. Anderson and J. B. Moore. Optimal Filtering, Prentice-Hall, Englewood Cliffs, New Jersey,
1979.

A. Aussem and F. Murtagh. Web traffic demand forecasting using wavelet-based multiscale decom-
position. International Journal of Intelligent Systems, 16(2):215-236, 2001.

S. Basu, A. Mukherjee, and S. Klivansky. Time series models for Internet traffic. INFOCOM ’96.
Fifteenth Annual Joint Conference of the IEEE Computer Societies, Networking the Next Gener-
ation, 611-620, 1996.

G. E. P. Box and G. M. Jenkins. Time-Series Analysis, Forecasting and Control, San Francisco:
Holden-Day, 1970.

P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods, 2nd Edition, Springer-Verlag,
New York, 1991.

P. J. Brockwell and R. A. Davis. Introduction to Time Series and Forecasting, 2nd Edition, Springer
Science+Business Media, Inc., New York, 2002.

C. Chatfield. The Analysis of Time Series, Chapman & Hall/CRC, New York, 2004.

J. Durbin and S. J. Koopman. Time Series Analysis by State Space Methods, Oxford University Press
Inc., New York, 2001.

M. Grossglauser and J.-C. Bolot. On the relevance of long-range dependence in network traffic.
IEEE/ACM Transactions Networking, 7(5):629-640, 1999.

R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions of the ASME
- Journal of Basic Engineering, Series D, 82:35-45, 1960.

A. Khotanzad and N. Sadek. Multi-scale high-speed network traffic prediction using combination
of neural networks. Proc. Int. Joint Conf. Neural Networks, 2:1071-1075, July 2003.

A. M. Odlyzko. Internet traffic growth: sources and implications. Optical Transmission Systems and
Equipment for WDM Networking II, B. B. Dingel, W. Weiershausen, A. K. Dutta, and K.-I. Sato,
eds.,Proc. SPIE, 5247:1-15, 2003.

K. Papagiannaki, N. Taft, Z.-L. Zhang, and C. Diot. Long-term forecasting of Internet backbone
traffic. IEEE Trans. Neural Networks, 16(5):1110-1124, 2005.

K. Park and W. Willinger. Self-Similar Network Traffic and Performance Evaluation, John Wiley &
Sons, Inc., 2000.

A. P. Sage and J. L. Melsa. Estimation Theory with Applications to Communication and Control,
McGraw Hill, New York, 1971.

A. Sang and S. Li. A predictability analysis of network traffic. Computer Networks, 39(4):329-345,
2002.

2249

LI AND MOORE

W. W. S. Wei. Time Series Analysis, Univariate and Multivariate Methods, 2nd Edition, Pearson
Education, Inc., 2006.

C. You and K. Chandra. Time series models for Internet data traffic. Proc. 24th Annual IEEE Int.
Conf. Local Computer Networks (LCN’99), 164, 1999.

2250

Journal of Machine Learning Research 9 (2008) 2251-2286 Submitted 12/07; Revised 6/08; Published 10/08

Finding Optimal Bayesian Network Given a Super-Structure

Eric Perrier PERRIER@IMS.U-TOKYO.AC.JP

Seiya Imoto IMOTO@IMS.U-TOKYO.AC.JP

Satoru Miyano MIYANO@IMS.U-TOKYO.AC.JP

Human Genome Center, Institute of Medical Science
University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Editor: Max Chickering

Abstract

Classical approaches used to learn Bayesian network structure from data have disadvantages in
terms of complexity and lower accuracy of their results. However, a recent empirical study has
shown that a hybrid algorithm improves sensitively accuracy and speed: it learns a skeleton with an
independency test (IT) approach and constrains on the directed acyclic graphs (DAG) considered
during the search-and-score phase. Subsequently, we theorize the structural constraint by intro-
ducing the concept of super-structure S, which is an undirected graph that restricts the search to
networks whose skeleton is a subgraph of S. We develop a super-structure constrained optimal
search (COS): its time complexity is upper bounded by O(γm

n), where γm < 2 depends on the max-
imal degree m of S. Empirically, complexity depends on the average degree m̃ and sparse structures
allow larger graphs to be calculated. Our algorithm is faster than an optimal search by several or-
ders and even finds more accurate results when given a sound super-structure. Practically, S can
be approximated by IT approaches; significance level of the tests controls its sparseness, enabling
to control the trade-off between speed and accuracy. For incomplete super-structures, a greedily
post-processed version (COS+) still enables to significantly outperform other heuristic searches.

Keywords: Bayesian networks, structure learning, optimal search, super-structure, connected
subset

1. Introduction

It is impossible to understand large raw sets of data obtained from a huge number of correlated
variables. Therefore, in order to simplify the comprehension of the system, various graphical models
have been developed to summarize interactions between such variables in a synoptic graph. Among
the existing models, Bayesian networks have been widely employed for decades in various domains
including artificial intelligence (Glymour, 2001), medicine (Cowell et al., 1999), bioinformatics
(Friedman et al., 2000), and even economy (Segal et al., 2005) and sociology (Heckerman, 1996).
Bayesian networks compactly represent a joint probability distribution P over the set of variables,
using DAG to encode conditional independencies between them (Pearl, 1988). The popularity of
this model is primarily due to its high expressive power, enabling the simultaneous investigation of
complex relationships between many variables of a heterogeneous nature (discrete or continuous).
Further, for Bayesian network model inference from data is comparatively simpler; incomplete or
noisy data are also usable and prior knowledge can be incorporated. When the DAG or structure of

c©2008 Eric Perrier.

PERRIER

the model is known, the parameters of the conditional probability distributions can be easily fit to
the data; thus, the bottleneck of modeling an unknown system is to infer its structure.

Over the previous decades, various research directions have been explored through a numerous
literature to deal with structure learning, which let us propose the following observations. Maxi-
mizing a score function over the space of DAGs is a promising approach towards learning structure
from data. A search strategy called optimal search (OS) have been developed to find the graphs hav-
ing the highest score (or global optima) in exponential time. However, since it is feasible only for
small networks (containing up to thirty nodes), in practice heuristic searches are used. The resulting
graphs are local optima and their accuracy strongly depends on the heuristic search strategy. In
general, given no prior knowledge, the best strategy is still a basic greedy hill climbing search (HC).
In addition, Tsamardinos et al. (2006) proposed to constrain the search space by learning a skeleton
using an IT-based technique before proceeding to a restricted search. By combining this method
with a HC search, they developed a hybrid algorithm called max-min hill-climbing (MMHC) that is
faster and usually more accurate.

In the present study we are interested in OS since the optimal graphs will converge to the true
model in the sample limit. We aim to improve the speed of OS in order to apply it to larger net-
works; for this, a structural constraint could be of a valuable help. In order to keep the asymptotic
correctness of OS, the constraint has to authorize at least the edges of the true network, but it can
contain also extra edges. Following this minimal condition that should respect a constraint on the
skeletons to be sound, we formalize a flexible structural constraint over DAGs by defining the con-
cept of a super-structure. This is an undirected graph that is assumed to contain the skeleton of the
true graph (i.e., the true skeleton). In other word, the search space is the set of DAGs that have a sub-
graph of the given super-structure as a skeleton. A sound super-structure (that effectively contains
the true skeleton) could be provided by prior knowledge or learned from data much more easily
(with a higher probability) than the true skeleton itself. Subsequently, we consider the problem of
maximizing a score function given a super-structure, and we derive a constrained optimal search,
COS, that finds a global optimum over the restricted search space. Not surprisingly, our algorithm
is faster than OS since the search space is smaller; more precisely, its computational complexity is
proportional to the number of connected subsets of the super-structure. An upper bound is derived
theoretically and average complexity is experimentally showed to depend on the average degree of
the super-structure. Concretely, for sparse structures our algorithm can be applied to larger net-
works than OS (with an average degree around 2.1, graphs having 1.6 times more nodes could be
considered). Moreover, for a sound super-structure, learned graphs are more accurate than uncon-
strained optima: this is because, some incorrect edges are forbidden, even if their addition to the
graph improves the score.

Since the sparseness directly affects the speed, and therefore the feasibility of our search, it
remains to propose efficient methods to learn a sound and sparse super-structures without prior
knowledge. This is out of the scope of this present paper where we focus on the enunciation of our
constraint, its application to optimal search and optimizations of its implementation. Nevertheless,
in order to demonstrate our algorithm in practice, we propose a first basic strategy to approximate
a super-structure from data. The idea is to use “relaxed” independency testing to obtain an undi-
rected graph that may contain the true skeleton with a high probability, while yet being sparse. In
that case, we can consider the significance level of the independency tests, α, as a tool to choose
between accuracy (high values return dense but probably sound structures) and speed (low values
give sparse but incomplete structures). We tested our proposition on MMPC, the IT-based strategy

2252

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

used by Tsamardinos et al. (2006) in MMHC; our choice was motivated by the good results of their
algorithm that we also include in our comparative study. MMPC appears to be a good method to
learn robust and relatively sparse skeletons; unfortunately, soundness is achieved only for high sig-
nificance levels, α > 0.9, implying a long calculation and a denser structure. Practically, when the
constraint is learned with α = 0.05, in terms of accuracy, COS is worse than OS since the super-
structure is usually incomplete; still, COS outperforms most of the time greedy searches, although
it finds graphs of lower scores. Resulting graphs can be quickly improved by applying to them a
post-processing unconstrained hill-climbing (COS+). During that final phase, scores are strictly im-
proved, and usually accuracy also. Interestingly, even for really low significance levels (α ≈ 10−5),
COS+ returns graphs more accurate and of a higher score than both MMHC and HC. COS+ can be
seen as a bridge between HC (when α tends to 0) and OS (when α tends to 1) and can be applied up
to a hundred nodes by selecting a low enough significance level.

This paper is organized as follows. In Section 2, we discuss the existing literature on structure
learning. We clarify our notation in Section 3.1 and reintroduce OS in Section 3.2. Then, in Section
4, the core of this paper, we define super-structures and present our algorithm, proofs of its complex-
ity and practical information for implementation. Section 5 details our experimental procedures and
presents the results. Section 5.1.4 briefly recalls MMPC, the method we used during experiments
to learn the super-structures from data. Finally, in Section 6, we conclude and outline our future
works.

2. Related Works

The algorithms for learning the Bayesian network structure that have been proposed until now can
be regrouped into two different approaches, which are described below.

2.1 IT Approach

This approach includes IC algorithm (inductive causation) (Pearl, 1988), PC algorithm (after its
authors, Peter and Clark) (Spirtes et al., 2000), GS algorithm (grow and shrink) (Margaritis and
Thrun, 2000), and TPDA algorithm (three-phase dependency analysis) (Cheng et al., 2002). All of
them build the structure to be consistent with the conditional independencies among the variables
that are evaluated with a statistical test (G-square, partial correlation). Usually, algorithms start
by learning the skeleton of the graph (by propagating constraints on the neighborhood of each
variable) and then edges are oriented to cope with dependencies revealed from data. Finally, one
network is retained from the equivalent class consistent with the series of tests. Under the faithful
condition of P, such strategies have been proven to build a graph converging to the true network as
the size of the data approaches infinity. Moreover, their complexity is polynomial, assuming that
the maximal degree of the network, that is, the maximal size of nodes neighborhood, is bounded
(Kalisch and Bühlmann, 2007). However, in practice, the results are mixed because of the tests
sensitivity to noise: since these algorithms base their decisions on a single or few tests, they are
prone to accumulate errors (Margaritis and Thrun, 2000). Worse, they can obtain a set of conditional
independencies that is contradictory, or that cannot be faithfully encoded by a DAG, leading to a
failure of the algorithm. Moreover, except for sparse graphs, their execution time is generally longer
than that of algorithms from the scoring criteria-based approach (Tsamardinos et al., 2006).

2253

PERRIER

2.2 Scoring Criteria-Based Approach

Search-and-score methods are favored in practice and considered as a more promising research
direction. This second family of algorithms uses a scoring criterion, such as the posterior probability
of the network given the data, in order to evaluate how well a given DAG fits empirical results, and
returns the one that maximized the scoring function during the search. Since the search space is

known to be of a super exponential size on the number of nodes n, that is, O(n!2(n
2)) (Robinson,

1973), an exhaustive search is practically infeasible, implying that various greedy strategies have
been proposed to browse DAG space, sometimes requiring some prior knowledge.

Among them, the state-of-the-art greedy hill climbing (HC) strategy, although it is simple and
will find only a locally optimal network, remains one of the most employed method in practice,
especially with larger networks. There exist various implementations using different empirical tricks
to improve the score of the results, such as TABU list, restarting, simulated annealing, or searching
with different orderings of the variables (Chickering et al., 1995; Bouckaert, 1995). However a
traditional and basic algorithm will process in the following manner:

• Start the search from a given DAG, usually the empty one.

• Then, from a list of possible transformations containing at least addition, withdrawal or re-
versal of an edge, select and apply the transformation that improves the score most while also
ensuring that graph remains acyclic.

• Finally repeat previous step until strict improvements to the score can no longer be found.

More details about our implementation of HC are given in Section 5.1.3. Such an algorithm can
be used even for large systems, and if the number of variables is really high, it can be adapted by
reducing the set of transformations considered, or by learning parents of each node successively. In
any case, this algorithm finds a local optimum DAG but without any assertion about its accuracy
(besides its score). Further, the result is probably far from a global optimal structure, especially
when number of nodes increases. However, optimized forms of this algorithm obtained by using
one or more tricks have been considered to be the best search strategies in practice until recently.

Other greedy strategies have also been developed in order to improve either the speed or accu-
racy of HC one: sparse candidate (SC, Friedman et al., 1999) that limits the maximal number of
parents and estimate candidate parents for each node before the search, greedy equivalent search
(GES, Chickering, 2002b) that searches into the space of equivalence classes (PDAGs), and optimal
reinsertion (OR, Moore and Wong, 2003) that greedily applies an optimal reinsertion transformation
repeatedly on the graph.

SC was one of the first to propose a reduction in the search space, thereby sensitively improving
the score of resulting networks without increasing the complexity too much if candidate parents
are correctly selected. However, it has the disadvantage of a lack of flexibility, since imposing a
constant number of candidate parents to every node could be excessive or restrictive. Furthermore,
the methods and measures proposed to select the candidates, despite their intuitive interest, have not
been proved to include at least the true or optimal parents for each node.

GES has the benefit that it exploits a theoretically justified direction. Main scoring functions
have been proved to be score equivalent (Chickering, 1995), that is, two equivalent DAGs (repre-
senting the same set of independencies among variables) have the same score. Thus they define

2254

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

equivalent classes over networks that can be uniquely represented by CPDAGs. Therefore, search-
ing into the space of equivalent classes reduces the number of cases that have to be considered,
since one CPDAG represents several DAGs. Further, by using usual sets of transformations adapted
to CPDAGs, the space browsed during a greedy search becomes more connected, increasing the
chances of finding a better local maximum. Unfortunately, the space of equivalent classes seems to
be of the same size order than that of DAGs, and an evaluation of the transformations for CPDAGs is
more time consuming. Thus, GES is several times slower than HC, and it returns similar results. In-
terestingly, following the comparative study of Tsamardinos et al. (2006), if structural errors rather
than scores are considered as a measure of the quality of the results, GES is better than a basic HC.

In the case of OR, the algorithm had the advantage to consider a new transformation that globally
affects the graph structure at each step: this somehow enables the search to escape readily from local
optima. Moreover, the authors developed efficient data-structures to rationalize score evaluations
and retrieve easily evaluation of their operators. Thus, it is one of the best greedy methods proposed;
however, with increasing data, the algorithm will collapse due to memory shortage.

Another proposed direction was using the K2 algorithm (Cooper and Herskovits, 1992), which
constraints the causal ordering of variables. Such ordering can be seen to be a topological ordering
of the true graph, provided that such a graph is acyclic. Based on this, the authors proposed a
strategy to find an optimal graph by selecting the best parent set of a node among the subsets of
nodes preceding it. The resulting graph can be the global optimal DAG if it accepts the same
topological ordering. Therefore, given an optimal ordering, K2 can be seen as an optimal algorithm
with a time and space complexity of O(2n). Moreover, for some scoring functions, branch-pruning
can be used while looking for the best parent set of a node (Suzuki, 1998), thereby improving the
complexity. However, in practice, a greedy search that considers adding and withdrawing a parent
is applied to select a locally optimal parent set. In addition, the results are strongly depending on
the quality of the ordering. Some investigations have been made to select better orderings (Teyssier
and Koller, 2005) with promising results.

2.3 Recent Progress

One can wonder about the feasibility of finding a globally optimal graph without having to explicitly
check every possible graph, since nothing can be asserted with respect to the structural accuracy of
the local maxima found by previous algorithms. In a general case, learning Bayesian network from
data is an NP-hard problem (Chickering, 1996), and thus for large networks, only such greedy algo-
rithms are used. However, recently, algorithms for global optimization or exact Bayesian inference
have been proposed (Ott et al., 2004; Koivisto and Sood, 2004; Singh and Moore, 2005; Silander
and Myllymäki, 2006) and can be applied up to a few tens of nodes. Since they all principally share
the same strategy that we will introduce in detail subsequently, we will refer to it as optimal search
(OS). Even if such a method cannot be of a great use in practice, it could validate empirically the
search-and-score approach by letting us study how a global maximum converges to the true graph
when the data size increases; Also, it could be a meaningful gold standard to judge the performances
of greedy algorithms.

Finally, a recent noteworthy step was performed with the min-max hill climbing algorithm
(MMHC, Tsamardinos et al., 2006), since it was empirically proved to be the fastest and the best
method in terms of structural error based on the structural hamming distance. This algorithm can
be considered as a hybrid of the two approaches. It first learns an approximation of the skeleton of

2255

PERRIER

the true graph by using an IT strategy. It is based on a subroutine called min-max-parents-children
(MMPC) that reconstructs the neighborhood of each node; G-square tests are used to evaluate con-
ditional independencies. The algorithm subsequently proceeds to a HC search to build a DAG
limiting edge additions to the one present in the retrieved skeleton. As a result, it follows a similar
technique than that of SC, except that the number of candidate parents is tuned adaptively for each
node, and that the chosen candidates are sound in the sample limit. It is worth to notice that the
skeleton learned in the first phase can differ from the one of the final DAG, since all edges will not
be for sure added during the greedy search. However, it will be certainly a cover of the resulting
graph skeleton.

3. Definitions and Preliminaries

In this section, after explaining our notations and recalling some important definitions and results,
we discuss structure constraining and define the concept of a super-structure. Section 3.3 is dedi-
cated to OS.

3.1 Notation and Results for Bayesian Networks

In the rest of the paper, we will use upper-case letters to denote random variables (e.g., Xi, Vi) and
lower-case letters for the state or value of the corresponding variables (e.g., xi, vi). Bold-face will be
used for sets of variables (e.g., Pai) or values (e.g., pai). We will deal only with discrete probability
distributions and complete data sets for simplicity, although a continuous distribution case could
also be considered using our method.

Given a set X of n random variables, we would like to study their probability distribution P0. To
model this system, we will use Bayesian networks:

Definition 1. (Pearl, 1988; Spirtes et al., 2000; Neapolitan, 2003) Let P be a discrete joint probabil-
ity distribution of the random variables in some set V, and G = (V,E) be a directed acyclic graph
(DAG). We call (G,P) a Bayesian network (BN) if it satisfies the Markov condition, that is, each
variable is independent of any subset of its non-descendant variables conditioned on its parents.

We will denote the set of the parents of a variable Vi in a graph G by Pai, and by using the Markov
condition, we can prove that for any BN (G,P), the distribution P can be factored as follows:

P(V) = P(V1, · · · ,Vp) = ∏
Vi∈V

P(Vi|Pai).

Therefore, to represent a BN, the graph G and the joint probability distribution have to be en-
coded; for the latter, every probability P(Vi = vi|Pai = pai) should be specified. G directly encodes
some of the independencies of P and entails others (Neapolitan, 2003). More precisely, all inde-
pendencies entailed in a graph G are summarized by its skeleton and by its v-structures (Pearl,
1988). Consequently, two DAGs having the same skeleton and v-structures entail the same set of
independencies; they are said to be equivalent (Neapolitan, 2003). This equivalence relation defines
equivalent classes over space of DAGs that are unambiguously represented by completed partially
directed acyclic graphs (CPDAG) (Chickering, 2002b). Finally, if all and only the conditional in-
dependencies true in a distribution P are entailed by the Markov condition applied to a DAG G, we
say that the Bayesian Network (G,P) is faithful (Spirtes et al., 2000).

2256

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

In our case, we will assume that the probability distribution P0 over the set of random variables
X is faithful, that is, that there exists a graph G0, such that (G0,P0) is a faithful Bayesian network.
Although there are distributions P that do not admit a faithful BN (for example the case when parents
are connected to a node via a parity or XOR structure), such cases are regarded as “rare” (Meek,
1995), which justifies our hypothesis.

To study X, we are given a set of data D following the distribution P0, and we try to learn a graph
G, such that (G,P0) is a faithful Bayesian network. The graph we are looking for is probably not
unique because any member of its equivalent class will also be correct; however, the corresponding
CPDAG is unique. Since there may be numerous graphs G to which P0 is faithful, several definitions
are possible for the problem of learning a BN. We choose as Neapolitan (2003):

Definition 2. Let P0 be a faithful distribution and D be a statistical sample following it. The problem
of learning the structure of a Bayesian network given D is to induce a graph G so that (G,P0) is
a faithful BN, that is, G and G0 are on the same equivalent class, and both are called the true
structure of the system studied.

In every IT-based or constraint-based algorithm, the following theorem is useful to identify the
skeleton of G0:

Theorem 1. (Spirtes et al., 2000) In a faithful BN (G,P) on variables V, there is an edge between
the pair of nodes X and Y if and only if X depends on Y conditioning on every subset Z included in
V\{X ,Y}.

Thus, from the data, we can estimate the skeleton of G0 by performing conditional independency
tests (Glymour and Cooper, 1999; Cheng et al., 2002). We will return to this point in Section 4.1
since higher significance levels for the test could be used to obtain a cover of the skeleton of the true
graph.

3.2 General Optimal Search

Before presenting our algorithm, we should review the functioning of an OS. Among the few arti-
cles on optimal search (Ott et al., 2004; Koivisto and Sood, 2004; Singh and Moore, 2005; Silander
and Myllymäki, 2006), Ott and Miyano (2003) are to our knowledge the first to have published an
exact algorithm. In this section we present the algorithm of Ott et al. (2004) for summarizing the
main idea of OS. While investigating the problem of exact model averaging, Koivisto and Sood
(2004) independently proposed another algorithm that also learn optimal graphs proceeding on a
similar way. As for Singh and Moore (2005), they presented a recursive implementation that is
less efficient in terms of calculation; however, it has the advantage that potential branch-pruning
rules can be applied. Finally, Silander and Myllymäki (2006) detailed a practically efficient imple-
mentation of the search: the main advantage of their algorithm is to calculate efficiently the scores
by using contingency tables (still computational complexity remains the same). They empirically
demonstrated that optimal graphs could be learned up to n = 29.

To understand how OS finds global optima in O(n2n) without having to explicitly check ev-
ery DAG possible, we must first explain how a score function is defined. Various scoring criteria
for graphs have been defined, including Bayesian Dirichlet (specifically BDe with uniform priors,
BDeu) (Heckerman et al., 1995), Bayesian information criterion (BIC) (Schwartz, 1978), Akaike
information criterion (AIC) (Akaike, 1974), minimum description length (MDL) (Rissanen, 1978),

2257

PERRIER

and Bayesian network and nonparametric regression criterion (BNRC) (Imoto et al., 2002). They
are usually costly to evaluate; however, due to the Markov condition, they can be evaluated locally:

Score(G,D) =
n

∑
i=1

score(Xi,Pai,D).

This property is essential to enable efficient calculation, particularly with large graphs, and
is usually supposed while defining an algorithm. Another classical attribute is score equivalence,
which means that two equivalent graphs will have the same score. It was proved to be the case for
BDe, BIC, AIC, and MDL (Chickering, 1995). In our study, we will use BIC, thereby our score is
local and equivalent, and our task will be to find a DAG over X that maximizes the score given the
data D. Exploiting score locality, Ott et al. (2004) defined for every node Xi and every candidate
parent set A ⊆ X\{Xi}:

• The best local score on Xi: Fs(Xi,A) = max
B⊆A

score(Xi,B,D) ;

• The best parent set for Xi: Fp(Xi,A) = argmax
B⊆A

score(Xi,B,D) .

From now we omit writing D when referring to the score function. Fs can be calculated recur-
sively on the size of A using the following formulas:

Fs(Xi, /0) = score(Xi, /0), (1)

Fs(Xi,A) = max(score(Xi,A),max
X j∈A

(Fs(Xi,A\{X j})). (2)

Calculation of Fp directly follows; we will sometimes use F as a shorthand to refer to these two
functions. Noticing that we can dynamically evaluate F , one can think that it is thus directly pos-
sible to find the best DAG. However, it is also essential to verify that the graph obtained is acyclic
and hence, that there exists a topological ordering over the variables.

Definition 3. Let w be an ordering defined on A ⊆ X and H = (A,E) be a DAG. We say that H is
w-linear if and only if w(Xi) < w(X j) for every directed edge (Xi,X j) ∈ E.

By using Fp and given an ordering w on A we derive the best w-linear graph G∗
w as:

G∗
w = (A,E∗

w), with (X j,Xi) ∈ E∗
w if and only if X j ∈ Fp(Xi,Predw(Xi)). (3)

Here, G∗
w is directly obtained by selecting for each variable Xi ∈ A its best parents among the nodes

preceding Xi in the ordering w referred as Predw(Xi) = {X j with w(X j) < w(Xi)}. Therefore, to
achieve OS, we need to find an optimal w∗, that is, a topological ordering of an optimal DAG. With
this end, we define for every subset A ⊆ X not empty:

• The best score of graphs G on A: Ms(A) = max
G

Score(G)

• The last node of an optimal ordering on A: Ml(A)

2258

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

Another way to interpret Ml(A) is as a sink of an optimal graph on A, that is, a node that has no
children. Ms and Ml are simply initialized by:

∀Xi ∈ X : Ms({Xi}) = score(Xi, /0),
Ml({Xi}) = Xi.

(4)

When |A|= k > 1, we consider an optimal graph G∗ on that subset and w∗ one of its topological
ordering. The parents of the last element Xi∗ are for sure Fp(Xi∗ ,Bi∗), where B j = A\{X j}; thus its
local score is Fs(Xi∗ ,Bi∗). Moreover, the subgraph of G∗ induced when removing Xi∗ must be optimal
for Bi∗ ; thus, its score is Ms(Bi∗). Therefore, we can derive a formula to define Ml recursively:

Ml(A) = Xi∗ = argmax
X j∈A

(Fs(X j,B j)+Ms(B j)). (5)

This also enables us to calculate Ms directly. We will use M to refer to both Ms and Ml . M can
be computed dynamically and Ml enables us to build quickly an optimal ordering w∗; elements are
find in reverse order:

T = X
While T 6= /0

w∗(Ml(T)) = |T|
T = T\Ml(T)

(6)

Therefore, the OS algorithm is summarized by:

Algorithm 1 (OS). (Ott et al., 2004)

(a) Initialize ∀Xi ∈ X, Fs(Xi, /0) and Fp(Xi, /0) with (1)

(b) For each Xi ∈ X and each A ⊆ X\{Xi} :
Calculate Fs(Xi,A) and Fp(Xi,A) using (2)

(c) Initialize ∀Xi, Ms({Xi}) and Ml({Xi}) using (4)

(d) For each A ⊆ X with |A| > 1 :
Calculate Ms(A) and Ml(A) using (5)

(e) Build an optimal ordering w∗ using (6)

(f) Return the best w∗-linear graph G∗
w∗ using (3)

Note that in steps (b) and (d) subsets A are implicitly considered by increasing size to enable
formulae (2) and (5). With respect to computational complexity, in steps (a) and (b) F is calculated
for n2n−1 pairs of variable and parent candidate set. In each case, one score exactly is computed.
Then, M is computed over the 2n subsets of X (step (c) and (d)). w∗ and G∗

w are both build in O(n)
time at step (e) and (f); thus, the algorithm has a total time complexity of O(n2n) and evaluates
n2n−1 scores. Here, time complexity refers to the number of times that the formulae (2) or (5)
are computed; however, it should be pointed out that these formulae require at least O(n) basic
operations.

2259

PERRIER

As proposed (Ott et al., 2004), OS can be speed up by constraining with a constant c the maximal
size of parent sets. This limitation is easily justifiable, as graphs having many parents for a node are
usually strongly penalized by score functions. In that case, the computational complexity remains
the same; only formulas (2) is constrained, and score(Xi,A) is not calculated when |A| > c. Conse-
quently, the total number of score evaluated is reduced to O(nc+1), which is a decisive improvement
since computing a score is costly.

The space complexity of Algorithm 1 can be slightly reduced by recycling memory as mentioned
(Ott et al., 2004). In fact, when calculating functions F and M for subsets A of size k, only values
for subsets of size k−1 are required. Therefore, by computing simultaneously these two functions,
when values for subsets of a given size have been computed, the memory used for smaller set can
be reused. However, to be able to access G∗

w, we should redefine Ml to store optimal graphs instead
of optimal sinks. The worst memory usage corresponds to k = b n

2c+ 1 when we have to consider
approximately O(2n√

n) sets: this approximation comes from Stirling formula applied to the binomial

coefficient of n and b n
2c (bxc is the highest integer less than or equal to x). At that time, O(

√
n2n)

best parent sets are stored by F , and O(2n√
n) graphs by M. Since a parent set requires O(n) space and

a graph O(n2), we derive that the maximal memory usage with recycling is O(n
3
2 2n), while total

memory usage of F in Algorithm 1 was O(n22n). Actually, since Algorithm 1 is feasible only for
small n, we can consider that a set requires O(1) space (represented by less than k integers on a x-bit
CPU if n < kx): in that case also, the memory storage is divided by a factor

√
n with recycling.

Ott et al. (2005) also adapted their algorithm to list as many suboptimal graphs as desired. Such
capacity is precious in order to find which structural similarities are shared by highly probable
graphs, particularly when the score criteria used is not equivalent. However, for an equivalent score,
since the listed graphs will be mainly on the same equivalent classes, they will probably not bring
more information than the CPDAG of an optimal graph.

4. Super-Structure Constrained Optimal Search

Compare to a brute force algorithm that would browse all search space, OS achieved a consider-
able improvement. Graphs of around thirty nodes are still hardly computed, and many small real
networks such as the classical ALARM network (Beinlich et al., 1989) with 37 variables are not
feasible at all. The question of an optimal algorithm with a lower complexity is still open. In our
case, we focus on structural constraint to reduce the search space and develop a faster algorithm.

4.1 Super-Structure

To keep the property that the result of OS converges to the true graph in the sample limit, the
constraint should at least authorize the true skeleton. Since knowing the true skeleton is a strong as-
sumption and learning it with high confidence from finite data is a hard task, we propose to consider
a more flexible constraint than fixing the skeleton. To this end, we introduce a super-structure as:

Definition 4. An undirected graph S = (V,ES) is said to be a super-structure of a DAG G = (V,EG),
if the skeleton of G, G′ = (V,EG′) is a subgraph of S (i.e., EG′ ⊆ ES). We say that S contains the
skeleton of G.

Considering a structure learning task, a super-structure S is said to be true or sound if it contains
the true skeleton; otherwise it is said incomplete. Finally we propose to study the problem of model

2260

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

X

S

G

G

1 X2

X3 X4

X5

X1 X2

X3 X4

X51

2

X1 X2

X3 X4

X5

Figure 1: In a search constrained by S, G1 could be considered but not G2 because 〈X4,X5〉 6∈ ES.

inference from data given a super-structure S: S is assumed to be sound, and the search space is
restricted to DAGs whose skeletons are contained in S as illustrated in Figure 1. Actually, the
“skeleton” learned by MMPC is used as a super-structure in MMHC. In fact, the skeleton of the
graph returned by MMHC is not proven to be the same than the learned one; some edges can be
missing. It is the same for the candidate parents in SC. Thus, the idea of super-structure already
existed, but we define it explicitly, which has several advantages.

First, a dedicated terminology enables to emphasize two successive and independent phases in
structure learning problem: on one hand, learning with high probability a sound super-structure
S (sparse if possible); on the other hand, given such structure, searching efficiently the restricted
space and returning the best optimum found (global optimum if possible). This problem cutting
enables to make clearer the role and effect of each part. For example, since SC and MMHC use
the same search, comparing their results allow us directly to evaluate their super-structure learning
approach. Moreover, while conceiving a search strategy, it could be of a great use to consider a
super-structure given. This way, instead of starting from a general intractable case, we have some
framework to assist reasoning: we give some possible directions in our future work. Finally, this
manner to apprehend the problem already integrates the idea that the true skeleton will not be given
by an IT approach; hence, it could be better to learn a bit denser super-structure to reduce missing
edges, which should improve accuracy.

Finally, we should explain how practically a sound super-structure S can be inferred. Even
without knowledge about causality, a quick analysis of the system could generate a rough draft
by determining which interactions are impossible; localization, nature or temporality of variables
often forbid evidently many edges. In addition, for any IT-based technique to learn the skeleton,
the neighborhood of variables or their Markov blanket could be used to get a super-structure. This
one should become sound while increasing the significance level of the tests: this is because we
only need to reduce false negative discovery. Although the method used in PC algorithm could be
a good candidate to learn a not sparse but sound super-structure, we illustrate our idea with MMPC
in Section 5.1.

4.2 Constraining and Optimizing

From now on, we will assume that we are given a super-structure S = (X,ES) over X. We refer to
the neighborhood of a variable Xi in S by N(Xi), that is, the set of nodes connected to Xi in S (i.e.,
{X j | 〈Xi,X j〉 ∈ ES}); m is the maximal degree of S, that is, m = maxXi∈X |N(Xi)|. Our task is to
globally maximize the score function over our reduced search space.

2261

PERRIER

X

S

A
�������

X ,X ,X ,X }

A
�������

X ,X ,X ,X }

1 X2

X3

X4

X5 X6

X7

X1 X2

X3

X6

X7

X1 X2

X3

X6

X5

X4

X4

X5

X7

1

2

1 2 3 4 5

1 3 4 5 7

Figure 2: A1 is in Con(S), but not A2 because in SA2 , X7

and X4 are not connected.

S

X1 X2

X3

X4

X5 X6

X7

X1

X7

X2

X3

X4

X5 X6

A = {X ,X ,X ,X ,X }2 3 4 5 6

C �	��
�
��
��1 2 5 6

C ����
��
��2 3 4

Figure 3: The maximal connected
subsets of A: C1 and
C2.

Since the parents of every Xi are constrained to be included in N(Xi), the function F has to be
defined only for ∀A ⊆ N(Xi). Consequently, computation of F in step (b) becomes:

(b*) For each Xi ∈ X and each A ⊆ N(Xi)
Calculate Fs(Xi,A) and Fp(Xi,A) using (2)

Only the underlined part has been modified; clearly, F still can be computed recursively since
∀X j ∈ A, the subset A\{X j} is also included in N(Xi), and its F value is already known. With this
slight modification, the time complexity of computing F becomes O(n2m), which is a decisive im-
provement opening many perspectives; more details are given at the end of this section. However, to
keep formulae (5) and (3) correct, F(Xi,A) for any subset A has to be replaced by F(Xi,A∩N(Xi)).
Before simplifying the calculation of M, it is necessary to introduce the notion of connectivity:

Definition 5. Given an undirected graph S = (X,ES), a subset A ⊆ X is said to be connected if
A 6= /0 and the subgraph of S induced by A, SA, is connected (cf. Figure 2).

In our study, connectivity will always refer to the connectivity in the super-structure S. Con(S)
will refer to the set of connected subsets of X. In addition, each not empty subset of X can be broken
down uniquely into the following family of connected subsets:

Definition 6. Given an undirected graph S = (X,ES) and a subset A⊆X, let S1 = (C1,E1), · · · ,Sp =
(Cp,Ep) be the connected components of the induced subgraph SA. The subsets C1, · · · ,Cp are
called the maximal connected subsets of A (cf. Figure 3).

The most important property of the maximal connected subsets C1, · · · ,Cp of a subset A is that,
when p > 1 (i.e., when A 6∈ Con(S)) for any pair Ci, C j with i 6= j, Ci ∩C j = /0 and there is no
edges in S between nodes of Ci and nodes of C j. Next we show that the value of M for subsets that
are unconnected do not have to be explicitly calculated, which is the second and last modification

2262

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

of Algorithm 1. The validity of our algorithm is simultaneously proved.

Theorem 2. A constrained optimal graph can be found by computing M only over Con(S).
Proof: First, let consider a subset A 6∈ Con(S), its maximal connected subsets C1, · · · ,Cp (p > 1),
and an optimal constrained DAG G∗ = (A,E∗). Since G∗ is constrained by the super-structure, and
following the definition of the maximal connected subsets, there cannot be edges in G∗ between any
element in Ci and any element in C j if i 6= j. Therefore, the edges of G∗ can be divided in p sets
E = E1∪·· ·∪Ep with Gi = (Ci,Ei) a DAG over every Ci. Moreover, all Gi are optimal constrained
graphs otherwise G∗ would not be. Consequently, we can derive the two following formulas:

Ms(A) =
p

∑
i=1

Ms(Ci), (7)

Ml(A) = Ml(C1). (8)

Formula (7) directly follows our previous considerations that maximizing the score over A is equiv-
alent to maximizing it over each Ci independently, since they cannot affect each other. Actually, any
Ml(Ci) is an optimal sink and could be selected in (8); we chose Ml(C1) since it is accessed faster
when using the data structure proposed in Section 4.3 for M. By using (7) and (8) the value of M
for unconnected subsets can be directly computed if needed from the values of smaller connected
subsets. Therefore, we propose to compute M only for connected subsets by replacing step (d) with
(d∗) in Algorithm 2 described below. Since each singleton {Xi} is connected, step (c) is not raising
a problem. In step (d∗) we consider A ∈Con(S) and apply formula (5), if there is X j ∈ A such that
B j = A\{X j} is not connected, we then can directly calculate Ms(B j) by applying (7). the values of
Ms for the maximal connected subsets of B j are already computed since these subsets are of smaller
sizes than A. Therefore, Ml(A) and Ms(A) can be computed. Finally, it is also possible to retrieve
w∗ from (6) by using (8) if T is not connected, which conclude the proof of this Theorem.

We can now formulate our optimized version of Algorithm 1 for optimal DAG search condi-
tioned by a super-structure S:

Algorithm 2.

(a*) Initialize ∀Xi ∈ X, Fs(Xi, /0) and Fp(Xi, /0) with (1)

(b*) For each Xi ∈ X and each A ⊆ N(Xi)
Calculate Fs(Xi,A) and Fp(Xi,A) using (2)

(c*) Initialize ∀Xi, Ms({Xi}) and Ml({Xi}) using (4)

(d*) For each A ∈Con(S) with |A| > 1
Calculate Ms(A) and Ml(A) using (5) and (7)

(e*) Build an optimal ordering w∗ using (6) and (8)

(f*) Return the best w∗-linear graph G∗
w∗ using (3)

The underlined parts of Algorithm 2 are the modifications introduced in Algorithm 1. Compu-
tational complexity and correctness of (b∗) has already been presented. With Theorem 2, validity
of our algorithm is assured and since in (c∗) and (d∗) every element of Con(S) are considered only

2263

PERRIER

once, the total computational complexity is in O(n2m + |Con(S)|); here again complexity refers to
the number of times formulae (2) or (5) are computed. We will describe in the next Section a method
to consider only connected subsets, and come over the number of connected subsets of S in Section
4.4. Although set operators are used heavily in our algorithm, such operations can be efficiently
implemented and considered of a negligible cost as compared to other operations, such as score cal-
culations. Concerning the complexity of calculating F , O(n2m) is in fact a large upper bound. Still,
since it depends only linearly on the size of the graphs, F can be computed for graphs of any size
if their maximal degree is less than around thirty. This enables usage of this function in new search
strategies for many real systems that could not be considered without constraint. We should remark
that some cases of interest still cannot be studied since this upper limitation on m constrains also
the maximal number of children of every variables. However, this difficulty concerns also many
IT-approaches since their complexity also depends exponentially on m (see Tsamardinos et al. 2006
for MMPC and Kalisch and Bühlmann 2007 for PC). Finally, like in Algorithm 1, the number of
scores calculated can be reduced to O(nmc) by constraining on the number of parents.

Although the number of M and F values calculated is strictly reduced, a potential drawback
of Algorithm 2 is that memory cannot be recycled anymore. First, when (5) is used during step
(d∗), now Fs(Xi,B j ∩N(Xi)) is required, and nothing can be said about |B j ∩N(Xi)| implying that
we should store every value of Fs computed before. Similar arguments hold for Fp in case Ml is
used to store optimal graphs, and for Ms and Ml because (7) and (8) could have to be used anytime
during (d∗) and (e∗) respectively. However, since space complexity of F is O(n2m) and the one
of M is O(|Con(S)|) (cf. next section), if m is bounded Algorithm 2 should use less memory than
Algorithm 1 even when recycling memory (i.e., O(

√
n2n) assuming that a set takes O(1) space).

This soften the significance of recycling memory in our case.
Finally, since our presentation of Algorithm 2 is mainly formal, we should detail how it is

practically possible to browse efficiently only the connected subsets of X. For this, we present in
the next section a simple data structure to store values of M and a method to build it.

4.3 Representation of Con(S)

For every A ∈Con(S) we define N(A) =
(

S

Xi∈A N(Xi)
)

\A, that is the set of variables neighboring
A in S. For every Xi 6∈ A, we note A+

i = A∪{Xi}, it is connected if and only if Xi ∈ N(A). Finally,
for a subset A not empty, let min(A) be the smallest index in A, that is, min(A) = i means that
Xi ∈ A and ∀X j ∈ A, j ≥ i; by convention, min(/0) = 0. Now we introduce an auxiliary directed
graph G? = (Con(S)?,E?), where Con(S)? = Con(S)∪{ /0} and the set of directed edges E? is such
that there is an edge from A to B if and only if A ⊂ B and |B| = |A|+ 1. In other words, with
the convention that N(/0) = X, E? = {(A,A+

i), ∀A ∈ Con(S)? and ∀Xi ∈ N(A)}. Actually, G? is
trivially a DAG since arcs always go from smaller to bigger subsets. Finally, let define H as being
the spanning tree obtained from the following depth-first-search (DFS) on G? :

• The search starts from /0.

• While visiting A ∈ Con(S)?: for all Xki ∈ N(A) considered by increasing indices (i.e., such
that k1 < · · · < kp, where p = |N(A)|) visit the child A+

ki
if it was not yet done. When all

children are done, the search backtracks.

Since there is a path from the empty set to every connected subset in G?, the nodes of the tree
H represent unambiguously Con(S)?. We use H as a data structure to store the values of M in

2264

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

1 4

3 2

S

{1}

{2}

{3}

{4}

{1,3}

{1,4}

{2,3}

{3,4}

{1,2,3}

{1,3,4}

{2,3,4}

{1,2,3,4}

H

Ø

{1}

{2}

{3}

{4}

{1,3}

{1,4}

{2,3}

{3,4}

{1,2,3}

{1,3,4}

{2,3,4}

{1,2,3,4}Ø

G

{3}

{2}

{1}

Ø

Ø Ø

Ø

Ø

{1}

{1}

{1,2}

{1,2}{1,2,3}

Figure 4: G? and H for a given S. Fb(A) is indicated in red above each node in H.

Algorithm 2; this structure is illustrated by an example in Figure 4. Further, we propose a method to
build H directly from S without having to build G? explicitly. First, we notice that after visiting A,
every B ∈Con(S) such that B ⊃ A have been visited for sure. When visiting A, we should consider
only the children of A that were not yet visited. For this, we define:

• Fb(A) is the set of forbidden variables of A, that is: for every B ∈Con(S) with B ⊃ A, B has
been already visited if and only if B ⊇ A+

j with X j ∈ Fb(A).

By defining recursively this forbidden set for every child of A that has not yet been visited, we
derive the following method to build H:

Method 1.
1: Create the root of H (i.e., /0), and initialize Fb(/0) = /0.
2: For i from 0 to n−1, and for all A in H such that |A| = i
3: Set Fb∗ = Fb(A),
4: For every Xk j ∈ N(A)\Fb(A) considered by increasing indices
5: Add to A the child A+

k j
in H and define Fb(A+

k j
) = Fb∗

6: Update Fb∗ = Fb∗+
k j

The correctness of Method 1 is proven in the next Theorem. In order to derive the time com-
plexity of step (d∗) in terms of basic operations, while using Method 1 in Algorithm 2, let consider
that the calculation takes place on a x-bit machine and that n is at maximum few times greater than
x. Thus, subsets requires O(1) space, and any operations on subsets are done in O(1) time, except
min(A) (in O(log(n)) time).

Theorem 3. The function M can be computed in time and space proportional to O(|Con(S)|), up to
some polynomial factors. With Method 1, M is computed in O(log(n)n2|Con(S)|) time and requires
O(|Con(S)|) space.

Proof: First, to prove correctness of Method 1, we show that if Fb(A) is correctly defined in regard
to our DFS, the search from A proceeds as expected and that before back tracking every connected
superset of A has been visited. The case when all the variables neighboring A are forbidden being
trivial, we directly consider all the elements Xk1 , · · · ,Xkp of N(A)\Fb(A) by increasing indices
like in DFS (with p ≥ 1). Then, A+

k1
should be visited first, and Fb(A+

k1
) = Fb(A) because ∀X j ∈

2265

PERRIER

Fb(A) among the supersets of A+
j there is also the supersets of A++

k1, j. Now let suppose that the
forbidden sets were correctly defined and that the visits correctly proceeded until A+

ki
: if i = p by

hypothesis we explored every connected supersets of the children of A and the search back track
correctly. Otherwise, we should define Fb(A+

ki+1
) = Fb(A)∪{Xk1}∪· · ·∪{Xki}= Fb(A+

ki
)+

ki
to take

into account all supersets visited during the previous recursive searches. Although Method 1 does
not proceed recursively (to follow the definition of M), since it uses the same formulae to define the
forbidden sets, and since Fb(/0) is correctly initialized, H is built as expected.

To be able to access easily M(A), we keep for every node an auxiliary set defined by Nb(A) =
N(A)\Fb(A) that is easily computed as processing Method 1. Since there is O(|Con(S)|) nodes
in H, each storing a value of M and two subsets requiring O(1) space, the assertion about space
complexity is correct.

Finally, building a node requires O(1) set operations. To access M(A) even for an unconnected
subset, we proceed on the following manner: we start from the root, and define T = A. Then, when
we rushed the node B ⊆ A, with i = min(Nb(B)∩T), we withdraw Xi from T, and go down to the
ith child of B. If i = 0 then if T = /0 we found the node of A; otherwise we rushed the first maximal
connected component of A, that is, C1 of which we can accumulate the M value in order to apply (7)
or (8). In that case, we continue the search by restarting from the root with the variables remaining
in T. In any cases, at maximum min is used O(n) times to find M(A), implying a time complexity
of O(log(n)n2) for formula (5).

It is interesting to notice that, even without memoization, the values of M can be calculated
in different order. For example, by calling Hi the subtree of H starting from {Xi}, only values of
M over H j such that j ≥ i are required. Then it is feasible to calculate M from Hn to H1, which
could be used to apply some branch-pruning rules based on known values of M or to apply different
strategies depending on the topology of the connected subset; these are only suppositions.

More practically, other approach could be proposed to build a spanning tree of G? and Method
1 is presented here only to complete our implementation and illustrate Theorem 3. We should note
that one can also implement the calculation of M over Con(S) in a top-down fashion using memo-
ization and an auxiliary function to list maximal connected components of a subset. However, such
implementations will be less efficient both in space and time complexity. Even without considering
the cost of recursive programming, listing connected components is in O(nm). Then, in order to not
waste an exponential factor of memory, self balanced trees should be used to store the memorized
values of M: it would require O(n) time to access a value and up to O(n2) if (7) is used. This
should be repeated O(n) times to apply (5), which implies a complexity of around O(n3|Con(S)|).
Consequently, we believe that Method 1 is a competitive implementation of step (d∗).

4.4 Counting Connected Subsets of a Graph

To understand the complexity of Algorithm 2, the asymptotic behavior of |Con(S)| should be
derived, depending on some attributes of S. Comparing the trivial cases of a linear graph (i.e.,
m ≤ 2) where |Con(S)| = O(n2) and a star graph (i.e., one node is the neighbor of all others) where
|Con(S)| = 2n−1 + n− 1 clearly indicates that |Con(S)| depends strongly on the degrees of Srather
than on the number of edges or number of cycles. One important result from Björklund et al. (2008)
is that |Con(S)| = O(βn

m) with βm = (2m+1 −1)
1

m+1 a coefficient that only depends on the maximal
degree m of S.

2266

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

5 10 15 20 25 30 35

1
.7
5

1
.8
5

1
.9
5

(a)

n

γ m
(n
)

m

3

4

5

6

γ3 = 1.81…

γ4 = 1.92…

γ5 = 1.96…

20 40 60 80 100

1
.0

1
.4

1
.8

(b)

n

δ
m~
(n
)

m~

0.1

0.5

0.8

1

1.5

1.9

2

2.3

2.8

3

3.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5

1
.0

1
.4

1
.8

(c)

m~

δ
m~

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1
0
0

3
0
0

5
0
0

(d)

m
~

m
a
x
im

a
l g

ra
p
h
 s
iz
e
 in

 a
v
e
ra
g
e

w ith nmax(O S) = 30

Coe� cient of upper complexity for various m Coe� cient of average complexity for various m~

Behaviour of δ D epending on m
~

m~ n for a constrained O S given m
~ ~
max

Figure 5: Experimental derivation of γm, δm̃ and ñmax2(m̃).

Still, since this upper bound is probably over-estimated, we tried to evaluate a better one exper-
imentally. For every pair (m,n) of parameters considered , we randomly generated 500 undirected
graphs S pushing their structures towards a maximization of the number of connected subsets. For
this, all the nodes had exactly m neighbors and S should at least be connected. Then, since after a
first series of experiments the most complex structures appeared to be similar to full (m−1)-trees,
with a root having m children and leaves being connected to each other, only such structures were
considered during a second series of experiments. Finally, for each pair (m,n), from the maximal

number Rn,m of connected subsets found, we calculated exp(
ln(Rn, m)

n)) in order to search for an ex-
ponential behavior as shown in Figure 5(a).

Results 1. Our experimental measures led us to propose that |Con(S)| = O(γm
n) (cf. Figure 5(a)).

The weak point of our strategy is that more graphs should be consider while increasing n, since
the number of possible graphs also increases. Unfortunately, this is hardly feasible in practice since
counting gets longer with larger graphs. Nevertheless, Results 1 were confirmed during a more
detailed study of the case m = 3 using 10 times more graphs and up to n = 30. In addition, even this
estimated upper bound is practically of a limited interest since it still dramatically overestimates
|Con(S)| for real networks. Real networks are not, in general, as regular and as dense graphs as

2267

PERRIER

Complexity Algorithm 1 (OS) Algorithm 2 (COS)
Time (steps) O(n2n) O(|Con(S)|)

in details O(n22n) O(log(n)n2|Con(S)|)
scores computed n2n O(n2m)

if |Pai| < c O(nc+1) O(nmc)

Space O(
√

(n)2n) O(|Con(S)|)

Table 1: Improvement achieved by COS.

S |Con(S)| some values
Tree-like O(αn

m) α3 ≈ 1.58, α4 ≈ 1.65, α5 ≈ 1.707
General O(βn

m) β3 ≈ 1.968, β4 ≈ 1.987, β5 ≈ 1.995
Measured O(γn

m) γ3 ≈ 1.81, γ4 ≈ 1.92, γ5 ≈ 1.96
In average O(δn

m̃) δ1.5 ≈ 1.3, δ2 ≈ 1.5, δ2.5 ≈ 1.63, δ3 ≈ 1.74

Table 2: Results on |Con(S)|

the ones used in previous experiments. To illustrate that O(γm
n) is a pessimistic upper bound, we

derived the theoretical upper bound of |Con(S)| for tree-like structures of maximal degree m. This is
given as an example, although it might help estimation of |Con(S)| for structures having a bounded
number of cycles. The proof is deferred to the Appendix.

Proposition 1. If S is a forest, then |Con(S)| = O(αn
m) with αm = (2m−1+1

2)
1

m−1 .

Finally, we studied the average size of |Con(S)| for a large range of average degrees m̃. For each
pair (n, m̃) considered, we generated 10000 random graphs and averaged the number of connected
subsets to obtain Rn, m̃. No constraint was imposed on m, since graphs were generated by randomly

adding edges until b nm̃
2 c. In each case, we calculated exp(

ln(Rn, m̃)
n)) to search for an asymptotic be-

havior on m̃.

Results 2. On average, for super-structures having an average degree of m̃, |Con(S)| increases
asymptotically as O(δm̃

n) , see Figure 5(b) and (c) for more details.

Based on the assumption that Algorithm 1 is feasible at maximum for graphs of size nmax1 = 30
(Silander and Myllymäki, 2006), we calculated ñmax2(m̃) = nmax1

ln(2)
ln(δm̃) that can be interpreted as an

estimation of the maximal size of graphs that can be considered by Algorithm 2 depending on m̃.
As shown in Figure 5(d), on average, it should be feasible to consider graphs having up to 50 nodes
with Algorithm 2 if m̃ = 2. Moreover, since lim

m̃→0
δm̃ = 1, our algorithm can be applied to graphs

of any sizes if they are enough sparse. Unfortunately, the case when m̃ < 2 is not really interesting
since it implies that networks are mainly unconnected.

To conclude, we summarize and compare the time and space complexities of both Algorithms
in Table 1, using the same hypothesis on the size of a subset as Section 4.3. We neglected the
complexity due to F in our algorithm, which is justified if m is not huge. Concerning the space
complexity of Algorithm 1, the maximal space needed while recycling memory is used. Results
on O(|Con(S)|) are listed in Table 2. If super-structures S are relatively sparse and have a bounded
maximal degree, the speed improvement of Algorithm 2 over Algorithm 1 should increase expo-

2268

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

nentially with n. Moreover, our algorithm can be applied to some small real networks that are not
feasible for Algorithm 1.

5. Experimental Evaluation

Although the demonstrations concerning correctness and complexity of Algorithm 2 enable us to
anticipate results obtained experimentally, some essential points remain to be studied. Among them,
we should demonstrate practically that, in the absence of prior knowledge, it is feasible to learn a
sound super-structure with a relaxed IT approach. We choose to test our proposition on MMPC
(Tsamardinos et al., 2006) in Section 5.2; the details of this algorithm are briefly reintroduced
in Section 5.1.4. Secondly, we compare COS to OS to confirm the speed improvement of our
method and study the effect of using a sound constraint in Section 5.3. We also should evaluate the
worsening in terms of accuracy due to the incompleteness of an approximated super-structure. In
this case we propose and evaluate a greedy method, COS+, to improve substantially the results of
COS. In Section 5.4, we compare our methods to other greedy algorithms to show that, even with an
incomplete super-structure, COS, and especially COS+, are competitive algorithms to study small
networks. Finally we illustrate this point by studying the ALARM Network (Beinlich et al., 1989)
in Section 5.5, a benchmark of structure learning algorithm for which OS is not feasible.

5.1 Experimental Approach

Except in the last real experiment, we are interested in comparing methods or algorithms for various
set of parameters, such as: the size of the networks n, their average degree m̃ (to measure effect of
sparseness on Algorithm 2), the size of data considered d and the significance level α used to learn
the super-structure.

5.1.1 NETWORKS AND DATA CONSIDERED

Due to the size limitation imposed by Algorithm 1, only small networks can be learned. Further,
since there it is hardly feasible to find many real networks for every pair (n, m̃) of interest, we
randomly generated the networks to which we apply structure learning. Given a pair (n, m̃), DAGs
of size n are generated by adding randomly b nm̃

2 c edges while assuring that cycles are not created.
For simplicity, we considered only Boolean variables; therefore, Bayesian networks are ob-

tained from each DAG by generating conditional probabilities P(Xi = 0|Pai = pak
i) for all Xi and

all possible pak
i by choosing a random real number in]0,1[. Then, d data are artificially generated

from such Bayesian networks, by following their entailed probability distribution.
Finally, the data are used to learn a network with every algorithm and some criteria are mea-

sured. In order to generalize our results, we repeat g times the previous steps for each quadruplet
(n, m̃,α,d). The values of each criterion of comparison for every algorithm are averaged on the g
learned graphs.

5.1.2 COMPARISON CRITERIA

While learning Bayesian networks, we evaluate the performances of every algorithm on three crite-
ria. Since the learning task consists in the maximization of the score function, a natural criterion to
evaluate the quality of the learned network is its score. In our experiments we use BIC because of
its speed of evaluation. Since we are interested in comparing results in terms of score depending on

2269

PERRIER

n or m̃ in a diagram, we do not directly represent scores (their values change radically for different
parameters) but use a score ratio to the optimal score: Score(GOS)

Score(GOther)
, where the label of the graph indi-

cates which Algorithm was used. The better is the score obtained by an algorithm, the closer to 1 is
its score ratio. We preferred to use the best score rather than the score of the true network, because
the true network is rarely optimal; its score is even strongly penalized if its structure is dense and
data sets are small. Therefore, it is not convenient to use it as a reference in terms of score.

The second criterion is a measure of the complexity estimated by the execution time of each
algorithm, referred as Time. Of course, this is not the most reliable way to estimate complexity, but
since calculations are done on the same machine, and since measures are averaged on few similar
calculations, execution time should approximate correctly the complexity. To avoid bias of this
criterion, common routines are shared among algorithms (such as the score function, the structure
learning method and the hill climbing search).

Finally, since our aim is to learn a true network, we use a structural hamming distance that
compares the learned graph with the original one. As proposed in Tsamardinos et al. (2006), to take
into consideration equivalence classes, the CPDAGs of both original and learned DAGs are built
and compared. This defines the structural error ratio SER of a learned graph, which is the number
of extra, missing, and wrongly oriented edges divided by the total number of edges in the original
graph. In our case, we penalize wrongly oriented edges only by half, because we consider that errors
in the skeleton are more “grave” than those in edges orientation. The reason is not only visual: a
missing edge, or an extra edge, implies more mistakes in terms of conditional independencies in
general than wrongly oriented ones. Moreover, in CPDAGs, the fact that an edge is not correctly
oriented is often caused by extra or missing edges. Furthermore, such a modification does not
intrinsically change the results, since it benefits every algorithm on the same manner.

5.1.3 HILL CLIMBING

Although hill climbing searches are used by different algorithms, we implemented only one search
that is used in all cases. This search can consider a structural constraint S, and is given a graph Ginit

from which to start the search. Then it processes as summarized in Section 2.2, selecting at each step
the best transformation among all edge withdrawals, edge reversals and edge additions according
to the structure constraint. The search stops as soons as the score cannot be strictly improved
anymore. If several transformations involve the same increase of the score, the first transformation
encountered is applyed. This implies that the results will depend on the ordering of the variables;
however, since the graphs considered are randomly generated, their topological ordering is also
random, and in average the results found by our search should not be biased.

5.1.4 RECALL ON MMPC

In Section 5.3 a true super-structure is given as a prior knowledge; otherwise we should use an IT-
approach to approximate the structural constraint S from data. Since MMHC algorithm is included
in our experiments, we decided to illustrate our idea of relaxed independency testing on MMPC
strategy (Tsamardinos et al., 2006).

In MMPC, the following independency test is used to infer independencies among variables.
Given two variables Xi and X j, it is possible to measure if they are independent conditioning on a
subsets of variables A ⊆ X\{Xi,X j} by using the G2 statistic (Spirtes et al., 2000), under the null
hypothesis of conditional independency holding. Referring by Nabc to the number of times that

2270

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

Xi = a, X j = b and A = c simultaneously in the data, G2 is defined by:

G2 = 2 ∑
a,b,c

Nabc ln

(

NabcNc

NacNbc

)

.

The G2 statistic is asymptotically distributed as χ2 under the null hypothesis. The χ2 test returns
a p-value, PIT (Xi,X j|A), that corresponds to the probability of falsely rejecting the null hypothesis
given it is true; in MMPC, the effective number of parameters defined in Steck and Jaakkola (2002)
is used as degree of freedom. Thus given a significance level α, if PIT ≤α null hypothesis is rejected,
that is, Xi and X j are considered as conditionally dependent. Otherwise, the hypothesis is accepted
(abusing somehow of the meaning of the test), and variables are declared conditionally independent.
The main idea of MMPC is: given a conditioning set A, instead of considering only PIT (Xi,X j|A) to
decide dependency, it is more robust to consider max

B⊆A
PIT (Xi,X j|B); that way, the decision is based

on more tests; p-values already computed are cached and reused to calculate this maximal p-value.
Finally, MMPC build the neighborhood of each variable Xi (called the set of parents and children, or
PC) by adding successively potential neighbors of Xi from a temporary set T. While conditioning
on the actual neighborhood PC, the variable Xk ∈ T that minimizes the maximal p-value defined
before is selected because it is the variable the most related to Xi. During this phase, every variable
that appears independent of Xi is not considered anymore and withdrawn from T. Then when Xk is
added to PC, we test if all neighbors are always conditionally dependent: if some are not, they are
withdrawn from PC and not considered anymore. This process ends when T becomes empty.

We present further the details of our implementation of MMPC, referred as Method 2; it is
slightly different from the original presentation of MMPC, but the main steps of the algorithm are
the same. One can prove by using Theorem 1 that if the independencies are correctly estimated, this
Method should return the true skeleton, which should be the case in the sample limit. About compu-
tational complexity, one can derive that MMPC should calculate around O(n22m) tests in average.
However, nothing can be said in practice about the maximal size of PC, especially if many false
dependencies occurs. Therefore, the time complexity of MMPC can be in the worst case O(n22n).

Method 2 (MMPC). (Tsamardinos et al., 2006)
1: For ∀Xi ∈ X
2: Initialize PC = /0 and T = X\{Xi}
3: While T 6= /0
4: For ∀X j ∈ T, if max

B⊆PC
PIT (Xi,X j|B) > α then T = T\{X j}

5: Define Xk = min
X j∈T

max
B⊆PC

PIT (Xi,X j|B) and PC = PC∪{Xk}
6: For ∀X j ∈ PC\{Xk}, if max

B⊆PC\{X j}
PIT (Xi,X j|B) > α Then PC = PC\{X j}

7: N(Xi) = PC

8: For ∀Xi ∈ X and ∀X j ∈ N(Xi)
9: If Xi 6∈ N(X j) Then N(Xi) = N(Xi)\{X j}

5.2 Learning a Super-structure with MMPC

To emphasize the feasibility of learning a super-structure from data, we study how changes the
skeleton learned by MMPC while α increases, considering various cases of (n, m̃,d). As proposed

2271

PERRIER

0
.0

0
.4

0
.8

1
.2

(a)

α

R
a
ti
o

 Error − M issing

d=10000

d=5000

d=500

d=10000

d=5000

d=500

0 1e−10 1e−7 1e−4 0.01 0.05 0.1 0.25 0.5

0
5

1
5

2
5

(b)

α

T
im

e
 (
s)

Tim e

d=10000

d=5000

d=500

0 1e−10 1e−7 1e−4 0.01 0.05 0.1 0.25 0.5

Error and M issing Ratio depending on α (n = 50, m = 2.5)~ Tim e of M M PC depending on α (n = 50, m = 2.5)~

Figure 6: Effects of d and α on the results of Method 2.

before, we average our criteria of interest over g = 50 different graphs for every set of parameters.
In the present case our criteria are: the time of execution Time, the ratio of wrong edges (missing
and extra) Error, and the ratio of missing edges Miss of the learned skeleton. Here again, these
ratios are defined while comparing to the true skeleton and dividing by its total number of edges
b nm̃

2 c. While learning a skeleton, Error should be minimized; however in the case of learning a
super-structure, Miss is the criterion to minimize.
Results 3 limα→1 Miss(α) = 0, which validates our proposition of using higher α to learn super-
structures (cf. Figure 6(a)). Of course, we obtain the same results with increasing data,
limd→∞ Miss(α) = 0. However, since when α → 1, Time(α) ≈ O(n22n−2), high values of α can be
practically infeasible (cf. Figure 6(b)). Therefore, to escape a time-consuming structure-learning
phase, α should be kept under 0.25 if using MMPC.

In Figure 6(a), one can also notice that Error is minimized for α ≈ 0.01, that is why such values
are used while learning a skeleton. Next, we summarize the effect of n and m̃ on the criteria:

Results 4 Increasing α improves uniformly the ration of missing edges independently of n and m̃
(cf. Figure 7(c) and (d)). Miss(α) is not strongly affected by increasing n but it is by increasing m̃;
thus for dense graphs, the super-structures approximated by MMPC will probably not be sound.

Previous statement could be explained by the fact that when m̃ increases, the size of conditional
probability tables of each node increases enormously. Thus, the probability of creating weak or
nearly unfaithful dependencies between a node and some of its parents also increases. Therefore,
the proportion of edges that are difficult to learn increases as well. To complete analysis of Figure 7,
we can notice as expected that Time increases on a polynomial manner with n (cf. Figure 7 (e)),
which penalizes especially the usage of high α. Error(α) is minimized in general for α = 0.01 or
α = 0.05 depending on n and m̃: for a given m̃, lower α (such as α = 0.01) are better choices when
n increases (cf. Figure 7(a)); conversely, if m̃ increases for a fixed n, higher α (such as α = 0.05)
are favored (Figure 7(b)). This can be justified, since if m̃ is relatively high, higher α that are more
permissive in terms of dependencies will miss less edges, as opposed to lower ones with finite set
of data.

In conclusion, although α ≈ 0.01 is preferable while learning a skeleton with MMPC, higher
significance leves can be used to reduce the number of missing edges, and approximate a super-
structure. Still, in this case, due to the exponential time complexity of MMPC if α is too high,

2272

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

10 20 30 40 50 60

0
.1
0

0
.1
5

0
.2
0

0
.2
5

0
.3
0

0
.3
5

0
.4
0

(a)
E
rr
o
r
R
a
ti
o

10 20 30 40 50 60

0
.1
0

0
.1
5

0
.2
0

(c)

n

M
is
si
n
g
 R
a
ti
o

10 20 30 40 50 60

0
5

1
0

1
5

(e)

T
im

e
(s
)

1.5 2.0 2.5 3.0 3.5

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

(b)

E
rr
o
r
R
a
ti
o

α

0.001
0.01

0.05
0.25

0
.1
0

0
.1
5

0
.2
0

0
.2
5

(d)

m~

M
is
si
n
g
 R
a
ti
o

2
4

6
8

1
0

1
2

1
4

1
6

(f)

T
im

e
(s
)

n n

m~ m~
1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5

Error Ratio of M M PC depending on n

(m = 2.5, d = 10000)
~

Error Ratio of M M PC depending on m

(n = 50, d = 10000)

~

M issing Ratio of M M PC depending on n Time of M M PC depending on n

M issing Ratio of M M PC depending on m
~

Time of M M PC depending on m ~

Figure 7: The criteria depending on m̃ and n, for α in [0.001,0.01,0.05,0.25].

5 10 15 20

0
4
0
0

8
0
0

1
2
0
0

(a)

n

T
im

e
(O
S
)
/
T
im

e
(T
C
O
S
)

m~

1

1.5

2

2.5

3

6 8 10 12 14 16 18 20

0
5
0

1
0
0

2
0
0

(b)

n

T
im

e
(s
)

CO S(0.95)

O S

O S*

Speed Ratio Time(O S)/Time(TCO S) Time of O S, O S* and CO S(0.95) (m = 2.5, d = 10000)~

Figure 8: Comparing time complexity of OS, TCOS, and COS(α)

values of α should be selected to compromise between time complexity and ratio of missing edges.
Except for n < 30 with m̃ < 2.5 where α = 0.25 is feasible and gives good results, the learned
super-structure will be probably incomplete, especially if the original graph is dense: consequently,
COS will not perform as well as OS when S is approximated with MMPC.

2273

PERRIER

5.3 Comparison of OS and COS

In this second series of experiment, we compare Algorithm 1 and Algorithm 2 over a large sampling
of graphs, for confirming and evaluating results presented in Table 1. Algorithm 1, referred as OS,
is always given the true maximal number of parents c for each structure learning: this way, its
execution time is considerably reduced, and we could conduct our experiments in a reasonable
time. Still, to emphasize that this prior knowledge is considerably improving the speed of OS, we
also considered another version of Algorithm 1 that uses in all cases a standard maximal number
of parents equal to 10: it is referred as OS*. Regarding Algorithm 2, two cases are took into
consideration:

• TCOS: a sound super-structure is given to the algorithm; we use the true skeleton.

• COS(α): S is learned from the data by using MMPC and a significance level α: a wide range
of values are tested.

However, we know from previous section that MMPC will probably learn an incomplete super-
structure, and that GCOS(α) will be penalized both in its score and accuracy. Therefore, we check
the effect of applying a post-processing unconstrained hill climbing search starting from GCOS(α).
In fact, GCOS(α) might not be a local optimum if the super-structure constraint is removed; fur-
ther, it could be a good starting point for a hill climbing search. The post processed version of
COS is referred as COS+. Finally we compare all those algorithms for every n ∈ [6,8, · · · ,20],
m̃ ∈ [1,1.5, · · · ,3], d ∈ [500,1000, · · · ,10000] while averaging the criteria of interest over g = 30
graphs: in total 4800 random graphs were used. Since there was no relevant differences depending
on d, only the results for d = 10000 are reported here.

Results 5 As expected, TCOS and COS(α) proceed exponentially faster than OS, even with α ≈ 1
(cf. Figures 8 (a) and (b)).

Interestingly, the speed factor in Figure 8(a), is not purely exponential, especially for higher m̃.
This is because, the complexity of OS is due to the costly O(nc) score calculations (here c = O(m̃))
and the O(2n) steps (b) and (d) that dominate the complexity only for large n. As for TCOS, it only
calculates O(n) scores and needs around O(δn

m̃) steps. Thus, the speed factor starts by increasing fast

with n because of the O(nc) scores of OS, before decreasing to behave asymptotically as O(
(

2
δm̃

)n
).

In Figure 8(b), the complexity of OS* is also represented: without limitation on the number of
parents, the speed ratio would be purely exponential.

To evaluate the quality of the graphs learned depending on the algorithm used, for n = 12 and
m̃ = 2 we compare the SER and the score ratio of GCOS(α) and GCOS(α)+ depending on α with the
ones of GOS and GTCOS in Figure 9. Then in Figure 10, the criteria are represented depending on n
(with m̃ = 2.5), and on m̃ (with n = 16) for every algorithms: here, just three different values of α
are considered (0.001, 0.05 and 0.75).

Results 6 In average, GTCOS has a slightly lower score than GOS (cf. Figure 9 (b)), but it is more
accurate (cf. Figure 9 (c), Figures 10 (c) and (d)): it implies that global optima contain in general
extra edges. Hence, Algorithm 2 is preferable if a sound constraint is known.

This important result emphasizes again that the optima of a score function with finite data are
not the true networks usually: some false edges improve the score of a graph. Therefore, struc-

2274

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

−
6
8
6
0
0

−
6
8
4
0
0

−
6
8
2
0
0

(a)

α

B
IC

1e−101e−7 1e−4 0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95

S coreO S =−68049.6 S coreTC O S =−68049.9

CO S (α)+
CO S (α)

−
6
8
0
5
4

−
6
8
0
5
2

−
6
8
0
5
0

(b)

α

B
IC

1e−101e−7 1e−4 0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95

CO S (α)+
TCO S

O S

(c)

α

S
tr
u
ct
u
ra
l E
rr
o
r
R
a
ti
o

1e−101e−7 1e−4 0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95

0
.0
6
3

0
.1
5

0
.2

0
.2
5

 0
.3

0
.3
5

CO S (α)
CO S (α)+
TCO S

O S

Score of CO S and CO S+ depending on α (n = 12, m = 2)~
Score of CO S+ in detail (n = 12, m = 2)

~

Error Ratio of CO S and CO S+ depending on α (n = 12, m = 2)~

Figure 9: Score and SER for COS(α) and COS(α)+

tural constraint should be generalized whenever a sound super-structure is known: by doing so, the
resulting graphs although having a lower score can be more accurate. It is the case for TCOS.

Results 7 Although Score(GCOS(α)) converges to Score(GOS) when α increases (cf. Figure 9(a)), it
is usually far lower, and worsen with larger networks or denser networks (cf. Figures 10 (a) and
(b)). However, SER(GCOS(α)) is converging faster to SER(GOS) when α increases, which enables
to find relatively accurate results for α ≥ 0.01 (cf. Figure 9(c)). In addition, n does not affect
sensitively SER(GCOS(α)) (cf. Figure 10 (c)), neither does m̃ if α is enough high, that is, α ≥ 0.05
(cf. Figure 10 (d)).

At first sight, these results sound really negative with regard to COS algorithm, or more exactly,
with regard to the super-structure learned by MMPC. However, although Score(GCOS(α)) is disap-
pointingly low, SER(GCOS(α)) is still relatively good: while SER(GOS)≈ 0.1, SER(GCOS)≈ 0.2 for
α as small as 0.01 in Figure 9 (c). Of course, following Results 6, we could think that for enough
high α, SER(GCOS(α)) ≤ SER(GOS), but it seems to be hardly feasible while using MMPC: in this
case, when IT are relaxed (i.e., α → 1), false edges that improve the score are learned faster than the
true ones missing. Still, as it appears in Figures 10 (c) and (d), for α = 0.75, COS finds graphs nearly
as accurate as the optimal ones. Therefore, when OS is not feasible, COS could be an alternative
to greedy searches (such situation is studied in following Sections). Interestingly, our assumption
about the potential interest of a hill climbing starting from GCOS(α) are encouraged since GCOS(α)

has a low score while being relatively accurate. Next, we focus on COS+.

2275

PERRIER

6 8 10 12 14 16 18 20

0
.9
9
0

0
.9
9
4

0
.9
9
8

(a)

Score Ratio depending on n (m = 2.5)
n

S
co
re
(O
S
)
/
S
co
re
(.
)

1.0 1.5 2.0 2.5 3.0

0
.9
8
8

0
.9
9
2

0
.9
9
6

1
.0
0
0

(b)

m
~

S
co
re
(O
S
)
/
S
co
re
(.
)

TCO S

CO S(0.001)

CO S(0.05)

CO S(0.75)

CO S(0.001)+

CO S(0.05)+

CO S(0.75)+

6 8 10 12 14 16 18 20

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

(c)

n

S
tr
u
ct
u
ra
l E
rr
o
r
R
a
ti
o

1.0 1.5 2.0 2.5 3.0
0
.0
5

0
.1
5

0
.2
5

(d)

m~

S
tr
u
ct
u
ra
l E
rr
o
r
R
a
ti
o

TCO S

CO S(0.001)

CO S(0.05)

CO S(0.75)

O S

CO S(0.001)+

CO S(0.05)+

CO S(0.75)+

~

Error Ratio depending on n (m = 2.5) ~

Score Ratio depending on m (n = 16) ~

Error Ratio depending on m (n = 16) ~

Figure 10: Evolution of Score and SER for every algorithm depending on n and m̃.

Results 8 For any α, after post-processing Score(GCOS(α)+) is nearly as good as Score(GOS) (cf.
Figure 9 (a), Figures 10 (a) and (b)). GCOS(α)+ is in general more accurate than GCOS(α) (cf. Figures
10 (c) and (d)), but it is not always the case. Still, SER is clearly improved for α < 0.01 (cf. Figure 9
(c)): COS+ could be feasible on larger networks while giving interesting results if sufficiently small
α are used.

As expected, GCOS(α) is not a local optima, and is at least a good starting point to maximize the
score. Figure 9 (b) presents a detailed view of Score(GCOS(α)+): with post processing, we cannot
be sure that Score(GCOS(α)+) increases strictly with α because of the greedy nature of hill climbing.
For the same reasons, previous results concerning the SER are true only in average. To complete
Results 8, we should remark that post-processing also appears to improve SER for dense graphs
(cf. Figure 10 (d)). This is probably due to the fact that MMPC misses many true edges when the
structure is dense: the greedy search would add more true edges missing than false ones, improving
consequently the SER.

To summarize this section, TCOS is superior to OS in terms of structure accuracy, while per-
forming faster. However, when S is learned from data, COS cannot perform as well as OS. One
efficient strategy to improve both score and accuracy of GCOS is to proceed to a post-processing un-
constrained hill climbing search. With such an improvement, both score and accuracy of GCOS(α)+

become similar for any α used, despite a relative superiority for higher significance levels. Con-
sequently, it would be interesting to compare COS and COS+ to greedy searches, to see if they
enable to learn efficiently more accurate graphs than other methods, while being given incomplete
super-structures.

2276

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

6 8 10 12 14 16 18 20

0
.9
9
2

0
.9
9
4

0
.9
9
6

0
.9
9
8

1
.0
0
0

(a)

n

S
co
re
(O
S
)
/
S
co
re
(.
)

CO S(0.05)

CO S(0.05)+

M M H C

M M H C+

H C

6 8 10 12 14 16 18 20

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

0
.3
0

0
.3
5

(c)

n

S
tr
u
ct
u
ra
l E
rr
o
r
R
a
ti
o

O S

CO S(0.05)

CO S(0.05)+

M M H C

M M H C+

H C

6 8 10 12 14 16 18 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

(e)

n

T
im

e
(s
)

CO S(0.05)

CO S(0.05)+

M M H C

M M H C+

H C

1.5 2.0 2.5 3.0

0
.9
8
8

0
.9
9
2

0
.9
9
6

1
.0
0
0

(b)

m~

S
co
re
(O
S
)
/
S
co
re
(.
)

1.5 2.0 2.5 3.0

0
.1
5

0
.2
0

0
.2
5

0
.3
0

0
.3
5

(d)

m~

S
tr
u
ct
u
ra
l E
rr
o
r
R
a
ti
o

1.5 2.0 2.5 3.0

0
.2

0
.4

0
.6

0
.8

1
.0

(f)

m~

T
im

e
(s
)

Score Ratio depending on n (m = 2.5)~

Score Ratio depending on m (n = 14)~

Error Ratio depending on n (m = 2.5) Time depending on n (m = 2.5)~ ~

Error Ratio depending on m (n = 14) Time depending on m (n = 14)~ ~

Figure 11: Score, SER and time of every algorithm depending on n and m̃.

5.4 COS and COS+ Compared to Heuristic Searches

In this last series of experiment, we compare COS and COS+ to other greedy searches. The
structural constraint is learned with MMPC and α = 0.05, it is used by COS and also by a con-
strained hill climbing search (MMHC). Like COS+, GMMHC is used to start an unconstrained hill
climbing (MMHC+). Finally, a classic hill climbing search from the empty graph is also consid-
ered (HC). Actually, OS is also performed, but it is not directly referred in this section. Every
n ∈ [6,10,14,18,20], m̃ ∈ [1,1.5,2,2.5,3], d ∈ [500,1000,5000,10000] are considered and criteria
are averaged over g = 30 graphs: in total 3000 graphs are used.

Figure 11 presents the three criteria in function of n and m̃; here d = 5000. Synoptic results
are presented in Figures 12 and 13, and summarized in Tables 3 and 4. To obtain these tables,
we ordered algorithms by score for all the 100 triplets (n, m̃,d) (the scores after averaging over
the g graphs were used). Subsequently, we counted the number of times each algorithm was at
a given rank: If two algorithms had equal results, they were given the same rank (cf. Table 3).
We then performed a similar ranking by comparing SER; the first ranked algorithm being the one
that minimized SER (cf. Table 4). In Figures 12 and 13 ranks are represented by colors and all
algorithms can be directly compared for every triplet (n, m̃,d). However, while considering the
impact of these results, one should take the fact that criteria are compared after averaging into
account since it accentuates the contrast between algorithms.
Results 9 In general, Score(GCOS+) ≥ Score(GMMHC+) ≥ Score(GHC) ≥ Score(GCOS) ≥
Score(GMMHC) (cf. Figures 11 (a), (b), 12 and Table 3). In other words, the super-structure penal-
izes the score in comparison with HC; however, starting a greedy search from a constrained optimal
graph enables to find better scores than HC.

Many of these inequalities are naturally following the definition of the algorithms; another part
comes from the fact that S is incomplete and penalizes the score of the results. Moreover, our

2277

PERRIER

Algorithm 1st 2nd 3rd 4th 5th

COS+ 84 8 8 0 0
MMHC+ 12 70 18 0 0

HC 7 28 65 0 0
COS 0 1 8 91 0

MMHC 0 0 1 8 91

Table 3: Classification by score.

Algorithm 1st 2nd 3rd 4th 5th

COS+ 85 9 6 0 0
COS 14 52 22 12 0

MMHC+ 6 29 28 35 2
MMHC 0 12 34 31 23

HC 1 2 17 24 56

Table 4: Classification by SER.

experiments confirm that in nearly every case Score(GCOS+) > Score(GMMHC+) > Score(GHC); A
reason could be that both constrained algorithms find good constrained optima, which are not locally
optimal when withdrawing the constraint. Then, since GCOS is better than GMMHC, it leads to better
local optima when applying the HC post-processing.
Results 10 In general, SER(GCOS+)≤ SER(GCOS)≤ SER(GMMHC+)≤ SER(GMMHC)≤ SER(GHC)
(cf. Figures 11 (c), (d), 13 and Table 4). The superiority of COS and COS+ is particularly clear
with larger data sets (cf. Figure 13).

Previous results are experimentally more confused than Results 9 since there are no theoretical
evidences about SER while comparing algorithms, especially as regards to MMHC+ and MMHC.
However, COS+ is clearly demonstrated to be in general the most accurate search. Interestingly,
COS+ can be viewed as a bridge between OS (when α = 1) and HC (when α = 0). Of course, as
long as OS is feasible, and without a sound constraint, COS+ is not really needed. However, it is
of a certain interest for n > 30. Its superiority as compared to HC comes from the fact that some
parent sets are optimally learned by COS even with the constraint. Such parent sets could not be
learned by the greedy strategy of HC in any cases: as for example in the case of a XOR structure
or any configurations for which HC should add several parents in the same time to obtain a score
improvement. That way, a HC starting from GCOS would benefit from such correct parent sets and
find more accurate graphs than a HC starting from the empty graph.

Although for the small networks considered here (n ≤ 20) our algorithms are as fast as other
greedy approaches (cf. Figures 11 (e) and (f)), of course their exponential complexity keeps us
from applying them to really large networks without decreasing α. Therefore, COS is restricted to
be used only for small networks or sparse ones (Figure 5 (d) gives an idea of what kind of graphs
can be considered). COS+ could be used for larger graphs by using lower α as we will see in the
next experiment.

5.5 A Real Case: The ALARM Network

In this last experiment, we illustrate a practical usage of COS and COS+ by studying a well-known
Bayesian network example, the ALARM network (Beinlich et al., 1989). This graph has n = 37
discrete variables having from 2 to 4 states: it is too large to be learned by OS. The maximal in-
degree is c = 4, the maximal neighborhood is m = 6, and the structure is relatively dense since
m̃ ≈ 2.5. Incidentally, the true skeleton entails 86818458 ≈ 226 connected subsets: if it was given
as a prior knowledge, Algorithm 2 could be applied. However, as in previous experiments, S is
learned by using MMPC. Nevertheless, α should be enough small so that the super-structure is
sparse enough to let execute COS.

2278

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

d ~ ��� �
n
m

+ HC COS
3

� � �
21

6

10

14

18

20

500

1000

5000

10000

Figure 12: Comparison by score: for every (n, m̃,d), the worse is the rank of an algorithm
(i.e., the lower is the score), the darker is the box.

d ~ ��� �
n
m

HCCOS
3

� � �
21

6

10

14

18

20

	�
�

�
�
�

	�
�
�

�
�
�

0

Figure 13: Comparison by SER: for every (n, m̃,d), the worse is the rank of an algorithm
(i.e., the higher is the SER), the darker is the box.

2279

PERRIER

COS COS+ MMHC MMHC+ HC
d = 3000 BIC -33340.5 -32849.5 -33492 -33116.1 -33299.3
α = 10−4 SER 0.15 0.12 0.29 0.38 0.45

t = 24 Time(s) 4.6 7.1 3.6 6.0 5.0

d = 3000 BIC -33680.8 -32821.4 -33653.2 -33133.2 -33349.9
α = 10−7 SER 0.17 0.10 0.29 0.39 0.47

t = 4 Time(s) 3.5 6.0 2.7 5.3 5.1

d = 10000 BIC -107834 -106246 -108035 -106808 -107383
α = 10−7 SER 0.13 0.08 0.26 0.37 0.51
t = 270 Time(s) 10.5 19.2 14.7 23.4 18.8

d = 10000 BIC -108753 -106468 -108420 -107066 -107571
α = 10−10 SER 0.15 0.10 0.25 0.35 0.49

t = 72 Time(s) 9.1 17.7 12.8 21.4 18.0

Table 5: Averaged criteria for some pairs (d,α) considered.

We consider the same algorithms than in Section 5.4, apart from OS. The significance level used
to learn the skeleton of MMHC is always set to 0.01, while various small values of α are tested when
learning the super-structure used by COS. For every d ∈ [3000,5000,10000], we start by learning S
with MMPC(α) to run COS afterwards. Since, the execution time of COS can be huge depending
on S, COS is stopped if its execution exceeds 20 seconds (on a cluster of 96 CPUs of 1050 MHz
each, with a total memory of 288GB). In that case, the experience is restarted on a new set of data.
If COS finishes on time, all other algorithms are also applied. Previous steps are repeated 20 times
for every pair (d,α). We also count the number t of times that COS had to be restarted. Finally, the
criteria are averaged over the 20 learned graphs as in the previous Sections.

In all cases results were sensibly the same: Table 5 presents the results obtained with the min-
imal and maximal values of d and α considered. With larger data sets, smaller significant levels
are required in order to obtain an enough sparse S since true edges are learned more confidently.
This is why, we can observe that t decreases with smaller α and increases with larger d (cf. Table
5). Therefore, for d = 10000 we tried values of α ∈ [10−7, · · · ,10−10], while for other data sets
α ∈ [10−4, · · · ,10−7]. In Figures 14 (a) and (b), box plot is used to layout the SER and score of
every algorithm over the 20 repetitions of structure learning for d = 5000 and α = 10−7. Figures 14
(c) and (d) represent the SER of COS and COS+ depending on d and α, respectively.

Results 11 COS+ is the best algorithm in terms of score, followed by MMHC+ (cf. Table 4 and
Figure 14 (a)), while COS+ and COS learn the most accurate networks (cf. Table 4 and Figure
14 (b)). Accuracy of these algorithms is not markedly modified by smaller α (cf. Figure (d)) and
slightly improves with bigger data sets (cf. Figure 14 (c)).

In other words, the present results are in total agreement with the ones derived from smaller and
random networks in the previous section. Actually, with ALARM network the contrast between
algorithms is even clearer. This is probably because random networks are harder to learn than real
ones since the parameters randomly selected can entail nearly unfaithful probability distributions.
Interestingly, even with the smallest α used (i.e., α = 10−10 in the case of d = 10000), only around

2280

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

COS COS+ MMHC MMHC+ HC

−
5
7
0
0
0

−
5
6
0
0
0

−
5
5
0
0
0

−
5
4
0
0
0

(a)

B
IC

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

(b)

S
E
R

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

(c)

S
E
R

COS COS+

3000 5000 10000
0
.1
0

0
.1
5

0
.2
0

0
.2
5

(d)

α

S
E
R

10
−4

10
−5

10
−6

10
−7

COS COS+ MMHC MMHC+ HC

Score for d = 5000 and α = 10
-7

SER for d = 5000 and α = 10
-7

SER depending on d (α = 10)
-7

SER depending on α (d = 5000)

Figure 14: Some detailed results on ALARM network.

6 edges were missing to S in order to be sound. Besides, although COS ran in few seconds for some
S, one extra edge in the same super-structure could lead to drastically longer computations. Such
a problem is easily understood in terms of the number of connected subsets and underline the fact
that some edges contribute particularly to the increase of |Con(S)|. Therefore it could be interesting
to develop a method to select and withdraw some edges from a learned super-structure, to enable
COS+ for larger networks: this way, extremely small α would not be required anymore.

6. Discussion and Conclusion

To conclude our discussion, we would like to recall and summarize the main results of our actual
research. First, it is possible to reduce the complexity of an optimal search of an exponential factor
by using a structural constraint such as a super-structure. It is then possible to consider larger
networks having a sparse skeleton. Moreover, if this super-structure is sound, the accuracy of the
resulting graph is improved. Consequently, more attention should be paid to learning sound super-
structures rather than true skeleton from data. This should be an easier task and it might improve
both speed and accuracy of other search strategies as well, except greedy HC. Next, we outline
bellow some strategies that could benefit from a sound super-structure.

In addition, current IT methods that learn a skeleton can be used for approximating a super-
structure by relaxing the independency testing. However, as revealed our experiments with MMPC,
sound super-structures are rarely learned except for high values of α that implies denser structures
and especially a long computation. Although some other IT approaches, such as the randomized
version of GS (Margaritis and Thrun, 2000), could solve the problem of complexity, they would
probably face the same difficulty to learn efficiently at least every true edge. Indeed, they were de-

2281

PERRIER

signed from the viewpoint of learning the true skeleton, and thereby they should also reject potential
extra edges. Learning sound and sparse super-structures is a problem that requires to be considered
as a whole, which is not our main concern in the present paper. Therefore, to offset the incomplete-
ness of the super-structures learned with MMPC that weakens the results of our algorithm COS, we
developed a greedy post processed search COS+. This algorithm enables to balance between speed
and accuracy as it sets up a bridge between optimal search and hill climbing search. In practice,
COS+ is demonstrated with success on the ALARM network. It is theoretically feasible for graphs
of any sizes but leads to a problem for selecting the significance level; further, we expect that the
larger is the graph, the less COS+ should improve over HC.

Therefore, our future research will concentrate on an elaboration of new greedy strategies that
benefit from super-structure constraint. As shown in Section 4.2, if S is not having a very high
maximal degree (i.e., m < 20), F can be calculated even for large networks. Then, by using formula
(3) of Section 3.2 we can build in linear time the best constrained graph of a given ordering. This
way a fast greedy search over topological orderings is efficiently feasible. With a good set of greedy
operations, a constrained optimal graph could be quickly approached using a hill climbing over
orderings, without having to calculate M values. Moreover, even for higher m, by fixing a limited
number of parents c, we could also manage to calculate F . Consequently, such ordering-based
strategy is theoretically feasible for any network size and only need to be evaluated experimentally.

Our second idea concerns only constrained optimal searches. When looking for an optimal
graph on A∈Con(S), if there exists Xi ∈A such that A\{Xi} is unconnected, an optimal graph can be
found on another manner. We just need to consider every candidate parent set on the neighborhood
of Xi, and search for each of them separately an optimal graph on each connected component of
A\{Xi}. Thus, if S is a tree, it would be feasible to find an optimal graph in polynomial time with
this different strategy. Then, we could develop an algorithm that would change S into a tree, learn
an optimal graph that would be post-processed greedily to add missing edges.

Besides, as illustrated in Section 4.4, COS can be used for large graphs, if S is sufficiently
sparse. Alternatively, when learning a super-structure, a “score” could be given to every edge that
would evaluate the “strength” of the dependency represented. For example, the highest p-value
encountered while learning the super-structure with an IT approach could be used. Thus, COS could
be used sequentially: the subset of the strongest edges would be considered first, while learning a
temporary optimal graph that would be used as a prior knowledge for a second search, this time
optimally “adding” a second set of edges. Therefore, by considering successively all the edges of
S by a sufficient number of sparse layers, we might be able to approximate accurately an optimal
graph. This strategy is potentially interesting since it always assumes the graph as a whole, although
the layer of edges should be mainly unconnected to allow COS to be applied to large networks.
However, other strategies such as rebuilding optimally the structure locally before merging results
could also be developed.

Finally if any of these algorithms were giving convincing empirical proofs of their capacities
to learn accurately large networks, we also would like to design strategies for learning sparse and
sound super-structures.

2282

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

Acknowledgments

We would like to thank the reviewers and the associate editor who helped us considerably to im-
prove the quality of this paper, and gave us many valuable suggestions. We should also thank
the Super Computer System, Human Genome Center, Institute of Medical Science, University of
Tokyo, for letting us use their super computer with which we realized our experiments. We also
acknowledge the Japanese Ministry of Education, Culture, Sports, Science and Technology for its
financial support.

Appendix A.

Proof of Proposition 1. The complete proof we found is long, complex, and not of the greatest
theoretical interest. Hence we will only present the main steps of the demonstration here without
explicitly developing every step.

• We start by considering any binary tree, which can be generated by successively applying
the following operation to the tree reduced to one leaf: Select a leaf, and change it to a
node with two leaves. Then, for the set of trees that have been generated by applying this
transformation t times, we define U(t) as the maximum number of sub-trees in these trees,
and V (t) as the maximum number of sub-trees that include a given leaf. Given such a tree
T , we apply the transformation to a leaf Li. This generates a node N ′

i and two leaves L′
i1

and L′
i2, where the prime indicates that we refer to the elements of the newly generated tree

T ′. By calling Sub(L) the set of sub-trees that contain L, we have: since |Sub(Li)| ≤ V (t),
|Sub(L′

i1)| ≤ 1+2V (t). If Li had a brother L j, we can show that |Sub(L′
j)| ≤ 5

2V (t) since only
half the sub-trees of Sub(L j) contain Li. Then, for leaves Lk at agreater distance from Li than
L j, since the proportion of sub-trees of Sub(Lk) that also contain Li is decreasing, Sub(L′

k) is
less increased. Thus, we can conclude that V (t +1) <

5
2V (t), and that V (t) <U(t) < O((5

2)t).

Finally, since n = 2t −1, we derive that |Con(S)| < O(α3
n) with α3 =

√

5
2 .

• Hereafter, we can apply the same reasoning to any k-tree, and find that |Con(S)| < O(αk+1
n)

with αk+1 = (2k+1
2)

1
k .

• Then, start the fastidious part of the demonstration by considering a connected forest S of
maximal degree m. The idea of the demonstration is to first show that when we consider two
nodes of the tree, we can transfer from one node to the other every sub-rooted trees while
only increasing the number of connected subsets (actually it is possible to express exactly the
variation in the number of connected subsets depending on the unique path between the two
nodes and sub-rooted trees of the nodes in this path). Then, by selecting one of the nodes of
degree m from S, and fixing it as the root R0, we can sequentially build a nearly m-1-tree S′,
except for the root, and maybe for one node Ri, while increasing the number of connected
subsets. We do this by considering depth by depth descendants of R0 and transferring sub-
rooted trees from one to the other until all of them at a given depth have m−1 or 0 children,
taking sub-rooted trees deeper if necessary. Then, if the sons of Ri are not all leaves, we can
continue to apply transformations between it and its descendants until obtaining a nearly m-
1-tree S” except for its root, and one of its nodes that contain only p leaves. Since p ≤ m−1,
we add m− p leaves to this node, and we select as the root of this final tree S f one of the

2283

PERRIER

leaves; S f is like a m-1-tree except for the root that has only one son. In such a case, we can
use the results found for such structures, neither the root will sensitively affect the number
of connected subsets, nor the nodes that we added at the end; because they can be put in the
constant of O(αm

n), which is an upper bound since we built S f always taking care to increase
the number of connected subsets.

References

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19:716–723, 1974.

I. A. Beinlich, H. Suermondt, R. Chavez, G. Cooper, and et al. The alarm monitoring system: A
case study with two probabilistic inference techniques for belief networks. In Second European
Conference in Artificial Intelligence in Medicine, 1989.

A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. The travelling salesman problem in bounded
degree graphs. In Proceedings of the 35th International Colloquium on Automata, Languages
and Programming, 2008.

R. Bouckaert. Bayesian Belief Networks from Construction to Inference. PhD thesis, University of
Utrecht, 1995.

J. Cheng, R. Greiner, J. Kelly, D.A. Bell, and W. Liu. Learning Bayesian networks from data: an
information-theory based approach. Artificial Intelligence, 137:43–90, 2002.

D. Chickering. Learning Bayesian networks is NP-complete. Learning from Data: Artificial Intel-
ligence and Statistics V, pages 121–130, 1996.

D.M. Chickering. A transformational characterization of equivalent Bayesian network structures.
In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 87–98.
Morgan Kaufman, 1995.

D.M. Chickering. Learning equivalence classes of Bayesian-network structures. Journal of Machine
Learning Research, pages 445–498, 2002b.

D.M. Chickering, D. Geiger, and D. Heckerman. Learning Bayesian networks: Search methods and
experimental results. In Fifth International Workshop on Artificial Intelligence and Statistics,
pages 112–128, 1995.

G.F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from
data. Machine Learning, 9(4):309–347, 1992.

R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter. Probabilistic Networks and Expert
Systems. Springer, 1999.

N. Friedman, I. Nachman, and D. Pe’er. Learning Bayesian network structure from massive datasets:
The “sparse candidate” algorithm. In Fifteenth Conference on Uncertainty in Artificial Intelli-
gence, UAI-99, 1999.

2284

FINDING OPTIMAL BAYESIAN NETWORK GIVEN A SUPER-STRUCTURE

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze expression
data. Computational Biology, 7:601–620, 2000.

C.N. Glymour. The Mind’s Arrows: Bayes Nets & Graphical Causal Models in Psychology. MIT
Press, 2001.

C.N. Glymour and G.F. Cooper. Computation, Causation, and Discovery. AAAI Press / The MIT
Press, 1999.

D. Heckerman. A tutorial on learning with Bayesian networks. Technical report, Microsoft Re-
search, 1996.

D.E. Heckerman, D. Geiger, and D.M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20:197–243, 1995.

S. Imoto, T. Goto, and S. Miyano. Estimation of genetic networks and functional structures be-
tween genes by using Bayesian networks and nonparametric regression. Pacific Symposium on
Biocomputing, 7:175–186, 2002.

M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the PC-
algorithm. Journal of Machine Learning Research, 8:613–636, 2007.

M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks. Journal of
Machine Learning Research, 5:549–573, 2004.

D. Margaritis and S. Thrun. Bayesian network induction via local neighborhoods. In S.A. Solla, T.K.
Leen, and K.R. Müller, editors, Advances in Neural Information Processing Systems, volume 12,
pages 505–511. MIT Press, 2000.

C. Meek. Strong completeness and faithfulness in Bayesian networks. In Conference on Uncertainty
in Artificial Intelligence, pages 411–418, 1995.

A. Moore and W. Wong. Optimal reinsertion: A new search operator for accelerated and more
accurate Bayesian network structure learning. In Twentieth International Conference on Machine
Learning, ICML-2003, 2003.

R. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.

S. Ott and S. Miyano. Finding optimal gene networks using biological constraints. Genome Infor-
matics, 14:124–133, 2003.

S. Ott, S. Imoto, and S. Miyano. Finding optimal models for small gene networks. Pacific Sympo-
sium on Biocomputing, 9:557–567, 2004.

S. Ott, A. Hansen, S.Y. Kim, and S. Miyano. Superiority of network motifs over optimal networks
and an application to the revelation of gene network evolution. Bioinformatics, 21(2):227–238,
2005.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufman Publishers, San Mateo, CA, 1988.

2285

PERRIER

J. Rissanen. Modeling by shortest data description. Automatica, 14:465–671, 1978.

R. Robinson. Counting labelled acyclic digraphs. In New Directions in the Theory of Graphs, pages
239–273. Academic Press, 1973.

G. Schwartz. Estimating the dimension of a model. The Annals of Statistics, 6:461–464, 1978.

E. Segal, D. Pe’er, A. Regev, D. Koller, and N. Friedman. Learning module networks. Journal of
Machine Learning Research, 6:557–588, 2005.

T. Silander and P. Myllymäki. A simple approach for finding the globally optimal Bayesian network
structure. In Conference on Uncertainty in Artificial Intelligence, pages 445–452, 2006.

A.P. Singh and A.W. Moore. Finding optimal Bayesian networks by dynamic programming. Tech-
nical report, Carnegie Mellon University, 2005.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, second
edition, 2000.

H. Steck and T. Jaakkola. On the Dirichlet prior and Bayesian regularization. In Advances in Neural
Information Processing Systems, volume 15, 2002.

J. Suzuki. Learning Bayesian belief networks based on the MDL principle: an efficient algorithm
using branch and bound technique. IEICE Transactions on Information and Systems, 12, 1998.

M. Teyssier and D. Koller. Ordering-based search: a simple and effective algorithm for learning
Bayesian networks. In Proceedings of the 21th Annual Conference on Uncertainty in Artificial
Intelligence, 2005.

I. Tsamardinos, L.E. Brown, and C.F. Aliferi. The max-min hill-climbing Bayesian network struc-
ture learning algorithm. Machine Learning, 65:31–78, 2006.

2286

Journal of Machine Learning Research 9 (2008) 2287-2320 Submitted 9/07; Published 10/08

Randomized Online PCA Algorithms with Regret Bounds that are
Logarithmic in the Dimension∗

Manfred K. Warmuth MANFRED@CSE.UCSC.EDU

Dima Kuzmin DIMA@CSE.UCSC.EDU

Computer Science Department
University of California - Santa Cruz
Santa Cruz, CA, 95064

Editor: John Shawe-Taylor

Abstract
We design an online algorithm for Principal Component Analysis. In each trial the current instance
is centered and projected into a probabilistically chosen low dimensional subspace. The regret of
our online algorithm, that is, the total expected quadratic compression loss of the online algorithm
minus the total quadratic compression loss of the batch algorithm, is bounded by a term whose
dependence on the dimension of the instances is only logarithmic.

We first develop our methodology in the expert setting of online learning by giving an algorithm
for learning as well as the best subset of experts of a certain size. This algorithm is then lifted to
the matrix setting where the subsets of experts correspond to subspaces. The algorithm represents
the uncertainty over the best subspace as a density matrix whose eigenvalues are bounded. The
running time is O(n2) per trial, where n is the dimension of the instances.
Keywords: principal component analysis, online learning, density matrix, expert setting, quantum
Bayes rule

1. Introduction

In Principal Component Analysis (PCA) the n-dimensional data instances are projected into a k-
dimensional subspace (k < n) so that the total quadratic compression loss is minimized. After
centering the data, the problem is equivalent to finding the eigenvectors of the k largest eigenvalues
of the data covariance matrix. The variance along an eigendirection is always equal to the corre-
sponding eigenvalue and the subspace defined by the eigenvectors corresponding to the k largest
eigenvalues is the subspace that captures the largest total variance and this is equivalent to minimiz-
ing the total quadratic compression loss.

We develop a probabilistic online version of PCA: in each trial the algorithm chooses a center
mt−1 and a k-dimensional projection matrix Pt−1 based on some internal parameter (which summa-
rizes the information obtained from the previous t −1 trials); then an instance xt is received and the
algorithm incurs compression loss ‖(xt −mt−1)−Pt−1(xt −mt−1)‖2

2; finally, the internal parameters
are updated. The goal is to obtain online algorithms whose total compression loss in all trials is

close to the total compression loss min
m,P

T

∑
t=1

‖(xt −m)−P(xt −m)‖2
2 of the batch algorithm which can

choose its center and k-dimensional subspace in hindsight based on all T instances. Specifically,

∗. Supported by NSF grant IIS 0325363. A preliminary version of this paper appeared in Warmuth and Kuzmin (2006b).

c©2008 Manfred K. Warmuth and Dima Kuzmin.

WARMUTH AND KUZMIN

in this paper we obtain randomized online algorithms with bounded regret. Here we define regret
as the difference between the total expected compression loss of the randomized online algorithm
and the compression loss of the best mean and subspace of rank k chosen offline. In other words
the regret is essentially the expected additional compression loss incurred by the online algorithm
compared to normal batch PCA. The expectation is over the internal randomization of the algorithm.

We begin by developing our online PCA algorithm for the uncentered case, that is, all mt = 0 and

the compression loss of the offline comparator is simplified to min
P

T

∑
t=1

‖xt −Pxt‖2
2. In this simpler

case our algorithm is motivated by a related problem in the expert setting of online learning, where
our goal is to perform as well as the best size k subset of experts. The algorithm maintains a mixture
vector over the n experts. At the beginning of trial t the algorithm chooses a subset Pt−1 of k experts
based on the current mixture vector wt−1 that summarizes the previous t −1 trials. It then receives a
loss vector `t ∈ [0,1]n. Now the subset Pt−1 corresponds to the subspace onto which we “compress”
or “project” the data. The algorithm incurs no loss on the k components of Pt−1 and its compression
loss equals the sum of the remaining n− k components of the loss vector, that is, ∑i∈{1,...,n}−Pt−1 `t

i .
Finally it updates its mixture vector to wt .

The key insight is to maintain a mixture vector wt−1 as a parameter with the additional constraint
that wt−1

i ≤ 1
n−k . We will show that this “capped” mixture vector represents an implicit mixture

over all subsets of experts of size n − k, and given wt−1 we can efficiently sample a subset of
size n− k from the implicit mixture and choose Pt−1 as the complementary subset of size k. This
gives an online algorithm whose total loss over all trials is close to the smallest n− k components
of the total loss vector ∑T

t=1 `t . We will show how this algorithm generalizes to an online PCA
algorithm when the mixture vector wt−1 is replaced by a density matrix W t−1 whose eigenvalues are
capped by 1

n−k . Now the constrained density matrix W t−1 represents an implicit mixture of (n− k)-
dimensional subspaces. Again, we can efficiently sample from this mixture, and the complementary
k-dimensional subspace Pt−1 is used for projecting the current instance xt at trial t.

A simple way to construct an online algorithm is to run the offline or batch algorithm on all
data received so far and use the resulting hypothesis on the next data instance. This is called the
“Incremental Offline Algorithm” (Azoury and Warmuth, 2001). When the offline algorithm just
minimizes the loss on the past instances, then this algorithm is also called the “Follow the Leader
(FL) Algorithm” (Kalai and Vempala, 2005). For uncentered PCA we can easily construct a se-
quence of instances for which the total online compression loss of FL is n

n−k times larger than the
total compression loss of batch PCA. However, in this paper we have a more stringent goal. We
design randomized online algorithms whose total expected compression loss is at most one times
the compression loss of batch PCA plus an additional lower order term which we optimize. In other
words, we are seeking online algorithms with bounded regret. Our regret bounds are worst-case in
that they hold for arbitrary sequences of instances.

Simple online algorithms such as the Generalized Hebbian Algorithm (Sanger, 1989) have been
investigated previously that provably converge to the best offline solution. No worst-case regret
bounds have been proven for these algorithms. More recently, the online PCA problem was also
addressed in Crammer (2006). However, that paper does not fully capture the PCA problem because
the presented algorithm uses a full-rank matrix as its hypothesis in each trial, whereas we use a
probabilistically chosen projection matrix of the desired rank k. Furthermore, that paper proves
bounds on the filtering loss, which are typically easier to obtain, and it is not clear how the filtering
loss relates to the more standard regret bounds for the compression loss proven in this paper.

2288

ONLINE PCA

Our algorithm is unique in that we can prove a regret bound for it that is linear in the tar-
get dimension k of the subspace but logarithmic in the dimension of the instance space. The key
methodology is to use a density matrix as the parameter and employ the quantum relative entropy as
a regularizer and measure of progress. This was first done in Tsuda et al. (2005) for a generalization
of linear regression to the case when the parameter matrix is a density matrix. Our update of the
density matrix can be seen as a “soft” version of computing the top k eigenvectors and eigenvalues
of the covariance matrix. It involves matrix logarithms and exponentials which are seemingly more
complicated than the FL Algorithm which simply picks the top k directions. Actually, the most ex-
pensive step in both algorithms is to update the eigendecomposition of the covariance matrix after
each new instance, and this costs O(n2) time (see, e.g., Gu and Eisenstat, 1994).

The paper is organized as follows. We begin by introducing some basics about batch and online
PCA (Section 2) as well as the Hedge Algorithm from the expert setting of online learning (Section
3). We then develop a version of this algorithm that learns as well as the best subset of experts
of fixed size (Section 4). When lifted to the matrix setting, this algorithm does uncentered PCA
online (Section 5). Surprisingly, the regret bound for the matrix setting stays the same and this is
an example of a phenomenon that has been dubbed the “free matrix lunch” (Warmuth, 2007b). We
briefly discuss the merits of various alternate algorithms in sections 4.1 and 5.1.

Our online algorithm for centered online PCA is more involved since it has to learn the center
as well (Section 6). After motivating the updates to the parameters (Section 6.1) we generalize
our regret bound to the centered case (Section 6.2). We then briefly describe how to construct
batch PCA algorithms from our online algorithms via standard conversion techniques (Section 6.3).
Surprisingly, the bounds obtained this way are competitive with the best known batch PCA bounds.
Lower bounds are discussed in Section 7. A brief experimental evaluation is given in Section 8 and
we conclude with an overview of online algorithms for matrix parameters and discuss a number of
open problems (Section 9).

2. Setup of Batch PCA and Online PCA

Given a set (or batch) of instance vectors {x1, . . . ,xT}, the goal of batch PCA is to find a low-
dimensional approximation of this data that minimizes the quadratic compression loss. Specifically,
we want to find a center vector m ∈ R

n and a rank k projection matrix1 P such that the following
loss function is minimized:

comp(P,m) =
T

∑
t=1

‖(xt −m)−P(xt −m)‖2
2. (1)

Differentiating and solving for m gives us m∗ = x̄, where x̄ is the data mean. Substituting this optimal
center m∗ into loss (1) we obtain

comp(P) =
T

∑
t=1

‖(I −P)(xt − x̄)‖22 =
T

∑
t=1

(xt − x̄)>(I −P)2(xt − x̄)

= tr
(
(I −P)2

T

∑
t=1

(xt − x̄)(xt − x̄)>

︸ ︷︷ ︸
C

)
.

1. Projection matrices are symmetric matrices P with eigenvalues in {0,1}. Note that P2 = P.

2289

WARMUTH AND KUZMIN

The sum of outer products in the above trace is called the data covariance matrix C. Since I−P is a
projection matrix, (I −P)2 = I −P, and

comp(P) = tr((I −P︸︷︷︸
rank n−k

)C) = tr(C)− tr(P︸︷︷︸
rank k

C).

We call the above loss the compression loss of P or the loss of subspace I −P. We now give a
justification for this choice of terminology. Observe that tr(C) equals tr(CP)+ tr(C(I−P)), the sum
of the losses of the complementary subspaces. However, we project the data into subspace P and
the projected parts of the data are perfectly reconstructed. We charge the subspace P with the parts
that are missed, that is, tr((I −P)C), and therefore call this the compression loss of P.

We now show that tr(PC) is maximized (or tr((I − P)C) minimized) if P consists of the k
eigendirections of C with the largest eigenvalues. This proof might seem a digression, but ele-
ments of it will appear throughout the paper. By rewriting C in terms of its eigendecomposition,
that is, C = ∑n

i=1 γi cic>i , we can upper bound tr(PC) as follows:

tr(PC) =
n

∑
i=1

γi tr(P cic
>
i) =

n

∑
i=1

γi c>i Pci ≤ max
0≤δi≤1,∑i δi=k

n

∑
i=1

γi δi.

We can replace the scalars c>i Pci in the ending inequality by the constrained δi’s because of the
following facts:

c>i Pci ≤ 1, for 1 ≤ i ≤ n, and
n

∑
i=1

c>i Pci = tr(P
n

∑
i=1

cic
>
i

︸ ︷︷ ︸
I

) = tr(P) = k,

since the eigenvectors ci of C are an orthogonal set of n directions. A linear function is maximized
at one of the vertices of its polytope of feasible solutions. The vertices of this polytope defined by
the constraints 0 ≤ δi ≤ 1 and ∑i δi = k are those δ vectors with exactly k ones and n−k zeros. Thus
the vertices of the polytope correspond to sets of size k and

tr(PC) ≤ max
1≤i1<i2<...<ik≤n

k

∑
j=1

γi j .

Clearly the set that gives the maximum upper bound corresponds to the largest k eigenvalues of C
and tr(P∗C) equals the above upper bound when P∗ consists of the eigenvectors corresponding to
the set of k largest eigenvalues.

In the online setting, learning proceeds in trials. At trial t the algorithm chooses a center mt−1

and a rank k projection matrix Pt−1. It then receives an instance xt and incurs loss

‖(xt −mt−1)−Pt−1(xt −mt−1)‖2
2 = tr((I −Pt−1)(xt −mt−1)(xt −mt−1)>).

Note that this is the compression loss of the center mt−1 and subspace Pt−1 on the instance xt . Our
goal is to obtain an algorithm whose total online compression loss over the entire sequence of T
trials ∑T

t=1 tr((I−Pt−1)(xt −mt−1)(xt −mt−1)>) is close to the total compression loss (1) of the best
center m∗ and best rank k projection matrix P∗ chosen in hindsight by the batch algorithm.

2290

ONLINE PCA

3. Learning as Well as the Best Expert with the Hedge Algorithm

The following setup and algorithm will be the basis of this paper. The algorithm maintains a prob-
ability distribution wt−1 over n experts. At the beginning of trial t it chooses an expert probabilis-
tically according to the probability vector wt−1, that is, expert i is chosen with probability wt−1

i .
Then a loss vector `t ∈ [0,1]n is received, where `t

i specifies the loss of expert i incurred in trial t.
The expected loss of the algorithm will be wt−1 · `t , since the expert was chosen probabilistically.
At the end of the trial, the probability distribution is updated to wt using exponential update factors
(See Algorithm 1). This is essentially the Hedge Algorithm of Freund and Schapire (1997). In the

Algorithm 1 Hedge Algorithm

input: Initial n-dimensional probability vector w0

for t = 1 to T do
Draw an expert i with probability wt−1

i
Receive loss vector `t

Incur loss `t
i

and expected loss wt−1 · `t

wt
i =

wt−1
i exp(−η`t

i)

∑n
j=1 wt−1

j exp(−η`t
j)

end for

original version the algorithm proposes a distribution wt−1 at trial t and incurs loss wt−1 · `t (instead
of drawing an expert from wt−1 and incurring expected loss wt−1 · `t).

It is easy to prove the following bound on the total expected loss. Here d(u,w) denotes the
relative entropy between two probability vectors d(u,w) = ∑n

i=1 ui log ui
wi

and log is the natural log-
arithm.

Theorem 1 For an arbitrary sequence of loss vectors `1, . . . , `T ∈ [0,1]n, the total expected loss of
Algorithm 1 is bounded as follows:

T

∑
t=1

wt−1 · `t ≤ η∑T
t=1 u · `t +

(
d(u,w0)−d(u,wT)

)

1− exp(−η)
,

for any learning rate η > 0 and comparison vector u in the n dimensional probability simplex.

Proof The update for wt in Algorithm 1 is essentially the update of the Continuous Weighted
Majority Algorithm where the absolute loss of expert i is replaced by `t

i . Since `t
i ∈ [0,1], we

have exp(−η`t
i)≤ 1− (1−exp(−η))`t

i and this implies (essentially Littlestone and Warmuth 1994,
Lemma 5.2, or Freund and Schapire 1997):

− log
n

∑
i=1

wt−1
i exp(−η`t

i) ≥− log(1− (1− exp(−η))wt−1 · `t)) ≥ wt−1 · `t(1− exp(−η)).

The above can be reexpressed with relative entropies as follows (Kivinen and Warmuth, 1999):

d(u,wt−1)−d(u,wt) = −ηu · `t − log
n

∑
i=1

wt−1
i exp(−η`t

i)

≥ −ηu · `t +wt−1 · `t(1− exp(−η)). (2)

2291

WARMUTH AND KUZMIN

The bound of theorem can now be obtained by summing over trials.

The original Weighted Majority algorithms were described for the absolute loss (Littlestone and
Warmuth, 1994). The idea of using loss vectors instead was introduced in Freund and Schapire
(1997). The latter paper also shows that when ∑t u · `t ≤ L and d(u,w0)− d(u,wT) ≤ D ≤ logn,
then with η = log(1+

√
2D/L), we get the bound

∑
t

wt−1 · `t ≤ ∑
t

u · `t +
√

2LD+d(u,w0)−d(u,wT). (3)

By setting u to be the vector with a single one identifying the best expert, we get the following
bound on the regret of the algorithm (Again log denotes the natural logarithm.):

total loss of alg. − total loss of best expert ≤
√

2 (total loss of best expert) logn+ logn.

4. Learning as Well as the Best Subset of Experts

Recall that projection matrices are symmetric positive definite matrices with eigenvalues in {0,1}.
Thus a rank k projection matrix can be written as P = ∑k

i=1 pi p
>
i , where the pi are the k orthonor-

mal vectors forming the basis of the subspace. Assume for the moment that the eigenvectors are
restricted to be standard basis vectors. Now a projection matrix becomes a diagonal matrix with
k ones in the diagonal and n− k zeros. Also, the trace of a product of such a diagonal projection
matrix and any symmetric matrix specifying the loss becomes a dot product between the diagonals
of both matrices. The diagonal of the symmetric matrix may be seen as a loss vector `t . Thus, in
this simplified diagonal setting, our goal is to develop online algorithms whose total loss is close to
the sum of the lowest n− k components of total loss vector ∑T

t=1 `t . Equivalently, we want to find
the highest k components of the total loss vector and per our nomenclature the loss of the lowest
n− k components is the compression loss of the complementary highest k components.

For this problem, we will encode the subsets of size n− k as probability vectors: we call r ∈
[0,1]n an (n−k)-corner if it has n−k components fixed to 1

n−k and the remaining k components fixed
to zero. The algorithm maintains a probability vector wt as its parameter. At trial t it probabilistically
chooses an (n−k)-corner r based on the current probability vector wt−1 (Details of how this is done
will be given shortly). The set of k components missed by r is the set Pt−1 that we compress with
at trial t. The algorithm then receives a loss vector `t and incurs compression loss (n− k)r · `t =

∑i∈{1,...,n}−Pt−1 `t
i . Finally the weight vector wt−1 is updated to wt .

We now describe how the corner is chosen: The current probability vector is decomposed into a
mixture of n corners and then one of the n corners is chosen probabilistically based on the mixture
coefficients. In the description of the decomposition algorithm we use d = n−k for convenience. Let
An

d denote the convex hull of the
(n

d

)
corners of size d (where 1 ≤ d < n). Clearly, any component

wi of a vector w in the convex hull is at most 1
d because it is a convex combination of numbers

in {0, 1
d}. Therefore An

d ⊆ Bn
d , where Bn

d is the capped probability simplex, that is, the set of n-
dimensional vectors w for which |w| = ∑i wi = 1 and 0 ≤ wi ≤ 1

d , for all i. Figure 1 depicts the
capped probability simplex for case d = 2 and n = 3,4. The following theorem shows that the
convex hull of the corners is exactly the capped probability simplex, that is, An

d = Bn
d . It shows this

by expressing any probability vector in the capped simplex Bn
d as a convex combination of at most

n d−corners. For example, when d = 2 and n = 4, Bn
d is an octahedron (which has 6 vertices).

However, each point in this octahedron is contained in a tetrahedron which is the hull of only 4 of
the 6 total vertices.

2292

ONLINE PCA

Figure 1: The capped probability simplex Bn
d , for d = 2 and n = 3,4. This simplex is the intersection

of n halfspaces (one per capped dimension) and its vertices are the
(n

d

)
d-corners.

Figure 2: A step of the Mixture Decomposition Algorithm 2, n = 6 and k = 3. When a corner is
removed, then at least one more component is set to zero or raised to a d-th fraction of the
total weight. The left picture shows the case where a component inside the corner gets set
to zero and the right one depicts the case where a component outside the picked corner
gets d-th fraction of the total weight.

Theorem 2 Algorithm 2 decomposes any probability vector w in the capped probability simplex Bn
d

into a convex combination2 of at most n d-corners.

Proof Let b(w) be the number of boundary components in w, that is, b(w)= |{i : wi is 0 or |w|
d }|.

Let B̃n
d be all vectors w such that 0 ≤ wi ≤ |w|

d , for all i. If b(w) = n, then w is either a corner or
0. The loop stops when w = 0. If w is a corner then it takes one more iteration to arrive at 0. We
show that if w ∈ B̃n

d and w is neither a corner nor 0, then the successor ŵ lies in B̃n
d and b(ŵ) > b(w).

Clearly, ŵ ≥ 0, because the amount that is subtracted in the d components of the corner is at most as
large as the corresponding components of w. We next show that ŵi ≤ |ŵ|

d . If i belongs to the corner

that was chosen then ŵi = wi − p
d ≤ |w|−p

d = |ŵ|
d . Otherwise ŵi = wi ≤ l, and l ≤ |ŵ|

d follows from
the fact that p ≤ |w|−d l. This proves that ŵ ∈ B̃n

d .

2. The existence of a convex combination of at most n corners is implied by Carathéodory’s theorem (Rockafellar,
1970), but Algorithm 2 gives an effective construction.

2293

WARMUTH AND KUZMIN

Algorithm 2 Mixture Decomposition
input 1 ≤ d < n and w ∈ Bn

d
repeat

Let r be a corner for a subset of d non-zero components of w
that includes all components of w equal to |w|

d
Let s be the smallest of the d chosen components of r

and l be the largest value of the remaining n−d components
w := w−min(d s, |w|−d l)︸ ︷︷ ︸

p

r and output pr

until w = 0

For showing that b(ŵ) > b(w) first observe that all boundary components in w remain boundary
components in ŵ: zeros stay zeros and if wi = |w|

d then i is included in the corner and ŵi = |w|−p
d =

|ŵ|
d . However, the number of boundary components is increased at least by one because the com-

ponents corresponding to s and l are both non-boundary components in w and at least one of them
becomes a boundary point in ŵ: if p = d s then the component corresponding to s in w is s− p

d = 0

in ŵ, and if p = |w|−d l then the component corresponding to l in w is l = |w|−p
d = |ŵ|

d . It follows
that it may take up to n iterations to arrive at a corner which has n boundary components and one
more iteration to arrive at 0. Finally note that there is no weight vector w ∈ B̃n

d s.t. b(w) = n− 1
and therefore the size of the produced linear combination is at most n. More precisely, the size is at
most n−b(w) if n−b(w) ≤ n−2 and one if w is a corner.

The algorithm produces a linear combination of (n− k)-corners, that is, w = ∑ j p jr j. Since
p j ≥ 0 and all |r j| = 1, ∑ j p j = 1 and we actually have a convex combination.

It is easy to implement the Mixture Decomposition Algorithm in O(n2) time: simply sort w and
spend O(n) per loop.

The batch algorithm for the set problem simply picks the best set in a greedy fashion.

Fact 1 For any loss vector `, the following corner has the smallest loss of any convex combination
of corners in An

d = Bn
d: Greedily pick the component of minimum loss (d times).

How can we use the above mixture decomposition and fact to construct an online algorithm?
It seems too hard to maintain information about all

(n
n−k

)
corners of size n− k. However, the best

corner is also the best convex combination of corners, that is, the best from the set An
n−k where each

member of this set is given by
(n

n−k

)
coefficients. Luckily, this set of convex combinations equals

the capped probability simplex Bn
n−k and it takes only n coefficients to specify a member in Bn

n−k.
Therefore we can maintain a parameter vector in Bn

n−k and for any such capped vector w, Algorithm
2 decomposes it into a convex combination of at most n many (n− k)-corners. This means that
any algorithm producing a hypothesis vector in Bn

n−k can be converted to an efficient algorithm that
probabilistically chooses an (n− k)-corner.

Algorithm 3 spells out the details for this approach. The algorithm chooses a corner probabilis-
tically and (n− k)wt−1 · `t is the expected loss at trial t. After updating the weight vector wt−1 by
multiplying with the factors exp(−η`t

i) and renormalizing, the resulting weight vector ŵt might lie
outside of the capped probability simplex Bn

n−k. We then use a Bregman projection with the relative

2294

ONLINE PCA

Algorithm 3 Capped Hedge Algorithm

input: 1 ≤ k < n and an initial probability vector w0 ∈ Bn
n−k

for t = 1 to T do
Decompose wt−1 into a convex combination ∑ j p jr j of at most n corners r j

by applying Algorithm 2 with d = n− k
Draw a corner r = r j with probability p j

Let Pt−1 be the k components outside of the drawn corner r
Receive loss vector `t

Incur compression loss (n− k)r · `t = ∑i∈{1,...,n}\Pt−1 `t
i

and expected compression loss (n− k) wt−1 · `t

Update: ŵt
i =

wt−1
i exp(−η`t

i)

∑n
j=1 exp(−η`t

j)

wt = capn−k(ŵ
t) where capn−k(.) invokes Algorithm 4

end for

Algorithm 4 Capping Algorithm
input probability vector w, set size d
Let w↓ index the vector in decreasing order, that is, w↓

1 = max(w)
if max(w) ≤ 1

d then
return w

end if
i = 1
repeat

(* Set first i largest components to 1
d and normalize the rest to d−i

d *)
w̃ = w
w̃↓

j = 1
d , for j = 1 . . . i

w̃↓
j := d−i

d
w̃↓

j

∑n
l=i+1 w̃↓

l

, for j = i+1 . . .n

i := i+1
until max(w̃) ≤ 1

d
return w̃

entropy as the divergence to project the intermediate vector ŵt back into Bn
n−k:

wt = argmin
w∈Bn

n−k

d(w, ŵt).

This projection can be achieved as follows (Herbster and Warmuth, 2001): find the smallest i s.t.
capping the largest i components to 1

n−k and rescaling the remaining n− i weights to total weight
1− i

n−k makes none of the rescaled weights go above 1
n−k . The simplest algorithm starts with sorting

the weights and then searches for i (see Algorithm 4). However, a linear time algorithm is given in
Herbster and Warmuth (2001)3 that recursively uses the median.

3. The linear time algorithm of Figure 3 of that paper bounds the weights from below. It is easy to adapt this algorithm
to the case of bounding the weights from above (as needed here).

2295

WARMUTH AND KUZMIN

When k = n− 1 and d = n− k = 1, Bn
1 is the entire probability simplex. In this case the call

to Algorithm 2 and the projection onto Bn
1 are vacuous and we get the standard Hedge Algorithm

(Algorithm 1) as a degenerate case. Note that (n− k)∑T
t=1 u · `t is the total compression loss of

comparator vector u. When u is an (n− k)-corner, that is, the uniform distribution on a set of size
n− k, then (n− k)∑T

t=1 u · `t is the total loss of this set.

Theorem 3 For an arbitrary sequence of loss vectors `1, . . . , `T ∈ [0,1]n, the total expected com-
pression loss of Algorithm 3 is bounded as follows:

(n− k)
T

∑
t=1

wt−1 · `t ≤ η(n− k)∑T
t=1 u · `t +(n− k)(d(u,w0)−d(u,wT))

1− exp(−η)
,

for any learning rate η > 0 and comparison vector u ∈ Bn
n−k.

Proof The update for ŵt in Algorithm 3 is the same as update for wt in Algorithm 1. Therefore we
can use inequality (2):

d(u,wt−1)−d(u, ŵt) ≥−ηu · `t +wt−1 · `t(1− exp(−η)).

Since the relative entropy is a Bregman divergence (Bregman, 1967; Censor and Lent, 1981), the
weight vector wt is a Bregman projection of vector ŵt onto the convex set Bn

n−k. For such projections
the Generalized Pythagorean Theorem holds (see, e.g., Herbster and Warmuth, 2001, for details):

d(u, ŵt) ≥ d(u,wt)+d(wt , ŵt).

Since Bregman divergences are non-negative, we can drop the d(wt , ŵt) term and get the following
inequality:

d(u, ŵt)−d(u,wt) ≥ 0, for u ∈ Bn
n−k.

Adding this to the previous inequality we get:

d(u,wt−1)−d(u,wt) ≥−ηu · `t +wt−1 · `t(1− exp(−η)).

By summing over t, multiplying by n− k, and dividing by 1− exp(−η), the bound follows.

It is easy to see that (n−k)(d(u,w0)−d(u,wT))≤ (n−k) log n
n−k and this is bounded by k log n

k
when k ≤ n/2. By tuning η as in (3), we get the following regret bound:

(expected total compression loss of alg.) - (total compression loss of best k-subset)
k≤n/2
≤

√
2(total compression loss of best k-subset)k log

n
k

+ k log
n
k
. (4)

The last inequality follows from the fact that (n− k) log n
n−k ≤ k log n

k when k ≤ n/2. Note that the
dependence on k in the last regret bound is essentially linear and dependence on n is logarithmic.

2296

ONLINE PCA

4.1 Alternate Algorithms for Learning as Well as the Best Subset

The question is whether projections onto the capped probability simplex are really needed. We
could simply have one expert for each set of n− k components and run Hedge on the

(n
n−k

)
set

experts, where the loss of a set expert is always the sum of the n − k component losses. The
set expert {i1, . . . , in−k} receives weight proportional to exp(−∑n−k

j=1 `<t
i j

) = ∏n−k
j=1 exp(−`<t

i j
), where

`<t
q = ∑t

p=1 `p
q . These product weights can be maintained implicitly: keep one weight per component

where the ith component receives weight exp(−`<t
i), and use dynamic programming for summing

the produced weights over the
(n

n−k

)
sets and for choosing a random set expert based on the product

weights. See, for example, Takimoto and Warmuth (2003) for this type of method. While this dy-
namic programming algorithm can be made reasonably efficient (O(n2(n− k)) per trial), the range
of the losses of the set experts is now [0,n−k] and this introduces factors of n−k into the tuned
regret bound:

√
2(total compression loss of best k-subset)(n−k) k log

n
k

+(n−k) k log
n
k
. (5)

Curiously enough our new capping trick avoids these additional factors in the regret bound by
using only the original n experts whose loss is in [0,1]. We do not know whether the improved
regret bound (4) (i.e., no additional n−k factors) also holds for the sketched dynamic programming
algorithm. However, the following example shows that the two algorithms produce qualitatively
different distributions on the sets.

Assume n = 3 and k = 1 and the update factors exp(−η`<t
i) for experts 1, 2 and 3 are propor-

tional to 1, 2, and 4, respectively, which results in the normalized weight vector (1
7 , 2

7 , 4
7). Capping

the weights at 1
n−k = 1

2 with Algorithm 4 produces the following vector which is then decomposed
via Algorithm 2:

(
1
6
,
1
3
,
1
2
) =

1
3

(
1
2
,0,

1
2
)

︸ ︷︷ ︸
set {1,3}

+
2
3

(0,
1
2
,
1
2
)

︸ ︷︷ ︸
set {2,3}

. (6)

On the other hand the product weights exp(−η`<t
i) ∗ exp(−η`<t

j) of the dynamic programming
algorithm for the three sets {1,2}, {1,3} and {2,3} of size 2 are 1∗2, 1∗4, and 2∗4, respectively.
That is, the dynamic programming algorithm gives (normalized) probability 1

7 , 2
7 and 4

7 to the three
sets. Notice that Capped Hedge gives expert 3 probability 1 (since it is included in all corners of the
decomposition (6)) and the dynamic programming algorithm gives expert 3 probability 6

7 , the total
probability it has assigned to the two sets {1,3} and {2,3} that contain expert 3.

A second alternate is the Follow the Perturbed Leader (FPL) Algorithm (Kalai and Vempala,
2005). This algorithm adds random perturbations to the losses of the individual experts and then
selects the set of minimum perturbed loss as its hypothesis. The algorithm is very efficient since it
only has to find the set with minimum perturbed loss. However its regret bound has additional fac-
tors in addition to the n−k factors appearing in the above bound (5) for the dynamic programming
algorithm. For the original Randomized Hedge setting with just n experts (Section 3), a distribu-
tion of perturbations was found for which FPL simulates the Hedge exactly (Kalai, 2005; Kuzmin
and Warmuth, 2005) and therefore the additional factors can be avoided. However we don’t know
whether there is a distribution of additive perturbations for which FPL simulates Hedge with set
experts.

2297

WARMUTH AND KUZMIN

5. Uncentered Online PCA

We create an online PCA algorithm by lifting our new algorithm for sets of experts based on capped
weight vector to the matrix case. Now matrix corners are density matrices4 with d eigenvalues
equal to 1

d and the rest are 0. Such matrix corners are just rank d projection matrices scaled by
1
d . (Notice that the number of matrix corners is uncountably infinite.) We define the set A n

d as the
convex hull of all matrix corners. The maximum eigenvalue of a convex combination of symmetric
matrices is at most as large as the maximum eigenvalue of any of the individual matrices (see, e.g.,
Bhatia, 1997, Corollary III.2.2). Therefore each convex combination of corners is a density matrix
whose eigenvalues are bounded by 1

d and An
d ⊆ Bn

d , where Bn
d consists of all density matrices whose

maximum eigenvalue is at most 1
d . Assume we have some density matrix W ∈ Bn

d with eigendecom-

position W diag(ω)W >. Algorithm 2 can be applied to the vector of eigenvalues ω of this density
matrix. The algorithm decomposes ω into at most n diagonal corners r j: ω = ∑ j p jr j. This convex
combination can be turned into a convex combination of matrix corners that decomposes the density
matrix: W = ∑ j p j W diag(r j)W >. It follows that An

d = Bn
d , as in the diagonal case.

As discussed before, losses can always be viewed in two different ways: the loss of the al-
gorithm at trial t is the compression loss of the chosen projection matrix Pt−1 or the loss of the
complementary subspace I −Pt−1, that is,

‖Pt−1
︸︷︷︸
rank k

xt − xt‖2
2 = tr((I −Pt−1)︸ ︷︷ ︸

rank n−k

xt(xt)>).

Our online PCA Algorithm 5 has uncertainty about which subspace of rank n− k is best and it rep-
resents this uncertainty by a density matrix W t−1 ∈ An

n−k, that is, a mixture of (n− k)-dimensional
matrix corners. The algorithm efficiently samples a subspace of rank n− k from this mixture and
uses the complementary subspace Pt−1 of rank k for compression. The expected compression loss
of algorithm will be (n− k)tr(W t−1xx>).

The following lemma shows how to pick the best matrix corner. When S = ∑T
t=1 xt(xt)>, then

this lemma justifies the choice of the batch PCA algorithm.

Theorem 4 For any symmetric matrix S, minW∈Bn
d

tr(WS) attains its minimum at the matrix corner
formed by choosing d orthogonal eigenvectors of S of minimum eigenvalue.

Proof Let λ↓(W) denote the vector of eigenvalues of W in descending order and let λ↑(S) be the
same vector of S but in ascending order. Since both matrices are symmetric, tr(WS) ≥ λ↓(W) ·
λ↑(S) (Marshall and Olkin 1979, Fact H.1.h of Chapter 9, we will sketch a proof below). Since
λ↓(W) ∈ Bn

d , the dot product is minimized and the inequality is tight when W is a d-corner (on
the n-dimensional probability simplex) corresponding to the d smallest eigenvalues of S. Also the
greedy algorithm finds the solution (see Fact 1 of this paper).

For the sake of completeness, we will sketch a proof of the inequality tr(WS) ≥ λ↓(W) ·λ↑(S).
We begin by rewriting the trace using an eigendecomposition of both matrices:

tr(WS) = tr(∑
i

ωiwiw
>
i ∑

j

σ js js
>
j) = ∑

i, j

ωiσ j (wi · s j)
2

︸ ︷︷ ︸
:=Mi, j

.

4. Density matrix is a symmetric positive definite matrix of trace 1, that is, they are symmetric matrices whose eigen-
values form a probability vector

2298

ONLINE PCA

The matrix M is doubly stochastic, that is, its entries are nonnegative and its rows and columns sum
to 1. By Birkhoff’s Theorem (see, e.g., Bhatia, 1997), such matrices are the convex combinations of
permutations matrices (matrices with a single one in each row and column). Therefore the minimum
of this linear function occurs at a permutation, and by a swapping argument one can show that the
permutation which minimizes the linear function is the one that matches the ith smallest eigenvalue
of W with the (n− i)th largest eigenvalue of S.

We obtain our algorithm for online PCA (Algorithm 5) by lifting Algorithm 3 for set experts to
the matrix setting. The exponential factors used in the updates of the expert setting are replaced by
the corresponding matrix version which employs the matrix exponential and matrix logarithm (War-
muth and Kuzmin, 2006a).5 For any symmetric matrix A with eigendecomposition ∑n

i=1 αiaia>i , the
matrix exponential exp(A) is defined as the symmetric matrix ∑n

i=1 exp(αi)aia>i . Observe that the
matrix exponential exp(A) (and analogously the matrix logarithm log(A) for symmetric positive
definite A) affects only the eigenvalues and not the eigenvectors of A.

The following theorem shows that for the Bregman projection we can keep the eigensystem
fixed. Here the quantum relative entropy ∆(U ,W) = tr(U(logU − logW)) is used as the Bregman
divergence.

Theorem 5 Projecting a density matrix onto Bn
d w.r.t. the quantum relative entropy is equivalent to

projecting the vector of eigenvalues w.r.t. the “normal” relative entropy: If W has the eigendecom-
position W diag(ω)W >, then

argmin
U∈Bn

d

∆(U ,W) = W u∗W >
, where u∗ = argmin

u∈Bn
d

d(u,ω).

Proof The quantum relative entropy can be rewritten as follows:

∆(U ,W) = tr(U logU)− tr(U logW) = λ(U) · log(λ(U))− tr(U logW),

where λ(U) denotes the vector of eigenvalues of U and log is the componentwise logarithm of a
vector. For any symmetric matrices S and T , tr(ST)≤ λ↓(S) ·λ↓(T) (Marshall and Olkin 1979, Fact
H.1.g of Chapter 9; also see proof sketch of a similar fact given in previous theorem). This implies
that

∆(U ,W) ≥ λ(U) · log(λ(U))−λ↓(U) ·λ↓(log(W)) = λ(U) · log(λ(U))−λ↓(U) · logλ↓(W).

Therefore min
U∈Bn

d

∆(U ,W) ≥ min
u∈Bn

d

d(u,ω), and if u∗ minimizes the r.h.s. then W diag(u∗)W > mini-

mizes the l.h.s. because ∆(W diag(u∗)W ,W) = d(u∗,ω).

The lemma means that the projection of a density matrix onto B n
n−k is achieved by applying Algo-

rithm 4 to the vector of eigenvalues of the density matrix.
We are now ready to prove a worst-case loss bound for Algorithm 5 for the uncentered case of

online PCA. Note that the expected loss in trial t of this algorithm is (n− k)tr(W t−1xt(xt)>). When
U is a matrix corner then (n− k)∑T

t=1 tr(Uxt(xt)>) is the total loss of the corresponding subspace.

5. This update step is a special case of the Matrix Exponentiated Gradient update for the the linear loss tr(Wxt(xt)>)
(Tsuda et al., 2005).

2299

WARMUTH AND KUZMIN

Algorithm 5 Uncentered online PCA algorithm

input: 1 ≤ k < n and an initial density matrix W 0 ∈ Bn
n−k

for t = 1 to T do
Perform eigendecomposition W t−1 = W ωW >

Decompose ω into a convex combination ∑ j p jr j of at most n corners r j

by applying Algorithm 2 with d = n− k
Draw a corner r = r j with probability p j

Form a matrix corner R = W diag(r)W >

Form a rank k projection matrix Pt−1 = I − (n− k)R
Receive data instance vector xt

Incur compression loss ‖xt −Pt−1xt‖2
2 = tr((I −Pt−1)xt(xt)>)

and expected compression loss (n− k)tr(W t−1xt(xt)>)

Update: Ŵ
t
=

exp(logW t−1 −ηxt(xt)>)

tr(exp(logW t−1 −ηxt(xt)>))

W t = capn−k(Ŵ
t
),

where capn−k(A) applies Algorithm 4 to the vector of eigenvalues of A
end for

Theorem 6 For an arbitrary sequence of data instances x1, . . . ,xT of 2-norm at most one, the total
expected compression loss of the algorithm is bounded as follows:

T

∑
t=1

(n− k)tr(W t−1xt(xt)>)

≤ η(n− k)∑T
t=1 tr(Uxt(xt)>)+(n− k)(∆(U ,W 0)−∆(U ,W T))

1− exp(−η)
,

for any learning rate η > 0 and comparator density matrix U ∈ B n
n−k.

Proof The update for Ŵ
t

is a density matrix version of the Hedge update which was used for
variance minimization along a single direction (i.e., k = n− 1) in Warmuth and Kuzmin (2006a).
The basic inequality (2) for that update becomes:

∆(U ,W t−1)−∆(U ,Ŵ
t
) ≥−η tr(Uxt(xt)>)+ tr(W t−1xt(xt)>)(1− exp(−η)).

As in the proof of Theorem 3 of this paper, the Generalized Pythagorean Theorem applies and
dropping one term we get the following inequality:

∆(U ,Ŵ
t
)−∆(U ,W t) ≥ 0, for U ∈ Bn

n−k.

Adding this to the previous inequality we get:

∆(U ,W t−1)−∆(U ,W t) ≥−η tr(Uxt(xt)>)+ tr(W t−1xt(xt)>)(1− exp(−η)).

By summing over t, multiplying by n− k, and dividing by 1− exp(−η), the bound follows.

2300

ONLINE PCA

It is easy to see that (n− k)(∆(U ,W 0)−∆(U ,W T)) ≤ (n− k) log n
n−k and this is bounded by k log n

k
when k ≤ n/2. By tuning η as in (3), we can get regret bounds of the form:

(expected total compression loss of alg.) - (total compression loss of best k-subspace)
k≤n/2
≤

√
2(total compression loss of best k-subspace)k log

n
k

+ k log
n
k
. (7)

Let us complete this section by discussing the minimal assumptions on the loss functions needed
for proving the regret bounds obtained so far. Recall that in the regret bounds for experts as well
as set experts we always assumed that the loss vector `t received at trial t lies in [0,1]n. In the case
of uncentered PCA, the loss at trial t is specified by an instance vector xt that has 2-norm at most
one. In other words, the single eigenvalue of the instance matrix xt(xt)> must be bounded by 1.
However, it is easy to see that the regret bound of the previous theorem still holds if at trial t the
instance matrix xt(xt)> is replaced by any symmetric instance matrix St whose vector of eigenvalues
lies in [0,1]n.

5.1 Alternate Algorithms for Uncentered Online PCA

We conjecture that the following algorithm has the regret bound (7) as well: run the dynamic pro-
gramming algorithm for the set experts sketched in Section 4 on the vector of eigenvalues of the
current covariance matrix. The produced set for size k is converted to a projection matrix of rank
k by replacing it with the k outer products of the corresponding eigenvectors. We are not elaborat-
ing on this approach since the algorithm inherits the additional n− k factors contained in the regret
bound (5) for set experts. If these factors in the regret bound for set experts can be eliminated then
this approach might lead to a competitive algorithm.

Versions of FPL might also be used to design an online PCA algorithm for compressing with a
k dimensional subspace. Such an algorithm would be particularly useful if the same regret bound
(7) could be proven for it as for our online PCA algorithm. The question is whether there exists
a distribution of additive perturbations of the covariance matrix for which the loss of the subspace
formed by the eigenvectors of the n− k smallest eigenvalues simulates a matrix version of Hedge
on subspaces of rank n− k and whether this algorithm does not have the n− k factors in its bound.
Note that extracting the subspace formed by the eigenvectors of the n− k smallest (or k largest)
eigenvalues might be more efficient than performing a full eigendecomposition.

6. Centered Online PCA

In this section we extend our online PCA algorithm to also estimate the data center online. Under
the extended protocol, the algorithm needs to produce both a rank k projection matrix Pt−1 and a
data center mt−1 at trial t. It then receives a data point xt and incurs compression loss ‖(xt −mt−1)−
Pt−1(xt −mt−1)‖2

2. As for uncentered online PCA, we will use a capped density matrix W t−1 to
represent the algorithm’s uncertainty about the hidden subspace.

6.1 Motivation of the Updates

We begin by motivating the updates of all the algorithms analyzed so far. We follow Kivinen and
Warmuth (1997) and motivate the updates by minimizing a tradeoff between a parameter divergence
and a loss function. Here we also have the linear capping constraints. Since our loss is linear, the

2301

WARMUTH AND KUZMIN

tradeoff minimization problem can be solved exactly instead of using approximations as is done in
Kivinen and Warmuth (1997) for non-linear losses. Updates motivated by exact solution of tradeoff
minimization problems involving non-linear loss functions are sometimes called implicit updates
since they typically do not have a closed form (Kivinen et al., 2005). Even though the loss function
used here is linear, the additional capping constraints are responsible for the fact that there is again
no closed form for the updates. Nevertheless our algorithms are always able to compute the optimal
solutions of the tradeoff minimization problems defining the updates.

We begin our discussion of motivations of updates with the set expert case. Consider the fol-
lowing two updates:

wt = arginfw∈Bn
n−k

(
η−1d(w,wt−1)+w · `t) , (8)

wt = arginfw∈Bn
n−k

(
η−1d(w,w0)+

t

∑
q=1

w · `q

)
. (9)

In the motivations of all our updates, the divergences are always versions of relative entropies which
are special cases of Bregman divergences. Here d denotes the standard relative entropy between
probability vectors. The first update above trades off the divergence to the last parameter vector
with the loss in the last trial. The second update trades off the divergence to the initial parameter
with the total loss in all past trials. In both cases the minimization is over Bn

n−k which as we recall
is the n-dimensional probability simplex with the components capped at 1

n−k . One can show that
the combined two update steps of the Capped Hedge Algorithm 3 coincide with the first update (8)
above. The solution to (8) has the following exponential form:

wt
i =

wt−1
i exp(−η`t

i + γt
i)

∑n
j=1 wt−1

j exp(−η`t
j + γt

j)
,

where γt
i is the Lagrangian coefficient that enforces the cap on the weight wt

i . The non-negativity
constraints don’t have to be explicitly enforced because the relative entropy is undefined on vectors
with negative elements and thus acts as a barrier function. Because of the capping constraints, the
two updates (8) and (9) given above are typically not the same. However when k = n− 1, then
Bn

n−k = Bn
1 is the entire probability simplex and the γt

i coefficients disappear. In that case both
updates agree and motivate the update of vanilla Hedge (Algorithm 1) (See Kivinen and Warmuth,
1999).

Furthermore, the above update (8) can be split into two steps as is done in Algorithm 3: the first
update step uses exponential factors to update the probability vector and the second step performs a
relative entropy projection of the intermediate vector onto the capped probability simplex. Here we
give the sequence of two optimization problems that motivate the two update steps of Algorithm 3:

ŵt = arginfwi≥0, ∑wi=1

(
η−1d(w,wt−1)+w · `t) ,

wt = arginfw∈Bn
n−k

d(w, ŵt).

For the motivation of the uncentered online PCA update (Algorithm 5), we replace the relative
entropy d(w,wt−1) between probability vectors in (8) by the Quantum Relative Entropy ∆(W ,W t−1) =
tr(W (logW − logW t−1)) between density matrices. Furthermore, we change the loss function from
a dot product to a trace:

W t = arginfW∈Bn
n−k

(
η−1∆(W ,W t−1)+ tr(Wxt(xt)>)

)
.

2302

ONLINE PCA

Recall that Bn
n−k is the set of all n×n density matrices whose maximum eigenvalue is at most 1

n−k .
Note that in Algorithm 5, this update is again split into two steps.

The case of centered online PCA, which we will address now, is the most interesting because
now we have two parameters. We use the following update which uses a divergence to the initial
parameters (as in (9)):

(W t ,mt) = arginf
W∈Bn

n−k, m∈Rn

(
η−1∆(W ,W 0)+ η̃−1(m−m0)>W (m−m0)

)

+
t

∑
q=1

tr(W (xq −m)(xq −m)>). (10)

Notice that we have two learning rates: η for the density matrix parameter and η̃ for the center
parameter. The above update may be viewed as a maximum a posteriori estimator since the diver-
gences act as priors or initial examples and the inverse learning rates that multiply the divergences
determine the importance of the priors (See, e.g., Azoury and Warmuth, 2001, for a discussion).
When η−1 = η̃−1 = 0, then there are no priors and the update become the Maximum Likelihood
estimator or Follow the Leader (FL) Algorithm. If η̃−1 → ∞, then mt is clamped to the fixed center
m0. If further m0 = 0, then the above motivation becomes a motivation for an uncentered update
with a divergence to the initial density matrix W 0 (analogous to (9)). Similarly, when η−1 → ∞,
then W t is clamped to the fixed density matrix W 0 and the resulting optimization problem motivates
the Incremental Off-line Algorithm for Gaussian density estimation with a fixed covariance matrix
(Azoury and Warmuth, 2001).

As in Kuzmin and Warmuth (2007), we analyze this update for centered PCA by rewriting its
optimization problem (10) as the dual maximization problem. The constraint W ∈ B n

n−k in equa-
tion (10) is equivalent to having constraints tr(W) = 1 and W � 1

n−k I. The constraint W � 0 is
automatically enforced since the quantum relative entropy acts as a barrier. With this in mind, we
write down the Lagrangian function, where U t(W ,m) is the objective function of our optimization
problem (10) that includes data points from t trials, δ is the dual variable for the trace constraint and
the symmetric positive definite matrix Γ is the dual variable for the capping constraint:

Lt(W ,m,Γ,δ) = U t(W ,m)+δ(tr(W)−1)+ tr
(
(W − 1

n− k
I)Γ
)
.

The optimization over m is unconstrained, giving the solution for mt :

mt =
η̃−1m0 +∑t

q=1 xq

η̃−1 + t
. (11)

This is essentially the normal mean of an extended sample, where we added η̃−1 copies of m0 to
x1, . . . ,xt . To write down the form of the solution for W t compactly we will introduce the following
matrix:

Ct = η̃−1(m0 −mt)(m0 −mt)> +
t

∑
q=1

(xq −mt)(xq −mt)>. (12)

This can be seen as the extended sample covariance matrix where we added η̃−1 copies of instance
m0.

2303

WARMUTH AND KUZMIN

Setting the derivatives to zero and solving (see Tsuda et al. 2005 for similar derivation), we
obtain the following form of W t in terms of the dual variables δ′ = ηδ and Γ:

W t(δ′,Γ) = exp(logW 0 −ηCt −δ′I −ηΓ).

The constraint tr(W) = 1 is enforced by choosing δ′ = log tr(exp(logW 1 −ηCt −Γ)). By substitut-
ing W t(δ′,Γ) and the formula for mt into the Lagrangian Lt and simplifying, we obtain the following
dual problem:

max
Γ�0

L̂t(Γ), where L̂t(Γ) = −η−1 log tr(exp(logW 0 −ηCt −ηΓ))− tr(Γ)

n− k
. (13)

Let Γt be the optimal solution of the dual problem above and let capd(W) be the density matrix
obtained when the capping Algorithm 4 is applied to the vector of eigenvalues of W and capping
parameter d. This lets us express W t as:

W t =
exp(logW 0 −ηCt −ηΓt)

tr(exp(logW 0 −ηCt −ηΓt))
= capn−k

(exp(logW 0 −ηCt)

tr(exp(logW 0 −ηCt))

)
. (14)

For the analysis we express mt and Ct as online updates:

Lemma 7 The estimates of mean and covariance can be updated as follows:

mt =
(η̃−1 + t −1)mt−1 + xt

η̃−1 + t
= mt−1 − 1

η̃−1 + t
(mt−1 − xt),

Ct = Ct−1 +
η̃−1 + t −1

η̃−1 + t
(xt −mt−1)(xt −mt−1)>

Proof The update rule for mt is easy to verify. For the update of Ct , we start by expanding the
expression (12) for Ct−1:

Ct−1 = η̃−1(m0(m0)>−m0(mt−1)>−mt−1(m0)> +mt−1(mt−1)>)

+
t−1

∑
q=1

(mt−1(mt−1)>− xq(mt−1)>−mt−1(xq)> + xq(xq)>)

=
t−1

∑
q=1

xq(xq)> +(η̃−1 + t −1)mt−1(mt−1)>

−(η̃−1m0 +
t−1

∑
q=1

xq)(mt−1)>−mt−1(η̃−1m0 +
t−1

∑
q=1

xq)> + η̃−1m0(m0)>.

By substituting

η̃−1m0 +
t−1

∑
q=1

xq = (η̃−1 + t −1)mt−1

we get the following:

Ct−1 =
t−1

∑
q=1

xq(xq)>− (η̃−1 + t −1)mt−1(mt−1)> + η̃−1m0(m0)>.

2304

ONLINE PCA

Algorithm 6 Centered Online PCA Algorithm

input: 1 ≤ k < n and an initial offset m0, initial density matrix W 0 ∈ Bn
n−k, C0 = 0

for t = 1 to T do
Perform eigendecomposition W t−1 = W ωW >

Decompose ω into a convex combination ∑ j p jr j of at most n corners r j

by applying Algorithm 2 with d = n− k
Draw corner r = r j with probability p j

Form a matrix corner R = W diag(r)W >

Form a rank k projection matrix Pt−1 = I − (n− k)R
Receive data instance vector xt

Incur compression loss
‖(xt −mt−1)−Pt−1(xt −mt−1)‖2

2 = tr((I −Pt−1)(xt −mt−1)(xt −mt−1)>)
and expected compression loss (n− k)tr(W t−1(xt −mt−1)(xt −mt−1)>)

Update:

mt = mt−1 − 1
η̃−1 + t

(mt−1 − xt) (15)

Ct = Ct−1 +
η̃−1 + t −1

η̃−1 + t
(xt −mt−1)(xt −mt−1)> (16)

Ŵ
t

=
exp(logW 0 −ηCt)

tr(exp(logW 0 −ηCt))

W t = capn−k(Ŵ
t
),

where capn−k(A) applies Algorithm 4 to the vector of eigenvalues of A
end for

Now the update for C can be written as:

Ct = Ct−1 +(η̃−1 + t −1)mt−1(mt−1)> + xt(xt)>− (η̃−1 + t)mt(mt)>.

Substituting the left update for mt from the statement of the lemma and simplifying gives the desired
online update for Ct .

: All the steps for the Centered Online PCA Algorithm are summarized as Algorithm 6. We already
reasoned that the capping and decomposition steps are O(n2). The remaining expensive step is
maintaining the eigendecomposition of the covariance matrix for computing the matrix exponential.
Using standard rank one update techniques for the eigendecomposition of a symmetric matrix, this
costs O(n2) per trial (see, e.g., Gu and Eisenstat, 1994).

6.2 Regret Bound for Centered PCA

The following theorem proves a regret bound for our Centered Online PCA Algorithm.

2305

WARMUTH AND KUZMIN

Theorem 8 For any data sequence x1, . . . ,xT , initial center value m0 such that ‖xt −m0‖2 ≤ 1
2 , any

density matrix U ∈ Bn
n−k and any center vector m, the following bound holds:

compalg ≤
η compU ,m +∆(U ,W 0)+ηη̃−1(m−m0)>U(m−m0)

1− exp(−η)
+1+ log

(
1+

T −1
η̃−1 +1

)

where

compalg =
T

∑
i=1

tr(W t−1(xt −mt−1)(xt −mt−1)>)

is the overall expected compression loss of the centered online PCA Algorithm 6 and

compU ,m =
T

∑
i=1

tr(U(xt −m)(xt −m)>)

is the total compression loss of comparison parameters (U ,m).

Proof There are two main proof methods for the expert setting. The first is based on Bregman
projections and was used so far in this paper. The second uses the value of the optimization problem
defining the update as a potential and then shows that the drop of this value (Kivinen and Warmuth,
1999; Cesa-Bianchiand and Lugosi, 2006) is lower bounded by a constant times the per trial loss
of the algorithm. Here we use a refinement of the second method that expresses the value of the
optimization problem in terms of its dual. These variations of the second method were developed
in the context of boosting (Warmuth et al., 2006; Liao, 2007) and in the conference paper (Kuzmin
and Warmuth, 2007) where we enhanced the Uncentered Online PCA Algorithm of this paper with
a kernel.

For our problem the value6 of optimization problem (10) is vt = U t(W t ,mt) and this equals the
value of the dual problem L̂t(Γt) where Γt maximizes the dual problem (13).

We want to establish the following key inequality:

vt − vt−1 ≥ η−1(1− e−η)
(

tr(W t−1(xt −mt−1)(xt −mt−1)>)− 1
η̃−1 + t

)
. (17)

Since Γt optimizes the dual function L̂t and Γt−1 is a non-optimal choice, L̂t(Γt) ≥ L̂t(Γt−1) and
therefore

vt − vt−1 = L̂t(Γt)− L̂t−1(Γt−1) ≥ L̂t(Γt−1)− L̂t−1(Γt−1) (18)

Substituting L̂t and L̂t−1 from (13) into the right hand side of this inequality gives the following:

L̂t(Γt−1)− L̂t−1(Γt−1)

= −η−1 log tr(exp(logW 0 −ηCt −ηΓt−1))+η−1 log tr(exp(logW 0 −ηCt−1 −ηΓt−1))

= −η−1 log tr(exp(logW 0 −ηCt −ηΓt−1 − log tr(exp(logW 0 −ηCt−1 −ηΓt−1))).

Now we expand Ct and use the covariance matrix update from Lemma 7:

L̂t(Γt−1)− L̂t−1(Γt−1) = −η−1 log tr(exp(logW 0 −ηCt−1 −ηΓt−1

− log tr(exp(logW 0 −ηCt−1 −ηΓt−1))−η
η̃−1 + t −1

η̃−1 + t
(xt −mt−1)(xt −mt−1)>)).

6. Optimization problem (10) minimizes a convex function subject to linear cone constraint. Since this problem has a
strictly feasible solution, strong duality is implied by a generalized Slater condition (Boyd and Vandenberghe, 2004).

2306

ONLINE PCA

The first four terms under the matrix exponential form logW t−1, which can be seen from the first
expression for W t−1 from (14):

L̂t(Γt−1)− L̂t−1(Γt−1)

= −η−1 log tr
(

exp(logW t−1 −η
η̃−1 + t −1

η̃−1 + t
(xt −mt−1)(xt −mt−1)>)

)
.

Going back to (18) we get the inequality:

vt − vt−1

≥−η−1 log tr
(

exp(logW t−1 −η
η̃−1 + t −1

η̃−1 + t
(xt −mt−1)(xt −mt−1)>)

)
.

This expression for the drop of the value is essentially the same expression that is normally bounded
in the proof of online variance minimization algorithm in Warmuth and Kuzmin (2006a). Using
those techniques (assumption in the theorem implies that that ‖xt −mt−1‖2

2 ≤ 1 and all the necessary
inequalities hold) we get the following inequality:

−η−1 log tr
(

exp(logW t−1 −η
η̃−1 + t −1

η̃−1 + t
(xt −mt−1)(xt −mt−1)>)

)

≥ η−1 η̃−1 + t −1
η̃−1 + t

(1− e−η)tr(W t−1(xt −mt−1)(xt −mt−1)>).

W t−1 is a density matrix and its eigenvalues are at most 1. And by assumption, norm of xt −mt−1 is
at most 1. Therefore, the loss tr(W t−1(xt −mt−1)(xt −mt−1)>) is also at most 1. We split the factor

in front of the loss as η̃−1+t−1
η̃−1+t = 1− 1

η̃−1+t , upper bounding the loss by 1 for the second part and
leaving it as is for the first. With this (17) is obtained.

Note that the trace in the inequality (17) is the loss of the algorithm at trial t. Summation over t
and telescoping gives us:

vT − v0 ≥ η−1(1− e−η)
(

compalg −
T

∑
t=1

1
η̃−1 + t

)
.

We consider the left side first: v0 is equal to zero, and vT is a minimum of optimization problem
(10), thus we can make it bigger by substituting arbitrary non-optimal values U and m. Index T
means the optimization problem is defined with respect to the entire data sequence, therefore the
loss term becomes the loss of the comparator. On the right side we use the following bound on the

sum of generalized harmonic series: ∑T
t=1

1
η̃−1+t ≤ 1+ log

(
1+ T−1

η̃−1+1

)
. Overall, we get:

η−1∆(U ,W 0)+ η̃−1(m−m0)>U(m−m0)+ compU ,m

≥ η−1(1− e−η)

(
compalg −

(
1+ log

(
1+

T −1
η̃−1 +1

)))
.

Moving things over and dividing results in the bound of the theorem.

As discussed before, when η−1 = η̃−1 = 0, then the algorithm becomes the FL Algorithm. When
η̃−1 → ∞, then mt is clamped to m0, that is, the update for the center (11,15) becomes mt = m0 and

2307

WARMUTH AND KUZMIN

is vacuous. Also in that case the term ηη̃−1(m−m0)>U(m−m0) in the upper bound of Theorem
8 is infinity unless the comparison center m is m0 as well. If m0 = 0 in addition to η̃−1 → ∞, then
we call this the uncentered version of Algorithm 6: this version simply ignores step (15) and in (16)
uses mt−1 = 0. Our original Algorithm 5 for uncentered PCA as well as the uncentered version of
Algorithm 6 have the same regret bound7 of Theorem 6. Recall however that the two algorithms
were motivated differently: Algorithm 5 trades off divergence to the last parameter with the loss in
the last trial, whereas Algorithm 6 trades off a divergence to the initial parameter matrix with the
total loss in all past trials. If all constraints are equality constraints, then the two algorithms are
the same. However, capping introduces inequality constraints and therefore the two algorithms are
decidedly not the same. Both algorithm can behave quite differently experimentally (Section 8).
The difference between the two algorithms will become important in the followup paper (Kuzmin
and Warmuth, 2007), where we were only able to use a kernel with the algorithm that trades off a
divergence to the initial parameter matrix with the total loss in all past trials.

Similarly, when η−1 → ∞, then W t is clamped to W 0 and the algorithm degenerates to a pre-
viously analyzed algorithm, the Incremental Off-line Algorithm for Gaussian density estimation
with fixed covariance matrix (Azoury and Warmuth, 2001). For this restricted density estimation
problem, improved regret bounds were proven for the Forward Algorithm which further shrinks the
estimate of the mean towards the initial mean. So far we were not able to improve our regret bound
for uncentered PCA using additional shrinkage towards the initial mean.

The statement of the theorem requires strong initial knowledge about the center of the data
sequence we are about to observe: the condition of the theorem says that our data sequence has to
be contained in a ball of radius 1

2 around m0. This can be relaxed by using m0 = 0 and η̃−1 = 0,
which corresponds to using standard empirical mean for mt . Now it suffices to assume that data is
contained in some ball, but we are not required to know where exactly that ball is. The appropriate
assumption and the change to the bound are detailed in the following corollary.

Corollary 9 For any data sequence x1, . . . ,xT that can be covered by a ball of radius 1
2 , that is,

‖xt1 − xt2‖2 ≤ 1 and that also has the bound on the norm of instances ‖xt‖2 ≤ R, any density matrix
U ∈Bn

n−k and any center vector m, the total expected loss of centered online PCA Algorithm 6 being
used with parameters η̃−1 = 0 and m0 = 0 is bounded as follows:

compalg ≤
η compU ,m +∆(U ,W 0)

1− e−η + logT +R2,

Proof The ball assumption means that the empirical mean mt−1 and any element of the data se-
quence are not too far from each other: ‖mt−1 − xt‖2 ≤ 1. Thus we can still use the Inequality (17),
for all trials but the first one, where we haven’t seen any data points yet. Summing the drops of the
value starting from t = 1 we get:

vT − v1 ≥ η−1(1− e−η)

(
T

∑
t=2

tr(W t−1(xt −mt−1)(xt −mt−1)>)−
T

∑
t=2

1
t

)
.

7. The remaining +1 is an artifact of our bound on the harmonic sum.

2308

ONLINE PCA

We now add the loss of the first trial into the sum and rearrange terms:
compalg︷ ︸︸ ︷

T

∑
t=1

tr(W t−1(xt −mt−1)(xt −mt−1)>)

≤ η(vT −
≥0︷︸︸︷
v1)

1− e−η +

≤logT︷︸︸︷
T

∑
t=2

1
t

+

≤R2

︷ ︸︸ ︷
tr(W 0(x1 −m0)(x1 −m0)>) .

Finally, from the definition of vT it follows that vT ≤ η−1∆(U ,W 0)+ compU ,m, for any comparator
U and m, and this gives the bound of the theorem.

Tuning η as in (3), Corollary 9 gives the following regret bound for our centered online PCA
Algorithm 6 (when k ≤ n

2):

(expected total compression loss of alg.) - (total comp. loss of best centered k-subspace)

≤
√

2(total comp. loss of best centered k-subspace)k log
n
k

+ k log
n
k

+R2 + logT.

6.3 Converting the Online PCA Algorithms to Batch PCA Algorithms

In the online learning community a number of conversion techniques have been developed that
allow one to construct a hypothesis with good generalization bounds in the batch setting from the
hypotheses produced by a run of the online learning algorithm over the given batch of examples.

For example, using the standard conversion techniques developed for the expert setting based
on the leave-one-out loss (Cesa-Bianchi et al., 1997), we obtain algorithms with good expected
regret bounds in the following model: The algorithm is given T − 1 instances drawn from a fixed
but unknown distribution and produces a k-dimensional subspace based on those instances; it then
receives a new instance from the same distribution. We can bound the expected loss on the new
instance (under the usual norm less than one assumption on instances):

(expected compression loss of alg.) - (expected compression loss best k-space)

= O
(√ (expected compression loss of best k-subspace)k log n

k

T
+

k log n
k

T

)
.

The expected loss of the algorithm is taken as expectation over both the internal randomization of
the algorithm and fixed distribution over the instances. The expected loss of the best subspace just
averages over the distribution of the instances. The best subspace itself will be determined by the
covariance matrix of this distribution.

Additionally, there also exist very general conversion methods that allow us to state bounds
that say that the generalization error will be big with small probability (Cesa-Bianchi and Gentile,
2005). These bounds are more complicated and therefore we don’t state them here. The conversion
algorithms however, are pretty simple: for example, one can use the average density matrix of
all density matrices produced by the online algorithm while doing one pass through the batch of
instances. Perhaps surprisingly, the generalization bounds for batch PCA obtained via the online-
to-batch conversions are competitive with the best bounds for batch PCA that we are aware of
Shawe-Taylor et al. (2005).

2309

WARMUTH AND KUZMIN

7. Lower Bounds

We first prove some lower bounds for the simplest online algorithm that just predicts with the model
that has incurred minimum loss so far (the Follow the Leader (FL) Algorithm). After that we give a
lower bound for uncentered PCA that shows that the algorithm presented in this paper is optimal in
a very strong sense.

Our first lower bound is in the standard expert setting. We assume that there is a deterministic
tie-breaking rule, because by adding small perturbations, ties can always be avoided in this con-
struction. It is easy to see that the following adversary strategy forces FL to have loss n times larger
than the loss of the best expert chosen in hindsight: in each trial have the expert chosen by FL incur
one unit of loss. Note that the algorithm incurs loss one in each trial, whereas the loss of the best
expert is bT

n c after T trials. We conclude that the loss of FL can be by a factor of n larger than the
loss of the best expert.

We next show that for the set expert case, FL can be forced to have loss at least n
d times the loss

of the best set of size d. In this case FL chooses a set of size d of minimum loss and the adversary
forces the lowest loss expert in the set chosen by FL to incur one unit of loss. The algorithm again
incurs loss one in each trial, but the loss of the best set lies in the range d [b T

n c,dT
n e]. Thus in this

case the loss of FL can be by a factor of n
d larger than the loss of the best set of size d.

When rephrased i.t.o. compression losses, FL picks a set of size n− d whose complementary
set of size d has minimum compression loss. We just showed that the total compression loss of FL
can be at least n

d times the compression loss of the best subset of size n−d.
We can lift the above lower bound for sets to the case of uncentered PCA. Now d = n− k and k

is the rank of the subspace we want to compress onto. To simplify the argument, we let the first n
instances be small multiples of the standard basis vectors. More precisely, xt = tε et , for 1 ≤ t ≤ n
and small real ε. These instances cause the uncentered data covariance matrix ∑n

t=1 xtx>t to be a
diagonal matrix. Also, if ε is small enough then the loss in the first n trials is negligible. From now
on FL always chooses a unique set of d = n− k standard basis vectors of minimum loss and the
adversary chooses a standard basis vector with the lowest loss in the set as the next instance. So the
lower bound argument essentially reduces to the set case, and FL can be forced to have compression
loss n

n−k times the loss of the compression loss of the best k dimensional subspace.
So far we have shown that our online algorithms are better than the simplistic FL Algorithm

since their compression losses are at most one times the loss of the best plus essentially a square
root term. We now show that the constant in front of the square root term is rather tight as well. For
the expert setting (d = 1) this was already done:

Theorem 10 (Theorem C.3. of the journal version Helmbold and Warmuth 2008 of the conference
paper Helmbold and Warmuth 2007.) For all ε > 0 there exists nε such that for any number of
experts n ≥ nε, there exists a Tε,n where for any number of trials T ≥ Tε,n the following holds for
any algorithm in the expert setting: there is a sequence of T trials with n experts for which the loss
of the best expert is at most T/2 and the regret of the algorithm is at least (1− ε)

√
(T/2) logn.

In the expert model used in this paper, we follow Freund and Schapire (1997) and assume that
the losses of the experts in each trial are specified by a loss vector in [0,1]N . There is a related
model (studied earlier), where the experts produce predictions in each trial. After receiving those
predictions the algorithm produces its own prediction and receives a label. The loss of the experts

2310

ONLINE PCA

and algorithm is the absolute value of the difference between the predictions and the label, respec-
tively (Littlestone and Warmuth, 1994). The above theorem actually holds for this model of online
learning with the absolute loss (when all predictions are in [0,1] and the labels are in {0,1}), and
the model used in this paper may be seen as the special case where the prediction of the algorithm is
formed by simply averaging the predictions of the experts (Freund and Schapire, 1997). Therefore
any lower bound for the described expert model with absolute loss immediately holds for the expert
model where the loss is specified by a loss vector.

Note that the regret bounds for the Hedge Algorithm discussed at the end of Section 3 have
an additional factor of 2 in the square root term. By choosing a prediction function other than the
weighted average, the factor of 2 can be avoided in the expert model with the absolute loss, and
the upper and lower bounds for the regret have the same constant in front of the square root term
(provided that N and T are large enough) (Cesa-Bianchi et al., 1997; Cesa-Bianchiand and Lugosi,
2006).

The above lower bound theorem immediately generalizes to the case of set experts. Partition
the experts into d blocks of size n

d (assume d divides n). For any algorithm and block, construct
a sequence of length T as before. During the sequence for one block, the experts for all the other
blocks have loss zero. The loss of the best set of size d on the whole sequence of length T d is at
most T d/2 and the regret, that is, the loss of the algorithm on the sequence minus the loss of the
best set of size d, is lower bounded by

(1− ε)d
√

T
2

log
n
d

= (1− ε)
√

dT
2

d log
n
d
.

Rewritten in terms of compression losses for compression sets of size k (i.e., d = n− k), the lower
bound on the compression loss regret becomes

(1− ε)
√

compression loss of best k-subset (n− k) log
n

n− k
. (19)

Note that the upper bound (4) obtained by our algorithm for learning as well as the best subset is
essentially a factor of

√
2 larger than this lower bound.

Finally, we lift the above lower bound for subsets to a lower bound for uncentered PCA. In the
setup for uncentered PCA, the instance matrix at trial t is St = xt(xt)>, where xt has 2-norm at most
1. For the lower bound we need the instance matrix St to be an arbitrary symmetric matrix with
eigenvalues in [0,1]. As discussed before Section 5.1, the upper bound for uncentered PCA still
holds for these more general instance matrices.

To lift the lower bound for subsets to uncentered PCA, we simply replace the loss vector `t by
the instance matrix St = diag(`t). At trial t, the PCA algorithm uses the density matrix W t−1 and
incurs expected loss tr(W t−1 diag(`t)) = diag(W t−1) ·`t . Note that the diagonal vector diag(W t−1) is
a probability vector. Thus the PCA algorithm doesn’t have any advantage from using non-diagonal
density matrices and the lower bound reduces to the set case. We conclude that the lower bound
(19) also holds for the compression loss regret of uncentered PCA algorithms when the instance
matrices are allowed to be symmetric matrices with eigenvalues in [0,1]. Again the corresponding
upper bound (7) is essentially a factor of

√
2 larger.

2311

WARMUTH AND KUZMIN

Figure 3: The data sequence used for the
first experiment switches be-
tween three different subspaces.
It is split into three segments.
Within each segment, the data
is drawn from a different 20-
dimensional Gaussian with a
rank 2 covariance matrix. We
plot the first three coordinates
of each data point. Different
colors/symbols denote the data
points that came from the three
different subspaces.

Figure 4: The blue/solid curve is the total loss of uncen-
tered online PCA Algorithm 5 for the data se-
quence described in Figure 3 (with n = 20,k = 2
and η = 1). The algorithm uses internal ran-
domization for choosing a subspace and there-
fore the curve is actually the average total loss
over 50 runs for the same data sequence. The
error bars (one standard deviation) indicate the
variance of the algorithm. The black/dash-dotted
curve plots the same for the uncentered version
of Algorithm 6 (again η = 1). The visible bumps
in the curves correspond to places in the data se-
quence where it shifts from one subspace to an-
other. The red/dashed curve is the total loss of
the best projection matrix determined in hind-
sight (i.e., loss of batch uncentered PCA). The
green/dotted curve is the total loss of the Follow
the Leader Algorithm.

8. Simple Experiments

The regret bounds we prove for our online PCA algorithms hold for arbitrary sequences of instances.
In other words, they hold even if the instances are produced by an adversary which aims to make
the algorithm have large regret. In many cases, natural data does not have a strong adversarial
nature and even the simple Follow the Leader Algorithm might have small regret against the best
subspace chosen in hindsight. However, natural data commonly shifts with time. It is on such time-
changing data sets that online algorithms have an advantage. In this section we present some simple
experiments that bring out the ability of our online algorithms to adapt to data that shifts with time.

For our first experiment we constructed a simple synthetic data set of time-changing nature.
The data sequence is divided into three equal intervals, of 500 points each. Within each interval
data points are picked at random from a multivariate Gaussian distribution on R

20 with zero mean.

2312

ONLINE PCA

Figure 5: Behavior of the Uncentered Online PCA Algorithm 5 when data shifts from one subspace to
another. First shift for one of the runs in Figure 4 is shown. We show the projection matrices that
have the highest probability of being picked by the algorithm in a given trial. Since k = 2, each
such matrix Pt can be seen as a 2-dimensional ellipse in R

20: the ellipse is formed by points Ptx
for all ‖x‖2 = 1. We plot the first three coordinates of this ellipse. The transition sequence starts
with the algorithm focused on the optimal projection matrix for the first subset of data and ends
with essentially the optimal matrix for the second subset. The depicted transition takes about 60
trials and only every 5th trial is plotted.

The covariance matrices for the Gaussians were picked at random but constrained to rank 2, thus
ensuring that the generated points lie in some 2-dimensional subspace. The generated points with
norm bigger than one were normalized to 1. The data set is graphically represented in Figure 3,
which plots the first three dimensions of each one of the data points. Different colors/symbols
indicate data points that came from the three different subspaces.

In Figure 4 we plot the total compression loss for some of the algorithms introduced in this
paper. For the sake of simplicity we restrict ourselves to uncentered PCA. Here the data dimension
n is 20 and the subspace dimension k is 2. We plot the total loss of the following algorithms as a
function of the trial number: the FL Algorithm, the original uncentered PCA Algorithm 5 and the
uncentered version of Algorithm 6. For the latter two algorithms we need to select a learning rate.
One possibility is to choose the learning rate that optimizes our upper bound on the regret of the
algorithms (3). Since the bound is the same for both algorithms this choice of η is also the same:
the choice depends on an upper bound on the compression loss of the batch algorithm. Plugging
in the actual compression loss of the batch algorithm gives η = 0.12. In practice, heuristics can be
used to tune η. For the experiment of Figure 4 we simply chose η = 1. Recall that our online PCA
algorithms decompose their density matrix parameter W t into a convex combination of projection
matrices using the deterministic Algorithm 2. However, the PCA algorithms then randomly select
one of the k dimensional projection matrices in the convex combination with probability equal to
its coefficient. This introduces randomness into the execution of the algorithm even when run on a
fixed data sequence. We run the algorithms 50 times and plot the average total loss as a function

2313

WARMUTH AND KUZMIN

of t for the fixed data sequence depicted in Figure 3. We also indicate the variance of this total
loss with error bars of one standard deviation. Note again that the average and variance is w.r.t.
internal randomization of the algorithm. The bumps in the loss curves of Figure 4 correspond to the
places in the data sequence where it shifts from one subspace to another. When the loss curve of an
algorithm flattens out then the algorithm has learned the correct subspace for the current segment.
For example, Figure 5 depicts how the density matrix of the uncentered PCA Algorithm 5 (η = 1)
transitions around a segment boundary.

The FL Algorithm (which coincides with the uncentered version of Algorithm 10 when η → ∞)
learns the first segment really quickly, but it does not recover during the later segments. The original
uncentered PCA Algorithm 5 (with η = 1) recovers in each segment, whereas the uncentered version
of Algorithm 6 (with η = 1) does not recover as quickly and has higher total loss on this data
sequence. Recall that both online algorithms for uncentered PCA have the same regret bound against
the best fixed offline comparator.

In Figure 4 we also plot the compression loss of the best subspace selected in hindsight by run-
ning batch uncentered PCA (dashed/red line). The data set we generated is not well approximated
by a single 2-dimensional subspace, since it consists of three different 2-dimensional subspaces. As
a result, the overall loss of the fixed subspace is higher than the loss of both of our uncentered online
PCA algorithms that to a varying extent were able to switch between the different 2-dimensional
subspaces.

There are many heuristics for detecting switches of the data. For example one could simply
check for a performance loss of any algorithm in a suitably chosen final segment. However, such
algorithms are often unwieldy and are hard to tune when the data in difference segments are not
drastically different. Note that for the Uncentered Online PCA Algorithm presented in this paper
we only have provable good regret bounds against the best fixed subspace chosen offline (based on
the entire data sequence). (In Figure 4 both of our online algorithms beat the offline comparator
and thus have negative regret against this simple comparator.) Ideally we would like measure regret
against stronger offline comparators that can exploit the shifting nature of the data. In the expert
setting there is a long line of research where the offline algorithm is allowed to partition the data
sequence into s segments and pick the best subspace for each of the s segments. There are simple
modifications of the online algorithm in the experts setting that have good regret bounds against the
best partition of size s (see, e.g., Herbster and Warmuth, 1998). Naturally, the regret bounds grow
with the number of segments s. The modifications that are needed to achieve these regret bounds are
simple: insert an additional update step at the end of each trial that mixes a little bit of the uniform
distribution into the weight vector. In the context of uncentered PCA this amounts to adding the
following update at the end of each trial:

W t = (1−α)W t +α
I
n
.

We claim that it is easy to again lift the techniques developed in the expert setting to PCA and prove
the analogous regret bounds against the best partition.

The following subtle modification of the mixing rule leads to algorithms with even more in-
teresting properties. If the algorithm mixes in a little bit of the average of all past weight vectors
instead of the uniform vector, then it is able to switch quickly to experts that have been good at
some time in the past. This has been called the “long-term memory” property of such algorithms.
In the context of uncentered PCA, this amounts the following additional update step for the density

2314

ONLINE PCA

Figure 6: Long term memory effect when mixing in past average is added to the uncentered online PCA
Algorithm 5. The data sequence is comprised of several segments, each one of two hundred
randomly sampled images of the same person but with different facial expressions and lighting
conditions. These segments are indicated with dotted lines and are labeled with the face of the
person that was used to generate the segment. The plot depicts the regret of the uncentered online
PCA Algorithm 5 (η = 1) with added mixing update (20) (α = .001). The regret is w.r.t. the
indicated partition of size six.

matrix:

W t = (1−α)W t +α
∑t−1

q=0W q

t
. (20)

We performed another experiment that demonstrates this “long-term memory” effect by adding
update (20) to the uncentered online PCA Algorithm 5: For this experiment we used face image data
from Yale-B data set. A segmented data sequence was constructed by sampling the face images,
where each segment contained images of the same person, but with different facial expressions,
lighting conditions, etc. Figure 6 plots the regret of our uncentered online PCA Algorithm 5 against
the best partition of size 6 chosen offline (η = 1,α = .001). In the picture the segment boundaries are
indicated with dotted lines and the face below each segment shows the person who’s pictures were
sampled during that section. Note that our online algorithm doesn’t have knowledge of segment
boundaries. The first segment shows the typical behavior of online algorithms: the regret grows
initially, but then flattens out once the algorithm converges to the best solution for that segment.
Thus the “bump” in the regret curve is due to the fact that the algorithm has to learn a new segment
of pictures from a different person. By comparing the bumps of different segments we see that they
are significantly smaller in segments where the algorithm encounters pictures from a person that it

2315

WARMUTH AND KUZMIN

has previously seen: the algorithm “remembers” subspaces that were good in the past. These small
bumps can be seen in segments 3,5 and 6 in our data set. For additional plots of long-term memory
effects in the expert setting see Bousquet and Warmuth (2002). Our experiments are preliminary and
we did not formally prove regret bounds for shifting comparators in PCA setting, but such bounds
are straightforwardly obtained using the methodology from this paper and Bousquet and Warmuth
(2002).

9. Conclusions

We developed a new set of techniques for learning as well as a low dimensional subspace. We first
developed the algorithms in the expert case and then lifted these algorithms and bounds to the matrix
case as essentially done in Tsuda et al. (2005); Warmuth and Kuzmin (2006a). The new insight is
to represent our uncertainty over the subspace as a density matrix with capped eigenvalues. We
show how to decompose such a matrix into a mixture of n subspaces of the desired rank. In the case
of PCA the seemingly quadratic compression loss can be rewritten as a linear loss of our matrix
parameter. Therefore a random subspace chosen from the mixture has the same expected loss as the
loss of the parameter matrix.

Similar techniques (albeit not capping) have been used recently for learning permutations (Helm-
bold and Warmuth, 2008): Instead of maintaining a probability vector over the n! permutations, the
parameter used in that paper is a convex combination of permutation matrices which is an n× n
doubly stochastic matrix. This matrix can be efficiently decomposed into a mixture of O(n2) per-
mutation matrices. If the loss is linear, then a random permutation chosen from the mixture has the
same expected loss as the loss of the doubly stochastic parameter matrix.

When the loss is convex and not linear (as for example the quadratic loss in the generalization
of linear regression to matrix parameters Tsuda et al. 2005), then our new capping trick can still be
applied to the density matrix parameter. In this case, the online loss of the capped density matrix can
be shown to be close to the loss of the best low dimensional subspace. However the quadratic loss
of the capped density matrix (which is a convex combination of subspaces) can be much smaller
than the convex combination of the losses of the subspaces. The bounds of that paper only hold for
the smaller loss of the capped density matrix and not for the expected loss of the subspace sampled
from the convex combination represented by the capped density matrix.

Our new capping technique is interesting in its own right. Whereas the vanilla multiplicative
update on n experts with exponential factors is prone to be unstable because it tends to go into a
corner of the simplex (by putting all weight on the currently best expert), the technique of capping
the weight at 1

d keeps a set of at least d experts alive. In some sense the capping has the same effect
as a “super predator” has on a biological system: such a predator specializes on the most frequent
species of prey, preventing the dominance of any particular species and thus preserving variety. See
Warmuth (2007a) for a discussion of the relationships of our updates to biological systems.

Following Kivinen and Warmuth (1997); Helmbold et al. (1999), we motivate our updates by
trading off a parameter divergence against a loss divergence. In our case, the parameter divergence
is always a capped relative entropy and the loss divergence is simply linear. It would be interesting
to apply the capping trick to the logistic loss used in logistic regression. The logistic loss can be
seen as a relative entropy between the desired probabilities of the outcomes and the predicted prob-
abilities of the outcomes obtained by applying a sigmoid function to the linear activations (Kivinen
and Warmuth, 2001). For “capped logistic regression”, linear constraints would be added to the op-

2316

ONLINE PCA

timization problem defining the updates that cap the predicted probabilities of the outcomes. This
would lead to versions of logistic regression where the loss favors a small set of outcomes instead
of a single outcome.

The algorithms of this paper belong to the family of multiplicative updates, that is, the parame-
ters are updated by multiplicative factors of exponentials. In the matrix case the updates make use
of the matrix log and matrix exponential. There is a second family of updates that does additive
parameter updates. In particular, there are additive online updates for PCA (Crammer, 2006). The
latter update family has the key advantage that they can be easily used with kernels. However, in
a recent conference paper (Kuzmin and Warmuth, 2007) we also were able to give a special case
where the multiplicative updates could be enhanced with a kernel. In this case the instance ma-
trices are outer products xt(xt)> and are replaced by φ(x)t(φ(xt))>. In particular, the online PCA
algorithms of this paper can be “kernelized” this way.

In PCA the instance matrices are symmetric matrices xt(xt)> and we seek a low rank symmetric
subspace that approximates the instances well. In a recent conference paper we showed in a slightly
different context how to generalize our methods to the case of “asymmetric” matrices of arbitrary
shape. Using those techniques, the online PCA algorithms of this paper can be generalized to the
asymmetric case: now the instance matrices are rank one n×m matrices of the form xt(x̃t)>, where
x and x̃ are vectors of dimension n and m, respectively. In the asymmetric case, the underlying
decomposition is the SVD decomposition instead of the eigendecomposition.

There are two technical open problems that arise in this paper. We gave a number of dynamic
programming algorithms, such as the one given for the set expert problem. If the loss range for the
individual experts is [0,1] then the loss range for the set experts is [0,d] when d is the size of the
set. The straightforward application of results for the Hedge Algorithm leads to extra factors of d
in the regret bounds for set experts. We avoided these factors using our capping trick. However,
the question is whether the same bounds (without the d factors) hold for the dynamic programming
algorithm as well. There is a different fundamental algorithmic technique for dealing with structural
domains: the Follow the Perturbed Leader Algorithm (Kalai and Vempala, 2005). The second open
problem is how to adapt this algorithm to online PCA and prove bounds for it that don’t contain the
extra d factors.

Finally, independent of what theoretical progress might have been achieved in this paper, we still
have to find a convincing experimental setting where our new online PCA algorithms are indispens-
able. The update time of our algorithms is O(n2) and further time improvements via approximations
or lazy evaluation might be needed to make the algorithms widely applicable.

Acknowledgments

Thanks to Allen Van Gelder for valuable discussions re. Algorithm 2.

References

K. Azoury and M. K. Warmuth. Relative loss bounds for on-line density estimation with the expo-
nential family of distributions. Journal of Machine Learning, 43(3):211–246, June 2001. Special
issue on Theoretical Advances in On-line Learning, Game Theory and Boosting, edited by Yoram
Singer.

2317

WARMUTH AND KUZMIN

R. Bhatia. Matrix Analysis. Springer, Berlin, 1997.

O. Bousquet and M. K. Warmuth. Tracking a small set of experts by mixing past posteriors. Journal
of Machine Learning Research, 3:363–396, 2002.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

L. M. Bregman. The relaxation method of finding the common point of convex sets and its applica-
tion to the solution of problems in convex programming. USSR Computational Mathematics and
Physics, 7:200–217, 1967.

Y. Censor and A. Lent. An iterative row-action method for interval convex programming. Journal
of Optimization Theory and Applications, 34(3):321–353, July 1981.

N. Cesa-Bianchi and C. Gentile. Improved risk tail bounds for on-line algorithms. In NIPS, 2005.

N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and M. K. Warmuth. How
to use expert advice. Journal of the ACM, 44(3):427–485, May 1997.

N. Cesa-Bianchiand and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,
2006.

K. Crammer. Online tracking of linear subspaces. In Proceedings of the 19th Annual Conference
on Learning Theory (COLT 06), Pittsburg, June 2006. Springer.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to Boosting. Journal of Computer and System Sciences, 55(1):119–139, August 1997.

M. Gu and S. Eisenstat. A stable and efficient algorithm for the rank-one modification of the
symmetric eigenproblem. SIAM Journal on Matrix Analysis and Applications, 15(4):1266–1276,
October 1994.

D. Helmbold and M. K. Warmuth. Learning permutations with exponential weights. In Proceedings
of the 20th Annual Conference on Learning Theory (COLT07). Springer, 2007.

D. Helmbold and M. K. Warmuth. Learning permutations with exponential weights. Submitted
journal version, August 2008.

D. P. Helmbold, J. Kivinen, and M. K. Warmuth. Relative loss bounds for single neurons. IEEE
Transactions on Neural Networks, 10(6):1291–1304, November 1999.

M. Herbster and M. K. Warmuth. Tracking the best expert. Machine Learning, 32(2):151–178,
1998. Earlier version in 12th ICML, 1995.

M. Herbster and M. K. Warmuth. Tracking the best linear predictor. Journal of Machine Learning
Research, 1:281–309, 2001.

A. Kalai. Simulating weighted majority with FPL. Private communication, 2005.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems. J. Comput. Syst. Sci.,
71(3):291–307, 2005. Special issue Learning Theory 2003.

2318

ONLINE PCA

J. Kivinen and M. K. Warmuth. Averaging expert predictions. In Computational Learning Theory,
4th European Conference, EuroCOLT ’99, Nordkirchen, Germany, March 29-31, 1999, Proceed-
ings, volume 1572 of Lecture Notes in Artificial Intelligence, pages 153–167. Springer, 1999.

J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient updates for linear prediction.
Information and Computation, 132(1):1–64, January 1997.

J. Kivinen and M. K. Warmuth. Relative loss bounds for multidimensional regression problems.
Machine Learning, 45(3):301–329, 2001.

J. Kivinen, M. K. Warmuth, and B. Hassibi. The p-norm generalization of the LMS algorithm
for adaptive filtering. Journal of IEEE Transactions on Signal Processing (to appear), 54(5):
1782–1793, May 2005.

D. Kuzmin and M. K. Warmuth. Optimum follow the leader algorithm. In Proceedings of the 18th
Annual Conference on Learning Theory (COLT 05), pages 684–686. Springer, June 2005. Open
problem.

D. Kuzmin and M. K. Warmuth. Online Kernel PCA with entropic matrix updates. In ICML ’07:
Proceedings of the 24th International Conference on Machine Learning. ACM Press, June 2007.

J. Liao. Totally Corrective Boosting Algorithms that Maximize the Margin. PhD thesis, University
of California at Santa Cruz, June 2007.

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Inform. Comput., 108(2):
212–261, 1994. Preliminary version in in FOCS 89.

A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its Applications. Academic
Press, 1979.

R. Rockafellar. Convex Analysis. Princeton University Press, 1970.

T. D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward neural network.
Neural Networks, 2:459–473, 1989.

J. Shawe-Taylor, C. K. I. Williams, N. Cristianini, and J. S. Kandola. On the eigenspectrum of
the gram matrix and the generalization error of kernel-PCA. IEEE Transactions on Information
Theory, 51(7):2510–2522, 2005. URL http://dx.doi.org/10.1109/TIT.2005.850052.

E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates. Journal of Machine
Learning Research, 4:773–818, 2003.

K. Tsuda, G. Rätsch, and M. K. Warmuth. Matrix exponentiated gradient updates for on-line learn-
ing and Bregman projections. Journal of Machine Learning Research, 6:995–1018, June 2005.

M. K. Warmuth. The blessing and the curse of the multiplicative updates. Work in progress,
unpublished manuscript., 2007a.

M. K. Warmuth. When is there a free matrix lunch. In Proc. of the 20th Annual Conference on
Learning Theory (COLT 07). Springer, June 2007b. Open problem.

2319

WARMUTH AND KUZMIN

M. K. Warmuth and D. Kuzmin. Online variance minimization. In Proceedings of the 19th Annual
Conference on Learning Theory (COLT 06), Pittsburg, June 2006a. Springer.

M. K. Warmuth and D. Kuzmin. Randomized PCA algorithms with regret bounds that are logarith-
mic in the dimension. In Advances in Neural Information Processing Systems 19 (NIPS 06). MIT
Press, December 2006b.

M. K. Warmuth, J. Liao, and G. Rätsch. Totally corrective boosting algorithms that maximize the
margin. In ICML ’06: Proceedings of the 23rd International Conference on Machine Learning,
pages 1001–1008, New York, NY, USA, 2006. ACM Press.

2320

Journal of Machine Learning Research 9 (2008) 2321-2348 Submitted 6/07; Revised 1/08; Published 10/08

Probabilistic Characterization of Random Decision Trees

Amit Dhurandhar ASD@CISE.UFL.EDU

Alin Dobra ADOBRA@CISE.UFL.EDU

Computer and Information Science and Engineering
University of Florida
Gainesville, FL 32611, USA

Editor: Greg Ridgeway

Abstract
In this paper we use the methodology introduced by Dhurandhar and Dobra (2009) for analyzing
the error of classifiers and the model selection measures, to analyze decision tree algorithms. The
methodology consists of obtaining parametric expressions for the moments of the generalization
error (GE) for the classification model of interest, followed by plotting these expressions for inter-
pretability. The major challenge in applying the methodology to decision trees, the main theme of
this work, is customizing the generic expressions for the moments of GE to this particular classifica-
tion algorithm. The specific contributions we make in this paper are: (a) we primarily characterize
a subclass of decision trees namely, Random decision trees, (b) we discuss how the analysis extends
to other decision tree algorithms and (c) in order to extend the analysis to certain model selection
measures, we generalize the relationships between the moments of GE and moments of the model
selection measures given in (Dhurandhar and Dobra, 2009) to randomized classification algorithms.
An empirical comparison of the proposed method with Monte Carlo and distribution free bounds
obtained using Breiman’s formula, depicts the advantages of the method in terms of running time
and accuracy. It thus showcases the use of the deployed methodology as an exploratory tool to
study learning algorithms.

Keywords: moments, generalization error, decision trees

1. Introduction

Consider the problem of estimating how a given classification algorithm (rather than a particular
classifier) performs on a given joint distribution over the input-output space (X ×Y). As opposed
to the general setup in machine learning where the distribution is unknown and only independent
and identically distributed (i.i.d.) samples are available, in this scenario, in principle, the behavior
of classification algorithm can be accurately studied. If this problem be solved efficiently, it offers
an alternative line of study for classification algorithms and potentially unique insights into the
non-asymptotic behavior of learning algorithms.

While the problem of estimating classification algorithm performance on a given distribution
might look simple, solving it efficiently poses significant technical hurdles. The most natural way
of studying a classification algorithm would be to sample N datapoints from the given distribution,
train the algorithm to produce a classifier, test the classifier on a few sampled test sets and report
the average error computed over these test sets. A shortcoming of the above approach is that based
on just one single instance of the algorithm (since the algorithm was trained on a single data set of
size N) we conclude about its general behavior. A straightforward extension of the above approach

c©2008 Amit Dhurandhar and Alin Dobra.

DHURANDHAR AND DOBRA

to make the results more relevant in studying the algorithm would be to sample multiple data sets
of size N, train on each of them to produce different classifiers, compute the test error for each of
the classifiers and calculate the average and variance of the obtained test errors. This procedure
would be a better indicator of the behavior of the algorithm than the previous case since we study
multiple instances of the algorithm than just an isolated instance. Ideally, we would want to study
the behavior of the algorithm by training it on all possible data sets of size N producing a variety of
classifiers and then evaluating the expected value and variance of the generalization error (GE) of
each of these classifiers. The GE of a classifier ζ is given by,

GE(ζ) = E [λ(ζ(x),y)]

= P [ζ(x) 6=y]

where λ(., .) is a 0-1 loss function, x is an input and y is an output and the expectation is over the
input-output space X ×Y . The expected value and variance of GE over all possible classifiers1 are
denoted by,

EZ(N) [GE(ζ)] ,

Var(GE(ζ)) = EZ(N)×Z(N)

[

GE(ζ)GE(ζ′)
]

−EZ(N) [GE(ζ)]2

where Z(N) represents the space of all possible classifiers produced by training the classification al-
gorithm on all data sets of size N (denoted by D(N)), drawn from the joint distribution. With this we
have shown that the moments provide a natural and informative avenue for studying classification
algorithms. The question that now arises is, can we compute them efficiently. In our previous work
(Dhurandhar and Dobra, 2009), we presented a general framework for computing these quantities
for an arbitrary classification algorithm efficiently. By extensive use of the linearity of expectation
and change of the order of sums (and integrals), the moments of GE can be expressed in terms of
the behavior of the classification algorithm on specific inputs rather than on the whole space, thus
reducing the complexity from an exponential in the size of the input space to linear for the com-
putation of the first moment and quadratic for the second moment. As part of this prior work, the
generic expressions to compute the moments were customized for the Naive Bayes Classification
algorithm. In the present work we customize the generic expressions to compute moments of the
generalization error for a more popular classification algorithm: Random decision trees.

The specific contributions we make are: We develop a characterization for a subclass of decision
trees. In particular, we characterize Random decision trees which are an interesting variant with re-
spect to three popular stopping criteria namely; fixed height, purity and scarcity (i.e., fewer than
some threshold number of points in a portion of the tree). The analysis directly applies to categori-
cal as well as continuous attributes with split points predetermined for each attribute. Moreover, the
analysis in Section 3.3 is applicable to even other deterministic attribute selection methods based on
information gain, gini gain etc. These and other extensions of the analysis to continuous attributes
with dynamically chosen split points is discussed in Section 5. In the experiments that ensue the
theory, we compare the accuracy of the derived expressions with direct Monte Carlo (i.e., hold-out-
set estimation) and Breiman’s strength and correlation based bounds (Breiman, 2001) on synthetic

1. Expectations over Z(N) are more general than over D(N) since the classification algorithm can be randomized.

2222

PROBABILISTIC CHARACTERIZATION OF RANDOM DECISION TREES

distributions as well as on distributions built on real data. Notice that using the expressions, the
moments can be computed without explicitly building the tree. We also extend the relationships be-
tween the moments of GE and moments of cross validation error (CE), leave-one-out error (LE) and
hold-out-set error (HE) given in Dhurandhar and Dobra (2009) which were applicable only to de-
terministic classification algorithms, to be made applicable to randomized classification algorithms.

2. Preliminaries

Model selection for classification is one of the major challenges in Machine Learning and Data-
mining. Given an i.i.d. sample from the underlying probability distribution, the classification model
selection problem consists in building a classifier by selecting among competing models. Ideally
the model selected minimizes GE. Since GE cannot be directly computed, part of the sample is
used to estimate GE through measures such as cross validation, hold-out-set, leave-one-out, etc.
Though certain rules of thumb are followed by practitioners w.r.t. training size and other parameters
specific to the validation measures in evaluating models through empirical studies (Kohavi, 1995;
Blum et al., 1999) and certain asymptotic results exist (Vapnik, 1998; Shao, 1993), the fact remains
that most of these models and model selection measures are not well understood in real life (non-
asymptotic) scenarios (e.g., what fraction should be test and training, what should be the value k in
k-fold cross validation etc.). This lack of deep understanding limits our ability of using the models
most effectively and maybe more importantly trusting the models to perform well in a particular
application.

Recently, a novel methodology was proposed in Dhurandhar and Dobra (2009) to study the
behavior of models and model selection measures. Since the methodology is at the core of the
current work, we briefly describe it together with the motivation for using this type of analysis for
classification in general and decision trees in particular.

2.1 What is the Methodology?

The methodology for studying classification models consists of studying the behavior of the first
two central moments of the GE of the classification algorithm studied. The moments are taken over
the space of all possible classifiers produced by the classification algorithm, by training it over all
possible data sets sampled i.i.d. from some distribution. The first two moments give enough infor-
mation about the statistical behavior of the classification algorithm to allow interesting observations
about the behavior/trends of the classification algorithm w.r.t. any chosen data distribution.

2.2 Why have such a Methodology?

The answers to the following questions shed light on why the methodology is necessary if tight
statistical characterization is to be provided for classification algorithms.

1. Why study GE ? The biggest danger of learning is overfitting the training data. The main idea
in using GE as a measure of success of learning instead on the empirical error on a given data
set is to provide a mechanism to avoid this pitfall. Implicitly, by analyzing GE all the input is
considered.

2. Why study the moments instead of the distribution of GE ? Ideally, we would study the dis-
tribution of GE instead of moments in order to get a complete picture of what is its behavior.

2223

DHURANDHAR AND DOBRA

Studying the distribution of discrete random variables, except for very simple cases, turns out
to be very hard. The difficulty comes from the fact that even computing the probability of
a single point is intractable since all combinations of random choices that result in the same
value for GE have to be enumerated. On the other hand, the first two central moments coupled
with distribution independent bounds such as Chebychev and Chernoff give guarantees about
the worst possible behavior that are not too far from the actual behavior (small constant fac-
tor). Interestingly, it is possible to compute the moments of a random variable like GE without
ever explicitly writing or making use of the formula for the cumulative distribution function.
What makes such an endeavor possible is extensive use of the linearity of expectation.

3. Why characterize a class of classifiers instead of a single classifier ? While the use of GE as
the success measure is standard practice in Machine Learning, characterizing classes of clas-
sifiers instead of the particular classifier produced on a given data set is not. From the point of
view of the analysis, without large testing data sets it is not possible to evaluate directly GE
for a particular classifier. By considering classes of classifiers to which a classifier belongs,
an indirect characterization is obtained for the particular classifier. This is precisely what
Statistical Learning Theory (SLT) does; there the class of classifiers consists in all classifiers
with the same VC dimension. The main problem with SLT results is that classes based on
VC dimension are too large, thus results tend to be pessimistic. In our methodology, the class
of classifiers consists only of the classifiers that are produced by the given classification al-
gorithm from data sets of fixed size from the underlying distribution. This is the probabilistic
smallest class in which the particular classifier produced on a given data set can be placed in.

2.3 How do we Implement the Methodology ?

One way of approximately estimating the moments of GE over all possible classifiers for a particular
classification algorithm is by directly using Monte Carlo. If we use Monte Carlo directly, we first
need to produce a classifier on a sampled data set then test on a number of test sets sampled from the
same distribution acquiring an estimate of the GE of this classifier. Repeating this entire procedure
a few times we would acquire estimates of GE for different classifiers. Then by averaging the error
of these multiple classifiers we would get an estimate of the first moment of GE. The variance of
GE can also be similarly estimated. The problem with this procedure is that the space of all possible
data sets can be huge. For instance, if we have d attributes each taking m values then the number of
possible data sets of size N is Nmd

−1. Even for any reasonable assignment to N (say, 100), m (say
2) and d (say 3) the number of experiments that need to be performed to guarantee accurate (if not
exact) estimation of the moments seems unreasonable.

Another way of estimating the moments of GE, is by obtaining parametric expressions for them.
If this can be accomplished the moments can be computed exactly. Moreover, by dexterously ob-
serving the manner in which expressions are derived for a particular classification algorithm, in-
sights can be gained into analyzing other algorithms of interest. Though deriving the expressions
may be a tedious task, using them we obtain highly accurate estimates of the moments. In this paper,
we propose this second alternative for analyzing a subclass of decision trees. The key to the analysis
is focusing on the learning phase of the algorithm. In cases where the parametric expressions are
computationally intensive to compute directly, we show that approximating individual terms using
Monte Carlo we obtain accurate estimates of the moments when compared to directly using Monte
Carlo (first alternative) for the same computational cost.

2224

PROBABILISTIC CHARACTERIZATION OF RANDOM DECISION TREES

If the moments are to be studied on synthetic data then the distribution is anyway assumed and
the parametric expressions can be directly used. If we have real data an empirical distribution can
be built on the data set and then the parametric expressions can be used.

2.4 Applications of the Methodology

It is important to note that the methodology is not aimed towards providing a way of estimating
bounds for GE of a classifier on a given data set (i.e., finding distribution free bounds). The primary
goal is creating an avenue in which learning algorithms can be studied precisely, that is, studying
the statistical behavior of a particular algorithm w.r.t. a chosen/built distribution. Below, we discuss
the two most important perspectives in which the methodology can be applied.

2.4.1 ALGORITHMIC PERSPECTIVE

If a researcher/practitioner designs a new classification algorithm, he/she needs to validate it. Stan-
dard practice is to validate the algorithm on a relatively small (5-20) number of data sets and to
report the performance. By observing the behavior of only a few instances of the algorithm the
designer infers its quality. Moreover, if the algorithm under performs on some data sets, it can be
sometimes difficult to pinpoint the precise reason for its failure. If instead he/she is able to derive
parametric expressions for the moments of GE, the test results would be more relevant to the par-
ticular classification algorithm, since the moments are over all possible data sets of a particular size
drawn i.i.d. from some chosen/built distribution. Testing individually on all these data sets is an
impossible task. Thus, by computing the moments using the parametric expressions the algorithm
would be tested on a plethora of data sets with the results being highly accurate. Moreover, since
the testing is done in a controlled environment, that is, all the parameters are known to the designer
while testing, he/she can precisely pinpoint the conditions under which the algorithm performs well
and the conditions under which the algorithm under performs.

2.4.2 DATA SET PERSPECTIVE

If an algorithm designer validates his/her algorithm by computing moments as mentioned earlier, it
can instill greater confidence in the practitioner searching for an appropriate algorithm for his/her
data set. The reason for this being, if the practitioner has a data set which has a similar structure
or is from a similar source as the test data set on which an empirical distribution was built and
favorable results reported by the designer, then this would mean that the results apply not only to
that particular test data set, but to other similar type of data sets and since the practitioner’s data set
belongs to this similar collection, the results would also apply to his. Note that a distribution is just
a weighting of different data sets and this perspective is used in the above exposition.

3. Computing Moments

In this section we first provide the necessary technical groundwork, followed by customization of
the expressions for decision trees. We now introduce some notation that is used primarily in this
section. X is a random vector modeling input whose domain is denoted by X . Y is a random
variable modeling output whose domain is denoted by Y (set of class labels). Y (x) is a random
variable modeling output for input x. ζ represents a particular classifier with its GE denoted by

2225

DHURANDHAR AND DOBRA

GE(ζ). Z(N) denotes a set of classifiers obtained by application of a classification algorithm to
different samples of size N.

3.1 Technical Framework

The basic idea in the generic characterization of the moments of GE, is to define a class of classifiers
induced by a classification algorithm and an i.i.d. sample of a particular size from an underlying
distribution. Each classifier in this class and its GE act as random variables, since the process of
obtaining the sample is randomized. Since GE(ζ) is a random variable, it has a distribution. Quite
often though, characterizing a finite subset of moments turns out to be a more viable option than
characterizing the entire distribution. Based on these facts, we revisit the expressions for the first
two moments around zero of the GE of a classifier,

EZ(N) [GE(ζ)] =

∑
x∈X

P [X =x] ∑
y∈Y

PZ(N) [ζ(x)=y]P [Y (x) 6=y] ,

EZ(N)×Z(N)

[

GE(ζ)GE(ζ′)
]

=

∑
x∈X

∑
x′∈X

P [X =x]P
[

X =x′
]

·

∑
y∈Y

∑
y′∈Y

PZ(N)×Z(N)

[

ζ(x)=y∧ζ′(x′)=y′
]

·

P [Y (x) 6=y]P
[

Y (x′) 6=y′
]

From the above equations we observe that for the first moment we have to characterize the behav-
ior of the classifier on each input separately while for the second moment we need to observe its
behavior on pairs of inputs. In particular, to derive expressions for the moments of any classifica-
tion algorithm we need to characterize PZ(N) [ζ(x)=y] for the first moment and PZ(N)×Z(N)[ζ(x)=
y∧ζ′(x′)=y′] for the second moment.2 The values for the other terms denote the error of the clas-
sifier for the first moment and errors of two classifiers for the second moment which are obtained
directly from the underlying joint distribution. For example, if we have data with a class prior p for
class 1 and 1-p for class 2. Then the error of a classifier classifying data into class 1 is 1-p and the
error of a classifier classifying data into class 2 is given by p. We now focus our attention on relating
the above two probabilities, to probabilities that can be computed using the joint distribution and
the classification model viz. Decision Trees.

In the subsections that follow we assume the following setup. We consider the dimensionality
of the input space to be d. A1,A2, ...,Ad are the corresponding discrete attributes or continuous
attributes with predetermined split points. a1,a2, ...,ad are the number of attribute values/the number
of splits of the attributes A1,A2, ...,Ad respectively. mi j is the ith attribute value/split of the jth

attribute, where i ≤ a j and j ≤ d. Let C1,C2, ...,Ck be the class labels representing k classes and N
the sample size.

2. These probabilities and P [Y (x) 6=y] are conditioned on x. We omit explicitly writing the conditional since it improves
readability and is obvious from the context.

2226

PROBABILISTIC CHARACTERIZATION OF RANDOM DECISION TREES

A A

A

A A

A

A1

2

223

3

3

m m

m

m mm

mm

m m m m

11 12

21

21 21 22
m

22

2231 31

31
m

32 32

32

Figure 1: The all attribute tree with 3 attributes A1, A2, A3, each having 2 values.

a b c

A

A

A A

A

A A

A

A1

2

3

2

13

3

2

m

m

m

m m

m

m

m

m11

11

11

2121

21

31 31

31
1

Figure 2: Given 3 attributes A1, A2, A3, the path m11m21m31 is formed irrespective of the ordering
of the attributes. Three such permutations are shown in the above figure.

3.2 All Attribute Decision Trees (ATT)

Let us consider a decision tree algorithm whose only stopping criterion is that no attributes remain
when building any part of the tree. In other words, every path in the tree from root to leaf has all
the attributes. An example of such a tree is shown in Figure 1. It can be seen that irrespective of
the split attribute selection method (e.g., information gain, gini gain, randomized selection, etc.) the
above stopping criteria yields trees with the same leaf nodes. Thus although a particular path in one
tree has an ordering of attributes that might be different from a corresponding path in other trees,
the leaf nodes will represent the same region in space or the same set of datapoints. This is seen in
Figure 2. Moreover, since predictions are made using data in the leaf nodes, any deterministic way
of prediction would lead to these trees resulting in the same classifier for a given sample and thus
having the same GE. Usually, prediction in the leaves is performed by choosing the most numerous
class as the class label for the corresponding datapoint. With this we arrive at the expressions for
computing the aforementioned probabilities,

PZ(N) [ζ(x)=Ci] =

PZ(N)[ct(mp1mq2...mrdCi) > ct(mp1mq2...mrdC j),

∀ j 6= i, i, j ∈ [1, ...,k]]

2227

DHURANDHAR AND DOBRA

where x = mp1mq2...mrd denotes a datapoint which is also a path from root to leaf in the tree. We
refer to this path as a cell sometimes since it represents a rectangular region in a d dimensional
space. ct(mp1mq2...mrdCi) is the count of the datapoints in the cell mp1mq2...mrdCi. Henceforth,
when using the word ”path” we will strictly imply path from root to leaf. By computing the above
probability ∀ i and ∀ x we can compute the first moment of the GE for this classification algorithm.

Similarly, for the second moment we compute cumulative joint probabilities of the following
form:

PZ(N)×Z(N) [ζ(x)=Ci ∧ζ′(x′)=Cv] =
PZ(N)×Z(N)[ct(mp1...mrdCi) > ct(mp1...mrdC j),

ct(m f 1...mhdCv) > ct(m f 1...mhdCw),
∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

where the terms have similar connotation as before. These probabilities can be computed exactly or
by using fast approximation techniques proposed in Dhurandhar and Dobra (2009).

3.3 Decision Trees with Non-trivial Stopping Criteria

We just considered decision trees which are grown until all attributes are exhausted. In real life
though we seldom build such trees. The main reasons for this could be any of the following: we
wish to build small decision trees to save space; certain path counts (i.e., number of datapoints in
the leaves) are extremely low and hence we want to avoid splitting further, as the predictions can
get arbitrarily bad; we have split on a certain subset of attributes and all the datapoints in that path
belong to the same class (purity based criteria); we want to grow trees to a fixed height (or depth).
These stopping measures would lead to paths in the tree that contain a subset of the entire set of
attributes. Thus from a classification point of view we cannot simply compare the counts in two
cells as we did previously. The reason for this being that the corresponding path may not be present
in the tree. Hence, we need to check that the path exists and then compare cell counts. Given the
classification algorithm, since the PZ(N) [ζ(x)=Ci] is the probability of all possible ways in which
an input x can be classified into class Ci for a decision tree it equates to finding the following kind
of probability for the first moment,

PZ(N) [ζ(x)=Ci] =

∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j), pathpexists,

∀ j 6= i, i, j ∈ [1, ...,k]]

(1)

where p indexes all allowed paths by the tree algorithm in classifying input x. After the summation,
the right hand side term above is the probability that the cell pathpCi has the greatest count, with
the path ”pathp” being present in the tree. This will become clearer when we discuss different
stopping criteria. Notice that the characterization for the ATT is just a special case of this more
generic characterization.

2228

PROBABILISTIC CHARACTERIZATION OF RANDOM DECISION TREES

The probability that we need to find for the second moment is,

PZ(N)×Z(N)

[

ζ(x)=Ci ∧ζ′(x′)=Cv
]

=

∑
p,q

PZ(N)×Z(N)[ct(pathpCi) > ct(pathpC j), pathpexists,

ct(pathqCv) > ct(pathqCw), pathqexists,

∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

(2)

where p and q index all allowed paths by the tree algorithm in classifying input x and x′ respectively.
The above two equations are generic in analyzing any decision tree algorithm which classifies inputs
into the most numerous class in the corresponding leaf. It is not difficult to generalize it further when
the decision in leaves is some other measure than majority. In that case we would just include that
measure in the probability in place of the inequality.

3.3.1 CHARACTERIZING Path Exists FOR THREE STOPPING CRITERIA

It follows from above that to compute the moments of the GE for a decision tree algorithm we need
to characterize conditions under which particular paths are present. This characterization depends
on the stopping criteria and split attribute selection method in a decision tree algorithm. We now
look at three popular stopping criteria, namely a) Fixed height based, b) Purity (i.e., entropy 0 or gini
index 0 etc.) based and c) Scarcity (i.e., too few datapoints) based. We consider conditions under
which certain paths are present for each stopping criteria. Similar conditions can be enumerated for
any reasonable stopping criteria. We then choose a split attribute selection method, thereby fully
characterizing the above two probabilities and hence the moments.

1. Fixed Height: This stopping criteria is basically that every path in the tree should be of length
exactly h, where h ∈ [1, ...,d]. If h = 1 we classify based on just one attribute. If h = d then
we have the all attribute tree.
In general, a path mi1m j2...mlh is present in the tree iff the attributes A1, A2, ..., Ah are chosen
in any order to form the path for a tree construction during the split attribute selection phase.
Thus, for any path of length h to be present we bi-conditionally imply that the corresponding
attributes are chosen.

2. Purity: This stopping criteria implies that we stop growing the tree from a particular split
of a particular attribute if all datapoints lying in that split belong to the same class. We call
such a path pure else we call it impure. In this scenario, we could have paths of length 1 to d
depending on when we encounter purity (assuming all datapoints don’t lie in 1 class). Thus,
we have the following two separate checks for paths of length d and less than d respectively.

a) Path mi1m j2...mld present iff the path mi1m j2...ml(d−1) is impure and attributes A1, A2, ...,

Ad−1 are chosen above Ad , or mi1m j2...ms(d−2)mld is impure and attributes A1, A2, ..., Ad−2, Ad

are chosen above Ad−1, or ... or m j2...mld is impure and attributes A2, ..., Ad are chosen above
A1.
This means that if a certain set of d−1 attributes are present in a path in the tree then we split
on the dth attribute iff the current path is not pure, finally resulting in a path of length d.

b) Path mi1m j2...mlh present where h < d iff the path mi1m j2...mlh is pure and attributes
A1, A2, ..., Ah−1 are chosen above Ah and mi1m j2...ml(h−1) is impure or the path mi1m j2...mlh

2229

DHURANDHAR AND DOBRA

is pure and attributes A1, A2, ..., Ah−2, Ah are chosen above Ah−1 and mi1m j2...ml(h−2)mlh is
impure or ... or the path m j2...mlh is pure and attributes A2, ..., Ah are chosen above A1 and
m j2...mlh is impure.
This means that if a certain set of h−1 attributes are present in a path in the tree then we split
on some hth attribute iff the current path is not pure and the resulting path is pure.

The above conditions suffice for ”path present” since the purity property is anti-monotone
and the impurity property is monotone.

3. Scarcity: This stopping criteria implies that we stop growing the tree from a particular split
of a certain attribute if its count is less than or equal to some pre-specified pruning bound. Let
us denote this number by pb. As before, we have the following two separate checks for paths
of length d and less than d respectively.

a) Path mi1m j2...mld present iff the attributes A1, ...,Ad−1 are chosen above Ad and ct(mi1m j2...

ml(d−1)) > pb or the attributes A1, ...,Ad−2,Ad are chosen above Ad−1 and ct(mi1m j2...

ml(d−2)mnd) > pb or ... or the attributes A2, ...,Ad are chosen above A1 and ct(mi2m j3...mld) >

pb.

b) Path mi1m j2...mlh present where h < d iff the attributes A1, ...,Ah−1 are chosen above Ah

and ct(mi1m j2...ml(h−1)) > pb and ct(mi1m j2...mlh) ≤ pb or the attributes A1, ...,Ah−2,Ah are
chosen above Ah−1 and ct(mi1m j2...ml(h−2)mnh) > pb and ct(mi1m j2...mnh) ≤ pb or ... or the
attributes A2, ...,Ah are chosen above A1 and ct(mi2m j3...mlh) > pb and ct(mi1m j2...mlh)≤ pb.
This means that we stop growing the tree under a node once we find that the next chosen
attribute produces a path with occupancy ≤ pb.

The above conditions suffice for ”path present” since the occupancy property is monotone.

We observe from the above checks that we have two types of conditions that need to be eval-
uated for a path being present namely, i) those that depend on the sample viz. mi1m j2...ml(d−1)

is impure or ct(mi1m j2...mlh) > pb and ii) those that depend split attribute selection method viz.
A1, A2, ..., Ah are chosen. The former depends on the data distribution which we have specified to
be a multinomial. The latter we discuss in the next subsection. Note that checks for a combination
of the above stopping criteria can be obtained by appropriately combining the individual checks.

3.4 Split Attribute Selection

In decision tree construction algorithms, at each iteration we have to decide the attribute variable
on which the data should be split. Numerous measures have been developed (Hall and Holmes,
2003). Some of the most popular ones aim to increase the purity of a set of datapoints that lie in
the region formed by that split. The purer the region, the better the prediction and lower the error
of the classifier. Measures such as, i) Information Gain (IG) (Quinlan, 1986), ii) Gini Gain (GG)
(Breiman et al., 1984), iii) Gain Ratio (GR) (Quinlan, 1986), iv) Chi-square test (CS) (Shao, 2003)
etc. aim at realizing this intuition. Other measures using Principal Component Analysis (Smith,
2002), Correlation-based measures (Hall, 1998) have also been developed. Another interesting yet
non-intuitive measure in terms of its utility is the Random attribute selection measure. According
to this measure we randomly choose the split attribute from available set. The decision tree that this
algorithm produces is called a Random decision tree (RDT). Surprisingly enough, a collection of
RDTs quite often outperform their seemingly more powerful counterparts (Liu et al., 2005). In this

2230

PROBABILISTIC CHARACTERIZATION OF RANDOM DECISION TREES

paper we study this interesting variant. We do this by first presenting a probabilistic characterization
in selecting a particular attribute/set of attributes, followed by simulation studies. Characterizations
for the other measures can be developed in similar vein by focusing on the working of each measure.
As an example, for the deterministic purity based measures mentioned above the split attribute
selection is just a function of the sample and thus by appropriately conditioning on the sample we
can find the relevant probabilities and hence the moments.

Before presenting the expression for the probability of selecting a split attribute/attributes in
constructing a RDT we extend the results in Dhurandhar and Dobra (2009) where relationships
were drawn between the moments of HE, CE, LE (just a special case of cross validation) and GE,
to be applicable to randomized classification algorithms. The random process is assumed to be
independent of the sampling process. This result is required since the results in Dhurandhar and
Dobra (2009) are applicable to deterministic classification algorithms and we would be analyzing
RDT’s. With this we have the following lemma.

Lemma 1 Let D and T be independent discrete random variables, with some distribution defined
on each of them. Let D and T denote the domains of the random variables. Let f (d, t) and g(d, t)
be two functions such that ∀t ∈ T ED [f (d, t)] = ED [g(d, t)] and d ∈ D . Then, ET ×D [f (d, t)] =
ET ×D [g(d, t)]

Proof

ET ×D [f (d, t)] = ∑
t∈T

∑
d∈D

f (d, t)P[T = t,D = d]

= ∑
t∈T

∑
d∈D

f (d, t)P[D = d]P[T = t]

= ∑
t∈T

ED [g(d, t)]P[T = t]

= ET ×D [g(d, t)].

The result is valid even when D and T are continuous, but considering the scope of this paper we
are mainly interested in the discrete case. This result implies that all the relationships and expres-
sions in Dhurandhar and Dobra (2009) hold with an extra expectation over the t ′s, for randomized
classification algorithms where the random process is independent of the sampling process.

3.5 Random Decision Trees

In this subsection we explain the randomized process used for split attribute selection and provide
the expression for the probability of choosing an attribute/a set of attributes. The attribute selection
method we use is as follows. We assume a uniform probability distribution in selecting the attribute
variables, that is, attributes which have already not been chosen in a particular branch, have an
equal chance of being chosen for the next level. The random process involved in attribute selection
is independent of the sample and hence the lemma 1 applies. We now give the expression for
the probability of selecting a subset of attributes from the given set for a path. This expression is
required in the computation of the above mentioned probabilities used in computing the moments.

2231

DHURANDHAR AND DOBRA

For the first moment we need to find the following probability. Given d attributes A1, A2, ..., Ad the
probability of choosing a set of h attributes where h ∈ {1,2, ...,d} is,

P[h attributes chosen] =
1

(

d
h

)

since choosing without replacement is equivalent to simultaneously choosing a subset of attributes
from the given set.

For the second moment when the trees are different (required in the finding of variance of
CE since, the training sets in the various runs in cross validation are different, that is, for finding
EZ(N)×Z(N) [GE(ζ)GE(ζ′)]), the probability of choosing l1 attributes for path in one tree and l2

attributes for path in another tree where l1, l2 ≤ d is given by,

P[l1 attribute path in tree 1, l2 attribute path in tree 2] =
1

(

d
l1

)(

d
l2

)

since the process of choosing one set of attributes for a path in one tree is independent of the process
of choosing another set of attributes for a path in a different tree.

For the second moment when the tree is the same (required in the finding of variance of GE and
HE, that is, for finding EZ(N)

[

GE(ζ)2
]

), the probability of choosing two sets of attributes such that
the two distinct paths resulting from them co-exist in a single tree is given by the following. Assume
we have d attributes A1, A2, ..., Ad . Let the lengths of the two paths (or cardinality of the two sets)
be l1 and l2 respectively, where l1, l2 ≤ d. Without loss of generality assume l1 ≤ l2. Let p be the
number of attributes common to both paths. Notice that p ≥ 1 is one of the necessary conditions
for the two paths to co-exist. Let v ≤ p be those attributes among the total p that have same values
for both paths. Thus p− v attributes are common to both paths but have different values. At one
of these attributes in a given tree the two paths will bifurcate. The probability that the two paths
co-exist given our randomized attribute selection method is computed by finding out all possible
ways in which the two paths can co-exist in a tree and then multiplying the number of each kind
of way by the probability of having that way. A detailed proof is given in the Appendix A. The
expression for the probability based on the attribute selection method is,

P[l1 and l2 length paths co− exist] =
v

∑
i=0

vPri(l1 − i−1)!(l2 − i−1)!(p− v)probi

where vPri =
v!

(v−i)! denotes permutation and probi =
1

d(d−1)...(d−i)(d−i−1)2...(d−l1+1)2(d−l1)...(d−l2+1)
is

the probability of the ith possible way. For fixed height trees of height h, (l1 − i− 1)!(l2 − i− 1)!
becomes (h− i−1)!2 and probi = 1

d(d−1)...(d−i)(d−i−1)2...(d−h+1)2 .

3.6 Putting Things Together

We now have all the ingredients that are required for the computation of the moments of GE. In
this subsection we combine the results derived in the previous subsections to obtain expressions for

2232

PROBABILISTIC CHARACTERIZATION OF RANDOM DECISION TREES

PZ(N) [ζ(x)=Ci] and PZ(N)×Z(N) [ζ(x)=Ci ∧ζ′(x′)=Cv] which are vital in the computation of the
moments.

Let s.c.c.s. be an abbreviation for stopping criteria conditions that are sample dependent. Con-
versely, s.c.c.i. be an abbreviation for stopping criteria conditions that are sample independent or
conditions that are dependent on the attribute selection method. We now provide expressions for the
above probabilities categorized by the 3 stopping criteria.

3.6.1 FIXED HEIGHT

The conditions for ”path exists” for fixed height trees depend only on the attribute selection method
as seen in Section 3.3.1. Hence the probability used in finding the first moment is given by,

PZ(N) [ζ(x)=Ci]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j), pathpexists, ∀ j 6= i, i, j ∈ [1, ...,k]]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j),s.c.c.i., ∀ j 6= i, i, j ∈ [1, ...,k]]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j), ∀ j 6= i, i, j ∈ [1, ...,k]]PZ(N)[s.c.c.i.]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j), ∀ j 6= i, i, j ∈ [1, ...,k]]
(

d
h

)

where h is the length of the paths or the height of the tree. The probability in the last step of the
above derivation can be computed from the underlying joint distribution. The probability for the
second moment when the trees are different is given by,

PZ(N)×Z(N)

[

ζ(x)=Ci ∧ζ′(x′)=Cv
]

= ∑
p,q

PZ(N)×Z(N)[ct(pathpCi) > ct(pathpC j), pathpexists,ct(pathqCv) > ct(pathqCw),

pathqexists,∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

= ∑
p,q

PZ(N)×Z(N)[ct(pathpCi) > ct(pathpC j),ct(pathqCv) > ct(pathqCw),∀ j 6= i,

∀w 6= v, i, j,v,w ∈ [1, ...,k]] ·PZ(N)×Z(N)[s.c.c.i.]

=
1

(

d
h

)2 (∑
p,q

PZ(N)×Z(N)[ct(pathpCi) > ct(pathpC j),ct(pathqCv) > ct(pathqCw),

∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]).

The probability for the second moment when the trees are the same is given by,

2233

DHURANDHAR AND DOBRA

PZ(N)

[

ζ(x)=Ci ∧ζ(x′)=Cv
]

= ∑
p,q

PZ(N)[ct(pathpCi) > ct(pathpC j), pathpexists,ct(pathqCv) > ct(pathqCw),

pathqexists,∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

= ∑
p,q

PZ(N)[ct(pathpCi) > ct(pathpC j),ct(pathqCv) > ct(pathqCw),∀ j 6= i, ∀w 6= v, i, j,

v,w ∈ [1, ...,k]] ·PZ(N)[s.c.c.i.]

= ∑
p,q

b

∑
t=0

bPrt(h− t −1)!2(r− v)probtPZ(N)[ct(pathpCi) > ct(pathpC j),

ct(pathqCv) > ct(pathqCw),∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

where r is the number of attributes that are common in the 2 paths, b is the number of attributes that
have the same value in the 2 paths, h is the length of the paths and probt =

1
d(d−1)...(d−t)(d−t−1)2...(d−h+1)2 . As before, the probability comparing counts can be computed from
the underlying joint distribution.

3.6.2 PURITY AND SCARCITY

The conditions for ”path exists” in the case of purity and scarcity depend on both the sample and the
attribute selection method as can be seen in 3.3.1. The probability used in finding the first moment
is given by,

PZ(N) [ζ(x)=Ci]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j), pathpexists, ∀ j 6= i, i, j ∈ [1, ...,k]]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j),s.c.c.i,s.c.c.s., ∀ j 6= i, i, j ∈ [1, ...,k]]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j),s.c.c.s., ∀ j 6= i, i, j ∈ [1, ...,k]]PZ(N)[s.c.c.i.]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j),s.c.c.s., ∀ j 6= i, i, j ∈ [1, ...,k]]

dChp−1(d −hp +1)

where hp is the length of the path indexed by p. The joint probability of comparing counts and
s.c.c.s. can be computed from the underlying joint distribution. The probability for the second
moment when the trees are different is given by,

2234

PROBABILISTIC CHARACTERIZATION OF RANDOM DECISION TREES

PZ(N)×Z(N)

[

ζ(x)=Ci ∧ζ′(x′)=Cv
]

= ∑
p,q

PZ(N)×Z(N)[ct(pathpCi) > ct(pathpC j), pathpexists,ct(pathqCv) > ct(pathqCw),

pathqexists,∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

= ∑
p,q

PZ(N)×Z(N)[ct(pathpCi) > ct(pathpC j),ct(pathqCv) > ct(pathqCw),s.c.c.s.,∀ j 6= i,

∀w 6= v, i, j,v,w ∈ [1, ...,k]] ·PZ(N)×Z(N)[s.c.c.i.]

=
1

dChp−1dChq−1(d −hp +1)(d −hq +1)
(∑

p,q
PZ(N)×Z(N)[ct(pathpCi) > ct(pathpC j),

ct(pathqCv) > ct(pathqCw),s.c.c.s.,∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]])

where hp and hq are the lengths of the paths indexed by p and q. The probability for the second
moment when the trees are the same is given by,

PZ(N)

[

ζ(x)=Ci ∧ζ(x′)=Cv
]

= ∑
p,q

PZ(N)[ct(pathpCi) > ct(pathpC j), pathpexists,ct(pathqCv) > ct(pathqCw), pathqexists,

∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

= ∑
p,q

PZ(N)[ct(pathpCi) > ct(pathpC j),ct(pathqCv) > ct(pathqCw),s.c.c.s.,∀ j 6= i, ∀w 6= v,

i, j,v,w ∈ [1, ...,k]]PZ(N)[s.c.c.i.]

= ∑
p,q

b

∑
t=0

bPrt(hp − t −2)!(hq − t −2)!(r− v)probt

(d −hp +1)(d −hq +1)
PZ(N)[ct(pathpCi) > ct(pathpC j),

ct(pathqCv) > ct(pathqCw),s.c.c.s.,∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

where r is the number of attributes that are common in the 2 paths sparing the attributes chosen as
leaves, b is the number of attributes that have the same value, hp and hq are the lengths of the 2 paths
and without loss of generality assuming hp ≤ hq probt = 1

d(d−1)...(d−t)(d−t−1)2...(d−hp)2(d−hp−1)...(d−hq)
.

As before, the probability of comparing counts and s.c.c.s. can be computed from the underlying
joint distribution.

Using the expressions for the above probabilities the moments of GE can be computed. In next
section we perform experiments on synthetic as well as distributions built on real data to portray the
efficacy of the derived expressions.

4. Experiments

To exactly compute the probabilities for each path the time complexity for fixed height trees is
O(N2) and for purity and scarcity based trees it is O(N3). Hence, computing exactly the proba-
bilities and consequently the moments is practical for small values of N. For larger values of N,
we propose computing the individual probabilities using Monte Carlo. In the empirical studies we
report, we initially set N to small value and compute the error (i.e., expected value + standard de-
viation) exactly, using the derived expressions (which is thus the golden standard) and compare it

2235

DHURANDHAR AND DOBRA

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

AF
MC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

AF = MC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

MC
AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

MC

AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

MC

AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

MC

AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

MC

AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

MC

AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

MC
AF

Figure 3: Errors of Fixed height trees (top row figures), Purity trees (center row figures) and
Scarcity trees (bottom row figures) with N = 100 are shown. The leftmost figures are
for d = 5 and binary splits, the center figures are for d = 5 and ternary splits and the
rightmost figures are for d = 8 and binary splits. h = 3 for Fixed height trees and pb = N

10
for Scarcity based trees.

2236

PROBABILISTIC CHARACTERIZATION OF RANDOM DECISION TREES

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error

AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error
MC−1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error

MC−10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error

AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error
MC−1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error
MC−10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error

AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error
MC−1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error

MC−10

Figure 4: Errors of Fixed height trees with N = 10000 and h = 3 are shown. In the top row d = 5
and splits are binary, in the center row d = 5 and splits are ternary and in the last row
d = 8 and splits are binary.

2237

DHURANDHAR AND DOBRA

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error = AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error = MC−1

True Error

MC−1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error = MC−10

True Error

MC−10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error = AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error = MC−1

True Error

MC−1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error = MC−10

True Error

MC−10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error = AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error

MC−1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error = MC−10

True Error

MC−10

Figure 5: Errors of Purity trees with N = 10000 are shown. In the top row d = 5 and splits are
binary, in the center row d = 5 and splits are ternary and in the last row d = 8 and splits
are binary.

2238

PROBABILISTIC CHARACTERIZATION OF RANDOM DECISION TREES

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error

AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error
MC−1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error

MC−10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error

AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error

MC−1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error
MC−10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error

AF

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error
MC−1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Correlation

E
rr

o
r

True Error MC−10

Figure 6: Errors of Scarcity trees with N = 10000 and pb = N
10 are shown. In the top row d = 5 and

splits are binary, in the center row d = 5 and splits are ternary and in the last row d = 8
and splits are binary.

2239

DHURANDHAR AND DOBRA

Fixed Ht. Scarcity

0.1

0.3

0.4

0.5

0.6

0.7
0.8

AF

MC−1
MC−10

Purity Scarcity

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

Purity Fixed Ht.

MC−10
MC−1

AF

TE TE

Fixed Ht. Purity Scarcity

0.1

0.2
0.3

0.4

0.5

0.6
0.7

0.8

AF

MC−1
MC−10

TE

Shuttle Landing ControlPima Indians Balloon

0.2

E
rr

or

E
rr

or

E
rr

or

Figure 7: Comparison between AF and MC on three UCI data sets for trees prunned based on fixed
height (h = 3), purity and scarcity (pb = N

10).

Stopping Criteria Split ρ = 1 ρ = 0.36 ρ = 0.11 ρ = 0.02 ρ = 0

Fixed Height
N = 100, d = 5, h = 3 binary 29.67 1.49 0.56 0.34 0.51
N = 100, d = 5, h = 3 ternary 277.37 20.49 10.77 7.7 9.23
N = 100, d = 8, h = 3 binary 152.21 3.89 2.78 1.33 1.57

N = 10000, d = 5, h = 3 binary 41.89 2.99 1.25 0.78 0.71
N = 10000, d = 5, h = 3 ternary 575.15 30.9 15.71 11.87 10.8
N = 10000, d = 8, h = 3 binary 1813.86 7.21 3.86 2.56 2.3

Purity
N = 100, d = 5 binary 39.67 1154.1 5216.75 10783.19 13750.28
N = 100, d = 5 ternary 160.59 181.21 180.5 3281.83 6884.52
N = 100, d = 8 binary 2.8 1.9 1035.68 1211.7 1249.32

N = 10000, d = 5 binary 40.54 2897.3 11499.57 65581.6 422011.93
N = 10000, d = 5 ternary 1386.01 163245.31 675867.31 2662617.25 5781240
N = 10000, d = 8 binary 221.98 178913.85 712081.12 3113403.25 6885975

Scarcity
N = 100, d = 5 binary 17.17 17.59 17.5 17.2 17.08
N = 100, d = 5 ternary 34.10 33.55 32.88 32.18 31.52
N = 100, d = 8 binary 34.42 33.86 33.28 32.59 31.89

N = 10000, d = 5 binary 13.04 12.18 11.26 10.32 9.38
N = 10000, d = 5 ternary 61.01 60.34 59.51 58.64 57.76
N = 10000, d = 8 binary 2643.21 2642.56 2641.75 2640.89 2640.04

Table 1: The above table shows the upper bounds on EZ(N) [GE(ζ)] for different levels of correla-
tion (ρ) between the attributes and class labels obtained using Breiman’s formula.

2240

PROBABILISTIC CHARACTERIZATION OF RANDOM DECISION TREES

Stopping Criteria Pima Indians Balloon Shuttle Landing Control

Fixed Height 151.58 51.84 1.91
Purity 98.97 50.56 2.74

Scarcity 180.93 41.67 2.32

Table 2: The above table shows the upper bounds on EZ(N) [GE(ζ)] for 3 UCI data sets obtained
using Breiman’s formula.

with MC (i.e., hold-out-set estimation)3 for the same computational cost. We then choose a larger
N and show that the accuracy in estimating the error by using our expressions with Monte Carlo is
always greater than by directly using MC for the same computational cost. In fact, the accuracy of
using the expressions is never worse than MC even when MC is executed for 10 times the number
of iterations as those of our expressions. The true error or the golden standard against which we
compare the accuracy of these estimators in this scenario, (since the expressions are also approxi-
mated) is MC that is run for around 200 times the number of iterations as those of the expressions.
Moreover, in Tables 1 and 2 we depict the upper bounds on the error as computed using Breiman’s
strength and correlation based upper bound formula (Breiman, 2001).

4.1 Notation

In the experiments, AF refers to the estimates obtained by using the expressions in conjunction with
Monte Carlo. MC-i refers to simple Monte Carlo being executed for i times the number of iterations
as those of the expressions. Writing just MC denotes MC-1. The term True Error or TE refers to
the golden standard against which we compare AF and MC-i. This is relevant only for large N in
experiments on synthetic data and experiments on real data, since AF is itself the golden standard
for synthetic data experiments with a small N.

4.2 General Setup

We perform empirical studies on synthetic as well as real data. The experimental setup for synthetic
data is as follows: In our initial experiments we fix N to a 100 and then increase it to 10000. The
number of classes is fixed to two. We observe the behavior of the error for the three kinds of trees
with the number of attributes fixed to d = 5 and each attribute having 2 attribute values. We then
increase the number of attribute values to 3, to observe the effect that increasing the number of
split points has on the performance of the estimators. We also increase the number of attributes
to d = 8 to study the effect that increasing the number of attributes has on the performance. With
this we have a d + 1 dimensional contingency table whose d dimensions are the attributes and the
(d +1)th dimension represents the class labels. When each attribute has two values the total number
of cells in the table is c = 2d+1 and with three values the total number of cells is c = 3d × 2. If
we fix the probability of observing a datapoint in cell i to be pi such that ∑c

i=1 pi = 1 and the
sample size to N the distribution that perfectly models this scenario is a multinomial distribution

3. In hold-out set we build a tree, find the test error by averaging over multiple test sets. Perform this procedure multiple
times to obtain multiple test errors and find the average and variance of these test errors.

2241

DHURANDHAR AND DOBRA

with parameters N and the set {p1, p2, ..., pc}. In fact, irrespective of the value of d and the number
of attribute values for each attribute the scenario can be modeled by a multinomial distribution. In
the studies that follow the pi’s are varied and the amount of dependence between the attributes and
the class labels is computed for each set of pi’s using the Chi-square test (Connor-Linton, 2003).
More precisely, we sum over all i the squares of the difference of each pi with the product of
its corresponding marginals, with each squared difference being divided by this product, that is,

correlation = ∑i
(pi−pim)2

pim
, where pim is the product of the marginals for the ith cell. The behavior

of the error for trees with the three aforementioned stopping criteria is seen for different correlation
values and for a class prior of 0.5.

In case of real data, we perform experiments on distributions built on three UCI data sets. We
split the continuous attributes at the mean of the given data. We thus can form a contingency
table representing each of the data sets. The counts in the individual cells divided by the data set
size provide us with empirical estimates for the individual cell probabilities (pi’s). Thus, with the
knowledge of N (data set size) and the individual pi’s we have a multinomial distribution. Using
this distribution we observe the behavior of the error for the three kinds of trees with results being
applicable to other data sets that are similar to the original.

In Tables 1 and 2 we see the upper bounds computed using Breiman’s formula (Breiman, 2001):

κ (1−s2)
s2 where κ is the correlation between the random decision trees in an ensemble and s is the

strength of the resultant classifier.4 Since, we consider only single random decision trees in this
paper and not random forests κ = 1. To compute s we build a tree and calculate the necessary
probabilities. Knowing κ and s we find the upper bound on the GE for the particular classifier. Since,
we need an estimate of EZ(N) [GE(ζ)], we perform the above procedure multiple times thus building
multiple trees and computing an upper bound on GE for each. We then average the upper bounds
that we have computed and report the result as an estimate of the upper bound on EZ(N) [GE(ζ)].

4.3 Observations

In Figure 3 we observe the behavior of MC vs AF (the golden standard) for N = 100. We observe
that the estimates provided by MC are reasonable but not as accurate as AF for the same computa-
tional cost. The behavior of MC becomes worse as we increase the data set size (N) to 10000 as we
discuss now. Figure 4 depicts the error of Fixed height trees for different dimensionalities (5 and
8) and for different number of splits (binary and ternary). We observe here that AF is significantly
more accurate than both MC-1 and MC-10. In fact the performance of the 3 estimators namely, AF,
MC-1 and MC-10 remains more or less unaltered even with changes in the number of attributes and
in the number of splits per attribute. A similar trend is seen for both purity based trees Figure 5 as
well as scarcity based trees 6. Though in the case of purity based trees the performance of both MC-
1 and MC-10 is much superior as compared with their performance on the other two kinds of trees,
especially at low correlations. The reason for this being that, at low correlations the probability in
each cell of the multinomial is non-negligible and with N = 10000 the event that every cell contains
at least a single datapoint is highly likely. Hence, the trees we obtain with high probability using the
purity based stopping criteria are all ATT’s. Since in an ATT all the leaves are identical irrespective
of the ordering of the attributes in any path, the randomness in the classifiers produced, is only due
to the randomness in the data generation process and not because of the random attribute selection
method. Thus, the space of classifiers over which the error is computed reduces and MC performs

4. For further details refer to Breiman (2001) and Buttrey and Kobayashi (2003).

2242

PROBABILISTIC CHARACTERIZATION OF RANDOM DECISION TREES

well even for a relatively fewer number of iterations. At higher correlations and for the other two
kinds of trees the probability of smaller trees is reasonable and hence MC has to account for a larger
space of classifiers induced by not only the randomness in the data but also by the randomness in
the attribute selection method.

In case of real data too Figure 7, the performance of the expressions is significantly superior as
compared with MC-1 and MC-10. The performance of MC-1 and MC-10 for the purity based trees
is not as impressive here since the data set sizes are much smaller (in the tens or hundreds) compared
to 10000 and hence the probability of having an empty cell are not particularly low. Moreover, the
correlations are reasonably high (above 0.6).

By inspecting Tables 1 and 2 it is immediately apparent that the bound in Breiman (2001) when
applied to a single tree is ineffective in most situations—the prediction for the GE is larger than
1. For this formula to provide reasonable predictions, a large number of mostly uncorrelated trees
needs to be used so that the constant κ balances the influence of s.

4.4 Reasons for Superior Performance of Expressions

With simple MC, trees have to be built while performing the experiments. Since, the expectations
are over all possible classifiers, that is, over all possible data sets and all possible randomizations in
the attribute selection phase, the exhaustive space over which direct MC has to run is huge. No tree
has to be explicitly built when using the expressions. Moreover, the probabilities for each path can
be computed parallelly. Another reason as to why calculating the moments using expressions works
better is that the portion of the probabilities for each path that depend on the attribute selection
method are computed exactly (i.e., with no error) by the given expressions and the inaccuracies in
the estimates only occur due to the sample dependent portion in the probabilities.

5. Discussion

In the previous sections we derived the analytical expressions for the moments of the GE of decision
trees and depicted interesting behavior of RDT’s built under the 3 stopping criteria. It is clear that
using the expressions we obtain highly accurate estimates of the moments of errors for situations
of interest. In this section we discuss issues related to extension of the analysis to other attribute
selection methods and issues related to computational complexity of algorithm.

5.1 Extension

The conditions presented for the 3 stopping criteria namely, fixed height, purity and scarcity are
applicable irrespective of the attribute selection method. Commonly used deterministic attribute
selection methods include those based on Information Gain (IG), Gini Gain (GG), Gain ratio (GR)
etc. Given a sample the above metrics can be computed for each attribute. Hence, the above metrics
can be implemented as corresponding functions of the sample. For example, in the case of IG we
compute the loss in entropy (qlogq where the q’s are computed from the sample) by the addition of
an attribute as we build the tree. We then compare the loss in entropy of all attributes not already
chosen in the path and choose the attribute for which the loss in entropy is maximum. Following this
procedure we build the path and hence the tree. To compute the probability of path exists, we add
these sample dependent conditions in the corresponding probabilities. These conditions account for
a particular set of attributes being chosen, in the 3 stopping criteria. In other words, these conditions

2243

DHURANDHAR AND DOBRA

quantify the conditions in the 3 stopping criteria that are attribute selection method dependent. Sim-
ilar conditions can be derived for the other attribute selection methods (attribute with maximum gini
gain for GG, attribute with maximum gain ratio for GR) from which the relevant probabilities and
hence the moments can be computed. Thus, while computing the probabilities given in Equations
1 and 2 the conditions for path exists for these attribute selection methods depend totally on the
sample. This is unlike what we observed for the randomized attribute selection criterion where the
conditions for path exists depending on this randomized criterion, were sample independent while
the other conditions in purity and scarcity were sample dependent. Characterizing these probabili-
ties enables us in computing the moments of GE for these other attribute selection methods.

In the analysis that we presented, we assumed that the split points for continuous attributes were
determined apriori to tree construction. If the split point selection algorithm is dynamic, that is, the
split points are selected while building the tree, then in the path exists conditions of the 3 stopping
criteria we would have to append an extra condition namely, the split occurs at ”this” particular
attribute value. In reality, the value of ”this” is determined by the values that the samples attain for
the specific attribute in the particular data set, which is finite (since data set is finite). Hence, while
analyzing we can choose a set of allowed values for ”this” for each continuous attribute. Using
these updated set of conditions for the 3 stopping criteria the moments of GE can be computed.

Another interesting extension to the current work, in which we customized expressions for
RDT’s is to extend the analysis to Random Forests. Random Forests are essentially an ensem-
ble of RDT’s and the decision to classify a datapoint is based on a majority vote taken from this
ensemble. Hence, in the analysis to compute PZ(N) [ζ(x)=y] (which is the key ingredient in finding
the moments), we would have to compute the probability of the event that more than half of the trees
classify the input x into class y. The precise details as to how this might be accomplished efficiently
is a part of future research.

5.2 Scalability

The time complexity of implementing the analysis is proportional to the product of the size of
the input/output space5 and the number of paths that are possible in the tree while classifying a
particular input. To this end, it should be noted that if a stopping criterion is not carefully chosen
and applied, then the number of possible trees and hence the number of allowed paths can become
exponential in the dimensionality. In such scenarios, studying small or at best medium size trees is
feasible. For studying larger trees the practitioner should combine stopping criteria (e.g., pruning
bound and fixed height or scarcity and fixed height), that is, combine the conditions given for each
individual stopping criteria or choose a stopping criterion that limits the number of paths (e.g., fixed
height). Keeping these simple facts in mind and on appropriate usage, the expressions can assist in
delving into the statistical behavior of the errors for decision tree classifiers. Further speedup w/o
compromising much on accuracy is a challenge for the future.

5.3 Strengths and Limitations of the Applied Methodology

We now discuss the primary advantage and weakness of the approach taken by Statistical Learning
Theory (SLT) and our methodology from the point of view of studying classification algorithms.
SLT categorizes classification algorithms (actually the more general learning algorithms) into dif-

5. In case of continuous attributes the size of the input/output space is the size after discretization.

2244

PROBABILISTIC CHARACTERIZATION OF RANDOM DECISION TREES

ferent classes called Concept Classes. The concept class of a classification algorithm is determined
by its Vapnik-Chervonenkis (VC) dimension which is related to the shattering capability of the al-
gorithm. Distribution free bounds on the generalization error of a classifier built using a particular
classification algorithm belonging to a concept class are derived in SLT. The bounds are functions
of the VC dimension, the sample size and the training error. The strength of this technique is that
by finding the VC dimension of an algorithm we can derive error bounds for the classifiers built
using this algorithm without ever referring to the underlying distribution. A consequence of the
fact that the characterization is general is that the bounds are usually loose (Boucheron et al., 2005;
Williamson, 2001) which in turn results in making statements about any particular classifier and
hence classification algorithm weak.

The idea behind the methodology pursued in this paper was to define a class of classifiers in-
duced by a given learning algorithm and i.i.d. data of a given size. As a consequence, this class of
classifiers is much smaller than the classes considered in SLT. Hence, the characterization of this
class is strongly connected to the behavior of the classifiers and hence the classification algorithm
(as seen in this paper for RDT’s). The downside of our method is the fact that we loose the strength
to make generalized statements to the extent that SLT makes, that is, bounds that are distribution
independent. While the process of characterizing classification algorithms employing the deployed
methodology might be tedious, we believe that it leads to a more precise study of individual learning
algorithms.

6. Conclusion

In this paper we have developed a general characterization for computing the moments of the GE
for decision trees. In particular we have specifically characterized RDT’s for three stopping criteria
namely, fixed height, purity and scarcity. Being able to compute moments of GE, allows us to
compute the moments of the various validation measures and observe their relative behavior. Using
the general characterization, characterizations for specific attribute selection measures (e.g., IG, GG
etc.) other than randomized can be developed as described before. As a technical result, we have
extended the theory in Dhurandhar and Dobra (2009) to be applicable to randomized classification
algorithms; this is necessary if the theory is to be applied to random decisions trees as we did in this
paper. The experiments reported in Section 4 had two purposes: (a) portray the manner in which
the expressions can be used as an exploratory tool to gain a better understanding of decision tree
classifiers, and (b) show that the methodology in Dhurandhar and Dobra (2009) together with the
developments in this paper provide can prove to be a superior analysis tool when compared with
other techniques such as Monte Carlo and distribution free bounds.

More work needs to be done to explore the possibilities and test the limits of the kind of anal-
ysis that we have performed. However, if learning algorithms are analyzed in the manner that we
have shown, it would aid us in studying them more precisely, leading to better understanding and
improved decision-making in the practice of model selection.

2245

DHURANDHAR AND DOBRA

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A
A

A
A A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

1 1

2 2

3

3 3
3 3 3 3

2 2 2 2

1 1

4

4

4

41

5 5
5 5

5 5 5 5

6 6
6 6

7
7 7 7

8 8 8 8

a cb d

Figure 8: Instances of possible arrangements.

Acknowledgments

We would like to thank Dr. Arunava Banerjee for his comments regarding the introduction. We
would also like to thank Dr. Greg Ridgeway and the other anonymous reviewers for their construc-
tive comments. We are grateful to Dr. Medha Dhurandhar for proof reading the paper. This work is
supported by the National Science Foundation Grant, NSF-CAREER-IIS-0448264.

Appendix A.

The probability that two paths of lengths l1 and l2 (l2 ≥ l1) co-exist in a tree based on the randomized
attribute selection method is given by,

P[l1 and l2 length paths co− exist] =
v

∑
i=0

vPri(l1 − i−1)!(l2 − i−1)!(r− v)probi

where r is the number of attributes common in the two paths, v is the number attributes with the
same values in the two paths, vPri = v!

(v−i)! denotes permutation and

probi = 1
d(d−1)...(d−i)(d−i−1)2...(d−l1+1)2(d−l1)...(d−l2+1)

.
We now prove the above result. The derivation of the above result will become clearer through

the following example. Consider the total number of attributes to be d as usual. Let A1, A2 and A3 be
three attributes that are common to both paths and also having the same attribute values. Let A4 and
A5 be common to both paths but have different attribute values for each of them. Let A6 belong to
only the first path and A7, A8 to only the second path. Thus, in our example l1 = 6, l2 = 7, r = 5 and
v = 3. For the two paths to co-exist notice that atleast one of A4 or A5 has to be at a lower depth than
the non-common attributes A6, A7, A8. This has to be true since, if a non-common attribute say A6 is
higher than A4 and A5 in a path of the tree then the other path cannot exist. Hence, in all the possible
ways that the two paths can co-exist, one of the attributes A4 or A5 has to occur at a maximum depth
of v+1, that is, 4 in this example. Figure 8a depicts this case. In the successive tree structures, that
is, Figure 8b, Figure 8c the common attribute with distinct attribute values (A4) rises higher up in
the tree (to lower depths) until in Figure 8d it becomes the root. To find the probability that the two
paths co-exist we sum up the probabilities of such arrangements/tree structures. The probability

2246

PROBABILISTIC CHARACTERIZATION OF RANDOM DECISION TREES

of the subtree shown in Figure 8a is 1
d(d−1)(d−2)(d−3)(d−4)2(d−5)2(d−6)

considering that we choose

attributes w/o replacement for a particular path. Thus the probability of choosing the root is 1
d , the

next attribute is 1
d−1 and so on till the subtree splits into two paths at depth 5. After the split at depth

5 the probability of choosing the respective attributes for the two paths is 1
(d−4)2 , since repetitions

are allowed in two separate paths. Finally, the first path ends at depth 6 and only one attribute has
to be chosen at depth 7 for the second path which is chosen with a probability of 1

d−6 . We now find
the total number of subtrees with such an arrangement where the highest common attribute with
different values is at depth of 4. We observe that A1, A2 and A3 can be permuted in whichever way
w/o altering the tree structure. The total number of ways of doing this is 3!, that is, 3Pr3. The
attributes below A4 can also be permuted in 2!3! w/o changing the tree structure. Moreover, A4 can
be replaced by A5. Thus, the total number of ways the two paths can co-exist with this arrangement is
3Pr32!3!2. The probability of the arrangement is hence given by, 3Pr32!3!2

d(d−1)(d−2)(d−3)(d−4)2(d−5)2(d−6)
.

Similarly, we find the probability of the arrangement in Figure 8b where the common attribute
with different values is at depth 3 then at depth 2 and finally at the root. The probabilities for
the successive arrangements are 3Pr23!4!2

d(d−1)(d−2)(d−3)2(d−4)2(d−5)2(d−6)
, 3Pr14!5!2

d(d−1)(d−2)2(d−3)2(d−4)2(d−5)2(d−6)

and 3Pr05!6!2
d(d−1)2(d−2)2(d−3)2(d−4)2(d−5)2(d−6)

respectively. The total probability for the paths to co-exist is
given by the sum of the probabilities of these individual arrangements.

In the general case, where we have v attributes with the same values the number of arrangements
possible is v + 1. This is because the depth at which the two paths separate out lowers from v + 1
to 1. When the bifurcation occurs at v + 1 the total number of subtrees is vPrv(l1 − v− 1)!(l2 −
v−1)!(r− v) with this arrangement. vPrv is the permutations of the common attributes with same
values. (l1 − v− 1)! and (l2 − v− 1)! are the total permutations of the attributes in path 1 and 2
respectively after the split. r− v is the number of choices for the split attribute. The probability of
any one of the subtrees is 1

d(d−1)...(d−v)(d−v−1)2...(d−l1+1)2(d−l1)...(d−l2+1)
since until a depth of v + 1

the two paths are the same and then from v+2 the two paths separate out. The probability of the first
arrangement is thus, vPrv(l1−v−1)!(l2−v−1)!(r−v)

d(d−1)...(d−v)(d−v−1)2...(d−l1+1)2(d−l1)...(d−l2+1)
. For the second arrangement with

the bifurcation occurring at a depth of v, the number of subtrees is vPrv−1(l1−v)!(l2−v)!(r−v) and
the probability of any one of them is 1

d(d−1)...(d−v+1)(d−v)2...(d−l1+1)2(d−l1)...(d−l2+1)
. The probability

of the arrangement is thus vPrv−1(l1−v)!(l2−v)!(r−v)
d(d−1)...(d−v+1)(d−v)2...(d−l1+1)2(d−l1)...(d−l2+1)

. Similarly, the probabilities
of the other arrangements can be derived. Hence the total probability for the two paths to co-exist
which is the sum of the probabilities of the individual arrangements is given by,

P[l1 and l2 length paths co− exist] =
v

∑
i=0

vPri(l1 − i−1)!(l2 − i−1)!(r− v)
d(d −1)...(d− i)(d − i−1)2...(d− l1 +1)2(d − l1)...(d− l2 +1)

.

References

A. Blum, A. Kalai, and J. Langford. Beating the hold-out: Bounds for k-fold and progressive
cross-validation. In Computational Learing Theory, 1999.

S. Boucheron, O. Bousquet, and G. Lugosi. Introduction to statistical learning theory.
http://www.kyb.mpg.de/publications/pdfs/pdf2819.pdf, 2005.

2247

DHURANDHAR AND DOBRA

L. Breiman. Random forests. http://oz.berkeley.edu/users/breiman/randomforest2001.pdf, 2001.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth
and Brooks, 1984.

S. Buttrey and I. Kobayashi. On strength and correlation in random forests. In Proceedings of the
2003 Joint Statistical Meetings, Section on Statistical Computing, 2003.

J. Connor-Linton. Chi square tutorial. http://www.georgetown.edu/faculty/ballc/webtools/
web chi tut.html, 2003.

A. Dhurandhar and A. Dobra. Semi-analytical method for analyzing models and model selection
measures based on moment analysis. ACM Transactions on Knowledge Discovery and Data
Mining, 2009.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning, 63(1):3–42,
2006. ISSN 0885-6125. doi: http://dx.doi.org/10.1007/s10994-006-6226-1.

M. Hall. Correlation-based feature selection for machine learning. Ph.D diss. Hamilton, NZ:
Waikato University, Department of Computer Science, 1998.

M. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class data mining.
IEEE TRANSACTIONS ON KDE, 2003.

T. Hastie and J. Friedman R. Tibshirani. The Elements of Statistical Learning: Data Mining, Infer-
ence, and Prediction. Springer, 2001.

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection.
In In Proceedings of the Fourteenth IJCAI., 1995.

F. Liu, K. Ting, and W. Fan. Maximizing tree diversity by building complete-random decision trees.
In PAKDD, pages 605–610, 2005.

J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

J. Shao. Linear model selection by cross validation. JASA, 88, 1993.

J. Shao. Mathematical Statistics. Springer-Verlag, 2003.

L. Smith. A tutorial on principal components analysis. www.csnet.otago.ac.nz/cosc453/ stu-
dent tutorials/principal components.pdf, 2002.

V. Vapnik. Statistical Learning Theory. Wiley & Sons, 1998.

R. Williamson. Srm and vc theory (statistical learning theory). http://axiom.anu.edu.au
/ williams/papers/P151.pdf, 2001.

K. Zhang, W. Fan, B. Buckles, X. Yuan, and Z. Xu. Discovering unrevealed properties of probability
estimation trees: On algorithm selection and performance explanation. ICDM, 0:741–752, 2006.
ISSN 1550-4786. doi: http://doi.ieeecomputersociety.org/10.1109/ICDM.2006.58.

2248

Journal of Machine Learning Research 9 (2008) 2349-2376 Submitted 8/06; Revised 1/08; Published 10/08

Learning to Select Features using their Properties

Eyal Krupka EYAL.KRUPKA@MAIL.HUJI.AC.IL

Amir Navot ANAVOT@GMAIL.COM

Naftali Tishby TISHBY@CS.HUJI.AC.IL

School of Computer Science and Engineering
Interdisciplinary Center for Neural Computation
The Hebrew University Jerusalem, 91904, Israel

Editor: Isabelle Guyon

Abstract
Feature selection is the task of choosing a small subset of features that is sufficient to predict the
target labels well. Here, instead of trying to directly determine which features are better, we attempt
to learn the properties of good features. For this purpose we assume that each feature is represented
by a set of properties, referred to as meta-features. This approach enables prediction of the quality
of features without measuring their value on the training instances. We use this ability to devise
new selection algorithms that can efficiently search for new good features in the presence of a huge
number of features, and to dramatically reduce the number of feature measurements needed. We
demonstrate our algorithms on a handwritten digit recognition problem and a visual object cate-
gory recognition problem. In addition, we show how this novel viewpoint enables derivation of
better generalization bounds for the joint learning problem of selection and classification, and how
it contributes to a better understanding of the problem. Specifically, in the context of object recog-
nition, previous works showed that it is possible to find one set of features which fits most object
categories (aka a universal dictionary). Here we use our framework to analyze one such universal
dictionary and find that the quality of features in this dictionary can be predicted accurately by its
meta-features.

Keywords: feature selection, unobserved features, meta-features

1. Introduction

In many supervised learning tasks the input is represented by a very large number of features,
many of which are not needed for predicting the labels. Feature selection is the task of choosing a
small subset of features that is sufficient to predict the target labels well. The main motivations for
feature selection are computational complexity, reducing the cost of measuring features, improved
classification accuracy and problem understanding. Feature selection is also a crucial component
in the context of feature extraction. In feature extraction the original input features (for example,
pixels) are used to generate new, more complicated features (for example logical AND of sets of
3 binary pixels). Feature extraction is a very useful tool for producing sophisticated classification
rules using simple classifiers. One main problem here is that the potential number of additional
features one can extract is huge, and the learner needs to decide which of them to include in the
model.

In the most common selection paradigm an evaluation function is used to assign scores to subsets
of features and a search algorithm is used to search for a subset with a high score. The evaluation

c©2008 Eyal Krupka, Amir Navot and Naftali Tishby.

KRUPKA, NAVOT AND TISHBY

function can be based on the performance of a specific predictor (wrapper model) or on some gen-
eral (typically cheaper to compute) relevance measure of the features to the prediction (filter model)
(Kohavi and John, 1997). In any case, an exhaustive search over all feature sets is generally in-
tractable due to the exponentially large number of possible sets. Therefore, search methods apply
a variety of heuristics, such as hill climbing and genetic algorithms. Other methods simply rank
individual features, assigning a score to each feature independently. These methods ignore redun-
dancy and inevitably fail in situations where only a combined set of features is predictive of the
target function. However, they are usually very fast, and are very useful in most real-world prob-
lems, at least for an initial stage of filtering out useless features. One very common such method is
Infogain (Quinlan, 1990), which ranks features according to the mutual information1 between each
feature and the labels. Another selection method which we refer to in the following is Recursive
Feature Elimination (RFE, Guyon et al., 2002). SVM-RFE is a wrapper selection methods for linear
Support Vector Machine (SVM). In each round it measures the quality of the candidate features by
training SVM and eliminates the features with the lowest weights. See Guyon and Elisseeff (2003)
for a comprehensive overview of feature selection.

In this paper we present a novel approach to the task of feature selection. Classical methods of
feature selection tell us which features are better. However, they do not tell us what characterizes
these features or how to judge new features which were not measured in the training data. We claim
that in many cases it is natural to represent each feature by a set of properties, which we call meta-
features. As a simple example, in image-related tasks where the features are gray-levels of pixels,
the (x,y) position of each pixel can be the meta-features. The value of the meta-features is fixed
per feature; in other words it is not dependent on the instances. Therefore, we refer to the meta-
features as prior knowledge. We use the training set to learn the relation between the meta-feature
values and feature usefulness. This in turn enables us to predict the quality of unseen features. This
ability is an asset particularly when there are a large number of potential features and it is expensive
to measure the value of each feature. For this scenario we suggest a new algorithm called Meta-
Feature based Predictive Feature Selection (MF-PFS) which is an alternative to RFE. The MF-PFS
algorithm uses predicted quality to select new good features, while eliminating many low-quality
features without measuring them. We apply this algorithm to a visual object recognition task and
show that it outperforms standard RFE. In the context of object recognition there is an advantage
in finding one set of features (referred to as a universal dictionary) that is sufficient for recognition
of most kinds of objects. Serre et al. (2005) found that such a dictionary can be built by random
selection of patches from natural images. Here we show what characterizes good universal features
and demonstrate that their quality can be predicted accurately by their meta-features.

The ability to predict feature quality is also a very valuable tool for feature extraction, where
the learner has to decide which potential complex features have a good chance of being the most
useful. For this task we derive a selection algorithm (called Mufasa) that uses meta-features to
explore a huge number of candidate features efficiently. We demonstrate the Mufasa algorithm on
a handwritten digit recognition problem. We derive generalization bounds for the joint problem of
feature selection (or extraction) and classification, when the selection uses meta-features. We show
that these bounds are better than those obtained by direct selection.

The paper is organized as follows: we provide a formal definition of the framework and define
some notations in Section 2. In Sections 3 and 4 we show how to use this framework to predict the

1. Recall that the mutual information between two random variables X and Y is I (X ;Y) = ∑{x,y} p(x,y) log p(x,y)
p(x)p(y) .

2350

LEARNING TO SELECT FEATURES

quality of individual unseen features and how this ability can be combined with RFE. In Section 5
we apply MF-PFS to an object recognition task. In Section 6 we show how the use of meta-features
can be extended to sets of features, and present our algorithm for guiding feature extraction. We
illustrate its abilities on the problem of handwritten digit recognition. Our theoretical results are
presented in Section 7. We discuss how to choose meta-features wisely in Section 8. Finally we
conclude with some further research directions in Section 9. A Matlab code running the algorithms
and experiments presented in this paper is available upon request from the authors.

1.1 Related Work

Incorporating prior knowledge about the representation of objects has long been known to pro-
foundly influence the effectiveness of learning. This has been demonstrated by many authors using
various heuristics such as specially engineered architectures or distance measures (see, for example,
LeCun et al., 1998; Simard et al., 1993). In the context of support vector machines (SVM) a variety
of successful methods to incorporate prior knowledge have been published over the last ten years
(see, for example, Decoste and Schölkopf 2002 and a recent review by Lauer and Bloch 2006).
Krupka and Tishby (2007) proposed a framework that incorporates prior knowledge on features,
which is represented by meta-features, into learning. They assume that a weight is assigned to each
feature, as in linear discrimination, and they use the meta-features to define a prior on the weights.
This prior is based on a Gaussian process and the weights are assumed to be a smooth function of
the meta-features. While in their work meta-features are used for learning a better classifier, in this
work meta-features are used for feature selection.

Taskar et al. (2003) used meta-features of words for text classification when there are features
(words) that are unseen in the training set, but appear in the test set. In their work the features
are words and the meta-features are words in the neighborhood of each word. They used the meta-
features to predict the role of words that are unseen in the training set. Generalization from observed
(training) features to unobserved features is discussed by Krupka and Tishby (2008). Their approach
involves clustering the instances based on the observed features. What these works and ours have
in common is that they all extend learning from the standard instance-label framework to learning
in the feature space. Our formulation here, however, is different and allows a mapping of the
feature learning problem onto the standard supervised learning framework (see Table 1). Another
related model is Budget Learning (Lizotte et al., 2003; Greiner, 2005), that explores the issue of
deciding which is the most valuable feature to measure next under a limited budget. Other ideas
using feature properties to produce or select good features can be found in the literature and have
been employed in various applications. For instance, Levi et al. (2004) used this rationale in the
context of inductive transfer for object recognition. Raina et al. (2006) also used this approach
in the same context for text classification. They use a property of pairs of words which indicates
whether they are synonyms or not for the task of estimating the words’ covariance matrix. Recently,
Lee et al. (2007) used meta-features for feature selection in related tasks. They assume that the meta-
features are informative on the relevance of the features. Using a related task they model feature
relevance as a function of the meta-features. Kadous and Sammut (2005) used property-based
clustering of features for handwritten Chinese recognition and other applications. Our formulation
encompasses a more general framework and suggests a systematic way to use the properties as well
as derive algorithms and generalization bounds for the combined process of feature selection and
classification.

2351

KRUPKA, NAVOT AND TISHBY

Training set Features described by meta-features
Test set Unobserved features
Labels Feature quality
Hypothesis class Class of mappings from meta-features to quality
Generalization in feature selection Predicting the quality of new features
Generalization in the joint problem Low classification error

Table 1: Feature learning by meta-features as a form of standard supervised learning

2. Framework and Notation

In supervised (classification) learning it is assumed that we have a training set Sm =
{

xi,yi
}

m
i=1,

xi ∈ R
N and yi = c

(

xi
)

where c is an unknown classification rule. The task is to find a mapping h
from R

N to the label set with a small chance of erring on a new unseen instance, x ∈ R
N , that was

drawn according to the same probability function as the training instances. The N coordinates are
called features. The standard task of feature selection is to select a subset of features that enables
good prediction of the label. This is done by looking for features which are more useful than the
others. We can also consider the instances as abstract entities in space S and think of the features
as measurements on the instances. Thus each feature f can be considered as a function from S to
R; that is, f : S → R. We denote the set of all the features by { f j}

N
j=1. We use the term feature to

describe both raw input variables (for example, pixels in an image) and variables constructed from
the original input variables using some function (for example, product of 3 pixels in the image). We
also use F to denote a set of features and Sm

F to denote the training set restricted to F; that is, each
instance is described only by the features in F .

Here we assume that each feature is described by a set of k properties u(·) = {ur (·)}
k
r=1 which

we call meta-features. Formally, each ur (·) is a function from the space of possible measurements
to R. Thus each feature f is described by a vector u(f) = (u1 (f) , . . . ,uk (f)) ∈ R

k. Note that the
meta-features are not dependent on the instances. As already mentioned, and will be described
in detail later, this enables a few interesting applications. We also denote a general point in the
image of u(·) by u. log is the base 2 logarithm while ln denotes the natural logarithm. A table
that summarizes the above notations and additional notations that will be introduced later appears
in Appendix B.

3. Predicting the Quality of Features

In this section we show how meta-features can be used to predict the quality of unseen features.
The ability to predict the quality of features without measuring them is advantageous for many
applications. In the next section we demonstrate its usage for efficient feature selection for SVM
(Vapnik, 1995), when it is very expensive to measure each feature.

We assume that we observe only a subset of the N features; that is in the training set we only
see the value of some of the features. We can directly measure the quality (that is, usefulness) of
these features using the training set. Based on the quality of these features, our goal is to predict the
quality of all features, including features that were not part of the training set. Thus we can think of
the training set not only as a “training set of instances”, but also as a “training set of features”.

More formally, our goal is to use the training set Sm and the set of meta-features to learn a
mapping Q̂ : R

k −→ R that predicts the quality of a feature using the values of its meta-features.

2352

LEARNING TO SELECT FEATURES

Algorithm 1 Q̂ =quality_map(Sm, featquality, regalg)

1. measure the feature quality vector: YMF = featquality(Sm)

2. calculate the N × k meta-features matrix XMF

3. use the regression alg. to learn a mapping from meta-feature value to quality: Q̂ =
regalg(XMF ,YMF)

The quality can be based on any kind of standard evaluation function that uses the labeled training
set to evaluate features (for example, Infogain or the square weights assigned by linear SVM). YMF

denotes the vector of measured qualities; that is YMF(j) is the measured quality of the j’s feature
in the training set. Now we have a new supervised learning problem, with the original features as
instances, the meta-features as features and YMF as the (continuous) target label. The analogy to
the standard supervised problem is summarized in Table 1. Thus we can use any standard regression
learning algorithm to find the required mapping from meta-features to quality. The above procedure
is summarized in Algorithm 1. Note that this procedure uses a standard regression learning proce-
dure. That is, the generalization ability to new features can be derived using standard generalization
bounds for regression learning. In the next section we give a specific choice for featquality and
regalg (see step 2(b) of algorithm 2).

4. Efficient Feature Selection for SVM

Support Vector Machine (SVM) (Vapnik, 1995), is one of the most prominent learning algorithms of
the last decade. Many feature selection algorithms for SVM have been suggested (see, for example,
Weston et al. 2000). One of the popular methods for linear SVM is Recursive Feature Elimination
(Guyon et al., 2002). In SVM-RFE you start by training SVM using all the features, then eliminate
the ones with the smallest square weights in the result linear classifier and repeat the same procedure
with the remaining features until the set of selected features is small enough. The reason that
features are eliminated iteratively and not in one step is that the weights given by SVM to a feature
depend on the set of features that was used for training. Thus eliminating only a small number of
the worst features in each stage minimizes the unwanted effect of this phenomenon.

The main drawback of SVM-RFE is that all the candidate features have to be measured. This
is infeasible when measuring each feature is computationally expensive. We suggest an alternative
version of SVM-RFE using meta-features that obviates the need to measure all the features. This
algorithm is called Meta-Features based Predictive Feature Selection (MF-PFS). The main idea is
to run SVM on only a small (random) subset of the features, and then use the assigned weights for
these features to predict the quality of all candidate features using their meta-features (Algorithm
1). Based on this prediction we exclude a group of low quality features, and repeat the process
with a smaller set of candidate features. The exact procedure is summarized in Algorithm 2. The
suggested algorithm considers all the features while calculating only a small fraction of the them.
Thus, it is extremely valuable in a situation where there are a large number of candidate features
and the cost of measuring each feature is very high. In the next section we demonstrate MF-PFS on
such a data set, and show that it achieves results equivalent to those obtained through standard RFE
with an order of magnitude less computation time.

2353

KRUPKA, NAVOT AND TISHBY

Algorithm 2 Q̂ =MF-PFS(Sm,n, t, featquality, regalg)

(The algorithm selects n features out of the full set of N)

1. Initialize the set of selected features F =
{

f j
}

N
j=1 (all the features).

2. while |F| > n,

(a) Select a set F0 of random αn features out of F , measure them and produce a training set
of features Sm

F0
.

(b) Use Algorithm 1 to produce a map Q̂ from meta-features values to quality:

Q̂ = quality_map(Sm
F0

, featquality, regalg)

where featquality trains linear SVM and uses the resulting square weights as a measure
of quality (YMF in Algorithm 1). regalg is based on k-Nearest-Neighbor Regression
(Navot et al., 2006).

(c) Use Q̂ to estimate the quality of all the features in F .

(d) Eliminate from F min(t|F|, |F|−n) features with the lowest estimated quality.

The number of measured features can be further reduced by the following method. The relative
number of features we measure in each round (α in step 2(a) of the algorithm) does not have to be
fixed; for example, we can start with a small value, since a gross estimation of the quality is enough
to eliminate the very worst features, and then increase it in the last stages, where we fine-tune the
selected feature set. This way we can save on extra feature measurements without compromising on
the performance. Typical values for α might be around 0.5 in the first iteration and slightly above
1 in the last iteration. For the same reason, in step 2(d), it makes sense to decrease the number of
features we drop along the iterations. Hence, we adopted the approach that is commonly used in
SVM-RFE that drops a constant fraction, t ∈ (0,1) of the remaining features, where a typical value
of t is 0.5. An example of specific choice of parameter values is given in the next section.

5. Experiments with Object Recognition

In this section we use the Caltech-101 data set and adopt the setting in Serre et al. (2005). The
data set contains natural images of objects belonging to 101 different categories. The label of each
image specifies which object appears in the image, but does not specify the location of the object in
the image. Examples of the images are shown in Figure 1. Serre et al. (2007) built a classification
system for the above task using linear SVM on a sophisticated representation of the images. In
their setting an image is represented by features inspired by the current model of the visual cortex.
They show how the features can be built using a hierarchical feedforward system, where each layer
mimics the behavior of the relevant layer in the cortex. The interested reader should consult their
original paper for all the details on how the features are constructed. Here we simply summarize
the description of the features they use, which is sufficient for our needs. First, original images are
converted into a representation where the original pixels are replaced by the response to Gabor filters

2354

LEARNING TO SELECT FEATURES

(Gabor, 1946) of 4 different orientations and 16 different scales, followed by a local maximum of
the absolute value over the location, two adjacent scales and decimation (sub-sampling). Thus, each
image is replaced by 8 quadruplets of lower resolution images. Each quadruplet corresponds to one
scale, and includes all 4 orientations. The following description is over this complex representation.
Each feature is defined by a specific patch prototype. The prototype is one such quadruplet of a
given size (4x4, 8x8, 12x12 or 16x16). The value of the feature on a new image is calculated as
follows:

1. The image is converted to the above complex representation.

2. The Euclidean distance of the prototype from every possible patch (that is, at all locations and
the 8 scales) of the same size in the image representation is calculated. The minimal distance
(over all possible locations and scales) is denoted by d.

3. The value of the feature is e−βd2
, where β is a parameter.

Step 2 is very computationally costly, and takes by far more resources than any other step in the
process. This means that calculating the feature value on all images takes a very long time. Since
each feature is defined by a prototype, the feature selection is done by selecting a set of prototypes.
In Serre’s paper the features are selected randomly by choosing random patches from a data set of
natural images (or the training set itself). Namely, to select a prototype you chose an image ran-
domly, convert it to the above representation, then randomly select a patch from it. In Serre’s paper,
after this random selection, the feature set is fixed, that is no other selection algorithm is used. One
method to improve the selected set of features is to use SVM-RFE to select the best features from a
larger set of randomly selected candidate features. However, since SVM-RFE requires calculating
all the feature values, this option is very expensive to compute. Therefore we suggest choosing the
features using meta-features by MF-PFS. The meta-features we use are:

1. The size of the patch (4, 8, 12 or 16).

2. The DC of the patch (average over the patch values).

3. The standard deviation of the patch.

4. The peak value of the patch.

5. Quantiles 0.3 and 0.7 of the values of the patch.

In the following we show that by using these meta-features we can predict the quality of new fea-
tures with high accuracy, and hence we can drop bad features without measuring their values on the
images. This significantly reduces feature selection time. Alternatively, it can improve the classifi-
cation accuracy since we are able to select from a large set of features in a reasonable training time
(using feature selection by MF-PFS). In addition, we draw some interesting observations about the
properties of more or less useful features.

2355

KRUPKA, NAVOT AND TISHBY

Figure 1: Excerpts from the Caltech-101 data-set

5.1 Predicting the Quality of New Features

Since the entire discussion here relies on the assumption that we can predict the quality of a feature
from its meta-feature values, we first need to test whether this assumption holds. We need to prove
that we can indeed predict the quality of a patch using the above meta-features; that is, from its
size, DC, std, peak value and quantile values. We measure feature quality by SVM square weights
of multi-class SVM (Shalev-Shwartz and Singer, 2006). Based on this quality definition, Figure 2
presents an example of prototypes of “good” and “bad” features of different sizes. In Figure 3 we
explore the quality of features as a function of two meta-features: the patch size and the standard
deviation (std). We can see that for small patches (4x4), more details are better, for large patches
(16x16) fewer details are better and for medium size patches (for example, 8x8) an intermediate
level of complexity is optimal. In other words, the larger the patch, the smaller the optimal com-
plexity. This suggests that by using the size of the patch together with certain measurements of its
“complexity” (for example, std) we should be able to predict its quality. In the following experiment
we show that such a prediction is indeed possible.

We use Algorithm 1 with the sum square of SVM weights as the direct measure for patch quality
and a weighted version of k-Nearest-Neighbor Regression (Navot et al., 2006) as a regressor. To
solve the SVM, we use the Shalev-Shwartz and Singer (2006) online algorithm. This algorithm
has the advantage of a built-in ability to deal with multi-class problems. We use 500 features as
training features. Then we use the map returned by Algorithm 1 to predict the quality of another
500 features. The results presented in Figure 4 show that the prediction is very accurate. The
correlation coefficient between measured and predicted quality (on the test set of 500 features) is
0.94. We also assessed the contribution of each meta-feature, by omitting one meta-feature each
time and measuring the drop in the correlation coefficient. The meta-features which contributed
most to the prediction are size, mean (DC) and std.

The interesting point in the above result is that we show that feature quality can be predicted
by its meta-feature values, which represent general statistical properties of the prototype. This
observation is notable since it explains the existence of a universal set of features (prototypes) that
enables recognition of most objects, regardless of whether the prototypes were taken from pictures
that contain the relevant objects or not. Indeed, Serre et al. (2005) found that a set of features
(prototypes) which consists of prototypes taken randomly from any natural images constitute such
a universal set; however, they did not characterize which features are good. Ullman et al. (2002)
also analyzed the properties of good features, where they use a simpler representation of patches
(for example, without a Gabor filter). Their conclusion was that intermediate complex features are

2356

LEARNING TO SELECT FEATURES

(a) (b) (c) (d) (e)

Good 4x4 Patches

(a) (b) (c) (d) (e)

Bad 4x4 Patches

(a) (b) (c) (d) (e)

Good 16x16 Patches

(a) (b) (c) (d) (e)

Bad 16x16 Patches

Figure 2: Examples of “good” and “bad” patch prototypes of different sizes. Each row represents
one patch. The left column (a) is the image from which the patch was extracted and the
other 4 columns (b,c,d,e) correspond to the 4 different orientations (– / | \, respectively).
Good small patches are rich in details whereas good large patches are relatively uniform.

the most useful features. However, in their work the features are object fragments, and hence their
quality is dependent on the specific training set and not on general statistical properties as we found
in this work.

5.2 Applying MF-PFS to Object Recognition

After showing that we are able to predict patches quality, we have a reason to believe that by using
MF-PFS (see Section 4) we can obtain an efficient feature selection in Serre et al. (2005) setting.
The features in this setting are very expensive to compute and thus a standard selection methods
cannot consider many candidate features. MF-PFS on the other hand, allows us to explore a large
set of features while measuring only a few of them. In this section we show that MF-PFS (with the
above meta-features) indeed succeeds in selecting good features while keeping the computational
cost low. Now we turn to present the experimental setup in details. Readers may also skip directly
to the results.

2357

KRUPKA, NAVOT AND TISHBY

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

Standard deviation of patch levels

Q
u

al
it

y

Patch size is 4*4

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

Standard deviation of patch levels

Q
u

al
it

y

Patch size is 8*8

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

Standard deviation of patch levels

Q
u

al
it

y

Patch size is 12*12

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

Standard deviation of patch levels

Q
u

al
it

y

Patch size is 16*16

Figure 3: Quality as function of the standard deviation of the meta-feature. Good small patches are
“complex” whereas good large patches are “simple”.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.02

0.04

0.06

0.08

0.1

Measured quality

E
st

im
at

ed
 q

u
al

it
y

0 50 100 150 200 250 300 350 400
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of top ranked features

M
ea

n
 q

u
al

it
y

Measured
Estimated

Figure 4: Predicting the quality of patches. top: Scatter plot of the predicted vs. measured quality.
The correlation coefficient is 0.94. bottom: The mean quality of the k top ranked features,
for different values of k. Ranking using the predicted quality gives (almost) the same
mean as ranking by the measured quality.

2358

LEARNING TO SELECT FEATURES

We use Algorithm 2, with multi-class SVM (Shalev-Shwartz and Singer, 2006) as a classifier
and the square of weights as a measure of feature quality. The regression algorithm for quality
prediction is based on a weighted version of the k-Nearest-Neighbor regression (Navot et al., 2006).
Since the number of potential features is virtually infinite, we have to select the initial set of N
features.2 We always start with N = 10n that were selected randomly from natural images in the
same manner as in Serre et al. (2005). We use 4 elimination steps (follows from t = 0.5, see
Algorithm 2). We start with α = 0.4 (see step 2(a) of the algorithm) and increase it during the
iterations up to α = 1.2 in the last step (values in the 2nd and 3rd iteration are 0.8 and 1 respectively).
The exact values may seem arbitrary; however the algorithm is not sensitive to small changes in
these values. This can be shown as follows. First note that increasing α can only improve the
accuracy. Now, note also that the accuracy is bounded by the one achieved by RFEall. Thus,
since the accuracy we achieve is very close to the accuracy of RFEall (see Figure 5), there is a
wide range of α selection that hardly affects the accuracy. For example, our initial tests were
with al pha = 0.6,0.8,1,1.2 which yielded the same accuracy, while measuring almost 10% more
features. General guidelines for selecting α are discussed in Section 4. For the above selected value
of α, the algorithm measures only about 2.1n features out of the 10n candidates.

We compared MF-PFS to three different feature selection algorithms. The first was a standard
RFE which starts with all the N = 10n features and selects n features using 6 elimination steps
(referred to as RFEall). The second method was also a standard RFE, but this time it started with
2.1n features that were selected randomly from the N = 10n features (referred to as RFEsmall). The
rationale for this is to compare the performance of our algorithm to standard RFE that measures the
same number of features. Since standard RFE does not predict the quality of unseen features, it has
to select the initial set randomly. As a baseline we also compared it to random selection of the n
features as done in Serre et al. (2005) (referred to as Baseline). Note that RFEall considers all the
features MF-PFS does, but makes many more measurements (with costs that become infeasible in
many cases).3 On the other hand RFEsmall uses the same number of measurements as MF-PFS,
but it considers about one-fifth of the potential features. Finally, in order to estimate the statistical
significance of the results we repeated the whole experiment 20 times, with different splits into train
instances and test instances.

Results. The results are presented in Figure 5. MF-PFS is nearly as accurate as RFEall, but uses
many fewer feature measurements. When RFE measures the same number of features (RFEsmall), it
needs to select twice the number of selected features (n) to achieve the same classification accuracy
as MF-PFS. Recall that in this setting, as Serre et al. (2005) mentioned, measuring each feature is
very expensive; thus these results represent a significant improvement.

6. Guided Feature Extraction

In the previous section we demonstrated the usefulness of meta-features in a scenario where the
measurement of each feature is very costly. Here we show how the low dimensional representation
of features by a relatively small number of meta-features enables efficient selection even when the
number of potential features is very large or even infinite and the evaluation function is expensive
(for example, the wrapper model). This is highly relevant to the feature extraction scenario. Note

2. In Section 6 we show that meta-features can be used to explore a space of an infinite number of potential features.
3. It took days on dozens of computers to measure the N=10,000 features on Caltech-101 required for RFEall. This is

by far the most demanding computational part of the training.

2359

KRUPKA, NAVOT AND TISHBY

0 200 400 600 800 1000 1200
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Number of selected feature (n)

E
rr

o
r

ra
te

505 training instances (5 per category)

Baseline
MF−PFS
RFEsmall
RFEall

0 200 400 600 800 1000 1200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of selected feature (n)

E
rr

o
r

ra
te

1515 training instances (15 per category)

Baseline
MF−PFS
RFEsmall
RFEall

Figure 5: Applying SVM with different feature selection methods for object recognition. When
the number of selected features (n) is not too small, our meta-feature based selection
(MF-PFS) achieves the same accuracy as RFEall which measures 5 times more features
at training time. MF-PFS significantly outperforms RFEsmall which measures the same
number of features at training time. To get the same classification accuracy RFEsmall
needs about twice the number of features that MF-PFS needs. The results of the baseline
algorithm that uses random selection are also presented (Baseline). Error bars show 1-std
of the mean performance over the 20 runs.

that an algorithm such as MF-PFS that was presented in the previous sections is not adequate for
this scenario, because we need to consider a huge (or even infinite) number of potentially extracted
features, and thus even a fast prediction of the quality of all of them is not feasible. Thus we take
another approach: a direct search in the meta-feature space, guided by an evaluation of only a subset
of representative features.

2360

LEARNING TO SELECT FEATURES

Algorithm 3 Fbest =Mufasa(n,J)

1. Initialization: qbest = maxreal, u0 is the initial guess of u (In our experiments we use uniform
random).

2. For j = 1 . . .J

(a) Select (or generate) a new set Fj of n random features according to p(v|u j−1). See
Sections 6.1 and 6.2 for details.

(b) q j = quality(Fj). (Any measure of quality, In our experiment we use cross-validation
classification accuracy of SVM)

(c) If q j ≥ qbest

Fbest = Fj, ubest = u j−1, qbest = q j

(d) Randomly select new u j which is near ubest . For example, in our experiments we add
Gaussian random noise to each coordinate of ubest , followed by round to the nearest
valid value.

3. return Fbest

6.1 Meta-features Based Search

Assume that we want to select (or extract) a set of n features out of large number of N potential
features. We define a stochastic mapping from values of meta-features to selection (or extraction)
of features. More formally, let V be a random variable that indicates which feature is selected.
We assume that each point u in the meta-feature space induces density p(v|u) over the features.
Our goal is to find a point u in the meta-feature space such that drawing n features (independently)
according to p(v|u) has a high probability of giving us a good set of n features. For this purpose we
suggest the Mufasa (for Meta-Features Aided Search Algorithm) (Algorithm 3) which implements
a stochastic local search in the meta-feature space.

Note that Mufasa does not use explicit prediction of the quality of unseen features as we did in
MF-PFS, but it is clear that it cannot work unless the meta-features are informative on the quality.
Namely, Mufasa can only work if the likelihood of drawing a good set of features from p(v|u) is
some continuous function of u; that is, a small change in u results in a small change in the chance
of drawing a good set of features. If, in addition, the meta-feature space is “simple”4 we expect
it to find a good point in a small number of steps J. In practice, we can stop when no notable
improvement is achieved in a few iterations in a row. The theoretical analysis we present later
suggests that overfitting is not a main consideration in the choice of J, since the generalization
bound depends on J only logarithmically.

Like any local search over a non-convex target function, convergence to a global optimum is not
guaranteed, and the result may depend on the starting point u0. Note that the random noise added
to u (step 2d in Algorithm 3) may help avoid local maxima. However, other standard techniques to
avoid local maxima can also be used (for example, simulated annealing). In practice we found, at
least in our experiments, that the results are not sensitive to the choice of u0, though it may affect

4. We elaborate on the meaning of “simple” in Sections 7 and 8.

2361

KRUPKA, NAVOT AND TISHBY

the number of iterations, J, required to achieve good results. The choice of p(v|u) is application-
dependent. In the next section we show how it is done for a specific example of feature generation.
For feature selection it is possible to cluster the features based on the similarity of meta-features,
and then randomly select features per cluster. Another issue is how to choose the next meta-features
point (step 2(d)). Standard techniques for optimizing the step size, such as gradually reducing it,
can be used. However, in our experiment we simply added an independent Gaussian noise to each
meta-feature.

In Section 6.2 we demonstrate the ability of Mufasa to efficiently select good features in the
presence of a huge number of candidate (extracted) features on a handwritten digit recognition
problem. In Section 7.1 we present a theoretical analysis of Mufasa.

6.2 Illustration on a Digit Recognition Task

In this section we use a handwritten digit recognition problem to demonstrate how Mufasa works
for feature extraction. We used the MNIST (LeCun et al., 1998) data set which contains images
of 28× 28 pixels of centered digits (0 . . .9). We converted the pixels from gray-scale to binary by
thresholding. We use extracted features of the following form: logical AND of 1 to 8 pixels (or their
negation), which are referred to as inputs. This creates intermediate AND-based features which are
determined by their input locations. The features we use are calculated by logical OR over a set
of such AND-features that are shifted in position in a shiftInfLen*shiftInvLen square. For example,
assume that an AND-based feature has two inputs in positions (x1,y1) and (x2,y2), shiftInvLen=2
and both inputs are taken without negation. Thus the feature value is calculated by OR over 2*2
AND-based features as follows:

(Im(x1,y1)∧ Im(x2,y2))∨ (Im(x1,y1 +1)∧ Im(x2,y2 +1))∨

(Im(x1 +1,y1)∧ Im(x2 +1,y2))∨ (Im(x1 +1,y1 +1)∧ Im(x2 +1,y2 +1))

where Im(x,y) denotes the value of the image in location (x,y). This way we obtain features which
are not sensitive to the exact position of curves in the image.

Thus a feature is defined by specifying the set of inputs, which inputs are negated, and the value
of shiftInvLen. Similar features have already been used by Kussul et al. (2001) on the MNIST data
set, but with a fixed number of inputs and without shift invariance. The idea of using shift invariance
for digit recognition is also not new, and was used, for example, by Simard et al. (1996). It is clear
that there are a huge number of such features; thus we have no practical way to measure or use all
of them. Therefore we need some guidance for the extraction process, and this is the point where
the meta-features framework comes in. We use the following four meta-features:

1. numInputs: the number of inputs (1-8).

2. percentPos: percent of logic positive pixels (0-100, rounded).

3. shiftInvLen: maximum allowed shift value (1-8).

4. scatter: average distance of the inputs from their center of gravity (COG) (1-3.5).

In order to find a good value for the meta-features we use Mufasa (Algorithm 3) and compare it
to some alternatives. A standard method of comparison is to look on the graph of test error vs.
the number of selected features (as done in Figure 5). Here, however, we use a variant of this
graph which replaces the number of selected features by the total cost of computing the selected
features. This modification is required since features with large shiftInvLen are significantly more

2362

LEARNING TO SELECT FEATURES

0 0.5 1 1.5 2 2.5

x 10
4

10
−1

Total budget

T
es

t
E

rr
o

r

Mufasa
Rand Search
Norm. Infogain
Polynomial SVM

Figure 6: Guided feature extraction for digit recognition. The generalization error rate as a function
of the available budget for features, using different selection methods. The number of
training instances is 2000 (randomly selected from the MNIST training set). Error bars
show a one standard deviation confidence interval. SVM is not limited by the budget, and
always implicitly uses all the products of features. We only present the results of SVM
with a polynomial kernel of degree 2, the value that gave the best results in this case.

computationally expensive. Thus a selection algorithm is restricted by a budget which the total cost
of the selected set of features cannot be exceeded, rather than by an allowed number of selected
features. We defined the cost of measuring (calculating) a feature as 0.5

(

1+a2
)

, where a is the
shiftInvLen of the feature; this way the cost is proportional to the number of locations where we
measure the feature.5

We used 2000 images as a training set, and the number of steps, J, is 50. We chose specific fea-
tures, given a value of meta-features, by re-drawing features randomly from a uniform distribution
over the features that satisfied the given value of the meta-features until the full allowed budget was
used up. We used 2-fold cross validation of the linear multi-class SVM (Shalev-Shwartz and Singer,
2006; Crammer, 2003) to check the quality of the set of selected features in each step. Finally, for
each value of allowed budget we checked the results obtained by the linear SVM on the MNIST
standard test set using the selected features.

We compared the results with those obtained using the features selected by Infogain as follows.
We first drew features randomly using a budget which was 50 times larger, then we sorted them
by Infogain (Quinlan, 1990) normalized by the cost6 (that is, the value of Infogain divided by

5. The number of inputs does not affect the cost in our implementation since the feature value is calculated by 64-bit
logic operations.

6. Infogain without normalization produces worse results.

2363

KRUPKA, NAVOT AND TISHBY

2 3 4
1

2

3

4

5
Inputs #

(a)
2 3 4

1

2

3

4

5

6
Shift inv

(b)

2 3 4
0

50

100
% Positive

(c)

Y

−a
xi

s:
 O

pt
im

al
 v

al
ue

2 3 4
1

2

3

4
Scatter

(d)
X−axis: Log

10
(budget)

Figure 7: Optimal value of the different meta-features as a function of the budget. The results are
averaged over 20 runs, and the error bars indicate the range where values fall in 80% of
the runs. The size of the optimal shift invariance and the optimal number inputs increases
with the budget.

computational cost of calculating the feature as defined above). We then selected the prefix that
used the allowed budget. This method is referred to as Norm Infogain. As a sanity check, we
also compared the results to those obtained by doing 50 steps of choosing features of the allowed
budget randomly; that is, over all possible values of the meta-features. Then we used the set with
the lowest 2-fold cross-validation error (referred to as Rand Search). We also compared our results
to SVM with a polynomial kernel of degree 1-8, that uses the original pixels as input features. This
comparison is relevant since SVM with a polynomial kernel of degree k implicitly uses ALL the
products of up to k pixels, and the product is equal to AND for binary pixels. To evaluate the
statistical significance, we repeated each experiment 20 times, with a different random selection
of training sets out of the standard MNIST training set. For the test set, we use the entire 10,000
test instances of the MNIST data set. The results are presented in Figure 6. It is clear that Mufasa
outperforms the budget-dependent alternatives, and outperforms SVM for budgets larger than 3000
(about 600 features). It is worth mentioning that our goal here is not to compete with the state-
of-art results on MNIST, but to illustrate our concept and to compare the results for the same kind
of classifier with and without using our meta-features guided search. Note that our concept can be
combined with most kinds of classification, feature selection, and feature extraction algorithms to
improve them, as discussed in Section 9.

Another benefit of the meta-features guided search is that it helps understand the problem. To
see this we need to take a closer look at the chosen values of the meta-features (ubest) as a function of

2364

LEARNING TO SELECT FEATURES

the available budget. Figure 7 presents the average chosen value of each meta-feature as a function
of the budget. As shown in Figure 7b, when the budget is very limited, it is better to take more cheap
features rather than fewer more expensive shift invariant features. On the other hand, when we
increase the budget, adding these expensive complex features is worth it. We can also see that when
the budget grows, the optimal number of inputs increases. This occurs because for a small budget,
we prefer features that are less specific, and have relatively high entropy, at the expense of “in
class variance”. For a large budget, we can permit ourselves to use sparse features (low probability
of being 1), but with a gain in specificity. For the scatter meta-features, there is apparently no
correlation between the budget and the optimal value. The vertical lines (error bars) represent the
range of selected values in the different runs. It gives us a sense of the importance of each meta-
feature. A smaller error bar indicates higher sensitivity of the classifier performance to the value of
the meta-feature. For example, we can see that performance is sensitive to shiftInvLen and relatively
indifferent to percentPos.

7. Theoretical Analysis

In this section we derive generalization bounds for the combined process of selection and classifica-
tion when the selection process is based on meta-features. We show that in some cases, these bounds
are far better than the bounds that assume each feature can be selected directly. This is because we
can significantly narrow the number of possible selections, and still find a good set of features. In
Section 7.1 we analyzed the case where the selection is made using Mufasa (Algorithm 3). In Sec-
tion 7.2 we present a more general analysis, which is independent of the selection algorithm, and
instead assumes that we have a given class of mappings from meta-features to a selection decision.

7.1 Generalization Bounds for Mufasa Algorithm

The bounds presented in this section assume that the selection is made using Mufasa (Algorithm 3),
but they could be adapted to other meta-feature based selection algorithms. Before presenting the
bounds, we need some additional notations. We assume that the classifier that is going to use the
selected features is chosen from a hypothesis class Hc of real valued functions and the classification
is made by taking the sign.

We also assume that we have a hypothesis class H f s, where each hypothesis is one possible way
to select the n out of N features. Using the training set, our feature selection is limited to selecting
one of the hypotheses that is included in H f s. As we show later, if H f s contains all the possible ways
of choosing n out of N features, then we get an unattractive generalization bound for large values
of n and N. Thus we use meta-features to further restrict the cardinality (or complexity) of H f s. We
have a combined learning scheme of choosing both hc ∈ Hc and h f s ∈ H f s. We can view this as
choosing a single classifier from H f s ×Hc. In the following paragraphs we analyze the equivalent
size of hypothesis space H f s of Mufasa as a function of the number of steps in the algorithm.

For the theoretical analysis, we need to bound the number of feature selection hypotheses Mu-
fasa considers. For this purpose, we reformulate Mufasa as follows. First, we replace step 2(a)
with an equivalent deterministic step. To do so, we add a “pre-processing” stage that generates
(randomly) J different sets of features of size n according to p(v|u) for any possible value of the
point u in the meta-feature space.7 Now, in step 2(a) we simply use the relevant set, according to

7. Later on we generalize to the case of infinite meta-feature space.

2365

KRUPKA, NAVOT AND TISHBY

the current u and current j. Namely, in step j we use the jth set of features that was created in
the pre-processing stage according to p(v|u j), where u j is the value of u in this step. Note that the
resulting algorithm is identical to the original Mufasa, but this new formulation simplifies the theo-
retical analysis. The key point here is that the pre-processing is done before we see the training set,
and that now Mufasa can only select one of the feature sets created in the pre-processing. Therefore,
the size of H f s , denoted by |H f s|, is the number of hypotheses created in pre-processing.

The following two lemmas upper bound |H f s|, which is a dominant quantity in the generaliza-
tion bound. The first one handles the case where the meta-features have discrete values, and there
are a relatively small number of possible values for the meta-features. This number is denoted by
|MF|.

Lemma 1 Any run of Mufasa can be duplicated by first generating J|MF| hypotheses and then
running Mufasa using these hypotheses alone; that is, using |H f s| ≤ J|MF|, where J is the number
of iterations made by Mufasa and |MF| is the number of different values the meta-features can be
assigned.

Proof
We first generate J random feature sets for each of the |MF| possible values of meta-features.

The total number of sets we get is J|MF|. We have only J iterations in the algorithm, and we
generated J feature sets for each possible value of the meta-features. This guarantees that all the
hypotheses required by Mufasa are available.

Note that in order to use the generalization bound of the algorithm, we cannot only consider the
subset of J hypotheses that was tested by the algorithm. This is because this subset of hypotheses is
affected by the training set (just as one cannot choose a single hypothesis using the training set, and
then claim that the hypothesis space of the classifier includes only one hypothesis). However, from
Lemma 1, the algorithm search is within no more than J|MF| feature selection hypotheses that were
determined without using the training set.

The next lemma handles the case where the cardinality of all possible values of meta-features is
large relative to 2J , or even infinite. In this case we can get a tighter bound that depends on J but
not on |MF|.

Lemma 2 Any run of Mufasa can be duplicated by first generating 2J−1 hypotheses and then run-
ning Mufasa using only these hypotheses; that is, using |H f s| ≤ 2J−1, where J is the number of
iterations Mufasa performs.

The proof of this lemma is based on PAC-MDL bounds (Blum and Langford, 2003). Briefly,
a codebook that maps between binary messages and hypotheses is built without using the training
set. Thus, the generalization bound then depends on the length of the message needed to describe
the selected hypothesis. For a fixed message length, the upper bound on the number of hypotheses
is 2l where l is the length of the message in bits.
Proof

Mufasa needs to access a random number generator in steps 2(a) and 2(d). To simplify the proof,
we move the random number generation used within Mufasa to a pre-processing stage that stores a
long vector of random numbers. Thus, every time Mufasa needs to access a random number, it will

2366

LEARNING TO SELECT FEATURES

simply get the next stored random number. After this pre-processing, the feature set, which is the
output of Mufasa, can be one of 2J−1 previously determined sets, since it only depends on the J−1
binary decisions in step 2(c) of the algorithm (in the first iteration the decision of step 2(c) is fixed,
hence we only have J − 1 decisions that depend on the training set). Thus, we can generate these
2J−1 hypotheses before we see the training set.

Using the above PAC-MDL technique, we can also reformulate the last part of the proof by
showing that each of the feature-set hypotheses can be uniquely described by J − 1 binary bits,
which describes the decisions in step 2(c). A better generalization bound can be obtained if we
assume that in the last steps a new hypothesis will rarely be better than the stored one, and hence the
probability of replacing the hypothesis in step 2(c) is small. In this case, we can get a data-dependent
bound that usually increases more slowly with the number of iterations (J), since the entropy of the
message describing the hypothesis is likely to increase slowly for large J.

To state our theorem we also need the following standard definitions:

Definition 3 Let D be a distribution over S ×{±1} and h : S →{±1} a classification function. We
denote by erD (h) the generalization error of h w.r.t D:

erD (h) = Prs,y∼D [h(s) 6= y].

For a sample Sm = {(sk,yk)}
m
k=1 ∈ (S ×{±1})m and a constant γ > 0, the γ-sensitive training error

is:

êrγ
S (h) =

1
m
|{i : h(si) 6= yi} or

(si has sample-margin < γ) , |

where the sample-margin measures the distance between the instance and the decision boundary
induced by the classifier.

Now we are ready to present the main result of this section:

Theorem 4 Let Hc be a class of real valued functions. Let S be a sample of size m generated i.i.d
from a distribution D over S ×{±1}. If we choose a set of features using Mufasa, with a probability
of 1−δ over the choices of S, for every hc ∈ Hc and every γ ∈ (0,1]:

erD(hc) ≤ êrγ
S(hc)+

√

2
m

(

d ln

(

34em
d

)

log(578m)+ ln

(

8
γδ

)

+g(J)

)

,

where

• d = f atHc
(γ/32) and f atH (·) denotes the fat-shattering dimension of class H (Bartlett,

1998).

2367

KRUPKA, NAVOT AND TISHBY

• g(J) = min(J ln2, ln(J|MF|)) (where J is the number of steps Mufasa makes and |MF| is
the number of different values the meta-features can be assigned, if this value is finite, and ∞
otherwise).

Our main tool in proving the above theorem is the following theorem:

Theorem 5 (Bartlett, 1998)
Let H be a class of real valued functions. Let S be a sample of size m generated i.i.d from a

distribution D over S ×{±1} ; then with a probability of 1−δ over the choices of S, every h ∈ H
and every γ ∈ (0,1]:

erD(h) ≤ êrγ
S(h)+

√

2
m

(

d ln

(

34em
d

)

log(578m)+ ln

(

8
γδ

))

,

where d = f atH (γ/32)

Proof (of theorem 4)

Let
{

F1, ...,F|H f s|

}

be all possible subsets of the selected features. From Theorem 5 we know

that
erD(hc,Fi) ≤ êrγ

S(hc,Fi)+
√

2
m

(

d ln

(

34em
d

)

log(578m)+ ln

(

8
γδFi

))

,

where erD(hc,Fi) denotes the generalization error of the selected hypothesis for the fixed set of
features Fi.

By choosing δF = δ/|H f s| and using the union bound, we get that the probability that there exist
Fi (1 ≤ i ≤ |H f s|) such that the equation below does not hold is less than δ

erD (hc) ≤ êrγ
S (hc)+

√

2
m

(

d ln

(

34em
d

)

log(578m)+ ln

(

8
γδ

)

+ ln |H f s|

)

.

Therefore, with a probability of 1− δ the above equation holds for any algorithm that selects one

of the feature sets out of
{

F1, ...,F|H f s|

}

. Substituting the bounds for |H f s| from Lemma 1 and

Lemma 2 completes the proof.

An interesting point in this bound is that it is independent of the total number of possible fea-
tures, N (which may be infinite in the case of feature generation). Nevertheless, it can select a good
set of features out of O

(

2J
)

candidate sets. These sets may be non-overlapping, so the potential
number of features that are candidates is O

(

n2J
)

. For comparison, Gilad-Bachrach et al. (2004)
gives the same kind of bound but for direct feature selection. Their bound has the same form as our
bound, but g(J) is replaced by a term of O(lnN), which is typically much larger than J ln2. If we
substitute N = n2J , then for the experiment described in Section 6.2 n lnN = Jn(ln2n) ∼= 375000
while ln(J|MF|) ∼= 11.

2368

LEARNING TO SELECT FEATURES

7.2 VC-dimension of Joint Feature Selection and Classification

In the previous section we presented an analysis which assumes that the selection of features is
made using Mufasa. In this section we turn to a more general analysis, which is independent of the
specific selection algorithm, and rather assumes that we have a given class Hs of mappings from
meta-features to a selection decision. Formally, Hs is a class of mappings from meta-feature value to
{0,1}; that is, for each hs ∈ Hs , hs: : R

k →{0,1}. hs defines which features are selected as follows:

f is selected ⇐⇒ hs (u(f)) = 1,

where, as usual, u(f) is the value of the meta-features for feature f . Given the values of the meta-
features of all the features together with hs we get a single feature selection hypothesis. Therefore,
Hs and the set of possible values of meta-features indirectly defines our feature selection hypothesis
class, H f s. Since we are interested in selecting exactly n features (n is predefined), we use only a
subset of Hs where we only include functions that imply the selection of n features.8 For simplicity,
in the analysis we use the VC-dim of Hs without this restriction, which is an upper bound of the
VC-dim of the restricted class.

Our goal is to calculate an upper bound on the VC-dimension (Vapnik, 1998) of the joint prob-
lem of feature-selection and classification. To achieve this, we first derive an upper bound on

∣

∣H f s
∣

∣

as a function of VC-dim(Hs) and the number of features N.

Lemma 6 Let Hs be a class of mappings from the meta-feature space (Rk) to {0,1}, and let H f s be
the induced class of feature selection schemes; the following inequality holds:

∣

∣H f s
∣

∣ ≤

(

eN
VC-dim(Hs)

)VC-dim(Hs)

.

Proof
The above inequality follows directly from the well known fact that a class with VC-dim d

cannot produce more than
(

em
d

)d
different partitions of a sample of size m (see, for example, Kearns

and Vazirani 1994 pp. 57).

The next lemma relates the VC dimension of the classification concept class (dc), the cardinality
of the selection class (

∣

∣H f s
∣

∣) and the VC-dim of the joint learning problem.

Lemma 7 Let H f s be a class of the possible selection schemes for selecting n features out of N
and let Hc be a class of classifiers over R

n. Let dc = dc (n) be the VC-dim of Hc. If dc ≥ 11
then the VC-dim of the combined problem (that is, choosing (h f s,hc) ∈ H f s ×Hc) is bounded by
(dc + log |H f s|+1) logdc.

The proof of this lemma is given in Appendix A.
Now we are ready to state the main theorem of this section.

8. Note that one valid way to define Hs is by applying a threshold on a class of mappings from meta-feature values to
feature quality, Q̂ : R

k → R. See Example 2 at the end of this section.

2369

KRUPKA, NAVOT AND TISHBY

Theorem 8 Let Hs be a class of mappings from the meta-feature space (Rk) to {0,1}, let H f s be
the induced class of feature selection schemes for selecting n out of N features and let Hc be a class
of classifiers over R

n. Let dc = dc (n) be the VC-dim of the Hc. If dc ≥ 11, then the VC-dim of the
joint class H f s ×Hc is upper bounded as follows

VC-dim(H f s ×Hc) ≤

(

dc +ds log
eN
ds

+1

)

logdc,

where ds is the VC-dim of Hs.

The above theorem follows directly by substituting Lemma 6 in Lemma 7.
To illustrate the gain of the above theorem we calculate the bound for a few specific choices of

Hs and Hc:

1. First, note that if we do not use meta-features, but consider all the possible ways to select n
out of N features the above bound is replaced by

(

dc + log

(

N
n

)

+1

)

logdc, (1)

which is very large for reasonable values of N and n.

2. Assuming that both Hs and Hc are classes of linear classifiers on R
k and R

n respectively, then
ds = k + 1 and dc = n + 1 and we get that the VC of the combined problem of selection and
classification is upper bounded by

O((n+ k logN) logn) .

If Hc is a class of linear classifiers, but we allow any selection of n features the bound is (by
substituting in 1):

O((n+n logN) logn) ,

which is much larger if k � n. Thus in the typical case where the number of meta-features is
much smaller than the number of selected features (for example in Section 6.2) the bound for
meta-feature based selection is much smaller.

3. Assuming that the meta-features are binary and Hs is the class of all possible functions from
meta-feature to {0,1}, then ds = 2k and the bound is

O
((

dc +2k logN
)

logdc

)

,

which is still much better than the bound in equation 1 if k � logn.

8. Choosing Good Meta-features

At first glance, it might seem that our new setting only complicates the learning problem. One might
claim that in addition to the standard hard task of finding a good representation of the instances,
now we also have to find a good representation of the features by meta-features. However, our
point is that while our setting might be more complicated to understand, in many cases it facilitates

2370

LEARNING TO SELECT FEATURES

the difficult and crucial problem of finding a good representation. It gives us a systematic way to
incorporate prior knowledge about the features in the feature selection and extraction process. It also
enables us to use the acquired experience in order to guide the search for good features. The fact that
the number of meta-features is typically significantly smaller than the number of features makes it
easy to understand the results of the feature selection process. It is easier to guess which properties
might be indicative of feature quality than to guess which exact features are good. Nevertheless,
the whole concept can work only if we use “good” meta-features, and this requires design. In
Sections 5 and 6.2 we demonstrated how to choose meta features for specific problems. In this
section we give general guidelines on good choices of meta-features and mappings from meta-
feature values to selection of features.

First, note that if there is no correlation between meta-features and quality, the meta-features are
useless. In addition, if any two features with the same value of meta-features are redundant (highly
correlated), we gain almost nothing from using a large set of them. In general, there is a trade-off
between two desired properties:

1. Features with the same value of meta-features have similar quality.

2. There is low redundancy between features with the same value of meta-features.

When the number of features we select is small, we should not be overly concerned about
redundancy and rather focus on choosing meta-features that are informative on quality. On the
other hand, if we want to select many features, redundancy may be dominant, and this requires our
attention. Redundancy can also be tackled by using a distribution over meta-features instead of a
single point.

In order to demonstrate the above trade-off we carried out one more experiment using the
MNIST data set. We used the same kind of features as in Section 6.2, but this time without shift-
invariance and with fixed scatter. The task was to discriminate between 9 and 4 and we used 200
images as the training set and another 200 as the test set. Then we used Mufasa to select features,
where the meta-features were either the (x,y)-location or the number of inputs. When the meta-
feature was the (x,y)-location, the distribution of selecting the features, p(v|u), was uniform in a
4× 4 window around the chosen location (step 2a in Mufasa). Then we checked the classification
error on the test set of a linear SVM (which uses the selected features). We repeated this experiment
for different numbers of features.9 The results are presented in Figure 8. When we use a small
number of features, it is better to use the (x,y)-location as a meta-feature whereas when using many
features it is better to use the number of inputs as a meta-feature. This supports our contention about
the redundancy-homogeneity trade-off. The (x,y)-locations of features are good indicators of their
quality, but features from similar positions tend to be redundant. On the other hand, constraints on
the number of inputs are less predictive of feature quality but do not cause redundancy.

9. Summary and Discussion

In this paper we presented a novel approach to feature selection. Instead of merely selecting a set of
better features out of a given set, we suggest learning the properties of good features. This approach
can be used for predicting the quality of features without measuring them even on a single instance.

9. We do not use shift invariance here; thus all the features have the same cost.

2371

KRUPKA, NAVOT AND TISHBY

10
2

10
3

10
−1

Number of Features

T
es

t
er

ro
r

Rand
(X,Y)
Inputs #

Figure 8: Different choices of meta-features. The generalization error as a function of the number
of selected features. The two lines correspond to using different meta-features: (x,y)-
location or number of inputs. The results of random selection of features are also pre-
sented.

We suggest exploring for new good features by assessing features with meta-feature values similar
to those of known good features. Based on this idea, we presented two new algorithms that use
feature prediction. The first algorithm is MF-PFS, which estimates the quality of individual features
and obviates the need to calculate them on the instances. This is useful when the computational
cost of measuring each feature is very high. The second algorithm is Mufasa, which efficiently
searches for a good feature set without evaluating individual features. Mufasa is very helpful in
feature extraction, where the number of potential features is huge. Further, it can also help avoiding
overfitting in the feature selection task.

In the context of object recognition we showed that the feature (patch) quality can be predicted
by its general statistical properties which are not dependent on the objects we are trying to recognize.
This result supports the existence of a universal set of features (universal-dictionary) that can be
used for recognition of most objects. The existence of such a dictionary is a key issue in computer
vision and brain research. We also showed that when the selection of features is based on meta-
features it is possible to derive better generalization bounds on the combined problem of selection
and classification.

In Section 6 we used meta-features to guide feature selection. Our search for good features is
computationally efficient and has good generalization properties because we do not examine each
individual feature. However, avoiding examination of individual features may also be considered as
a disadvantage since we may include some useless individual features. This can be solved by using
a meta-features guided search as a fast but rough filter for good features, and then applying more
computationally demanding selection methods that examine each feature individually.

In Krupka and Tishby (2007) meta-features were used to build a prior on the weight assigned
to each feature by a linear classifier. In that study, the assumption was that meta-features are infor-
mative about the feature weights (including sign). In this work, however, meta-features should be
informative about feature relevance, and the exact weight (and sign) is not important. An interesting
future research direction would be to combine these concepts of using meta-features into a single
framework.

We applied our approach to object recognition and a handwritten digit recognition problem, but
we expect our method to be very useful in many other domains. For example, in the problem of

2372

LEARNING TO SELECT FEATURES

tissue classification according to a gene expression array where each gene is one feature, ontology-
based properties may serve as meta-features. In most cases in this domain there are many genes and
very few training instances; therefore standard feature selection methods tend to over-fit and thus
yield meaningless results (Ein-Dor et al., 2006). A meta-feature based selection can help as it may
reduce the complexity of the class of possible selections.

In addition to the applications presented here which involve predicting the quality of unseen
features, the meta-features framework can also be used to improve estimation of the quality of
features that we do see in the training set. We suggest that instead of using direct quality estimation,
we use some regression function on the meta-feature space (as in Algorithm 1). When we have only
a few training instances, direct approximation of the feature quality is noisy; thus we expect that
smoothing the direct measure by using a regression function of the meta-features may improve the
approximation.

Appendix A. A Proof for Lemma 7

Lemma 7 Let H f s be a class of the possible selection schemes for selecting n features out of N
and let Hc be a class of classifiers over R

n. Let dc = dc (n) be the VC-dim of Hc. If dc ≥ 11
then the VC-dim of the combined problem (that is, choosing (h f s,hc) ∈ H f s ×Hc) is bounded by
(dc + log |H f s|+1) logdc.

Proof
For a given set of selected features, the possible number of classifications of m instances is upper

bounded
(

em
dc

)dc

(see Kearns and Vazirani 1994 pp. 57). Thus, for the combined learning problem,

the total number of possible classifications of m instances is upper bounded by |H f s|
(

em
dc

)dc

. The

following chain of inequalities shows that if m =
(

dc + log
∣

∣H f s
∣

∣+1
)

logdc then
∣

∣H f s
∣

∣

(

em
dc

)dc

< 2m:

|H f s|

(

e(dc + log |H f s|+1) logdc

dc

)dc

= |H f s|(e logdc)
dc

(

1+
log |H f s|+1

dc

)dc

≤ e(|H f s|)
1+loge

(e logdc)
dc (2)

≤ (|H f s|)
2+loge

(e logdc)
dc (3)

≤ (|H f s|)
2+loge ddc+1

c (4)

≤ ddc+1
c (|H f s|)

logdc (5)

= ddc+1
c d

(log |H f s|)
c (6)

= 2(dc+1+log |H f s|) logdc ,

where we used the following equations / inequalities:
(2) (1+a/d)d ≤ ea ∀a,d > 0

(3) here we assume |H f s| > e, otherwise the lemma is trivial

(4) (e logd)d ≤ dd+1 ∀d ≥ 1

(5) logdc > 2 (since dc ≥ 11)

2373

KRUPKA, NAVOT AND TISHBY

(6) alogb = bloga ∀a,b > 1

Therefore,
(

dc + log
∣

∣H f s
∣

∣+1
)

logdc is an upper bound on VC-dim of the combined learning
problem.

Appendix B. Notation Table

The following table summaries the notation and definitions introduced in the paper for quick refer-
ence.

Notation Short description Sections
meta-feature a property that describes a feature
N total number of candidate features
n number of selected features
k number of meta-features
m number of training instances
S (abstract) instance space 2, 7.1
f a feature: formally, f : S → R

c a classification rule
Sm Sm is a labeled set of instances (a training set) 2, 3, 7.1
ui (f) the the value of thei’s meta-feature on feature f 2, 6
u(f) u(f) = (u1 (f) , . . . ,uk (f)), a vector that describes the feature f 2, 6, 7.1
u a point (vector) in the meta-feature space 2, 6
Q̂ a mapping from meta-features value to feature quality 3, 7.2
YMF measured quality of the features (for instance Infogain) 3
XMF XMF (i, j) = the value of the j’s meta-feature on the i’s feature 3
F,Fj a set of features 6
V a random variable indicating which features are selected 6
p(v|u) the conditional distribution of V given meta-features values (u) 6, 8
hc a classification hypothesis 7.1
Hc the classification hypothesis class 7.1
dc the VC-dimension of Hc 7.2
h f s a feature selection hypothesis - says which n features are selected 7.1
H f s The feature selection hypothesis class 7.1
hs A mapping form meta-feature space to {0,1} 7.2
Hs Class of mappings from meta-feature space to {0,1} 7.2
ds The VC-dimension of Hs

J number of iteration Mufasa (Algorithm 3) does 6, 7.1
|MF| Number of possible different values of meta-features 7.1
erD (h) generalization error of h 7.1
êrγ

S (h) γ-sensitive training error (instance with margin < γ count as error) 7.1

2374

LEARNING TO SELECT FEATURES

References

P.L. Bartlett. The size of the weights is more important than the size of the network. IEEE Trans-
actions on Information Theory, 1998.

A. Blum and J. Langford. Pac-mdl bounds. Learning Theory and Kernel Machines, 2003.

K. Crammer. Mcsvm_1.0: C code for multiclass svm, 2003. http://www.cis.upenn.edu/∼crammer.

D. Decoste and B. Schölkopf. Training invariant support vector machines. Machine Learning, 2002.

L. Ein-Dor, O. Zuk, and E. Domany. Thousands of samples are needed to generate a robust gene
list for predicting outcome in cancer. Proceedings of the National Academy of Sciences, 2006.

D. Gabor. Theory of communication. J. IEE, 93:429–459, 1946.

R. Gilad-Bachrach, A. Navot, and N. Tishby. Margin based feature selection - theory and algorithms.
In International Conference on Machine Learning (ICML), 2004.

R. Greiner. Using value of information to learn and classify under hard budgets. In NIPS Workshop
on Value of Information in Inference, Learning and Decision-Making, 2005.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine
Learning Research, 2003.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using
support vector machines. Machine Learning, 46, 2002.

M. W. Kadous and C. Sammut. Classification of multivariate time series and structured data using
constructive induction. Machine Learning, 2005.

M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory. MIT Press,
Cambridge, MA, USA, 1994.

R. Kohavi and G.H. John. Wrapper for feature subset selection. Artificial Intelligence, 97(1-2):
273–324, 1997.

E. Krupka and N. Tishby. Generalization from observed to unobserved features by clustering.
Journal of Machine Learning Research, 2008.

E. Krupka and N. Tishby. Incorporating prior knowledge on features into learning. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2007.

E. Kussul, T. Baidyk, L. Kasatkina, and V. Lukovich. Rosenblatt perceptrons for handwritten digit
recognition. In Int’l Joint Conference on Neural Networks, pages 1516–20, 2001.

F. Lauer and G. Bloch. Incorporating prior knowledge in support vector machines for classification:
a review. Submitted to Neurocomputing, 2006.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

2375

KRUPKA, NAVOT AND TISHBY

S. Lee, V. Chatalbashev, D. Vickrey, and D. Koller. Learning a meta-level prior for feature relevance
from multiple related tasks. In International Conference on Machine Learning (ICML), 2007.

K. Levi, M. Fink, and Y. Weiss. Learning from a small number of training examples by exploiting
object categories. LCVPR04 workshop on Learning in Computer Vision, 2004.

D. Lizotte, O. Madani, and R. Greiner. Budgeted learning of naive-bayes classifiers. In Conference
on Uncertainty in Artificial Intelligence (UAI), 2003.

A. Navot, L. Shpigelman, N. Tishby, and E. Vaadia. Nearest neighbor based feature selection for
regression and its application to neural activity. In Advances in Neural Information Processing
Systems (NIPS), 2006.

J. R. Quinlan. Induction of decision trees. In Jude W. Shavlik and Thomas G. Dietterich, editors,
Readings in Machine Learning. Morgan Kaufmann, 1990.

R. Raina, A.Y. Ng, and D. Koller. Constructing informative priors using transfer learning. In Proc.
Twenty-Third International Conference on Machine Learning, 2006.

T. Serre, L. Wolf, and T. Poggio. Object recognition with features inspired by visual cortex. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2005.

T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust object recognition with
cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007.

S. Shalev-Shwartz and Y. Singer. Efficient learning of label ranking by soft projections onto poly-
hedra. Journal of Machine Learning Research, 2006.

P. Simard, Y. LeCun, J. S. Denker, and B. Victorri. Transformation invariance in pattern recognition-
tangent distance and tangent propagation. In Neural Networks: Tricks of the Trade, 1996.

P. Y. Simard, Y. A. Le Cun, and Denker. Efficient pattern recognition using a new transformation
distance. In Advances in Neural Information Processing Systems (NIPS). 1993.

B. Taskar, M. F. Wong, and D. Koller. Learning on the test data: Leveraging unseen features. In
International Conference on Machine Learning (ICML), 2003.

S. Ullman, M. Vidal-Naquet, and E. Sali. Visual features of intermediate complexity and their use
in classification. Nature Neuroscience, 2002.

V. N. Vapnik. The Nature Of Statistical Learning Theory. Springer-Verlag, 1995.

V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for
svms. In Advances in Neural Information Processing Systems (NIPS), 2000.

2376

Journal of Machine Learning Research 9 (2008) 2377-2400 Submitted 8/07; Revised 6/08; Published 10/08

Model Selection in Kernel Based Regression using the Influence
Function

Michiel Debruyne MICHIEL.DEBRUYNE@UA.AC.BE

Mia Hubert MIA.HUBERT@WIS.KULEUVEN.BE

Department of Mathematics - LStat
K.U.Leuven
Celestijnenlaan 200B, B-3001 Leuven, Belgium

Johan A.K. Suykens JOHAN.SUYKENS@ESAT.KULEUVEN.BE

ESAT-SCD/SISTA
K.U.Leuven
Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

Editor: Isabelle Guyon

Abstract

Recent results about the robustness of kernel methods involve the analysis of influence functions.
By definition the influence function is closely related to leave-one-out criteria. In statistical learn-
ing, the latter is often used to assess the generalization of a method. In statistics, the influence
function is used in a similar way to analyze the statistical efficiency of a method. Links between
both worlds are explored. The influence function is related to the first term of a Taylor expan-
sion. Higher order influence functions are calculated. A recursive relation between these terms
is found characterizing the full Taylor expansion. It is shown how to evaluate influence functions
at a specific sample distribution to obtain an approximation of the leave-one-out error. A specific
implementation is proposed using a L1 loss in the selection of the hyperparameters and a Huber loss
in the estimation procedure. The parameter in the Huber loss controlling the degree of robustness
is optimized as well. The resulting procedure gives good results, even when outliers are present in
the data.

Keywords: kernel based regression, robustness, stability, influence function, model selection

1. Introduction

Quantifying the effect of small distributional changes on the resulting estimator is a crucial analysis
on many levels. A simple example is leave-one-out which changes the sample distribution slightly
by deleting one observation. This leave-one-out error plays a vital role for example in model se-
lection (Wahba, 1990) and in assessing the generalization ability (Poggio et al. 2004 through the
concept of stability). Most of these analyses however are restricted to the sample distribution and
the addition/deletion of some data points from this sample.

In the field of robust statistics the influence function was introduced in order to analyze the ef-
fects of outliers on an estimator. This influence function is defined for continuous distributions that
are slightly perturbed by adding a small amount of probability mass at a certain place. In Section
2 some general aspects about the influence function are gathered. Recent results about influence
functions in kernel methods include those of Christmann and Steinwart (2004, 2007) for classifica-

c©2008 Michiel Debruyne, Mia Hubert and Johan A.K. Suykens.

DEBRUYNE, HUBERT AND SUYKENS

tion and regression. In Section 3 these results are stated and their importance is summarized. A new
theoretical result concerning higher order influence functions is presented. In Section 4 we show
how to evaluate the resulting expressions at sample distributions. Moreover we apply these influ-
ence functions in a Taylor expansion approximating the leave-one-out error. In Section 5 we use the
approximation with influence functions to select the hyperparameters. A specific implementation
is proposed to obtain robustness with a Huber loss function in the estimation step and a L1 loss in
the model selection step. The degree of robustness is controlled by a parameter that can be chosen
in a data driven way as well. Everything is illustrated on a toy example and some experiments in
Section 6.

2. The Influence Function

In statistics it is often assumed that a sample of data points is observed, all generated independently
from the same distribution and some underlying process, but sometimes this is not sufficient. In
many applications gathering the observations is quite complex, and many errors or subtle changes
can occur when obtaining data. Robust statistics is a branch of statistics that deals with the detection
and neutralization of such outlying observations. Roughly speaking a method is called robust if it
produces similar results as the majority of observations indicates, no matter how a minority of other
observations is placed. A crucial analysis in robust statistics is the behavior of a functional T , not
only at the distribution of interest P, but in an entire neighborhood of distributions around P. The
influence function measures this behavior. In this section we recall its definition and discuss some
links with other concepts.

2.1 Definition

The pioneering work of Hampel et al. (1986) and Huber (1981) considers distributions Pε,z =
(1− ε)P + ε∆z where ∆z denotes the Dirac distribution in the point z ∈ X ×Y , representing the
contaminated part of the data. For having a robust T , T (Pε,z) should not be too far away from T (P)
for any possible z and any small ε. The limiting case of ε ↓ 0 is comprised in the concept of the
influence function.

Definition 1 Let P be a distribution. Let T be a functional T : P → T (P). Then the influence
function of T at P in the point z is defined as

IF(z;T,P) = lim
ε→0

T (Pε,z)−T (P)

ε
.

The influence function measures the effect on the estimator T when adding an infinitesimally small
amount of contamination at the point z. Therefore it is a measure of the robustness of T . Of
particular importance is the supremum over z. If this is unbounded, then an infinitesimally small
amount of contamination can cause arbitrary large changes. For robust estimators, the supremum of
its influence function should be bounded. Then small amounts of contamination cannot completely
change the estimate and a certain degree of robustness is indeed present. The simplest example is
the estimation of the location of a univariate distribution with density f symmetric around 0. The
influence function of the mean at z ∈ R then equals the function z and is clearly unbounded. If
the median of the underlying distribution is uniquely defined, that is if f (0) > 0, then the influence
function of the median equals sign(z)/(2 f (0)) which is bounded. The median is thus more robust
than the mean.

2378

MODEL SELECTION IN KERNEL BASED REGRESSIONUSING THE INFLUENCE FUNCTION

2.2 Asymptotic Variance and Stability

From Definition 1 one can see that the influence function is a first order derivative of T (Pε,z) at
ε = 0. Higher order influence functions can be defined too:

Definition 2 Let P be a distribution. Let T be a functional T : P → T (P). Then the k-th order
influence function of T at P in the point z is defined as

IFk(z;T,P) =
∂

∂kε
T (Pε,z)|ε=0.

If all influence functions exist then the following Taylor expansion holds:

T (Pε,z) = T (P)+ εIF(z;T,P)+
ε2

2!
IF2(z;T,P)+ . . . (1)

characterizing the estimate at a contaminated distribution in terms of the estimate at the original
distribution and the influence functions.

Actually this is a special case of a more general Von Mises expansion (take Q = Pε,z):

T (Q) = T (P)+
Z

IF(x;T,P)d(Q−P)(x)+ . . .

Now take Q equal to a sample distribution Pn of a sample {zi} of size n generated i.i.d. from P.
Then

T (Pn)−T (P) =
Z

IF(z;T,P)dPn(z)+ . . .

=
1
n

n

∑
i=1

IF(zi;T,P)+

The first term on the right hand side is now a sum of n i.i.d. random variables. If the remaining terms
are asymptotically negligible, the central limit theorem thus immediately shows that

√
n(T (Pn)−

T (P)) is asymptotically normal with mean 0 and variance

ASV (T,P) =
Z

IF2(z;T,P)dP(z).

Since the asymptotic efficiency of an estimator is proportional to the reciprocal of the asymptotic
variance, the integrated squared influence function should be as small as possible to achieve high
efficiency. Consider again the estimation of the center of a univariate distribution with density f . At
a standard normal distribution the asymptotic variance of the mean equals

R

z2dP(z) = 1, and that
of the median equals

R

(sign(z)/(2 f (0)))2dP(z) = 1.571. Thus the mean is more efficient than the
median at a normal distribution. However, at a Cauchy distribution for instance, this is completely
different: the ASV of the median equals 2.47, but for the mean it is infinite since the second moment
of a Cauchy distribution does not exist. Thus to estimate the center of a Cauchy, the median is a
much better choice than the mean.

An interesting parallel can be drawn towards the concept of stability in learning theory. Several
measures of stability were recently proposed in the literature. The leave-one-out error often plays a
vital role, for example in hypothesis stability (Bousquet and Elisseeff, 2001), partial stability (Kutin

2379

DEBRUYNE, HUBERT AND SUYKENS

and Niyogi, 2002) and CVloo-stability (Poggio et al., 2004). The basic idea is that the result of a
learning map T on a full sample should not be very different from the result obtained when removing
only one observation. More precisely, let P be a distribution on a set X ×Y and T : P → T (P) with
T (P) : X → Y : x → T (P)(x). Let P−i

n denote the empirical distribution of a sample without the
ith observation zi = (xi,yi) ∈ X ×Y . Poggio et al. (2004) call the map T CVloo-stable for a loss
function L : Y → R

+ if

lim
n→∞

sup
i∈{1,...,n}

|L(yi −T (Pn)(xi))−L(yi −T (P−i
n)(xi))| → 0 (2)

for n→∞. This means intuitively that the prediction at a point xi should not be too different whether
or not this point is actually used constructing the predictor. If the difference is too large there is no
stability, since in that case adding only one point can yield a large change in the result. Under
mild conditions it is shown that CVloo-stability is required to achieve good predictions. Let L be the
absolute value loss and consider once again the simple case of estimating the location of a univariate
distribution. Thus Pn is just a univariate sample of n real numbers {y1, . . . ,yn}. Then the left hand
side of (2) equals

lim
n→∞

sup
i∈{1,...,n}

|T (Pn)−T (P−i
n)|.

Let y(i) denote the ith order statistic. Consider T the median. Assuming that n is odd and yi < y(n+1
2)

(the cases yi > y(n+1
2) and equality can easily be checked as well), we have that

|Med(Pn)−Med(P−i
n)| =

∣

∣

∣

∣

y(n+1
2)−

1
2

(

y(n+1
2) + y(n+3

2)

)

∣

∣

∣

∣

=
1
2
|y(n+1

2)− y(n+3
2)|.

If the median of the underlying distribution P is unique, then both y(n+1
2) and y(n+3

2) converge to this
number and CVloo stability is obtained. However, when taking the mean for T , we have that

|E(Pn)−E(P−i
n)| =

∣

∣

∣

∣

∣

∣

∣

1
n

n

∑
j=1

y j −
1

n−1

n

∑
j=1
j 6=i

y j

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

− 1
n(n−1)

n

∑
j=1
j 6=i

y j +
yi

n

∣

∣

∣

∣

∣

∣

∣

.

The first term in this sum equals the sample mean of P−i
n divided by n and thus converges to 0 if the

mean of the underlying distribution exists. The second term converges to 0 if

lim
n→∞

sup
i∈{1,...,n}

|yi|
n

= 0.

This means that the largest absolute value of n points sampled from the underlying distribution
should not grow too large. For a normal distribution for instance this is satisfied since the largest
observation only grows logarithmically: for example the largest of 1000 points generated from a
normal distribution only has a very small probability to exceed 5. This is due to the exponentially
decreasing density function. For heavy tailed distribution it can be different. A Cauchy density for
instance only decreases at the rate of the reciprocal function and supi∈{1,...,n} |yi| is of the order O(n).
Thus for a normal distribution the mean is CVloo stable, but for a Cauchy distribution it is not.

In summary note that both the concepts of influence function and asymptotic variance on one
hand and CVloo stability on the other hand yield the same conclusions: using the sample median as

2380

MODEL SELECTION IN KERNEL BASED REGRESSIONUSING THE INFLUENCE FUNCTION

an estimator is ok as long as the median of the underlying distribution is unique. Then one has CVloo

stability and a finite asymptotic variance. Using the sample mean is ok for a normal distribution,
but not for a Cauchy distribution (no CVloo stability and an infinite asymptotic variance).

A rigorous treatment of asymptotic variances and regularity conditions can be found in Boos
and Serfling (1980) and Fernholz (1983). In any event, it is an interesting link between perturba-
tion analysis through the influence function and variance/efficiency in statistics on one hand, and
between leave-one-out and stability/generalization in learning theory on the other hand.

2.3 A Strategy for Fast Approximation of the Leave-one-out Error

In leave-one-out crossvalidation T (P−i
n) is computed for every i. This means that the algorithm

under consideration has to be executed n times, which can be computationally intensive. If the
influence functions of T can be calculated, the following strategy might provide a fast alternative.
First note that

P−i
n = (1− (

−1
n−1

))Pn +
−1

n−1
∆zi .

Thus, taking Pε,z = P−i
n , ε = −1/(n−1) and P = Pn, Equation (1) gives

T (P−i
n) = T (Pn)+

∞

∑
j=1

(
−1

n−1
) j IFj(zi;T,Pn)

j!
. (3)

The right hand side now only depends on the full sample Pn. In practice one can cut off the series
after a number of steps ignoring the remainder term, or if possible one can try to estimate the
remainder term.

The first goal of this paper is to apply this idea in the context of kernel based regression. Christ-
mann and Steinwart (2007) computed the first order influence function. We will compute higher
order terms in (1) and use these results to approximate the leave-one-out estimator applying (3).

3. Kernel Based Regression

In this section we recall some definitions on kernel based regression. We discuss the influence
function and provide a theorem on higher order terms.

3.1 Definition

Let X ,Y be non-empty sets. Denote P a distribution on X ×Y ⊆R
d ×R. Suppose we have a sample

of n observations (xi,yi) ∈ X ×Y generated i.i.d. from P. Then Pn denotes the corresponding finite
sample distribution. A functional T is a map that maps any distribution P onto T (P). A finite sample
approximation is given by Tn := T (Pn).

Definition 3 A function K : X ×X → R is called a kernel on X if there exists a R-Hilbert space H
and a map Φ : X → H such that for all x,x′ ∈ X we have

K(x,x′) = 〈Φ(x),Φ(x′)〉 .

We call Φ a feature map and H a feature space of K.

2381

DEBRUYNE, HUBERT AND SUYKENS

Frequently used kernels include the linear kernel K(xi,x j) = xt
ix j, polynomial kernel of degree p

for which K(xi,x j) = (τ+ xt
ix j)

p with τ > 0 and RBF kernel K(xi,x j) = exp(−‖xi − x j‖2
2/σ2) with

bandwidth σ > 0. By the reproducing property of H we can evaluate any f ∈ H at the point x ∈ X
as the inner product of f with the feature map: f (x) = 〈 f ,Φ(x)〉.

Definition 4 Let K be a kernel function with corresponding feature space H and let L : R → R
+

be a twice differentiable convex loss function. Then the functional fλ,K : P → fλ,K(P) = fλ,K,P ∈ H
is defined by

fλ,K,P := argmin
f∈H

EPL(Y − f (X))+λ‖ f‖2
H

where λ > 0 is a regularization parameter.

The functional fλ,K maps a distribution P onto the function fλ,K,P that minimizes the regularized
risk. When the sample distribution Pn is used, one has that

fλ,K,Pn
:= argmin

f∈H

1
n

n

∑
i=1

L(yi − f (xi))+λ‖ f‖2
H . (4)

Such estimators have been studied in detail, see for example Wahba (1990), Tikhonov and Arsenin
(1977) or Evgeniou et al. (2000). In a broader framework (including for example classification,
PCA, CCA etc.) primal-dual optimization methodology involving least squares kernel estimators
were studied by Suykens et al. (2002b). Possible loss functions include

• the least squares loss: L(r) = r2.

• Vapnik’s ε-insensitive loss: L(r) = max{|r|− ε,0}, with special case the L1 loss if ε = 0.

• the logistic loss: L(r) =− log(4Λ(r)[1−Λ(r)]) with Λ(r) = 1/(1+e−r). Note that this is not
the same loss function as used in logistic regression.

• Huber loss with parameter b > 0: L(r) = r2 if |r| ≤ b and L(r) = 2b|r|− b2 if |r| > b. Note
that the least squares loss corresponds to the limit case b → ∞.

3.2 Influence Function

The following proposition was proven in Christmann and Steinwart (2007).

Proposition 5 Let H be a RKHS of a bounded continuous kernel K on X with feature map Φ : X →
H . Furthermore, let P be a distribution on X ×Y with finite second moment. Then the influence
function of fλ,K exists for all z := (zx,zy) ∈ X ×Y and we have

IF(z; fλ,K ,P) = −S−1 (2λ fλ,K,P
)

+L′(zy − fλ,K,P(zx))S
−1Φ(zx)

where S : H → H is defined by S(f) = 2λ f +EP
[

L′′(Y − fλ,K,P(X))〈Φ(X), f 〉Φ(X)
]

.

Thus if the kernel is bounded and the first derivative of the loss function is bounded, then the
influence function is bounded as well. Thus L1 type loss functions for instance lead to robust
estimators. The logistic loss as well since the derivative of this loss function equals L′(r) = 2−

2382

MODEL SELECTION IN KERNEL BASED REGRESSIONUSING THE INFLUENCE FUNCTION

1/(1 + e−r) which is bounded by 2. For the Huber loss L′(r) is bounded by 2b. This shows that
the parameter b controls the amount of robustness: if b is very large than the influence function
can become very large too. For a small b the influence function remains small. For a least squares
loss function on the other hand, the influence function is unbounded (L′(r) = 2r): the effect of the
smallest amount of contamination can be arbitrary large. Therefore it is said that the least squares
estimator is not robust.

3.3 Higher Order Influence Functions

For the second order influence function as in Definition 2 the following theorem is proven in the
Appendix.

Theorem 6 Let P be a distribution on X ×Y with finite second moment. Let L be a convex loss
function that is three times differentiable. Then the second order influence function of fλ,K exists for
all z := (zx,zy) ∈ X ×Y and we have

IF2(z; fλ,K ,P) =S−1
(

2EP[IF(z; fλ,K ,P)(X)L′′(Y − fλ,K(X))Φ(X)]

+EP[(IF(z; fλ,K ,P)(X))2L′′′(Y − fλ,K,P(X))]

−2[IF(z; fλ,K ,P)(zx)L
′′(zy − fλ,K(zx))Φ(zx)]

)

where S : H → H is defined by S(f) = 2λ f +EP
[

L′′(Y − fλ,K,P(X))〈Φ(X), f 〉Φ(X)
]

.

When the loss function is infinitely differentiable, all higher order terms can in theory be calculated,
but the number of terms grows rapidly since all derivatives of L come into play. However, in the
special case that all derivatives higher than three are 0, a relatively simple recursive relation exists.

Theorem 7 Let P be a distribution on X ×Y with finite second moment. Let L be a convex loss
function such that the third derivative is 0. Then the (k +1)th order influence function of fλ,K exists
for all z := (zx,zy) ∈ X ×Y and we have

IFk+1(z; fλ,K ,P) = (k +1)S−1
(

EP[IFk(z; fλ,K ,P)(X)L′′(Y − fλ,K(X))Φ(X)]

− [IFk(z; fλ,K ,P)(zx)L
′′(Zy − fλ,K(zx))Φ(zx)]

)

where S : H → H is defined by S(f) = 2λ f +EP
[

L′′(Y − fλ,K,P(X))〈Φ(X), f 〉Φ(X)
]

.

4. Finite Sample Expressions

Since the Taylor expansion in (1) is now fully characterized for any distribution P and any z, we
can use this to assess the influence of individual points in a sample with sample distribution Pn.
Applying Equation (3) with the KBR estimator fλ,K,Pn

from (4) we have that

fλ,K,P−i
n

(xi) = fλ,K,Pn
(xi)+

∞

∑
j=1

(
−1

n−1
) j IFj(zi; fλ,K ,Pn)(xi)

j!
. (5)

Let us see how the right hand side can be evaluated in practice.

2383

DEBRUYNE, HUBERT AND SUYKENS

4.1 Least Squares Loss

First consider taking the least squares loss in (4). Denote Ω the n×n kernel matrix with i, j-th entry
equal to K(xi,x j). Let In be the n×n identity matrix and denote Sn = Ω/n+λIn. The value of fλ,K,Pn

at a point x ∈ X is given by

fλ,K,Pn
(x) =

1
n

n

∑
i=1

αiK(xi,x) with

α1
...

αn

= S−1

n

y1
...

yn

(6)

which is a classical result going back to Tikhonov and Arsenin (1977). This also means that the
vector of predictions in the n sample points simply equals

fλ,K,Pn
(x1)

...
fλ,K,Pn

(xn)

= H

y1
...

yn

(7)

with the matrix H = 1
n S−1

n Ω, sometimes referred to as the smoother matrix.
To compute the first order influence function at the sample the expression in Proposition 5

should be evaluated at Pn. The operator S at Pn maps by definition any f ∈ H onto

SPn(f) = 2λ f +EPn2 f (X)Φ(X) = 2λ f +
2
n

n

∑
j=1

f (x j)Φ(x j)

and thus

SPn(f)(x1)
...

SPn(f)(xn)

= 2λ

f (x1)
...

f (xn)

+

2
n

K(x1,x1) . . . K(x1,xn)
...

K(xn,x1) K(xn,xn)

f (x1)
...

f (xn)

= 2Sn

f (x1)
...

f (xn)

which means that the matrix 2Sn is the finite sample version of the operator S at the sample Pn. From
Proposition 5 it is now clear that

IF(zi; fλ,K ,Pn)(x1)
...

IF(zi; fλ,K ,Pn)(xn)

= S−1

n

(

(yi − fλ,K,Pn
(xi))

K(xi,x1)
...

K(xi,xn)

−λ

fλ,K,Pn
(x1)

...
fλ,K,Pn

(xn)

)

. (8)

In order to evaluate the influence function at sample point zi at a sample distribution Pn, we only
need the full sample fit fλ,K,Pn

and the matrix S−1
n , which is already obtained when computing fλ,K,Pn

(cf. Equation 6). From Theorem 7 one sees similarly that the higher order terms can be computed

2384

MODEL SELECTION IN KERNEL BASED REGRESSIONUSING THE INFLUENCE FUNCTION

recursively as

IFk+1(zi; fλ,K ,Pn)(x1)
...

IFk+1(zi; fλ,K ,Pn)(xn)

=(k +1)S−1

n
Ω
n

IF(zi; fλ,K ,Pn)(x1)
...

IFk(zi; fλ,K ,Pn)(xn)

(9)

− (k +1)IFk(zi; fλ,K ,Pn)(xi)S
−1
n

K(xi,x1)
...

K(xi,xn)

.

Define [IFMk] the matrix containing IFk(z j; fλ,K ,Pn)(xi) at entry i, j. Then (9) is equivalent to

[IFMk+1] = (k +1)(H [IFMk]−nH • [IFMk])

with • denoting the entrywise matrix product (also known as the Hadamard product). Or equiva-
lently

[IFMk+1] = (k +1)(H([IFMk]•M(1−n))) (10)

with M the matrix containing 1/(1−n) at the off-diagonal and 1 at the diagonal. A first idea is now
to approximate the series in (5) by cutting it off at some step k:

fλ,K,P−i
n

(xi) ≈ fλ,K,Pn
(xi)+

k

∑
j=1

1
(1−n) j j!

[IFM j]i,i. (11)

However using (10) we can do a bit better. Expression (5) becomes

fλ,K,P−i
n

(xi) = fλ,K,Pn
(xi)+

1
1−n

[IFM1]i,i +
1

1−n
[H(IFM1 •M)]i,i

+
1

1−n
[H(H(IFM1 •M)•M)]i,i + . . .

In every term there is a multiplication with H and an entrywise multiplication with M. The latter
means that all diagonal elements remain unchanged but the non-diagonal elements are divided by
1−n. So after a few steps the non-diagonal elements will converge to 0 quite fast. It makes sense
to set the non-diagonal elements 0 retaining only the diagonal elements:

fλ,K,P−i
n

(xi) ≈ fλ,K,Pn
(xi)+

k−1

∑
j=1

1
(1−n) j j!

[IFM j]i,i +
1

(1−n)kk!

∞

∑
j=0

H j
i,i[IFMk]i,i

= fλ,K,Pn
(xi)+

k−1

∑
j=1

1
(1−n) j j!

[IFM j]i,i +
1

(1−n)kk!
[IFMk]i,i
1−Hi,i

(12)

since Hi,i is always smaller than 1.

2385

DEBRUYNE, HUBERT AND SUYKENS

4.2 Huber Loss

For the Huber loss function with parameter b > 0 we have that

L(r) =

{

r2 if |r| < b.

2b|r|−b2 if |r| > b.

and thus

L′(r) =

{

2r if |r| < b

2b sign(r) if |r| > b
, L′′(r) =

{

2 if |r| < b

0 if |r| > b
.

Note that the derivatives in |r|= b do not exist, but in practice the probability that a residual exactly
equals b is 0, so we further ignore this possibility. The following equation holds:

fλ,K,Pn
(x) =

1
n

n

∑
i=1

αiK(xi,x) with 2λα j = L′(y j −
1
n

n

∑
i=1

αiK(xi,x j)). (13)

Thus a set of possibly non-linear equations has to be solved in α. Once the solution for the full
sample is found, an approximation of the leave-one-out error is obtained in a similar way as for
least squares. Proposition 5 for Pn gives the first order influence function.

IF(zi; fλ,K ,Pn)(x1)
...

IF(zi; fλ,K ,Pn)(xn)

= S−1

b

(

L′(yi − fλ,K,Pn
(xi))

K(xi,x1)
...

K(xi,xn)

−λ

fλ,K,Pn
(x1)

...
fλ,K,Pn

(xn)

)

with Sb = 2λIn + Ω •B/n and B the matrix containing L′′(yi − fλ,K,Pn
(xi) at every entry in the ith

column. Let Hb = S−1
b Ω/n•B. Starting from Theorem 7 one finds analogously as (10) the following

recursion to compute higher order terms.

[IFMk+1] = (k +1)(Hb([IFMk]•M(1−n))) .

Finally one can use these matrices to approximate the leave-one-out estimator as

fλ,K,P−i
n

(xi) ≈ fλ,K,Pn
(xi)+

k−1

∑
j=1

1
(1−n) j j!

[IFM j]i,i +
1

(1−n)kk!
[IFMk]i,i
1− [Hb]i,i

(14)

in the same way as in (12)

4.3 Reweighted KBR

In Equation (14) the full sample estimator fλ,K,Pn
is of course needed. For a general loss function L

one has to solve Equation (13) to find fλ,K,Pn
. A fast way to do so is to use reweighted KBR with a

least squares loss. Let

W (r) =
L′(r)

2r
. (15)

2386

MODEL SELECTION IN KERNEL BASED REGRESSIONUSING THE INFLUENCE FUNCTION

Then we can rewrite (13) as

2λ fλ,K,Pn
(xk) =

1
n

n

∑
i=1

L′(yi − fλ,K,Pn
(xi))K(xi,xk) ∀1 ≤ k ≤ n.

=
1
n

n

∑
i=1

2W (yi − fλ,K,Pn
(xi))(yi − fλ,K,Pn

(xi))K(xi,xk).

Denoting wi = W (yi − fλ,K,Pn
(xi)) this means that

λ fλ,K,Pn
(xk) =

1
n

n

∑
i=1

wiyiK(xi,xk)−
1
n

n

∑
i=1

wi fλ,K,Pn
(xi)K(xi,xk) ∀1 ≤ k ≤ n.

Let Iw denote the n×n diagonal matrix with wi at entry i, i. Then

fλ,K,Pn
(x1)

...
fλ,K,Pn

(xn)

=

(

Ω
n

+λIw

)−1 Ω
n

y1
...

yn

(16)

and thus fλ,K,Pn
can be written as a reweighted least squares estimator with additional weights wi

compared to Equations (6) and (7). Of course these weights still depend on the unknown fλ,K,Pn
,

so (16) only implicitly defines fλ,K,Pn
. It does suggest the following iterative reweighting algorithm.

1. Start with simple least squares computing (7). Denote the solution f 0
λ,K,Pn

.

2. At step k +1 compute weights wi,k = W (yi − f k
λ,K,Pn

(xi)).

3. Solve (16) using the weights wi,k. Let the solution be f k+1
λ,K,Pn

.

In Suykens et al. (2002a) it is shown that this algorithm usually converges in very few steps. In
Debruyne et al. (2006) the robustness of such stepwise reweighting algorithm is analyzed by cal-
culating stepwise influence functions. It is shown that the influence function is stepwise reduced
under certain conditions on the weight function.

For the Huber loss with parameter b Equation (15) means that the corresponding weight function
equals W (r) = 1 if |r| ≤ b and W (r) = b/|r| if |r| > b. This gives a clear interpretation of this loss
function: all observations with error smaller than b remain unchanged, but the ones with error
larger than b are downweighted compared to the least squares loss. This also explains the gain in
robustness. One can expect better robustness as b decreases.

It would be possible to compute higher order terms of such k−step estimators as well. Then one
could explicitly use these terms to approximate the leave-one-out error of the k−step reweighted
estimator. In this paper however we use the reweighting only to compute the full sample estimator
fλ,K,Pn

and we assume that it is fully converged to the solution of (13). For the model selection (14)
is then used.

5. Model Selection

Once the approximation of fλ,K,P−i
n

is obtained, one can proceed with model selection using the
leave-one-out principle. In the next paragraphs we propose a specific implementation taking into
account performance as well as robustness.

2387

DEBRUYNE, HUBERT AND SUYKENS

5.1 Definition

The traditional leave-one-out criterion is given by

LOO(λ,K) =
1
n

n

∑
i=1

V (yi − fλ,K,P−i
n

(xi)) (17)

with V an appropriate loss function. The values of λ and of possible kernel parameters for which
this criterion is minimal, are then selected to train the model. The idea we investigate is to replace
the explicit leave-one-out by the approximation in (12) for least squares and (14) for the Huber loss.

Definition 8 The k-th order influence function criterion at a regularization parameter λ > 0 and
kernel K for Huber loss KBR with parameter b is defined as

Ck
IF(λ,K,b) =

1
n

n

∑
i=1

V

(

yi − fλ,K,Pn
(xi)−

k−1

∑
j=1

1
(1−n) j j!

[IFM j]i,i −
1

(1−n)kk!
[IFMk]i,i
1− [Hb]i,i

)

.

For KBR with a least squares loss we write

Ck
IF(λ,K,∞) =

1
n

n

∑
i=1

V

(

yi − fλ,K,Pn
(xi)−

k−1

∑
j=1

1
(1−n) j j!

[IFM j]i,i −
1

(1−n)kk!
[IFMk]i,i
1− [H]i,i

)

.

since a least squares loss is a limit case of the Huber loss as b → ∞.

Several choices need to be made in practice. For k taking five steps seems to work very well in the
experiments. If we refer to the criterion with this specific choice k = 5 we write C5

IF . For V one
typically chooses the squared loss or the absolute value corresponding to the mean squared error
and the mean absolute error. Note that V does not need to be the same as the loss function used
to compute fλ,K,Pn

(the latter is always denoted by L). Recall that a loss function L with bounded
first derivative L′ is needed to perform robust fitting. It is important to note that this result following
from Proposition 5 holds for a fixed choice of λ and the kernel K. However, if these parameters
are selected in a data driven way, outliers in the data might have a large effect on the selection of
the parameters. Even if a robust estimator is used, the result could be quite bad if wrong choices
are made for the parameters due to the outliers. It is thus important to use a robust loss function
V as well. Therefore we set V equal to the absolute value loss function unless we explicitly state
differently. In Section 6.1 an illustration is given on what can go wrong if a least squares loss is
chosen for V instead of the absolute value.

5.2 Optimizing b

With k and V now specified, the criterion C5
IF can be used to select optimal hyperparameters for

a KBR estimator with L the Huber loss with parameter b. Now the final question remains how
to choose b. In Section 4.3 it was argued that b controls the robustness of the estimator since all
observations with error smaller than b are downweighted compared to the least squares estimator.
Thus we want to choose b small enough such that outlying observations receive sufficiently small
weight, but also large enough such that the good non outlying observations are not downweighted
too much. A priori it is quite difficult to find such a good choice for b, since this will depend on the
scale of the errors.

2388

MODEL SELECTION IN KERNEL BASED REGRESSIONUSING THE INFLUENCE FUNCTION

However, one can also treat b as an extra parameter that is part of the optimization, consequently
minimizing C5

IF for λ, K and b simultaneously. The practical implementation we propose is as
follows:

1. Let Λ be a set of reasonable values for the regularization parameter λ and let K be a set
of possible choices for the kernel K (for instance a grid of reasonable bandwidths if one
considers the RBF kernel).

2. Start with L the least squares loss. Find good choices for λ and K by minimizing C5
IF(λ,K,∞)

for all λ ∈ Λ and K ∈ K . Compute the residuals ri with respect to the least squares fit with
these optimal λ and K.

3. Compute a robust estimate of the scale of these residuals. We take the Median Absolute
Deviation (MAD):

σ̂err = MAD(r1, . . . ,rn) =
1

Φ−1(0.75)
median(|ri −median(ri)|) (18)

with Φ−1(0.75) the 0.75 quantile of a standard normal distribution.

4. Once the scale of the errors is estimated in the previous way, reasonable choices of b can
be constructed, for example {1,2,3}× σ̂err. This means that we compare downweighting
observations further away than 1, 2, 3 standard deviations. We also want to compare to the
least squares fit and thus set

B = {σ̂err,2σ̂err,3σ̂err,∞}.

5. Minimize C5
IF(λ,K,b) over all λ ∈ Λ, K ∈ K and b ∈ B . The optimal values of b, λ and K

can then be used to construct the final fit.

5.3 Generalized Cross Validation

The criterion C5
IF uses influence functions to approximate the leave-one-out error. Other approxi-

mations have been proposed in the literature. In this section we very briefly mention some results
that are described for example by Wahba (1990) in the context of spline regression. The following
result can be proven.

Let P̃−i
n be the sample Pn with observation (xi,yi) replaced by (xi, fλ,K,P−i

n
(xi)). Suppose the

following conditions are satisfied for any sample Pn:

(i) fλ,K,P̃−i
n

(xi) = fλ,K,P−i
n

(xi). (19)

(ii) There exists a matrix H such that

fλ,K,Pn
(x1).

...
fλ,K,Pn

(xn)

= H

y1
...

yn

. (20)

Then

fλ,K,P−i
n

(xi) =
fλ,K,Pn

(xi)−Hi,iyi

1−Hi,i
. (21)

2389

DEBRUYNE, HUBERT AND SUYKENS

2 3 4 5 6 7 8 9 10 11
−1.5

−1

−0.5

0

0.5

1

1.5

X

Y

2 3 4 5 6 7 8 9
−2

0

2

4

6

8

10

x

IF
([

0,
z y])

z
y
=1,σ=1

z
y
=0.5,

σ=1

z
y
=1,σ=2

(a) (b)

Figure 1: (a) Data and least squares fit. (b) Influence functions at [5,0.5] with σ = 1, at [5,1] with
σ = 1 and σ = 2.

For KBR with the least squares loss condition (22) is indeed satisfied (cf. Equation 7), but condi-
tion (19) is not, although it holds approximately. Then (21) can still be used as an approximation of
the leave-one-out estimator. The corresponding model selection criterion is given by

CV (λ,K) =
1
n

n

∑
i=1

V

(

yi − fλ,K,Pn
(xi)

1−Hi,i

)

. (22)

We call this approximation CV. Sometimes a further approximation is made replacing every Hi,i

by trace(H)/n. This is called Generalized Cross Validation (GCV, Wahba, 1990). Note that the
diagonal elements of the hatmatrix H play an important role in the approximation with the influence
function too (12). Both penalize small values on the diagonal of H.

For KBR with a general loss function one does not have a linear equation of the form of (22),
and thus it is more difficult to apply this approximation. We shall thus use CV for comparison in
the experiments only in the case of least squares.

6. Empirical Results

We illustrate the results on a toy example and a small simulation study.

6.1 Toy Example

As a toy example 50 data points were generated with xi uniformly distributed on the interval [2,11]
and yi = sin(xi)+ ei with ei Gaussian distributed noise with standard deviation 0.2. We start with
kernel based regression with a least squares loss and a Gaussian kernel. The data are shown in
Figure 1(a) as well as the resulting fit with λ = 0.001 and σ = 2. The first order influence function
at [5,0.5] is depicted in Figure 1(b) as the solid line. This reflects the asymptotic change in the
fit when a point would be added to the data in Figure 1(a) at the position (5,0.5). Obviously this
influence is the largest at the x-position where we put the outlier, that is, x = 5. Furthermore we
see that the influence is local, since it decreases as we look further away from x = 5. At x = 8 for

2390

MODEL SELECTION IN KERNEL BASED REGRESSIONUSING THE INFLUENCE FUNCTION

0.5 1 1.5 2 2.5 3 3.5

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

σ

Training error

1 term

2 terms

3 terms

4 terms

C
IF
5 ≈ LOO≈ CV

0.5 1 1.5 2 2.5 3 3.5

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

σ

Training error

1 term

2 terms

C
IF
5 ≈ LOO≈ CV

(a) (b)

0.5 1 1.5 2 2.5 3 3.5

x 10
−3

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

λ

Training error

1 term

2 terms
3 terms
4 terms

C
IF
5 ≈ LOO≈ CV

0.5 1 1.5 2 2.5 3 3.5

x 10
−3

0.106

0.108

0.11

0.112

0.114

0.116

0.118

0.12

0.122

0.124

0.126

λ

Training error

1 term

2 terms

3 terms
4 terms

C
IF
5 ≈ LOO≈ CV

(c) (d)

Figure 2: Comparison of training error (dotted line), approximations using (11) (dashed lines), the
proposed criterion Ck

IF with k = 5 (solid line), the exact leave-one-out error and the CV
approximation (both collapsing with Ck

IF on these plots). Situation (a): as a function of σ
at λ = 0.001, (b) as a function of σ at λ = 0.005, (c) as a function of λ at σ = 1, (d) as a
function of λ at σ = 2.

instance the influence function is almost 0. When we change z from [5,0.5] to [5,1], the influence
function changes too. It still has the same oscillating behavior, but the peaks are now higher. This
reflects the non-robustness of the least squares estimator: if we would continue raising the point
z, then IF(z; fλ,K) would become larger and larger, since it is an unbounded function of z. When
it comes down to model selection, it is interesting to check the effect of the hyperparameters in
play. When we change the bandwidth σ from 1 to 2, the peaks in the resulting influence function in
Figure 1 are less sharp and less high. This reflects the loss in stability when small bandwidths are
chosen: then the fit is more sensitive to small changes in the data and thus less stable.

Consider now the approximation of the leave-one-out error using the influence functions. We
still use the same data as in the previous paragraph. The dashed lines in Figure 2(a) show the ap-
proximations using (11), that is simply cutting off the expansion after a number of steps, at fixed

2391

DEBRUYNE, HUBERT AND SUYKENS

2 3 4 5 6 7 8 9 10 11
−1.5

−1

−0.5

0

0.5

1

1.5

X

Y

L=Huber

L=Least Squares

Figure 3: Data with outlier at (4,5). The parameters λ = 0.001 and σ = 2 are fixed. Dashed: KBR
with least squares loss function. Solid: KBR with Huber loss function (b = 0.2).

λ = 0.001 as a function of the bandwidth σ. We observe convergence from the training error towards
the leave-one-out error as the number of terms included is increased. Unfortunately the convergence
rate depends on the value of σ: convergence is quite slow at small values of σ. This is no surprise
looking at (12). There we approximated the remainder term by a quantity depending on (1−Hi,i)

−1.
When σ is small, the diagonal elements of H become close to 1. In that case the deleted remainder
term can indeed be quite large. Nevertheless, this approach can still be useful if some care is taken
not to consider values of λ and σ that are too small. However, the criterion C5

IF from Definition 8 us-
ing the approximation in (12) is clearly superior. We see that the remainder term is now adequately
estimated and a good approximation is obtained at any σ. The resulting curve is undistinguishable
from the exact leave-one-out error. The mean absolute difference is 3.2 10−5, the maximal differ-
ence is 1.8 10−4. The CV approximation also yields a good result being indistinguishable from
the exact leave-one-out error on the plot as well. The mean absolute difference is 4.1 10−4 and the
maximal difference equals 1.8 10−3. Thus C5

IF is closer to the true leave-one-out error than CV,
although the difference is irrelevant when it comes down to selecting a good σ.

Figure 2 also shows plots for the leave-one-out error and its various approximations at (b)
λ = 0.005 as a function of σ, (c) σ = 1 as a function of λ, (d) σ = 2 as a function of λ. In these
cases as well it is observed that the cutoff strategy yields decent results if a sufficient number of
terms is taken into account and if one does not look at values of λ and σ that are extremely small.
The best strategy is to take the remainder term into account using the criterion Ck

IF from Definition 8.
In Figure 3 we illustrate robustness. An (extreme) outlier was added at position (4,5) (not

visible on the plot). This outlier leads to a bad fit when LS-KBR is used with λ = 0.001 and σ = 2
(dashed line). When a Huber loss function is used with b = 0.2 a better fit is obtained that still
nicely predicts the majority of observations. This behavior can be explained by Proposition 5. The
least squares loss has an unbounded first derivative and thus the influence of outliers can be arbitrary
large. The Huber loss has a bounded first derivative and thus the influence of outliers is bounded as

2392

MODEL SELECTION IN KERNEL BASED REGRESSIONUSING THE INFLUENCE FUNCTION

1 1.5 2 2.5 3 3.5

1.34

1.36

1.38

1.4

1.42

σ

V Least Squares

C
IF
5
LOO

1 1.5 2 2.5 3

0.35

0.36

0.37

0.38

0.39

σ

V=L
1

C
IF
5

LOO

2 3 4 5 6 7 8 9 10 11
−1.5

−1

−0.5

0

0.5

1

1.5

X

Y

V = Least
Squares

V=L
1

(a) (b)

Figure 4: (a) Optimization of σ at λ = 0.001. Upper: using least squares loss V in the model
selection. Lower: using L1 loss V in the model selection. For the estimation the loss
function L is always the Huber loss with b = 0.2. (b) Resulting fits. Dashed line: σ = 3.6
(optimal choice using V least squares). Solid line: σ = 2.3 (optimal choice using L1 loss
for V .

well. However, note that in this example as well as in Proposition 5 the hyperparameters λ and σ are
assumed to have fixed values. In practice one wants to choose these parameters in a data driven way.
Figure 4(a) shows the optimization of σ at λ = 0.001 for KBR with L the Huber loss with b = 0.2.
In the upper panel the least squares loss is used for V in the model selection criteria. Both exact
leave-one-out and C5

IF indicate that a value of σ ≈ 3.6 should be optimal. This results in the dashed
fit in Figure 4(b). In the lower panel of Figure 4 the L1 loss is used for V in the model selection
criteria. Both exact leave-one-out and C5

IF indicate that a value of σ ≈ 2.3 should be optimal. This
results in the solid fit in Figure 4(b). We clearly see that, although in both cases a robust estimation
procedure is used (Huber loss for L), the outlier can still be quite influential through the model
selection. To obtain full protection against outliers, both the estimation and the model selection step
require robustness, for example by selecting both L and V in a robust way.

Finally let us investigate the role of the parameter b used in the Huber loss function. We now
use C5

IF with V the L1 loss. When we apply C5
IF to the clean data without the outlier, we observe

in Figure 5(a) that the choice of b does not play an important role. This is quite expected: since
there are no outliers, there is no reason why least squares (b = ∞) would not perform well. On the
contrary, if we use a small b such as b = 0.1 we get a slightly worse result. Again this is not a
surprise, since with small b we will downweight a lot of points that are actually perfectly ok.

The same plot for the data containing the outlier yields a different view in Figure 5(b). The
values of C5

IF are much higher for least squares than for the Huber loss with smaller b. Thus it
is automatically detected that a least squares loss is not the appropriate choice, which is a correct
assessment since the outlier will have a large effect (cf. the dashed line in Figure 3). The criterion
C5

IF indicates a choice b = 0.2, which leads to a better result indeed (cf. the solid line in Figure 3)

2393

DEBRUYNE, HUBERT AND SUYKENS

1 1.5 2 2.5 3
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

σ

C
IF5 b=0.1

b=0.2

b=1≈ b=∞

1 1.5 2 2.5 3

0.35

0.4

0.45

0.5

0.55

0.6

σ

C
IF5

b=∞

b=1

b=0.2
b=0.1

(a) (b)

Figure 5: C5
IF at λ = 0.001 as a function of σ for several values of b for (a) the clean data without

the outlier, (b) the data with the outlier.

6.2 Other Examples

This part presents the results of a small simulation study. We consider some well known settings.

• Friedman 1 (d = 10): y(x) = 10sin(πx1x2) + 20(x3 − 1/2)2 + 10x4 + 5x5 + ∑10
i=6 0.xi. The

covariates are generated uniformly in the hypercube in R
10.

• Friedman 2 (d = 4): y(x) = 1
3000(x2

1 +(x2x3−(x2x4)
−2))1/2, with 0 < x1 < 100, 20 < x2/(2π) <

280, 0 < x3 < 1, 1 < x4 < 11.

• Friedman 3 (d = 4): y(x) = tan−1(x2x3−(x2x4)
−2

x1
), with the same range for the covariates as

in Friedman 2. For each of the Friedman data sets 100 observations were generated with
Gaussian noise and 200 noise free test data were generated.

• Boston Housing Data from the UCI machine learning depository with 506 instances and 13
covariates. Each split 450 observations were used for training and the remaining 56 for test-
ing.

• Ozone data from ftp://ftp.stat.berkeley.edu/pub/users/breiman/ with 202 instances and 12 co-
variates. Each split 150 observations were used for training and the remaining 52 for testing.

• Servo data from the UCI machine learning depository with 167 instances and 4 covariates.
Each split 140 observations were used for training and the remaining 27 for testing.

For the real data sets (Boston, Ozone and Servo), new contaminated data set were constructed as
well by adding large noise to 10 training points, making these 10 points outliers.

The hyperparameters λ and σ are optimized over the following grid of hyperparametervalues:

• λ ∈ {50,10,5,3,1,0.8,0.5,0.3,0.1,0.08,0.05,0.01,0.005}×10−3 .

2394

MODEL SELECTION IN KERNEL BASED REGRESSIONUSING THE INFLUENCE FUNCTION

• For each data set 500 distances were calculated between two randomly chosen observations.
Let d(i) be the ith largest distance. Then the following grid of values for σ is considered:
σ ∈ { 1

2 d(1),d(1),d(50),d(100),d(150),d(200),d(250),d(300),d(350),d(400),d(450),d(500),2d(500)}.

In each replicate the Mean Squared Error of the test data is computed. For every data set the average
MSE over 20 replicates is shown in Table 1 (upper table). A two-sided paired Wilcoxon rank test
is used to check statistical significance: values in italic are significantly different from the smallest
value at significance level 0.05. If underlined significance holds even at significance level 10−4.
Standard errors are shown as well (lower table). First we consider the least squares loss for L with
the criterion C5

IF(λ,σ,∞) (Definition 8), with exact leave-one-out (17) and with CV (22). These are
the first 3 columns in Table 1. We see that the difference between these 3 criteria is very small. This
means that both CV and C5

IF provide good approximations of the leave-one-out error.
Secondly, we considered each time the residuals of the least squares fit with optimal λ and

σ according to C5
IF(λ,K,∞). An estimate σ̂err of the scale of the residuals is computed as the

MAD of these residuals (18). Then we applied KBR with a Huber loss and parameter b = 3σ̂err.
The resulting MSE with this loss and λ and σ minimizing C5

IF(λ,σ,3σ̂err) is given in column 4 in
Table 1. Similar results are obtained for b = 2σ̂err in column 5 and with b = σ̂err in column 6. For
the data sets without contamination we see that using a Huber loss instead of least squares gives
similar results except for the Boston housing data, Friedman 1 and especially Friedman 2. For those
data sets a small value of b is inappropriate. This might be explained by the relationship between
the loss function and the error distribution. For a Gaussian error distribution least squares is often an
optimal choice (cf. maximum likelihood theory). Since the errors in the Friedman data are explicitly
generated as Gaussian, this might explain why least squares outperforms the Huber loss. For real
data sets, the errors might not be exactly Gaussian, and thus other loss function can perform at
least equally well as least squares. For the data sets containing the outliers the situation changes of
course. Now least squares is not a good option because of its lack of robustness. Clearly the outliers
have a large and bad effect on the quality of the predictions. This is not the case when the Huber
loss function is chosen. Then the effect of the outliers is reduced. Choosing b = 3σ̂err already leads
to a large improvement. Decreasing b leads to even better results (note that the p-values are smaller
than 10−4 for any significant pairwise comparison).

Finally we also consider optimizing b. We apply the algorithm outlined in Section 5.2. Corre-
sponding MSE’s are given in the last column of Table 1. For the Friedman 1 and Friedman 2 data
sets for instance this procedure indeed detects that least squares is an appropriate loss function and
automatically avoids choosing b too small. For the contaminated data sets the procedure detects
that least squares is not appropriate and that changing to a Huber loss with a small b is beneficial,
which is indeed a correct choice yielding smaller MSE’s. In fact, only for the Friedman 2 data, the
automatic choice of b is significantly worse than the optimal choice (p-value=0.03), whereas the
benefits at the contaminated data are large (all p-values < 10−4).

7. Conclusion

Heuristic links between the concept of the influence function and concepts as leave-one-out cross
validation and stability were considered in Section 2, indicating some interesting applications of the
influence function and the leave-one-out error in previous literature. New results include the calcu-
lation of higher order influence functions and a recursive relation between subsequent terms. It is
shown that these theoretical results can be applied in practice to approximate the leave-one-out esti-

2395

DEBRUYNE, HUBERT AND SUYKENS

b = ∞ (=LS) b = 3σ̂err b = 2σ̂err b = σ̂err (b = optimized)

LOO CV C5
IF C5

IF C5
IF C5

IF C5
IF

F1 1.63 1.63 1.63 1.66 1.70 1.82 1.67
F2 1.30 1.30 1.30 1.42 1.71 3.02 1.39
F3 2.42 2.42 2.42 2.42 2.42 2.37 2.38
B 10.58 10.58 10.58 10.82 11.30 12.21 10.79
O 13.91 13.92 13.91 13.76 13.73 13.91 13.94
S 0.40 0.40 0.40 0.43 0.41 0.41 0.40

B+o 37.54 37.54 37.54 14.60 13.73 12.68 12.78
O+o 78.78 78.78 78.77 21.20 18.85 16.74 16.74
S+o 1.60 1.60 1.60 0.61 0.54 0.46 0.46

b = ∞ (=LS) b = 3σ̂err b = 2σ̂err b = σ̂err (b = optimized)

LOO CV C5
IF C5

IF C5
IF C5

IF C5
IF

F1 0.09 0.09 0.09 0.09 0.10 0.08 0.09
F2 0.14 0.14 0.15 0.16 0.20 0.36 0.15
F3 0.03 0.03 0.03 0.03 0.03 0.05 0.05
B 1.39 1.39 1.39 1.40 1.46 1.51 1.39
O 0.86 0.86 0.87 0.78 0.78 0.75 0.81
S 0.05 0.05 0.05 0.09 0.08 0.09 0.09

B+o 2.91 2.91 2.91 1.12 1.09 1.02 1.04
O+o 3.44 3.44 3.44 1.01 0.97 1.03 1.03
S+o 0.16 0.16 0.16 0.07 0.07 0.08 0.08

Table 1: Simulation results. Upper: Mean Squared Errors. Lower: standard errors. Friedman
1 (F1), Friedman 2 (F2), Friedman 3 (F3), Boston Housing (B), Ozone (O), Servo (S),
Boston Housing with outliers (B+o), Ozone with outliers (O+o) and Servo with outliers
(S+o). Italic values are significantly different from the smallest value in the row with p-
value in between 0.05 and 0.001 using a paired Wilcoxon rank test; underlined values are
significant with p-value < 10−4.

mator. Experiments indicate that the quality of this approximation is quite good. The approximation
is used in a model selection criterion to select the regularization and kernel parameters.

We discussed the importance of robustness in the model selection step. A specific procedure
is suggested using an L1 loss in the model selection criterion and a Huber loss in the estimation.
Due to an iterative reweighting algorithm to compute such a Huber loss estimator and due to the
fast approximation of the leave-one-out error, everything can be computed fast starting from the
least squares framework. With an a priori choice of the parameter b in the Huber loss this leads to
better robustness if b is chosen small enough. If b is chosen too small on the other hand this might
result in worse predictions. However, this parameter can be selected in a data driven way as well.
Experiments suggest that this often yields a good trade-off between the robustness of choosing a
small b and the sometimes better predictive capacity of least squares.

2396

MODEL SELECTION IN KERNEL BASED REGRESSIONUSING THE INFLUENCE FUNCTION

Acknowledgments

JS acknowledges support from K.U. Leuven, GOA-Ambiorics, CoE EF/05/006, FWO G.0499.04,
FWO G.0211.05, FWO G.0302.07, IUAP P5/22.

MH acknowledges support from FWO G.0499.04, the GOA/07/04-project of the Research Fund
KULeuven, and the IAP research network nr. P6/03 of the Federal Science Policy, Belgium.

Appendix A.

Proof of Theorem 6

Let P be a distribution, z ∈ X ×Y and Pε,z = (1− ε)P + ε∆z with ∆z the Dirac distribution in z.
We start from the representer theorem of DeVito et al. (2004) (a generalization of (13)):

2λ fλ,K,Pε,z = EPε,z [L
′(Y − fλ,K,Pε,z(X))Φ(X)].

By definition of Pε,z and since E∆zg(X) = g(z) for any function g:

2λ fλ,K,Pε,z = (1− ε)EP[L′(Y − fλ,K,Pε,z(X))Φ(X)]+ εL′(zy − fλ,K,Pε,z(zx))Φ(zx).

Taking the first derivative on both sides with respect to ε yields

2λ
∂
∂ε

fλ,K,Pε,z =(1− ε)EP[− ∂
∂ε

fλ,K,Pε,z(X)L′′(Y − fλ,K,Pε,z(X))Φ(X)]

−EP[L′(Y − fλ,K,Pε,z(X))Φ(X)]+L′(zy − fλ,K,Pε,z(zx))Φ(zx)

− ε
∂
∂ε

fλ,K,Pε,z(zx))L
′′(zy − fλ,K,Pε,z(zx))Φ(zx).

The second derivative equals

2λ
∂

∂2ε
fλ,K,Pε,z =−EP[− ∂

∂ε
fλ,K,Pε,z(X)L′′(Y − fλ,K,Pε,z(X))Φ(X)]

+(1− ε)EP[− ∂
∂2ε

fλ,K,Pε,z(X)L′′(Y − fλ,K,Pε,z(X))Φ(X)]

+(1− ε)EP[− ∂
∂ε

fλ,K,Pε,z(X)L′′′(Y − fλ,K,Pε,z(X))(− ∂
∂ε

fλ,K,Pε,z(X))Φ(X)]

−EP[L′′(Y − fλ,K,Pε,z(X))(− ∂
∂ε

fλ,K,Pε,z(X))Φ(X)]

− ∂
∂ε

fλ,K,Pε,z(zx)L
′′(zy − fλ,K,Pε,z(zx))Φ(zx)

− ε
∂

∂2ε
fλ,K,Pε,z(zx)L

′′(zy − fλ,K,Pε,z(zx))Φ(zx)

− ε
∂
∂ε

fλ,K,Pε,z(zx)L
′′′(zy − fλ,K,Pε,z(zx))(−

∂
∂ε

fλ,K,Pε,z(zx))Φ(zx)

−L′′(zy − fλ,K,Pε,z(zx))
∂
∂ε

fλ,K,Pε,z(zx)Φ(zx).

2397

DEBRUYNE, HUBERT AND SUYKENS

Simplifying yields

2λ
∂

∂2ε
fλ,K,Pε,z =2EP[

∂
∂ε

fλ,K,Pε,z(X)L′′(Y − fλ,K,Pε,z(X))Φ(X)] (23)

− (1− ε)EP[
∂

∂2ε
fλ,K,Pε,z(X)L′′(Y − fλ,K,Pε,z(X))Φ(X)]

+(1− ε)EP[

(

∂
∂ε

fλ,K,Pε,z(X)

)2

L′′′(Y − fλ,K,Pε,z(X))Φ(X)]

−2
∂
∂ε

fλ,K,Pε,z(zx)L
′′(zy − fλ,K,Pε,z(zx))Φ(zx)

− ε
∂

∂2ε
fλ,K,Pε,z(zx)L

′′(zy − fλ,K,Pε,z(zx))Φ(zx)

+ ε
(

∂
∂ε

fλ,K,Pε,z(zx)

)2

L′′′(zy − fλ,K,Pε,z(zx))Φ(zx).

Evaluating at ε = 0 and bringing all terms containing ∂
∂2ε fλ,K,Pε,z to the left hand side of the equation

yields

2λ
∂

∂2ε
fλ,K,Pε,z |ε=0 +EP[

∂
∂2ε

fλ,K,Pε,z(X)|ε=0L′′(Y − fλ,K,P(X))Φ(X)]

= 2EP[
∂
∂ε

fλ,K,Pε,z(X)|ε=0L′′(Y − fλ,K,P(X))Φ(X)]

+EP[

(

∂
∂ε

fλ,K,Pε,z |ε=0(X)

)2

L′′′(Y − fλ,K,P(X))

−2
∂
∂ε

fλ,K,P(zx)|ε=0L′′(zy − fλ,K,P(zx))Φ(zx).

Since by definition ∂
∂ε fλ,K,Pε,z |ε=0 is IF(z; fλ,K ,P) and ∂

∂2ε fλ,K,Pε,z |ε=0 is IF2(z; fλ,K ,P) we have that

S(IF2(z; fλ,K ,P)) = 2EP[IF(z; fλ,K ,P)(X)L′′(Y − fλ,K,P(X))Φ(X)]

+EP[
(

IF(z; fλ,K ,P)(X)
)2

L′′′(Y − fλ,K,P(X))

−2IF(z; fλ,K ,P)(zx)L
′′(zy − fλ,K,P(zx))Φ(zx)

with the operator S defined by S : f → λ f +EPL′′(Y − fλ,K,P(X)) f (X)Φ(X). Christmann and Stein-
wart (2007) prove that S is an invertible operator and thus Theorem 6 follows.

Proof of Theorem 7

First we proof the following for all 2 ≤ k ∈ N:

2λ
∂

∂kε
fλ,K(Pε,z) =(1− ε)EP[− ∂

∂kε
fλ,K,Pε,z(X)L′′(Y − fλ,K,Pε,z(X))Φ(X)] (24)

+ kEP[
∂

∂k−1ε
fλ,K,Pε,z(X)L′′(Y − fλ,K,Pε,z(X))Φ(X)]

− kL′′(zy − fλ,K,Pε,z(zx))
∂

∂k−1ε
fλ,K,Pε,z(zx)Φ(zx)

− εL′′(zy − fλ,K,Pε,z(zx))
∂

∂kε
fλ,K,Pε,z(zx)Φ(zx).

2398

MODEL SELECTION IN KERNEL BASED REGRESSIONUSING THE INFLUENCE FUNCTION

Note that for k = 2 this immediately follows from (23). For general k we give a proof by induction.
We assume that (24) holds for k and we then prove that it automatically holds for k + 1 as well.
Taking the derivatives of both sides in (24) we find

λ
∂

∂k+1ε
fλ,K(Pε,z) =(1− ε)EP[− ∂

∂k+1ε
fλ,K,Pε,z(X)L′′(Y − fλ,K,Pε,z(X))Φ(X)]

−EP[− ∂
∂kε

fλ,K,Pε,z(X)L′′(Y − fλ,K,Pε,z(X))Φ(X)]

+ kEP[
∂

∂kε
fλ,K,Pε,z(X)L′′(Y − fλ,K,Pε,z(X))Φ(X)]

− k
∂

∂kε
fλ,K,Pε,z(zx)L

′′(zy − fλ,K,Pε,z(zx))Φ(zx)

− ε
∂

∂k+1ε
fλ,K,Pε,z(zx)L

′′(zy − fλ,K,Pε,z(zx))Φ(zx)

− ∂
∂kε

fλ,K,Pε,z(zx)L
′′(zy − fλ,K,Pε,z(zx))Φ(zx)

from which it follows that (24) holds for k +1 indeed. Evaluating this expression in ε = 0 yields:

λ
∂

∂k+1ε
fλ,K(Pε,z)|ε=0 +EP[

∂
∂k+1ε

fλ,K,Pε,z(X)|ε=0L′′(Y − fλ,K,Pε,z(X))Φ(X)]

= (k +1)EP[
∂

∂kε
fλ,K,Pε,z(X)|ε=0L′′(Y − fλ,K,Pε,z(X))Φ(X)]

− (k +1)
∂

∂kε
fλ,K,Pε,z |ε=0(zx)L

′′(zy − fλ,K,Pε,z(zx))Φ(zx).

Thus

S(IFk+1(z; fλ,K ,P)) = (k +1)

(

EP[IFk(z; fλ,K ,P)(X)L′′(Y − fλ,K(X))Φ(X)]

− [IFk(z; fλ,K ,P)(zx)L
′′(zy − fλ,K(zx))Φ(zx)]

)

.

Since S is an invertible operator the result in Theorem 7 follows.

References

D.D. Boos and R.J. Serfling. A note on differentials and the CLT and LIL for statistical functions.
Annals of Statistics, 8:618–624, 1980.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning Research,
2:499–526, 2001.

A. Christmann and I. Steinwart. Consistency and robustness of kernel based regression. Bernoulli,
13:799–819, 2007.

A. Christmann and I. Steinwart. On robust properties of convex risk minimization methods for
pattern recognition. Journal of Machine Learning Research, 5:1007–1034, 2004.

2399

DEBRUYNE, HUBERT AND SUYKENS

M. Debruyne, A. Christmann, M. Hubert, and J.A.K. Suykens. Robustness and stability of
reweighted kernel based regression. Technical report TR 06-09, K.U. Leuven, available at
http://wis.kuleuven.be/stat/robust, 2006.

E. DeVito, L. Rosasco, A. Caponnetto, M. Piana, and A. Verri. Some properties of regularized
kernel methods. Journal of Machine Learning Research, 5:1363–1390, 2004.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines.
Advances in Computational Mathematics, 13:1–50, 2000.

L.T. Fernholz. Von Mises Calculus for Statistical Functionals. Lecture Notes in statistics 19,
Springer, New York, 1983.

F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw, and W.A. Stahel. Robust Statistics: The Approach
Based on Influence Functions. Wiley, New York, 1986.

P.J. Huber. Robust Statistics. Wiley, New York, 1981.

S. Kutin and P. Niyogi. Almost everywhere algorithmic stability and generalization error. In
A. Daruich and N. Friedman, editors, Proceedings of Uncertainty in AI. Morgan Kaufmann,
Edmonton, 2002.

T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi. General conditions for predictivity in learning
theory. Nature, 428:419–422, 2004.

J.A.K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle. Weighted least squares support
vector machines : Robustness and sparse approximation. Neurocomputing, 48:85–105, 2002a.

J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least Squares
Support Vector Machines. World Scientific, Singapore, 2002b.

A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill Posed Problems. W.H. Winston, Washington D.C.,
1977.

G. Wahba. Spline Models for Observational Data. CBMS-NSF Regional Conference Series in
Applied Mathematics, SIAM, 1990.

2400

Journal of Machine Learning Research 9 (2008) 2401-2429 Submitted 7/07; Revised 5/08; Published 10/08

Non-Parametric Modeling of Partially Ranked Data

Guy Lebanon LEBANON@CC.GATECH.EDU

College of Computing
Georgia Institute of Technology
Atlanta, GA

Yi Mao YMAO@ECE.PURDUE.EDU

School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN

Editor: Tommi Jaakkola

Abstract
Statistical models on full and partial rankings of n items are often of limited practical use for
large n due to computational consideration. We explore the use of non-parametric models for
partially ranked data and derive computationally efficient procedures for their use for large n. The
derivations are largely possible through combinatorial and algebraic manipulations based on the
lattice of partial rankings. A bias-variance analysis and an experimental study demonstrate the
applicability of the proposed method.

Keywords: ranked data, partially ordered sets, kernel smoothing

1. Introduction

Rankers such as people, search engines, and classifiers, output full or partial rankings representing
preference relations over n items or alternatives. For example in the case of m = 6 rankers issuing
full or partial preferences over n = 3 items a possible data set is

3 ≺ 1 ≺ 2, 3 ≺ 2 ≺ 1, 1 ≺ 3 ≺ 2, 1 ≺ {2,3}, 3 ≺ {1,2}, {2,3} ≺ 1. (1)

The first three expressions in (1) correspond to full rankings while the last three expressions cor-
respond to partial rankings (the numbers correspond to items and the ≺ symbol corresponds to a
preference relation). While it is likely that some rankings will contradict others, it is natural to as-
sume that the data in (1) was sampled iid from some distribution p over rankings. The goal of this
paper is to study non-parametric methods for the estimation of p based on data sets such as (1) in
the case of large n.

Often, ranked data is not inherently associated with numeric score information. In other cases,
numeric scores are available but are un-calibrated and cannot be compared to each other. For ex-
ample, the assignment of numeric scores by people to items or alternatives is un-calibrated as each
person has his or her own notion of what constitutes a certain numeric score. On the other hand, a
preference of one item or alternative over another reflects a binary choice that is directly comparable
across rankers. Thus, even in cases where numeric scores exist, modeling the scoreless preferences
may achieve higher modeling accuracy.

c©2008 Guy Lebanon and Yi Mao.

LEBANON AND MAO

Despite this motivating observation, modeling ranked data is less popular than modeling the
existing numeric scores, or even made-up numeric scores in case the true scores are unavailable
(such is the case with the frequently used Borda count). The main reason for this is that rankings
over a large number of items n reside in an extremely large discrete space whose modeling often
requires intractable computation.

Previous attempts at modeling ranked data have been mostly parametric and often designed to
work with fully ranked data (Marden, 1996). Non-parametric modeling of fully ranked data has
been recently addressed in the context of multi-object tracking (Kondor et al., 2007; Huang et al.,
2008). They focus on maintaining and updating a distribution over permutations by a low frequency
approximation of the distribution. Such an approximation results from a spectral decomposition of
functions on the symmetric group on n items (Diaconis, 1988) and is essential for efficient proba-
bilistic inference.

Most of aforementioned approaches are unsuitable for modeling partial rankings for medium
and large n due to the computational difficulties of handling a probability space of size n!. The few
possible exceptions (Critchlow, 1985; Marden, 1996) are usually more ad-hoc and do not correspond
to an underlying permutation model making them ill suited to handle partial rankings of different
types. In fact, most of the ranked data analyzed in the literature are limited to n ≤ 15 and usually
even n ≤ 5 such as the popular APA election data set.

On the other hand, there has been a recent increase in data sets containing partial or full rankings
for large n. Examples include (i) web-search data such as TREC1 where n may be thought of as
corresponding to the number of web-pages or approaching +∞, (ii) movie review data sets such as
the Netflix data set2 where n ≈ 18000 and MovieLens3 where n = 1682, and (iii) multi-label text
document data sets such as OHSUMED4 where n = 4904 and Reuters RCV15 where n = 103. More
details on how these data sets correspond to partial rankings may be found in Section 2.

These data sets and others lead to a growing number of somewhat ad-hoc but computationally
efficient rank aggregation techniques. The techniques, developed primarily within the computer
science community, are often non-probabilistic and output a single ranking summarizing the data.
Unfortunately, such a summary ranking, while being useful, does not provide the data analysis
capabilities offered by a full probabilistic model.

The main contribution of this paper is in proposing and studying a non-parametric estimator
based on kernel smoothing for the estimation of the population distribution p. Some properties of
the estimator are listed below. We are not aware of any other non-trivial estimator of p that satisfies
these requirements, in particular for the case of large n.

(1) Estimate p based on full as well as partial rankings.

(2) The resulting estimate p̂ should assign probabilities to full and partial rankings in a coherent
and contradiction-free manner (described in Section 4).

(3) Estimate p based on partial rankings of different types (defined in Section 2).

1. TREC can be found at http://trec.nist.gov/.
2. Netflix can be found at http://www.netflixprize.com/.
3. MovieLens can be found at http://www.grouplens.org/node/12/.
4. OHSUMED can be found at http://trec.nist.gov/data/t9 filtering/.
5. RCV1 can be found at http://trec.nist.gov/data/reuters/reuters.html/.

2402

NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

(4) Statistical consistency p̂
p→ p as both the number of samples m and the number of items n grow

to infinity.

(5) Statistical accuracy of p̂ can be slow for fully ranked data but should be accelerated when
restricted to simpler partial rankings.

(6) Obtaining the estimate p̂ and using it to compute probabilities p̂(A) of partial rankings should
be computationally feasible, even for large n.

All 6 properties above are crucial in the large n scenario: it is often impossible for rankers
to specify full rankings over a very large number of items making the use of partial rankings a
necessity. Different rankers may choose to output partial rankings of different types, for example,
one ranker can output 3 ≺ {1,2} (3 is preferred to both 1 and 2) and another ranker can output
{1,3} ≺ 2 (both 1 and 3 are preferred to 2). By considering the asymptotics n → ∞ in addition
to m → ∞ (m being the number of samples) we provide a more realistic analysis for a large (and
potentially growing) number of items. Computational feasibility is a major concern since most
ranking models are incapable of modeling the data sets mentioned above due to their large n.

We continue next by reviewing basic concepts concerning partially ranked data and the Mallows
model, and then proceed to define our non-parametric estimator. We conclude by demonstrating
computational efficiency, statistical properties, and some experiments.

2. Permutations and Cosets

We begin by reviewing some basic concepts concerning permutations, with some of the notations
and definitions borrowed from Critchlow (1985).

A permutation π is a bijective function π : {1, . . . ,n} → {1, . . . ,n} associating with each item
i ∈ {1, . . . ,n} a rank π(i) ∈ {1, . . . ,n}. In other words, π(i) denotes the rank given to item i and
π−1(i) denotes the item assigned to rank i. We denote a permutation π using the following vertical
bar notation π−1(1)|π−1(2)| · · · |π−1(n). For example, the permutation π(1) = 2,π(2) = 3,π(3) = 1
would be denoted as 3|1|2. In this notation the numbers correspond to items and the locations
of the items in their corresponding compartments correspond to their ranks. The collection of all
permutations of n items forms the non-Abelian symmetric group of order n, denoted by Sn, using
function composition as the group operation πσ = π◦σ. We denote the identity permutation by e.

The concept of inversions and the result below will be of great use later on.

Definition 1 The inversion set of a permutation π is the set of pairs

U(π)
def
= {(i, j) : i < j, π(i) > π(j)} ⊂ {1, . . . ,n}×{1, . . . ,n}

whose cardinality is denoted by i(π)
def
= |U(π)|.

For example, i(e) = | /0| = 0, and i(3|2|1|4) = |{(1,2),(1,3),(2,3)}| = 3.

Proposition 1 (for example, Stanley, 2000) The map π 7→U(π) is a bijection.

When n is large, the enormous number of permutations raises difficulties in using the symmetric
group for modeling rankings. A reasonable solution is achieved by considering partial rankings
which correspond to cosets of the symmetric group. For example, the subgroup of Sn consisting of

2403

LEBANON AND MAO

Items:

web pages

movies

labels

etc.

Ranks

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

PSfrag replacements

S1,1,2π = {σ1π,σ2π} = 3|1|2,4

σ1π
π

σ2π

Figure 1: A partial ranking corresponds to a coset or a set or permutations

all permutations that fix the top k positions is denoted S1,...,1,n−k = {π ∈Sn : π(i) = i, i = 1, . . . ,k}.
The right coset S1,...,1,n−kπ = {σπ : σ ∈ S1,...,1,n−k} is the set of permutations consistent with the
ordering of π on the k top-ranked items. It may thus be interpreted as a partial ranking of the
top k items, that does not contain any information concerning the relative ranking of the bottom
n− k items. The set of all such partial rankings forms the quotient space Sn/S1,...,1,n−k. Figure 1
illustrates the identification of a coset as a partial ranking of the top 2 out of 4 items.

We generalize the above relationship between partial rankings and cosets through the following
definition of a composition.

Definition 2 A composition of n is a sequence γ = (γ1, . . . ,γr) of positive integers whose sum is n.

Note that in contrast to a partition, in a composition the order of the integers matters. A composition
γ = (γ1, . . . ,γr) corresponds to a partial ranking with γ1 items in the first position, γ2 items in the
second position and so on. For such a partial ranking it is known that the first set of γ1 items are to
be ranked before the second set of γ2 items etc., but no further information is conveyed about the
orderings within each set. The partial ranking introduced earlier S1,...,1,n−kπ of the top k items is a
special case corresponding to γ = (1, . . . ,1,n− k).

More formally, let N1 = {1, . . . ,γ1},N2 = {γ1+1, . . . ,γ1+γ2}, · · · ,Nr = {γ1+· · ·+γr−1 +1, . . . ,n}.
The subgroup Sγ is defined as the set of all permutations π ∈ Sn for which the following set equal-
ities hold (the two sets on the left hand side and right hand side of the equality contain the same
elements)

π(Ni) = Ni i = 1, . . . ,r.

In other words, the subgroup Sγ contains permutations that only permute within each set Ni. It
can be shown that the subgroup Sγ is isomorphic to the product of subgroups Sγ1 ×·· ·×Sγr and
is sometimes described by that product for notational purposes. A partial ranking of type γ is
equivalent to a coset Sγπ = {σπ : σ ∈ Sγ} and the set of such partial rankings forms the quotient
space Sn/Sγ.

2404

NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

The vertical bar notation described above for permutations is particularly convenient for denot-
ing partial rankings. We list items 1, . . . ,n separated by vertical bars, indicating that items on the
left side of each vertical bar are preferred to (ranked higher than) items on the right side of the bar.
On the other hand, there is no knowledge concerning the preference of items that are not separated
by one or more vertical bars. For example, the partial ranking displayed in Figure 1 is denoted by
3|1|2,4. The ordering of items not separated by a vertical line is meaningless, and for consistency
we use the conventional ordering, for example, 1|2,3|4 rather than the equivalent 1|3,2|4.

The set of all partial rankings

Wn
def
= {Sγπ : π ∈ Sn, ∀γ} (2)

which includes the set of full rankings Sn, is a subset of all possible partial orders on {1, . . . ,n}.
While the formalism of partial rankings in Wn cannot realize all partial orderings, it is sufficiently
powerful to include many useful and naturally occurring orderings as special cases. Furthermore,
as demonstrated in later sections, it enables simplification of the otherwise overwhelming computa-
tional difficulty. Special cases of particular interest are the following partial rankings

• π ∈ Sn corresponds to a permutation or a full ordering, for example, 3|2|4|1.

• S1,n−1π, for example, 3|1,2,4, corresponds to selection of the top alternative. An example
for such a ranking is a classification of x by a response variable y ∈ Y = {1, . . . ,n}.

• S1,...,1,n−kπ, for example, 1|3|2,4, corresponds to full ordering of the top k items. An example
for such a ranking is a ranked list of the top k webpages output by search engines in response
to a query.

• Sk,n−kπ, for example, 1,2,4|3,5, corresponds to a more preferred and a less preferred di-
chotomy. Alternatively the dichotomy can be interpreted as right and wrong or relevant and
irrelevant. An example for such a ranking is classification of alternatives into desirable and
undesirable.

• S1,...,1,n−k−t,1,...,1π, for example, 5|1|2,4,7|6|3|8, corresponds to full ordering of the top k
and the bottom t items. An example for such a ranking is a list of the safest and the most
dangerous U.S. cities.6

• Sk,n−k−t,tπ, for example, 1,5|2,4,7|3,6,8, corresponds to a trichotomy of items. An example
for such a ranking is selection of preferred and non-preferred items from a list.

Traditionally, data from each one of the special cases above was modeled using different tools
and was considered fundamentally different. That problem was aggravated as different special cases
were usually handled by different communities (statistics, computer science, information retrieval).
As a first step towards presenting a unified framework for modeling partially ranked data, Lebanon
and Lafferty (2003) demonstrated equivalence between several popular conditional models. We
continue along this line and present in this paper a non-parametric framework capable of efficiently
modeling a large variety of partially ranked data.

In constructing a statistical model on permutations or cosets, it is essential to relate one per-
mutation to another. We do this using a distance function on permutations d : Sn ×Sn → R that

6. List can be found at http://www.infoplease.com/ipa/A0921299.html.

2405

LEBANON AND MAO

satisfies the usual metric function properties, and in addition is invariant under right action of the
symmetric group (Critchlow, 1985)

d(π,σ) = d(πτ,στ) ∀ π,σ,τ ∈ Sn. (3)

The invariance requirement (3) ensures that the distance does not change if the labeling of the items
{1, . . . ,n} (which is assumed to be arbitrary) is permuted.

There have been many propositions for such right-invariant distance functions, the most popular
of them being Kendall’s tau (Kendall, 1938)

d(π,σ) =
n−1

∑
i=1

∑
l>i

I(πσ−1(i)−πσ−1(l)) (4)

where I(x) = 1 for x > 0 and I(x) = 0 otherwise. Kendall’s tau d(π,σ) (4) measures the number
of pairs of items for which π and σ have opposing orderings (also called disconcordant pairs). An
equivalent definition for Kendall’s tau is the minimum number of adjacent transpositions needed to
bring π−1 to σ−1 (adjacent transposition flips a pair of items having adjacent ranks). By right invari-
ance, d(π,σ) = d(πσ−1,e) which, for Kendall’s tau equals the number of inversions i(πσ−1). This
is an important observation that will allow us to simplify many expressions concerning Kendall’s
tau using the combinatorial properties of inversions.

Kendall’s tau d(π,σ),π,σ∈Sn takes values between 0 for π = σ and n(n−1)/2. It is sometimes
desirable to consider the normalized Kendall’s tau

dn(π,σ) =
2

n(n−1)

n−1

∑
i=1

∑
l>i

I(πσ−1(i)−πσ−1(l)) (5)

whose range is [0,1] and consequentially may be compared across different values of n.

3. The Mallows Model and its Extension to Partial Rankings

The Mallows model (Mallows, 1957) is a location-scale model on permutations based on Kendall’s
tau distance

pκ(π) = exp(−cd(π,κ)− logψ(c)) π,κ ∈ Sn c ∈ R+.

The normalization term ψ(c) = ∑π∈Sn
exp(−cd(π,κ)) does not depend on the location parameter

κ and has the closed form

ψ(c) = ∑
π∈Sn

e−cd(π,κ)

= (1+ e−c)(1+ e−c + e−2c) · · ·(1+ e−c + · · ·+ e−(n−1)c)

=
n

∏
j=1

1− e− jc

1− e−c (6)

as shown by the fact that d(π,κ) = i(πκ−1) and the following proposition.

Proposition 2 (for example, Stanley, 2000) For q > 0, ∑π∈Sn
qi(π) = ∏n−1

j=1 ∑ j
k=0 qk.

2406

NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

Proof Due to the bijection between permutations and sets of inversions expressed in Proposition 1

∑
π∈Sn

qi(π) =
n−1

∑
a1=0

n−2

∑
a2=0

· · ·
0

∑
an=0

qa1+...+an =

(

n−1

∑
a1=0

qa1

)(

n−2

∑
a2=0

qa2

)

· · ·
(

0

∑
an=0

qan

)

= (1+q+ · · ·+qn−1) · · ·(1+q+q2)(1+q)1.

The Mallows model has been motivated on axiomatic grounds by Mallows and has been a major
focus of statistical modeling on permutations. Various extensions of the Mallows model may be
found in Fligner and Verducci (1986, 1988, 1993). One particular extension to partial rankings is to
consider a partial ranking as censored data equivalent to the set of permutations in its related coset.
In other words, we define the probability the model assigns to the partial ranking Sγπ by

∑
τ∈Sγπ

pκ(τ) = ψ−1(c) ∑
τ∈Sγπ

exp(−cd(τ,κ)) . (7)

Fligner and Verducci (1986) showed that in the case of γ = (1, . . . ,1,n− k) the summation in (7)
has a simple closed form. However, the apparent absence of a closed form formula for more gen-
eral partial rankings prevented the widespread use of Equation 7 for large n and encouraged more
ad-hoc and heuristic models (Critchlow, 1985; Marden, 1996). Section 7 describes an efficient
computational procedure for computing (7) for more general partial ranking types γ.

4. The Ranking Lattice

Partial rankings Sγπ relate to each other in a natural way by expressing more general, more specific
or inconsistent ordering. We define below the concepts of partially ordered sets and lattices and
then relate them to partial rankings by considering the set of partial rankings Wn as a lattice. Some
of the definitions below are taken from Stanley (2000), where a thorough introduction to posets can
be found.

Definition 3 A partially ordered set or poset (Q,�), is a set Q endowed with a binary relation �
satisfying ∀x,y,z ∈ Q (i) reflexibility: x � x, (ii) anti-symmetry: x � y and y � x ⇒ x = y, and (iii)
transitivity: x � y and y � z ⇒ x � z.

We write x ≺ y when x � y and x 6= y. We say that y covers x when x ≺ y and there is no z ∈ Q such
that x ≺ z ≺ y. A finite poset is completely described by its covering relation. The planar Hasse
diagram of (Q,�) is the graph connecting the elements of Q as nodes using edges that correspond
to the covering relation. An additional requirement is that if y covers x then y is drawn higher than x.
Two elements x,y are comparable if x� y or y� x and otherwise are incomparable. The set of partial
rankings Wn defined in (2) is naturally endowed with the partial order of ranking refinement, that
is, π ≺ σ if π refines σ or alternatively if we can get from π to σ by dropping vertical lines (Lebanon
and Lafferty, 2003). Figure 2 shows the Hasse diagram of W3 and a partial Hasse diagram of W4.

An interesting visualization of Kendall’s tau distance d(π,σ),π,σ ∈ Sn in terms of the Hasse
diagram is that it is the minimum number of up and down moves needed to get from π to σ on the

2407

LEBANON AND MAO

PSfrag replacements

1|2|3 1|3|2 2|1|3 3|1|2

1|2,3 1,3|2 2|1,3 3|1,2 2,3|1

1,2,3

2|3|1 3|2|1

1,2|3

PSfrag replacements

1,2|3|4 1|2,3|4 1,3|2|4

1,3|2,41|2,3,41,2,3|41,2|3,4

1|2|3|4 1|3|2|4

1,2,3,4

1|2|3,4 1|3|2,4 1,3|4|2 1|3,4|2

1|3|4|21|4|2|3

1,2|4|3 1|2,4|3

1|2|4|3 1|4|3|2

1,3,4|21,2,4|3

Figure 2: The Hasse diagram of W3 (top) and a partial Hasse diagram of W4 (bottom). Some of
the lines are dotted for 3D visualization purposes (think 3D).

Hasse diagram. For example, in Figure 2 (top) we have d(1|2|3,3|2|1) = 3 realized by the three
up-down moves along the shortest path

1|2|3 (↗ 1,2|3 ↘ 2|1|3) (↗ 2|1,3 ↘ 2|3|1) (↗ 2,3|1 ↘ 3|2|1).

A lower bound z of two elements in a poset x,y satisfies z � x and z � y. The greatest lower
bound of x,y or infimum is a lower bound of x,y that is greater than or equal to any other lower
bound of x,y. Infimum, and the analogous concept of supremum are denoted by x∧ y and x∨ y or

2408

NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

V{x1, . . . ,xk} and
W{x1, . . . ,xk} respectively. Two elements x,y ∈ Wn are said to be consistent if

there exists a lower bound in Wn. Note that consistency is a weaker relation than comparability.
For example, 1|2,3|4 and 1,2|3,4 are consistent but incomparable while 1|2,3|4 and 2|1,3|4 are
both inconsistent and incomparable. Using the vertical bar notation, two elements are inconsistent
iff there exist two items i, j that appear on opposing sides of a vertical bar in x and y, that is,
x = · · · i| j · · · while y = · · · j|i · · · . A poset for which ∧ and ∨ always exist is called a lattice. Lattices
satisfy many useful combinatorial properties - one of which is that they are completely described
by the ∧ and ∨ operations. In fact lattices are often defined by the supremum and infimum relation,
rather than by the partial order. While the ranking poset is not a lattice, it may be turned into one by
augmenting it with a minimum element 0̂.

Proposition 3 The union W̃n
def
= Wn ∪{0̂} of the ranking poset and a minimum element is a lattice.

Proof Since W̃n is finite, it is enough to show existence of ∧,∨ for pairs of elements (Stanley,
2000). We begin by showing existence of x∧ y. If x,y are inconsistent, there is no lower bound
in Wn and therefore the unique lower bound 0̂ is also the infimum x∧ y. If x,y are consistent,
their infimum may be obtained as follows. Since x and y are consistent, we do not have a pair of
items i, j appearing as i| j in x and j|i in y. As a result we can form a lower bound z to x,y by
starting with a list of numbers and adding the vertical bars that are in either x or y, for example for
x = 3|1,2,5|4 and y = 3|2|1,4,5 we have z = 3|2|1,5|4. The resulting z ∈ Wn, is smaller than x and
y since by construction it contains all preferences (encoded by vertical bars) in x and y. It remains
to show that for every other lower bound z′ of x and y we have z′ � z. If z′ is comparable to z, z′ � z
since removing any vertical bar from z results in an element that is not a lower bound. If z′ is not
comparable to z, then both z,z′ contain the vertical bars in x and vertical bars in y possibly with
some additional ones. By construction z contains only the essential vertical bars to make it a lower
bound and hence z′ ≺ z, contradicting the assumption that z,z′ are non-comparable.

By Proposition 3.3.1 of Stanley (2000) a poset for which an infimum is always defined and that
has a supremum element is necessarily a lattice. Since we just proved that ∧ always exists for W̃n

and 1, . . . ,n =
W

W̃n, the proof is complete.

5. Probabilistic Models on the Ranking Lattice

The ranking lattice is a convenient framework to define and study probabilistic models on partial
rankings. Given a probability model p on Sn, we define the functions h,g : W̃n → [0,1]

h(α) =

{

p(α) α ∈ Sn

0 α ∈ W̃n \Sn

g(α) = ∑
β∈W̃n:β�α

h(β). (8)

Interpreting partial rankings Sγπ ∈ W̃n as the disjoint union of the events defined by the coset Sγπ
we have that

g(Sγπ) = ∑
τ∈Sγπ

p(τ) (9)

2409

LEBANON AND MAO

may be interpreted as the probability under p of the disjoint union Sγπ of permutations. We refer
to the function g as the partial ranking or lattice version of p. The motivation for defining g through
h and not directly through p is that Equation (8) may be described and computed by the mechanism
of Möbius inversion on lattices. More specifically, the Möbius inversion on lattices states that for
two arbitrary real-valued functions on a lattice h,g : W̃n → [0,1] we have

g(τ) = ∑
τ′�τ

h(τ′) iff h(τ) = ∑
τ′�τ

g(τ′)µ(τ′,τ) τ,τ ∈ W̃n

where µ : W̃n × W̃n → R is the Möbius function of the lattice W̃n. In a certain sense this rela-
tionship between p and g generalizes the relationship between a probability mass function and the
corresponding cdf. More details on Möbius functions and Möbius inversion on lattices and their
computation may be found in Stanley (2000).

The function g is defined on the entire lattice, but when restricted to partial rankings of the same
type G = {Sγπ : π ∈ Sn} ⊂ W̃n, constitutes a normalized probability distribution on G. Estimating
and examining a restriction of g to a subset H ⊂ W̃n (note that in general H may include more than
one coset space G) rather than the function p is particularly convenient in cases of large n since H
is often much smaller than the unwieldy Sn. In such cases it is tempting to specify the function g
directly on H without referring to an underlying permutation model. However, doing so may lead
to probabilistic contradictions such as g(Sγπ) < g(Sλσ) for Sλσ ⊂ Sγπ. To avoid these and other
probabilistic contradictions, g needs to satisfy a set of linear constraints equivalent to the existence
of an underlying permutation model. Figure 3 illustrates this problem for partial rankings with the
same (left) and different (right) number of vertical bars. A simple way to avoid such contradictions
and satisfy the constraints is to define g indirectly in terms of a permutation model p as in (9).
Applied to the context of statistical estimation, we define the estimator ĝ in terms of an estimator p̂
of the underlying permutation model p.

In addition to this construction which logically occurs after obtaining the estimator p̂, we also
need to consider how to use partially ranked data in the process of obtaining the estimator p̂. Fully
ranked data is often not available for large n since it is difficult for rankers (both human and others) to
express with confidence full orderings over many items. Instead, the inference needs to be conducted
based on a set of partial rankings

D = {Sγiπi : i = 1, . . . ,m}. (10)

A general way of using D in (10) to estimate p̂ both parametrically and non-parametrically is
to consider partially ranked data as censored or missing data. In other words, in the process of
estimating p̂, the data Sγπ is considered as a single unknown permutation σ ∈ Sγπ that is lost
through a censoring process. Assuming uniformly random censoring in a parametric setting, we
obtain the following observed likelihood with respect to the partially ranked data set D

`(θ|D) =
m

∑
i=1

log
1

|Sγiπi | ∑
σ∈Sγi πi

pθ(σ) =
m

∑
i=1

log ∑
σ∈Sγi πi

pθ(σ)+ const.

While the above likelihood function can be efficiently computed using tools developed in Sec-
tion 7, its maximization is extremely difficult due to the discrete nature of the parametric space. In
the next section we explore in detail a non-parametric kernel smoothing alternative to estimating p
and g based on partially ranked data.

2410

NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

PSfrag replacements

1, . . . ,n

0̂

Sγπ Sλσ

PSfrag replacements

1, . . . ,n

0̂

Sγπ

Sλσ

Figure 3: Two partial rankings with the same (left) and different (right) number of vertical bars
in the Hasse diagram of W̃n. The big triangles are schematic illustration of the Hasse
diagram of Wn as displayed in Figure 2 (top) with permutations occupying the bottom
level illustrated by the jagged line. The shaded regions correspond to order-intervals, that
is, all elements smaller or equal to the top vertices which correspond to partial rankings.
To avoid probabilistic contradictions, the values of g at two non-disjoint partial rankings
Sγπ,Sλσ cannot be specified in an independent manner.

6. Non-Parametric Kernel Smoothing on Partial Rankings

The Mallows model, which at first glance appears as a simple and effective analogue of the Gaussian
distribution, suffers from several drawbacks. Its unimodal assumption is often too restrictive for
high n as well as for low n (see experiments in Section 9). Another major drawback is that the
location parameter space Sn is discrete, making the maximum likelihood procedure an impossibly
large discrete search problem.

The unimodality and symmetry of the Mallows model make it a good choice for use as a kernel
in non-parametric smoothing. Since the normalization term ψ does not depend on the location
parameter (6), the kernel smoothing estimator for p is

p̂(π) =
1

mψ(c)

m

∑
i=1

exp(−cd(π,πi)) π,πi ∈ Sn (11)

assuming the data consists of complete rankings π1, . . . ,πm ∼ p. Note that the kernel parameter
c acts as an inverse scale parameter whose role is similar but inversely related to the traditional
bandwidth parameter h in kernel smoothing (Wand and Jones, 1995).

In case the available data is partially ranked D = {Sγiπi : i = 1, . . . ,m} and obtained by uniform
censoring as described in the previous section the kernel smoothing estimator becomes

p̂(π) =
1

mψ(c)

m

∑
i=1

1
|Sγi | ∑

τ∈Sγi πi

exp(−cd(π,τ)) π ∈ Sn (12)

2411

LEBANON AND MAO

where we used the fact that |Sγiπi| = |Sγie| = |Sγi |. The lattice or partial ranking version ĝ corre-
sponding to p̂ in (12) is

ĝ(Sλπ) =
1

mψ(c)

m

∑
i=1

1
|Sγi | ∑

κ∈Sλπ
∑

τ∈Sγi πi

exp(−cd(κ,τ)) Sγπ ∈ W̃n. (13)

In the next section we derive efficient calculations and in some cases closed forms for expres-
sions (12)-(13). These calculations are efficient even for large n as their complexities depend on the
complexity of the compositions λ and γ1, . . . ,γm rather than on n! or even n. We then move on to
explore the bias and variance of p̂ in Section 8 and describe practical applications of p̂, ĝ and some
experiments.

7. Efficient Computation and Inversion Combinatorics

In order to apply the estimators p̂, ĝ in practice, it is crucial that the inner summations in Equa-
tions (12)-(13) be computed efficiently. We can achieve efficient computation of these summations
by considering how the pairs constituting inversions i(τ) decompose with respect to certain cosets.

Proposition 4 The following decomposition of i(τ) with respect to a composition γ = (γ1, . . . ,γr)
holds

i(τ) =
r

∑
k=1

aγ
k(τ)+

r

∑
k=1

r

∑
l=k+1

bγ
kl(τ) ∀τ ∈ Sn (14)

where

aγ
k(τ)

def
=

∣

∣

∣

∣

∣

{

(s, t) : s < t ,
k−1

∑
j=1

γ j < τ(t) < τ(s) ≤
k

∑
j=1

γ j

}∣

∣

∣

∣

∣

bγ
kl(τ)

def
=

∣

∣

∣

∣

∣

{

(s, t) : s < t ,
k−1

∑
j=1

γ j < τ(t) ≤
k

∑
j=1

γ j ≤
l−1

∑
j=1

γ j < τ(s) ≤
l

∑
j=1

γ j

}∣

∣

∣

∣

∣

.

Proof The set appearing in the definition of aγ
k(τ) contains all pairs (s, t) that are inversions of τ and

whose ranks appear in the k-compartment of the composition γ. The set appearing in the definition
of bγ

kl(τ) contains pairs (s, t) that are inversions of τ and for which s and t appear in the l and k com-
partments of γ respectively. Since any inversion pair appears in either one or two compartments, the
above forms a partition of the inversion set. The decomposition holds since i(τ), the cardinality of
the inversion set of the permutation τ, equals the summation of the cardinality of each subset in the
partition.

Equation (14) actually represents a family of decompositions as it holds for all possible com-
positions γ. For example, i(τ) = 4 for τ = 4|1|3|2, with inversions (1,4),(2,4),(3,4),(2,3) for τ.
For the composition γ = (2,2), the first compartment contains the inversion (1,4) and so aγ

1(τ) = 1.
The second compartment contains the inversion (2,3) and so aγ

2(τ) = 1. The cross compartment
inversions are (2,4),(3,4) making bγ

12(τ) = 2.
The significance of (14) is that as we sum over all representatives of the coset τ ∈ Sγπ the

cross compartmental inversions bγ
kl(τ) remain constant while the within-compartmental inversions

2412

NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

aγ
k(τ) vary over all possible combinations. As a result we obtain the following generalization of

Proposition 2.

Proposition 5 For π ∈ Sn, q > 0, and a composition γ = (γ1, . . . ,γr) we have

∑
τ∈Sγπ

qi(τ) = q∑r
k=1 ∑r

l=k+1 bγ
kl(π)

r

∏
s=1

γs−1

∏
j=1

j

∑
k=0

qk. (15)

Proof

∑
τ∈Sγπ

qi(τ) = ∑
τ∈Sγπ

q∑r
k=1 aγ

k(τ)+∑r
k=1 ∑r

l=k+1 bγ
kl(τ)

= q∑r
k=1 ∑r

l=k+1 bγ
kl(π) ∑

τ∈Sγπ
q∑r

k=1 aγ
k(τ)

= q∑r
k=1 ∑r

l=k+1 bγ
kl(π)

r

∏
s=1

∑
τ∈Sγs

qi(τ)

= q∑r
k=1 ∑r

l=k+1 bγ
kl(π)

r

∏
s=1

γs−1

∏
j=1

j

∑
k=0

qk.

Above, we used two ideas: (i) disconcordant pairs between two different compartments of the coset
Sγπ are invariant under change of the coset representative, and (ii) the number of disconcordant
pairs within a compartment varies over all possible choices enabling the replacement of the summa-
tion by a sum over a lower order symmetric group.

An important feature of (15) is that only the first and relatively simple term q∑r
k=1 ∑r

l=k+1 bγ
kl(π)

depends on π. The remaining terms depend only on the partial ranking type γ and thus may be
pre-computed and tabulated for efficient computation.

Corollary 1

∑
τ∈Sγπ

qi(τκ) = q∑r
k=1 ∑r

l=k+1 bγ
kl(πκ)

r

∏
s=1

γs−1

∏
j=1

j

∑
k=0

qk κ ∈ Sn.

Proof Using group theory, it can be shown that the set equality (Sγπ)κ = Sγ(πκ) holds. As a
result, ∑τ∈Sγπ qi(τκ) = ∑τ′∈Sγ(πκ) qi(τ′). Proposition 5 completes the proof.

Corollary 2 The partial ranking version g corresponding to the Mallows kernel pκ is

pκ(Sγπ) =
∏r

s=1 ∏γs−1
j=1 ∑ j

k=0 e−kc

∏n−1
j=1 ∑ j

k=0 e−kc
e−c∑r

k=1 ∑r
l=k+1 bγ

kl(πκ−1)

∝ e−c∑r
k=1 ∑r

l=k+1 bγ
kl(πκ−1).

2413

LEBANON AND MAO

Proof Using Corollary 1 we have

g(Sγπ) = ∑
τ∈Sγπ

pκ(τ) =
∑τ∈Sγπ exp(−cd(τ,κ))

∑τ∈Sn
exp(−cd(τ,κ))

=
∑τ∈Sγπ exp(−c i(τκ−1))

∏n−1
j=1 ∑ j

k=0 e−kc
=

∑τ∈Sγπ(exp(−c))i(τκ−1)

∏n−1
j=1 ∑ j

k=0 e−kc

= e−c∑r
k=1 ∑r

l=k+1 bγ
kl(πκ−1) ∏r

s=1 ∏γs−1
j=1 ∑ j

k=0 e−kc

∏n−1
j=1 ∑ j

k=0 e−kc
.

Despite its daunting appearance, the expression in Corollary 2 can be computed relatively easily.
The fraction does not depend on π or κ and in fact may be considered as a normalization constant
that may be easily pre-computed and tabulated. The remaining term is relatively simple and depends
on the location parameter κ and the coset representative π. Corollary 2 and Proposition 6 below,
provide efficient computation for the estimators (12), (13).

Proposition 6

∑
σ∈Sλπ1

∑
τ∈Sγπ2

e−cd(σ,τ) =

 ∑
τ∈π1π−1

2 Sγ

r

∏
k=1

r

∏
l=k+1

e−cbλ
kl(τ)

(

r

∏
s=1

λs−1

∏
j=1

j

∑
k=0

e−kc

)

. (16)

Proof Using (Sγπ)τ = Sγ(πτ), Corollary 1, and the fact that τ ∈ Sγ iff τ−1 ∈ Sγ, we have

∑
σ∈Sλπ1

∑
τ∈Sγπ2

e−cd(σ,τ) = ∑
σ∈Sλ

∑
τ∈Sγ

e−cd(σπ1,τπ2) = ∑
σ∈Sλ

∑
τ∈Sγ

e−cd(σπ1π−1
2 τ−1,e)

= ∑
τ∈Sγ

∑
σ∈Sλ

e−c i(σπ1π−1
2 τ−1) = ∑

τ∈Sγ

∑
σ∈Sλ

e−c i(σ(π1π−1
2)τ)

= ∑
τ∈Sγ

e−c∑r
k=1 ∑r

l=k+1 bλ
kl(π1π−1

2 τ)
r

∏
s=1

λs−1

∏
j=1

j

∑
k=0

e−kc.

The complexity of computing (16), (12), (13) for some popular partial ranking types appears
in Table 1. The independence of these complexity terms from n enables the practical use of esti-
mators (12), (13) in large n situations. Some of the details concerning this complexity analysis and
algorithmic implementation may be found in Appendix A.

8. Statistical Properties of the Estimator

After studying the computational feasibility of the non-parametric estimator p̂ in the previous sec-
tion, we now turn to examine its statistical properties. In particular we examine its bias and variance,

2414

NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

λ�γ (1,n−1) (1, · · · ,1,n− t) (t,n− t)

(1,n−1) O(1) O(1) O(1)
(1, · · · ,1,n− k) O(k) O(k + t) O(k + t)
(k,n− k) O(k) O(k + t) O(k + t)

Table 1: Computational complexity for computing Equation (13) for each training example. The
independence of the complexity terms from n enables the practical use of the estimators
(12),(13) in k � n situations.

show consistency for large n, and examine the statistical effect of using partially ranked or censored
data in the estimation process. Due to the discreteness of the probability space we replace tradi-
tional Taylor series expansion with a bound based on the Lipschitz continuity of p. The Lipschitz
continuity assumption is crucial since without such an assumption on the regularity of p, kernel
based smoothing or other neighborhood operations make little sense.

Proposition 7 Let π1, . . . ,πm ∈ Sn be sampled iid from a Lipschitz continuous p, that is, |p(π)−
p(τ)| ≤ M d(π,τ), ∀π,τ. The following bounds with respect to p̂ in (11) hold.

|bias(p̂(π))| ≤ −M
ψ′(c)
ψ(c)

,

Var(p̂(π)) ≤ p(π)

m
ψ(2c)
ψ2(c)

− M
m

ψ′(2c)
ψ2(c)

.

Proof Key properties in the following manipulations are the closed form expression of ψ(c) in (6)
and its independence from the location parameter of the Mallows kernel.

|bias(p̂(π))| =
∣

∣

∣E p(π1)

(

ψ−1(c)e−cd(π,π1)
)

− p(π)
∣

∣

∣

≤ ψ−1(c) ∑
π1∈Sn

|p(π1)− p(π)|e−cd(π,π1)

≤ ψ−1(c) ∑
π1∈Sn

Md(π,π1)e
−cd(π,π1) = −M

ψ′(c)
ψ(c)

.

ψ2(c)mVar(p̂(π)) = Var p(π1)e
−cd(π,π1) ≤ E p(π1)e

−2cd(π,π1)

= ∑
π1∈Sn

p(π1)e
−2cd(π,π1)

≤ ∑
π1∈Sn

(p(π)+M d(π,π1))e
−2cd(π,π1)

= p(π)ψ(2c)−Mψ′(2c).

2415

LEBANON AND MAO

1 2 3 4 5
0

0.01

0.02

c

bias square
variance
MSE

Figure 4: Upper bounds on squared bias, variance and MSE as functions of c: M = 0.05, p(π) =
0.2, n = 4, m = 20.

The upper bounds in Proposition 7 are illustrated as functions of c in Figure 4. These expressions
may be written in a closed form using the formulas for ψ(2c)/ψ2(c) and ψ′(c)/ψ(c) derived in the
proof of Proposition 8 below.

Proposition 8 Under the same conditions as Proposition 7 and assuming the asymptotics

c,m,n → ∞, n = o(exp(c)), n = o(
√

m)

the estimator p̂ in (11) is pointwise consistent.

Proof We first derive closed form expressions for ψ′(c)/ψ(c) and ψ(2c)/ψ2(c) and then proceed
to demonstrate the convergence to 0 of the bias and variance bounds obtained in Proposition 7.

Using the result ψ(c) = ∏n
j=1

1−e− jc

1−e−c shown in (6), we have

ψ′(c)
ψ(c)

= (logψ(c))′ =
n

∑
j=1

je− jc

1− e− jc −
ne−c

1− e−c , (17)

ψ(2c)
ψ2(c)

=
n

∏
j=1

1− e−2 jc

1− e−2c

(1− e−c)2

(1− e− jc)2 =
n

∏
j=1

1+ e− jc

1+ e−c

1− e− jc

1− e−c

(1− e−c)2

(1− e− jc)2

=
n

∏
j=1

1+ e− jc

1− e− jc

1− e−c

1+ e−c . (18)

The term −ψ′(c)/ψ(c) is the expected distance under the Mallows model

−ψ′(c)/ψ(c) = ∑
σ∈Sn

d(π,σ)ψ−1(c)exp(−cd(π,σ))

2416

NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

and therefore is bounded by maxπ,σ d(π,σ)≤ n2. The term ψ(2c)/ψ2(c) is bounded since it may be

written as a product ∏n
j=1 R j(c), with R j(c) = 1+e− jc

1−e− jc /
1+e−c

1−e−c ≤ 1 for all c ∈ R+ and j ≥ 1 since the

function 1+ε
1−ε increases with ε > 0.

Based on Proposition 7 and Equations (17)-(18)

|bias(p̂(π))| ≤ M
ne−c

1− e−c −M
n

∑
j=1

je− jc

1− e− jc ≤ M
ne−c

1− e−c

Var(p̂(π)) ≤ p(π)

m
ψ(2c)
ψ2(c)

− M
m

ψ′(2c)
ψ(2c)

ψ(2c)
ψ2(c)

.

The bias converges to 0 as nexp(−c)→ 0 or alternatively, c→∞,n = o(exp(c)). Since ψ(2c)/ψ2(c)
is bounded and −ψ′(2c)/ψ(2c) ≤ n2 the variance converges to 0 as well if m → ∞ and n2/m → 0.

Intuitively, the inverse scale parameter c has to go to ∞ in order for the bias to converge to 0
(similar to the requirement h → 0 for the bandwidth parameter h in kernel smoothing). The number
of samples m has to go to ∞ in order for the variance to go to 0. Allowing n → ∞ enables us to study
the behavior of p̂ in situations containing a large number of items. The proposition above (with a
slightly modified proof) also holds for fixed n.

The assumption above of Lipschitz continuity with respect to d is a very weak assumption since
the distance d tends to grow as n → ∞. In particular d takes values in [0,n(n− 1)/2] making the
Lipschitz continuity assumption weaker and weaker as n → ∞. A stronger assumption of Lipschitz
continuity with respect to the normalized dn (5)

|p(π)− p(τ)| ≤ M dn(π,τ), ∀π,τ

results in a similar conclusion to Proposition 8 asserting pointwise consistency of p̂ under weaker
asymptotic requirements.

For large n, it is often the case that partial, rather than full, rankings are available for estimating
p̂. Partially ranked data is easier for rankers to express than a lengthy list corresponding to a precise
permutation. Furthermore, in many cases, rankers can make some partial ranking assertions with
certainty but do not have a clear opinion on other preferences. Using the censored data interpreta-
tion of partially ranked data enables efficient use of partially ranked data of multiple types in the
estimation process (12).

Statistically, expressing partially ranked data as censored data has the effect of increased smooth-
ing and therefore it reduces the variance while increasing the bias. The following proposition quan-
tifies this effect in terms of the bias and variance of p̂. A consequence of this proposition which is
also illustrated in Section 9 experimentally is that even if the fully ranked data is somehow available,
estimating p̂ based on the partial rankings obtained by censoring it tends to increase the estimation
accuracy.

2417

LEBANON AND MAO

Proposition 9 Assuming the same conditions as in Proposition 7, the bias and variance of the
censored data or partial ranking estimator (12) for γ1 = . . . = γm = γ satisfy

|bias(p̂(π))| ≤ −M
ψ′(c)
ψ(c)

+M
sp(Sγ)

|Sγ|
,

Var(p̂(π)) ≤ p(π)

m
1

|Sγ|
+

M
m

sp(Sn)

|Sγ|2
(19)

where sp(U)
def
= maxx∈U ∑y∈U d(x,y).

The choice of using γ1 = . . . = γm = γ above was made for simplicity. Similar results apply for more
heterogenous partially ranked data.
Proof

|bias(p̂(π))| =
∣

∣

∣ψ−1(c)|Sγ|−1E p(π1) ∑
τ∈Sγπ1

e−cd(π,τ) − p(π)
∣

∣

∣

a
≤ ψ−1(c)|Sγ|−1 ∑

π1∈Sn

∑
τ∈Sγπ1

|p(π1)− p(π)|e−cd(π,τ)

≤ Mψ−1(c)|Sγ|−1 ∑
π1∈Sn

∑
τ∈Sγπ1

d(π,π1)e
−cd(π,τ)

≤ Mψ−1(c)|Sγ|−1 ∑
π1∈Sn

∑
τ∈Sγπ1

(d(π,τ)+d(τ,π1))e
−cd(π,τ)

b
= −M

ψ′(c)
ψ(c)

+
M

ψ(c)|Sγ| ∑
π1∈Sn

∑
τ∈Sγπ1

d(τ,π1)e
−cd(π,τ)

where a and b follow from the fact that

∑
π1∈Sn

∑
τ∈Sγπ1

e−cd(π,τ) = |Sγ| ∑
τ∈Sn

e−cd(π,τ) = |Sγ|ψ(c).

The inner summation depends on π1 only through the coset Sγπ1 it resides in. To simplify the
expression, we separate the single outer summation to summations of π1 over the distinct cosets C j.
Since the number of distinct Sγ cosets in Sn is the index [Sn : Sγ] = |Sn|/|Sγ|, we have

|bias(p̂(π))| ≤ −M
ψ′(c)
ψ(c)

+
M

ψ(c)|Sγ|

[Sn:Sγ]

∑
j=1

∑
τ∈C j

(

∑
π1∈C j

d(τ,π1)

)

e−cd(π,τ)

≤−M
ψ′(c)
ψ(c)

+
M sp(Sγ)

ψ(c)|Sγ|

[Sn:Sγ]

∑
j=1

∑
τ∈C j

e−cd(π,τ)

= −M
ψ′(c)
ψ(c)

+M
sp(Sγ)

|Sγ|

using the fact that the spread is the same for all cosets of the same type sp(Sγπ) = sp(Sγ).

2418

NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

mψ2(c) |Sγ|2 Var(p̂(π)) = Var p(π1) ∑
τ∈Sγπ1

e−cd(π,τ) ≤ E p(π1)

(

∑
τ∈Sγπ1

e−cd(π,τ)

)2

≤ ∑
π1∈Sn

(p(π)+Md(π,π1))

(

∑
τ∈Sγπ1

e−cd(π,τ)

)2

=
[Sn:Sγ]

∑
j=1

(

∑
τ∈C j

e−cd(π,τ)

)2(

p(π)|Sγ|+M ∑
σ∈C j

d(π,σ)

)

≤ p(π)|Sγ|ψ2(c)+Msp(Sn)ψ2(c).

In the last inequality we used the Cauchy-Schwartz inequality 〈u,v〉 ≤ ‖u‖2‖v‖2 ≤ ‖u‖1‖v‖1 to
obtain

[Sn:Sγ]

∑
j=1

(

∑
τ∈C j

e−cd(π,τ)

)2

≤
(

[Sn:Sγ]

∑
j=1

∑
τ∈C j

e−cd(π,τ)

)2

= ψ2(c).

Contrasting the expressions in Proposition 9 with those in Proposition 7 indicates that reverting
to partial rankings tends to increase the bias but reduce the variance. Intuitively, the bias increases
since we no longer have enough data, in general, to precisely estimate the permutation model p. The
variance (19), on the other hand, experiences a substantial reduction as compared to the fully ranked

case. Figure 5 displays the behavior of the quantities sp(Sγ)
|Sγ| and sp(Sn)

|Sγ|2 . The first quantity sp(Sγ)
|Sγ| ,

which bounds the bias, increases as the composition γ represents a lower degree of specificity. On
the other hand, the second quantity sp(Sn)

|Sγ|2 which bounds the variance decreases as the composition
γ represents less specificity.

The precise changes in the bias and variance that occur due to using partial rankings depend
on γ,n,m,c,M. However, generally speaking, the variance reduction becomes more pronounced
as n and |Sγ| grow. Indeed, in the common case described earlier where the number of items
n is large, switching to partially ranked data can dramatically improve the estimation accuracy.
This observation, which is illustrated in Section 9 using experiments on real world data, becomes
increasingly important as n increases. It is remarkable that this statistical motivation to use partial
rather than full rankings is aligned with the data availability and ease of use as well as with the
computational efficiency demonstrated in the previous section.

9. Applications and Experiments

The estimator p̂ defined in (11), (12) and its lattice version ĝ defined in (13) can be used in a number
of data analysis tasks. We briefly outline some of these tasks below and then proceed to describe
some experimental results.

Visual or computational exploration of the model probabilities {p̂(π) : π ∈ Sn} can be a useful
exploratory data analysis tool. Such exploration can be done by visualizing the values {p̂(π) : π ∈
Sn} for small n using the techniques developed in Thompson (1993). For medium and large n

2419

LEBANON AND MAO

(1,n−1) (1,1,n−2)(1,1,1,n−3)(1...1,n−4)(1...1,n−5)(1...1,n−6)

20

25

30

35

40

45

(2,n−2) (3,n−3) (4,n−4) (5,n−5) (6,n−6) (7,n−7)

24

26

28

30

32

34

36

38

40

(1,n−1) (1,1,n−2)(1,1,1,n−3)(1...1,n−4)(1...1,n−5)(1...1,n−6)

−15

−10

−5

0

5

(2,n−2) (3,n−3) (4,n−4) (5,n−5) (6,n−6) (7,n−7)

−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

Figure 5: Values of sp(Sγ)
|Sγ| (top row), and log sp(Sn)

|Sγ|2 (bottom row) for n = 15 and various partial

ranking types. Note that sp(Sγ)
|Sγ| (which serves as a bound for the bias) decreases and

sp(Sn)
|Sγ|2 (which serves as a bound for the variance) increases for decreasing |Sγ|.

similar visualization techniques can be used to explore the values of the lattice version ĝ restricted
to certain subset H ⊂ W̃n of the ranking lattice. Since the number of distinct γ-cosets |Sn|/|Sγ| may
be much smaller than |Sn|, visualizing {ĝ(A) : A∈H} can be more effective than visualizing {p̂(π) :
π ∈ Sn}. Other explorations such as identifying the local modes of p̂ and ĝ may be automated and
computed without human intervention.

In some cases, the main objective of inference is a conditional version of p̂ such as p̂(π ∈ A|π ∈
B), A,B ⊂ Sn. A popular example is collaborative filtering which is the task of recommending
items to a user based on partial preference information that is output by that user (Resnick et al.,
1994). In this case, p̂ is estimated based on a large data set of partial preferences provided by many
users. Given a particular partial ranking Sγπ output by a certain user we can predict its most likely
refinement argmaxSλσ p̂(Sλσ|Sγπ). This task is central to many recommendation systems and

2420

NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

has recently gained popularity in the machine learning research community due to its commercial
applications.

Statistics such as expectations and variances can be useful as summaries in situations where the
entire distribution is not necessary. For example, summaries such as the expectation and variance of
an item’s rank E p̂(π(k)), Var p̂(π(k)) or probabilities such as p̂(π(i) > π(j)) may be useful in some
cases. On the other hand, in situations where p̂ is a complex multimodal distribution, the summaries
need to be complemented with a careful examination of p̂.

We experimented with three different data sets. The first is the APA data set (Diaconis, 1989)
which contains several thousand rankings of 5 APA presidential candidates. The second is the Jester
data set containing rankings of 100 jokes by 73,496 users. The third data set is the EachMovie data
set containing rankings of 1628 movies by 72,916 users. In our experiments, we trained models
based on a randomly sampled training set and evaluated the log-likelihood on a separate held-out
testing set. We repeated this procedure 10 times and report the average log-likelihood in order to
reduce sampling noise.

Figure 6 displays the test set log-likelihood for the parametric Mallows model (fitted by maxi-
mum likelihood) and the non-parametric estimator. The log-likelihood, computed as a function of
the train set size, is displayed for several values of c for the non-parametric estimator. In the case
of the Mallows model we only display the optimal c. Due to the computational difficulty associated
with maximum likelihood for the Mallows model for large n we experimented with rankings over a
small number of items. The three panels of the figure display the log-likelihood with respect to the
APA data with n = 5 (top), the Jester data restricted to the n = 5 most frequently rated jokes (mid-
dle), and the EachMovie data restricted to the n = 4 most frequently rated movies. In all three cases,
the non-parametric estimator performed better than the parametric Mallows model given sufficient
training examples. As c increases, the non-parametric model tends to perform better for large data
sets and worse for small data sets, reflecting the non-parametric consistency as m,c → ∞.

The increased flexibility of the non-parametric model illustrated in Figure 6 can be visual-
ized further by comparing the probabilities assigned by the Mallows model and the non-parametric
model. We display these probabilities in the case of n = 4 (movies no. 357, 1356, 440, 25 from the
EachMovie data) by scaling appropriately the vertices of the permutation polytope. The vertices of
the permutation polytope, displayed in Figure 7, correspond to S4 and its edges correspond to pairs
of permutations with Kendall’s tau distance 1. In fact, Kendall’s tau distance d(π,σ) corresponds
to the length of the shortest path connecting the two vertices representing π and σ. As a result, the
3D embedding of the permutation polytope effectively visualizes the discrete metric space (S4,d).
In the figure, the radiuses of the vertices were scaled proportionally to (p̂(π))5/7 where p̂(π) are the
probabilities estimated by maximum likelihood Mallows model (left) and the non-parametric model
(right). The scaling exponent of 5/7 was chosen in agreement with Steven’s law (Cleveland, 1985)
for effective visualization. Figure 7 shows that the probabilities assigned by the Mallows model
form a diffuse unimodal function centered at 2|1|3|4. The non-parametric estimator, on the other
hand, discovers the true global mode 2|3|1|4 and an additional local mode at 4|1|2|3 both of which
were undiscovered by the Mallows model due to its unimodality property.

Figure 8 demonstrates non-parametric modeling of partial rankings for n = 100 (the Mallows
model maximum likelihood estimator cannot be computed for such n). We used 10043 rankings
from the Jester data set which contain users ranking all n = 100 jokes. As before, the figures display
the test-set log-likelihood as a function of the train set size. Due to the large n, we measured the test

2421

LEBANON AND MAO

800 1600 2400 3200 4000
−4.9

−4.85

−4.8

−4.75

−4.7

−4.65

of
��������� 	

s

a
v

e
ra

�
�

 �
���
�
���

d

����� � �����
c=1
c=2
c=5

3400 6800 10200 13600 17000
−4.77

−4.76

−4.75

−4.74

−4.73

−4.72

of samples

av
er

ag
e

lo
g−

lik
el

ih
oo

d

Mallows
c=1
c=2
c=5

200 400 600 800 1000
−3.05

−2.95

−2.85

−2.75

of samples

av
er

ag
e

lo
g−

lik
el

ih
oo

d

Mallows
c=1
c=2
c=5

Figure 6: Average test log-likelihood as a function of the train set size: the maximum likelihood
Mallows model vs. the non-parametric estimator for (a) APA data n = 5, (b) n = 5 most
frequently rated Jester jokes, (c) n = 4 most frequently rated movies from EachMovie
data. In general, the non-parametric model provides a better fit than the Mallows model.
The non-parametric consistency is illustrated in the case of c,m → ∞.

2422

NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

1423
4132

1432

4321

4123

3421

3412

3241

3124

3142

2341

2431

2413

1324

4312

4231

4213

2134

2143

1234

2314

1243

3214

1342

1243

1423

1234

1432

4321

3421

3412

3241

3214

3124

3142

2431

2413

1324

1342

4312

4231

4213

4123

4132

2341

2314

2143

2134

Figure 7: Visualizing estimated probabilities for EachMovie data by permutation polytopes: Mal-
lows model (left) and non-parametric model for c = 2 (right). The Mallows model locates
a single mode at 2|1|3|4 while the non-parametric estimator locates the global mode at
2|3|1|4 and a second local mode at 4|1|2|3.

set log-likelihood with respect to the lattice version ĝ(Sγπ) of the non-parametric estimator p̂ for
partial ranking γ = (5,n−5) (top) and γ = (1,1,1,n−3) (bottom).

The different lines in Figure 8 correspond to the performance of p̂ obtained by censoring the
training data in different ways. We compared p̂ for the following censored data: full ranking (no
censoring), γ = (1, . . . ,1,n− k) for k = 1,2,3,5 and γ = (k,n− k). The value of k in the censoring
corresponding to γ = (k,n− k) was chosen based on thresholding the scores output by the users.
In particular, (k(s),n− k(s)) corresponds to k being the number of jokes receiving a score of s or
higher (the users provided scores in the range [−10,10]). The figure illustrates the statistical benefit
of estimating p̂ based on partial rather than full rankings. The variance reduction by (k,n−k) partial
rankings clearly outweighs the bias increase.

10. Discussion

As the number of items n increases, the space Sn grows exponentially making discrete search
methods such as maximum likelihood for the Mallows model difficult to compute. Similarly, it is
typically the case for large n that both the data available for estimating p̂ and the use of p̂ will be
restricted to partial rankings or cosets of the symmetric group.

Attempts to define a probabilistic model directly on multiple types of partial rankings H ⊂ W̃n

face a challenging problem of preventing probabilistic contradictions. A simple solution is to define
the partial ranking model ĝ in terms of a permutation model p̂ through the mechanism of Möbius
inversion and censored data interpretation. However, doing so raises computational concerns that
often severely limit the practical use of such models for large n.

In this paper, we present a non-parametric kernel smoothing technique that uses the Mallows
model as a smoothing kernel on permutations. Using combinatorial properties of inversions and of
the symmetric group we simplify the computational difficulties and exhibit its practical use inde-

2423

LEBANON AND MAO

−18.5

−18

−17.5

1000 2000 3000 4000 5000 6000 7000

−80

−60

−40

−20

# of ��������� 	 s

�
�
�
�� �
� −

lik
e

lih
o

o
d

(k(��� � ����� � ���)
(k(��� � ����� � ���)
��� � � � ����� �
(k(!�� � ����� � !��)
��� � �"� 1)

��� � � � � � ��� 3)

��� � � � � � � � � � ��� 5)# $ � � y ranked

¼

−13.8

−13.5

−13.2

1000 2000 3000 4000 5000 6000 7000

−35

−25

−15

of %�&�'�(�) * s

+,-
.+/-
0 1/

−
lik

e
lih

o
o

d

(k(2�3 4 5�6�7 8 2�3)
(k(9�3 4 5�6�7 8 9�3)
(k(:�3 4 5�6�7 8 :�3)
8�; 4 5"6 1)

8�; 4 ; 4 5�6�< 3
8�; 4 ; 4 ; 4 5�6 3)

8�; 4 ; 4 ; 4 ; 4 ; 4 5"6 5)= >)) y ranked

¼

Figure 8: Test-set loglikelihood for ĝ(Sγπ) with γ = (5,n−5) (top) and γ = (1,1,1,n−3) (bottom)
as a function of train set size (Jester data set with n = 100). The different lines correspond
to obtaining p̂ based on different censoring strategies of the fully ranked training data (see
description in text). The legend entries are sorted in roughly the same order as the lines
in the figures for increased visibility.

pendently of the number of items n. Theoretical and experimental examinations demonstrate the
role of the inverse scale parameter c in the bias-variance tradeoff. We also examine the effect of
using partial, rather than full, rankings on the bias and variance of the estimator. This effect plays a
similar role to increased kernel smoothing and often leads to increased estimation accuracy.

2424

NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

Appendix A. Complexity Issues

Table 1 lists the computational complexity results for computing (13) for some popular partial rank-
ing types γ and λ. The arguments or proofs for these expressions are rather involved and contain
some details. We include in this appendix the details corresponding to the case of λ = (k,n−k) and
γ = (t,n− t). The other cases in Table 1 follow similarly, but with some differences.

Proposition 10 The complexity for computing

ψ−1(c) |Sγ|−1 ∑
σ∈Sλπ1

∑
τ∈Sγπ2

e−cd(σ,τ)

for λ = (k,n− k) and γ = (t,n− t) is O(k + t).

Proof We first generalize the definition of cross compartment inversions bγ
kl(τ) in Proposition 4 by

defining

bXY (τ) = |{(u,v) : u < v,τ(v) ∈ X ,τ(u) ∈ Y}|

where X and Y are arbitrary disjoint sets. If X =
{

∑k−1
j=1 γ j + 1, . . . ,∑k

j=1 γ j

}

and Y =
{

∑l−1
j=1 γ j +

1, . . . ,∑l
j=1 γ j

}

, we have bXY (τ) = bγ
kl(τ). If x < y,∀x ∈ X and y ∈ Y , bXY (τ) counts a subset of

inversion pairs of τ. However, in its most general form, bXY (τ) may include non-inversion pairs if
some numbers in X are greater than some numbers in Y .

We use the following definitions in our proof

A = {1, · · · ,k}∩{π1π−1
2 (1), · · · ,π1π−1

2 (t)},
Ā = {1, · · · ,k}\A,

B = {k +1, · · · ,n}∩{π1π−1
2 (1), · · · ,π1π−1

2 (t)},
B̄ = {k +1, · · · ,n}\B.

Note A, Ā,B, B̄ constitute a partition of {1, . . . ,n} and satisfy

A∪ Ā = {1, . . . ,k},
B∪ B̄ = {k +1, . . . ,n},
A∪B = {π1π−1

2 (1), · · · ,π1π−1
2 (t)},

Ā∪ B̄ = {1, · · · ,n}\{π1π−1
2 (1), · · · ,π1π−1

2 (t)}.

2425

LEBANON AND MAO

Since λ = (k,n−k), we have bλ
12(τ) = bAB(τ)+bAB̄(τ)+bĀB(τ)+bĀB̄(τ), and the expression in the

first parenthesis of Equation 16 is simplified to be

∑
τ∈π1π−1

2 Sγ

r

∏
k=1

r

∏
l=k+1

e−cbλ
kl(τ) = ∑

τ∈π1π−1
2 Sγ

e−cbλ
12(τ)

= ∑
τ∈π1π−1

2 Sγ

e−c(bAB(τ)+bAB̄(τ)+bĀB(τ)+bĀB̄(τ))

= ∑
τ∈π1π−1

2 Sγ

e−c(bAB(τ)+0+|Ā||B|+bĀB̄(τ))

= e−c|Ā||B| ∑
τ∈π1π−1

2 Sγ

e−c(bAB(τ)+bĀB̄(τ))

= e−c|Ā||B| ∑
τ∈St

e−cb
γ1
12(τ) ∑

τ∈Sn−t

e−cb
γ2
12(τ)

where γ1 = (|A|, t − |A|) and γ2 = (|Ā|,n − t − |Ā|). The last equality comes from the fact that
∀τ ∈ π1π−1

2 Sγ

τ−1(i) ∈ {1, . . . , t} if i ∈ A∪B,

τ−1(i) ∈ {t +1, . . . ,n} if i ∈ Ā∪ B̄

and the choice of representatives π1,π2 of the cosets Sλπ1,Sγπ2 does not change |A|,|Ā|,|B| or |B̄|.
By Proposition 11, we have

∑
τ∈St

e−cb
γ1
12(τ) =

|A|!(t −|A|)!∏t
j=t−|A|+1(1− e− jc)

∏|A|
j=1(1− e− jc)

∑
τ∈Sn−t

e−cb
γ2
12(τ) =

|Ā|!(n− t −|Ā|)!∏n−t
j=n−t−|Ā|+1

(1− e− jc)

∏|Ā|
j=1(1− e− jc)

.

Substituting the above results into Equation 16, we get

ψ−1(c)|Sγ|−1 ∑
σ∈Sλπ1

∑
τ∈Sγπ2

e−cd(σ,τ)

=

(

e−c|Ā||B| ∑τ∈St e−cb
γ1
12(τ) ∑τ∈Sn−t e−cb

γ2
12(τ)

)(

∏k
j=1

1−e− jc

1−e−c ∏n−k
j=1

1−e− jc

1−e−c

)

(

∏n
j=1

1−e− jc

1−e−c

)

t!(n− t)!

=

(

|A|!(t−|A|)!∏t
j=t−|A|+1(1−e− jc)

∏|A|
j=1(1−e− jc)

)

(

|Ā|!(n−t−|Ā|)!∏n−t
j=n−t−|Ā|+1

(1−e− jc)

∏|Ā|
j=1(1−e− jc)

)

e−c|Ā||B| ∏k
j=1

(

1− e− jc
)

t!(n− t)!∏n
j=n−k+1 (1− e− jc)

=
|A|!|Ā|!(t −|A|)!e−c|Ā||B|

t!∏n−t
j=n−t−|Ā|+1

j

∏t
j=t−|A|+1(1− e− jc)∏n−t

j=n−t−|Ā|+1
(1− e− jc)∏k

j=1

(

1− e− jc
)

∏|A|
j=1(1− e− jc)∏|Ā|

j=1(1− e− jc)∏n
j=n−k+1 (1− e− jc)

 .

Note |A| ≤ min(k, t), |Ā| ≤ k and |B| ≤ t, therefore the above expression takes O(k + t) to evaluate.
Assuming π−1

1 and π−1
2 are given, it takes O(k) to get a representative π1 for the coset Sλπ1, and

2426

NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

O(t) to get the set {π1π−1
2 (1), · · · ,π1π−1

2 (t)}, which completes the proof.

Proposition 11 For γ = (k,n− k), let

Q(k,n)
def
= ∑

π∈Sn

qbγ
12(π) (20)

where bγ
12(π) is defined in Proposition 4, we have

Q(k,n) = k!(n− k)!
∏n

i=n−k+1(1−qi)

∏k
i=1(1−qi)

∀n ≥ k. (21)

Proof We first derive an equivalent expression for (20). For fixed π, we sort {π−1(1),π−1(2),
· · · ,π−1(k)} in ascending order and denote them by a1 < a2 < · · · < ak. Note that

bγ
12(π) = (a1 −1)+(a2 −2)+ · · ·+(ak − k) =

k

∑
i=1

(ai − i).

Due to this observation and since there are k!(n − k)! different permutations for each sequence
(a1,a2, · · · ,ak), we have

Q(k,n) = ∑
π∈Sn

qbγ
12(π) = k!(n− k)!

n

∑
ak=k

ak−1

∑
ak−1=k−1

· · ·
a2−1

∑
a1=1

q(a1+···+ak−1−···−k)

=
k!(n− k)!

q
(1+k)k

2

n

∑
ak=k

qak

ak−1

∑
ak−1=k−1

qak−1 · · ·
a2−1

∑
a1=1

qa1 . (22)

We then prove (21) by mathematical induction on k using the result from (22).

(a) Base case: Considering (20) for the case k = 0 we see that b(0,n)
12 (π)≡ 0 and therefore Q(k,n) =

n! for n ≥ k. A similar result follows from substituting k = 0 in the right hand side of (21).

(b) Inductive step: Assuming (21) holds ∀n ≥ k for some k, we have for k +1

Q(k +1,n)

(k +1)!(n− k−1)!
a
=

1

q
(2+k)(1+k)

2

n

∑
ak+1=k+1

qak+1

ak+1−1

∑
ak=k

qak · · ·
a2−1

∑
a1=1

qa1

=
1

q1+k

n

∑
ak+1=k+1

qak+1

(

1

q
(1+k)k

2

ak+1−1

∑
ak=k

qak · · ·
a2−1

∑
a1=1

qa1

)

b
=

1
q1+k

n

∑
ak+1=k+1

qak+1
∏ak+1−1

i=ak+1−k(1−qi)

∏k
i=1(1−qi)

c
=

∏n
i=n−k(1−qi)

∏k+1
i=1 (1−qi)

where equality a follows from (22), equality b follows from the induction hypothesis, and
equality c follows from Proposition 12.

2427

LEBANON AND MAO

Proposition 12

1
qk+1

n

∑
j=k+1

q j
k

∏
i=1

(1−q j−i) =
1

1−qk+1

n

∏
i=n−k

(1−qi) ∀n > k.

Proof We prove by mathematical induction on n.

(a) Base Case: Carefully substituting n = k + 1 in both the left hand side and the right hand side
yields equality.

(b) Inductive step:

1
qk+1

n+1

∑
j=k+1

q j
k

∏
i=1

(1−q j−i) =
1

qk+1

(

n

∑
j=k+1

q j
k

∏
i=1

(1−q j−i)+qn+1
n

∏
i=n−k+1

(1−qi)

)

=
1

1−qk+1

n

∏
i=n−k

(1−qi)+qn−k
n

∏
i=n−k+1

(1−qi)

=

(

1−qn−k

1−qk+1 +qn−k
) n

∏
i=n−k+1

(1−qi)

=
∏n+1

i=n−k+1(1−qi)

1−qk+1

where in the second equality we used the induction hypothesis.

References

W. S. Cleveland. The Elements of Graphing Data. Wadsworth Publ. Co., 1985.

D. E. Critchlow. Metric Methods for Analyzing Partially Ranked Data. Lecture Notes in Statistics,
volume 34, Springer, 1985.

P. Diaconis. Group Representations in Probability and Statistics, volume 11 of IMS Lecture Notes
– Monograph Series. Institute of Mathematical Statistics, 1988.

P. Diaconis. A generalization of spectral analysis with application to ranked data. Annals of Statis-
tics, 17(3):949–979, 1989.

M. A. Fligner and J. S. Verducci. Distance based ranking models. Journal of the Royal Statistical
Society B, 43:359–369, 1986.

M. A. Fligner and J. S. Verducci. Multistage ranking models. Journal of the American Statistical
Association, 83:892–901, 1988.

2428

NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

M. A. Fligner and J. S. Verducci, editors. Probability Models and Statistical Analyses for Ranking
Data. Springer-Verlag, 1993.

J. Huang, C. Guestrin, and L. Guibas. Efficient inference for distributions on permutations. In
Advances in Neural Information Processing Systems 20, pages 697–704. 2008.

M. G. Kendall. A new measure of rank correlation. Biometrika, 30, 1938.

R. Kondor, A. Howard, and T. Jebara. Multi-object tracking with representations of the symmetric
group. In Artificial Intelligence and Statistics, 2007.

G. Lebanon and J. Lafferty. Conditional models on the ranking poset. In Advances in Neural
Information Processing Systems, 15, 2003.

C. L. Mallows. Non-null ranking models. Biometrika, 44:114–130, 1957.

J. I. Marden. Analyzing and Modeling Rank Data. CRC Press, 1996.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an open architecture
for collaborative filtering of netnews. In Proceedings of the Conference on Computer Supported
Cooperative Work, 1994.

R. P. Stanley. Enumerative Combinatorics, volume 1. Cambridge University Press, 2000.

G. L. Thompson. Generalized permutation polytopes and exploratory graphical methods for ranked
data. The Annals of Statistics, 21(3):1401–1430, 1993.

M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman and Hall/CRC, 1995.

2429

Journal of Machine Learning Research 9 (2008) 2431-2453 Submitted 12/07; Revised 5/08; Published 11/08

On the Size and Recovery of Submatrices of Ones
in a Random Binary Matrix

Xing Sun XING SUN@MERCK.COM

Merck Research Laboratories
351 N Sumneytown Pike
North Wales, PA 19454-2505, USA

Andrew B. Nobel NOBEL@EMAIL.UNC.EDU

Department of Statistics and Operation Research
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3260, USA

Editor: Nicolas Vayatis

Abstract

Binary matrices, and their associated submatrices of 1s, play a central role in the study of random
bipartite graphs and in core data mining problems such as frequent itemset mining (FIM). Moti-
vated by these connections, this paper addresses several statistical questions regarding submatrices
of 1s in a random binary matrix with independent Bernoulli entries. We establish a three-point
concentration result, and a related probability bound, for the size of the largest square submatrix of
1s in a square Bernoulli matrix, and extend these results to non-square matrices and submatrices
with fixed aspect ratios. We then consider the noise sensitivity of frequent itemset mining under
a simple binary additive noise model, and show that, even at small noise levels, large blocks of
1s leave behind fragments of only logarithmic size. As a result, standard FIM algorithms, which
search only for submatrices of 1s, cannot directly recover such blocks when noise is present. On the
positive side, we show that an error-tolerant frequent itemset criterion can recover a submatrix of
1s against a background of 0s plus noise, even when the size of the submatrix of 1s is very small.1

Keywords: frequent itemset mining, bipartite graph, biclique, submatrix of 1s, statistical signifi-
cance

1. Introduction

In many situations, the data obtained from a standard numerical experiment can be represented
by a rectangular matrix, whose columns correspond to subjects or samples, and whose rows cor-
respond to variables or features measured for each subject. In a number of important cases, the
measured features can take one of two values, and the resulting data can be represented as a bi-
nary matrix. Prominent examples include data mining tasks such as frequent pattern mining, single
nucleotide polymorphism (SNP) data obtained from inbred strains having two allelic variants, and
quantized versions of continuous measurements.

1. A preliminary version of some of the results described here appeared in the work “Significance and Recovery of Block
Structures in Binary Matrices with Noise”, X. Sun and A.B. Nobel, Proceedings of the 19th Annual Conference on
Learning Theory (COLT), H.U. Simon and G. Lugosi eds., Springer, 2006.

c©2008 Xing Sun and Andrew Nobel.

SUN AND NOBEL

The initial analysis of large data sets (typically involving many features and small to moderate
numbers of samples) is often exploratory, reflecting the increasing use of such data for hypothesis
generation, as well as more traditional hypothesis testing. In unsupervised settings, exploratory
analysis seeks to identify patterns or other regularities in the observed data that may point to useful
(and potentially unknown) associations between variables, samples or both.

The most common form of exploratory analysis is clustering. Clustering algorithms divide the
available samples or variables into disjoint groups so that objects in the same group are, in a suitable
sense, close together, while objects in different groups are far apart. A natural extension of standard
clustering, usually called biclustering or subspace clustering, looks directly for associations between
sets of samples and sets of variables. These associations are represented by submatrices of the data
matrix.

In the case of binary matrices, the simplest submatrices of interest are constant, with all entries
equal to 1. Submatrices of this sort play a key role in data mining applications, and arise naturally
in the study of bipartite graphs (see the discussion below). Motivated in part by these connections,
this paper considers the extremal properties of submatrices of 1s in a random binary matrix, and
considers the recovery of such submatrices in the presence of noise. More specifically, our analyses
are based on a model in which the entries of the principal matrix, and the noise, respectively, are
independent Bernoulli(p) random variables. We provide significance bounds for the size of subma-
trices of 1s under the Bernoulli null hypothesis, and use these to establish limits on the performance
of standard data mining methods in the presence of Bernoulli noise. In the same context, we es-
tablish several results on the precise asymptotic size of maximal submatrices of 1s, extending to
the setting of bipartite graphs earlier work of Bollobás and Erdős (1976) and Matula (1976) on the
size of maximal cliques in random graphs. Lastly, we establish finite sample and asymptotic results
concerning the recovery of all-1s submatrices in the presence of noise.

1.1 Overview

Connections between binary matrices, frequent itemset mining, and bipartite graphs are dis-
cussed in the next section. Section 3 is devoted to the size of the largest square submatrix of 1s in
a random binary matrix. Extensions to non-square matrices are described in Section 4. Section 5
contains a short simulation study that supports our theoretical bounds in a non-asymptotic setting.
Section 6 is devoted to the noise sensitivity of frequent itemset mining and the recoverability of
block structures in the presence of noise.

2. Motivation and Background

An m×n binary matrix is an indexed family X = {xi, j : i ∈ [m], j ∈ [n]} where xi, j ∈ {0,1} and
[k] denotes the set {1, . . . ,k}. A submatrix of X is a sub-family U = {xi, j : i ∈ A, j ∈ B} where
A ⊆ [m] and B ⊆ [n]; the Cartesian product C = A×B will be called the index set of U , and we
will write U = X [C]. When no ambiguity will arise, the index set C itself will be referred to as a
submatrix of X .

2.1 Frequent Itemset Mining

Frequent itemset mining (FIM) (Agrawal et al., 1993, 1996), also known as market basket anal-
ysis, is a central problem in the field of Data Mining. Generalizations such as bi-clustering and

2432

ON SUBMATRICES OF 1S IN A RANDOM BINARY MATRIX

subspace clustering (Agrawal et al., 1998; Cheng and Church, 2000; Tanay et al., 2002) remain ac-
tive areas of research. A discussion of FIM and related methods can be found in Hand et al. (2001),
Goethals (2003), Madeira and Oliveira (2004) and Tanay et al. (2005).

In the frequent itemset problem, the available data is described by a list S = {s1, . . . ,sn} of items
and a set T = {t1, . . . , tm} of transactions. Each transaction ti consists of a subset of the items in
S. If S contains the items available for purchase at a store, then ti represents a record of the items
purchased during the ith transaction, without multiplicity. The goal of FIM is to identify every
(maximal) set of items that appear together in more than k transactions, where k ≥ 1 is a threshold
that quantifies “frequent”. The data for the FIM problem can readily be represented by an m× n
binary matrix X , with entry xi, j = 1 if transaction ti contains item s j, and xi, j = 0 otherwise. In this
form the FIM problem can be stated as follows: given X and k ≥ 1, find every submatrix of 1s in X
having at least k rows, and report the associated set of columns. If the threshold k is allowed to vary,
then FIM algorithms essentially seek to find every maximal submatrix of 1s in the data matrix X .

The ongoing application of FIM to large data sets for the purposes of exploratory and related
analyses raises a number of natural statistical questions, which we address below in the general
setting of random binary matrices. One natural question is how to assign a nominal significance
value to the discovery of a moderately sized submatrix of 1s in a large data matrix, accounting for the
obvious issue of multiple comparisons arising in this case. Another question is how standard FIM
methods perform in the presence of noise, a common feature of many high-throughput measurement
technologies. The third question is how one can recover a submatrix of 1s embedded in a larger
matrix of 0s when noise is present.

2.2 Bipartite Graphs

Binary matrices are in one to one correspondence with bipartite graphs. An m×n binary matrix
X can be viewed as the adjacency matrix of a graph G = (V,E), where the vertex set V of G is the
disjoint union of two sets V1 and V2, with |V1| = m and |V2| = n, corresponding to the rows and
columns of X , respectively. There is an edge (i, j) ∈ E between vertices i ∈ V1 and j ∈ V2 if and
only if xi, j = 1; there are no edges between vertices in V1 or vertices in V2. A submatrix U of X with
index set C = A×B corresponds to the subgraph G′ of G induced by the vertex set A∪B. If every
entry of U is equal to one, then there is an edge (i, j) between every pair of vertices i ∈ A and j ∈ B,
and G′ is then a complete bipartite subgraph of G. Thus maximal submatrices of 1s in X correspond
to bicliques in G. This connection is the basis for the biclustering algorithm of Tanay et al. (2002).

It is known (cf., Garey and Johnson, 1979; Hochbaum, 1998; Peeters, 2003) that the problem of
finding a biclique with the largest number of edges in a given bipartite graph G is NP-complete, and
thus the same is true of the general frequent itemset problem with no restriction on the threshold k.
Several approximate methods (Hochbaum, 1998; Dawande et al., 2001; Mishra et al., 2004) have
been proposed for finding large bicliques in bipartite graphs in polynomial time. Mishra et al. (2004)
show that the results provided by their randomized algorithm overlap a large fraction of the largest
bicliques with high probability.

Our interest here is in assessing the significance and extremal size of maximal bicliques in
random bipartite graphs. We do not address the question of how to search for such bicliques, and
refer the interested reader to the papers above and the references therein for more details.

2433

SUN AND NOBEL

3. Largest Submatrices of 1s: Square Case

In this section we study the size of the largest square submatrix of 1s in a square binary matrix
whose entries are independent Bernoulli(p) random variables. Non-square matrices and submatri-
ces are considered in Section 4.

Definition: Let Z = {zi, j : i, j ≥ 1} be an infinite array of independent binary random variables
with P(zi, j = 1) = p = 1−P(zi, j = 0), where the probability p ∈ (0,1) is fixed. For n ≥ 1, let
Zn = {zi, j : 1 ≤ i, j ≤ n}.

Thus Zn is an n× n binary random matrix comprising the “upper left corner” of the collection
{zi, j}. This definition allows us to make almost-sure type statements concerning the asymptotic
behavior of functions of Zn.

Definition: Given a binary matrix X , let M(X) be the largest k such that there exists a k×k submatrix
of 1s in X . Note that M(X) is invariant under row and column permutations of X .

From a statistical point of view, the random matrix Zn follows a simple null model under which
the observed binary data matrix has no special structure, and M(·) acts as a natural test statistic with
which to detect departures from the null. Our analysis begins with a bound on the probability that
M(Zn) exceeds a fixed integer k ≥ 1. We follow a standard first moment argument (cf., Alon and
Spencer, 1991).

Fix n for the moment, and for each 1 ≤ k ≤ n let Uk be the number of k× k submatrices of ones
in Zn. Then, letting S = {C = A×B : A,B ⊆ [n], |A| = |B| = k}, we may write

Uk = ∑
C∈S

I{all entries of Zn[C] are 1}

from which it follows that

EUk = |S| ·P(all entries of Zn[C] are 1) =

(

n
k

)2

pk2
.

By Markov’s inequality and the previous display,

P(M(Zn) ≥ k) = P(Uk ≥ 1) ≤ EUk =

(

n
k

)2

pk2
. (1)

We wish to identify an integer kn for which EUkn is approximately equal to one. For values k > kn

the rightmost expression in (1) provides an effective means for bounding the probability on the left.
Note that EUn = pn2

< 1, and EU1 = n2 p > 1 when n is sufficiently large. Moreover, it is clear from
the definition that Uk+1 ≤Uk, so that EUk is non-increasing in k. Using the Stirling approximation
of the rightmost expression in (1), define

φn(s) = (2π)−
1
2 nn+ 1

2 s−s− 1
2 (n− s)−(n−s)− 1

2 p
s2
2 , s ∈ (0,n).

The quantity φn(k) is an approximation of (EUk)
1/2: the ratio φn(k)/(EUk)

1/2 is bounded away
from zero and infinity, independent of n,k, and tends to one if k and n− k tend to infinity with n.
Let s(n) be any positive real root of the equation

1 = φn(s). (2)

2434

ON SUBMATRICES OF 1S IN A RANDOM BINARY MATRIX

The next lemma shows that s(n) is unique and grows as logarithmically with n.

Lemma 1. When n is sufficiently large, the Equation (2) has a unique root s(n) satisfying logb n <
s(n) < 2logb n, where b = p−1.

Using the bounds of Lemma 1 and some technical but straightforward calculations, one may
obtain a simple asymptotic expression for s(n).

Lemma 2. The root s(n) defined by (2) has the form

s(n) = 2 logb n − 2 logb logb n+C +o(1)

where b = p−1 and C = 2logb e−2logb 2.

The proofs of Lemmas 1 and 2 can be found in Section 7.1. Let k(n) = ds(n)e be the least integer
greater than or equal to s(n). The next proposition provides an upper bound on P(M(Zn) ≥ k) for
k > k(n). Its proof appears in Section 7.2.

Proposition 1. For each ε > 0, when n is sufficiently large, P(M(Zn) ≥ k(n)+ r)≤ n−2r (logb n)2r+ε.

One may obtain a cruder bound, on the probability that M(Zn) is at least 2 logb n+r, in a simpler
fashion by noting that

EUk =

(

n
k

)2

pk2 ≤ n2k

k!2 e−k2 logb ≤ e2k lnn−k2 lnb

k2 ≤ n−2r

when k ≥ 2logb n + r. Both the upper bound of Proposition 1 and the definition of s(n) are based
on the inequality (1), which follows from a simple union bound on the probability that M(Zn) is at
least k. The union bound is typically quite loose, but it is sufficiently strong in this context to ensure
that, for large n, the random variable M(Zn) is close to the threshold s(n). Indeed, it follows from
Proposition 1 and the first Borel Cantelli Lemma that, with probability one, M(Zn) is eventually less
than s(n)+1. Using a more involved second moment argument, one can establish a corresponding
lower bound on M(Zn). Together these bounds yield the following result.

Theorem 1. Given any ε > 0, with probability one, s(n)− 1− ε < M(Zn) < s(n) + ε when n is
sufficiently large.

It follows from Theorem 1 that for large n the size of the largest square submatrix of 1s in Zn

can take one of at most two integer values in an interval of width 1+2ε containing the number s(n).
Indeed, it is shown in the proof of Theorem 1 that there is a sequence of integers {r(n)} close to
{s(n)} such that, with probability one, when n is sufficiently large M(Zn) ∈ {rn − 1,r(n)}. Thus
M(Zn) exhibits two-point concentration and does not possess a limiting continuous distribution.

The proof of Theorem 1 is given in Section 8. The outline of the proof follows arguments of
Bollobás and Erdős (1976), who studied the size of the largest clique cl(Gn) in a random graph Gn

with n vertices, where each edge is included independently with probability p. They showed that
for a deterministic function c(n), equal to s(n) up to the constant and lower order terms, eventually
almost surely |cl(Gn)− c(n)| < 3/2. Matula (1976) independently established a similar result. See
these references or Bollobás (2001) for more details. Theorem 1 extends these results to balanced

2435

SUN AND NOBEL

bicliques in balanced bipartite random graphs. (Unbalanced bipartite graphs are considered in the
next section.)

Dawande et al. (2001) used first and second moment arguments to show (in our terminology)
that P(logb n ≤ M(Zn) ≤ 2logb n) → 1 as n tends to infinity. Improving these results, Park and
Szpankowski (2005) showed that P((1+ ε) logb n ≤ M(Zn) ≤ (2− ε) logb n) tends to 1 as n tends to
infinity for any fixed 0 < ε < 1. Koyutürk et al. (2004) studied the problem of finding dense patterns
in binary data matrices. They used a Chernoff type bound for the binomial distribution to assess
whether an individual submatrix has an enriched fraction of ones, and employed the resulting test
as the basis for a heuristic search for significant bi-clusters. However, the effects of multiple testing
are not considered in their assessments of significance. Tanay et al. (2002) assessed the significance
of bi-clusters in a real-valued matrix using likelihood-based weights, a normal approximation and
a standard Bonferroni correction to account for the multiplicity of submatrices. Use of the normal
approximation for individual submatrices leads to subtoptimal bounds in non-Gaussian settings.

3.1 Smallest Maximal Submatrix of 1s

Square submatrices of 1s will occur by chance in a random binary matrix. The largest such
submatrix has approximately 2 logb n − 2 logb logb n rows. Conversely, one may ask about the size
of the smallest maximal square submatrix of 1s. (A square submatrix of 1s is maximal if there is no
larger square submatrix of 1s that properly contains it.)

Definition: Let L(Zn) be the smallest k such that there exists at least one k× k maximal submatrix
of 1’s in Zn.

Theorem 1 implies that L(Zn) ≤ 2logb n. An analysis based on second moment arguments
similar to those used in the proof of Theorem 1 yields the following, tighter bound. The proof can
be found in Sun (2007).

Theorem 2. With probability one,

lim
n→∞

L(Zn)

logb n
= 1.

Bollobás and Erdős (1976) establish a related result on the size of the smallest clique in a random
graph. However their proof can not be directly extended to obtain the theorem above. Indeed, an
extension of their argument provides a lower bound on the size of the smallest square submatrix of
1s that is not properly contained within a rectangular submatrix of 1s, and the resulting bound is
necessarily larger than the one in Theorem 2.

4. Non-Square Matrices

In this section we consider the case where the primary matrix and the target submatrices of 1s
may be rectangular, but maintain fixed row/column aspect ratios as the size of the primary matrix
grows. Natural analogs of Proposition 1 and Theorem 1 are obtained in this setting. For m,n ≥ 1
define the random matrix Z(m,n) = {zi, j : i ∈ [m], j ∈ [n]}.

Definition: Let α > 0 and β > 0 be aspect ratios for the primary matrix and target submatrices, re-
spectively. Define Mn(Z : α,β) to be the largest k such that Z(dαne,n) contains a dβke×k submatrix
of 1s.

2436

ON SUBMATRICES OF 1S IN A RANDOM BINARY MATRIX

The asymptotic behavior of Mn(Z : α,β) is the same as that of Mn(Z : α−1,β−1), so we assume
in what follows that β ≥ 1. The analysis of Mn(Z : α,β) proceeds along the same lines as that of
M(Zn). Investigating the value of k for which the expected number of dβke× k submatrices of 1s in
Z(dαne,n) is equal to 1, we arrive at the function

s(n,α,β) =
1+β

β
logb n− 1+β

β
logb

(

1+β
β

logb n

)

+ logb α+C(β)+o(1),

where b = p−1 and C(β) = β−1((1+β) logb e−β logb β) depends only on β.
Note that the aspect ratio α of the primary matrix appears only in the constant term of s(n,α,β),

and therefore plays only a minor role in what follows. The proofs of Proposition 2 and Theorem 3
below are similar to their analogs in the square case, with additional notation and work required to
handle the two aspect ratios, and are omitted. Detailed arguments can be found in Sun (2007).

Proposition 2. Fix aspect ratios α > 0, β ≥ 1. For every ε > 0, when n is sufficiently large
P(Mn(Z : α,β) ≥ ds(n,α,β)e+ r) ≤ n−(β+1)r (logb n)(β+1+ε)r.

Remark: When the aspect ratio α of the primary matrix is fixed, it does not play an essential role in
the asymptotic behavior of Mn(Z : α,β), which is dominated by higher order factors involving only
the aspect ratio β of the target submatrices. It is natural then to consider a situation in which the
aspect ratio α of the primary matrix can increase with n. This might model, for example, the scaling
and cost structure of a given high-throughput technology over time. In the case where α(n) = nγ for
some γ > 0, the proof of Proposition 2 can be modified to show that

P

(

Mn(Z : nγ,β) ≥
(

γ+
β+1

β

)

logb n

)

≤ n−(β+1)r (logb n)(β+1+ε)r.

On the other hand, one can readily show that if β ≥ 1 is fixed and m grows exponentially with n,
then Z(m,n) will contain a dβne× n submatrix of 1’s with probability bounded away from zero.
For fixed aspect ratios α and β one may obtain an asymptotic concentration result for Mn(Z : α,β)
analogous to Theorem 1.

Theorem 3. For fixed α > 0 and β ≥ 1, with probability one |Mn(Z : α,β)− s(n,α,β)| ≤ 5
2 when n

is sufficiently large.

Theorem 3 implies that Z(αn,n) contains a submatrix of 1s having aspect ratio β and area
(β + 1) log2

b n, the latter increasing with β. Park and Szpankowski (2005) establish a related result,
showing that if we do not restrict β, the aspect ratio of the submatrices, then with high probability
the submatrix of 1s in Z(m,n) with the largest area is of size O(n)× lnb or lnb×O(n).

5. Simulation Study

The results of the previous sections hold when n is sufficiently large. In order to assess their
validity for moderate values of n, we carried out a simple simulation study. For n = 40 and n = 80
we generated 400 n×n random binary matrices with p = .2, p = .3 and p = .35 respectively. Then
we applied the FP-growth algorithm (Han et al., 2000) to identify all maximal submatrices of ones.
For each maximal submatrix of ones we recorded the length of its shorter side, and let M̂ be the
maximum among these lengths. Thus M̂ is the side length of the largest square submatrix of 1’s in

2437

SUN AND NOBEL

p n s(n) k Proportion of M̂ = k

0.2
40 3.55

3 85.75%
4 14.25%

80 4.58
4 97%
5 3%

0.3
40 4.78

4 50.5%
5 49.5%

80 5.64
5 85%
6 15%

0.35

40 5.22
4 63.75%
5 36%
6 0.25%

80 6.21
5 7.75%
6 90.75%
7 1.50%

Table 1: Distribution of observed M̂(Zn) based on simulation

the generated random matrix. We recorded the values of M̂ over all simulations and compared these
values to the corresponding bounds. Table 1 summarizes the results. Note that in each simulation
−1.5 < M̂− s(n) < 1.

In order to check the theoretical bounds on Mn(Z : 1,β) with β ≥ 1, we considered the 400
random 80× 80 matrices with p=0.3 used to evaluate the result for square submatrices above. For
each such matrix, we identified all maximal rectangular submatrices of 1s, and recorded the length
of both their longer and shorter sides. For each β ≥ 1 we defined M̂(β) to be the largest k such that
at least one dβke× k or k×dβke submatrix of 1’s was observed. The difference between M̂(β) and
s(80,1,β) was calculated and is displayed in Figure 1. The x-axes in both panels are equal to 1/β.
The y-axis in the left panel is the difference between M̂(β) and s(80,1,β), and the y-axis in the
right panel is the proportion of simulations which are inconsistent with the theoretical predictions
of Theorem 3. Note that even for the moderate matrix size n = 80, the theoretical predictions are
very accurate when the aspect ratio β is less than 2.5. In these cases, all the observed size lengths
are within the range of predicted values.

6. Fragmentation and Recovery in the Presence of Noise

In this section we shift our attention from submatrices of 1s in Zn to a setting in which Zn plays
the role of binary noise. Formally, we study the additive model

Yn = Xn ⊕Zn, (3)

where each matrix is of dimension n× n. The operation ⊕ is the standard exclusive-or: 0⊕ 0 =
1⊕1 = 0 and 0⊕1 = 1⊕0 = 1. The matrix Xn = {xi, j} is a non-random binary matrix that contains
the “true” values of interest, in the absence of noise, and Zn is a random binary matrix that acts as
noise, with intensity p ∈ (0,1). The matrix Yn = {yi, j = xi, j ⊕ zi, j} represents the observed binary

2438

ON SUBMATRICES OF 1S IN A RANDOM BINARY MATRIX

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aspect Ratio β−1

F
ra

c
ti
o

n
 o

f
O

b
s
e

rv
a

ti
o

n
s
 o

u
t

o
f

P
re

d
ic

ti
o

n
 R

a
n

g
e

Figure 1: Difference between observed M̂(β) and its predicted value from theory.

2439

SUN AND NOBEL

data. Thus the effect of the noise is to randomly flip some of the values of X in Y . The model (3) is
the binary version of the standard additive noise model common in statistical inference.

6.1 Noise Sensitivity

Much of the data to which data mining methods are applied is obtained by high-throughput
technologies or the automated collection of information from diverse sources with varying levels
of reliability. The resulting data sets are often subject to moderate levels of error and noise. Noise
can also arise when binary data are obtained by thresholding continuous data, as is sometimes done
in microarray analyses. Whatever its source, noise can potentially have serious consequences for
frequent itemset methods if they are applied in a direct way to identify submatrices of 1s.

Indeed, this conclusion is already apparent from Theorem 1. If each entry of the target matrix
Xn is zero, then Yn = Zn and the largest k× k submatrix of ones in Yn has k ≈ 2logb n with b = p−1.
At the other extreme, if every entry of Xn is equal to one, then the entries of Yn are independent
Bernoulli(1− p) random variables, and in this case the largest square submatrix of ones in Y has
side-length k≈ 2logb′ n with b′ = (1− p)−1. The next result extends this reasoning to any underlying
target matrix Xn.

Proposition 3. Fix 0 < p < 1/2. Let {Xn} be any sequence of n× n square binary matrices, and
let Yn = Xn ⊕Zn. For each ε > 0, eventually almost surely (2− ε) logb n < M(Yn) ≤ 2logb′ n, where
b = p−1 and b′ = (1− p)−1.

Proof of Proposition 3: Fix n and let W̃n = {w̃i, j} be an n× n binary matrix with independent
entries, defined on the same probability space as {zi, j}, such that

w̃i, j =

Bern
(

1−2p
1−p

)

if xi j = yi j = 0

1 if xi j = 0,yi j = 1

yi, j if xi j = 1

where the Bernoulli variable in the first condition is independent of {zi, j}. Define Ỹn = Yn∨W̃n to be
the entry-wise maximum of Yn and W̃n. Then clearly M(Yn)≤ M(Ỹn), as any submatrix of ones in Yn

must also be present in Ỹn. Moreover, the variables ỹi, j are i.i.d. with P(ỹi, j = 1) = 1− p, so that we
may regard Ỹn as a Bern(1− p) noise matrix. It then follows from Theorem 1 that M(Yn) ≤ 2logb′ n
eventually almost surely. To obtain the other inequality, define

ŵi, j =

Bern
(

p
1−p

)

if xi j = yi j = 1

0 if xi j = 1,yi j = 0

yi, j if xi j = 0

and let Ŷn = Yn ∧Ŵn be the entry-wise maximum of Yn and Ŵn. It is easy to verify that M(Yn) ≥
M(Ŷn), and that the entries in Ŷn are i.i.d. Bern(p). Theorem 1 then implies that M(Yn) ≥ (2−
ε) logb n eventually almost surely.

Proposition 3 can be interpreted as follows. No matter what type of block structures might exist
in X , in the presence of random noise these structures leave behind only logarithmic fragments in
the observed data. Under the additive noise model (3), block structures in X cannot be recovered
directly by methods such as frequent itemset mining that look for maximal submatrices of ones
without errors.

2440

ON SUBMATRICES OF 1S IN A RANDOM BINARY MATRIX

6.2 Recovery

In light of Proposition 3, it is natural to consider methods for identifying submatrices of 1s
that may be contaminated with a certain fraction of 0s. These submatrices correspond, in the data
mining and bipartite graph settings, to approximate frequent itemsets and approximate bicliques,
respectively. A number of different error-tolerant frequent itemset mining algorithms have been
proposed in the literature (Pei et al., 2001, 2002; Yang et al., 2001; Seppänen and Mannila, 2004; Liu
et al., 2005, 2006). Most are based on criteria that require the average of the identified submatrices
to be greater than a user specified threshold τ. One can readily adapt the first moment argument to
obtain significance bounds for submatrices with a large fraction of 1s; details can be found in Sun
(2007).

Here we consider the simple problem of recovering a (potentially small) submatrix C of 1s em-
bedded in a matrix of 0s from a single noisy observation. Proposition 3 shows that one cannot
recover C directly using standard frequent itemset mining; instead we consider the Approximate
Frequent Itemset (AFI) algorithm developed in Liu et al. (2005).

Definition: Given a binary matrix U with index set C, let F(U) = |C|−1 ∑(i, j)∈C ui, j be the fraction
of ones in U , or equivalently, the average of the entries of U .

Let ui∗ and u∗ j denote the rows and columns, respectively, of a given submatrix U .

Definition: Let τ ∈ [0,1] be fixed. A submatrix U of a binary matrix Y is a τ-approximate frequent
itemset (τ-AFI) if each of its rows satisfies F(ui∗) ≥ τ and each of its columns satisfies F(u∗ j) ≥ τ.
Define AFIτ(Y) to be the collection of all τ-AFIs in Y .

The definition above comes from Liu et al. (2005), who presented an algorithm for identifying
AFIs in binary matrices.

Let Xn be an n×n binary matrix that consists of an l × l submatrix of ones having index set C∗,
with all other entries equal to 0. (The rows and columns of C∗ need not be contiguous.) Suppose
that Yn = Xn ⊕Zn, where Zn has noise level p ∈ (0,1/2). We wish to recover the index set C∗ of the
target submatrix from Yn.

To this end, assume that the noise level p is unknown, but that there is a known upper bound p0

such that p < p0 < 1/2, and let τ = 1− p0 be an associated error threshold. We estimate C∗ by the
index set of the largest square τ-AFI in the observed matrix Yn. More precisely, let Ĉ be the family
of index sets of square submatrices U ∈ AFIτ(Yn), and let

Ĉ = argmax
C∈Ĉ

|C|

be the index set of any maximal sized submatrix in Ĉ . (The set Ĉ contains 1×1 submatrices with
entry 1, so it is non-empty whenever Yn is not identically 0.) Note that Ĉ and Ĉ depend only on the
observed matrix Yn. Let the ratio

Λ = |Ĉ∩C∗|/|Ĉ∪C∗|

measure the overlap between the estimated index set Ĉ and the true index set C∗. Clearly 0 ≤ Λ ≤ 1,
and values of Λ close to one indicate better overlap. The proof of the next theorem is given in
Section 9.

2441

SUN AND NOBEL

Theorem 4. When n is sufficiently large, for any 0 < α < 1 such that 8α−1(logb n+2) ≤ l we have

P

(

Λ ≤ 1−α
1+α

)

≤ ∆1(l) + ∆2(α, l).

Here ∆1(l) = 2le−
3l(p−p0)2

8p and ∆2(α, l) = 2n−
1
4 αl+2logb n, with b = exp{3(1−2 p0)

2/8p}.

Remarks: The second term ∆2(α, l) is less than 2n−4/α and is the dominant term in the probability
upper bound if l/ ln(n) is large. The logarithmic base b is derived from an upper bound on the
tails of the binomial distribution, and is always larger than b̃ = exp{3(1−2 p0)

2/8p0}. By a crude
bound, ∆1(l) ≤ ∆̃1(l) := e−

√
l when l is sufficiently large. Thus, by replacing b with b̃ and ∆1(l)

with ∆̃1(l), one obtains a probability bound that does not depend on the unknown parameter p.
As a corollary of Theorem 4, we can also get results in an asymptotic setting. Suppose that

{Xn : n ≥ 1} is a sequence of square binary matrices, and that Xn contains an ln × ln submatrix C∗
n

of 1s with all other entries equal to 0. Let Yn = Xn ⊕Zn, and let Λn measure the overlap between
C∗

n and the estimate Ĉn produced by the AFI-based recovery method above. The following result
follows from Theorem 4 and the Borel Cantelli lemma.

Corollary 1. If ln ≥ 8ψ(n)(logb n+2) where ψ(n) → ∞ as n → ∞, then eventually almost surely

Λn ≥ 1−ψ(n)−1

1+ψ(n)−1 → 1.

Reuning-Scherer studied several recovery problems in his thesis (Reuning-Scherer, 1997). In
the case considered here, he calculated the fraction of 1s in every row and every column of Y , and
then selected those rows and columns for which these fractions exceeded an appropriate threshold.
His algorithm is easily seen to be consistent when l ≥ nα for α > 1/2. However, it is easy to show
using the central limit theorem that individual row and column sums alone are not sufficient to
recover C∗ when l ≤ nα for α < 1/2. In the latter case, one gains considerable power by directly
considering submatrices, and as the result above demonstrates, one can consistently recover C∗

n if
ln/ ln(n) → ∞.

7. Proofs of Preliminary Results

In this section, we will begin with the proofs of Lemma 1 and Lemma 2 then follow with the
proof of Proposition 1.

7.1 Proofs of Lemmas 1 and 2

Proof of Lemma 1: Differentiating logb(φn(s)) yields

∂ logb(φn(s))
∂s

=
1

2(n− s) lnb
+ logb(n− s)− s− logb s− 1

2s lnb
,

which is negative when logb n < s < 2logb n. A routine calculation shows that for 0 < s ≤ logb n,

logb φn(s) = (n+
1
2
) logb n− (s+

1
2
) logb s− (n− s+

1
2
) logb(n− s)− s2

2
− 1

2
logb 2π

≥ s
(

logb(n− logb n)− s
2
− logb logb n

)

− 1
2

logb s− 1
2

logb 2π > 0

2442

ON SUBMATRICES OF 1S IN A RANDOM BINARY MATRIX

when n is sufficiently large. Similarly, for 2 logb n ≤ s < n,

logb φn(s) ≤ s
(

logb(n− s)− s
2
− logb s

)

− 1
2

logb s− 1
2

logb 2π+2s+
s logb s

2

≤ s

(

2− logb s
2

)

− 1
2

logb s− 1
2

logb 2π < 0

when n is sufficiently large. Thus for sufficiently large n, there exists a unique solution s(n) of the
equation φn(s) = 1 with s(n) ∈ (logb n,2logb n).

Proof of Lemma 2: Taking logarithms of both sides of the equation φn(s) = 1 and rearranging
terms yields

1
2

logb
n

n− s
+n logb

n
n− s

− (s+
1
2
) logb s+ s logb(n− s)− s2

2
=

logb 2π
2

.

Lemma 1 implies that s(n) belongs to the interval (logb n,2logb n), so we consider the above equa-
tion in the case that n >> s. Dividing both sides of the equation by s yields

logb(n− s)− s
2
− logb s = − logb e+O(

logb s
s

),

which can be rewritten as

logb n− s
2
− logb logb n = logb

s
logb n

− logb
n− s

n
− logb e+O(

logb s
s

). (4)

For each n, define R(n) via the equation

s(n) = 2logb n−2logb logb n+R(n).

Plugging this expression into (4), it follows that R(n) = 2logb e− 2logb 2 + o(1), and the result
follows from the uniqueness of s(n).

7.2 Proof of Proposition 1

To establish the bound with r independent of n, it suffices to consider a sequence rn that changes
with n in such a way that 1 ≤ rn ≤ n. Fix n for the moment, let l = k(n) + rn, and let Ul be the
number of l× l submatrices of 1s in Zn. Then by Markov’s inequality and Stirling’s approximation,

P(M(Zn) ≥ l) = P(Ul ≥ 1) ≤ E(Ul) =

(

n
l

)2

pl2 ≤ 2φ2
n(l).

A straightforward calculation using the definition of φn(·) shows that one can decompose the
rightmost term above as follows:

2φ2
n(l) = 2φ2

n(k(n)) pr·k(n) [An(r)Bn(r)Cn(r)Dn(r)]
2,

2443

SUN AND NOBEL

where

An(r) =

(

n− r− k(n)

n− k(n)

)−n+r+k(n)+ 1
2

, Bn(r) =

(

r + k(n)

k(n)

)−k(n)− 1
2

,

Cn(r) =

(

n− k(n)

r + k(n)
p

k(n)
2

)r

, Dn(r) = p
r2
2 .

Note that pr·k(n) = o(n−2r(logb n)2r+ε) for any fixed ε > 0, and that φ2
n(k(n)) ≤ 1 by the mono-

tonicity of φn(·) and the definition of k(n). Thus it suffices to show that An(r) ·Bn(r) ·Cn(r) ·Dn(r) =
O(1) when n is sufficiently large. To begin, note that for any fixed δ∈ (0,1/2), when n is sufficiently
large,

Cn(r)
1
r =

n− k(n)

r + k(n)
p

k(n)
2 ≤ n

k(n)
p

k(n)
2 ≤ n

(2−δ) logb n

2+δ
2 logb n

n
,

which is less than one. Note that Bn(r) ≤ 1. It only remains to show An(r) ·Dn(r) = O(1). Simple
calculations yield that lnAn(r) ≤ r. Consequently, ln(An(r) ·Dn(r)) ≤ r− r2 lnb

2 , which is bounded
from above.

8. Proof of Theorem 1

The proof of Theorem 1 is established via a sequence of technical lemmas. Modifying our ear-
lier notation slightly, let Uk(n) denote the number of k× k submatrices of 1s in Zn. In what follows
ε is a fixed positive number less than 1

2 . Our argument parallels that outlined in Bollobás (2001).
We begin with the following definition.

Definition: For each k ≥ 1, let n′k be the least integer n such that

EUk(n) ≥ k3+ε,

and let nk be the largest integer n such that

EUk(n) ≤ k−3−ε.

Note that nk and n′k exist for sufficiently large k ≥ 1, as EUk(k) = pk2 ≤ k−3−ε, EUk(n) is monotone
increasing in n, and EUk(n) → ∞ as n → ∞.

Lemma 3. Let nk and n′k be defined as above.

a. When k is sufficiently large, n′k < nk+1.

b. When k is sufficiently large, n′k −nk < C1
nk lnk

k for some constant C1 > 2.

c. limk→∞
nk+2−nk+1
nk+1−nk

= b
1
2 .

Proof of (a): It follows from the definition of nk that
(

nk

k

)

p
k2
2 ≤ k−

(3+ε)
2 and

(

nk +1
k

)

p
k2
2 ≥ k−

(3+ε)
2 . (5)

2444

ON SUBMATRICES OF 1S IN A RANDOM BINARY MATRIX

Rearranging terms in the first inequality, and noting that (nk − k)!/nk! ≤ (nk − k)−k we obtain, in
turn, the inequalities

k
(3+ε)

2

k! b
k2
2

≤ 1
(nk − k)k and nk ≤ b

k
2

[

k!

k
(3+ε)

2

] 1
k

+ k.

Rearranging the terms in the second inequality of (5), one may establish by a similar argument the
inequalities

k
(3+ε)

2 ≥ b
k2
2

k!
(n+1)k and nk ≥ b

k
2

(

k!

k
3+ε

2

) 1
k

−1.

Combining the two bounds on nk above, yields

b
k
2

(

k!k−
3+ε

2

) 1
k −1 ≤ nk ≤ b

k
2

(

k!k−
(3+ε)

2

)
1
k
+ k (6)

and the asymptotic relation
nk = b

k
2 (k!)

1
k +o(k b

k
2). (7)

From the definition of n′k, one can establish in a similar fashion the inequalities

b
k
2

(

k! k
3+ε

2

) 1
k ≤ n′k ≤ b

k
2

(

k! k
(3+ε)

2

)
1
k
+ k +1. (8)

and the asymptotic relation
n′k = b

k
2 (k!)

1
k +o(k b

k
2). (9)

The asymptotic expressions for nk and n′k ensure that n′k < nk+1 when k is sufficiently large.

Proof of (b): It follows from inequalities (6) and (8) that, when k is sufficiently large,

n′k −nk ≤ b
k
2

(

k! k
(3+ε)

2

)
1
k
+ k +1−

[

b
k
2

(

k!k−
3+ε

2

) 1
k −1

]

≤ b
k
2

(

k!k−
3+ε

2

) 1
k
(k

3+ε
k −1)+ k +2

≤ (nk +1)(k
3+ε

k −1)+ k +2

< nk C1
logk

k
.

for some constant C1 > 2. The third inequality above is a consequence of (6), while the last inequal-
ity follows from the fact that x−1 < 2lnx for x close to 1.

Proof of (c): It follows from Equations (7) and (9) that

nk+1

nk
= b

1
2 +o(1) and

nk+2

nk+1
= b

1
2 +o(1).

Therefore, as k tends to infinity,

nk+2 −nk+1

nk+1 −nk
=

nk+2
nk+1

−1

1− nk
nk+1

→ b
1
2 .

2445

SUN AND NOBEL

This completes the proof of Lemma 3.
We now continue the analysis of Uk(n). The second moment argument used below requires

bounds on the ratio
g(Uk(n)) := Var(Uk(n))/(EUk(n))2

which arises in a standard Chebyshev bound on the tails of Uk(n). Letting

S = {C = A×B : A,B ⊆ [n], |A| = |B| = k}

be the family of index sets of k× k submatrices, we see that

Uk(n)2 = ∑
C,C′∈S

I{each entry of Zn[C] and Zn[C′] is 1}.

From the last display one may readily derive that

EUk(n)2 =
k

∑
l=1

(

n
k

)(

k
l

)(

n− k
k− l

) k

∑
r=1

(

n
k

)(

k
r

)(

n− k
k− r

)

· p2k2−lr,

where the indices k and l indicate the number of rows and columns, respectively, that the submatrices
C and C′ have in common. As EUk(n) =

(n
k

)2
pk2

, we find that

g(Uk) =
k

∑
l=0

k

∑
r=0

(k
l

)(n−k
k−l

)

(n
k

)

(k
r

)(n−k
k−r

)

(n
k

) blr −1,

where b = p−1. Recall that 0 < ε < 1
2 is fixed.

Lemma 4. There exists a constant C0 > 0 such that g(Uk(n)) ≤C0k−1−ε for every sufficiently large
k and every n′k ≤ n ≤ nk+1.

Proof of Lemma 4: To begin, note that

g(Uk(n)) =
k

∑
l=0

k

∑
r=0

(k
l

)(n−k
k−l

)

(n
k

)

(k
r

)(n−k
k−r

)

(n
k

) (blr −1)

=
k

∑
l=1

k

∑
r=1

(k
l

)(n−k
k−l

)

(n
k

)

(k
r

)(n−k
k−r

)

(n
k

) (blr −1)

<
k

∑
l=1

k

∑
r=1

(k
l

)(n−k
k−l

)

(n
k

)

(k
r

)(n−k
k−r

)

(n
k

) blr ≤
(

k

∑
r=1

(k
r

)(n−k
k−r

)

(n
k

) (br2/2)

)2

,

where the last inequality follows from the fact that blr ≤ b
l2+r2

2 . Thus it suffices to show that

k

∑
r=1

h(r) = O(k−1/2−ε/2) where h(r) :=

(k
r

)(n−k
k−r

)

(n
k

) br2/2. (10)

If n ≥ n′k, then by inequality (8), n ≥ b
k
2

(

k! k
3+ε

2

) 1
k
, which implies that k ≤ 2logb n. Similarly,

inequality (6) implies that if n ≤ nk+1 then k ≥ (2−η) logb n for some fixed 0 < η < 1/2. Finally,

2446

ON SUBMATRICES OF 1S IN A RANDOM BINARY MATRIX

it follows from the assumption that n ≥ n′k and the definition of n′k that
(n

k

)

p
k2
2 =

√

EUk(n) ≥
√

EUk(n′k) ≥ k3/2+ε/2. Using these inequalities, one can upper bound h(1), h(k− 1) and h(k) as
follows:

h(1) =

(k
1

)(n−k
k−1

)

(n
k

) b1/2 =
b1/2k2(n− k)!(n− k)!

(n−2k +1)!n!
<

b1/2k2

n− k
= O(k2b−k/2),

h(k−1) =
k(n− k)
(n

k

) b
k2
2 −k+ 1

2 ≤ knb
1
2−k

√

EUk(n)
= O

(

k−1/2−ε/2 b−k(1−η)/(2−η)
)

,

h(k) =
b

k2
2
(n

k

) =
1

√

EUk(n)
≤ k−3/2−ε/2,

In order to establish inequality (10), it therefore suffices to verify that when k is sufficiently
large,

h(r) ≤ h(1)+h(k−1) (11)

for any 1 < r < k−1. To this end, note that

h(r +1)

h(r)
=

(k− r)2br+ 1
2

(r +1)(n−2k + r +1)
.

When r ≤ 1
3 k, the inequality k ≤ 2logb n implies that

h(r +1)

h(r)
≤ bk2b

k
3

n−2k + r +1
≤ bk2n

2
3

n−2k + r +1
< 1.

When 2
3 k ≤ r < k−1 the inequality k ≥ (2−η) logb n with 0 < η < 1/2 implies that

h(r +1)

h(r)
≥ b

2k
3

k(n+ r +1)
≥ n

2(2−η)
3

k(n+ r +1)
> 1.

In order to show inequality (11), it now suffices to show that h(r) is log-convex for all integer
r ∈ [d k

3e−1,d 2k
3 e]. Since for r ∈ [d k

3e−1,d 2k
3 e],

lnh(r) = lnh(d k
3
e−1)+

r−d k
3 e

∑
i=0

ln
h(d k

3e+ i)

h(d k
3e+ i−1)

,

it is equivalent to show that h(r+1)
h(r) is monotone increasing. To verify this, note that the derivative

∂[h(r +1)/h(r)]/∂r is equal to

b
2r+1

2 (k− r)
(r +1)(n−2k + r +1)

[−2(r +1)(n−2k + r +1)− (k− r)(2r +n−2k +2)

(r +1)(n−2k +1)
+(k− r) lnb

]

.

When k is sufficiently large and n � k > r, the sum of the leading terms on the last expression above
is

−2n(r +1)− (k− r)n+(k− r)(r +1)n lnb = n(−r2 lnb+ kr lnb− k− r +(k− r) lnb−2).

By plugging in r = k
3 and r = 2k

3 , it is not hard to check that this quadratic form in r is positive for
any r ∈ [d k

3e−1,d 2k
3 e] when k is sufficiently large, and the desired monotonicity follows.

2447

SUN AND NOBEL

Lemma 5. With probability one, when k is sufficiently large, M(Zn) = k whenever n′k ≤ n ≤ nk+1.

Proof of Lemma 5: By the definition of nk+1 and Markov’s inequality, when n ≤ nk+1,

P(M(Zn) > k) ≤ E(Uk+1(n)) ≤ E(Uk+1(nk+1)) ≤ (k +1)−3−ε.

Moreover, Chebyshev’s inequality and Lemma 4 together imply that for n′
k ≤ n ≤ nk+1,

P(M(Zn) < k) = P(Uk(n) = 0) ≤ Var(Uk(n))

(EUk(n))2 ≤ C0 · k−1−ε.

As M(Zn) is monotone increasing with n, the previous bounds yield

∑
k≥1

P

nk+1
[

n=n′k

{M(Zn) 6= k}

 ≤ ∑
k≥1

P
(

M(Zn′k
) < k

)

+ ∑
k≥1

P
(

M(Znk+1) ≥ k
)

≤ ∑
k≥1

(

C0 · k−1−ε +
1

k3+ε

)

< ∞.

and the result follows from the Borel-Cantelli lemma.

Proof of Theorem 1: From Lemma 5 we may deduce that with probability one M(Zn) is eventually
equal to one of two possible consecutive integers, whose values depend only on n. It follows from
their definition that nk < n′k, and by Lemma 3 both integers tend to infinity as k tends to infinity.
Therefore for every k greater than or equal to some k0 we have

... < nk < n′k < nk+1 < n′k+1 <

Thus for all n ≥ nk0 there exists a unique integer k (depending on n) such that n′
k ≤ n ≤ nk+1 or

nk < n < n′k. In the former case, Lemma 5 implies that M(Zn) = k when n is sufficiently large. In
the latter case, Lemma 5 and the monotonicity of M(Zn) in n imply that

k−1 = M(Znk) ≤ M(Zn) ≤ M(Zn′k
) = k,

when n is sufficiently large, so that M(Zn) can take one of at most two possible values, k−1 and k.
It remains to connect M(Zn) and s(n). To begin, let n be such that n′

k ≤ n≤ nk+1 for some k ≥ k0.
Then by definition of nk+1 and s(n),

(1+o(1))φn(k +1) = (EUk+1(n))1/2 ≤ (EUk+1(nk+1))
1/2 ≤ k−3/2−ε/2 < 1 = φn(s(n)).

As φn(k) is monotone decreasing in k, we conclude that s(n) < k + 1 when n is sufficiently large.
Similarly,

(1+o(1))φn(k) = (E Uk(n))1/2 ≥ (E Uk(n
′
k))

1/2 ≥ k3/2+ε/2 > 1 = φn(s(n)),

which implies s(n) > k. Thus, with probability one, when n is sufficiently large

n′k ≤ n ≤ nk+1 implies k < s(n) < k +1 and M(Zn) = k. (12)

2448

ON SUBMATRICES OF 1S IN A RANDOM BINARY MATRIX

Suppose now that nk ≤ n ≤ n′k. Then s(nk) ≤ s(n) ≤ s(n′k) and the arguments above show that
s(nk) < k and s(n′k) > k. We establish that s(n′k)− s(nk) = o(1). To this end, note that

0 < s(n′k)− s(nk) = 2logb
n′k
nk

−2logb
logb n′k
logb nk

+o(1) ≤ 2logb
n′k
nk

+o(1)

as logb n′k
logb nk

> 1. It therefore suffices to show that logb
n′k
nk

= o(1), but this follows from part (b) of
Lemma 3. Putting the bounds above together with Lemma 5, we find that with probability one,
when n is sufficiently large

nk ≤ n ≤ n′k implies k− ε < s(n) < k + ε and M(Zn) ∈ {k−1,k}. (13)

Combining relations (12) and (13) yields the desired bound on M(Zn).

9. Proof of Theorem 4

The following lemmas are used in the proof of Theorem 4. Lemma 6 shows that |Ĉ| is greater
than or equal to |C∗| with high probability, and Lemma 9 shows that Ĉ can only contain a small
proportion of entries outside C∗. Lemma 7 and Lemma 8 are used in the proof of Lemma 9.

Lemma 6. Under the conditions of Theorem 4, P
(

|Ĉ| < l2
)

≤ ∆1(l).

Proof of Lemma 6: Let u1∗, ...,ul∗ be the rows of C∗ in Y , and let V be the number of rows satisfying
F(ui∗) < τ = 1− p0. By the union bound and a standard bound (Devroye et al., 1996) on the tail of

the binomial distribution, P(V ≥ 1) ≤ l · e−
3l(p−p0)2

8p . The same inequality holds for the number V ′ of
columns u∗ j of C∗ such that F(u∗i) < 1− p0. Since {|Ĉ| < l2 = |C∗|} ⊂ {C∗ /∈ AFIτ(Y)} ⊂ {V ≥
1}∪{V ′ ≥ 1}, we have

P{|Ĉ| < l2} ≤ P(V ≥ 1)+P(V ′ ≥ 1)

≤ 2le−
3

8p l(p−p0)
2

= ∆1(l).

Lemma 7. Given 0 < τ0 < 1, if there exists a k× r binary matrix V such that F(V) ≥ τ0, then there
exists a v× v submatrix U of V such that F(U) ≥ τ0, where v = min{k, r}.

Proof of Lemma 7: Without loss of generality, assume v = k ≤ r. Order the columns of V in
descending order of the number of 1s they contain. If U contains the first v columns in this order,
then F(U) ≥ τ0.

Lemma 8. Let 1 < γ < 2. Let W be a binary matrix, and let R1 and R2 be two square submatrices
of W such that (i) |R2| = k2, (ii) |R1\R2| > kγ and (iii) R1 ∈ AFIτ(W). Then when k is sufficiently
large there exists a square submatrix D ⊂ R1\R2 such that |D| ≥ k2γ−2/16 and F(D) ≥ τ.

Proof of Lemma 8: The result is clearly true if R1 ∩R2 = /0, so we assume that R1 and R2 overlap
after suitable row and column permutations, R1\R2 can be expressed either as a single maximal
rectangular submatrix W1, or as the union of two overlapping maximal rectangular W1 ∪W2. (A
submatrix W of R1\R2 is maximal if there is no other submatrix of R1\R2 that contains it.)

2449

SUN AND NOBEL

Case 1: R1 and R2 overlap on an edge. Suppose that the difference R1\R2 can be expressed as
a single rectangular submatrix W1. Let l1 and l2 be the side lengths of W1. In this case, the side
length of the square submatrix R1 must be less than k, and consequently max(l1, l2) ≤ k. Since
|R1\R2| ≥ kγ, it follows that min(l1, l2) ≥ kγ−1. As R1 ∈ AFIτ(W) we have F(W1) ≥ τ. By Lemma
7, there exists a v× v submatrix D of W1 such that F(D) ≥ τ and v ≥ min(l1, l2) ≥ kγ−1.

Case 2: R1 and R2 overlap on a corner. Suppose R1\R2 is the union W1 ∪W2 of two maximal
rectangular submatrices. Then clearly max(|W1|, |W2|) ≥ |R1\R2|

2 . Without loss of generality, we
assume that |W1| ≥ |W2|. As R1 ∈ AFIτ(W), F(W1)≥ τ, and it suffices by Lemma 7 to show that the
length of the shorter side of W1 is greater than kγ−1/4.

Let l1 ≤ l2 be the side lengths of W1 and suppose for the moment that l1 < kγ−1/4. Then

l2 > |R1\R2|
2kγ−1/4 and |R1| = l2

2 ≥ |R1\R2|2
k2γ−2/4 , and it follows that

|R1\R2| ≥ |R1|− |R2| >
|R1\R2|2
k2γ−2/4

− k2.

Dividing both sides of the previous inequality by |R1\R2| and using the assumption |R1\R2| ≥ kγ

yields

1 >
|R1\R2|
k2γ−2/4

− k2

|R1\R2|
≥ 4k(2−γ)− k(2−γ) = 3k(2−γ).

When k is sufficiently large, this yields a contradiction and completes the proof.

Lemma 9. Let A be the collection of C ∈ Ĉ such that |C| ≥ l2 and |C∩C∗c|
|C| ≥ α, where α ∈ (0,1)

satisfies l ≥ 8α−1(logb n+2). Let A be the event that A 6= /0. If n is sufficiently large,

P(A) ≤ ∆2(α, l).

Proof of Lemma 9: Recall that |C∗| = l2. If C ∈ A then C ∈ AFI1−p0(Y) and

|C\C∗| = |C| · |C∩C∗c|
|C| ≥ l2 · α = lγ

where γ = 2 + logl α. Thus, by Lemma 8 there exists a v× v submatrix D of C\C∗ such that
F(D) ≥ 1− p0 and v ≥ αl

4 . It follows that

max
c∈Ĉ

Mτ(C∩C∗c) ≥ v ≥ αl
4

,

where τ = 1− p0 and Mτ(X) is size of the largest square submatrix with average greater than τ in a
given matrix X .

Let W = W (Y,C∗) be an n× n binary random matrix, with wi j = yi j if (i, j) /∈ C∗, and wi j ∼
Bern(p) otherwise. Then it is clear that

Mτ(W) ≥ max
c∈Ĉ

Mτ(C∩C∗c) ≥ αl
4

.

2450

ON SUBMATRICES OF 1S IN A RANDOM BINARY MATRIX

When n is sufficiently large and l ≥ 8α−1(logb n+2), we can bound P(A) as follows

P(A) ≤ P(max
c∈Ĉ

Mτ(C∩C∗c) ≥ αl
4

)

≤ P(Mτ(W) ≥ αl
4

) ≤ 2n−(αl/4−2logb′ n), (14)

where b′ = e
3(1−p0−p)2

8p . Note that the last inequality follows from a first moment argument similar
to that in the proof of Proposition 1 and a standard inequality for the tails of the binomial distribu-
tion(cf., Problem 8.3 of Devroye et al. 1996). As p0 > p, b < b′, and consequently one can bound
the right hand side of inequality (14) by ∆2(α, l). For detailed proof of inequality (14), please refer
to Proposition 3.3.1 in Sun (2007).

Proof of Theorem 4: Let E be the event that {Λ ≤ 1−α
1+α}. It is clear that E can be expressed as the

union of two disjoint events E1 and E2, where

E1 = {|Ĉ| < |C∗|}∩E and E2 = {|Ĉ| ≥ |C∗|}∩E.

One can bound P(E1) by ∆1(l) via Lemma 6.
It remains to bound P(E2). By the definition of Λ, the inequality Λ ≤ 1−α

1+α can be rewritten
equivalently as

1+
|Ĉ∩C∗c|
|Ĉ∩C∗|

+
|Ĉc ∩C∗|
|Ĉ∩C∗|

≥ 1+α
1−α

.

When |Ĉ| ≥ |C∗|, one can verify that |Ĉ∩C∗c| ≥ |Ĉc ∩C∗|, which implies that

1+
|Ĉ∩C∗c|
|Ĉ∩C∗|

+
|Ĉc ∩C∗|
|Ĉ∩C∗|

≤ 1+2
|Ĉ∩C∗c|
|Ĉ∩C∗|

.

Therefore, E2 ⊂ E∗
2 , where

E∗
2 = {|Ĉ| ≥ |C∗|}∩

{

1+2
|Ĉ∩C∗c|
|Ĉ∩C∗|

≥ 1+α
1−α

}

⊂ {|Ĉ| ≥ l2}∩
{

1+2
|Ĉ∩C∗c|
|Ĉ∩C∗|

≥ 1+α
1−α

}

.

Notice that 1+2 |Ĉ∩C∗c|
|Ĉ∩C∗| ≥

1+α
1−α implies |Ĉ∩C∗c|

|Ĉ| ≥ α. Therefore, by Lemma 9, P(E∗
2) ≤ ∆2(α, l).

Acknowledgments

The authors would like to thank Professors Gábor Lugosi and Robin Pemantle for helpful discus-
sions regarding early versions of this work, and two referees and the editor for helpful comments
and suggestions. Comments from one anonymous referee led to a simpler proof, and improved
statement, of Theorem 1. The work presented in this paper was supported in part by NSF grant
DMS 0406361.

2451

SUN AND NOBEL

References

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large
databases. In Proceedings of the ACM SIGMOD International Conference on Management of
data, pages 207-216, 1993.

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo. Fast discovery of association
rules. In U. M. Fayyad et. al, editors, Advances in Knowledge Discovery and Data Mining, AAAI
Press, Chapter 12, 307-328, 1996.

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications. In Proceedings of the ACM SIGMOD international
conference on Management of data, pages 94-105, 1998.

N. Alon and J. Spencer. The Probabilistic Method. John Wiley. New York, 1991.

B. Bollobás and P. Erdős. Cliques in random graphs. In Mathematical Proceedings of the Cambridge
Philosophy Society, 80:419-427, 1976.

B. Bollobás. Random Graphs. 2nd ed., Cambridge University Press, 2001.

Y. Cheng and G. M. Church. Biclustering of expression data. In Proceedings of the 8th International
Conference on Intelligent Systems for Molecular Biology, pages 93-103, 2000.

M. Dawande, P. Keskinocak, J. Swaminathan, and S. Tayur. On bipartite and multipartite clique
problems. Journal of Algorithms, 41:388-403, 2001.

L. Devroye, L. Gyorfi, and G, Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, New
York, 1996.

M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-
completeness. Freeman, San Francisco, 1979.

B. Goethals. Survey on Frequent Pattern Mining. www.adrem.ua.ac.be/˜goethals/software/
survey.pdf.2003.

J. Han, J. Pei and Y. Yin. Mining frequent patterns without candidate generation. In Proceedings of
ACM SIGMOD International Conference on Management of Data, pages 1-12, 2000.

D. J. Hand, H. Mannila and P. Smyth. Principles of Data Mining. MIT Press, 2001.

D. S. Hochbaum. Approximating clique and biclique problems. Journal of Algorithms, 29(1):174-
200, 1998.

M. Koyutürk, W. Szpankowski and A. Grama. Biclustering gene-feature matrices for statistically
significant dense patterns. In Proceedings of the 8th Annual International Conference on Re-
search in Computational Molecular Biology, pages 480-484, 2004.

J. Liu, S. Paulsen, W. Wang, A. B. Nobel, and J. Prins. Mining approximate frequent itemsets from
noisy data. In Proceedings of the IEEE International Conference on Data Mining, pages 721-724,
2005.

2452

ON SUBMATRICES OF 1S IN A RANDOM BINARY MATRIX

J. Liu, S. Paulsen, X. Sun, W. Wang, A.B. Nobel, and J. Prins. Mining approximate frequent item-
sets in the presence of noise: algorithm and analysis. In Proceedings of the SIAM International
Conference on Data Mining, pages 405-416, 2006.

S. Madeira and A. Oliveira. Biclustering algorithms for biological data analysis: A survey. IEEE
Transactions on Computational Biology and Bioinformatics, 1(1):24-45, 2004.

D. Matula. The largest clique size in a random graph. CS 7608, Technical Report, Southern
Methodist University, 1976.

N. Mishra, D. Ron, and R. Swaminathan. A new conceptual clustering framework. Machine Learn-
ing. 56(1-3):115-151, 2004.

G. Park and W. Szpankowski. Analysis of biclusters with applications to gene expression data. In
Proceedings of Conference on Analysis of Algorithms, CS 7608, pages 267-274, 2005.

R. Peeters. The maximum edge biclique problem is NP-complete. Discrete Applied Mathematics,
131(3):651-654, 2003.

J. Pei, A. K. Tung, and J. Han. Fault-tolerant frequent pattern mining: Problems and challenges. In
Proceedings of the ACM SIGMOD International Workshop on Research Issues on Data Mining
and Knowledge Disco, 2001.

J. Pei, G. Dong, W. Zou, and J. Han. Mining condensed frequent-pattern bases. Knowledge and
Information Systems, 6(5):570-594, 2002.

J. D. Reuning-Scherer. Mixture Models for Block Clustering. Ph.D. Thesis, Yale university, 1997.

J. K. Seppänen, and H. Mannila. Dense itemsets. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 683-688, 2004.

X. Sun. Significance and Recovery of Block Structures in Binary and Real-valued Matrices with
Noise. Ph.D. Thesis, UNC Chapel Hill, 2007.

A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters in gene expres-
sion data. Bioinformatics, 18:136-144, 2002

A. Tanay, R. Sharan and R. Shamir. Biclustering algorithms: A survey. Handbook of Computational
Molecular Biology, Chapman & Hall/CRC, Computer and Information Science Series, 2005.

C. Yang, U. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant frequent itemsets in
high dimensions. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 194-203, 2001.

2453

Journal of Machine Learning Research 9 (2008) 2455-2487 Submitted 9/07; Revised 5/08; Published 11/08

Minimal Nonlinear Distortion Principle for Nonlinear Independent
Component Analysis

Kun Zhang KZHANG@CSE.CUHK.EDU.HK

Laiwan Chan LWCHAN@CSE.CUHK.EDU.HK

Department of Computer Science and Engineering
The Chinese University of Hongkong
Hong Kong

Editor: Aapo Hyvärinen

Abstract
It is well known that solutions to the nonlinear independent component analysis (ICA) problem are
highly non-unique. In this paper we propose the “minimal nonlinear distortion” (MND) principle
for tackling the ill-posedness of nonlinear ICA problems. MND prefers the nonlinear ICA solution
with the estimated mixing procedure as close as possible to linear, among all possible solutions.
It also helps to avoid local optima in the solutions. To achieve MND, we exploit a regularization
term to minimize the mean square error between the nonlinear mixing mapping and the best-fitting
linear one. The effect of MND on the inherent trivial and non-trivial indeterminacies in nonlinear
ICA solutions is investigated. Moreover, we show that local MND is closely related to the smooth-
ness regularizer penalizing large curvature, which provides another useful regularization condition
for nonlinear ICA. Experiments on synthetic data show the usefulness of the MND principle for
separating various nonlinear mixtures. Finally, as an application, we use nonlinear ICA with MND
to separate daily returns of a set of stocks in Hong Kong, and the linear causal relations among
them are successfully discovered. The resulting causal relations give some interesting insights into
the stock market. Such a result can not be achieved by linear ICA. Simulation studies also verify
that when doing causality discovery, sometimes one should not ignore the nonlinear distortion in
the data generation procedure, even if it is weak.

Keywords: nonlinear ICA, regularization, minimal nonlinear distortion, mean square error, best
linear reconstruction

1. Introduction

Independent component analysis (ICA) is a popular statistical technique aiming to recover indepen-
dent sources from their observed mixtures, without knowing the mixing procedure or any specific
knowledge of the sources (Hyvärinen et al., 2001; Cardoso, 1998; Cichocki and Amari, 2003). In
the case that the observed mixtures are a linear transformation of the sources, under weak assump-
tions, ICA can recover the original sources with the trivial permutation and scaling indeterminacies.
Linear ICA is currently a popular method for blind source separation (BSS) of linear mixtures.

However, nonlinear ICA does not necessarily lead to nonlinear BSS. In Hyvärinen and Pa-
junen (1999), it was shown that solutions to nonlinear ICA always exist and that they are highly
non-unique. Actually, one can easily construct a nonlinear transformation of some non-Gaussian
independent variables to produce independent outputs. Below are a few examples. Let y1, ...,yn be
some independent variables. Their component-wise nonlinear functions are still mutually indepen-

c©2008 Kun Zhang and Laiwan Chan.

ZHANG AND CHAN

dent. If we use Gaussianization (Chen and Gopinath, 2001) to transform yi into Gaussian variables
ui, any component-wise nonlinear function of U ·u, where u = (u1, ...,un)

T and U is an orthogonal
matrix, still has mutually independent components. Taleb and Jutten (1999) also gave an example in
which nonlinear mixtures of independent variables are still independent. One can see that nonlinear
BSS is impossible without additional prior knowledge on the mixing model, since the independence
assumption is not strong enough in the general nonlinear mixing case (Jutten and Taleb, 2000; Taleb,
2002).

If we constrain the nonlinear mixing mapping to have some specific forms, the indeterminacies
in the results of nonlinear ICA can be reduced dramatically, and as a consequence, nonlinear ICA
may lead to nonlinear BSS. For example, in Burel (1992), a parametric form of the mixing trans-
formation is assumed known and one just needs to adjust the unknown parameters. The learning
algorithms were improved in Yang et al. (1998). By exploiting the extensions of the Darmois-
Skitovich theorem (Kagan et al., 1973) to nonlinear functions, a particular class of nonlinear mixing
mappings, which satisfy an addition theorem in the sense of the theory of functional equations,
were considered in Eriksson and Koivunen (2002). In particular, the post-nonlinear (PNL) mixing
model (Taleb and Jutten, 1999), which assumes that the mixing mapping is a linear transformation
followed by a component-wise nonlinear one, has drawn much attention.

In practice, the exact form of the nonlinear mixing procedure is probably unknown. Conse-
quently, in order to model arbitrary nonlinear mappings, one may need to resort to a flexible non-
linear function approximator, such as the multi-layer perceptron (MLP) or the radial basis function
(RBF) network, to represent the nonlinear separation system. Almeida (2003) uses the MLP to
model the separation system and trains the MLP by information-maximization (Infomax). More-
over, the smoothness constraint,1 which is implicitly provided by MLP’s with small initial weights
and with a relatively small number of hidden units, was believed to be a suitable regularization
condition to achieve nonlinear BSS. In Tan et al. (2001), a RBF network is adopted to represent
the separation system, and partial moments of the outputs of the separation system are used for
regularization. The matching between the relevant moments of the outputs and those of the original
sources was expected to guarantee a unique solution. But the moments of the original sources may
be unknown. In addition, if the transformation from the original sources to the recovered sources is
non-trivial,2 this regularization could not help to recover the original sources. Variational Bayesian
nonlinear ICA (Lappalainen and Honkela, 2000; Valpola, 2000) uses the MLP to model the non-
linear mixing transformation. By resorting to the variational Bayesian inference technique, this
method can do model selection and avoid overfitting. If we can have some additional knowledge
about the nonlinear mixing transformation and incorporate it efficiently, the results of nonlinear ICA
will be much more meaningful and reliable.

Although we may not know the form of the nonlinearity in the data generation procedure, for-
tunately, in many cases the nonlinearity for generating natural signals we deal with is not strong.
Hence, provided that the nonlinear ICA outputs are mutually independent, we would prefer the so-
lution with the estimated data generation procedure of minimal nonlinear distortion (MND). This

1. Following Tikhonov and Arsenin (1977), here we use the term “smoothness” in a very general sense. Often it means
that that the function does not change abruptly and/or that it does not oscillate too much.

2. For the definition of a trivial transformation, one may see Jutten and Taleb (2000). A one-to-one mapping H is
trivial if and only if it satisfies Hi(y1,y2, ...,yn) = hi(yσ(i)), i = 1,2, ...,n, where hi are arbitrary functions and σ is any
permutation over {1, .2, ...,n}. That is, a trivial mapping of y is a permutation of yi followed by a component-wise
transformation.

2456

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

information can help to reduce the indeterminacies in nonlinear ICA greatly, and moreover, to avoid
local optima in the solutions to nonlinear ICA. The minimal nonlinear distortion of the mixing sys-
tem is achieved by the technique of regularization. The objective function of nonlinear ICA with
MND is the mutual information between outputs penalized by some terms measuring the level of
“closeness to linear” of the mixing system. The mean square error (MSE) between the nonlinear
mixing system and its best-fitting linear one provides such a regularization term. To ensure that
nonlinear ICA results in nonlinear BSS, one may also need to enforce the local MND of the non-
linear mapping averaged at every point, which turns out to be the smoothness regularizer exploiting
second-order partial derivatives.

MND, as well as the smoothness regularizer, can be incorporated in various nonlinear ICA
methods to improve the results. Here we consider two nonlinear ICA methods. The first one is the
MISEP method (Almeida, 2003), where the MLP is used to represent the separation system. As
regularization is powerful for complexity control in neural networks (Bishop, 1995), the structure
of the MLP is not optimized during the learning process, that is, it is fixed. The second one is non-
linear ICA based on kernels (Zhang and Chan, 2007a), in which the nonlinear separation system is
modeled using some kernel methods. We then explain why MND helps to alleviate the ill-posedness
in nonlinear ICA solutions, by investigating the effect of MND on trivial and non-trivial indetermi-
nacies in nonlinear ICA solutions systematically. Next, we conduct experiments using synthetic
data to compare the performance of several nonlinear ICA methods. The results confirm the effec-
tiveness of the proposed MND principle to avoid unwanted solutions and to improve the separation
performance. Finally, nonlinear ICA with MND is used to discover linear causal relations in the
Hong Kong stock market and give encouraging results. We also give experimental results on syn-
thetic data, which illustrate that when performing ICA-based causality discovery on the data whose
generation procedure involves nonlinear distortion, one should take into account the nonlinear effect
in the ICA separation system, even if it is mild.3

2. Nonlinear ICA with Minimal Nonlinear Distortion

In this section we first briefly review the general nonlinear ICA problem, and then propose the
minimal nonlinear distortion (MND) principle for regularization of nonlinear ICA.

2.1 Nonlinear ICA

In the nonlinear ICA model, the observed data x = (x1, ...,xn)
T are assumed to be generated from a

vector of independent variables s = (s1, ...,sn)
T by a nonlinear transformation:

x = F (s), (1)

where F is an unknown real-valued n-component mixing function. Here for simplicity, we have
assumed that the number of observed variables equals that of the original independent variables.
The general nonlinear ICA problem is to find a mapping G : R

n → R
n such that

y = G(x)

has statistically independent components. As mentioned in Section 1, the results of nonlinear ICA
are highly non-unique. In order to achieve nonlinear BSS, which aims at recovering the original
sources si, we should resort to additional prior information or suitable regularization constraints.

3. Some preliminary results of this paper were presented at ICML2007 (Zhang and Chan, 2007b).

2457

ZHANG AND CHAN

2.2 With Minimum Nonlinear Distortion

We now propose the MND principle to restrict the space of nonlinear ICA solutions. As a conse-
quence, the ill-posedness of the nonlinear ICA problem is alleviated. Under the condition that the
separation outputs yi are mutually independent, this principle prefers the solution with the estimated
mixing transformation F̂ as close as possible to linear.

Now we need a measure of “closeness to linear” of a mapping. Given a nonlinear mapping F̂ ,
its deviation from the affine mapping A∗, which fits F̂ best among all affine mappings A, is an
indicator of its “closeness to linear”, or the level of its nonlinear distortion. The deviation can be
measured in various ways. The MSE is adopted here, as it greatly facilitates subsequent analysis.
Consequently, the “closeness to linear” of F̂ = G−1 can be measured by the MSE between G−1

and A∗. We denote this measure by RMSE(θ), where θ denotes the set of unknown parameters in the
nonlinear ICA system. Let x∗ = (x∗1, · · · ,x∗n)T be the output of the affine transformation from y by
A∗. Let ỹ = [y;1]. RMSE(θ) can then be written as the MSE between xi and x∗i :

RMSE(θ) = E{(x−x∗)T (x−x∗)} , where (2)

x∗ = A∗ỹ, and A∗ = argA minE{(x−Ay)T (x−Ay)}.

Here A∗ is a n× (n+1) matrix.4 Figure 1 shows the separation system G together with the genera-
tion process of RMSE .

 (θ)
x1

xn

y1

yn

.

.

.

.

.

.

.

.

.

.

.

.
A*

x1*

xn*

v1 vn

Figure 1: The separation system G (solid line) and the generation of the regularization term RMSE

(dashed line). RMSE = ∑n
i=1 v2

i , where vi = xi − x∗i .

With RMSE measuring the level of nonlinear distortion, nonlinear ICA with MND can be formu-
lated as the following constrained optimization problem. It aims to minimize the mutual information
between outputs, that is, I(y), subject to RMSE(θ) ≤ t, where t is a pre-assigned parameter. The La-
grangian for this optimization problem is L(θ,λ) = I(y)+λ[RMSE(θ)− t] with λ ≥ 0. To find θ, we
need to minimize

J = I(y)+λRMSE(θ). (3)

The non-negative constant λ depends on the pre-assigned parameter t.
Another advantage of the MND principle is that it tends to make the mapping G invertible. In

the general nonlinear ICA problem, it is assumed that both F and G are invertible. But in practice

4. If E(y) = E(x) = 0, x∗ can be obtained as x∗ = A∗y instead, and here A∗ is a n×n matrix.

2458

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

it is not easy to guarantee the invertibility of the mapping provided by a flexible nonlinear function
approximator, like the MLP. MND pushes G to be close to a linear invertible transformation. Hence
when nonlinearity in F is not too strong, MND helps to guarantee the invertibility of the nonlinear
ICA separation system G .

2.2.1 SIMPLIFICATION OF RMSE

RMSE , given in Eq. 2, can be further simplified. According to Eq. 2, the derivative of RMSE w.r.t.
A∗ is ∂RMSE

∂A∗ = −2E{(x−A∗ỹ)ỹT}. Setting the derivative to 0 gives E{(x−A∗ỹ)ỹT} = 0, which
implies

A∗ = E{xỹT}[E{ỹỹT}]−1. (4)

We can see that due to the adoption of the MSE, A∗ can be obtained in closed form. This greatly
simplifies the derivation of learning rules.

Due to Eq. 4, we have E{A∗ỹỹT A∗T} = E{xỹT}A∗T ,and RMSE then becomes

RMSE = Tr
(
E{(x−A∗ỹ)(x−A∗ỹ)T}

)

= Tr
(
E{xxT −A∗ỹxT −xỹT A∗T +A∗ỹỹT A∗T}

)

= Tr
(
E{xxT −A∗ỹxT −xỹT A∗T +xỹT A∗T}

)

= −Tr
(
E{A∗ỹxT}

)
+Tr

(
E{xxT}

)

= −Tr
(
E{xỹT}[E{ỹỹT}]−1E{ỹxT}

)
+ const. (5)

Since yi are independent from each other, they are uncorrelated. We can also easily make yi zero-
mean. Consequently, E{ỹỹT} = diag{E(y2

1),E(y2
2), ...,E(y2

n),1}, and RMSE becomes

RMSE = −Tr
(
E{xỹT} · [diag{E(y2

1), ...,E(y2
n),1}]−1 ·E{ỹxT}

)
+ const

= −
n

∑
j=1

n

∑
i=1

E2(x jyi)

E(y2
i)

+ const. (6)

RMSE depends only on the inputs and the outputs of the nonlinear ICA system G(θ). Given a form
for G , the learning rule for nonlinear ICA with MND is derived by minimizing Eq. 3. Note that
RMSE , given in Eq. 2, is inconsistent with certain scaling properties of the observations x. To avoid
this, one needs to normalize the variance of the observations xi through preprocessing, if necessary.

2.2.2 DETERMINATION OF THE REGULARIZATION PARAMETER λ

We suggest initializing λ with a large value λ0 at the beginning of training and decreasing it to a
small constant λc during the learning process. A large value for λ at the beginning reduces the pos-
sibility of getting into unwanted solutions, which may be non-trivial transformations of the original
sources si or local optima. As training goes on, the influence of the regularization term is relaxed,
and G gains more freedom. Hopefully, nonlinearity will be introduced, if necessary. The choice of
λc depends on the level of nonlinear distortion in the mixing procedure. If the nonlinear distortion
is considerable, we should use a very small value for λc to give the G network enough flexibility. In
our experiments, we found that the separation performance of nonlinear ICA with MND is robust to
the value of λc in a certain range. If the variance of the observations xi is normalized, typical values
used in our experiments are λ0 = 5 and λc = 0.01.

2459

ZHANG AND CHAN

2.3 Relation to Previous Works

The MISEP method has been reported to solve some nonlinear BSS problems successfully, includ-
ing separating a real-life nonlinear image mixture (Almeida, 2005, 2003). Almeida (2003) claimed
that the MLP itself may provide suitable regularization for nonlinear ICA. Some means were also
used for regularization in the experiments there. For example, first, direct connections between in-
puts and output units were incorporated in the G network. Direct connections can quickly adapt
the linear part of the mapping G . Second, in Almeida (2005), the G network was initialized with
an identity mapping, and during the first 100 epochs, it was constrained to be linear (by keeping
the output weights of the hidden layer equal to zero). After that, the G network began learning
the nonlinear distortion. G is therefore expected to be not far from linear, and MND is achieved
to some extent. Accordingly, nice experimental results reported there could support the usefulness
of the MND principle. We should mention that the MND principle formulated here, as well as the
corresponding regularizer, provides a way to control the nonlinearity of the mixing mapping. It
can be incorporated by any nonlinear ICA method, including MISEP. Later, we will investigate the
effect of MND on nonlinear ICA solutions theoretically, and compare various related nonlinear ICA
methods empirically.

In the kernel-based nonlinear BSS method (Harmeling et al., 2003), the data are first mapped
to a high-dimensional kernel feature space. Next, a BSS method based on second order temporal
decorrelation is performed. In this way a large number of components are extracted. When the
nonlinearity in data generation is not too strong, the MND principle provides a way to select a
subset of output components corresponding to the original sources. Assume that the outputs yi are
made zero-mean and of unit variance. From Eq. 6 we can see that one can select yi with large

∑n
j=1

E2(x jyi)

E(y2
i)

= ∑n
j=1 E2(x jyi) = ∑n

j=1 var(x j) · corr2(x j,yi).

It is worth mention that the principle of least mean square error reconstruction has been used for
training a class of neural networks and gives some interesting results (Xu, 1993). For one-layer net-
works with linear/nonlinear units, this principle leads to principal component analysis (PCA)/ICA.
We should address that the reconstruction in their work is quite different from that discussed in
Section 2.2 in this paper. In their work, the forward process and the reconstruction process share
the same weights; in this paper, reconstructed signals are an affine mapping of the outputs, and
parameters in the affine mapping are determined by minimizing the reconstruction error.

Smoothness provides a constraint to prevent a neural network from overfitting noisy data. It
is also useful to ensure nonlinear ICA to result in nonlinear BSS (Almeida, 2003). In fact, the
smoothness regularizer exploiting second-order derivatives (Tikhonov and Arsenin, 1977; Poggio
et al., 1985) is also related to the MND principle, as shown below.

2.4 Local Minimal Nonlinear Distortion: Smoothness

RMSE , given in Eq. 2, indicates the deviation of the mapping F̂ from the affine mapping which fits
F̂ globally best. In contrast, one may enforce the local MND of the nonlinear mapping averaged at
every point. We will show that this regularization actually leads to the smoothness regularizer ex-
ploiting second-order partial derivatives (Tikhonov and Arsenin, 1977; Poggio et al., 1985; Bishop,
1993).

2460

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

For a one-dimensional sufficiently smooth function g(x), we can use the second-order Taylor
expansion to approximate its function value in the vicinity of x in terms of g(x):

g(x+ ε) ≈ g(x)+
(∂g

∂x

)T
· ε+

1
2

εT Hxε,

where ε is a small variation of x and Hx denotes the Hessian matrix of g. Let 5i j = ∂2g
∂xi∂x j

. If we use

the first-order Taylor expansion of g, which is a linear function, to approximate g(x+ ε), the square
error is

∣∣∣
∣∣∣g(x+ ε)−g(x)−

(∂g
∂x

)T
· ε

∣∣∣
∣∣∣
2
≈ 1

4

∣∣∣∣εT Hxε
∣∣∣∣2

=
1
4

(n

∑
i, j=1

5i jεiε j

)2

≤ 1
4

(n

∑
i, j=1

52
i j

)(n

∑
i, j=1

ε2
i ε2

j

)
=

1
4

(n

∑
i, j=1

52
i j

)(n

∑
i=1

ε2
i

)2
=

1
4
||ε||4 ·

n

∑
i, j=1

52
i j.

The above inequality holds due to the Cauchy’s inequality. Now we can see that in order to achieve
the local MND of g averaged in the domain of x, we just need to minimize the following

Z

Dx

n

∑
i, j=1

52
i jdx =

Z

Dx

(n

∑
i=1

52
ii +2

n

∑
i, j=1,

i< j

52
i j

)
dx. (7)

This regularizer has been used for achieving the smoothness constraint (see, e.g., Grimson 1982 for
its application in computer vision). When the mapping is vector-valued, we need to apply the above
regularizer to each component of the mapping.

Originally we intended to do regularization on the mixing mapping F̂ , but it is difficult to
do since it is hard to evaluate ∂2xl

∂yi∂y j
. Instead, we do regularization on G , the inverse of F̂ . The

regularization term in Eq. 3 then becomes

Rlocal(θ) =
Z

Dx

n

∑
l=1

n

∑
i=1

n

∑
j=1

(∂2yl

∂xi∂x j

)2
dx =

Z

Dx

n

∑
i=1

n

∑
j=1

Pi jdx, (8)

where Pi j , ∑n
l=1

(
∂2yl

∂xi∂x j

)2
. Nonlinear ICA with a smooth de-mixing mapping can be achieved by

minimizing the mutual information between yi, with Rlocal , given by Eq. 8, as the regularization

term. There are totally n2(n+1)
2 different terms

(
∂2yl

∂xi∂x j

)2
in the integrand of Rlocal . For simplic-

ity and computational reasons, sometimes one may drop the cross derivatives in Eq. 8, that is,(
∂2yl

∂xi∂x j

)2
with i 6= j, and consequently obtain the curvature-driven smoothing regularizer proposed

in Bishop (1993), with the number of different terms in the integrand being n2.

3. Incorporation of MND in Different Nonlinear ICA Methods

Now we should choose a model for the nonlinear ICA separation system G(θ) and give the learning
rule for nonlinear ICA with MND as well as nonlinear ICA with the smoothness constraint for G .
Two nonlinear ICA methods are considered here. They are MISEP (Almeida, 2003) and nonlinear
ICA based on kernels (Zhang and Chan, 2007a).

2461

ZHANG AND CHAN

3.1 MISEP with MND

Before incorporating MND into the MISEP method (Almeida, 2003) for nonlinear ICA, we give an
overview of this method.

3.1.1 MISEP FOR NONLINEAR ICA

MISEP adopts the MLP to model the separation function G in the nonlinear ICA problem. Figure 2
shows the structure used in this method. This method extends the original Infomax method for
linear ICA (Bell and Sejnowski, 1995) in two aspects. First, the separation system is a nonlinear
transformation, which is modeled by the MLP. Second, the nonlinearities ψi are not fixed in advance,
but tuned by the Infomax principle, together with G .

ψ1

ψn

x1

xn

y1

yn

u1

un

.

.

.

.

.

.

.

.

.

Figure 2: The network structure used in Infomax and MISEP. G is the separation system, and ψi

are the nonlinearities applied to the separated signals. In MISEP, G is a nonlinear trans-
formation, and both G and ψi are learned by the Infomax principle.

With the Infomax principle, parameters in G and ψi are learned by maximizing the joint entropy
of the outputs of the structure in Figure 2, which can be written as H(u) = H(x)+ E{log |detJ|},
where J = ∂u

∂x is the Jacobian of the nonlinear transformation from x to u. As H(x) does not de-
pend on the parameters in G and ψi, it can be considered as a constant. Maximizing H(u) is thus
equivalent to minimizing

J1(θ) = −E{log |detJ|}, (9)

where θ denotes the set of unknown parameters. The learning rules for θ were derived by Almeida
(2003), in a manner similar to the back-propagation algorithm.

The MLP adopted in this paper has linear output units and a single hidden layer. For the hidden
units, the activation function l(·) may be the logistic sigmoid function, the arctan function, etc.
Direct connections between the inputs and output units are also allowed. Let a = [a1, ...,aM]T be
the inputs to the hidden units, z = [z1, ...,zM]T be the output of the hidden units, and W and b
denote the weights and biases, respectively. We use superscripts to distinguish the locations of these
parameters: W(d) denotes the weights from the inputs to output units, W(1) those from the inputs
to the hidden layer, and W(2) those from the hidden layer to the output units. b(1) and b(2) are the
bias vectors in the hidden layer and in the output units, respectively. The output of the G network
represented by this MLP takes the form:

y = W(2) · z+W(d)x+b(2), where (10)

zi = l(ai), and a = W(1)x+b(1).

2462

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

3.1.2 MISEP WITH MND

For MISEP with MND, the objective function to be minimized is Eq. 9 regularized by RMSE given
in Eq. 6. The learning rule for θ to minimize Eq. 9 has been considered in Almeida (2003). Hence
here we only give the gradient of RMSE w.r.t. θ.

Using the chain rule, also noting Eq. 10, the gradient of RMSE(θ) w.r.t. W(2) can be obtained:

∂RMSE

∂W(2)
= E

{ n

∑
i=1

2
[E2(x jyi)

E2(y2
i)

yi −
E(x jyi)

E(y2
i)

xi

]
· ∂yi

∂W(2)

}
= E{K · zT}, (11)

where K , [K1, ...,Kn]
T with its i-th element being Ki = 2∑ j

[
E2(x jyi)

E2(y2
i)

yi − E(x jyi)

E(y2
i)

x j

]
, and z = [z1,z2,

...,zM]T is the output of the hidden layer of the MLP. For the gradient of RMSE w.r.t. W(1), W(d),
b(2), and b(1), see Appendix A.

3.1.3 MISEP WITH SMOOTHNESS CONSTRAINT ON G

The mapping provided by a MLP may not be smooth enough to make nonlinear ICA result in
nonlinear BSS. So here we also implement MISEP with the smoothness constraint on G . The
objective function to be minimized becomes Eq. 9 regularized by Rlocal given in Eq. 8. Pi j appears
in the expression of Rlocal . We first derive its gradient w.r.t. θ in a way analogous to that in Bishop
(1993); see Appendix B.

In calculation of ∂Rlocal
∂θ , the integral in Eq. 8 is difficult to evaluate. Below are two ways to tackle

this problem. A very simple way to approximate Eq. 7 is to use the average of the integrand over all
observations instead of the integral (ignoring a constant scaling factor), just as Bishop (1993) does:

R(1)
local(θ) = E

{ n

∑
i=1

n

∑
j=1

Pi j

}
. (12)

This approximation actually assumes that the distribution of x is close to uniform, as seen from
below. Eq. 8 can be rewritten as

Rlocal(θ) =
Z

Dx

p(x) · 1
p(x)

n

∑
i=1

n

∑
j=1

Pi jdx = E
{ 1

p(x)

n

∑
i=1

n

∑
j=1

Pi j

}
. (13)

If p(x) is a constant in the domain Dx, Eq. 12 is equivalent to Eq. 13; otherwise, the approximation
using Eq. 12 may result in large error, and we may need another way to approximate the integral in
Eq. 8.

When the nonlinear ICA algorithm has run for a certain number of epochs, u, the output of
the system in Figure 2, has approximately independent components and is approximately uni-
formly distributed in [0,1]n. This means that p(u) is approximately 1. As p(x) = p(u) · |detJ|,
one can see that p(x) is approximately equal to |detJ|. Consequently Eq. 13 becomes Rlocal(θ) ≈
E

{
1

|detJ| ∑n
i=1 ∑n

j=1 Pi j

}
. The gradient of Rlocal(θ) is

∂Rlocal(θ)

∂θ
≈ E

{ 1
|detJ|

n

∑
i=1

n

∑
j=1

∂Pi j

∂θ

}
. (14)

As J = ∂u
∂x can be easily calculated according to the network structure in Figure 2, Eq. 14 is also

easy to evaluate, using Eq. 20 of Appendix B.

2463

ZHANG AND CHAN

3.2 MND for Nonlinear ICA Based on Kernels

Nonlinear ICA based on kernels (Zhang and Chan, 2007a) exploits kernel methods to construct the
separation system G , and unknown parameters are adjusted by minimizing the mutual information
between outputs yi.5 We have applied the MND principle and the smoothness regularizer to nonlin-
ear ICA based on kernels; for details, see Zhang and Chan (2007a). Note that unlike the mapping
provided by a MLP, which is comparatively smooth, the mapping constructed by kernel methods
may not be smooth. So it is quite necessary to explicitly enforce the smoothness constraint for
nonlinear ICA based on kernels.

4. Investigation of the Effect of MND

In this section we intend to explain why the MND principle, including the smoothness regulariza-
tion, helps to alleviate the ill-posedness of nonlinear ICA from a mathematical viewpoint. There
are two types of indeterminacies in solutions to nonlinear ICA, namely trivial indeterminacies and
non-trivial indeterminacies. Trivial indeterminacies mean that the estimate of s j produced by non-
linear ICA may be any nonlinear function of s j; non-trivial indeterminacies mean that the outputs
of nonlinear ICA, although mutually independent, are still a mixing of the original sources. Let us
begin with the effect of MND on trivial indeterminacies.

4.1 For Trivial Indeterminacies

Let us assume in this section that, in the solutions of nonlinear ICA, each component depends only
on one of the sources. Before presenting the main result, let us first give the following lemma.

Lemma 1 Suppose that we are given the random vector d = (d1,d2, · · · ,dn)
T . Let Ry be the mean

square error of reconstructing d from the variable y with the best-fitting linear transformation, that
is, Ry = mina E{||d−a ·y||2}, where a = (a1,a2, · · · ,an)

T . The variable y which gives the minimum
Ry is the first non-centered principal component of d multiplied by a constant, and if y is constrained
to be zero-mean, it is the first principal component of d multiplied by a constant.

See Appendix C for a proof. Now let us consider a particular kind of nonlinear mixtures, in
which each observed nonlinear mixture xi is assumed to be generated by

xi = fi1(s1)+ fi2(s2)+ · · ·+ fin(sn), (15)

where fi j are invertible functions. We call such nonlinear mixtures distorted source (DS) mixtures,
since each observation is a linear mixture of nonlinearly distorted sources. For this nonlinear mix-
ing model, we have the following theorem on the effect of MND on trivial indeterminacies in its
nonlinear ICA solutions. Here the following assumptions are made:

A1: In the output of nonlinear ICA, each component depends only on one of the sources and is
zero-mean.

A2: The nonlinear ICA system has enough flexibility to reach the minimum of the MND regular-
ization term RMSE defined by Eq. 2.

5. The difference between nonlinear ICA based on kernels discussed here and the kernel-based nonlinear BSS method
by Harmeling et al. (2003) should be made clear. Both of them use kernels. However, the former produces statistically
independent outputs, while the latter exploits the temporal structure of the sources for separation.

2464

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

Theorem 1 Suppose that each observed nonlinear mixture xi is generated according to Eq. 15.
Under assumptions A1 & A2, the estimate of s j produced by nonlinear ICA with MND is the first
principal component of f∗ j(s j) = [f1 j(s j), · · · , fn j(s j)]

T , multiplied by a constant.

See Appendix D for a proof. The DS mixing model Eq. 15 may be restrictive. Now let us
consider the case where nonlinearity in F is mild such that F can be well approximated by its
Maclaurin expansion of degree 3. Let

Oi, j =
∂xi

∂s j

∣∣∣
s j=0

,Oi, jk =
∂2xi

∂s j∂sk

∣∣∣
s j,sk=0

, and Oi, jkl =
∂3xi

∂s j∂sk∂sl

∣∣∣
s j,sk,sl=0

.

The following theorem discusses the effect of MND on trivial indeterminacies of nonlinear ICA
solutions in this case. In particular, it states that by incorporating MND into the nonlinear ICA
system, trivial indeterminacies in nonlinear ICA solutions are overcome; it shows how the outputs
of the nonlinear ICA system, as the estimate of the sources, are related to the original sources si and
the mixing system F .

Theorem 2 Suppose that each component of the mixing mapping F = (f1, · · · , fn)
T in Eq. 1 is

generated by the following Maclaurin series of degree 3:

xi = fi(s) = fi(0)+∑
j

Oi, js j +
1
2 ∑

j,k

Oi, jk · s jsk +
1
6 ∑

j,k,l

Oi, jkl · s jsksl ,

where E{s j} = 0 and E{s2
j} = 1, for j = 1, · · · ,n. Let

Di j(s j) ,

(
Oi, j +

1
2 ∑

k 6= j

Oi, jkk

)
· s j +

1
2
Oi, j j · s2

j +
1
6
Oi, j j j · s3

j .

And let D̃i j(s j) be the centered version of Di(s j), that is, D̃i j(s j) = Di j(s j)−Ei{Di j(s j)}. Under
assumptions A1 & A2, the estimate of s j produced by nonlinear ICA with MND is the first principal
component of D̃∗ j(s j) = [D̃1 j(s j), · · · , D̃n j(s j),]

T , multiplied by a constant.

See Appendix E for a proof. Under the condition that nonlinear distortion in the mixing mapping
F is not strong, D̃i j(s j) would not be far from linear. Moreover, if the nonlinear part of D̃i j(s j)
varies for different i, the estimate of s j is expected to be closer to linear than D̃i j(s j), because it is
the first principal component (PC) of D̃∗ j(s j). To summarize, Theorems 1 and 2 show that trivial
indeterminacies in nonlinear ICA solutions can be overcome by the MND principle; and when
the mixing mapping is not strong, the nonlinear distortion in the nonlinear ICA outputs w.r.t. the
original sources is weak.

4.1.1 REMARK

In the proof of Theorems 1 and 2, we have made use of the fact that mutual information is invariant
to any component-wise strictly monotonic nonlinear transformation of the variables. Consequently,
trivial transformations do not affect the first term in Eq. 3, and they can be determined by minimizing
RMSE only, as claimed in the theorems. However, in practical implementations of nonlinear ICA
algorithms, one needs to estimate the densities of yi or their variations. Due to estimation error, the

2465

ZHANG AND CHAN

gradient of the mutual information I(y1, · · · ,yn) may be sensitive to the distribution of yi, or it may
be slightly affected by trivial transformations. This may cause the results of Theorems 1 and 2 to be
violated slightly.

Fortunately, this phenomenon can be avoided easily. To model the trivial transformations, we
apply a separate nonlinear function approximator (such as a MLP) to each output of nonlinear
ICA to generate the final nonlinear ICA result. These nonlinear function approximators are then
learned by minimizing RMSE (Eq. 6). This provides a way to tackle the trivial indeterminacies; after
performing nonlinear ICA with any nonlinear ICA method, if we know that there only exist trivial
indeterminacies, we can adopt the above technique to determine the trivial transformations.

4.2 For Non-Trivial Indeterminacies

Now let us investigate the effect of MND on non-trivial indeterminacies in nonlinear ICA solutions.
Generally speaking, there exist an infinite number of ways in which non-trivial indeterminacies
occur, and it is impossible to formulate all of them. Hyvärinen and Pajunen (1999) gave some
families of non-trivial transformations preserving mutual independence.

4.2.1 A PARTICULAR CLASS OF NON-TRIVIAL INDETERMINACIES

For the convenience of analysis, here we consider the following manner to construct non-trivial
transformations preserving mutual independence. First, using the Gaussianization technique (Chen
and Gopinath, 2001), we transform each of the independent variables si to a standard Gaussian
variable ui with an strictly increasing function qi, that is, ui = qi(si). Clearly ui are mutually inde-
pendent. Second, we can apply an orthogonal transformation U to u = (u1, · · · ,un)

T . The compo-
nents of e = Uu are still jointly Gaussian and mutually independent.6 Finally, let y = r(e), where
r = (r1, · · · ,rn)

T is a component-wise function with each ri strictly increasing. Components of y are
still mutually independent. That is, y is always a solution to nonlinear ICA of the nonlinear mixture
x = F (s). The procedure transforming s to y can be described as r ◦U ◦q, as shown in Figure 3.
When U is a permutation matrix, this transformation is trivial; otherwise it is not.

.

.

.

.

.

.

Figure 3: A non-trivial transformation from s to y preserving independence, that is, r◦U◦q.

4.2.2 EFFECT OF MND

To see the effect of MND on y in Figure 3 (recall that y is a solution to nonlinear ICA of x =
F (s)), we need to find how MND affects U, as well as ri. First, let us consider the case where
the outputs yi are Gaussian, meaning that each component of r̃ is a linear mapping. Without loss
of generality, we further assume that yi are zero-mean and of unit variance, that is, E{yyT} = I.
Consequently, ri are identity mappings and y = e = Uu. Assuming xi are zero-mean, according
to Eq. 5, We have RMSE = −Tr

(
E{xyT}E{yxT}

)
+ const = −Tr

(
E{xuT}UT UE{uxT}

)
+ const =

−Tr
(
E{xuT}E{uxT}

)
+ const. In this case RMSE is not affected by U, and the MND principle

6. U may depend on ||u||. In other words, U may be different for u of different norms.

2466

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

could not help to avoid such non-trivial indeterminacies. We have empirically found that in general,
when yi are close to Gaussian, the separation performance tends to be bad. To make sure that
the separation result is reliable, one should check the non-Gaussianity of yi after the algorithm
converges.

Next, suppose that that both sl and y j are non-Gaussian. ri are then nonlinear. Consider the
extreme case that the mixing mapping F is linear; in order to minimize RMSE (Eq. 2), U in Figure 3
must be a permutation matrix. One can then image that if nonlinearity in F is weak enough, U in
Figure 3 should be approximately a permutation matrix, meaning that the original sources s could
be recovered.

However, if nonlinearity in F is strong, U may not be a permutation matrix, and non-trivial
transformations from s to y may occur. This is actually quite natural. Consider the mixing mapping
x = F (s) which can be decomposed as a non-trivial transformation of s shown in Figure 3 (denote
by z its output), followed by a nonlinear transformation x = FL(z) which is close enough to linear. In
this situation, the output of nonlinear ICA with MND would be an estimate of z, and if no additional
knowledge of the mixing mapping is given, it is impossible to recover the original sources si.

Below we give an two-channel example to illustrate the relationship between RMSE and the
orthogonal matrix U when nonlinearity in F is strong. The two independent sources are a uni-
formly distributed signal and a super-Gaussian signal, and their scatter plot is given in Figure 9(a).
The observations xi, whose scatter plot is shown in Figure 4(a), are generated by applying a 2-
3-2 MLP to the source signals. From this figure we can see that nonlinearity in the mixing pro-
cedure is comparatively strong. The orthogonal matrix U in Figure 3 is parameterized as U =
[cos(α),−sin(α); sin(α),cos(α)]. From Eq. 6 and Figure 3, one can see that RMSE depends on α
and ri. For each value of α, ri (i = 1,2) are modelled by a 1-6-1 MLP and they are learned by
minimizing RMSE . Finally, minri RMSE is a function of α, with a period of 90 degrees, as plotted
in Figure 4(b). In this example, α determined by the MND principle is about 11 degrees. It is not
that close to zero, but it is still comparatively small and consequently the sources si are recovered
approximately.

(a) (b)

−5 0 5
−5

0

5

x
1

x 2

Best−fitting linear mixture
Nonlinear mixture

−90 −70 −50 −30 −10 0 10 30 50 70 90
−1.76

−1.74

−1.72

−1.7

−1.68

−1.66

−1.64

−1.62

−1.6

−1.58

α (degree)

m
in

ri R
M

S
E

Figure 4: (a) Nonlinear mixtures of a sinusoid source signal and a super-Gaussian source signal
(whose scatter plot is given in Figure 9.a) generated by a 2-3-2 MLP. x-mark points show
linear mixtures of the sources which fit the nonlinear mixtures best. (b) minri RMSE as a
function of α, whose minimum is achieved at α ≈ 11 degrees.

2467

ZHANG AND CHAN

5. Simulations

In this section we investigate the performance of the proposed principle for solving nonlinear ICA
using synthetic data. The experiments in Zhang and Chan (2007a) have empirically shown that
both MND and the smoothness constraint are useful to ensure nonlinear ICA based on kernels to
result in nonlinear BSS, when nonlinear distortion in the mixing procedure is not very strong. As
its performance depends somewhat crucially on the choice of the kernel function, nonlinear ICA
based on kernels is not used for comparison here. The following six methods (schemes) were used
to separate various nonlinear mixtures:

1. MISEP: The MISEP method (Almeida, 2003) with parameters θ randomly initialized.7 Note
that in this method, the smoothness constraint has been implicitly incorporated to some extent,
due to the property of the adopted MLP.

2. Linear init.: The MISEP method with G initialized as a linear mapping. This was achieved by
adopting the regularization term Eq. 2 with λ = 5 (which is very large) in the first 50 epochs.

3. MND: The MISEP method incorporating MND, with RMSE , the mean square error of the best
linear reconstruction, as the regularization term (Section 2.2). The regularization parameter λ
decayed from λ0 = 5 to λc = 0.01 in the first 350 epochs. After that λ was fixed as λc.

4. Smooth (I): The MISEP method with the smoothness regularizer (Section 2.4) explicitly in-
corporated. λ decayed from 1 to 0.004 in the first 350 epochs.

5. Smooth (II): Same as Smooth (I), but λ was fixed to 0.007.

6. VB-NICA: Bayesian variational nonlinear ICA (Lappalainen and Honkela, 2000; Valpola,
2000).8 PCA was used for initialization. After obtaining nonlinear factor analysis solutions
using the package, we applied linear ICA (FastICA by Hyvärinen 1999 was used) to achieve
nonlinear BSS.

In addition, in order to show the necessity of nonlinear ICA methods for separating nonlinear mix-
tures, linear ICA (FastICA was adopted) was also used to separate the nonlinear mixtures.

It was addressed in Section 2.3 that the incorporation of direct connections between inputs and
output units in the MLP representing G implicitly and roughly implements the MND principle. To
check that, in our experiments, the MLP without direct connections and that with direct connections
were both adopted to represent G , for comparison reasons. Like in Almeida (2003), the MLP has
20 arctan hidden units, 10 of which are connected to each of the output units of G .

We use the signal to noise ratio (SNR) of yi relative to si, denoted by SNR(yi), to assess the
separation performance of si. Besides, we apply a flexible nonlinear transformation h to yi to mini-
mize the MSE between h(yi) and si, and use the SNR of h(yi) relative to si as another performance
measure. In this way possible trivial transformations between si and yi are eliminated. In our exper-
iments h was implemented by a two-layer MLP with eight hidden units with the hyperbolic tangent
activation function and a linear output unit. This MLP was trained using the MATLAB neural
network toolbox.

7. Source code is available at http : //www.lx.it.pt/ ∼ lbalmeida/ica/mitoolbox.html.
8. Source code is available at http : //www.cis.hut.fi/projects/bayes/. The following MATLAT commands were used

to produce the ouput y: [nlfa sources, net, params, status, fs] = nlfa(x, ’searchsources’, 2, ’hidneurons’, 15, ’iters’,
2000); y = fastica(nlfa sources.e, ’approach’, ’symm’, ’g’, ’tanh’);

2468

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

Three kinds of nonlinear mixtures were investigated. They are distorted source (DS) mixtures,
post-nonlinear (PNL) mixtures, and generic nonlinear (GN) mixtures which are generated by a MLP.
Both super-Gaussian and sub-Gaussian sources were used.

5.1 For Distorted Source Mixtures

We first considered the DS mixtures defined in Eq. 15. Specifically, in the experiments the two-
channel mixtures xi were generated according to x1 = a11s1 + f12(s2), x2 = f21(s1)+ a22s2, where
a11 = a22 = 1, and f12(si) = f21(si) = 3tanh(si/4) + 0.1si. We used two super-Gaussian source
signals, which are generated by si = 3

5 ni +
2
5 n3

i , where ni are independent Gaussian signals. Each
signal has 1000 samples. Figure 5 shows the scatter plot of the sources si and that of the observations
xi. To see the level of nonlinear distortion in the mixing transformation, we also give the scatter plot
of the affine transformation of si which fits xi the best.

(a) (b)

−20 −10 0 10 20
−15

−10

−5

0

5

10

15

20

s 2

s
1

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

8

x
1

x 2

Best−fitting linear mixture
Nonlinear mixture

Figure 5: (a) Scatter plot of the sources si generating the DS mixtures. (b) Scatter plot of the DS
mixtures xi. x-mark points are linear mixtures of si which fit xi best.

To reduce the random effect, all methods were repeated for 40 runs, and in each run the MLP
was randomly initialized. We found that the separated results in the two channels have a similar
SNR, so for saving space, here we just give the SNR in the first channel. Figure 6 compares the
boxplot of SNR(y1) and SNR(h(y1)) for different methods. In Figure 6 (a, b), the MLP has no
direct connections between inputs and output units, while in (c, d) the MLP has direct connections.
We can see that in this case the methods MND, Smooth(I), and Smooth(II) give very high SNR,
and at the same time, produce fewest unwanted results. Moreover, the MLP with direct connections
behaves better than that without direct connections. The performance of VB-NICA is not very
good. The reason may be that this method does not take into account the very useful information
that nonlinearity in the mixing mapping is not very strong. It should be noted that VB-NICA may
not exhibit its potential powerfulness in the experiments, since the source number is given and no
noise is considered.

2469

ZHANG AND CHAN

(a) (b)

MISEP Linear init. MND Smooth(I) Smooth(II) VB−NICA
0

2

4

6

8

10

12

14

16

18

S
N

R
(y

1)

Method

FastICA

(d
B

)

MISEP Linear init. MND Smooth(I) Smooth(II) VB−NICA
0

5

10

15

20

S
N

R
(h

(y
1))

Method

FastICA

(d
B

)

(c) (d)

MISEP Linear init. MND Smooth(I) Smooth(II) VB−NICA
0

2

4

6

8

10

12

14

16

18

20

S
N

R
(y

1)

Method

FastICA

(d
B

)

MISEP Linear init. MND Smooth(I) Smooth(II) VB−NICA
0

5

10

15

20

25

30

S
N

R
(h

(y
1))

Method

FastICA

(d
B

)

Figure 6: Boxplot of the SNR of separating the DS mixtures by the MLP without or with direct
connections between inputs and output units. Top: Without direct connections. Bottom:
With direct connections. (a, c) SNR(y1). (b, d) SNR(h(y1)).

5.2 For Post-Nonlinear Mixtures

The second experiment is to separate PNL mixtures. We used two sub-Gaussian source signals,
which are a uniformly distributed white signal and a sinusoid waveform. The sources were first
mixed with the mixing matrix A = [-0.2261, -0.1189; -0.1706, -0.2836], producing linear mixtures
z. The observations were then generated as x1 = z1/2.5+ tanh(3z1) and x2 = z2 + z3

2/1.5. Figure 7
shows the scatter plot of the sources and that of the PNL mixtures (after standardization). Figure 8
gives the separation performance of s1 by various methods.9 In this case, the proposed nonlinear
ICA with MND (labelled by MND) also gives almost the best results; especially for the MLP with-
out direct connections, the result of nonlinear ICA with MND is clearly the best. Again, the MLP
with direct connections produces better results. Moreover, one can see that compared to the DS

9. If we use the PNL mixing model (Taleb and Jutten, 1999) to separate such mixtures, theoretically the sources could
be well recovered. But in this paper we assume that the form of the mixing procedure is unknown, and treat it as a
general nonlinear ICA problem.

2470

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

mixtures in Section 5.1, the PNL mixtures considered here are comparatively hard to be separated
by the MLP structure.

(a) (b)

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

s
1

s 2

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
1

x 2

Best−fitting linear mixture
Nonlinear mixture

Figure 7: (a) Scatter plot of the sources si generating PNL mixtures. (b) Scatter plot of the PNL
mixtures xi.

5.3 For Generic Nonlinear Mixtures

We used a 2-2-2 MLP to generate nonlinear mixtures from sources. Hidden units have the arctan
activation function. The weights between the input layer and the hidden layer are random numbers
between -1 and 1. They are not large such that the mixing mapping is invertible and the nonlinear
distortion produced by the MLP would not be very strong. The sources used here were the first
source in Experiment 1 (super-Gaussian) and the second one in Experiment 2 (sub-Gaussian). Fig-
ure 9 shows the scatter plot of the sources and that of the GN mixtures. The performance of various
methods for separating such mixtures is given in Figures 10. Apparently nonlinear ICA with MND
gives the best separation results in this case.

Summed over all the three cases discussed above, we can see that MISEP with MND produces
promising results for the general nonlinear ICA problem, provided that nonlinearity in the mixing
mapping is not very strong. Specifically, it gives the fewest unwanted solutions, and its separation
performance is very good. Moreover, the MLP with direct connections usually performs better than
that without direct connections, but we also found that in some cases it got stuck into unwanted
solutions more easily.

5.4 On Trivial Indeterminacies

In Section 4.1 we have discussed the effect of the MND principle on trivial indeterminacies of
nonlinear ICA solutions. In particular, Theorem 1 states that for DS mixtures, if there are only
trivial indeterminacies, each output of nonlinear ICA with MND is the PC of the contributions of
the corresponding source to all mixtures. Now let us illustrate this with the help of the DS mixtures
used in Section 5.1.

2471

ZHANG AND CHAN

(a) (b)

MISEP Linear init. MND Smooth(I) Smooth(II) VB−NICA

2

4

6

8

10

12

14

16

18

20

22

S
N

R
(y

1)

Method

FastICA

(d
B

)

MISEP Linear init. MND Smooth(I) Smooth(II) VB−NICA

5

10

15

20

S
N

R
(h

(y
1))

Method

FastICA

(d
B

)

(c) (d)

MISEP Linear init. MND Smooth(I) Smooth(II) VB−NICA

2

4

6

8

10

12

14

16

18

20

S
N

R
(y

1)

Method

FastICA

(d
B

)

MISEP Linear init. MND Smooth(I) Smooth(II) VB−NICA

2

4

6

8

10

12

14

16

18

20

22

S
N

R
(h

(y
1))

Method

FastICA

(d
B

)

Figure 8: Boxplot of the SNR of separating the PNL mixtures by the MLP without or with direct
connections between inputs and output units. Top: Without direct connections. Bottom:
With direct connections. (a, c) SNR(y1). (b, d) SNR(h(y1)).

Figure 11 shows the relationship between yi obtained by MISEP with MND in one run and the
PC of f∗i(si) = [f1i(si), f2i(si)]

T . We can see that each yi is actually not very close to the corre-
sponding PC, which may be caused by two reasons. First, there may exist some weak non-trivial
transformation in the solution, as seen from the points close to the origin in Figure 11(b); y2 is not
solely dependent on s2, but also slightly affected by s1. The other reason is the error in estimating
the density of yi or its variation involved in the MISEP method, as explained in Section 4.1.1. We
use the method proposed there to avoid the effect of the estimation error: a 1-8-1 MLP, denoted by
τi, is applied to each yi, and τi(yi) is taken as the final nonlinear ICA output. Each τi is learned by
minimizing RMSE (Eq. 6). The resulting τi(yi) is almost identical to the corresponding PC of f∗i(si),
as seen from Figure 12. This has confirmed Theorem 1 and the validity of the method for tackling
trivial indeterminacies proposed in Section 4.1.1.

2472

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

(a) (b)

−2 −1 0 1 2
−8

−6

−4

−2

0

2

4

6

8

s
1

s 2

−5 0 5
−6

−4

−2

0

2

4

6

x
1

x 2

Best−fitting linear mixture
Generic nonlinear mixture

Figure 9: (a) Scatter plot of the sources si. (b) Scatter plot of the GN mixtures xi.

6. Application to Causality Discovery in the Hong Kong Stock Market

In this section we give a real-life application of nonlinear ICA with MND. Specifically, we use this
method to discover linear causal relations among the daily returns of a set of stocks. The empirical
results were ever reported in Zhang and Chan (2006), without much detail of the method.

6.1 Introduction

It is well known that financial assets are not independent of each other, and that there may be some
relations among them. Such relations can be described in different ways. In risk management,
correlations are used to describe them and help to construct portfolios. The business group, which
is a collection of firms bound together in some formal and/or informal ways, focuses on ties between
financial assets and has attracted a lot of interest (Khanna and Rivkin, 2006). But these descriptions
cannot tell us the causal relations among the financial assets.

The return of a particular stock may be influenced by those of other stocks, for many reasons,
such as the ownership relations and financial interlinkages (Khanna and Rivkin, 2006). According to
the efficient market hypothesis, such influence should be reflected in the stock returns immediately.
In this part we aim to discover the causal relations among selected stocks by analyzing their daily
returns.10

Traditionally, causality discovery algorithms for continuous variables usually assume that the
dependencies are of a linear form and that the variables are Gaussian distributed (Pearl, 2000).
Under the Gaussianity assumption, only the correlation structure of variables is considered and all
higher-order information is neglected. As a consequence, one obtains some possible causal dia-

10. In other words, here we aim to find the “instantaneous” causality in the stock market. In contrast, Granger causality
(Granger, 1980) analysis has become an important tool to find the “lagged” causality between time series. A time
series x1 “Granger causes” another series x2 if by incorporating the past history of x1 can improve a prediction of x2
over a prediction based only on the history of x2 alone. The efficient market hypothesis implies no significant Granger
causality between stock returns. In fact, we have applied the approach by Reale and Tunnicliffe Wilson (2001) and
partial directed coherence (Baccala and Sameshima, 2001) to find the Granger causality among the selected stocks,
and very few Granger causal relations were found.

2473

ZHANG AND CHAN

(a) (b)

MISEP Linear init. MND Smooth(I) Smooth(II) VB−NICA

0

2

4

6

8

10

12

14

16

18

S
N

R
(y

1)

Method

FastICA

(d
B

)

MISEP Linear init. MND Smooth(I) Smooth(II) VB−NICA
0

2

4

6

8

10

12

14

16

18

20

S
N

R
(h

(y
1))

Method

FastICA

(d
B

)

(c) (d)

MISEP Linear init. MND Smooth(I) Smooth(II) VB−NICA

2

4

6

8

10

12

14

16

18

S
N

R
(y

1)

Method

FastICA

(d
B

)

MISEP Linear init. MND Smooth(I) Smooth(II) VB−NICA

2

4

6

8

10

12

14

16

18

S
N

R
(h

(y
1))

Method

FastICA

(d
B

)

Figure 10: Boxplot of the SNR of separating the GN mixtures by the MLP without or with direct
connections between inputs and output units. Top: Without direct connections. Bottom:
With direct connections. (a, c) SNR(y1). (b, d) SNR(h(y1)).

grams which are equivalent in their correlation structure, and cannot find the true causal directions.
Recently, it has been shown that the non-Gaussianity distribution of the variables allows us to dis-
tinguish the explanatory variable from the response variable, and consequently, to identify the full
causal model (Dodge and Rousson, 2001; Shimizu et al., 2006).

In particular, in Shimizu et al. (2006) an elegant and efficient method was proposed for identi-
fying the linear, non-Gaussian, acyclic causal model (abbreviated LiNGAM) by exploiting ICA. If
the data are generated according to the LiNGAM model, theoretically, the ICA de-mixing matrix
W can be permuted to lower triangularity. However, in practice, this may not hold, due to the finite
sample effect, the existence of unobserved confounder variables (Pearl, 2000), or mild nonlinear-
ity and noise that are often encountered in the data generation procedure. To tackle possible mild
nonlinearity in the data generation procedure, we use nonlinear ICA with MND, instead of linear
ICA, to separate the observed data. As the nonlinear distortion is mild, it can be neglected and
consequently, linear causal relations among the observed data can be discovered.

2474

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

(a) (b)

−10 −5 0 5 10
−10

−5

0

5

10

15

Principal component of f
i1

(s
1
)

y 1

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Principal component of f
i2

(s
2
)

y 2

Figure 11: (a) y1 recovered by MISEP with MND versus the PC of the contributions of s1 to the DS
mixtures used in Section 5.1. The SNR of y1 w.r.t. the PC of the contributions of s1 is
13.48dB. The dashed line is the linear function fitting the points best. (b) y2 versus the
PC of the contributions of s2 to the DS mixtures. The SNR is 9.12dB.

(a) (b)

−5 0 5 10

−5

0

5

10

15

Principal component of f
i1

(s
1
)

τ 1(y
1)

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Principal component of f
i2

(s
2
)

τ 2(y
2)

Figure 12: (a) τ1(y1) versus the PC of the contributions of s1 to xi. τ1 is modelled by a 1-8-1 MLP
and is learned by minimizing RMSE (Eq. 6). The SNR is 20.99dB. (b) τ2(y2) versus the
PC of the contributions of s2 to xi. The SNR is 18.64dB.

6.2 Causality Discovery by ICA: Basic Idea

The LiNGAM model assumes that the generation procedure of the observed data follows the follow-
ing properties (Shimizu et al., 2006). 1. It is recursive. This is, the observed variables xi, i = 1, ...,n,
can be arranged in a causal order, such that no later variable causes any earlier variable. This causal
order is denoted by k(i). 2. The value of xi is a linear function of the values assigned to the earlier
variables, plus a disturbance term ei and an optional constant ci: xi = ∑k(j)<k(i) bi jx j + ei + ci. 3.

2475

ZHANG AND CHAN

ei are independent continuous-valued variables with non-Gaussian distributions (or at most one is
Gaussian).

After centering of the variables, the causal relations among xi can be written in the matrix
form: x = Bx + e, where x = (x1, ...,xn)

T , e = (e1, ...,en)
T , and the matrix B can be permuted (by

simultaneous equal row and column permutations) to strict lower triangularity if one knows the
causal order k(i) of xi. We then have e = Wx, where W = I−B. This is exactly the ICA separation
procedure (Hyvärinen et al., 2001). Therefore, the LiNGAM model can be estimated by ICA. We
can permute the rows of the ICA de-mixing matrix W such that it produces a matrix W̃ without
any zero on its diagonal (or in practice, ∑i |W̃ii| is maximized). Dividing each row of W̃ by the
corresponding diagonal entry gives a new matrix W̃′ with all entries on its diagonal equal to 1.
Finally, by applying equal row and column permutations on B = I− W̃′, we can find the matrix B̃
which is as close as possible to strictly lower triangularity. B̃ contains the causal relations of xi. For
details, see Shimizu et al. (2006).

6.3 With Nonlinear ICA with Minimal Nonlinear Distortion

We now consider a general case of the nonlinear distortion often encountered in the data generation
procedure, provided that the nonlinear distortion is smooth and mild. We use the MLP structure de-
scribed in Section 3.1.1, which is a linear transformation coupled with an ordinary MLP, as shown
in Figure 13, to model the nonlinear transformation from the the observed variables xi to the distur-
bance variables ei.

According to Figure 13, we have e = Wx + h(x), and consequently x = (I−W)x− h(x) +
e, where h(x) denotes the output of the MLP. As it is difficult to analyze the relations among xi

implied by the nonlinear transformation h(x), we expect that h(x) is weak such that its effect can
be neglected. The linear causal relations among xi can then be discovered by analyzing W.

x W
e

MLP h(x)

Figure 13: Structure used to model the transformation from the observed data xi to independent
disturbances ei. h(x) accounts for nonlinear distortion if necessary.

In order to do causality discovery, the separation system in Figure 13 is expected to exhibit the
following properties. 1. The outputs ei are mutually independent, since independence of ei is a
crucial assumption in LiNGAM. This can be achieved since nonlinear ICA always has solutions.
2. The matrix W is sparse enough such that it can be permuted to lower triangularity. This can be
enforced by incorporating the L1 (Hyvärinen and Karthikesh, 2000) or smoothly clipped absolute
deviation (SCAD) penalty (Fan and Li, 2001) on the entries of W. 3. The nonlinear mapping mod-
eled by the MLP is weak enough such that we just care about the linear causal relations indicated
by W. To achieve that, we use MISEP with MND given in Section 3.1. In addition, we initialize the
system with linear ICA results. That is, W is initialized by the linear ICA de-mixing matrix, and
the initial values for weights in the MLP h(x) are very close to 0. The training process is terminated
once the LiNGAM property holds for W. After the algorithm terminates, var(hi(x))

var(ei)
can be used to

measure the level of nonlinear distortion in each channel, if needed.

2476

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

6.4 Simulation Study

We examined the performance of the scheme discussed in Section 6.3 for identifying linear causal
relations using simulated data. To make the nonlinear distortion in the data generation procedure
weak, we used the structure in Figure 13 to generate the 8-dimensional observed data xi from some
independent and non-Gaussian variables ei, that is, xi are generated by a linear transformation cou-
pled with a MLP.

The linear transformation in the data generation procedure was generated by A = (I−B)−1. It
satisfies the LiNGAM property since B was made strict lower triangular. The magnitude of non-
zero entries of B is uniformly distributed between 0.05 and 0.5, and the sign is random. To examine
if spurious causal relations would be caused, we also randomly selected 9 entries in the strict lower
triangular part of B and set them to zero. The disturbance variables were obtained by passing
independent Gaussian variables through power non-linearities with the exponent between 1.5 and
2. The variances of ei were randomly chosen between 0.2 and 1. These settings are similar to those
in the simulation studies by Shimizu et al. (2006). The sample size is 1000. The nonlinear part is
a 8-10-8 MLP with the arctan activation function in the hidden layer. The weights from the inputs
to the hidden layer are between -3 and 3, that is, they are comparatively large, while those from
the hidden layer to the outputs are small, such that the nonlinear distortion is weak. The nonlinear
distortion level in the generation procedure is measured by the ratio of the variance of the MLP
output to that of the linear output. We considered two cases where the nonlinear distortion level is
0.01 and 0.03, respectively.

We used the scheme detailed in Section 6.3 to identify the linear causal relations among xi. The
SCAD penalty was used, and there are 10 arctan hidden units connected to each output of the MLP.
We repeated the simulation for 100 trials. In each trial the maximum iteration number was set to 800.
The results are given in Table 1 (numbers in parentheses are corresponding standard errors). The
failure rate (the chance that LiNGAM does not hold for W within 800 iterations), the percentages of
correctly identified non-zero edges, correctly identified large edges (with the magnitude larger than
0.2), and spurious edges in the successful cases, and the resulting nonlinear distortion level var(hi(x))

var(ei)
in the separation system are reported. We can see that W almost always satisfies the LiNGAM
property, and that most causal relations (especially large ones) are successfully identified. The
setting λ = 0.12, meaning that MND is explicitly incorporated, gives better results than λ = 0 does,
although the difference is not large. This is not surprising because even with λ = 0, nonlinear ICA
with the separation structure of Figure 13 and with W initialized by linear ICA could achieve MND
to some extent. However, when λ = 0.12, the nonlinear distortion in the separation system is much
weaker, and we found that estimated values of the entries of B are closer to the true ones. The
penalization parameter for SCAD, λSCAD, plays an important role. A larger λSCAD would make W
satisfy the LiNGAM property more easily, but as a price, in the result more causal relations tend to
disappear or be weaker.

For comparison, we also used linear ICA with the de-mixing matrix penalized by SCAD11 for
causality discovery. The result is reported in Table 2. Even when λSCAD is very large, which causes
many causal relations to disappear, as seen from the table, there is still a high probability that
the resulting de-mixing matrix fails to satisfy the LiNGAM property. These results show that for

11. The algorithm can be derived by maximizing the ICA likelihood penalized by the SCAD penalty on each entry of the
de-mixing matrix. We used the natural gradient learning rule, with the score function adaptively estimated from the
data.

2477

ZHANG AND CHAN

Nonl.
level in F

Settings
(λ,λSCAD)

Fail. in
800 iter.

Edges iden-
tified

Large edges
identified

Spurious
edges

Nonl. level
var(hi(x))

var(ei)

0.01
(0.12,0.06) 3% 88% (11%) 99% (3%) 7% (10%) ∼ 0.03
(0,0.06) 3% 87% (12%) 97% (4%) 7% (9%) ∼ 0.06

0.03
(0.12,0.10) 1% 79% (14%) 92% (7%) 9% (11%) ∼ 0.08
(0,0.10) 1% 76% (12%) 89% (8%) 8% (10%) ∼ 0.13

Table 1: Simulation results of identifying linear causal relations among xi with the nonlinear ICA
structure Figure 13 and the SCAD penalty (100 trials). Numbers in parentheses are corre-
sponding standard errors.

Nonl.
level in F

Settings Fail. rate Edges iden-
tified

Large edges
identified

Spurious
edges

0.01 λSCAD = 0.2 41% 67% (13%) 79% (15%) 4% (5%)
0.03 λSCAD = 0.25 54% 52% (12%) 58% (17%) 4% (7%)

Table 2: Simulation results of identifying linear causal relations among xi by linear ICA with SCAD
penalized de-mixing matrix (100 trials).

the data whose generation procedure has weak nonlinear distortion and approximately satisfies the
LiNGAM property, nonlinear ICA with MND, together with the SCAD penalty, is useful to identify
their linear causal relations.

6.5 Empirical Results

The Hong Kong stock market has some structural features different from the US and UK markets
(Ho et al., 2004). One typical feature is the concentration of market activities and equity ownership
in relatively small group of stocks, which probably makes causal relations in the Hong Kong stock
market more obvious.

6.5.1 DATA

Here we aim at discovering the causality network among 14 stocks selected from the Hong Kong
stock market.12 The selected 14 stocks are constituents of Hang Seng Index (HSI).13 They are
almost the largest companies of the Hong Kong stock market. We used the daily dividend/split
adjusted closing prices from Jan. 4, 2000 to Jun. 17, 2005, obtained from the Yahoo finance
database. For the few days when the stock price is not available, we used simple linear interpolation
to estimate the price. Denoting the closing price of the ith stock on day t by Pit , the corresponding
return is calculated by xit =

Pit−Pi,t−1
Pi,t−1

. The observed data are xt = (x1t , ...,x14,t)
T . Each return series

contains 1331 samples.
Recently ICA has been exploited as a possible way to explain the driving forces for financial

returns (Back, 1997; Kiviluoto and Oja, 1998; Chan and Cha, 2001). We conjecture that nonlinear
ICA would be more suitable than linear ICA to serve this task, since it seems reasonable that the

12. For saving space, they are not listed here; see the legend in Figure 15.
13. The only exception is Hang Lung Development Co. Ltd (0010.hk), which was removed from HSI on Dec. 2, 2002.

2478

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

ICA mixing model varies slightly for returns at different levels. So we use nonlinear ICA with MND
to analyze the stock returns and to do causality discovery. However, we should be aware that it is
probably very hard to discover causal relations among the selected stocks, since the financial data
are somewhat non-stationary, the data generation mechanism is not clear, and there may be many
confounder variables.

6.5.2 RESULTS

We first applied a standard ICA algorithm to perform ICA on the data xt . The natural gradient
algorithm (Amari et al., 1996) with the score function adaptively estimated from data was adopted.
We used the LiNGAM software14 to permute W and obtain the matrix B = I−W̃′. B seems unlikely
to be lower-triangular; in fact, the ratio of the sum of squares of its upper-triangular entries to
that of all entries is 0.24, which is very large. We also exploited linear ICA with the de-mixing
matrix penalized by SCAD to do causality discovery. It was found that the learned de-mixing
matrix W does not follow LiNGAM for λSCAD ≤ 0.25. The value 0.25 for λSCAD is so large that
statistical independence between outputs is affected. (In fact, most correlations between outputs
have a magnitude larger than 0.1 when λSCAD = 0.25.) We may conclude that the data do not satisfy
the LiNGAM model.

We then adopted the method proposed in Section 6.3. The SCAD penalty was applied to entries
of W with λSCAD = 0.04. The regularization parameter for nonlinear ICA with MND (Eqs. 11
and 16–19) was λ = 0.14. After 195 epochs, W satisfies the LiNGAM assumption and the training
process is terminated. Figure 14 shows the scatter plot of each output ei and its linear part, from
which we can see that the nonlinear distortion is weak. Based on the learned W, we found the
linear causal relations among these stocks, as shown in Figure 15. This figure was plotted using the
LiNGAM software.

−10 0 10

−10

0

10

−20 0 20
−20

0

20

−10 0 10
−10

0

10

−10 0 10
−10

0

10

−10 0 10
−10

0

10

−10 0 10
−10

0

10

e

−20 0 20
−20

0

20

−10 0 10
−10

0

10

−10 0 10
−10

0

10

−10 0 10
−10

0

10

−10 0 10
−10

0

10

−10 0 10
−10

0

10

−10 0 10
−10

0

10

W x
−10 0 10

−10

0

10

Figure 14: Scatter plot of each output of the system in Figure 13 and its linear part. The nonlinear
distortion level var(hi(x))

var(ei)
is 0.0485, 0.0145, 0.0287, 0.2075, 0.0180, 0.0753, 0, 0.0001,

0.0193, 0.0652, 0.0146, 0.0419, 0.0544, and 0.0492, respectively, for the 14 outputs e i.

14. It is available at http : //www.cs.helsinki.fi/group/neuroinf/lingam/.

2479

ZHANG AND CHAN

x1: Cheung Kong (0001.hk)
x2: CLP Hldgs (0002.hk)
x3: HK & China Gas (0003.hk)
x4: Wharf (Hldgs) (0004.hk)
x5: HSBC Hldg (0005.hk),
x6: HK Electric (0006.hk)
x7: Hang Lung Dev (0010.hk)
x8: Hang Seng Bank (0011.hk)
x9: Henderson Land (0012.hk)
x10: Hutchison (0013.hk)
x11: Sun Hung Kai Prop (0016.hk)
x12: Swire Pacific ’A’ (0019.hk)
x13: Bank of East Asia (0023.hk)
x14: Cathay Pacific Air (0293.hk)

Figure 15: Causal diagram of the 14 stocks.

Figure 15 gives some interesting findings. 1. Ownership relations tend to cause causal relations.
If A is a holding company of B, there tends to be a causal relation from B to A. There are two
significant relations x8 → x5 and x10 → x1. In fact, x5 owns some 60% of x8, and x1 holds about
50% of x10. 2. Stocks belonging to the same subindex tend to be connected together. For example,
x2, x3, and x6, which are linked together, are the only three constituents of Hang Seng Utilities Index.
x1, x9, and x11 are constituents of Hang Seng Property Index. 3. Large bank companies are the cause
of many stocks. Here x5 and x8 are the two largest banks in Hong Kong. 4. Returns of stocks in
Hang Seng Property Index tend to depend on many other stocks, while they hardly influence other
stocks. Note that Here x1, x9, and x11 are in Hang Seng Property Index.

7. Conclusion

We have proposed the “minimal nonlinear distortion” principle to overcome the ill-posedness of the
nonlinear ICA problem. With this principle, the nonlinear ICA solution whose estimated mixing
system is close to linear would be preferred. This principle was implemented by a regularization
technique that minimizes the mean square error of the best linear reconstruction of the observed
mixtures. We explained how the proposed principle overcomes trivial and non-trivial indetermina-
cies in nonlinear ICA solutions. Experimental results on synthetic data in various situations showed
that nonlinear ICA with minimal nonlinear distortion behaves very well and confirmed our theo-
retical claims. Since nonlinearity is usually encountered in practice and is not very strong in many
cases, nonlinear ICA with minimal nonlinear distortion is expected to be capable of solving some
real-life problems. Its successful application to causality discovery in the Hong Kong stock mar-
ket illustrated the applicability of the method and the validity of the “minimal nonlinear distortion”

2480

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

principle for some real problems. The result also supports the independent factor model in finance to
some extent. Finally, it should be noted that solutions to nonlinear ICA or nonlinear BSS rely heav-
ily on the prior information on the sources or the mixing mappings. “Minimal nonlinear distortion”
is one type of such information for some problems. If more precise prior information, such as the
form of the mixing mapping, the temporal structure of the sources, etc., is available, the separation
result may be more meaningful.

Acknowledgments

This work was partially supported by a grant from the Research Grants Council of the Hong Kong
Special Administration Region, China. We are very grateful to the action editor and the anonymous
referees for their valuable comments and suggestions. The first author would like to thank Haixuan
Yang, Gang Li, and Wan Zhang for helpful discussions.

Appendix A. Gradient of RMSE

Let H = diag{h′(a1),h′(a2), ...,h′(aM)}, and W(2)
j denote the j-th column of W(2). We have

∂RMSE(θ)

∂W(1)
= E

{ n

∑
i=1

Ki ·
∂yi

∂W(1)

}
= E

{ n

∑
i=1

Ki ·
[M

∑
j=1

∂yi

∂a j
· ∂a j

∂W(1)

]}

= E
{ M

∑
j=1

[(∂y
∂a j

)T
K

]
· ∂a j

∂W(1)

}
= E

{ M

∑
j=1

[
h′(a j) ·W(2)T

j ·K
]
· ∂a j

∂W(1)

}

= E{H ·W(2)T ·K ·xT}, (16)

∂RMSE(θ)

∂W(d)
= E

{ n

∑
i=1

Ki ·
∂yi

∂W(d)

}

= E{KxT}, (17)
∂RMSE(θ)

∂b(2)
= E{K}, (18)

∂RMSE(θ)

∂b(1)
= E{H ·W(2)T ·K}. (19)

2481

ZHANG AND CHAN

Appendix B. Gradient of Pi j in Eq. 8

Noting that ∂
∂θ

(
∂2yl

∂xi∂x j

)
= ∂2

∂xi∂x j

(
∂yl
∂θ

)
since θ is independent from xi, we can obtain the following

rule after tedious derivation:

Pi j

∂w(2)
lm

=
∂2yl

∂xi∂x j
· ∂2zm

∂xi∂x j
, (20)

∂Pi j

∂w(1)
mk

= ∆i jm ·
{

h′′(am)[w(1)
mi ·δk j +w(1)

m j ·δik]+h′′′(am) ·w(1)
m j ·w

(1)
mi · xk

}
,

∂Pi j

∂b(1)
m

= ∆i jm ·h′′′(am) ·w(1)
m j ·w

(1)
mi ,

∂Pi j

∂W(d)
= 0,

∂Pi j

b(2)
= 0,

where ∆i jm = ∑n
l=1 w(2)

lm · ∂2yl
∂xi∂x j

, ∂2yl
∂xi∂x j

= ∑M
m=1 w(2)

lm · ∂2zm
∂xi∂x j

, ∂2zm
∂xi∂x j

= h′′(am) ·w(1)
mi ·w

(1)
m j , and δik is the

Kronecker delta function.

Appendix C. Proof of Lemma 1

Proof. The mean square error of reconstructing d from y with the linear transformation a is

E{||d−a · y||2} = E{(d−a · y)T (d−a · y)}
= E{dT ·d−2aT d · y+aT a · y2}

= E
{

aT a ·
(

y− aT d
aT a

)2
− (aT d)2

aT a
+dT d

}

= aT a ·E
{(

y− aT d
aT a

)2}
−E

{(aT d)2

aT a

}
+E{dT d}. (21)

The first term of Eq. 21 is always non-negative. No matter what value a takes, in order to minimize
Eq. 21, we should choose

y = aT d · (aT a)−1 (22)

to make this term vanish, meaning that y is the linear combination of di with the coefficients a ·
(aT a)−1.

Next, when the first term of Eq. 21 vanishes, minimizing this function w.r.t. a is reduced to
maximizing E{(aT d)2 · (aT a)−1} = E{aT ddT a · (aT a)−1}. Letting a′ = a/

√
aT a, this is equivalent

to the constrained optimization problem: max a′T ·E{ddT} · a′, s.t. a′T a′ = 1. Clearly this is the
PCA problem. So a′ is the eigenvector of E{ddT} associated with the largest eigenvalue, and
according to Eq. 22, y is the principal component of d multiplied by a constant.

Now let us consider the case where y is constrained to be zero-mean. Let d = E{d}, and d̃ =

d−d. We have E{||d−a ·y||2}= E{(d̃−a ·y+d)T (d̃−a ·y+d)}= E{(d̃−a ·y)T (d̃−a ·y)}+d
T

d.

d
T

d can be considered as a constant. Using the result above, we can see that when Ry is minimized,
y is the principal component of d̃ multiplied by a constant. (Q.E.D)

2482

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

Appendix D. Proof of Theorem 1

Proof: As it has been assumed here that each output of nonlinear ICA depends only on one of the
sources, we can denote by h j(s j) the estimate of s j produced by nonlinear ICA. For the sake of
simplicity, we make both xi and h j(s j) zero-mean, that is, E{xi} = E{h j(s j)} = 0. So the matrix
A∗ in Eq. 2 is n×n. Denote by a∗i j the (i, j)th entry of A∗. RMSE defined by Eq. 2 is

RMSE = ∑
i

E
{

xi −∑
j

a∗i jh j(s j)
}2

= ∑
i

E
{

∑
j

[
fi j(s j)−a∗i jh j(s j)

]}2

= ∑
i

{
∑

j

E
(

fi j(s j)−a∗i jh j(s j)
)2

+ ∑
k 6=l

E
[(

fik(sk)−a∗ikhk(sk)
)
·
(

fil(sl)−a∗ilhl(sl)
)]}

.

As E{hk(sk)hl(sl)} = E{hk(sk) fil(sl)} = 0 for k 6= l, the above equation becomes

RMSE = ∑
i

{
∑

j

E
(

fi j(s j)−a∗i jh j(s j)
)2

+ ∑
k 6=l

E
(

fik(sk) fil(sl)
)}

= ∑
j

{
∑

i

E
(

fi j(s j)−a∗i jh j(s j)
)2

}
+ const.

One can see that minimization of the above function can be achieved by minimizing ∑i E
(

fi j(s j)−
a∗i jh j(s j)

)2
independently for each j. That is, h j(s j) and a∗i j are adjusted to minimize ∑i E

(
fi j(s j)−

a∗i jh j(s j)
)2

. According to Lemma 1, h j(s j) produced by nonlinear ICA with MND is the first
principal component of f∗ j(s j) = [f1 j(s j), · · · , fn j(s j)]

T , multiplied by a constant. (Q.E.D)

Appendix E. Proof of Theorem 2

Proof. Denote by h j(s j) the estimate of s j produced by nonlinear ICA, and assume that both xi and
h j(s j) zero-mean. Denote by a∗i j the (i, j)th entry of A∗. Note that ∑ j,k,l Oi, jkl · s jsksl = ∑ j Oi, j j j ·
s js js j +3 ·∑ j ∑k 6= j Oi, jkk ·s js2

k +∑ j ∑k 6= j ∑ l 6= j
l 6=k

Oi, jkl ·s jsksl , and that E{s j}= 0 and E{s2
j}= 1. RMSE

defined by Eq. 2 becomes

RMSE = ∑
i

E
{

xi −∑
j

a∗i jh j(s j)
}2

= ∑
i

E
{

fi(0)+∑
j

Oi, j · s j +
1
2 ∑

j,k

Oi, jk · s jsk +
1
6 ∑

j,k,l

Oi, jkl · s jsksl −∑
j

a∗i jh j(s j)
}2

=
n

∑
i=1

E
{

fi(0)+∑
j

[
Oi, j · s j +

1
2
Oi, j j · s2

j +
1
6
Oi, j j j · s3

j +
3
6 ∑

k 6= j

Oi, jkk · s js
2
k

−a∗i jh j(s j)
]
+

1
2 ∑

j
∑
k 6= j

Oi, jk · s jsk +
1
6 ∑

j
∑
k 6= j

∑
l 6= j
l 6=k

Oi, jkl · s jsksl

}2
. (23)

2483

ZHANG AND CHAN

Bearing in mind that s j are mutually independent, and also taking all the terms independent of
h j(s j) and a∗i j as constants, we can re-write Eq. 23 as

RMSE

= ∑
i

E
{

∑
j

[
Oi, j · s j +

1
2
Oi, j j · s2

j +
1
6
Oi, j j j · s3

j +
3
6 ∑

k 6= j

Oi, jkk · s js
2
k −a∗i jh j(s j)

]}2
+ const

= ∑
i

E
{

∑
j

[
Oi, j · s j +

1
2
Oi, j j · s2

j +
1
6
Oi, j j j · s3

j −a∗i jh j(s j)
]
+

1
2 ∑

j
∑
k 6= j

Oi, jkk · s js
2
k

}2
+ const

= ∑
i

E
{[

∑
j

(
Oi, j · s j +

1
2
Oi, j j · s2

j +
1
6
Oi, j j j · s3

j −a∗i jh j(s j)
)]2

−∑
j

(
a∗i jh j(s j) · ∑

k 6= j

Oi, jkk · s js
2
k

)}
+ const

= ∑
i

E
{

∑
j

(
Oi, j · s j +

1
2
Oi, j j · s2

j +
1
6
Oi, j j j · s3

j −a∗i jh j(s j)
)2

−∑
j

(
a∗i jh j(s j) · ∑

k 6= j

Oi, jkk · s j

}
+ const

= ∑
i

∑
j

E
{(

Oi, j +
1
2 ∑

k 6= j

Oi, jkk

)
· s j +

1
2
Oi, j j · s2

j +
1
6
Oi, j j j · s3

j −a∗i jh j(s j)
}2

+ const

= ∑
j

[
∑

i
E

(
Di j(s j)−a∗i jh j(s j)

)2
]
+ const.

Note that there is no dependence relationship between h j(·), as well as a∗i j, with different j. To
minimize the above function, we just need to adjust h j(s j) and a∗i j to minimize ∑i E

(
Di(s j)−

a∗i jh j(s j)
)2

, independently for each j. According to Lemma 1, h j(s j) is the first principal com-
ponent of D̃∗ j(s j) = [D̃1 j(s j), · · · , D̃n j(s j),]

T , multiplied by a constant. (Q.E.D)

References

L.B. Almeida. MISEP - linear and nonlinear ICA based on mutual information. Journal of Machine
Learning Research, 4:1297–1318, 2003.

L.B. Almeida. Separating a real-life nonlinear image mixture. Journal of Machine Learning Re-
search, 6:1199–1229, 2005.

S. Amari, A. Cichocki, and H.H. Yang. A new learning algorithm for blind signal separation. In
David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, Advances in Neural
Information Processing Systems, volume 8, pages 757–763, Cambridge, MA, 1996. MIT Press.

L.A. Baccala and K. Sameshima. Partial directed coherence: a new concept in neural structure
determination. Biol. Cybern., 84:463–474, 2001.

A.D. Back. A first application of independent component analysis to extracting structure from stock
returns. International Journal of Neural Systems, 8(4):473–484, August 1997.

A.J. Bell and T.J. Sejnowski. An information-maximization approach to blind separation and blind
deconvolution. Neural Computation, 7(6):1129–1159, 1995.

2484

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

C.M. Bishop. Curvature-driven smoothing: a learning algorithm for feedforward networks. IEEE
Transactions on Neural Networks, 4(5):882–884, 1993.

C.M. Bishop. Regularization and complexity control in feed-forward networks. In Proc. Interna-
tional Conference on Artificial Neural Networks (ICANN’95), volume 1, pages 141–148, 1995.

G. Burel. Blind separation of sources: a nonlinear neural algorithm. Neural Networks, 5(6):937–
947, 1992.

J.F. Cardoso. Blind signal separation: Statistical principles. Proceeding Of The IEEE, special issue
on blind identification and estimation, 9(10):2009–2025, 1998.

L. Chan and S.M. Cha. Selection of independent factor model in finance. In proceedings of 3rd
International Conference on Independent Component Analysis and blind Signal Separation, San
Diego, California, USA, December 2001.

S.S. Chen and R.A. Gopinath. Gaussianization. In Todd K. Leen, Thomas G. Dietterich, and Volker
Tresp, editors, Advances in Neural Information Processing Systems 13, pages 423–429. MIT
Press, 2001.

A. Cichocki and S. Amari. Adaptive Blind Signal and Image Processing: Learning Algorithms and
Applications. John Wiley & Sons, UK, corrected and revisited edition, 2003.

Y. Dodge and V. Rousson. On asymmetric properties of the correlation coefficient in the regression
setting. The American Statistician, 55(1):51–54, 2001.

J. Eriksson and V. Koivunen. Blind identification of class of nonlinear instantaneous ICA models. In
Proc. of the XI European SIgnal Proc. Conf. (EUSIPCO 2002), volume 2, pages 7–10, Toulouse,
France, Sept. 2002.

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties.
J. Amer. Statist. Assoc., 96:1348–1360, 2001.

C. Granger. Testing for causality: A personal viewpoint. Journal of Economic Dynamics and
Control, 2:329-352, 1980.

W.E.L. Grimson. A computational theory of visual surface interpolation. Philosophical Transac-
tions of the Royal Society of London. Series B, Biological Sciences, 298:395–427, 1982.

S. Harmeling, A. Ziehe, M. Kawanabe, and K.R. Müller. Kernel-based nonlinear blind source
separation. Neural Computation, 15:1089–1124, 2003.

R.Y. Ho, R. Strange, and J. Piesse. The structural and institutional features of the Hong Kong stock
market: Implications for asset pricing. Research Paper 027, The Management Centre Research
Papers, King’s College London, 2004.

A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE
Transactions on Neural Networks, 10(3):626–634, 1999.

2485

ZHANG AND CHAN

A. Hyvärinen and R. Karthikesh. Sparse priors on the mixing matrix in independent component
analysis. In Proc. Int. Workshop on Independent Component Analysis and Blind Signal Separa-
tion (ICA2000), pages 477–452, Helsinki, Finland, 2000.

A. Hyvärinen and P. Pajunen. Nonlinear independent component analysis: Existence and unique-
ness results. Neural Networks, 12(3):429–439, 1999.

A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley & Sons, Inc,
2001.

C. Jutten and A. Taleb. Source separation: From dusk till dawn. In 2nd International Workshop
on Independent Component Analysis and Blind Signal Separation (ICA 2000), pages 15–26,
Helsinki, Finland, 2000.

A.M. Kagan, Y.V. Linnik, and C.R. Rao. Characterization Problems in Mathematical Statistics.
Wiley, New York, 1973.

T. Khanna and J.W. Rivkin. Interorganizational ties and business group boundaries: Evidence from
an emerging economy. Organization Science, 17(3):333-352, 2006.

K. Kiviluoto and E. Oja. Independent component analysis for parallel financial time series. In Proc.
ICONIP’98, volume 2, pages 895–898, Tokyo, Japan, 1998.

H. Lappalainen and A. Honkela. Bayesian nonlinear independent component analysis by multi-
layer perceptron. In M.Girolami, editor, Advances in Independent Component Analysis, pages
93–121. Spring-Verlag, 2000.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge,
2000.

T. Poggio, V. Torre, and C. Koch. Computational vision and regularization theory. Nature, 317:
314–319, 1985.

M. Reale and G. Tunnicliffe Wilson. Identification of vector ar models with recursive structural
errors using conditional independence graphs. Statistical Methods and Applications, 10(1-3):
49–65, 2001.

S. Shimizu, P.O. Hoyer, A. Hyvärinen, and A.J. Kerminen. A linear non-Gaussian acyclic model
for causal discovery. Journal of Machine Learning Research, 7:2003–2030, 2006.

A. Taleb. A generic framework for blind source separation in structured nonlinear models. IEEE
Transactions on Signal Processing, 50(8):1819–1830, 2002.

A. Taleb and C. Jutten. Source separation in post-nonlinear mixtures. IEEE Trans. on Signal
Processing, 47(10):2807–2820, 1999.

Y. Tan, J. Wang, and J. M. Zurada. Nonlinear blind source separation using a radial basis function
network. IEEE Trans. on Neural Networks, 12(1):124–134, 2001.

A.N. Tikhonov and V.A. Arsenin. Solutions of Ill-posed Problems. Winston & Sons, Washington,
1977.

2486

MINIMAL NONLINEAR DISTORTION FOR NONLINEAR ICA

H. Valpola. Nonlinear independent component analysis using ensemble learning: Theory. In Proc.
Int. Workshop on Independent Component Analysis and Blind Signal Separation (ICA2000),
pages 251–256, Helsinki, Finland, 2000.

L. Xu. Least mean square error reconstruction principle for self-organizing neural-nets. Neural
Networks, 6:627–648, 1993.

H.H. Yang, S. Amari, and A. Cichocki. Information-theoretic approach to blind separation of
sources in nonlinear mixture. Signal Processing, 64(3):291–300, 1998.

K. Zhang and L. Chan. Kernel-based nonlinear independent component analysis. In Proc. Int.
Workshop on Independent Component Analysis and Signal Separation (ICA2007), pages 301–
308, London, UK, Sept. 2007a.

K. Zhang and L. Chan. Nonlinear independent component analysis with minimum nonlinear dis-
tortion. In the 24th Annual International Conference on Machine Learning (ICML 2007), pages
1127–1134, Corvallis, OR, US, Jun. 2007b.

K. Zhang and L. Chan. Extensions of ICA for causality discovery in the Hong Kong stock market.
In Proc. 13th International Conference on Neural Information Processing (ICONIP 2006), pages
400–409, Hong Kong, 2006.

2487

Journal of Machine Learning Research 9 (2008) 2489-2490 Submitted 4/08; Revised 6/08; Published 11/08

On the Equivalence of Linear Dimensionality-Reducing
Transformations

Marco Loog∗ M.LOOG@TUDELFT.NL

ICT Group
Delft University of Technology
Mekelweg 4
2628 CD Delft, The Netherlands

Editor: Leslie Pack Kaelbling

Abstract
In this JMLR volume, Ye (2008) demonstrates the essential equivalence of two sets of solutions to
a generalized Fisher criterion used for linear dimensionality reduction (see Ye, 2005; Loog, 2007).
Here, I point out the basic flaw in this new contribution.

Keywords: linear discriminant analysis, equivalence relation, linear subspaces, Bayes error

1. Introduction

Some time ago, Ye (2005) studied an optimization criterion for linear dimensionality reduction and
tried to characterize the family of solutions to this objective function. The description, however,
merely covers a part of the full solution set and is therefore, in fact, not at all a characterization.
Loog (2007) has corrected this mistake, giving the proper, larger set of solutions. In this volume,
Ye (2008) now demonstrates that the two solution sets are essentially equivalent.

In principle, Ye (2008) is correct and the two sets of dimension reducing transforms can indeed
be considered equivalent. At the base of this fact is that mathematically speaking anything can
be equivalent to anything else. The point I would like to convey, however, is that the equivalence
considered is not essential and, as a result, the two sets are in fact essentially different. The main
question in this is what is ‘essential’ in the context of supervised linear dimensionality reduction?

2. Essential Equivalence

Concerned with classification tasks, the performance of every dimensionality reduction criterion
should primarily be discussed in relation to the Bayes error (see Fukunaga, 1990, Chapter 10). As
such, transformations might be considered essentially equivalent if their Bayes errors in the reduces
spaces are equal. A closely related definition is to consider transformations A and B equivalent if
there is a nonsingular transformation T such that A = T ◦B (see Fukunaga, 1990). The latter is more
restrictive than the former as the existence of T implies an equal Bayes error for A and B, but the
implication in the other direction does not necessarily hold. When A and B are linear and there is
such a transform T , both of them span the same subspace of the original feature space, obviously

∗. Also in the Image Group, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen Ø, Denmark.

c©2008 Marco Loog.

LOOG

resulting in the equality of the Bayes errors. Based on the foregoing, two linear transformations are
also considered essentially equivalent if they span the same subspace.

Now, without providing any rationale, Ye (2008) declares two linear transformations A and B
to be equivalent if there is a vector v such that A(xi − v) = B(xi − v) for all feature vectors xi in the
training set. The following very simple examples demonstrate, however, why the latter definition of
equivalence is flawed.

Let x1 = (0,0)t and x2 = (1,0)t be two training samples, A = (1,0), B = (−1,0), C = (1,1), D =
(0,0), and E = (0,1) be linear transformations, and let v equal to (v1,v2)

t. Now, firstly, one cannot
have both −v1 = A(x1 − v) = B(x1 − v) = v1 and 1− v1 = A(x2 − v) = B(x2 − v) = −1 + v1, and
therefore A is not equivalent to B even thought A = −B. That is, two transforms that trivially define
the same subspace are apparently not equivalent. Secondly, D(xi − v) = 0 = E(xi − v) shows that
transforms spanning subspaces of different dimensions can be equivalent. Finally, a straightforward
calculation shows that A and C are equivalent, that is, two transforms that obviously span different
subspaces, and therefore most probably result in different Bayes errors, are considered equivalent.

3. In Conclusion

Maintaining that the equivalence relation in Ye (2008) is flawed, it directly follows that it cannot be
concluded that the different sets of solutions as given by Loog (2007) and Ye (2005) are essentially
equivalent. In fact, as should be obvious from Loog (2007), they are essentially different. Given that
x1 and x2 (as defined above) come from two different classes, one can easily check that the solution
set by Ye (2005) is given by {(a,0)|a ∈ R\0}, that is, nondegenerate multiples of A = (1,0), while
the true set also contains transformations like C = (1,1). Both define different subspaces and,
generically, lead to different Bayes errors.

Acknowledgments

This research is supported by the Innovational Research Incentives Scheme of the Netherlands Re-
search Organization [NWO], the Netherlands, and the Research Grant Program of the Faculty of
Science, University of Copenhagen, Denmark.

References

K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, New York, 1990.

M. Loog. A complete characterization of a family of solutions to a generalized fisher criterion.
Journal of Machine Learning Research, 8:2121–2123, 2007.

J. Ye. Characterization of a family of algorithms for generalized discriminant analysis on under-
sampled problems. Journal of Machine Learning Research, 6:483–502, 2005.

J. Ye. Comments on the complete characterization of a family of solutions to a generalized fisher
criterion. Journal of Machine Learning Research, 9:517–519, 2008.

2490

Journal of Machine Learning Research 9 (2008) 2491-2521 Submitted 1/08; Revised 8/08; Published 11/08

SimpleMKL

Alain Rakotomamonjy ALAIN.RAKOTOMAMONJY@INSA-ROUEN.FR

LITIS EA 4108
Université de Rouen
76800 Saint Etienne du Rouvray, France

Francis R. Bach FRANCIS.BACH@MINES.ORG

INRIA - WILLOW Project - Team
Laboratoire d’Informatique de l’Ecole Normale Supérieure(CNRS/ENS/INRIA UMR 8548)
45, Rue d’Ulm, 75230 Paris, France

Stéphane Canu STEPHANE.CANU@INSA-ROUEN.FR

LITIS EA 4108
INSA de Rouen
76801 Saint Etienne du Rouvray, France

Yves Grandvalet YVES.GRANDVALET@UTC.FR

Idiap Research Institute, Centre du Parc
1920 Martigny, Switzerland∗

Editor: Nello Cristianini

Abstract

Multiple kernel learning (MKL) aims at simultaneously learning a kernel and the associated predic-
tor in supervised learning settings. For the support vector machine, an efficient and general multiple
kernel learning algorithm, based on semi-infinite linear programming, has been recently proposed.
This approach has opened new perspectives since it makes MKL tractable for large-scale problems,
by iteratively using existing support vector machine code. However, it turns out that this iterative
algorithm needs numerous iterations for converging towards a reasonable solution. In this paper,
we address the MKL problem through a weighted 2-norm regularization formulation with an addi-
tional constraint on the weights that encourages sparse kernel combinations. Apart from learning
the combination, we solve a standard SVM optimization problem, where the kernel is defined as a
linear combination of multiple kernels. We propose an algorithm, named SimpleMKL, for solving
this MKL problem and provide a new insight on MKL algorithms based on mixed-norm regular-
ization by showing that the two approaches are equivalent. We show how SimpleMKL can be
applied beyond binary classification, for problems like regression, clustering (one-class classifica-
tion) or multiclass classification. Experimental results show that the proposed algorithm converges
rapidly and that its efficiency compares favorably to other MKL algorithms. Finally, we illustrate
the usefulness of MKL for some regressors based on wavelet kernels and on some model selection
problems related to multiclass classification problems.

Keywords: multiple kernel learning, support vector machines, support vector regression, multi-
class SVM, gradient descent

∗. Also at Heudiasyc, CNRS/Université de Technologie de Compiègne (UMR 6599), 60205 Compiègne, France.

c©2008 Alain Rakotomamonjy, Francis R. Bach, Stéphane Canu and Yves Grandvalet.

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

1. Introduction

During the last few years, kernel methods, such as support vector machines (SVM) have proved
to be efficient tools for solving learning problems like classification or regression (Schölkopf and
Smola, 2001). For such tasks, the performance of the learning algorithm strongly depends on the
data representation. In kernel methods, the data representation is implicitly chosen through the so-
called kernel K(x,x′). This kernel actually plays two roles: it defines the similarity between two
examples x and x′, while defining an appropriate regularization term for the learning problem.

Let {xi,yi}
`
i=1 be the learning set, where xi belongs to some input space X and yi is the target

value for pattern xi. For kernel algorithms, the solution of the learning problem is of the form

f (x) =
`

∑
i=1

α?
i K(x,xi)+b?, (1)

where α?
i and b? are some coefficients to be learned from examples, while K(·, ·) is a given positive

definite kernel associated with a reproducing kernel Hilbert space (RKHS) H .
In some situations, a machine learning practitioner may be interested in more flexible models.

Recent applications have shown that using multiple kernels instead of a single one can enhance the
interpretability of the decision function and improve performances (Lanckriet et al., 2004a). In such
cases, a convenient approach is to consider that the kernel K(x,x′) is actually a convex combination
of basis kernels:

K(x,x′) =
M

∑
m=1

dmKm(x,x′) , with dm ≥ 0 ,
M

∑
m=1

dm = 1 ,

where M is the total number of kernels. Each basis kernel Km may either use the full set of variables
describing x or subsets of variables stemming from different data sources (Lanckriet et al., 2004a).
Alternatively, the kernels Km can simply be classical kernels (such as Gaussian kernels) with dif-
ferent parameters. Within this framework, the problem of data representation through the kernel is
then transferred to the choice of weights dm.

Learning both the coefficients αi and the weights dm in a single optimization problem is known
as the multiple kernel learning (MKL) problem. For binary classification, the MKL problem has
been introduced by Lanckriet et al. (2004b), resulting in a quadratically constrained quadratic pro-
gramming problem that becomes rapidly intractable as the number of learning examples or kernels
become large.

What makes this problem difficult is that it is actually a convex but non-smooth minimization
problem. Indeed, Bach et al. (2004a) have shown that the MKL formulation of Lanckriet et al.
(2004b) is actually the dual of a SVM problem in which the weight vector has been regularized
according to a mixed (`2, `1)-norm instead of the classical squared `2-norm. Bach et al. (2004a)
have considered a smoothed version of the problem for which they proposed a SMO-like algorithm
that enables to tackle medium-scale problems.

Sonnenburg et al. (2006) reformulate the MKL problem of Lanckriet et al. (2004b) as a semi-
infinite linear program (SILP). The advantage of the latter formulation is that the algorithm ad-
dresses the problem by iteratively solving a classical SVM problem with a single kernel, for which
many efficient toolboxes exist (Vishwanathan et al., 2003; Loosli et al., 2005; Chang and Lin, 2001),
and a linear program whose number of constraints increases along with iterations. A very nice fea-
ture of this algorithm is that is can be extended to a large class of convex loss functions. For instance,
Zien and Ong (2007) have proposed a multiclass MKL algorithm based on similar ideas.

2492

SIMPLEMKL

In this paper, we present another formulation of the multiple learning problem. We first depart
from the primal formulation proposed by Bach et al. (2004a) and further used by Bach et al. (2004b)
and Sonnenburg et al. (2006). Indeed, we replace the mixed-norm regularization by a weighted
`2-norm regularization, where the sparsity of the linear combination of kernels is controlled by a `1-
norm constraint on the kernel weights. This new formulation of MKL leads to a smooth and convex
optimization problem. By using a variational formulation of the mixed-norm regularization, we
show that our formulation is equivalent to the ones of Lanckriet et al. (2004b), Bach et al. (2004a)
and Sonnenburg et al. (2006).

The main contribution of this paper is to propose an efficient algorithm, named SimpleMKL,
for solving the MKL problem, through a primal formulation involving a weighted `2-norm regu-
larization. Indeed, our algorithm is simple, essentially based on a gradient descent on the SVM
objective value. We iteratively determine the combination of kernels by a gradient descent wrap-
ping a standard SVM solver, which is SimpleSVM in our case. Our scheme is similar to the one
of Sonnenburg et al. (2006), and both algorithms minimize the same objective function. However,
they differ in that we use reduced gradient descent in the primal, whereas Sonnenburg et al.’s SILP
relies on cutting planes. We will empirically show that our optimization strategy is more efficient,
with new evidences confirming the preliminary results reported in Rakotomamonjy et al. (2007).

Then, extensions of SimpleMKL to other supervised learning problems such as regression SVM,
one-class SVM or multiclass SVM problems based on pairwise coupling are proposed. Although
it is not the main purpose of the paper, we will also discuss the applicability of our approach to
general convex loss functions.

This paper also presents several illustrations of the usefulness of our algorithm. For instance,
in addition to the empirical efficiency comparison, we also show, in a SVM regression problem
involving wavelet kernels, that automatic learning of the kernels leads to far better performances.
Then we depict how our MKL algorithm behaves on some multiclass problems.

The paper is organized as follows. Section 2 presents the functional settings of our MKL prob-
lem and its formulation. Details on the algorithm and discussion of convergence and computational
complexity are given in Section 3. Extensions of our algorithm to other SVM problems are discussed
in Section 4 while experimental results dealing with computational complexity or with comparison
with other model selection methods are presented in Section 5.

A SimpleMKL toolbox based on Matlab code is available at http://www.mloss.org. This
toolbox is an extension of our SVM-KM toolbox (Canu et al., 2003).

2. Multiple Kernel Learning Framework

In this section, we present our MKL formulation and derive its dual. In the sequel, i and j are
indices on examples, whereas m is the kernel index. In order to lighten notations, we omit to specify
that summations on i and j go from 1 to `, and that summations on m go from 1 to M.

2.1 Functional Framework

Before entering into the details of the MKL optimization problem, we first present the functional
framework adopted for multiple kernel learning. Assume Km,m = 1, ...,M are M positive definite
kernels on the same input space X , each of them being associated with an RKHS Hm endowed with
an inner product 〈·, ·〉m. For any m, let dm be a non-negative coefficient and H ′

m be the Hilbert space

2493

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

derived from Hm as follows:

H ′
m = { f | f ∈Hm :

‖ f‖Hm

dm
< ∞} ,

endowed with the inner product

〈 f ,g〉H ′m =
1

dm
〈 f ,g〉m .

In this paper, we use the convention that x
0 = 0 if x = 0 and ∞ otherwise. This means that, if dm = 0

then a function f belongs to the Hilbert space H ′
m only if f = 0∈Hm. In such a case, H ′

m is restricted
to the null element of Hm.

Within this framework, H ′
m is a RKHS with kernel K(x,x′) = dm Km(x,x′) since

∀ f ∈H ′
m ⊆Hm , f (x) = 〈 f (·),Km(x, ·)〉m

=
1

dm
〈 f (·),dmKm(x, ·)〉m

= 〈 f (·),dmKm(x, ·)〉H ′m .

Now, if we define H as the direct sum of the spaces H ′
m, that is,

H =
M

M

m=1

H ′
m ,

then, a classical result on RKHS (Aronszajn, 1950) says that H is a RKHS of kernel

K(x,x′) =
M

∑
m=1

dmKm(x,x′) .

Owing to this simple construction, we have built a RKHS H for which any function is a sum
of functions belonging to Hm. In our framework, MKL aims at determining the set of coefficients
{dm} within the learning process of the decision function. The multiple kernel learning problem
can thus be envisioned as learning a predictor belonging to an adaptive hypothesis space endowed
with an adaptive inner product. The forthcoming sections explain how we solve this problem.

2.2 Multiple Kernel Learning Primal Problem

In the SVM methodology, the decision function is of the form given in Equation (1), where
the optimal parameters α?

i and b? are obtained by solving the dual of the following optimization
problem:

min
f ,b,ξ

1
2
‖ f‖2

H +C∑
i

ξi

s.t. yi(f (xi)+b)≥ 1−ξi ∀i
ξi ≥ 0 ∀i .

In the MKL framework, one looks for a decision function of the form f (x)+b = ∑m fm(x)+b,
where each function fm belongs to a different RKHS Hm associated with a kernel Km. According
to the above functional framework and inspired by the multiple smoothing splines framework of

2494

SIMPLEMKL

Wahba (1990, chap. 10), we propose to address the MKL SVM problem by solving the following
convex problem (see proof in appendix), which we will be referred to as the primal MKL problem:

min
{ fm},b,ξ,d

1
2 ∑

m

1
dm
‖ fm‖

2
Hm

+C∑
i

ξi

s.t. yi ∑
m

fm(xi)+ yib≥ 1−ξi ∀i

ξi ≥ 0 ∀i

∑
m

dm = 1 , dm ≥ 0 ∀m ,

(2)

where each dm controls the squared norm of fm in the objective function.
The smaller dm is, the smoother fm (as measured by ‖ fm‖Hm

) should be. When dm = 0, ‖ fm‖Hm

has also to be equal to zero to yield a finite objective value. The `1-norm constraint on the vector
d is a sparsity constraint that will force some dm to be zero, thus encouraging sparse basis kernel
expansions.

2.3 Connections With mixed-norm Regularization Formulation of MKL

The MKL formulation introduced by Bach et al. (2004a) and further developed by Sonnenburg
et al. (2006) consists in solving an optimization problem expressed in a functional form as

min
{ f},b,ξ

1
2

(

∑
m
‖ fm‖Hm

)2

+C∑
i

ξi

s.t. yi ∑
m

fm(xi)+ yib≥ 1−ξi ∀i

ξi ≥ 0 ∀i.

(3)

Note that the objective function of this problem is not smooth since ‖ fm‖Hm
is not differentiable at

fm = 0. However, what makes this formulation interesting is that the mixed-norm penalization of
f = ∑m fm is a soft-thresholding penalizer that leads to a sparse solution, for which the algorithm
performs kernel selection (Bach, 2008). We have stated in the previous section that our problem
should also lead to sparse solutions. In the following, we show that the formulations (2) and (3) are
equivalent.

For this purpose, we simply show that the variational formulation of the mixed-norm regular-
ization is equal to the weighted 2-norm regularization, (which is a particular case of a more general
equivalence proposed by Micchelli and Pontil 2005), that is, by Cauchy-Schwartz inequality, for
any vector d on the simplex:

(

∑
m
‖ fm‖Hm

)2

=

(

∑
m

‖ fm‖Hm

d1/2
m

d1/2
m

)2

6

(

∑
m

‖ fm‖
2
Hm

dm

)

(

∑
m

dm

)

6 ∑
m

‖ fm‖
2
Hm

dm
,

2495

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

where equality is met when d1/2
m is proportional to ‖ fm‖Hm

/d1/2
m , that is:

dm =
‖ fm‖Hm

∑
q
‖ fq‖Hq

,

which leads to

min
dm≥0,∑m dm=1

∑
m

‖ fm‖
2
Hm

dm
=

(

∑
m
‖ fm‖Hm

)2

.

Hence, owing to this variational formulation, the non-smooth mixed-norm objective function of
problem (3) has been turned into a smooth objective function in problem (2). Although the number
of variables has increased, we will see that this problem can be solved more efficiently.

2.4 The MKL Dual Problem

The dual problem is a key point for deriving MKL algorithms and for studying their convergence
properties. Since our primal problem (2) is equivalent to the one of Bach et al. (2004a), they lead
to the same dual. However, our primal formulation being convex and differentiable, it provides a
simple derivation of the dual, that does not use conic duality.

The Lagrangian of problem (2) is

L =
1
2 ∑

m

1
dm
‖ fm‖

2
Hm

+C∑
i

ξi +∑
i

αi

(

1−ξi− yi ∑
m

fm(xi)− yib

)

−∑
i

νiξi

+λ
(

∑
m

dm−1

)

−∑
m

ηmdm , (4)

where αi and νi are the Lagrange multipliers of the constraints related to the usual SVM problem,
whereas λ and ηm are associated to the constraints on dm. When setting to zero the gradient of the
Lagrangian with respect to the primal variables, we get the following

(a)
1

dm
fm(·) = ∑

i

αiyiKm(·,xi) , ∀m,

(b) ∑
i

αiyi = 0,

(c) C−αi−νi = 0 , ∀i,

(d) −
1
2

‖ fm‖
2
Hm

d2
m

+λ−ηm = 0 , ∀m .

(5)

We note again here that fm(·) has to go to 0 if the coefficient dm vanishes. Plugging these optimality
conditions in the Lagrangian gives the dual problem

max
αi,λ

∑
i

αi−λ

s.t. ∑
i

αiyi = 0

0≤ αi ≤C ∀i
1
2 ∑

i, j

αiα jyiy jKm(xi,x j)≤ λ , ∀m .

(6)

2496

SIMPLEMKL

This dual problem1 is difficult to optimize due to the last constraint. This constraint may be
moved to the objective function, but then, the latter becomes non-differentiable causing new diffi-
culties (Bach et al., 2004a). Hence, in the forthcoming section, we propose an approach based on
the minimization of the primal. In this framework, we benefit from differentiability which allows
for an efficient derivation of an approximate primal solution, whose accuracy will be monitored by
the duality gap.

3. Algorithm for Solving the MKL Primal Problem

One possible approach for solving problem (2) is to use the alternate optimization algorithm
applied by Grandvalet and Canu (1999, 2003) in another context. In the first step, problem (2) is
optimized with respect to fm, b and ξ, with d fixed. Then, in the second step, the weight vector
d is updated to decrease the objective function of problem (2), with fm, b and ξ being fixed. In
Section 2.3, we showed that the second step can be carried out in closed form. However, this
approach lacks convergence guarantees and may lead to numerical problems, in particular when
some elements of d approach zero (Grandvalet, 1998). Note that these numerical problems can be
handled by introducing a perturbed version of the alternate algorithm as shown by Argyriou et al.
(2008).

Instead of using an alternate optimization algorithm, we prefer to consider here the following
constrained optimization problem:

min
d

J(d) such that
M

∑
m=1

dm = 1, dm ≥ 0 , (7)

where

J(d) =

min
{ f},b,ξ

1
2 ∑

m

1
dm
‖ fm‖

2
Hm

+C∑
i

ξi ∀i

s.t. yi ∑
m

fm(xi)+ yib≥ 1−ξi

ξi ≥ 0 ∀i .

(8)

We show below how to solve problem (7) on the simplex by a simple gradient method. We will
first note that the objective function J(d) is actually an optimal SVM objective value. We will then
discuss the existence and computation of the gradient of J(·), which is at the core of the proposed
approach.

3.1 Computing the Optimal SVM Value and its Derivatives

The Lagrangian of problem (8) is identical to the first line of Equation (4). By setting to zero
the derivatives of this Lagrangian according to the primal variables, we get conditions (5) (a) to (c),
from which we derive the associated dual problem

max
α

−
1
2 ∑

i, j

αiα jyiy j ∑
m

dmKm(xi,x j)+∑
i

αi

with ∑
i

αiyi = 0

C ≥ αi ≥ 0 ∀i ,

(9)

1. Note that Bach et al. (2004a) formulation differs slightly, in that the kernels are weighted by some pre-defined
coefficients that were not considered here.

2497

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

which is identified as the standard SVM dual formulation using the combined kernel K(xi,x j) =

∑m dmKm(xi,x j). Function J(d) is defined as the optimal objective value of problem (8). Because of
strong duality, J(d) is also the objective value of the dual problem:

J(d) =−
1
2 ∑

i, j

α?
i α?

jyiy j ∑
m

dmKm(xi,x j)+∑
i

α?
i , (10)

where α? maximizes (9). Note that the objective value J(d) can be obtained by any SVM algorithm.
Our method can thus take advantage of any progress in single kernel algorithms. In particular, if the
SVM algorithm we use is able to handle large-scale problems, so will our MKL algorithm. Thus,
the overall complexity of SimpleMKL is tied to the one of the single kernel SVM algorithm.

From now on, we assume that each Gram matrix (Km(xi,x j))i, j is positive definite, with all
eigenvalues greater than some η > 0 (to enforce this property, a small ridge may be added to the
diagonal of the Gram matrices). This implies that, for any admissible value of d, the dual problem
is strictly concave with convexity parameter η (Lemaréchal and Sagastizabal, 1997). In turn, this
strict concavity property ensures that α? is unique, a characteristic that eases the analysis of the
differentiability of J(·).

Existence and computation of derivatives of optimal value functions such as J(·) have been
largely discussed in the literature. For our purpose, the appropriate reference is Theorem 4.1 in
Bonnans and Shapiro (1998), which has already been applied by Chapelle et al. (2002) for tuning
squared-hinge loss SVM. This theorem is reproduced in the appendix for self-containedness. In
a nutshell, it says that differentiability of J(d) is ensured by the uniqueness of α?, and by the
differentiability of the objective function that gives J(d). Furthermore, the derivatives of J(d) can
be computed as if α? were not to depend on d. Thus, by simple differentiation of the dual function
(9) with respect to dm, we have:

∂J
∂dm

=−
1
2 ∑

i, j

α?
i α?

jyiy jKm(xi,x j) ∀m . (11)

We will see in the sequel that the applicability of this theorem can be extended to other SVM
problems. Note that complexity of the gradient computation is of the order of m · n2

SV , with nSV

being the number of support vectors for the current d.

3.2 Reduced Gradient Algorithm

The optimization problem we have to deal with in (7) is a non-linear objective function with
constraints over the simplex. With our positivity assumption on the kernel matrices, J(·) is convex
and differentiable with Lipschitz gradient (Lemaréchal and Sagastizabal, 1997). The approach we
use for solving this problem is a reduced gradient method, which converges for such functions
(Luenberger, 1984).

Once the gradient of J(d) is computed, d is updated by using a descent direction ensuring that
the equality constraint and the non-negativity constraints on d are satisfied. We handle the equality
constraint by computing the reduced gradient (Luenberger, 1984, Chap. 11). Let dµ be a non-zero
entry of d, the reduced gradient of J(d), denoted ∇redJ, has components:

[∇redJ]m =
∂J

∂dm
−

∂J
∂dµ

∀m 6= µ , and [∇redJ]µ = ∑
m6=µ

(

∂J
∂dµ
−

∂J
∂dm

)

.

2498

SIMPLEMKL

We chose µ to be the index of the largest component of vector d, for better numerical stability
(Bonnans, 2006).

The positivity constraints have also to be taken into account in the descent direction. Since we
want to minimize J(·), −∇redJ is a descent direction. However, if there is an index m such that
dm = 0 and [∇redJ]m > 0, using this direction would violate the positivity constraint for dm. Hence,
the descent direction for that component is set to 0. This gives the descent direction for updating d
as

Dm =

0 if dm = 0 and ∂J
∂dm
− ∂J

∂dµ
> 0

−
∂J

∂dm
+

∂J
∂dµ

if dm > 0 and m 6= µ

∑
g6=µ,dν>0

(

∂J
∂dν
−

∂J
∂dµ

)

for m = µ .

(12)

The usual updating scheme is d ← d + γD , where γ is the step size. Here, as detailed in
Algorithm 1, we go one step beyond: once a descent direction D has been computed, we first
look for the maximal admissible step size in that direction and check whether the objective value
decreases or not. The maximal admissible step size corresponds to a component, say dν, set to zero.
If the objective value decreases, d is updated, we set Dν = 0 and normalize D to comply with the
equality constraint. This procedure is repeated until the objective value stops decreasing. At this
point, we look for the optimal step size γ, which is determined by using a one-dimensional line
search, with proper stopping criterion, such as Armijo’s rule, to ensure global convergence.

In this algorithm, computing the descent direction and the line search are based on the evaluation
of the objective function J(·), which requires solving an SVM problem. This may seem very costly
but, for small variations of d, learning is very fast when the SVM solver is initialized with the
previous values of α? (DeCoste and Wagstaff., 2000). Note that the gradient of the cost function
is not computed after each update of the weight vector d. Instead, we take advantage of an easily
updated descent direction as long as the objective value decreases. We will see in the numerical
experiments that this approach saves a substantial amount of computation time compared to the
usual update scheme where the descent direction is recomputed after each update of d. Note that we
have also investigated gradient projection algorithms (Bertsekas, 1999, Chap 2.3), but this turned
out to be slightly less efficient than the proposed approach, and we will not report these results.

The algorithm is terminated when a stopping criterion is met. This stopping criterion can be
either based on the duality gap, the KKT conditions, the variation of d between two consecutive
steps or, even more simply, on a maximal number of iterations. Our implementation, based on the
duality gap, is detailed in the forthcoming section.

3.3 Optimality Conditions

In a convex constrained optimization algorithm such as the one we are considering, we have the
opportunity to check for proper optimality conditions such as the KKT conditions or the duality gap
(the difference between primal and dual objective values), which should be zero at the optimum.
From the primal and dual objectives provided respectively in (2) and (6), the MKL duality gap is

DualGap = J(d?)−∑
i

α?
i +

1
2

max
m ∑

i, j

α?
i α?

jyiy jKm(xi,x j) ,

2499

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

Algorithm 1 SimpleMKL algorithm

set dm = 1
M for m = 1, . . . ,M

while stopping criterion not met do
compute J(d) by using an SVM solver with K = ∑m dmKm

compute ∂J
∂dm

for m = 1, . . . ,M and descent direction D (12).

set µ = argmax
m

dm, J† = 0, d† = d, D† = D

while J† < J(d) do {descent direction update}
d = d†, D = D†

ν = argmin
{m|Dm<0}

−dm/Dm, γmax =−dν/Dν

d† = d + γmaxD, D†
µ = Dµ−Dν, D†

ν = 0
compute J† by using an SVM solver with K = ∑m d†

mKm

end while
line search along D for γ ∈ [0,γmax] {calls an SVM solver for each γ trial value}
d← d + γD

end while

where d? and {α?
i } are optimal primal and dual variables, and J(d?) depends implicitly on optimal

primal variables { f ?
m}, b? and {ξ?

i }. If J(d?) has been obtained through the dual problem (9), then
this MKL duality gap can also be computed from the single kernel SVM algorithm duality gap
DGSVM. Indeed, Equation (10) holds only when the single kernel SVM algorithm returns an exact
solution with DGSVM = 0. Otherwise, we have

DGSVM = J(d?)+
1
2 ∑

i, j

α?
i α?

jyiy j ∑
m

d?
mKm(xi,x j)−∑

i

α?
i

then the MKL duality gap becomes

DualGap = DGSVM−
1
2 ∑

i, j

α?
i α?

jyiy j ∑
m

d?
mKm(xi,x j)+

1
2

max
m ∑

i, j

α?
i α?

jyiy jKm(xi,x j) .

Hence, it can be obtained with a small additional computational cost compared to the SVM duality
gap.

In iterative procedures, it is common to stop the algorithm when the optimality conditions are re-
spected up to a tolerance threshold ε. Obviously, SimpleMKL has no impact on DGSVM, hence, one
may assume, as we did here, that DGSVM needs not to be monitored. Consequently, we terminate
the algorithm when

max
m ∑

i, j

α?
i α?

jyiy jKm(xi,x j)−∑
i, j

α?
i α?

jyiy j ∑
m

d?
mKm(xi,x j)≤ ε . (13)

For some of the other MKL algorithms that will be presented in Section 4, the dual function
may be more difficult to derive. Hence, it may be easier to rely on approximate KKT conditions
as a stopping criterion. For the general MKL problem (7), the first order optimality conditions are

2500

SIMPLEMKL

obtained through the KKT conditions:

∂J
∂dm

+λ−ηm = 0 ∀m ,

ηm ·dm = 0 ∀m ,

where λ and {ηm} are respectively the Lagrange multipliers for the equality and inequality con-
straints of (7). These KKT conditions imply

∂J
∂dm

= −λ if dm > 0 ,

∂J
∂dm

≥ −λ if dm = 0 .

However, as Algorithm 1 is not based on the Lagrangian formulation of problem (7), λ is not
computed. Hence, we derive approximate necessary optimality conditions to be used for termination
criterion. Let’s define dJmin and dJmax as

dJmin = min
{dm|dm>0}

∂J
∂dm

and dJmax = max
{dm|dm>0}

∂J
∂dm

,

then, the necessary optimality conditions are approximated by the following termination conditions:

|dJmin−dJmax| ≤ ε and
∂J

∂dm
≥ dJmax if dm = 0 .

In other words, we are considered at the optimum when the gradient components for all positive dm

lie in a ε-tube and when all gradient components for vanishing dm are outside this tube. Note that
these approximate necessary optimality conditions are available right away for any differentiable
objective function J(d).

3.4 Cutting Planes, Steepest Descent and Computational Complexity

As we stated in the introduction, several algorithms have been proposed for solving the original
MKL problem defined by Lanckriet et al. (2004b). All these algorithms are based on equivalent
formulations of the same dual problem; they all aim at providing a pair of optimal vectors (d,α).

In this subsection, we contrast SimpleMKL with its closest relative, the SILP algorithm of
Sonnenburg et al. (2005, 2006). Indeed, from an implementation point of view, the two algorithms
are alike, since they are wrapping a standard single kernel SVM algorithm. This feature makes both
algorithms very easy to implement. They, however, differ in computational efficiency, because the
kernel weights dm are optimized in quite different ways, as detailed below.

Let us first recall that our differentiable function J(d) is defined as:

J(d) =

max
α

−
1
2 ∑

i, j

αiα jyiy j ∑
m

dmKm(xi,x j)+∑
i

αi

with ∑
i

αiyi = 0, C ≥ αi ≥ 0 ∀i ,

and both algorithms aim at minimizing this differentiable function. However, using a SILP approach
in this case, does not take advantage of the smoothness of the objective function.

2501

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

Figure 1: Illustrating three iterations of the SILP algorithm and a gradient descent algorithm for a
one-dimensional problem. This dimensionality is not representative of the MKL frame-
work, but our aim is to illustrate the typical oscillations of cutting planes around the
optimal solution (with iterates d0 to d3). Note that computing an affine lower bound at a
given d requires a gradient computation. Provided the step size is chosen correctly, gra-
dient descent converges directly towards the optimal solution without overshooting (from
d0 to d?).

The SILP algorithm of Sonnenburg et al. (2006) is a cutting plane method to minimize J with
respect to d. For each value of d, the best α is found and leads to an affine lower bound on J(d). The
number of lower bounding affine functions increases as more (d,α) pairs are computed, and the next
candidate vector d is the minimizer of the current lower bound on J(d), that is, the maximum over
all the affine functions. Cutting planes method do converge but they are known for their instability,
notably when the number of lower-bounding affine functions is small: the approximation of the
objective function is then loose and the iterates may oscillate (Bonnans et al., 2003). Our steepest
descent approach, with the proposed line search, does not suffer from instability since we have a
differentiable function to minimize. Figure 1 illustrates the behaviour of both algorithms in a simple
case, with oscillations for cutting planes and direct convergence for gradient descent.

Section 5 evaluates how these oscillations impact on the computational time of the SILP algo-
rithm on several examples. These experiments show that our algorithm needs less costly gradient
computations. Conversely, the line search in the gradient base approach requires more SVM retrain-
ings in the process of querying the objective function. However, the computation time per SVM
training is considerably reduced, since the gradient based approach produces estimates of d on a
smooth trajectory, so that the previous SVM solution provides a good guess for the current SVM
training. In SILP, with the oscillatory subsequent approximations of d?, the benefit of warm-start
training severely decreases.

3.5 Convergence Analysis

In this paragraph, we briefly discuss the convergence of the algorithm we propose. We first
suppose that problem (8) is always exactly solved, which means that the duality gap of such problem
is 0. With such conditions, the gradient computation in (11) is exact and thus our algorithm performs
reduced gradient descent on a continuously differentiable function J(·) (remember that we have

2502

SIMPLEMKL

assumed that the kernel matrices are positive definite) defined on the simplex {d|∑m dm = 1,dm ≥
0}, which does converge to the global minimum of J (Luenberger, 1984).

However, in practice, problem (8) is not solved exactly since most SVM algorithms will stop
when the duality gap is smaller than a given ε. In this case, the convergence of our reduced gradient
method is no more guaranteed by standard arguments. Indeed, the output of the approximately
solved SVM leads only to an ε-subgradient (Bonnans et al., 2003; Bach et al., 2004a). This situation
is more difficult to analyze and we plan to address it thoroughly in future work (see for instance
D’Aspremont 2008 for an example of such analysis in a similar context).

4. Extensions

In this section, we discuss how the proposed algorithm can be simply extended to other SVM
algorithms such as SVM regression, one-class SVM or pairwise multiclass SVM algorithms. More
generally, we will discuss other loss functions that can be used within our MKL algorithms.

4.1 Extensions to Other SVM Algorithms

The algorithm we described in the previous section focuses on binary classification SVMs, but
it is worth noting that our MKL algorithm can be extended to other SVM algorithms with only
little changes. For SVM regression with the ε-insensitive loss, or clustering with the one-class soft
margin loss, the problem only changes in the definition of the objective function J(d) in (8).

For SVM regression (Vapnik et al., 1997; Schölkopf and Smola, 2001), we have

J(d) =

min
fm,b,ξi

1
2 ∑

m

1
dm
‖ fm‖

2
Hm

+C∑
i

(ξi +ξ∗i)

s.t. yi−∑
m

fm(xi)−b≤ ε+ξi ∀i

∑
m

fm(xi)+b− yi ≤ ε+ξ∗i ∀i

ξi ≥ 0,ξ∗i ≤ 0 ∀i ,

(14)

and for one-class SVMs (Schölkopf and Smola, 2001), we have:

J(d) =

min
fm,b,ξi

1
2 ∑

m

1
dm
‖ fm‖

2
Hm

+
1
ν` ∑

i

ξi−b

s.t. ∑
m

fm(xi)≥ b−ξi

ξi ≥ 0 .

Again, J(d) can be defined according to the dual functions of these two optimization problems,
which are respectively

J(d) =

max
α,β

∑
i

(βi−αi)yi− ε∑
i

(βi +αi)−
1
2 ∑

i, j

(βi−αi)(β j−α j)∑
m

dmKm(xi,x j)

with ∑
i

(βi−αi) = 0

0≤ αi , βi ≤C, ∀i ,

2503

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

and

J(d) =

max
α

−
1
2 ∑

i, j

αiα j ∑
m

dmKm(xi,x j)

with 0≤ αi ≤
1
ν`

∀i

∑
i

αi = 1 ,

where {αi} and {βi} are Lagrange multipliers.
Then, as long as J(d) is differentiable, a property strictly related to the strict concavity of its

dual function, our descent algorithm can still be applied. The main effort for the extension of
our algorithm is the evaluation of J(d) and the computation of its derivatives. Like for binary
classification SVM, J(d) can be computed by means of efficient off-the-shelf SVM solvers and the
gradient of J(d) is easily obtained through the dual problems. For SVM regression, we have:

∂J
∂dm

=−
1
2 ∑

i, j

(β?
i −α?

i)(β
?
j −α?

j)Km(xi,x j) ∀m ,

and for one-class SVM, we have:

∂J
∂dm

=−
1
2 ∑

i, j

α?
i α?

jKm(xi,x j) ∀m ,

where α?
i and β?

i are the optimal values of the Lagrange multipliers. These examples illustrate that
extending SimpleMKL to other SVM problems is rather straightforward. This observation is valid
for other SVM algorithms (based for instance on the ν parameter, a squared hinge loss or squared-ε
tube) that we do not detail here. Again, our algorithm can be used provided J(d) is differentiable,
by plugging in the algorithm the function that evaluates the objective value J(d) and its gradient.
Of course, the duality gap may be considered as a stopping criterion if it can be computed.

4.2 Multiclass Multiple Kernel Learning

With SVMs, multiclass problems are customarily solved by combining several binary classi-
fiers. The well-known one-against-all and one-against-one approaches are the two most common
ways for building a multiclass decision function based on pairwise decision functions. Multiclass
SVM may also be defined right away as the solution of a global optimization problem (Weston and
Watkins, 1999; Crammer and Singer, 2001), that may also be addressed with structured-output SVM
(Tsochantaridis et al., 2005). Very recently, an MKL algorithm based on structured-output SVM has
been proposed by Zien and Ong (2007). This work extends the work of Sonnenburg et al. (2006) to
multiclass problems, with an MKL implementation still based on a QCQP or SILP approach.

Several works have compared the performance of multiclass SVM algorithms (Duan and Keerthi,
2005; Hsu and Lin, 2002; Rifkin and Klautau, 2004). In this subsection, we do not deal with this
aspect; we explain how SimpleMKL can be extended to pairwise SVM multiclass implementations.
The problem of applying our algorithm to structured-output SVM will be briefly discussed later.

Suppose we have a multiclass problem with P classes. For a one-against-all multiclass SVM,
we need to train P binary SVM classifiers, where the p-th classifier is trained by considering all
examples of class p as positive examples while all other examples are considered negative. For
a one-against-one multiclass problem, P(P− 1)/2 binary SVM classifiers are built from all pairs

2504

SIMPLEMKL

of distinct classes. Our multiclass MKL extension of SimpleMKL differs from the binary version
only in the definition of a new cost function J(d). As we now look for the combination of kernels
that jointly optimizes all the pairwise decision functions, the objective function we want to optimize
according to the kernel weights {dm} is:

J(d) = ∑
p∈P

Jp(d) ,

where P is the set of all pairs to be considered, and Jp(d) is the binary SVM objective value for the
classification problem pertaining to pair p.

Once the new objective function is defined, the lines of Algorithm 1 still apply. The gradient of
J(d) is still very simple to obtain, since owing to linearity, we have:

∂J
∂dm

=−
1
2 ∑

p∈P
∑
i, j

α?
i,pα?

j,pyiy jKm(xi,x j) ∀m ,

where α j,p is the Lagrange multiplier of the j-th example involved in the p-th decision function.
Note that those Lagrange multipliers can be obtained independently for each pair.

The approach described above aims at finding the combination of kernels that jointly optimizes
all binary classification problems: this one set of features should maximize the sum of margins.
Another possible and straightforward approach consists in running independently SimpleMKL for
each classification task. However, this choice is likely to result in as many combinations of kernels
as there are binary classifiers.

4.3 Other Loss Functions

Multiple kernel learning has been of great interest and since the seminal work of Lanckriet et al.
(2004b), several works on this topic have flourished. For instance, multiple kernel learning has been
transposed to least-square fitting and logistic regression (Bach et al., 2004b). Independently, several
authors have applied mixed-norm regularization, such as the additive spline regression model of
Grandvalet and Canu (1999). This type of regularization, which is now known as the group lasso,
may be seen as a linear version of multiple kernel learning (Bach, 2008). Several algorithms have
been proposed for solving the group lasso problem. Some of them are based on projected gradient or
on coordinate descent algorithm. However, they all consider the non-smooth version of the problem.

We previously mentioned that Zien and Ong (2007) have proposed an MKL algorithm based on
structured-output SVMs. For such problem, the loss function, which differs from the usual SVM
hinge loss, leads to an algorithm based on cutting planes instead of the usual QP approach.

Provided the gradient of the objective value can be obtained, our algorithm can be applied to
group lasso and structured-output SVMs. The key point is whether the theorem of Bonnans et al.
(2003) can be applied or not. Although we have not deeply investigated this point, we think that
many problems comply with this requirement, but we leave these developments for future work.

4.4 Approximate Regularization Path

SimpleMKL requires the setting of the usual SVM hyperparameter C, which usually needs to
be tuned for the problem at hand. For doing so, a practical and useful technique is to compute the
so-called regularization path, which describes the set of solutions as C varies from 0 to ∞.

2505

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

Exact path following techniques have been derived for some specific problems like SVMs or
the lasso (Hastie et al., 2004; Efron et al., 2004). Besides, regularization paths can be sampled by
predictor-corrector methods (Rosset, 2004; Bach et al., 2004b).

For model selection purposes, an approximation of the regularization path may be sufficient.
This approach has been applied for instance by Koh et al. (2007) in regularized logistic regression.

Here, we compute an approximate regularization path based on a warm-start technique. Sup-
pose, that for a given value of C, we have computed the optimal (d?,α?) pair; the idea of a warm-
start is to use this solution for initializing another MKL problem with a different value of C. In
our case, we iteratively compute the solutions for decreasing values of C (note that α? has to be
modified to be a feasible initialization of the more constrained SVM problem).

5. Numerical Experiments

In this experimental section, we essentially aim at illustrating three points. The first point is
to show that our gradient descent algorithm is efficient. This is achieved by binary classification
experiments, where SimpleMKL is compared to the SILP approach of Sonnenburg et al. (2006).
Then, we illustrate the usefulness of a multiple kernel learning approach in the context of regression.
The examples we use are based on wavelet-based regression in which the multiple kernel learning
framework naturally fits. The final experiment aims at evaluating the multiple kernel approach in a
model selection problem for some multiclass problems.

5.1 Computation Time

The aim of this first set of experiments is to assess the running times of SimpleMKL.2 First,
we compare with SILP regarding the time required for computing a single solution of MKL with a
given C hyperparameter. Then, we compute an approximate regularization path by varying C values.
We finally provide hints on the expected complexity of SimpleMKL, by measuring the growth of
running time as the number of examples or kernels increases.

5.1.1 TIME NEEDED FOR REACHING A SINGLE SOLUTION

In this first benchmark, we put SimpleMKL and SILP side by side, for a fixed value of the
hyperparameter C (C = 100). This procedure, which does not take into account a proper model
selection procedure, is not representative of the typical use of SVMs. It is however relevant for the
purpose of comparing algorithmic issues.

The evaluation is made on five data sets from the UCI repository: Liver, Wpbc, Ionosphere,
Pima, Sonar (Blake and Merz, 1998). The candidate kernels are:

• Gaussian kernels with 10 different bandwidths σ, on all variables and on each single variable;

• polynomial kernels of degree 1 to 3, again on all and each single variable.

All kernel matrices have been normalized to unit trace, and are precomputed prior to running the
algorithms.

Both SimpleMKL and SILP wrap an SVM dual solver based on SimpleSVM, an active con-
straints method written in Matlab (Canu et al., 2003). The descent procedure of SimpleMKL is

2. All the experiments have been run on a Pentium D-3 GHz with 3 GB of RAM.

2506

SIMPLEMKL

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4
d k s

im
pl

eM
K

L

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

Iterations

d k S
IL

P

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

d k s
im

pl
eM

K
L

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

Iterations

d k S
IL

P

Pima Ionosphere

Figure 2: Evolution of the three largest weights dm for SimpleMKL and SILP; left row: Pima; right
row: Ionosphere.

also implemented in Matlab, whereas the linear programming involved in SILP is implemented by
means of the publicly available toolbox LPSOLVE (Berkelaar et al., 2004).

For a fair comparison, we use the same stopping criterion for both algorithms. They halt when,
either the duality gap is lower than 0.01, or the number of iterations exceeds 2000. Quantitatively,
the displayed results differ from the preliminary version of this work, where the stopping criterion
was based on the stabilization of the weights, but they are qualitatively similar (Rakotomamonjy
et al., 2007).

For each data set, the algorithms were run 20 times with different train and test sets (70% of the
examples for training and 30% for testing). Training examples were normalized to zero mean and
unit variance.

In Table 1, we report different performance measures: accuracy, number of selected kernels
and running time. As the latter is mainly spent in querying the SVM solver and in computing the
gradient of J with respect to d, the number of calls to these two routines is also reported.

Both algorithms are nearly identical in performance accuracy. Their number of selected kernels
are of same magnitude, although SimpleMKL tends to select 10 to 20% more kernels. As both
algorithms address the same convex optimization problem, with convergent methods starting from
the same initialization, the observed differences are only due to the inaccuracy of the solution when
the stopping criterion is met. Hence, the trajectories chosen by each algorithm for reaching the
solution, detailed in Section 3.4, explain the differences in the number of selected kernels. The
updates of dm based on the descent algorithm of SimpleMKL are rather conservative (small steps
departing from 1/M for all dm), whereas the oscillations of cutting planes are likely to favor extreme
solutions, hitting the edges of the simplex.

This explanation is corroborated by Figure 2, which compares the behavior of the dm coeffi-
cients through time. The instability of SILP is clearly visible, with very high oscillations in the
first iterations and a noticeable residual noise in the long run. In comparison, the trajectories for
SimpleMKL are much smoother.

If we now look at the overall difference in computation time reported in Table 1, clearly, on all
data sets, SimpleMKL is faster than SILP, with an average gain factor of about 5. Furthermore, the

2507

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

Liver ` = 241 M = 91
Algorithm # Kernel Accuracy Time (s) # SVM eval # Gradient eval
SILP 10.6 ± 1.3 65.9 ± 2.6 47.6 ± 9.8 99.8 ± 20 99.8 ± 20
SimpleMKL 11.2 ± 1.2 65.9 ± 2.3 18.9 ± 12.6 522 ± 382 37.0 ± 26
Grad. Desc. 11.6 ± 1.3 66.1 ± 2.7 31.3 ± 14.2 972 ± 630 103 ± 27

Pima ` = 538 M = 117
Algorithm # Kernel Accuracy Time (s) # SVM eval # Gradient eval
SILP 11.6 ± 1.0 76.5 ± 2.3 224 ± 37 95.6 ± 13 95.6 ± 13
SimpleMKL 14.7 ± 1.4 76.5 ± 2.6 79.0 ± 13 314 ± 44 24.3 ± 4.8
Grad. Desc. 14.8 ± 1.4 75.5 ± 2.5 219 ± 24 873 ± 147 118 ± 8.7

Ionosphere ` = 246 M = 442
Algorithm # Kernel Accuracy Time (s) # SVM eval # Gradient eval
SILP 21.6 ± 2.2 91.7 ± 2.5 535 ± 105 403 ± 53 403 ± 53
SimpleMKL 23.6 ± 2.6 91.5 ± 2.5 123 ± 46 1170 ± 369 64 ± 25
Grad. Desc. 22.9 ± 3.2 92.1 ± 2.5 421 ± 61.9 4000 ± 874 478 ± 38

Wpbc ` = 136 M = 442
Algorithm # Kernel Accuracy Time (s) # SVM eval # Gradient eval
SILP 13.7 ± 2.5 76.8 ± 1.2 88.6 ± 32 157 ± 44 157 ± 44
SimpleMKL 15.8 ± 2.4 76.7 ± 1.2 20.6 ± 6.2 618 ± 148 24 ± 10
Grad. Desc. 16.8 ± 2.8 76.9 ± 1.5 106 ± 6.1 2620 ± 232 361 ± 16

Sonar ` = 146 M = 793
Algorithm # Kernel Accuracy Time (s) # SVM eval # Gradient eval
SILP 33.5 ± 3.8 80.5 ± 5.1 2290± 864 903 ± 187 903 ± 187
SimpleMKL 36.7 ± 5.1 80.6 ± 5.1 163 ± 93 2770 ± 1560 115 ± 66
Grad. Desc. 35.7 ± 3.9 80.2 ± 4.7 469 ± 90 7630 ± 2600 836 ± 99

Table 1: Average performance measures for the two MKL algorithms and a plain gradient descent
algorithm.

larger the number of kernels is, the larger the speed gain we achieve. Looking at the last column
of Table 1, we see that the main reason for improvement is that SimpleMKL converges in fewer
iterations (that is, gradient computations). It may seem surprising that this gain is not counterbal-
anced by the fact that SimpleMKL requires many more calls to the SVM solver (on average, about
4 times). As we stated in Section 3.4, when the number of kernels is large, computing the gradient
may be expensive compared to SVM retraining with warm-start techniques.

To understand why, with this large number of calls to the SVM solver, SimpleMKL is still
much faster than SILP, we have to look back at Figure 2. On the one hand, the large variations in
subsequents dm values for SILP, entail that subsequent SVM problems are not likely to have similar
solutions: a warm-start call to the SVM solver does not help much. On the other hand, with the
smooth trajectories of dm in SimpleMKL, the previous SVM solution is often a good guess for the

2508

SIMPLEMKL

0 20 40 60 80 100 120
2

2.5

3

3.5
x 10

4
O

bj
ec

tiv
e

va
lu

e

Iterations

SimpleMKL
SILP

0 50 100 150 200 250 300 350
0

5000

10000

15000

O
bj

ec
tiv

e
va

lu
e

Iterations

SimpleMKL
SILP

Pima Ionosphere

Figure 3: Evolution of the objective values for SimpleMKL and SILP; left row: Pima; right row:
Ionosphere.

current problem: a warm-start call to the SVM solver results in much less computation than a call
from scratch.

Table 1 also shows the results obtained when replacing the update scheme described in Algo-
rithm 1 by a usual reduced gradient update, which, at each iteration, modifies d by computing the
optimal step size on the descent direction D (12). The training of this variant is considerably slower
than SimpleMKL and is only slightly better than SILP. We see that the gradient descent updates re-
quire many more calls to the SVM solver and a number of gradient computations comparable with
SILP. Note that, compared to SILP, the numerous additional calls to the SVM solver have not a dras-
tic effect on running time. The gradient updates are stable, so that they can benefit from warm-start
contrary to SILP.

To end this first series of experiments, Figure 3 depicts the evolution of the objective function
for the data sets that were used in Figure 2. Besides the fact that SILP needs more iterations for
achieving a good approximation of the final solution, it is worth noting that the objective values
rapidly reach their steady state while still being far from convergence, when dm values are far from
being settled. Thus, monitoring objective values is not suitable to assess convergence.

5.1.2 TIME NEEDED FOR GETTING AN APPROXIMATE REGULARIZATION PATH

In practice, the optimal value of C is unknown, and one has to solve several SVM problems,
spanning a wide range of C values, before choosing a solution according to some model selection
criterion like the cross-validation error. Here, we further pursue the comparison of the running times
of SimpleMKL and SILP, in a series of experiments that include the search for a sensible value of
C.

In this new benchmark, we use the same data sets as in the previous experiments, with the same
kernel settings. The task is only changed in the respect that we now evaluate the running times
needed by both algorithms to compute an approximate regularization path.

For both algorithms, we use a simple warm-start technique, which consists in using the optimal
solutions {d?

m} and {α?
i } obtained for a given C to initialize a new MKL problem with C + ∆C

2509

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

10
−2

10
−1

10
0

10
1

10
2

10
3

0

2

4

6

8

10

12

14

16

18

20

C

nu
m

be
r

of
 s

el
ec

te
d

ke
rn

el
s

10
−2

10
−1

10
0

10
1

10
2

10
3

0

2

4

6

8

10

12

14

16

18

20

C

nu
m

be
r

of
 s

el
ec

te
d

ke
rn

el
s

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C

d k

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C

d k

Pima Wpbc

Figure 4: Regularization paths of some dm and the number of selected kernels versus C; left row:
Pima; right row: Wpbc.

(DeCoste and Wagstaff., 2000). As described in Section 4.4, we start from the largest C and then
approximate the regularization path by decreasing its value. The set of C values is obtained by
evenly sampling the interval [0.01,1000] on a logarithmic scale.

Figure 4 shows the variations of the number of selected kernels and the values of d along the
regularization path for the Pima and Wpbc data sets. The number of kernels is not a monotone
function of C: for small values of C, the number of kernels is somewhat constant, then, it rises
rapidly. There is a small overshoot before reaching a plateau corresponding to very high values
of C. This trend is similar for the number of leading terms in the kernel weight vector d. Both
phenomenon were observed consistently over the data sets we used.

Table 2 displays the average computation time (over 10 runs) required for building the approxi-
mate regularization path. As previously, SimpleMKL is more efficient than SILP, with a gain factor
increasing with the number of kernels in the combination. The range of gain factors, from 5.9 to 23,
is even more impressive than in the previous benchmark. SimpleMKL benefits from the continuity
of solutions along the regularization path, whereas SILP does not take advantage of warm starts.
Even provided with a good initialization, it needs many cutting planes to stabilize.

2510

SIMPLEMKL

Data Set SimpleMKL SILP Ratio

Liver 148 ± 37 875 ± 125 5.9
Pima 1030 ± 195 6070 ± 1430 5.9
Ionosphere 1290 ± 927 8840 ± 1850 6.8
Wpbc 88 ± 16 2040 ± 544 23
Sonar 625 ± 174 1.52 ·105 (*) 243

Table 2: Average computation time (in seconds) for getting an approximate regularization path. For
the Sonar data set, SILP was extremely slow, so that regularization path was computed
only once.

5.1.3 MORE ON SIMPLEMKL RUNNING TIMES

Here, we provide an empirical assessment of the expected complexity of SimpleMKL on dif-
ferent data sets from the UCI repository. We first look at the situation where kernel matrices can be
pre-computed and stored in memory, before reporting experiments where the memory are too high,
leading to repeated kernel evaluations.

In a first set of experiments, we use Gaussian kernels, computed on random subsets of variables
and with random width. These kernels are precomputed and stored in memory, and we report
the average CPU running times obtained from 20 runs differing in the random draw of training
examples. The stopping criterion is the same as in the previous section: a relative duality gap less
than ε = 0.01.

The first two rows of Figure 5 depicts the growth of computation time as the number of kernel
increases. We observe a nearly linear trend for the four learning problems. This growth rate could
be expected considering the linear convergence property of gradient techniques, but the absence of
overhead is valuable.

The last row of Figure 5 depicts the growth of computation time as the number of examples
increases. Here, the number of kernels is set to 10. In these plots, the observed trend is clearly
superlinear. Again, this trend could be expected, considering that SVM expected training times
are superlinear in the number of training examples. As we already mentioned, the complexity of
SimpleMKL is tightly linked to the one of SVM training (for some examples of single kernel SVM
running time, one can refer to the work of Loosli and Canu 2007).

When all the kernels used for MKL cannot be stored in memory, one can resort to a decompo-
sition method. Table 3 reports the average computation times, over 10 runs, in this more difficult
situation. The large-scale SVM scheme of Joachims (1999) has been implemented, with basis ker-
nels recomputed whenever needed. This approach is computationally expensive but goes with no
memory limit. For these experiments, the stopping criterion is based on the variation of the weights
dm. As shown in Figure 2, the kernel weights rapidly reach a steady state and many iterations are
spent for fine tuning the weight and reach the duality gap tolerance. Here, we trade the optimality
guarantees provided by the duality gap for substantial computational time savings. The algorithm
terminates when the kernel weights variation is lower than 0.001.

Results reported in Table 3 just aim at showing that medium and large-scale situations can
be handled by SimpleMKL. Note that Sonnenburg et al. (2006) have run a modified version of
their SILP algorithm on a larger scale data sets. However, for such experiments, they have taken
advantage of some specific feature map properties. And, as they stated, for general cases where

2511

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

200

Number of kernels

cp
u

tim
e

in
 s

ec
on

ds

0 10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80

90

100

Number of kernels

cp
u

tim
e

in
 s

ec
on

ds

Credit, ` = 588 Yeast, ` = 1187

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

4000

Number of kernels

cp
u

tim
e

in
 s

ec
on

ds

0 10 20 30 40 50 60
−100

0

100

200

300

400

500

600

700

Number of kernels

cp
u

tim
e

in
 s

ec
on

ds

Spamdata, ` = 1380 Optdigits, ` = 1686

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

Number of training examples

cp
u

tim
e

in
 s

ec
on

ds

500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

Number of training examples

cp
u

tim
e

in
 s

ec
on

ds

Spamdata, M = 10 Optdigits, M = 10

Figure 5: SimpleMKL average computation times for different data sets; top two rows: number
of training examples fixed, number of kernels varying; bottom row: number of training
examples varying, number of kernels fixed.

kernel matrices are dense, they have to rely on the SILP algorithm we used in this section for
efficiency comparison .

5.2 Multiple Kernel Regression Examples

Several research papers have already claimed that using multiple kernel learning can lead to
better generalization performances in some classification problems (Lanckriet et al., 2004a; Zien

2512

SIMPLEMKL

Data Set Nb Examples # Kernel Accuracy (%) Time (s)

Yeast 1335 22 77.25 1130
Spamdata 4140 71 93.49 34200

Table 3: Average computation time needed by SimpleSVM using decomposition methods.

and Ong, 2007; Harchaoui and Bach, 2007). This next experiment aims at illustrating this point but
in the context of regression. The problem we deal with is a classical univariate regression problem
where the design points are irregular (D’Amato et al., 2006). Furthermore, according to Equation
(14), we look for the regression function f (x) as a linear combination of functions each belonging
to a wavelet based reproducing kernel Hilbert space.

The algorithm we use is a classical SVM regression algorithm with multiple kernels where each
kernel is built from a set of wavelets. These kernels have been obtained according to the expression:

K(x,x′) = ∑
j
∑

s

1
2 j ψ j,s(x)ψ j,s(x

′)

where ψ(·) is a mother wavelet and j,s are respectively the dilation and translation parameters of the
wavelet ψ j,s(·). The theoretical details on how such kernels can been built are available in D’Amato
et al. (2006); Rakotomamonjy and Canu (2005); Rakotomamonjy et al. (2005).

Our hope when using multiple kernel learning in this context is to capture the multiscale struc-
ture of the target function. Hence, each kernel involved in the combination should be weighted
accordingly to its correlation to the target function. Furthermore, such a kernel has to be built
according to the multiscale structure we wish to capture. In this experiment, we have used three
different choices of multiple kernels setting. Suppose we have a set of wavelets with j ∈ [jmin, jmax]
and s ∈∈ [smin,smax].

First of all, we have build a single kernel from all the wavelets according to the above equation.
Then we have created kernels from all wavelets of a given scale (dilation)

KDil,J(x,x
′) =

smax

∑
s=smin

1
2 j ψJ,s(x)ψJ,s(x

′) ∀J ∈ [jmin, jmax]

and lastly, we have a set of kernels, where each kernel is built from wavelets located at a given scale
and given time-location:

KDil−Trans,J,S (x,x′) = ∑
s=S

1
2 j ψJ,s(x)ψJ,s(x

′) ∀J ∈ [jmin, jmax]

where S is a given set of translation parameter. These sets are built by splitting the full transla-
tion parameters index in contiguous and non-overlapping index. The mother wavelet we used is
a Symmlet Daubechies wavelet with 6 vanishing moments. The resolution levels of the wavelet
goes from jmin = −3 to jmin = 6. According to these settings, we have 10 dilation kernels and 48
dilation-translation kernels.

We applied this MKL SVM regression algorithm to simulated data sets which are well-known
functions in the wavelet literature (Antoniadis and Fan, 2001). Each signal length is 512 and a
Gaussian independent random has been added to each signal so that the signal to noise ratio is equal
to 5. Examples of the true signals and their noisy versions are displayed in Figure 6. Note that

2513

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
LinChirp

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

x

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1
Wave

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1
Blocks

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1
Spikes

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

Figure 6: Examples of signals to approximate in the regression problem. (top-left) LinChirp. (top-
right) Wave. (bottom-left) Blocks. (bottom-right) Spikes. For each figure, the top plot
depicts the true signal while the bottom one presents an example of their randomly sam-
pled noisy versions.

the LinChirp and Wave signals present some multiscale features that should suit well to an MKL
approach.

Performance of the different multiple kernel settings have been compared according to the fol-
lowing experimental setting. For each training signal, we have estimated the regularization parame-
ter C of the MKL SVM regression by means of a validation procedure. The 512 samples have been
randomly separated in a learning and a validation sets. Then, by means of an approximate regular-
ization path as described in Section 4.4, we learn different regression functions for 20 samples of
C logarithmically sampled on the interval [0.01,1000]. This is performed for 5 random draws of
the learning and validation sets. The C value that gives the lowest average normalized mean-square
error is considered as the optimal one. Finally, we use all the samples of the training signal and the
optimal C value to train an MKL SVM regression. The quality of the resulting regression function
is then evaluated with respect to 1000 samples of the true signal. For all the simulations the ε has
been fixed to 0.1.

2514

SIMPLEMKL

Single Kernel Kernel Dil Kernel Dil-Trans
Data Set Norm. MSE (%) #Kernel Norm. MSE #Kernel Norm. MSE

LinChirp 1.46 ± 0.28 7.0 1.00 ± 0.15 21.5 0.92 ± 0.20
Wave 0.98 ± 0.06 5.5 0.73 ± 0.10 20.6 0.79 ± 0.07

Blocks 1.96 ± 0.14 6.0 2.11 ± 0.12 19.4 1.94 ± 0.13
Spike 6.85 ± 0.68 6.1 6.97 ± 0.84 12.8 5.58 ± 0.84

Table 4: Normalized Mean Square error for the data described in Figure 6. The results are averaged
over 20 runs. The first column give the performance of a SVM regression using a single
kernel which is the average sum of all the kernels used for the two other results. Results
corresponding to the columns Kernel Dil and Kernel Dil-Trans are related to MKL SVM
regression with multiple kernels. # Kernel denotes the number of kernels selected by
SimpleMKL.

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

10

11

x

E
st

im
at

io
n

at
 a

 g
iv

en
 le

ve
l

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

10

11

x

E
st

im
at

io
n

at
 a

 g
iv

en
 le

ve
l

Figure 7: Examples of multiscale analysis of the LinChirp signal (left) and the Wave signal (right)
when using Dilation based multiple kernels. The plots show how each function fm(·) of
the estimation focuses on a particular scale of the target function. The y-axis denotes the
scale j of the wavelet used for building the kernel. We can see that some low resolution
space are not useful for the target estimation.

Table 4 summarizes the generalization performances achieved by the three different kernel set-
tings. As expected, using a multiple kernel learning setting outperforms the single kernel setting es-
pecially when the target function presents multiscale structure. This is noticeable for the LinChirp
and Wave data set. Interestingly, for these two signals, performances of the multiple kernel set-
tings also depend on the signal structure. Indeed, Wave presents a frequency located structure while
LinChirp has a time and frequency located structure. Therefore, it is natural that the Dilation set of
kernels performs better than the Dilation-Translation ones for Wave. Figure 7 depicts an example
of multiscale regression function obtained when using the Dilation set of kernels. These plots show
how the kernel weights adapt themselves to the function to estimate. For the same reason of adap-
tivity to the signal, the Dilation-Translation set of kernels achieves better performances for Wave
and Spikes. We also notice that for the Blocks signal using multiple kernels only slightly improves
performance compared to a single kernel.

2515

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

Training Set Size
Data Set #Classes # examples Medium Large

ABE 3 2323 560 1120
DNA 3 3186 500 1000
SEG 7 2310 500 1000
WAV 3 5000 300 600

Table 5: Summary of the multiclass data sets and the training set size used.

Training set size

Medium Large

Data Set MKL CV MKL CV

ABE 0.73 ± 0.28 (16) 0.96 ± 0.36 0.44 ± 0.67 (11) 0.46 ± 0.20
DNA 7.69 ± 0.76 (11) 7.84 ± 0.79 5.59 ± 0.55 (10) 5.59 ± 0.39
SEG 6.52 ± 0.76 (10) 6.51 ± 0.99 4.71 ± 0.67 (13) 4.89 ± 0.71
WAV 15.18 ± 0.90 (15) 15.43 ± 0.97 14.26 ± 0.68 (8) 14.09 ± 0.55

Table 6: Comparison of the generalization performances of an MKL approach and a cross-
validation approach for selecting models in some multiclass problems. We have reported
the average (over 20 runs) the test set errors of our algorithm while the errors obtained for
the SV approach have been extracted from Duan and Keerthi (2005). Results also depend
on the training set sizes.

5.3 Multiclass Problem

For selecting the kernel and regularization parameter of a SVM, one usually tries all pairs of pa-
rameters and picks the couple that achieves the best cross-validation performance. Using an MKL
approach, one can instead let the algorithm combine all available kernels (obtained by sampling the
parameter) and just selects the regularization parameter by cross-validation. This last experiment
aims at comparing on several multi-class data sets problem, these two model selection approaches
(using MKL and CV) for choosing the kernel. Thus, we evaluate the two methods on some multi-
class data sets taken from the UCI collection: dna, waveform, image segmentation and abe a subset
problem of the Letter data set corresponding to the classes A, B and E. Some information about
the data set are given in Table 5. For each data set, we divide the whole data into a training set
and a test set. This random splitting has been performed 20 times. For ease of comparison with
previous works, we have used the splitting proposed by Duan and Keerthi (2005) and available at
http://www.keerthis.com/multiclass.html. Then we have just computed the performance of
SimpleMKL and report their results for the CV approach.

In our MKL one-against-all approach, we have used a polynomial kernel of degree 1 to 3
and Gaussian kernel for which σ belongs to [0.5,1,2,5,7,10,12,15,17,20]. For the regularization
parameter C, we have 10 samples over the interval [0.01,10000]. Note that Duan and Keerthi
(2005) have used a more sophisticated sampling strategy based on a coarse sampling of σ and C and
followed by fine-tuned sampling procedure. They also select the same couple of C and σ over all
pairwise decision functions. Similarly to Duan and Keerthi (2005), the best hyperparameter C has
been tuned according to a five-fold cross-validation. According to this best C, we have learned an
MKL all the full training set and evaluated the resulting decision function on the test set.

2516

SIMPLEMKL

The comparison results are summarized on Table 6. We can see that the generalization per-
formances of an MKL approach is either similar or better than the performance obtained when
selecting the kernel through cross-validation, even though we have roughly searched the kernel
and regularization parameter space. Hence, we can deduce that MKL can favorably replace cross-
validation on kernel parameters. This result based on empirical observations is in accordance with
some other works (Lanckriet et al., 2004b; Fung et al., 2004; Kim et al., 2006). However, we think
that MKL and thus SimpleMKL in particular, can be better exploited and thus performs better than
cross-validation when the kernels have been obtained from heterogeneous source as described for
instance in Lanckriet et al. (2004a); Zien and Ong (2007); Harchaoui and Bach (2007).

6. Conclusion

In this paper, we introduced SimpleMKL, a novel algorithm for solving the Multiple Kernel
Learning problem. Our formalization of the MKL problem results in a smooth and convex opti-
mization problem, which is actually equivalent to other MKL formulations available in the litera-
ture. The main added value of the smoothness of our new objective function is that descent methods
become practical and efficient means to solve the optimization problem that wraps a single kernel
SVM solver. We provide optimality conditions, analyze convergence and computational complexity
issues for binary classification. The SimpleMKL algorithm and the resulting analyses can be easily
be transposed to SVM regression, one-class SVM and multiclass SVM to name a few.

We provide experimental evidence that SimpleMKL is significantly more efficient than the state-
of-the art SILP approach (Sonnenburg et al., 2006). This efficiency permits to demonstrate the
usefulness of our algorithm on wavelet kernel based regression. We also illustrate in multiclass
problems that MKL is a viable alternative to cross-validation for selecting a model.

Possible extensions of this work include other learning problems, such as semi-supervised learn-
ing or kernel eigenvalue problem like kernel Fisher discriminant analysis. We also plan to explore
two different ways to speed up the algorithm. As a first direction, we will investigate ways to obtain a
better the descent direction, for example with second-order methods. Note however that computing
the Hessian needs the derivative of the dual variable with respects to the weights d. This operation
requires solving a linear system (Chapelle et al., 2002) and thus may produce some computational
overhead. The second direction is motivated by the observation that most of the computational load
is to the computation of the kernel combination. Hence, coordinate-wise optimizers may provide
promising routes for improvements.

Acknowledgments

We would like to thank the anonymous reviewers for their useful comments. This work was sup-
ported in part by the IST Program of the European Community, under the PASCAL Network of
Excellence, IST-2002-506778. Alain Rakotomamonjy, Francis Bach and Stéphane Canu were also
supported by French grants from the Agence Nationale de la Recherche (KernSig for AR and SC,
MGA for FB).

Appendix A.

This appendix addresses the convexity and differentiability issue of our MKL formulation.

2517

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

A.1 Proof of Convexity of the Weighted Squared Norm MKL Formulation

The convexity of the MKL problem (2) introduced in Section 2.2 will be established if we prove
the convexity of

J(f , t) =
1
t
〈 f , f 〉H where f ∈H and t ∈ R

∗+.

Since J(f , t) is differentiable with respects to its arguments, we only have to make sure that the
first order conditions for convexity are verified. As the convexity of the domain of J is trivial, we
verify that, for any (f , t) and (g,s) ∈H ×R

∗+, the following holds:

J(g,s)≥ J(f , t)+ 〈∇ f J,g− f 〉H +(s− t)∇tJ .

As ∇ f J = 2
t f and ∇tJ =− 1

t2 〈 f , f 〉H , this inequality can be written as

1
s
〈g,g〉H ≥

2
t
〈 f ,g〉H −

s
t2 〈 f , f 〉H ,

⇔ 〈t g− s f , t g− s f 〉H ≥ 0 ,

where we used that s and t are positive. The above inequality holds since the scalar product on the
left-hand-side is a norm. Hence problem (2) minimizes the sum of convex functions on a convex
set; it is thus convex. Note that when H is a finite dimension space, the function J(f , t) is known as
the perspective of f , whose convexity is proven in textbooks (Boyd and Vandenberghe, 2004).

A.2 Differentiability of Optimal Value Function

The algorithm we propose for solving the MKL problem heavily relies on the differentiability
of the optimal value of the primal SVM objective function. For the sake of self-containedness,
we reproduce here a theorem due to Bonnans and Shapiro (1998) that allows us to compute the
derivatives of J(d) defined in (8).

Theorem 1 (Bonnans and Shapiro, 1998) Let X be a metric space and U be a normed space. Sup-
pose that for all x ∈ X the function f (x, ·) is differentiable, that f (x,u) and Du f (x,u) the derivative
of f (x, ·) are continuous on X ×U and let Φ be a compact subset of X. Let define the optimal
value function as v(u) = infx∈Φ f (x,u). The optimal value function is directionally differentiable.
Furthermore, if for u0 ∈U, f (·,u0) has a unique minimizer x0 over Φ then v(u) is differentiable at
u0 and Dv(u0) = Du f (x0,u0).

References

A. Antoniadis and J. Fan. Regularization by wavelet approximations. J. American Statistical Asso-
ciation, 96:939–967, 2001.

A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning,
to appear, 2008.

N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc., (68):337–404, 1950.

2518

SIMPLEMKL

F. Bach. Consistency of the group Lasso and multiple kernel learning. Journal of Machine Learning
Research, 9:1179–1225, 2008.

F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO algo-
rithm. In Proceedings of the 21st International Conference on Machine Learning, pages 41–48,
2004a.

F. Bach, R. Thibaux, and M. Jordan. Computing regularization paths for learning multiple kernels.
In Advances in Neural Information Processing Systems, volume 17, pages 41–48, 2004b.

M. Berkelaar, K. Eikland, and P. Notebaert. Lpsolve, Version 5.1.0.0, 2004. URL http:
//lpsolve.sourceforge.net/5.5/.

D. Bertsekas. Nonlinear Programming. Athena scientific, 1999.

C. Blake and C. Merz. UCI repository of machine learning databases. University of California,
Irvine, Dept. of Information and Computer Sciences, 1998. URL http://www.ics.uci.edu/

˜mlearn/MLRepository.html.

F. Bonnans. Optimisation Continue. Dunod, 2006.

J.F. Bonnans and A. Shapiro. Optimization problems with pertubation : A guided tour. SIAM
Review, 40(2):202–227, 1998.

J.F. Bonnans, J.C Gilbert, C. Lemaréchal, and C.A Sagastizbal. Numerical Optimization Theoretical
and Practical Aspects. Springer, 2003.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamonjy. SVM and kernel methods Matlab tool-
box. LITIS EA4108, INSA de Rouen, Rouen, France, 2003. URL http://asi.insa-rouen.
fr/enseignants/˜arakotom/toolbox/index.html.

C-C. Chang and C-J. Lin. LIBSVM: A Library for Support Vector Machines, 2001. Software
available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukerjhee. Choosing multiple parameters for SVM.
Machine Learning, 46(1-3):131–159, 2002.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. Journal of Machine Learning Research, 2:265–292, 2001.

A. D’Amato, A. Antoniadis, and M. Pensky. Wavelet kernel penalized estimation for non-
equispaced design regression. Statistics and Computing, 16:37–56, 2006.

A. D’Aspremont. Smooth optimization with approximate gradient. SIAM Journal on Optimization,
To appear, 2008.

D. DeCoste and K. Wagstaff. Alpha seeding for support vector machines. In International Confer-
ence on Knowledge Discovery and Data Mining, 2000.

2519

RAKOTOMAMONJY, BACH, CANU AND GRANDVALET

K. Duan and S. Keerthi. Which is the best multiclass svm method? an empirical study. In Multi-
ple Classifier Systems, pages 278–285, 2005. URL http://www.keerthis.com/multiclass.
html.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression (with discussion). Annals
of statistics, 32(2):407–499, 2004.

G. Fung, M. Dundar, J. Bi, and B. Rao. A fast iterative algorithm for Fisher discriminant using het-
erogeneous kernels. In Proceeedins of the 21th International Conference on Machine Learning,
2004.

Y. Grandvalet. Least absolute shrinkage is equivalent to quadratic penalization. In L. Niklasson,
M. Bodén, and T. Ziemske, editors, ICANN’98, volume 1 of Perspectives in Neural Computing,
pages 201–206. Springer, 1998.

Y. Grandvalet and S. Canu. Adaptive scaling for feature selection in SVMs. In Advances in Neural
Information Processing Systems, volume 15. MIT Press, 2003.

Y. Grandvalet and S. Canu. Outcomes of the equivalence of adaptive ridge with least absolute
shrinkage. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information
Processing Systems 11, pages 445–451. MIT Press, 1999.

Z. Harchaoui and F. Bach. Image classification with segmentation graph kernels. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2007.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support vector
machine. Journal of Machine Learning Research, 5:1391–1415, 2004.

C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector machines. IEEE
Transactions on Neural Networks, 13:415–425, 2002.

T. Joachims. Making large-scale SVM learning practical. In B. Scholkopf, C. Burges, and A. Smola,
editors, Advanced in Kernel Methods - Support Vector Learning, pages 169–184. MIT Press,
1999.

S.-J. Kim, A. Magnani, and S. Boyd. Optimal kernel selection in kernel Fisher discriminant analysis.
In Proceedings of the 23rd International Conference on Machine Learning (ICML), 2006.

K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale `1-regularized logistic
regression. Journal of Machine Learning Research, 8:1519–1555, 2007.

G. Lanckriet, T. De Bie, N. Cristianini, M. Jordan, and W. Noble. A statistical framework for
genomic data fusion. Bioinformatics, 20:2626–2635, 2004a.

G. Lanckriet, N. Cristianini, L. El Ghaoui, P. Bartlett, and M. Jordan. Learning the kernel matrix
with semi-definite programming. Journal of Machine Learning Research, 5:27–72, 2004b.

C. Lemaréchal and C. Sagastizabal. Practical aspects of moreau-yosida regularization : theoretical
preliminaries. SIAM Journal of Optimization, 7:867–895, 1997.

2520

SIMPLEMKL

G. Loosli and S. Canu. Comments on the ”Core vector machines: Fast SVM training on very large
data sets”. Journal of Machine Learning Research, 8:291–301, February 2007.

G. Loosli, S. Canu, S. Vishwanathan, A. Smola, and M. Chattopadhyay. Boı̂te à outils SVM simple
et rapide. Revue d’Intelligence Artificielle, 19(4-5):741–767, 2005.

D. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, 1984.

C. Micchelli and M. Pontil. Learning the kernel function via regularization. Journal of Machine
Learning Research, 6:1099–1125, 2005.

A. Rakotomamonjy and S. Canu. Frames, reproducing kernels, regularization and learning. Journal
of Machine Learning Research, 6:1485–1515, 2005.

A. Rakotomamonjy, X. Mary, and S. Canu. Non parametric regression with wavelet kernels. Applied
Stochastics Model for Business and Industry, 21(2):153–163, 2005.

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. More efficiency in multiple kernel learn-
ing. In Zoubin Ghahramani, editor, Proceedings of the 24th Annual International Conference on
Machine Learning (ICML 2007), pages 775–782. Omnipress, 2007.

R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of Machine Learning
Research, 5:101–141, 2004.

S. Rosset. Tracking curved regularized optimization solution paths. In Advances in Neural Infor-
mation Processing Systems, 2004.

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2001.

S. Sonnenburg, G. Rätsch, and C. Schäfer. A general and efficient algorithm for multiple kernel
learning. In Advances in Neural Information Processing Systems, volume 17, pages 1–8, 2005.

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning.
Journal of Machine Learning Research, 7(1):1531–1565, 2006.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and
interdependent output variables. Journal of Machine Learning Research, 6:1453–1484, 2005.

V. Vapnik, S. Golowich, and A. Smola. Support vector method for function estimation, regression
estimation and signal processing. volume Vol. 9. MIT Press, Cambridge, MA, neural information
processing systems, edition, 1997.

S. V. N. Vishwanathan, A. J. Smola, and M. Murty. SimpleSVM. In International Conference on
Machine Learning, 2003.

G. Wahba. Spline Models for Observational Data. Series in Applied Mathematics, Vol. 59, SIAM,
1990.

J. Weston and C. Watkins. Multiclass support vector machines. In Proceedings of ESANN99,
Brussels. D. Facto Press, 1999.

A. Zien and C.S. Ong. Multiclass multiple kernel learning. In Proceedings of the 24th International
Conference on Machine Learning (ICML 2007), pages 1191–1198, 2007.

2521

Journal of Machine Learning Research 9 (2008) 2523-2547 Submitted 6/07; Revised 2/08; Published 11/08

Active Learning of Causal Networks
with Intervention Experiments and Optimal Designs

Yang-Bo He HEYB@MATH.PKU.EDU.CN

Zhi Geng ZGENG@MATH.PKU.EDU.CN

School of Mathematical Sciences, LMAM
Peking University
Beijing 100871, China

Editor: Andre Elisseeff

Abstract
The causal discovery from data is important for various scientific investigations. Because we cannot
distinguish the different directed acyclic graphs (DAGs) in a Markov equivalence class learned from
observational data, we have to collect further information on causal structures from experiments
with external interventions. In this paper, we propose an active learning approach for discovering
causal structures in which we first find a Markov equivalence class from observational data, and
then we orient undirected edges in every chain component via intervention experiments separately.
In the experiments, some variables are manipulated through external interventions. We discuss two
kinds of intervention experiments, randomized experiment and quasi-experiment. Furthermore, we
give two optimal designs of experiments, a batch-intervention design and a sequential-intervention
design, to minimize the number of manipulated variables and the set of candidate structures based
on the minimax and the maximum entropy criteria. We show theoretically that structural learning
can be done locally in subgraphs of chain components without need of checking illegal v-structures
and cycles in the whole network and that a Markov equivalence subclass obtained after each inter-
vention can still be depicted as a chain graph.

Keywords: active learning, causal networks, directed acyclic graphs, intervention, Markov equiv-
alence class, optimal design, structural learning

1. Introduction

A directed acyclic graph (DAG) (also called a Bayesian network) is a powerful tool to describe
a large complex system in various scientific investigations, such as bioinformatics, epidemiology,
sociology and business (Pearl, 1988; Lauritzen, 1996; Whittaker, 1990; Aliferis et al., 2003; Jansen
et al., 2003; Friedman, 2004). A DAG is also used to describe causal relationships among variables.
It is crucial to discover the structure of a DAG for understanding a large complex system or for
doing uncertainty inference on it (Cooper and Yoo, 1999; Pearl, 2000). There are many methods of
structural learning, and the main methods are Bayesian methods (Cooper and Yoo, 1999; Hecker-
man, 1997) and constraint-based methods (Spirtes et al., 2000). From data obtained in observational
studies, we may not have enough information to discover causal structures completely, but we can
obtain only a Markov equivalence class. Thus we have to collect further information of causal
structures via experiments with external interventions. Heckerman et al. (1995) discussed structural
learning of Bayesian networks from a combination of prior knowledge and statistical data. Cooper
and Yoo (1999) presented a method of causal discovery from a mixture of experimental and obser-

c©2008 Yang-Bo He and Zhi Geng.

HE AND GENG

vational data. Tian and Pearl (2001a,b) proposed a method of discovering causal structures based
on dynamic environment. Tong and Koller (2001) and Murphy (2001) discussed active learning
of Bayesian network structures with posterior distributions of structures based on decision theory.
In these methods, causal structures are discovered by using additional information from domain
experts or experimental data.

Chain graphs were introduced as a natural generalization of DAGs to admit more flexible causal
interpretation (Lauritzen and Richardson, 2002). A chain graph contains both directed and undi-
rected edges. A chain component of a chain graph is a connected undirected graph obtained by
removing all directed edges from the chain graph. Andersson et al. (1997) showed that DAGs in a
Markov equivalence class can be represented by a chain graph. He et al. (2005) presented an ap-
proach of structural learning in which a Markov equivalence class of DAGs is sequentially refined
into some smaller subclasses via domain knowledge and randomized experiments.

In this paper, we discuss randomized experiments and quasi-experiments of external interven-
tions. We propose a method of local orientations in every chain component, and we show theo-
retically that the method of local orientations does not create any new v-structure or cycle in the
whole DAG provided that neither v-structure nor cycle is created in any chain component. Thus
structural learning can be done locally in every chain component without need of checking illegal
v-structures and cycles in the whole network. Then we propose the optimal designs of interventional
experiments based on the minimax and maximum entropy criteria. These results greatly extend the
approach proposed by He et al. (2005). In active learning, we first find a Markov equivalence class
from observational data, which can be represented by a chain graph, and then we orient undirected
edges via intervention experiments. Two kinds of intervention experiments can be used for orien-
tations. One is randomized experiment, in which an individual is randomly assigned to some level
combination of the manipulated variables at a given probability. Randomization can disconnect the
manipulated variables from their parent variables in the DAG. Although randomized experiments
are most powerful for learning causality, they may be inhibitive in practice. The other is quasi-
experiment, in which the pre-intervention distributions of some variables are changed via external
interventions, but we cannot ensure that the manipulated variables can be disconnected from their
parent variables in the DAG, and thus the post-intervention distributions of manipulated variables
may still depend on their parent variables. For example, the pre-intervention distribution of whether
patients take a vaccine or not may depend on some variables, and the distribution may be changed
by encouraging patients with some benefit in the quasi-experiment, but it may still depend on these
variables. Furthermore, we discuss the optimal designs by which the number of manipulated vari-
ables is minimized or the uncertainty of candidate structures is minimized at each experiment step
based on the minimax and the maximum entropy criteria. We propose two kinds of optimal designs:
a batch-intervention experiment and a sequential intervention experiment. For the former, we try to
find the minimum set of variables to be manipulated in a batch such that undirected edges are all
oriented after the interventions. For the latter, we first choose a variable to be manipulated such that
the Markov equivalence class can be reduced by manipulating the variable into a subclass as small
as possible, and then according to the current subclass, we repeatedly choose a next variable to be
manipulated until all undirected edges are oriented.

In Section 2, we introduce notation and definitions and then show some theoretical results on
Markov equivalence classes. In Section 3, we present active learning of causal structures via ex-
ternal interventions and discuss randomized experiments and quasi-experiments. In Section 4, we
propose two optimal designs of intervention experiments, a batch-intervention design and a sequen-

2524

ACTIVE LEARNING OF CAUSAL NETWORKS

tial intervention design. In Section 5, we show simulation results to evaluate the performances of
intervention designs proposed in this paper. Conclusions are given in Section 6. Proofs of theorems
are given in Appendix.

2. Causal DAGs and Markov Equivalence Class

A graph G can be defined to be a pair G = (V,E), where V = {V1, · · · ,Vn} denotes the node set and
E denotes the edge set which is a subset of the set V×V of ordered pairs of nodes. If both ordered
pairs (Vi,Vj) and (V j,Vi) are in E, we say that there is an undirected edge between Vi and V j, denoted
as Vi−Vj. If (Vi,Vj) ∈ E and (V j,Vi) /∈ E, we call it a directed edge, denoted as Vi → Vj. We say
that Vi is a neighbor of V j if there is an undirected or directed edge between Vi and V j. A graph is
directed if all edges of the graph are directed. A graph is undirected if all edges of the graph are
undirected.

A sequence (V1,V2, · · · ,Vk) is called a partially directed path from V1 to Vk if either Vi→Vi+1 or
Vi−Vi+1 is in G for all i = 1, . . . ,k−1. A partially directed path is a directed path if there is not any
undirected edge in the path. A node Vi is an ancestor of V j and V j is a descendant of Vi if there is a
directed path from Vi to Vj. A directed cycle is a directed path from a node to itself, and a partially
directed cycle is a partially directed path from a node to itself.

A graph with both directed and undirected edges is a chain graph if there is not any partially
directed cycle. Figure 1 shows a chain graph with five nodes. A chain component is a node set
whose nodes are connected in an undirected graph obtained by removing all directed edges from
the chain graph. An undirected graph is chordal if every cycle of length larger than or equal to 4
possesses a chord.

r

r r

r r

V1

V2 V3

V4 V5

�
�

�
Q

Q
Q

?

Q
Q

Q
Q

Q
QQs

Figure 1: A chain graph G∗ depicts the essential graph of G,G1,G2 and G3.

A directed acyclic graph (DAG) is a directed graph which does not contain any directed cycle. A
causal DAG is a DAG which is used to describe the causal relationships among variables V1, · · · ,Vn.
In the causal DAG, a directed edge Vi→Vj is interpreted as that the parent node Vi is a cause of the
child node V j, and that V j is an effect of Vi. Let pa(Vi) denote the set of all parents of Vi and ch(Vi)
denote the set of all children of Vi. Let τ be a node subset of V. The subgraph Gτ = (τ,Eτ) induced
by the subset τ has the node set τ and the edge set Eτ = E∩ (τ× τ) which contains all edges falling
into τ. Two graphs have the same skeleton if they have the same set of nodes and the same set of
edges regardless of their directions. A head-to-head structure is called a v-structure if the parents
are not adjacent, such as V1→V2←V3.

2525

HE AND GENG

Figure 2 shows four different causal structures of five nodes. The causal graph G in Figure 2
depicts that V1 is a cause of V3, which in turn is a cause of V5.

r

r r

r r

V1

V2 V3

V4 V5

�
��+

Q
QQs

? ?

Q
Q

Q
Q

QQs

G

r

r r

r r

V1

V2 V3

V4 V5

�
��3 Q

QQs

? ?

Q
Q

Q
Q

QQs

G1

r

r r

r r

V1

V2 V3

V4 V5

�
��3 Q

QQs
6

?

Q
Q

Q
Q

QQs

G2

r

r r

r r

V1

V2 V3

V4 V5

�
��+ Q

QQk

? ?

Q
Q

Q
Q

QQs

G3

Figure 2: The equivalence class [G].

A joint distribution P satisfies Markov property with respect to a graph G if any variable of G is
independent of all its non-descendants in G given its parents with respect to the joint distribution P.
Furthermore, the distribution P can be factored as follows

P(v1,v2, · · · ,vn) =
n

∏
i=1

P(vi|pa(vi)),

where vi denotes a value of variable Vi, and pa(vi) denotes a value of the parent set pa(Vi) (Pearl,
1988; Lauritzen, 1996; Spirtes et al., 2000). In this paper, we assume that any conditional indepen-
dence relations in P are entailed by the Markov property, which is called the faithfulness assump-
tion (Spirtes et al., 2000). We also assume that there are no latent variables (that is, no unmeasured
variables) in causal DAGs. Different DAGs may encode the same Markov properties. A Markov
equivalence class is a set of DAGs that have the same Markov properties. Let G1 ∼ G2 denote that
two DAGs G1 and G2 are Markov equivalent, and let [G] denote the equivalence class of a DAG
G, that is, [G] = {G′ : G′ ∼ G}. The four DAGs G, G1, G2 and G3 in Figure 2 form a Markov
equivalence class [G]. Below we review two results about Markov equivalence of DAGs given by
Verma and Pearl (1990) and Andersson et al. (1997).

Lemma 1 (Verma and Pearl, 1990) Two DAGs are Markov equivalent if and only if they have the
same skeleton and the same v-structures.

Andersson et al. (1997) used an essential graph G∗ to represent the equivalence class [G].

Definition 2 The essential graph G∗ = (V,E∗) of G has the same node set and the same skeleton
as G, whose one edge is directed if and only if it has the same orientation in every DAG in [G] and
whose other edges are undirected.

For example, G∗ in Figure 1 is the essential graph of G in Figure 2. The edges V2 → V5 and
V3→V5 in G∗ are directed since they have the same orientation for all DAGs of [G] in Figure 2, and
other edges are undirected.

Lemma 3 (Andersson et al., 1997) Let G∗ be the essential graph of G = (V,E). Then G∗ has the
following properties:

2526

ACTIVE LEARNING OF CAUSAL NETWORKS

(i) G∗ is a chain graph,

(ii) G∗τ is chordal for every chain component τ, and

(iii) Vi→Vj−Vk does not occur as an induced subgraph of G∗.

Suppose that G is an unknown underlying causal graph and that its essential graph G∗ = (V,E)
has been obtained from observational data, and has k chain components {τ1, · · · ,τk}. Its edge set
E can be partitioned into the set E1 of directed edges and the set E2 of undirected edges. Let G∗τ
denote a subgraph of the essential G∗ induced by a chain component τ of G∗. Any subgraph of the
essential graph induced by a chain component is undirected. Since all v-structures can be discovered
from observational data, any subgraph G′τ of G′ should not have any v-structure for G′ ∈ [G]. For
example, the essential graph G∗ in Figure 1 has one chain component τ = {V1,V2,V3,V4}. It can
been seen that G′τ has no v-structure for G′ ∈ {G,G1,G2,G3}.

Given an essential graph G∗, we need to orient all undirected edges in each chain component
to discover the whole causal graph G. Below we show that the orientation can be done separately
in every chain component. We also show that there are neither new v-structures nor cycles in the
whole graph as long as there are neither v-structures nor cycles in any chain component. Thus in
the orientation process, we only need to ensure neither v-structures nor cycles in any component,
and we need not check new v-structures and cycles for the whole graph.

Theorem 4 Let τ be a chain component of an essential graph G∗. For each undirected edge V −U
in G∗τ , neither orientation V →U nor V ←U can create a v-structure with any node W outside τ,
that is, neither V →U ←W nor W →V ←U can occur for any W /∈ τ.

Theorem 4 means that there is not any node W outside the component τ which can build a
v-structure with two nodes in τ.

Theorem 5 Let τ be a chain component of G∗. If orientation of undirected edges in the subgraph
G∗τ does not create any directed cycle in the subgraph, then the orientation does not create any
directed cycle in the whole DAG.

According to Theorems 4 and 5, we find that the undirected edges can be oriented separately
in each chain component regardless of directed and undirected edges in other part of the essential
graph as long as neither cycles nor v-structures are constructed in any chain component. Thus the
orientation for one chain component does not affect the orientations for other components. The
orientation approach and its correctness will be discussed in Section 3.

3. Active Learning of Causal Structures via External Interventions

To discover causal structures further from a Markov equivalence class obtained from observational
data, we have to perform external interventions on some variables. In this section, we consider two
kinds of external interventions. One is the randomized experiment, in which the post-intervention
distribution of the manipulated variable Vi is independent of its parent variables. The other is the
quasi-experiment, in which the distribution of the manipulated variable Vi conditional on its parents
pa(Vi) is changed by manipulating Vi. For example, the distribution of whether patients take a
vaccine or not is changed by randomly encouraging patients at a discount.

2527

HE AND GENG

3.1 Interventions by Randomized Experiments

In this subsection, we conduct interventions as randomized experiments, in which some variables are
manipulated from external interventions by assigning individuals to some levels of these variables in
a probabilistic way. For example, in a clinical trial, every patient is randomly assigned to a treatment
group of Vi = vi at a probability P′(vi). The randomized manipulation disconnects the node Vi from
its parents pa(Vi) in the DAG. Thus the pre-intervention conditional probability P(vi|pa(vi)) of
Vi = vi given pa(Vi) = pa(vi) is replaced by the post-intervention probability P′(vi) while all other
conditional probabilities P(v j|pa(v j)) for j 6= i are kept unchanged in the randomized experiment.
Then the post-intervention joint distribution is

PVi(v1,v2, · · · ,vn) = P′(vi)∏
j 6=i

P(v j|pa(v j)),

(Pearl, 1993). From this post-intervention distribution, we have PVi(vi|pa(vi)) = PVi(vi), that is, the
manipulated variable Vi is independent of its parents pa(Vi) in the post-intervention distribution.
Under the faithfulness assumption, it is obvious that an undirected edge between Vi and its neighbor
Vj can be oriented as Vi←Vj if the post-intervention distribution has Vi Vj, otherwise it is oriented
as Vi→ Vj, where Vi Vj denotes that Vi is independent of V j. The orientation only needs an inde-
pendence test for the marginal distribution of variables Vi and V j. Notice that the independence is
tested by using only the experimental data without use of the previous observational data.

Let e(Vi) denote the orientation of edges which is determined by manipulating node Vi. If Vi

belongs to a chain component τ (that is, it connects at least one undirected edge), then the Markov
equivalence class [G] can be reduced by manipulating Vi to the post-intervention Markov equiva-
lence class [G]e(Vi)

[G]e(Vi) = {G′ ∈ [G]|G′ has the same orientation as e(Vi)}.

A Markov equivalence class is split into several subclasses by manipulating Vi, each of which has
different orientations e(Vi). Let G∗e(Vi)

denote the post-intervention essential graph which depicts
the post-intervention Markov equivalence class [G]e(Vi). We show below that G∗e(Vi)

also has the
properties of essential graphs.

Theorem 6 Let τ be a chain component of the pre-intervention essential graph G∗ and Vi be a node
in the component τ. The post-intervention graph G∗e(Vi)

is also a chain graph, that is, G∗e(Vi)
has the

following properties:

(i) G∗e(Vi)
is a chain graph,

(ii) G∗e(Vi)
is chordal, and

(iii) Vj→Vk−Vl does not occur as an induced subgraph of G∗e(Vi)
.

By Theorem 6, the pre-intervention chain graph is changed by manipulating a variable to an-
other chain graph which has less undirected edges. Thus variables in chain components can be
manipulated repeatedly until the Markov equivalence subclass is reduced to a subclass with a single
DAG, and properties of chain graphs are not lost in this intervention process.

According to the above results, we first learn an essential graph from observational data, which
is a chain graph (Andersson et al., 1997) and depicts a Markov equivalence class (Heckerman et

2528

ACTIVE LEARNING OF CAUSAL NETWORKS

al., 1995; Verma and Pearl, 1990; Castelo and Perlman, 2002). Next we choose a variable Vi to
be manipulated from a chain component, and we can orient the undirected edges connecting Vi and
some other undirected edges whose reverse orientations create v-structures or cycles. Repeating this
process, we choose a next variable to be manipulated until all undirected edges are oriented. Below
we give an example to illustrate the intervention process.

Example 1. Consider an essential graph in Figure 3, which depicts a Markov equivalence
class with 12 DAGs in Figure 4. After obtaining the essential graph from observational data, we
manipulate some variables in randomized experiments to identify a causal structure in the 12 DAGs.
For example, Table 1 gives four possible orientations and Markov equivalence subclasses obtained
by manipulating V1. A class with 12 DAGs is split into four subclasses by manipulating V1. The
post-intervention subclasses (ii) and (iv) have only a single DAG separately. Notice that undirected
edges not connecting V1 can also be oriented by manipulating V1. The subclasses (i) and (iii) are
depicted by post-intervention essential graphs (a) and (b) in Table 1 respectively, both of which
are chain graphs. In Table 2, the first column gives four possible independence sets obtained by
manipulating V1. For the set with V1 V2 and V1 / V3, the causal structure is the DAG (3) in Figure
4, and thus we need not further manipulate other variables. For the third set with V1 / V2 and V1 / V3,
we manipulate the next variable V2. If V2 V3, then the causal structure is the DAG (1), otherwise
it is the DAG (2). For the fourth set with V1 V2 and V1 V3, we may need further to manipulate
variables V2, V3 and V4 to identify a causal DAG.

r

r

r

r rV1

V2

V3

V4

V5�
��

@
@@

@
@@

�
��

Figure 3: An essential graph of DAGs

3.2 Interventions by Quasi-experiments

In the previous subsection we discussed interventions by randomized experiments. Although ran-
domized experiments are powerful tools to discover causal structures, it may be inhibitive or im-
practical. In this subsection we consider quasi-experiments. In a quasi-experiment, individuals may
choose treatments non-randomly, but their behaviors of treatment choices are influenced by experi-
menters. For example, some patients may not comply with the treatment assignment from a doctor,
but some of them may comply, which is also called an indirect experiment in Pearl (1995).

If we perform an external intervention on Vi such that Vi has a conditional distribution P′(vi|pa(vi))
different from the pre-intervention distribution P(vi|pa(vi)) in (1) and other distributions are kept
unchanged, then we have the post-intervention joint distribution

PVi(v1,v2, · · · ,vn) = P′(vi|pa(vi))∏
j 6=i

P(v j|pa(v j)).

2529

HE AND GENG

q

q

q

q qV1

V2

V3
V4 V5

(1)

���
@@R?

@@R
���

- q

q

q

q q

(2)

���
@@R

6@@R
���

- q

q

q

q q

(3)@@I
���6@@R

���
-

q

q

q

q q

(4)@@I
��	 6@@R

���
- q

q

q

q q

(5)@@I
��	 6@@I

���
- q

q

q

q q

(6)

��	 @@R
?

-
@@R���

q

q

q

q q

(7)

��	 @@R
?

-
@@I ���

q

q

q

q q

(8)

��	 @@R
?

-
@@I ��	

q

q

q

q q

(9)

��	
@@I ?��	

@@I -

q

q

q

q q

(10)

��	
@@I

6
��	
@@I - q

q

q

q q

(11)

��	
@@I ?��	

@@I � q

q

q

q q

(12)

��	
@@I

6
��	
@@I �

Figure 4: All DAGs in the equivalence class given in Figure 3.

No of subclass e(V1)
DAGs

in a subclass
post-intervention
essential graphs

(i) V2←V1→V3 (1,2) q

q

q

q q

(a)
V1

���
@@R

@@R
���

-

(ii) V2→V1→V3 (3)

(iii) V2→V1←V3
(4,5,

7−12)
q

q

q

q qV1
(b)@@I

��	 @@
��

(iv) V2←V1←V3 (6)

Table 1: The post-intervention subclasses and essential graphs obtained by manipulating V1.

In the external intervention, we may not be able to manipulate Vi, but we only need to change its
conditional distribution, which may still depend on its parent variables. We call such an experiment
a quasi-experiment. Below we discuss how to orient undirected edges via such quasi-experiments.
Let τ be a chain component of the essential graph G∗, ne(Vk) be the neighbor set of Vk, C be the
children of Vk outside τ (that is, C = ch(Vk)\ τ), and B be the set of all potential parents of Vk, that
is, B = ne(Vk) \C is the neighbor set of Vk minus the children of Vk which have been identified in
the chain graph. Let Vi−Vk be an undirected edge in a chain component τ, and we want to orient
the undirected edge by manipulating Vi. Since B is the neighbor set of Vk, we have Vi ∈ B and thus

2530

ACTIVE LEARNING OF CAUSAL NETWORKS

V1 V2 V3 V4 DAG in Fig. 4
V1 V2 and V1 / V3 * * * (3)
V1 / V2 and V1 V3 * * * (6)

V1 / V2 and V1 / V3
V2 V3 * * (1)
V2 / V3 * * (2)

V1 V2 and V1 V3

V2 V3 and V2 / V4 * * (7)

V2 / V3 and V2 / V4
V3 / V4 * (4)
V3 V4 * (5)

V2 V3 and V2 V4

V3 / V4 * (8)

V3 V4
V4 / V5 (9)
V4 V5 (11)

V2 / V3 and V2 V4 *
V4 / V5 (10)
V4 V5 (12)

Table 2: The intervention process to identify a causal structure from the essential graph in Figure
3, where ∗ means that the intervention is unnecessary.

B 6= /0. Below we show a result which can be used to identify the direction of the undirected edge
Vi−Vk via a quasi-experiment of intervention on Vi.

Theorem 7 For a quasi-experiment of intervention on Vi, we have the following properties

1. PVi(vk|B) = P(vk|B) for all vk and B if Vi is a parent of Vk, and

2. PVi(vk) = P(vk) for all vk if Vi is a child of Vk.

According to Theorem 7, we can orient the undirected edge Vi−Vk as

1. Vi←Vk if PVi(vk|B) 6= P(vk|B) for some vk and B, or

2. Vi→Vk if PVi(vk) 6= P(vk) for some vk.

The nonequivalence of pre- and post-intervention distributions is tested by using both experimental
data and observational data, which is different from that of randomized experiments.

Example 1 (continued). Consider again the essential graph in Figure 3. We use a quasi-
experiment of manipulating V1 in order to orient the undirected edges connecting V1 (V3−V1−V2).
We may test separately four null hypotheses PV1(v2) = P(v2), PV1(v3) = P(v3), PV1(v2|v1,v3,v4) =
P(v2|v1,v3,v4) and PV1(v3|v1,v2,v4) = P(v3|v1,v2,v4) with both observational and experimental
data. We orient V1−V2 as V1 → V2 if PV1(v2) 6= P(v2), otherwise as V1 ← V2 (or further check
whether there is a stronger evidence of PV1(v2|v1,v3,v4) 6= P(v2|v1,v3,v4)). Similarly we can orient
V1−V3. Finally we obtain four possible orientations as shown in Table 1.

If both PVi(vk) = P(vk) and PVi(vk|B) = P(vk|B) for all vk and B hold for a quasi-experiment,
then we cannot identify the direction of edge Vi−Vk from the intervention. For example, suppose
that there are only two variables V1 and V2, V1 has three levels and V1 is the parent of V2. If the
true conditional distribution of V2 given V1 is: p(v2|V1 = 1) = p(v2|V1 = 2) 6= p(v2|V1 = 3), then the

2531

HE AND GENG

undirected edge V1−V2 cannot be oriented with the intervention on V1 with pV1(V1 = v) 6= p(V1 = v)
for v = 1 and 2 but pV1(V1 = 3) = p(V1 = 3) because we have that pV1(v2) = p(v2) for all v2 and that
pV1(v2|B) = p(v2|B) where B = {V1}. In a quasi-experiment, an experimenter may not be able to
manipulate V1, and thus this phenomenon can occur. If V1 can be manipulated, then the experimenter
can choose the distribution of V2 to avoid this phenomenon.

4. Optimal Designs of Intervention Experiments

In this section, we discuss the optimal designs of intervention experiments which are used to min-
imize the number of manipulated variables or to minimize the uncertainty of candidate structures
after an intervention experiment based on some criteria. Since the orientation for one chain compo-
nent is unrelated to the orientations for other components, we can design an intervention experiment
for each chain component separately. As shown in Section 2, given a chain component τ, we orient
the subgraph over τ into a DAG Gτ without any v-structure or cycle via experiments of interventions
in variables in τ. For simplicity, we omit the subscript τ in this section. In the following subsec-
tions, we discuss intervention designs for only one chain component. We first introduce the concept
of sufficient interventions and discuss their properties of sufficient interventions, then we present
the optimal design of batch interventions, and finally we give the optimal design of sequential in-
terventions. For optimizing quasi-experiments of interventions, we assume that intervention on a
variable Vi will change the marginal distribution of its child V j, that is, there is a level v j such that
PVi(v j) 6= P(v j) for Vi→ Vj. Under this assumption, all undirected edges connecting a node Vi can
be oriented via a quasi-experiment of intervention on variable Vi. Without the assumption, there
may be some undirected edge which cannot be oriented even if we perform interventions in both of
its two nodes.

4.1 Sufficient Interventions

It is obvious that we can identify a DAG in a Markov equivalence class if we can manipulate all
variables which connect undirected edges. However, it may be unnecessary to manipulate all of
these variables. Let S = (V1,V2, · · · ,Vk) denote a sequence of manipulated variables. We say that a
sequence of manipulated variables is sufficient for a Markov equivalence class [G] if we can identify
one DAG from all possible DAGs in [G] after these variables in the sequence are manipulated. That
is, we can orient all undirected edges of the essential graph G∗ no matter which G in [G] is the true
DAG. There may be several sufficient sequences for a Markov equivalence class [G].

Let g denote the number of nodes in the chain component, and h the number of undirected edges
within the component. Then there are at most 2h possible orientation of these undirected edges, and
thus there are at most 2h DAGs over the component in the Markov equivalence class. Given a
permutation of nodes in the component, a DAG can be obtained by orienting all undirected edges
backwards in the direction of the permutation, and thus there are at most min{2h,g!} DAGs in the
class.

Theorem 8 If a sequence S = (V1,V2, · · · ,Vk) of manipulated variables is sufficient, then any per-
mutation of S is also sufficient.

According to Theorem 8, we can ignore the order of variables in an intervention sequence
and treat the sequence as a variable set. Thus, if S is a sufficient set, then S ′ which contains S

2532

ACTIVE LEARNING OF CAUSAL NETWORKS

is also sufficient. Manipulating Vi, we obtain a class E(Vi) = {e(Vi)} of orientations (see Table
1 as an example). Given an orientation e(Vi), we can obtain the class [G]e(Vi) by (3). We say that
e(V1, . . . ,Vk) = {e(V1), . . . ,e(Vk)} is a legal combination of orientations if there is not any v-structure
or cycle formed and there is not any undirected edge oriented in two different directions by these
orientations. For a set S = (V1, . . . ,Vk) of manipulated variables, the Markov equivalence class is
reduced into a class

[G]e(V1,...,Vk) = [G]e(V1)∩ . . .∩ [G]e(Vk)

for a legal combination e(V1, . . . ,Vk) of orientations. If [G]e(V1,...,Vk) has only one DAG for all possi-
ble legal combinations e(V1, . . . ,Vk) ∈ E(V1)× . . .×E(Vk), then the set S is a sufficient set for iden-
tifying any DAG in [G]. Let S denote the class of all sufficient sets, that is, S = {S : S is sufficient}.
We say that a sequence S is minimum if any subset of S is not sufficient.

Theorem 9 The intersection of all sufficient sets is an empty set, that is,
T

S∈S S = ∅. In addition,
the intersection of all minimum sufficient sets is also an empty set.

From Theorem 9, we can see that there is not any variable that must be manipulated to identify
a causal structure. Especially, any undirected edge can be oriented by manipulating either of its two
nodes.

4.2 Optimization for Batch Interventions

We say that an intervention experiment is a batch-intervention experiment if all variables in a suf-
ficient set S are manipulated in a batch to orient all undirected edges of an essential graph. Let
|S | denote the number of variables in S . We say that a batch intervention design is optimal if its
sufficient set So has the smallest number of manipulated variables, that is, |So|= min{|S | : S ∈ S}.
Given a Markov equivalence class [G], we try to find a sufficient set S which has the smallest num-
ber of manipulated variables for identifying all possible DAGs in the class [G]. Below we give an
algorithm to find the optimal design for batch interventions, in which we first try all sets with a sin-
gle manipulated variable, then try all sets with two variables, and so on, until each post-intervention
Markov equivalence class has a single DAG.

Given a Markov equivalence class [G], we manipulate a node V and obtain an orientation of
some edges, denoted by e(V). The class [G] is split into several subclasses, denoted by [G]e(V)

for all possible orientations e(V). Let [G]e(V1,V2) denote a subclass with an orientation obtained by
manipulating V1 and V2. The following algorithm 1 performs exhaustive search for the optimal
design of batch interventions. Before calling Algorithm 1, we need to enumerate all DAGs in the
class [G], and then we can easily find [G]e(Vi) according to (3). There are at most min{g!,2h}
DAGs in the class [G], and thus the upper bound of the complexity for enumerating all {[G]e(Vi)} is
min{g!,2h}. We may be able to have an efficient method to find all {[G]e(Vi)} using the structure of
the chain component.

2533

HE AND GENG

Algorithm 1 Algorithm for finding the optimal designs of batch interventions
Input: A chain graph G induced by a chain component τ = {V1, . . . ,Vg}, and [G]e(Vi) for all e(Vi)

and i.
Output: All optimal designs of batch interventions.

Initialize the size k of the minimum intervention set as k = 0.
repeat

Set k = k +1.
for all possible variable subsets S = {Vi1 , . . . ,Vik} do

if |[G]e(S)|= 1 for all possible legal combination e(S) of orientations then
return the minimum sufficient set S

end if
end for

until find some sufficient sets

Algorithm 1 exhaustively searches all combinations of manipulated variables to find the mini-
mum sufficient sets, and its complexity is O(g!), although Algorithm 1 may stop whenever it finds
some minimum sets. The calculations in Algorithm 1 are only simple set operations

[G]e(S) = [G]e(Vi1)∩ . . .∩ [G]e(Vik),

where all [G]e(Vi) have been found before calling Algorithm 1. Notice that a single chain component
usually has a size g much less than the total number n of variables. Algorithm 1 is feasible for a
mild size g. A more efficient algorithm or a greedy method is needed for a large g and h. In this
case, there are too many DAGs to enumerate. We can first take a random sample of DAGs from the
class [G] with the simulation method proposed in the next subsection, and then we use the sample
approximately to find an optimal design.

A possible greedy approach is to select a node to be first manipulated from the chain component
which has the largest number of neighbors such that the largest number of undirected edges are
oriented by manipulating it, and then delete these oriented edges. Repeat this process until there is
not any undirected edge left. But there are cases where the sufficient set obtained from the greedy
method is not minimum.

Example 1 (continued). Consider the essential graph in Figure 3, which depicts a Markov
equivalence class with 12 DAGs in Figure 4. From Algorithm 1, we can find that {1,2,4}, {1,3,4},
{2,3,4} and {2,3,5} are all the minimum sufficient sets. The greedy method can obtain the same
minimum sufficient sets for this example.

4.3 Optimization for Sequential Interventions

The optimal design of batch interventions presented in the previous subsection tries to find a min-
imum sufficient set S before any variable is manipulated, and thus it cannot use orientation results
obtained by manipulating the previous variables during the intervention process. In this subsection,
we propose an experiment of sequential interventions, in which variables are manipulated sequen-
tially. Let S (t) denote the set of variables that have been manipulated before step t and S (0) = /0. At
step t of the sequential experiment, according to the current Markov equivalence class [G]e(S (t−1))

obtained by manipulating the previous variables in S (t−1), we choose a variable V to be manipulated

2534

ACTIVE LEARNING OF CAUSAL NETWORKS

based on some criterion. We consider two criteria for choosing a variable. One is the minimax crite-
rion based on which we choose a variable V such that the maximum size of subclasses [G]e(S (t)) for

all possible orientations e(S (t)) is minimized. The other is the maximum entropy criterion based on
which we choose a variable V such that the following entropy is maximized for any V in the chain
component τ

HV =−
M

∑
i=1

li
L

log
li
L

,

where li denotes the number of possible DAGs of the chain component with the ith orientation
e(V)i obtained by manipulating V , L = ∑i li and M is the number of all possible orientations
e(V)1, . . . ,e(V)M obtained by manipulating V . Based on the maximum entropy criterion, the post-
intervention subclasses have sizes as small as possible and they have sizes as equal as possible,
which means uncertainty for identifying a causal DAG from the Markov equivalence class is mini-
mized by manipulating V . Below we give two examples to illustrate how to choose variables to be
manipulated in the optimal design of sequential interventions based on the two criteria.

Example 1 (continued). Consider again the essential graph in Figure 3, which depicts a Markov
equivalence class with 12 DAGs in Figure 4. Tables 3 to 6 show the results for manipulating one of
variables V1, V2 (symmetry to V3), V4 and V5 respectively in order to distinguish the possible DAGs
in Figure 4. The first row in these tables gives possible orientations obtained by manipulating the
corresponding variable. The second row gives DAGs obtained by the orientation, where numbers are
used to index DAGs in Figure 4. The third row gives the number li of DAGs of this chain component
for the ith orientation. The entropies for manipulating V1, . . . ,V5 are 0.9831, 1.7046, 1.7046, 1.3480,
0.4506, respectively. Based on the maximum entropy criterion, we choose variable V2 or V3 to be
manipulated first. The maximum numbers li of DAGs for manipulating one of V1, . . . ,V5 are 8,
3, 3, 6, 10, respectively. Based on the minimax criterion, we also choose variable V2 or V3 to be
manipulated first.

Although the same variable V2 or V3 is chosen to be manipulated first in the above example,
in general, the choice may be different based on the two criteria. The minimax criterion tends to
be more conservative, and the entropy criterion tends to be more uniform. For example, consider
two interventions for an equivalence class with 10 DAGs: one splits the class into 8 subclasses with
the numbers (l1, . . . , l8) = (1,1,1,1,1,1,1,3) of DAGs, the other splits it into 5 subclasses with the
numbers of DAGs equal to (2,2,2,2,2). Then the minimax criterion chooses the second intervention,
while the maximum entropy criterion chooses the first intervention.

To find the number (li for i = 1, · · · ,M), we need to enumerate all DAGs in the class [G] and
then count the number li of DAGs with the same orientations as e(V)i. As discussed in Section
4.2, the upper bound of the complexity for calculating all li is O(min{g!,2h}). Generally the size
g of a chain component is much less than the number n of the full variable set and the number h
of undirected edges in a chain component is not very large. In the following example, we show a
special case with a tree structure, where the calculation is easy.

Example 2. In this example, we consider a special case that a chain component has a tree
structure. It does not mean that a DAG is a tree, and it is not uncommon in a chain component
(see Figure 1). Since there are no v-structures in any chain component, all undirected edges in
a subtree can be oriented as long as we find its root. Manipulating a node V in a tree, we can

2535

HE AND GENG

Orientation V2←V1→V3 V2→V1→V3 V2→V1←V3 V2←V1←V3

DAGs {1,2} {3} {4,5,7,8,9,10,11,12} {6}
li 2 1 8 1

Entropy is 0.9831 and maximum li is 8

Table 3: Manipulating V1

Orientation
q

q

q

q

@@I?��	
q

q

q

q

@@I
6
��	

q

q

q

q

@@I
6
���

q

q

q

q

@@R
6
���

q

q

q

q

@@R?���
q

q

q

q

@@I?���

DAGs {8,9,11} {10,12} {3,4,5} {2} {1,6} {7}
li 3 2 3 1 2 1

Entropy is 1.7046 and maximum li is 3

Table 4: Manipulating V2

Orientation
q

q

q q@@R
���

-
q

q

q q@@I
���

-
q

q

q q@@R
��	

-
q

q

q q@@I
��	

-
q

q

q q@@I
��	

�

DAGs {1,2,3,4,6,7} {5} {8} {9,10} {11,12}
li 6 1 1 2 2

Entropy is 1.3480 and maximum li is 6

Table 5: Manipulating V4

Orientation V4→V5 V4←V5

DAGs {1,2,3,4,5,6,7,8,9,10} {11,12}
li 10 2
Entropy is 0.4506 and maximum li is 10

Table 6: Manipulating V5

determinate all orientations of edges connecting V , and thus all subtrees that are emitted from V
can be oriented, but only one subtree with V as a terminal cannot be oriented. Suppose that node
V connects M undirected edges, and let li denote the number of nodes in the ith subtree connecting
V for i = 1, . . . ,M. Since each node in the ith subtree may be the root of this subtree, there are li

possible orientations for the ith subtree. Thus we have the entropy for manipulating V

HV =−
M

∑
i=1

li
L

log
li
L

.

Consider the chain component τ = {V1, . . . ,V4} of the chain graph G∗ in Figure 1, which has a tree
structure. In Table 7, the first column gives variables to be manipulated, the second column gives
possible orientations via the intervention, the third column gives the equivalence subclasses (see
Figure 2) for each orientation, the fourth column gives the number li of possible DAGs for the ith

2536

ACTIVE LEARNING OF CAUSAL NETWORKS

orientation and the last column gives the entropy for each intervention. From Table 7, we can see
that manipulating V1 or V2 has the maximum entropy and the minimax size.

Intervention Orientation Subclass of DAGs li HV

V1 V2←V1→V3 G 1 1.0397
V2→V1→V3 G1,G2 2
V2←V1←V3 G3 1

V2 V4←V2←V1 G,G3 2 1.0397
V4←V2→V1 G1 1
V4→V2→V1 G2 1

V3 V1→V3 G,G1,G2 3 0.5623
V1←V3 G3 1

V4 V4←V2 G,G1,G3 3 0.5623
V4→V2 G2 1

Table 7: Manipulating variables in a chain component with a tree structure.

An efficient algorithm or an approximate algorithm is necessary when both g and h are very
large. A simulation algorithm can be used to estimate li/L. In this simulation method, we randomly
take a sample of DAGs without any v-structure from the class [G]. To draw such a DAG, we
randomly generate a permutation of all nodes in the class, orient all edges backwards in the direction
of the permutation, and keep only the DAG without any v-structure. There may be some DAGs in
the sample which are the same, and we keep only one of them. Then we count the number l ′i of
DAGs in the sample which have the same orientation as e(V)i. We can use l′i/L′ to estimate li/L,
where L′ = ∑i l′i . When the sample size tends to infinite, all DAGs in the class can be drawn, and
then the estimate l′i/L′ tends to li/L. Another way to draw a DAG is that we randomly orient each
undirected edge of the essential graph, but we need to check whether there is any cycle besides
v-structure.

5. Simulation

In this section, we use two experiments to evaluate the active learning approach and the optimal
designs via simulations. In the first experiment, we evaluate a whole process of structural learning
and orientation in which we first find an essential graph using the PC algorithm and then orient
the undirected edges using the approaches proposed in this paper. In the second experiment, we
compare various designs for orientations starting with the same underlying essential graph. For both
experiments, the DAG (1) in Figure 4 is used as the underlying DAG and all variables are binary.
Its essential graph is given in Figure 3 and there are other 11 DAGs which are Markov equivalent
to the underlying DAG (1), as shown in Figure 4. This essential graph can also be seen as a chain
component of a large essential graph. All conditional probabilities P(v j|pa(v j)) are generated from
the uniform distribution U(0,1). We repeat 1000 simulations with the sample size n = 1000.

In each simulation of the first experiment, we first use the PC algorithm to find an essential
graph with the significance level α = 0.15 with which the most number of true essential graphs
were obtained among various significance levels in our simulations. Then we use the interven-
tion approach proposed in Section 3 to orient undirected edges of the essential graph. To com-
pare the performances of orientations for different significance levels and sample sizes used in

2537

HE AND GENG

intervention experiments, we run simulations for various combinations of significance levels αI =
0.01,0.05,0.10,0.15,0.20,0.30 and sample sizes nI = 50,100,200,500 in intervention experiments.
To compare the performance of the experiment designs, we further give the numbers of manipulated
variables that are necessary to orient all undirected edges of the same essential graphs in various in-
tervention designs. We run the simulations using R 2.6.0 on an Intel(R) Pentium(R) M Processor
with 2.0 GHz and 512MB RAM and MS XP. It takes averagely 0.4 second of the processor time for
a simulation, and each simulation needs to finish the following works: (1) generate a joint distribu-
tion and then generate a random sample of size n = 1000, (2) find an essential graph using the PC
algorithm, (3) find an optimal design, and (4) repeatedly generate experimental data of size nI until
identifying a DAG.

To make the post-intervention distribution P′(vi|pa(vi)) different from the pre-intervention P(vi|pa(vi)),
we use the post-intervention distribution of the manipulated variable Vi as follows

P′(vi|pa(vi)) = P′(vi) =

{

1, P(vi)≤ 0.5;
0, otherwise.

To orient an undirected edge Vi−Vj, we implemented both the independence test of the manipulated
Vi and its each neighbor variable V j for randomized experiments and the equivalence test of pre- and
post-intervention distributions (i.e., PVi(v j) = P(v j) for all v j) in our simulations. Both tests have
the similar results and the independence test is little more efficient than the equivalence test. To
save space, we only show the simulation results of orientations obtained by the equivalence test and
the optimal design based on the maximum entropy criterion in Table 8, and other designs have the
similar results of orientations.

To evaluate the performance of orientation, we define the percentage of correct orientations as
the ratio of the number of correctly oriented edges to the number of edges that are obtained from
the PC algorithm and belong to the DAG (1) in Figure 4. The third column λ in Table 8 shows the
average percentages of correctly oriented edges of the DAG (1) in 1000 simulations. To separate the
false orientations due to the PC algorithm from those due to intervention experiments, we further
check the cases that the essential graph in Figure 3 is correctly obtained from the PC algorithm.
The fourth column m shows the number of correct essential graphs obtained from the PC algorithm
in 1000 simulations. In the fifth column, we show the percentage λ′ of correct orientations for
the correct essential graph. Both λ and λ′ increase as nI increases. Comparing λ and λ′, it can
be seen that there are more edges oriented correctly when the essential graph is correctly obtained
from the PC algorithm. From the sixth to eleven columns, we give the cumulative distributions of
the number of edges oriented correctly when the essential graph is correctly obtained. The column
labeled ‘≥ i’ means that we correctly oriented more than or equal to i of 6 edges of the essential
graph in Figure 3, and the values in this column denote the percents of DAGs with more than or
equal to i edges correctly oriented in those simulations. For example, the column ‘≥ 5’ means that
more than or equal to 5 edges are oriented correctly (i.e., the DAGs (1), (2) and (6) in Figure 4), and
0.511 in the first line means that 51.1% of m = 409 correct essential graphs were oriented with ‘≥ 5’
correct edges. The column ‘6’ means that the underlying DAG (1) is obtained correctly. From this
column, it can be seen that more and more DAGs are identified correctly as the size nI increases.
The cumulative distribution for ≥ 0 is equal to one and is omitted. From these columns, it can be
seen that more and more edges are correctly oriented as the size nI increases. From λ and λ′, we
can see that a larger αI is preferable for a smaller size nI , and a smaller αI is preferable for a larger

2538

ACTIVE LEARNING OF CAUSAL NETWORKS

nI . For example, αI = 0.20 is the best for nI = 50, αI = 0.10 for nI = 100, αI = 0.05 for nI = 200,
αI = 0.01 for nI = 500.

The number of edges oriented correctly
nI αI λ m λ′ 6 ≥ 5 ≥ 4 ≥ 3 ≥ 2 ≥ 1
50 .01 .672 409 .758 0.401 0.511 0.868 0.870 0.927 0.973

.05 .699 409 .782 0.496 0.616 0.829 0.839 0.934 0.976

.10 .735 418 .808 0.538 0.646 0.833 0.868 0.969 0.993

.15 .745 407 .821 0.516 0.690 0.855 0.909 0.966 0.990

.20 .756 404 .826 0.564 0.723 0.832 0.899 0.963 0.978

.30 .741 373 .819 0.501 0.729 0.823 0.920 0.965 0.979
100 .01 .761 401 .850 0.586 0.706 0.910 0.925 0.975 0.995

.05 .774 408 .846 0.588 0.721 0.885 0.919 0.973 0.993

.10 .806 425 .878 0.668 0.814 0.896 0.925 0.974 0.993

.15 .794 410 .868 0.624 0.790 0.878 0.932 0.985 1.000

.20 .788 382 .875 0.626 0.812 0.890 0.948 0.982 0.992

.30 .798 417 .861 0.583 0.777 0.856 0.959 0.988 1.000
200 .01 .822 421 .901 0.724 0.808 0.945 0.948 0.988 0.995

.05 .836 402 .911 0.701 0.853 0.950 0.973 0.995 0.995

.10 .833 408 .900 0.686 0.863 0.917 0.949 0.993 0.995

.15 .823 382 .901 0.696 0.851 0.911 0.955 0.995 1.000

.20 .826 395 .886 0.658 0.820 0.889 0.962 0.990 0.997

.30 .822 402 .887 0.614 0.828 0.905 0.975 0.998 1.000
500 .01 .870 369 .966 0.878 0.943 0.984 0.992 1.000 1.000

.05 .869 388 .940 0.802 0.920 0.951 0.977 0.995 0.997

.10 .863 399 .936 0.762 0.905 0.952 0.995 1.000 1.000

.15 .859 433 .926 0.723 0.898 0.956 0.986 0.995 1.000

.20 .846 390 .923 0.703 0.890 0.956 0.990 0.997 1.000

.30 .834 389 .893 0.599 0.820 0.949 0.992 1.000 1.000

Table 8: The simulation results

In the second experiment, we compare the numbers of manipulated variables to orient the same
underlying essential graph for different experimental designs. In the following simulations, we
set nI = 100 and αI = 0.1, and all orientations start with the true essential graph in Figure 3. As
shown in Section 4.2, the optimal batch design and the design by the greedy method always need
three variables to be manipulated for orientation of the essential graph. For the optimal sequential
designs, the frequencies of the numbers of manipulated variables in 1000 simulations are given in
Table 9. In the random design labeled ’Random’, we randomly select a variable to be manipulated
at each sequential step, only one variable is manipulated for orientations in 268 of 1000 simulations,
and four variables are manipulated in 55 of 1000 simulations. In the middle of Table 9, we show
the simulation results of the optimal sequential designs based on the minimax criterion and its
approximate designs obtained by drawing a sample of DAGs. The minimax design needs only one or
two variables to be manipulated in all 1000 simulations. We show three approximate designs which
draw h, h×5 and h×10 DAGs from a chain component with h undirected edges respectively. For

2539

HE AND GENG

example, the sample sizes of DAGs from the initial essential graph [G] with h = 6 undirected edges
are 6, 30 and 60, respectively. As the sample size increases, the distribution of the manipulated
variable numbers tends to the distribution for the exact minimax design. The optimal sequential
design based on the maximum entropy criterion has a very similar performance as that based on the
minimax criterion, as shown in the bottom of Table 9. According to Table 9, all of the sequential
intervention designs (Random, Minimax, Entropy and their approximations) are more efficient than
the batch design, and the optimal designs based on the minimax and the maximum entropy criteria
are more efficient than the random design.

m∗

Design 1 2 3 4
Random 268 475 202 55
Minimax 437 563 0 0
Approx. (h) 372 469 159 0
Approx. (h×5) 413 573 14 0
Approx. (h×10) 426 574 0 0
Entropy 441 559 0 0
Approx. (h) 375 454 171 0
Approx. (h×5) 435 547 18 0
Approx. (h×10) 425 574 1 0

m∗ denotes the number of manipulated variables

Table 9: The frequencies of the numbers of interventions

6. Conclusions

In this paper, we proposed a framework for active learning of causal structures via intervention
experiments, and further we proposed optimal designs of batch and sequential interventions based
on the minimax and the maximum entropy criteria. A Markov equivalence class can be split into
subclasses by manipulating a variable, and a causal structure can be identified by manipulating
variables repeatedly. We discussed two kinds of external intervention experiments, the randomized
experiment and the quasi-experiment. In a randomized experiment, the distribution of a manipu-
lated variable does not depend on its parent variables, while in a quasi-experiment, it may depend
on its parents. For a randomized experiment, the orientations of an undirected edge can be deter-
mined by testing the independence of the manipulated variable and its neighbor variable only with
experimental data. For a quasi-experiment, the orientations can be determined by testing the equiva-
lence of pre- and post-intervention distributions with both experimental and observational data. We
discussed two optimal designs of batch and sequential interventions. For the optimal batch design,
a smallest set of variables to be manipulated is found before interventions, which is sufficient to
orient all undirected edges of an essential graph. But the optimal batch design does not use orien-
tation results obtained by manipulating the previous variables during the intervention process, and
thus it may be less efficient than the optimal sequential designs. For the optimal sequential design,
we choose a variable to be manipulated sequentially such that the current Markov equivalence class
can be reduced to a subclass with potential causal DAGs as little as possible. We discussed two

2540

ACTIVE LEARNING OF CAUSAL NETWORKS

criteria for optimal sequential designs, the minimax and the maximum entropy criteria. The exact,
approximate and greedy methods are presented for finding the optimal designs.

The scalability of the optimal designs proposed in this paper depends only on the sizes of chain
components but does not depend on the size of a DAG since the optimal designs are performed
separately within every chain component. As discussed in Section 4, the optimal designs need to
find the number of possible DAGs in a chain component, which has a upper bound min{2h,g!}.
When both the number h of undirected edges and the number g of nodes in a chain component
are very large, instead of using the optimal designs, we may use the approximate designs via
sampling DAGs. We checked several standard graphs found at the Bayesian Network Repository
(http://compbio.cs.huji.ac.il/Repository/). We extracted their chain components and found that most
of their chain components have tree structures and their sizes are not large. For example, ALARM
with 37 nodes has 4 chain components with only two nodes in each component, HailFinder with 56
nodes has only one component with 18 nodes, Carpo with 60 nodes has 9 components with at most
7 nodes in each component, Diabets with 413 nodes has 25 components with at most 3 nodes, and
Mumin 2 to Mumin 4 with over 1000 nodes have at most 21 components with at most 35 nodes.
Moreover, all of those largest chain components have tree structures, and thus we can easily carry
out optimal designs as discussed in Example 2.

In this paper, we assume that there are no latent variables. Though the algorithm can orient
the edges of an essential graph and output a DAG based on a set of either batch or sequential
interventions, the application of the method for learning causality in the real word is pretty limited
because latent or hidden variables are typically present in real-world data sets.

Acknowledgments

We would like to thank the guest editors and the three referees for their helpful comments and
suggestions that greatly improved the previous version of this paper. This research was supported
by Doctoral Program of Higher Education of China (20070001039), NSFC (70571003, 10771007,
10431010), NBRP 2003CB715900, 863 Project of China 2007AA01Z43, 973 Project of China
2007CB814905 and MSRA.

Appendix A. Proofs of Theorems

Before proving Theorems 4 and 5, we first give a lemma which will be used in their proofs.

Lemma 10 If a node V ∈V is a parent of a node U in a chain component τ of G∗ (i.e., (V→U)∈G∗

, U ∈ τ, V ∈ V and V /∈ τ), then V is a parent of all nodes in τ (i.e., (V →W) ∈ G for any W ∈ τ).

Proof By (iii) of Lemma 3, V →U W does not occur in any induced subgraph of G∗. Thus for
any neighbor of U in the chain component τ, W and V must be adjacent in G∗. Because V /∈ τ, the
edge between V and W is directed. There are two alternatives as shown in Figures 5 and 6 for the
subgraph induced by {V,U,W}.

If it is the subgraph in Figure 6 (i.e., the V →W ∈ G′ for any G′ ∈ [G]), then W →U must be
in G′ for any G′ ∈ [G] in order to avoid a directed cycle, as shown in Figure 7. So W →U must be
in G∗. It is contrary to the fact that {U,W} ∈ τ is in a chain component of G∗. So V must also be a
parent of W . Because all variables in τ are connected by undirected edges in G∗τ , V must be a parent

2541

HE AND GENG

r

r r

V

U W

�
��+

Q
QQs

Figure 5: SG1

r

r r

V

U W

�
��+ Q

QQk

Figure 6: SG2

r

r r

V

U W

�
��+ Q

QQk
�

Figure 7: SG3

of all other variables in τ.

Proof of Theorem 4. According to Lemma 10, if a node W outside a component τ points at a node
V in τ, then W must point at each node U in τ. Thus W , V and U cannot form a v-structure.

Proof of Theorem 5. Suppose that Theorem 5 does not hold, that is, there is a directed path
V1→ ·· · →Vk in Gτ which is not a directed cycle, but W1→ ·· · →Wi→V1→ ·· · →Vk→Wi+1→
·· · →W1 is a directed cycle, where Wi /∈ τ. We denote this cycle as DC. From Lemma 10, Wi must
also be a parent of Vk, and thus W1→ ·· · →Wi→ Vk →Wi+1→ ·· · →W1 is also a directed cycle,
denoted as DC′. Now, every edge of DC′ is out of Gτ. Similarly, we can remove all edges in other
chain components from DC′ and keep the path being a directed cycle. Finally, we can get a directed
cycle in the directed subgraph of G∗. It contradicts the fact that G∗ is an essential graph of a DAG.
So we proved Theorem 5.

To prove Theorem 6, we first present an algorithm for finding the post-intervention essential
graph G∗e(V) via the orientation e(V), then we show the correctness of the algorithm using several
lemmas, and finally we give the proof of Theorem 6 with G∗e(V) obtained by the algorithm. In order
to prove that G∗e(V) is also a chain graph, we introduce an algorithm (similar to Step D of SGS and
the PC algorithm in Spirtes et al., 2000) for constructing a graph, in which some undirected edges
of the initial essential graph are oriented with the information of e(V). Let τ be a chain graph of G∗,
V ∈ τ and e(V) be an orientation of undirected edges connecting V .

Algorithm 2 Find the post-intervention essential graph via orientation e(V)

Input: The essential graph G∗ and e(V)
Output: The graph H

Orient the undirected edges connecting V in the essential graph G∗ according to e(V) and denote
the graph as H.
Repeat the following two rules to orient some other undirected edges until no rules can be applied:
(i) if V1→ V2−V3 ∈ H and V1 and V3 are not adjacent in H, then orient V2−V3 as V2→ V3 and
update H;
(ii) if V1→V2→V3 ∈ H and V1−V3 ∈ H, then orient V1−V3 as V1→V3 and update H.
return the graph H

It can be shown that H constructed by Algorithm 2 is a chain graph and H is equal to the
post-intervention essential graph G∗e(V). We show those results with the following three Lemmas.

Lemma 11 Let G∗ be the essential graph of DAG G, τ be a chain component of G∗ and I be a DAG
over τ. Then there is a DAG G′ ∈ [G] such that I = G′τ if and only if I is a DAG with the same
skeleton as G∗τ and without v-structures.

2542

ACTIVE LEARNING OF CAUSAL NETWORKS

Proof If there is a DAG G′ ∈ [G] such that I = G′τ, we have from Lemma 1 that I is a DAG with the
same skeleton as G∗τ and without v-structures.

Let I be a DAG with the same skeleton as G∗τ and without v-structures, and G′ be any DAG in
the equivalence class [G]. We construct a new DAG I ′ from G′ by substituting the subgraph G′τ of
G′ with I. I′ has the same skeleton as G′. From Theorems 4 and 5, I ′ has the same v-structures as
G′. Thus I′ is equivalent to G′ and I′ ∈ [G].

Lemma 12 Let H be a graph constructed by Algorithm 2. Then H is a chain graph.

Proof If H is not a chain graph, there must be a directed cycle in subgraph Hτ for some chain
component of G∗. Moreover, G∗τ is chordal and H ⊂ G∗, and thus Hτ is chordal too. So we can get
a three-edge directed cycle in Hτ as given in Figure 8 or 9.

r

r r

d

b c

�
��+ Q

QQ

Figure 8: SG6

r

r r

d

b c

�
��+ Q

QQk

Figure 9: SG61

If Figure 9 is a subgraph of H obtained at some step of Algorithm 2, then the undirected edge
b c is oriented as b← c according to Algorithm 2. Thus only Figure 8 can be a subgraph of H.

According to Lemma 10, we have that the directed edge d → b is not in G∗. Since all edges
connecting a have been oriented in Step 1 of Algorithm 2, d → b is not an edge connecting a.
So d → b must be identified at step 2 of Algorithm 2. There are two situations, one is to avoid a
v-structure as shown in Figure 10, the other is to avoid a directed cycle as Figure 13.

r r

r

r

b c

d

d1

�
�	

@
@

?

Figure 10: SG7

r r

r

r

b c

d

d1

�
�	

@
@

?
A
A
AAU

Figure 11: SG8

r r

r

r

b c

d

d1

�
�	�

@
@

?
A
A
AAU

Figure 12: SG9

r r

r

r

b c

d

d1

�
�	

@
@

6�
�

���

Figure 13: SG10

r r

r

r

b c

d

d1

�
�	

@
@

6�
�

���

A
A
AAU

Figure 14: SG11

r r

r

r

b c

d

d1

�
�	

@
@R

6�
�

���

A
A
AAU

Figure 15: SG12

We can arrange all directed edges in Hτ in order of orientations performed at Step 2 of Algorithm
2. First, we prove that the directed edge d→ b in Figure 8 is not the first edge oriented at Step 2 of
Algorithm 2.

2543

HE AND GENG

In the first case as Figure 10, if d→ b is the first edge oriented at Step 2 of Algorithm 2, we have
d1 = a. Because b and a are not adjacent, and d c is an undirected edge in H, we have that d1→ c
must be in H as Figure 11, where d1 = a. Now we consider the subgraph b c← d1. According to
the rules (i) and (ii) in Algorithm 2, we have that b← c is in G∗e(a) as Figure 12, which contradicts
the assumption that b c ∈ H.

In the second case as Figure 13, if d→ b is the first edge oriented at Step 2 of Algorithm 2, we
have d1 = a.

Considering the structure d1 → b c and that d c is an undirected edge in H, we have that
d1→ c must be in H as Figure 14. Now we consider the subgraph of {d,d1,c}. By Algorithm 2,
d → c is in H as Figure 15, which contradicts the assumption that d c ∈ H. Thus we have that
the first edge oriented at Step 2 of Algorithm 2 is not in any directed cycle. Suppose that the first k
oriented edges at Step 2 of Algorithm 2 are not in any directed cycle. Then we want to prove that
the (k +1)th oriented edge is also not in a directed cycle.

Let d→ b be the (k + 1)th oriented edge at Step 2 of Algorithm 2, and Figure 8 be a subgraph
of H. There are also two cases as Figures 10 and 13 for orienting d→ b.

In the case of Figure 10, since d1 → d is in the first k oriented edges and d c ∈ H, we have
that d1→ c must be in H. We also get that b← c must be in H as Figure 12, which contradicts the
assumption that b c ∈ H.

In the case of Figure 10, since d1→ b and d→ d1 are in the first k oriented edges and b c ∈H,
we have that d1→ c must be in H. We also get that d← c must be in H as Figure 15, which contra-
dicts the assumption that d c ∈ H. So the (k +1)th oriented edge is also not in any directed cycle.
Now we can get that every directed edge in Hτ is not in any directed cycle. It implies that there are
no directed cycles in Hτ, and thus H is a chain graph.

Lemma 13 Let G∗e(V) be the post intervention essential graph with the orientation e(V) and H be
the graph constructed by Algorithm 2. We have G∗e(V) = H.

Proof We first prove G∗e(a) ⊆H. We just need to prove that all directed edges in H must be in G∗e(a).
We use induction to finish the proof.

After Step 1 of Algorithm 2, all directed edges in H are in G∗e(a). We now prove that the first
directed edge oriented at Step 2 of Algorithm 2, such as b← c, is in G∗e(a). Because b← c must
be oriented by the rule (i) of Algorithm 2, there must be a node d /∈ τ such that b c← d is the
subgraph of H. So b← c← d must be a subgraph in each G′ ∈ G∗e(a). Otherwise, b→ c← d forms
a v-structure such that G′ /∈ [G]. Thus we have b← c ∈ G∗e(a).

Suppose that the first k oriented edges at Step 2 of Algorithm 2 are in G∗e(a). We now prove that
the (k+1)th oriented edge at Step 2 of Algorithm 2 is also in G∗e(a). Denoting the (k+1)th oriented
edge as l← h, according to the rules in Algorithm 2, there are two cases to orient l← h as shown
in Figures 16 and 17.

r

r r

f

l h

Q
QQs

Figure 16: SG4

r

r r

f

h l

�
��+ Q

QQk

Figure 17: SG5

2544

ACTIVE LEARNING OF CAUSAL NETWORKS

In Figure 16, because f → h is in every DAG G′ ∈ G∗e(a), in order to avoid a new v-structure,
we have that l← h must be in every DAG G′ ∈ G∗e(a). Thus we have l← h ∈ G∗e(a). In Figure 17,
because l→ f and f → h are in every DAG G′ ∈ G∗e(a), in order to avoid a directed cycle, we have
that h← l must be in every DAG G′ ∈ G∗e(a). Thus we have h← l ∈ G∗e(a). Now we get that the
(k + 1)th oriented edge at Step 2 of Algorithm 2 is also in G∗e(a). Thus all directed edges in H are
also in G∗e(a) and then we have G∗e(a) ⊆ H.

Because H is a chain graph by Lemma 12, we also have H ⊆ G∗. By Lemma 11, for any undi-
rect edge a b of Hτ where τ is a chain component of H, there exist G1 and G2 ∈ G∗e(a) such that
a→ b occurs in G1 and a← b occurs in G2. It means that a b also occurs in G∗e(a). So we have
H ⊆ G∗e(a), and then G∗e(a) = H.

Proof of Theorem 6. By definition of G∗e(V), we have that G∗e(V) has the same skeleton as the
essential graph G∗ and contains all directed edges of G∗. That is, all directed edges in G∗ are also
directed in G∗e(V). So property 2 of Theorem 6 holds. Property 3 of Theorem 6 also holds because
all DAGs represented by G∗e(V) are Markov equivalent. From Lemmas 12 and 13, we can get that
G∗e(V) is a chain graph.

Proof of Theorem 7. We first prove property 1. Let C = ch(Vk)\ τ. Then B = ne(Vk)\C contains
all parents of Vk and the children of Vk in τ. Let A = An({B,Vk}) be the ancestor set of all nodes
in {B,Vk}. Since Vi is a parent of Vk for property 1, we have Vi ∈ A. The post-intervention joint
distribution of A is

PVi(A) = P′(vi|pa(vi)) ∏
v j∈A\Vi

P(v j|pa(v j)). (1)

Let U = A\{B,Vk}. Then we have from the post-intervention joint distribution (1)

PVi(vk|B) =
∑U P′(vi|pa(vi))∏v j∈A\Vi

P(v j|pa(v j)))

∑U,Vk
P′(vi|pa(vi))∏V j∈A\Vi

P(v j|pa(v j))

=
∑U P′(vi|pa(vi))∏v j∈A\{ch(Vk)∩τ,Vk}P(v j|pa(v j))∏v j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j))

∑U,Vk
P′(vi|pa(vi))∏v j∈A\{ch(Vk)∩τ,Vk}P(v j|pa(v j))∏v j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j))

,

where ∑U denotes a summation over all variables in the set U .
Below we want to factorize the denominator into a production of summation over U and sum-

mation over Vk. First we show that the factor P′(vi|pa(vi))∏v j∈A\{ch(Vk)∩τ,Vk}P(v j|pa(v j)) does not
contain Vk because Vk appears only in the conditional probabilities of ch(Vk) and the conditional
probability of Vk. Next we show that ∏v j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j)) does not contain any variable
in U . From definition of B, we have B ⊇ (ch(Vk)∩ τ). Then from definition of U , we have that
Vj in {ch(Vk)∩ τ,Vk} is not in U . Now we just need to show that any parent of any node V j in
{ch(Vk)∩ τ,Vk} is also not in U :

1. By definitions of B and U , the parents of Vk is not in U .

2. Consider parents of nodes in {ch(Vk)∩ τ}. Let W is such a parent, that is, W → V j for
Vj ∈ {ch(Vk)∩ τ}. There is a head to head path (W →V j←Vk). We show that W is not in U
separately for two cases: W ∈ τ and W /∈ τ. For the first case of W ∈ τ, there is an undirected

2545

HE AND GENG

edge between W and Vk in G∗τ since there is no v-structure in the subgraph G′τ for any G′ ∈ [G].
Then from definition of B, we have W ∈ B. For the second case of W /∈ τ, W must be a parent
of Vk by Lemma 10, and then W is in B. Thus we obtain W /∈U .

We showed that the factor ∏V j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j)) does not contain any variable in U . Thus
the numerator and the summations over U and Vk in the denominator can be factorized as follows

PVi(vk|B)

=
∏v j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j))∑U P′(vi|pa(vi))∏v j∈A\{ch(Vk)∩τ,Vk}P(v j|pa(v j))

∑Vk ∏v j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j))∑U P′(vi|pa(vi))∏v j∈A\{ch(Vk)∩τ,Vk}P(v j|pa(v j))

=
∏v j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j))

∑Vk ∏v j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j))
= P(vk|B).

Thus we proved property 1.
Property 2 is obvious since manipulating Vi does not change the distribution of its parent Vk.

Formally, let an(Vk) be the ancestor set of Vk. If Vk ∈ pa(Vi), then we have PVi(an(vk),vk) =
P(an(vk),vk) and thus PVi(Vk) = P(Vk).

Proof of Theorem 8. Manipulating a node Vi will orient all of undirected edges connecting Vi.
Thus the orientations of undirected edges do not depend on the order in which the variables are
manipulated. If a sequence S is sufficient, then its permutation is also sufficient.

Proof of Theorem 9. Suppose that S = (V1, . . . ,VK) is a sufficient set. We delete a node, say
Vi, from S , and define S ′[i] = S \ {Vi}. If the set S ′[i] is no longer sufficient, then we can add other
variables to S ′[i] without adding Vi such that S ′[i] becomes to be sufficient. This is feasible since any

undirected edge can be oriented by manipulating either of its two nodes. Thus we have
TK

i=1 S ′[i] = ∅.
Since all S ′[i] belong to S, we proved

T

S∈S S = ∅.
Similarly, for each minimum sequence S , we can define S ′[i] such that it does not contain Vi and

it is a minimum sufficient set. Thus the intersection of all minimum sufficient sets is empty.

References

C. Aliferis, I. Tsamardinos, A. Statnikov and L. Brown. Causal explorer: A probabilistic network
learning toolkkit for biomedical discovery. In International Conference on Mathematics and En-
gineering Techniques in Medicine and Biological Sciences, pages 371-376, 2003.

S. A. Andersson, D. Madigan and M. D. Perlman. A characterization of markov equivalence classes
for acyclic digraphs. Annals of Statistics, 25:505-541, 1997.

R. Castelo and M. D. Perlman. Learning Essential graph Markov models from data. In Proceedings
1st European Workshop on Probabilistic Graphical Models, pages 17-24, 2002.

G. F. Cooper and C. Yoo. Causal discovery from a mixture of experimental and observational data.
In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pages 116-125, 1999.

2546

ACTIVE LEARNING OF CAUSAL NETWORKS

N. Friedman. Inferring cellular networks using probabilistic graphical models. Science,
303(5659):799-805, 2004.

Y. He, Z. Geng and X. Liang. Learning causal structures based on Markov equivalence class. In
ALT, Lecture Notes in Artificial Intelligence 3734, pages 92-106, 2005.

D. Heckerman, D. Geiger and D. M. Chickering. Learning Bayesian networks: The Combination of
knowledge and statistical data. Machine Learning, 20:197-243, 1995.

D. Heckerman. A Bayesian approach to causal discovery. Data Mining and Knowledge Discovery,
1(1):79-119, 1997.

R. Jansen, H. Y. Yu and D. Greenbaum. A Bayesian networks approach for predicting protein-
protein interactions from genomic data. Science, 302(5644):449-453, 2003.

S. L. Lauritzen. Graphical Models. Oxford Univ. Press. 1996.

S. L. Lauritzen, T. S. Richardson. Chain graph models and their casual interpretations. Journal of
the Royal Statistical society series B-statistical methodology,64:321-348, Part 3, 2002.

M. Kalisch, P. Buhlmann. Estimating high-dimensional directed acyclic graphs with the PC-
algorithm.Journal of Machine Learning Research 8, 613-636, 2007.

K. P. Murphy. Active Learning of Causal Bayes Net Structure, Technical Report, Department of
Computer Science, University of California Berkeley, 2001.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

J. Pearl. Graphical models, causality and intervention. Statist. Sci., 8:266-269, 1993.

J. Pearl. Causal inference from indirect experiments. Artifcal Intelligence in Medicine, 7:561-582,
1995.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.

P. Spirtes, C. Glymour, R. Scheines. Causation, Prediction, and Search. MIT Press, Cambridge,
MA, second edition, 2000.

J. Tian and J. Pearl. Causal Discovery from Changes. In Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence, pages 512-521, 2001a.

J. Tian and J. Pearl. Causal Discovery from Changes: a Bayesian Approach, UCLA Cognitive
Systems Laboratory, Technical Report (R-285), 2001b.

S. Tong and D. Koller. Active learning for structure in bayesian networks. In International Joint
Conference on Artificial Intelligence, pages 863-869, 2001.

T. Verma and J. Pearl. Equivalence and synthesis of causal models. In Proceedings of the Conference
on Uncertainty in Artificial Intelligence, pages 220-227, 1990.

J. Whittaker. Graphical Models in Applied Multivariate Statistics. Wiley, New York. 1990.

2547

Journal of Machine Learning Research 9 (2008) 2549-2578 Submitted 10/07; Published 11/08

Stationary Features and Cat Detection

François Fleuret FLEURET@IDIAP.CH

IDIAP Research Institute,
Centre du Parc, Rue Marconi 19,
Case Postale 592,
1920 Martigny, Switzerland

Donald Geman GEMAN@JHU.EDU

Johns Hopkins University,
Clark Hall 302A,
3400 N. Charles Street
Baltimore, MD 21218, USA

Editor: Pietro Perona

Abstract
Most discriminative techniques for detecting instances from object categories in still images con-
sist of looping over a partition of a pose space with dedicated binary classifiers. The efficiency of
this strategy for a complex pose, that is, for fine-grained descriptions, can be assessed by measur-
ing the effect of sample size and pose resolution on accuracy and computation. Two conclusions
emerge: (1) fragmenting the training data, which is inevitable in dealing with high in-class varia-
tion, severely reduces accuracy; (2) the computational cost at high resolution is prohibitive due to
visiting a massive pose partition.

To overcome data-fragmentation we propose a novel framework centered on pose-indexed fea-
tures which assign a response to a pair consisting of an image and a pose, and are designed to be
stationary: the probability distribution of the response is always the same if an object is actually
present. Such features allow for efficient, one-shot learning of pose-specific classifiers. To avoid
expensive scene processing, we arrange these classifiers in a hierarchy based on nested partitions
of the pose; as in previous work on coarse-to-fine search, this allows for efficient processing.

The hierarchy is then ”folded” for training: all the classifiers at each level are derived from one
base predictor learned from all the data. The hierarchy is ”unfolded” for testing: parsing a scene
amounts to examining increasingly finer object descriptions only when there is sufficient evidence
for coarser ones. In this way, the detection results are equivalent to an exhaustive search at high
resolution. We illustrate these ideas by detecting and localizing cats in highly cluttered greyscale
scenes.

Keywords: supervised learning, computer vision, image interpretation, cats, stationary features,
hierarchical search

1. Introduction

This work is about a new strategy for supervised learning designed for detecting and describing
instances from semantic object classes in still images. Conventional examples include faces, cars
and pedestrians. We want to do more than say whether or not there are objects in the scene; we
want to provide a description of the pose of each detected instance, for example the locations of
certain landmarks. More generally, pose could refer to any properties of object instantiations which

c©2008 François Fleuret and Donald Geman.

FLEURET AND GEMAN

are not directly observed; however, we shall concentrate on geometric descriptors such as scales,
orientations and locations.

The discriminative approach to object detection is to induce classifiers directly from training
data without a data model. Generally, one learns a pose-specific binary classifier and applies it many
times (Rowley et al., 1998; Papageorgiou and Poggio, 2000; Viola and Jones, 2004; LeCun et al.,
2004). Usually, there is an outer loop which visits certain locations and scales with a sliding window,
and a purely learning-based module which accommodates all other sources of variation and predicts
whether or not a sub-window corresponds to a target. Parsing the scene in this manner already
exploits knowledge about transformations which preserve object identities. In particular, translating
and scaling the training images to a reference pose allows for learning a base classifier with all the
training examples. We refer to such learning methods, which use whole image transforms in order
to normalize the pose, as “data-aggregation” strategies.

However such transforms, which must be applied online during scene parsing as well as offline
during training, may be costly, or even ill-defined, for complex poses. How does one “normalize”
the pose of a cat? In such cases, an alternative strategy, which we call “data-fragmentation,” is to
reduce variation by learning many separate classifiers, each dedicated to a sub-population of objects
with highly constrained poses and each trained with only those samples satisfying the constraints.
Unfortunately, this approach to invariance might require a massive amount of training data due to
partitioning the data. As a result, the discriminative approach has been applied almost exclusively
to learning rather coarse geometric descriptions, such as a facial landmark and in-plane orientation,
by some form of data-aggregation. Summarizing: aggregating the data avoids sparse training but
at the expense of costly image transforms and restrictions on the pose; fragmenting the data can,
in principle, accommodate a complex pose but at the expense of crippling performance due to
impoverished training.

A related trade-off is the one between computation and pose resolution. Sample size permit-
ting, a finer subpopulation (i.e., higher pose resolution) allows for training a more discriminating
classifier. However, the more refined the pose partitioning, the more online computation because
regardless of how the classifiers are trained, having more of them means more costly scene pars-
ing. This trade-off is clearly seen for cascades (Viola and Jones, 2004; Wu et al., 2008): at a high
true positive rate, reducing false positives could only come at the expense of considerable compu-
tation due to dedicating the cascade to a highly constrained pose, hence increasing dramatically the
number of classifiers to train and evaluate in order to parse the scene.

To set the stage for our main contribution, a multi-resolution framework, we attempted to quan-
tify these trade-offs with a single-resolution experiment on cat detection. We considered multiple
partitions of the space of poses at different resolutions or granularities. For each partition, we built
a binary classifier for each cell. There are two experimental variables besides the resolution of the
partition: the data may be either fragmented or aggregated during training and the overall cost of
executing all the classifiers may or may not be equalized. Not surprisingly, the best performance
occurs with aggregated training at high resolution, but the on-line computational cost is formidable.
The experiment is summarized in an Appendix A and described in detail in Fleuret and Geman
(2007).

Our framework is designed to avoid these trade-offs. It rests on two core ideas. One, which
is not new, is to control online computation by using a hierarchy of classifiers corresponding to
a recursive partitioning of the pose space, that is, parameterizations of increasing complexity. A
richer parametrization is considered only when “necessary”, meaning the object hypothesis cannot

2550

STATIONARY FEATURES AND CAT DETECTION

Figure 1: An idealized example of stationary features. The pose of the scissors could be the loca-
tions of the screw and the two tips, in which case one might measure the relative frequency
a particular edge orientation inside in a disc whose radius and location, as well as the cho-
sen orientation, depends on the pose. If properly designed, the response statistics have a
distribution which is invariant to the pose when in fact a pair of scissors is present (see
§ 3.3).

be ruled out with a simpler one (see, e.g., Fleuret and Geman, 2001; Stenger et al., 2006). (Note
that cascades are efficient for a similar reason - they are coarse-to-fine in terms of background
rejection.) However, hierarchical organization alone is unsatisfactory because it does not solve the
data-fragmentation problem. Unless data can be synthesized to generate many dedicated sets of
positive samples, one set per node in the hierarchy, the necessity of training a classifier for every
node leads to massive data fragmentation, hence small node-specific training sets, which degrades
performance.

The second idea, the new one, is to avoid data-fragmentation by using pose-specific classifiers
trained with “stationary features”, a generalization of the underlying implicit parametrization of the
features by a scale and a location in all the discriminative learning techniques mentioned earlier.
Each stationary feature is “pose-indexed” in the sense of assigning a numerical value to each com-
bination of an image and a pose (or subset of poses). The desired form of stationarity is that, for any
given pose, the distribution of the responses of the features over images containing an object at that
pose does not depend on the pose. Said another way, if an image and an object instance at a given
pose are selected, and only the responses of the stationary features are provided, one cannot guess
the pose. This is illustrated in Figure 1: knowing only the proportion of edges at a pose-dependent
orientation in the indicated disk provides no information about the pose of the scissors.

Given that objects are present, a stationary feature evaluated at one pose is then the “same” as
at any other, but not in a literal, point-wise sense as functions, but rather in the statistical, pop-
ulation sense described above. In particular, stationary features are not “object invariants” in the
deterministic sense of earlier work (Mundy and Zisserman, 1992) aimed at discovering algebraic
and geometric image functionals whose actual values were invariant with respect to the object pose.
Our aim is less ambitious: our features are only “invariant” in a statistical sense. But this is enough
to use all the data to train each classifier.

Of course the general idea of connecting features with object poses is relatively common in ob-
ject recognition. As we have said, pose-indexing is done implicitly when transforming images to a

2551

FLEURET AND GEMAN

reference location or scale, and explicitly when translating and scaling Haar wavelets or edge detec-
tors to compute the response of a classifier for a given location and scale. Surprisingly, however, this
has not been formulated and analyzed in general terms, even though stationarity is all that is needed
to aggregate data while maintaining the standard properties of a training set. Stationarity makes
it possible, and effective, to analytically construct an entire family of pose-specific classifiers—all
those at a given level of the hierarchy—using one base classifier induced from the entire training set.
In effect, each pose-specific classifier is a “deformation” of the base classifier. Hence the number
of classifiers to train grows linearly, not exponentially, with the depth of the pose hierarchy. This
is what we call a folded hierarchy of classifiers: a tree-structured hierarchy is collapsed, like a fan,
into a single chain for training and then expanded for coarse-to-fine search.

The general formulation opens the way for going beyond translation and scale, for example
for training classifiers based on checking consistency among parts or deformations of parts instead
of relying exclusively on their marginal appearance. Such a capability is indeed exploited by the
detector we designed for finding cats and greatly improves the performance compared to individual
part detection. This gain is shown in Figure 2, the main result of the paper, which compares ROC
curves for two detectors, referred to as “H+B” and “HB” in the figure. In the “H+B” case, two
separate detectors are trained by data aggregation, one dedicated to heads and the other to bodies;
the ROC curve is the best we could do in combining the results. The “HB” detector is a coordinated
search based on stationary features and a two-level hierarchy; the search for the belly location in
the second-level is conditional on a pending head location and data fragmentation is avoided with
pose-indexed features in a head-belly frame. A complete explanation appears in § 6.

In §2, we summarize previous, related work on object detection in still images. Our notation
and basic ideas are formally introduced in §3, highlighting the difference between transforming the
signal and the features. The motivational experiment, in which we substantiate our claims about the
forced trade-offs when conventional approaches are applied to estimating a complex pose, could be
read at this point; see Appendix A. Embedding pose-indexed classifiers in a hierarchy is described
in §4 and the base classifier, a variation on boosting, is described in §5. In §6 we present our
main experiment - an application of the entire framework, including the specific base features, pose
hierarchy and pose-indexed features, to detecting cats in still images. Finally, some concluding
remarks appear in §7.

2. Related Work

We characterize other work in relation to the two basic components of our detection strategy: ex-
plicit modeling of a hidden pose parameter, as in many generative and discriminative methods, and
formulating detection as a controlled “process of discovery” during which computation is invested
in a highly adaptive and unbalanced way depending on the ambiguities in the data.

2.1 Hidden Variables

A principal source of the enormous variation in high-dimensional signals (e.g., natural images) is
the existence of a hidden state which influences many components (e.g., pixel intensities) simulta-
neously, creating complex statistical dependencies among them. Still, even if this hidden state is of
high dimension, it far simpler than the observable signal itself. Moreover, since our objective is to
interpret the signal at a semantic level, much of the variation in the signal is irrelevant.

2552

STATIONARY FEATURES AND CAT DETECTION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100

T
ru

e
po

si
tiv

e
ra

te

Number of false alarms per 640x480

HB
H+B

Figure 2: ROC curves for head-belly detection. The criterion for a true detection is that the esti-
mates of the head location, head size and belly location all be close to the true pose (see
§ 6.6). The H+B detector is built from separate head and body detectors while the HB
detector is built upon pose indexed features (see § 6.5).

In fact, conditioning on the value of the hidden state, which means, in practice, testing for the
presence of a target with a given pose, often leads to very simple, yet powerful, statistical models by
exploiting the increased degree of independence among the components of the signal. This means
decisions about semantic content can be based on directly aggregating evidence (naive Bayes). The
problem is computational: there are many possible hidden states.

The extreme application of this conditioning paradigm is classical template matching (Grenan-
der, 1993): if the pose is rich enough to account for all non-trivial statistical variation, then even
a relatively simple metric can capture the remaining uncertainty, which is basically noise. But this
requires intense online computation to deform images or templates many times. One motivation of
our approach is to avoid such online, global image transformations.

Similarly, the purest learning techniques, such as boosting (Viola and Jones, 2004) and convolu-
tion neural networks (LeCun et al., 2004), rely on explicitly searching through a subset of possible
scales and locations in the image plane; that is, coarse scale and coarse location are not learned.
Nor is invariance to illumination, usually handled at the feature level. However, invariance to other

2553

FLEURET AND GEMAN

geometric aspects of the pose, such as rotation, and to fine changes in scale and translation, are
accommodated implicitly, that is, during classifier training.

On the contrary, “Part and Structure” models and other generative (model-based) approaches
aim at more complex representations in terms of properties of “parts” (Li et al., 2003; Schneiderman
and Kanade, 2004; Crandall and Huttenlocher, 2006). However, tractable learning and computation
often require strong assumptions, such as conditional independence in appearance and location.
In some cases, each part is characterized by the response of a feature detector, and the structure
itself—the arrangement of parts—can either be captured by a complex statistical model, incurring
severe computation in both training and testing, or by a simple model by assuming conditional
independence among part locations given several landmarks, which can lead to very efficient scene
parsing with the use of distance transforms. Some of these techniques do extend to highly articulated
and deformable objects; see, for example, Huttenlocher and Felzenszwalb (2005). Still, modeling
parts of cats (heads, ears, paws, tails, etc.) in this framework may be difficult due to the low
resolution and high variation in their appearance, and in the spatial arrangements among them.
Compositional models (Geman et al., 2002; Zhu and Mumford, 2006; Ommer et al., 2006) appear
promising. Among these, in the “patchwork of parts” model (citepamit-trouve2007, the feature
extractors are, like here, defined with respect to the pose of the object to detect, in that case a series
of control points. This strategy allows for aggregating training samples with various poses through
the estimation of common distributions of feature responses.

2.2 A Process of Discovery

We do not regard the hidden pose as a “nuisance” parameter, secondary to detection itself, but rather
as part of what it means to “recognize” an object. In this regard, we share the view expressed in Ge-
man et al. (2002), Crandall and Huttenlocher (2006) and elsewhere that scene interpretation should
go well beyond pure classification towards rich annotations of the instantiations of the individual
objects detected.

In particular, we envision detection as an organized process of discovery, as in Amit et al. (1998),
and we believe that computation is a crucial issue and should be highly concentrated. Hierarchical
techniques, which can accomplish focusing, are based on a recursive partitioning of the pose space
(or object/pose space), which can be either ad-hoc (Geman et al., 1995; Fleuret and Geman, 2001)
or learned (Stenger et al., 2006; Gangaputra and Geman, 2006). There is usually a hierarchy of clas-
sifiers, each one trained on a dedicated set of examples—those carrying a pose in the corresponding
cell of the hierarchy. Often, in order to have enough data to train the classifiers, samples must be
generated synthetically, which requires a sophisticated generative model.

Our work is also related to early work on hierarchical template-matching (Gavrila, 1998) and
hierarchical search of pose space using branch and bound algorithms (Huttenlocher and Rucklidge,
1993), and to the cascade of classifiers in Viola and Jones (2004) and Wu et al. (2008).

Relative to the tree-based methods, we use the stationary features to aggregate data and build
only one base classifier per level in the hierarchy, from which all other classifiers are defined analyt-
ically. Finally, the fully hierarchical approach avoids the dilemma of cascades, namely the sacrifice
of selectivity if the pose space is coarsely explored and the sacrifice of computation if it is finely
explored, that is, the cascades are dedicated to a very fine subset of poses.

2554

STATIONARY FEATURES AND CAT DETECTION

3. Stationary Features

We regard the image as a random variable I assuming values in I . The set of possible poses for
an object appearing in I is Y . We only consider geometric aspects of pose, such as the sizes of
well-defined parts and the locations of distinguished points.

Let Y1, . . . ,YK be a partition of Y . As we will see in § 4, we are interested in partitions of varying
granularities for the global process of detection, ranging from rather coarse resolution (small K) to
rather fine resolution (larger K), but in this section we consider one fixed partition.

For every k = 1 . . .K, let Yk be a Boolean random variable indicating whether or not there is a
target in I with pose in Yk. The binary vector (Y1, . . . ,YK) is denoted Y.

In the case of merely detecting and localizing an object of fixed size in a gray-scale image of
size W ×H, natural choices would be I = [0,1]WH and Y = [0,W]× [0,H], the image plane itself;
that is, the pose reduces to one location. If the desired detection accuracy were 5 pixels, then the
pose cells might be disjoint 5×5 blocks and K would be approximately WH

25 . On the other hand, if
the pose accommodated scale and multiple points of interest, then obviously the same accuracy in
the prediction would lead to a far larger K, and any detection algorithm based on looping over pose
cells would be highly costly.

We denote by T a training set of images labeled with the presences of targets

T =
{(

I(t),Y(t)
)}

1≤t≤T
,

where each I(t) is a full image, and Y(t) is the Boolean vector indicating the pose cells occupied by
targets in I(t). We write

ξ : I → R
N ,

for a family of N image features such as edge detectors, color histograms, Haar wavelets, etc.
These are the “base features” (ξ1, . . . ,ξN) which will be used to generate our stationary feature
vector. We will write ξ(I) when we wish to emphasize the mapping and just ξ for the associated
random variable. The dimension N is sufficiently large to account for all the variations of the feature
parameters, such as locations of the receptive fields, orientations and scales of edges, etc.

In the next section, § 3.1, we consider the problem of “data-fragmentation”, meaning that spe-
cialized predictors are trained with subsets of the positive samples. Then, in § 3.2, we formalize
how fragmentation has been conventionally avoided in simple cases by normalizing the signal itself;
we then propose in § 3.3 the idea of pose-indexed, stationary features, which avoids global signal
normalization both offline and online and opens the way for dealing with complex pose spaces.

3.1 Data Fragmentation

Without additional knowledge about the relation between Y and I, the natural way to predict Yk for
each k = 1 . . .K is to train a dedicated classifier

fk : I →{0,1}

with the training set
{(

I(t),Y (t)
k

)}

1≤t≤T

derived from T . This corresponds to generating a single sample from each training scene, labeled
according to whether or not there is a target with pose in Yk. This is data-fragmentation: training

2555

FLEURET AND GEMAN

Y , the pose space
Y1, . . . ,YK , a partition of the pose space Y
Z, a W ×H pixel lattice
I = {0, . . . ,255}Z , a set of gray-scale images of size W ×H
I, a random variable taking values in I
Yk, a Boolean random variable indicating if there is a target in I with pose in Yk

Y = (Y1, . . . ,YK)
T , the number of training images, each with or without targets
T =

{(

I(t),Y(t)
)}

1≤t≤T , the training set
fk : I →{0, 1}, a predictor of Yk based on the image
Q, number of image features
ξ : I → R

N , a family of base image features
ψ : {1, . . . ,K}× I → I , an image transformation intended to normalize a given pose
X : {1, . . . ,K}× I → R

Q, a family of pose-indexed features
X(k), the r.v. corresponding to X(k, I)
g : R

Q →{0, 1}, a predictor trained from all the data

Table 1: Notation

fk involves only those data which exactly satisfy the pose constraint; no synthesis or transforma-
tions are exploited to augment the number of samples available for training. Clearly, the finer the
partitioning of the pose space Y , the fewer positive data points are available for training each fk.

Such a strategy is evidently foolhardy in the standard detection problems where the pose to be
estimated is the location and scale of the target since it would mean separately training a predictor
for every location and every scale, using as positive samples only full scenes showing an object at
that location and scale. The relation between the signal and the pose is obvious and normalizing
the positive samples to a common reference pose by translating and scaling them is the natural
procedure; only one classifier is trained with all the data. However, consider a face detection task
for which the faces to detect are known to be centered and of fixed scale, but are of unknown out-of-
plane orientation. Unless 3D models are available, from which various views can be synthesized, the
only course of action is data-fragmentation: partition the pose space into several cells corresponding
to different orientation ranges and train a dedicated, range-specific classifier with the corresponding
positive samples.

3.2 Transforming the Signal to Normalize the Pose

As noted above, in simple cases the image samples can be normalized in pose. More precisely, both
training and scene processing involve normalizing the image through a pose-indexed transformation

ψ : {1, . . . ,K}× I → I .

The “normalization property” we desire with respect to ξ is that the conditional probability distri-
bution of ξ(ψ(k, I)) given Yk = 1 be the same for every 1 ≤ k ≤ K.

The intuition behind this property is straightforward. Consider for instance a family of edge de-
tectors and consider again a pose consisting of a single location z. In such a case, the transformation
ψ applies a translation to the image to move the center of pose cell Yk to a reference location. If

2556

STATIONARY FEATURES AND CAT DETECTION

a target was present with a pose in Yk in the original image, it is now at a reference location in the
transformed image, and the distribution of the response of the edge detectors in that transformed
image does not depend on the initial pose cell Yk.

We can then define a new training set
{(

ξ
(

ψ(k, I(t))
)

,Y (t)
k

)}

1≤k≤K,1≤t≤T

with elements residing in R
N ×{0,1}. Due to the normalization property, and under mild conditions,

the new training set indeed consists of independent and identically distributed components (see the
discussion in the following section). Consequently, this set allows for training a classifier

g : R
N →{0,1}

from which we can analytically define a predictor of Yk for any k by

fk(I) = g(ξ(ψ(k, I))) .

This can be summarized algorithmically as follows: In order to predict if there is a target in image
I with pose in Yk, first normalize the image with ψ so that a target with pose in Yk would be moved
to a reference pose cell, then extract features in that transformed image using ξ, and finally evaluate
the response of the predictor g from the computed features.

3.3 Stationary Features

The pose-indexed, image-to-image mapping ψ is computationally intensive for any non-trivial trans-
formation. Even rotation or scaling induces a computational cost of O(WH) for every angle or scale
to test during scene processing, although effective shortcuts are often employed. Moreover, this
transformation does not exist in the general case. Consider the two instances of cats shown in Fig-
ure 3. Rotating the image does not allow for normalizing the body orientation without changing the
head orientation, and designing a non-affine transformation to do so would be unlikely to produce a
realistic cat image as well as be computationally intractable when done many times. Finally, due to
occlusion and other factors, there is no general reason a priori for ψ to even exist.

Instead, we propose a different mechanism for data-aggregation based on pose-indexed features
which directly assign a response to a pair consisting of an image and a pose cell and which satisfy a
stationarity requirement. This avoids assuming the existence of a normalizing mapping in the image
space, not to mention executing such a mapping many times online.

A stationary feature vector is a pose-indexed mapping

X : {1, . . . ,K}× I → R
Q,

with the property that the probability distribution

P(X(k) = x |Yk = 1), x ∈ R
Q (1)

is the same for every k = 1, . . . ,K, where X(k) denotes the random variable X(k, I).
The idea can be illustrated with two simple examples, a pictorial one in Figure 1 and a numerical

one in § 3.4.

2557

FLEURET AND GEMAN

Figure 3: Aggregating data for efficient training by normalizing the pose at the image level is diffi-
cult for complex poses. For example, linear transformations cannot normalize the orien-
tation of the body without changing that of the head.

In practice, the relationship with ξ, the base feature vector, is simply that the components of the
feature vector X(k) are chosen from among the components of ξ; the choice depends on k. In this
case, we can write

X(k) = (ξπ1(k),ξπ2(k), . . . ,ξπQ(k)),

where {π1(k), . . . ,πQ(k)} ⊂ {1, . . . ,N} is the ordered selection for index k. The ordering matters
because we want (1) to hold and hence there is a correspondence among individual components of
X(k) from one pose cell to another.

Note: We shall refer to (1) as the “stationarity” or “weak invariance” assumption. As seen below,
this property justifies data-aggregation in the sense of yielding an aggregated training set satisfying
the usual conditions. Needless to say, however, demanding that this property be satisfied exactly is
not practical, even arguably impossible. In particular, with our base features, various discretizing
effects come into play, including using quantized edge orientations and indexing base features with
rectangular windows. Even designing the pose-indexed features to approximate stationarity by ap-
propriately selecting and ordering the base features is non-trivial; indeed, it is the main challenge
in our framework. Still, using pose-indexed features which are even approximately stationary will
turn out to be very effective in our experiments with cat detection.

The contrast between signal and feature transformations can be illustrated with the following
commutative diagram: Instead of first applying a normalizing mapping ψ to transform I in accor-
dance with a pose cell k, and then evaluating the base features, we directly compute the feature
responses as functions of both the image and the pose cell.

2558

STATIONARY FEATURES AND CAT DETECTION

{1, . . . ,K}× I
ψ

//

X

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

I

ξ

��

R
N

Once provided with X, a natural training set consisting of T K samples is provided by

Tagg =
{(

X(t)(k),Y (t)
k

)}

1≤t≤T,1≤k≤K
. (2)

Under certain conditions, the elements of this training set will satisfy the standard assumption of
being independent and identically distributed. One condition, the key one, is stationarity, but tech-
nically three additional conditions would be required: 1) property (1) extend to conditioning on
Yk = 0; 2) the “prior” distribution P(Yk = 1) be the same for every k = 1, . . . ,K; 3) for each t, the
samples X(t)(k),k = 1, . . . ,K, be independent. The first condition says that the background distribu-
tion of the pose-indexed features is spatially homogeneous, the second that all pose cells are a priori
equally likely and the third, dubious but standard, says that the image data associated with different
pose cells are independent despite some overlap. In practice, we view these as rough guidelines; in
particular, we make no attempt to formally verify any of them.

It therefore makes sense to train a predictor g : R
Q → {0,1} using the training set (2). We can

then define
fk(I) = g(X(k, I)), k = 1, . . . ,K.

Notice that the family of classifiers { fk} is also “stationary” in the sense that conditional distribution
of fk given Yk = 1 does not depend on k.

3.4 Toy Example

We can illustrate the idea of stationary features with a very simple roughly piecewise constant, one-
dimensional signal I(n),n = 1, ...,N. The base features are just the components of the signal itself:
ξ(I) = I. The pose space is

Y =
{

(θ1,θ2) ∈ {1, . . . ,N}2, 1 < θ1 < θ2 < N
}

and the partition is the finest one whose cells are individual poses {(θ1,θ2)}; hence K = |Y |. For
simplicity, assume there is at most one object instance, so we can just write Y = (θ1,θ2) ∈ Y to
denote an instance with pose (θ1,θ2). For u = (u1, ...,uN) ∈ R

N , the conditional distribution of I
given Y is

P(I = u |Y = (θ1,θ2)) = ∏
n

P(I(n) = un |Y = (θ1,θ2))

= ∏
n<θ1

φ0(un) ∏
θ1≤n≤θ2

φ1(un) ∏
θ2<n

φ0(un)

2559

FLEURET AND GEMAN

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30
-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30
-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30

Figure 4: Examples of toy scenes

Figure 5: Hierarchical detection. Each ellipse on stands for a pose cell Y (d)
k , k = 1, . . . ,Kd, d =

1, . . . ,D. Here, D = 3 and K1 = 2, K2 = 4, K3 = 8. Gray ellipses correspond to pose
cells whose f (d)

k respond positively, and dashed ellipses correspond to pose cells whose
classifiers are not evaluated during detection. As shown by the arrows, the algorithm
ignores all sub-cells of a cell whose classifier responds negatively.

where φµ is a normal law with mean µ and standard deviation 0.1. Hence the signal fluctuates around
0 on the “background” and around 1 on the target, see Figure 4.

We define a four-dimensional pose-indexed feature vector taking the values of the signal at the
extremities of the target, that is

X((θ1,θ2), I) = (I(θ1 −1), I(θ1), I(θ2), I(θ2 +1)).

Clearly,
P(X(θ1,θ2) = (x1,x2,x3,x4) |Yθ1,θ2 = 1) = φ0(x1)φ1(x2)φ1(x3)φ0(x4)

which is not a function of θ1,θ2. Consequently, X is stationary and the common law in (1) is
φ0 ×φ1 ×φ1 ×φ0.

4. Folded Hierarchies

We have proposed normalizing the samples through a family of pose-indexed features instead of
whole image transforms in order to avoid fragmentation of the data. Since only one classifier must
be built for any partition of the pose space, and no longer for every cell of such a partition, neither

2560

STATIONARY FEATURES AND CAT DETECTION

the cost of learning nor the required size of the training set grows linearly with the number K of
pose cells in the partition. However, one main drawback remains: We must still visit all the pose
cells online, which makes the cost of scene processing itself linear in K.

A natural strategy to address computational cost is an hierarchical search strategy based upon a
recursive partitioning of Y . As in previous work (Fleuret and Geman, 2001; Gangaputra and Ge-
man, 2006), there is a succession of nested partitions of increasing resolution and a binary classifier
assigned to each cell. Given such a hierarchy, the detection process is adaptive: a classifier is eval-
uated for a certain pose cell only if all the classifiers for its ancestor cells have been evaluated and
responded positively.

Note: This is not a decision tree, both in terms of representation and processing. The hierarchy
recursively partitions the space of hidden variables not the feature space, and the edges from a node
to its children do not represent the possible values of a node classifier. Moreover, during processing,
a data point may traverse many branches at once and may reach no leaves or reach many leaves.

The crucial difference with previous work is that, using stationary features, only one classifier
must be trained for each level, not one classifier for each cell. In essence, the hierarchy is “folded”
(like a fan) for training: The entire learning strategy described in §3 is repeated for each level in the
hierarchy. This is quite straightforward and only summarized below.

Consider a sequence of partitions of Y
{

Y (d)
1 , . . . ,Y (d)

Kd

}

, 1 ≤ d ≤ D,

for which any cell Y d
k for k = 1, . . . ,Kd+1, is a (disjoint) union of cells at the next level d + 1.

Consequently, we can identify every Y (d)
k with the node of a multi-rooted tree: A leaf node for

d = D and an internal node otherwise. A three-level hierarchy is shown in Figure 5.
Given such a pose hierarchy, we can construct a scene parsing algorithm aimed at detecting all

instances of objects at a pose resolution corresponding to the finest partition. Again, the processing
strategy is now well-known. This algorithm has the desirable property of concentrating computation
on the ambiguous pose-image pairs.

Let Y (d)
k denote a Boolean random variable indicating whether or not there is a target in I with

pose in Y (d)
k and let X(d) denote a pose-indexed feature vector adapted to the partition {Y (d)

1 , . . . ,

Y (d)
Kd

}. For each level d, we train a classifier g(d) exactly as described in §3.3, and define a predictor

of Y (d)
k by

f (d)
k (I) = g(d)

(

X(d)(k, I)
)

.

The hierarchy is “unfolded” for testing and the predictors are evaluated in an adaptive way by
visiting the nodes (cells) according to breadth-first “coarse-to-fine” search. A classifier is evaluated
if and only if all its ancestors along the branch up to its root have been evaluated and returned a
positive response. In particular, once a classifier at a node responds negatively, none of the descen-
dant classifiers are ever evaluated. The result of the detection process is the list of leaves which are
reached and respond positively. In this way, pose cells corresponding to obvious non-target regions
such as flat areas are discarded early in the search and the computation is invested the ambiguous
areas, for example, parts of images with “cat-like” shape or texture.

2561

FLEURET AND GEMAN

5. Base Classifier

As described in §4, given a family of pose-indexed features and a hierarchical partitioning of the
pose space, we build a binary classifier g(d) for each level d in the hierarchy, trained from a set
of examples of the type described in §3.3. In this section we describe that classifier, dropping the
superscript d for clarity. The actual parameter values we used for the experiments on cat detection
are given in §6.5.

Evidently, inducing such a mapping g is a standard machine learning problem. A simple candi-
date is a thresholded linear combination of V stumps trained with Adaboost (Freund and Schapire,
1999):

g(x) =

1 if
V

∑
i=1

αi 1{xδi≥τi} ≥ ρ

0 otherwise.

Here, x j is the j’th coordinate of the feature vector.
For any given true positive rate η, the threshold ρ in g, and more generally the thresholds ρ(d)

in g(d),1 ≤ d ≤ D, are chosen to achieve on a validation set a targeted decreasing sequence of true
positive rates yielding η.

To select the stumps, that is the αi, δi and τi, special attention must be given to the highly un-
balanced populations we are dealing with. Of course in our detection problem, the prior distribution
is very skewed, with an extremely low probability of the presence of a target at a pose picked at
random. Correspondingly, the number of samples we have from the positive population (cats in our
case) is orders of magnitude smaller than the number of samples we can easily assemble from the
negative population. Still, any tractable sampling of the negative population is still too sparse to
account for the negative sub-population which lives close to positive examples. To address these
issues, we propose a variation the standard weighting-by-sampling in order to approximate standard
Adaboost using a training set containing one million negative examples.

The popular cascade approach handles that dilemma with bootstrapping: training each level with
a sample of negative examples which survive the filtering of the previous classifiers in the cascade.
In this way the sampling is eventually concentrated on the “difficult” negative samples. This is
similar in practice to what boosting itself is intended to do, namely ignore easily classified samples
and concentrate on the difficult ones. We avoid the complexity of tuning such a cascade by using all
the negative examples through an asymmetric, sampling-based version of standard boosting. This
provides an excellent approximation to the exact weighting for a fraction of the computational cost.

When picking a stump we approximate the weighted error with an error computed over all
positive samples and a random subset of negative samples drawn according to the current boosting
weights. Hence, we keep the response of the strong classifier up-to-date on S'106 samples, but we
pick the optimal weak learners at every step based on M'104 samples.

More precisely, at a certain iteration of the boosting procedure, let ωs denote the weight of
sample s = 1, . . . ,S, let Ys ∈ {0,1} be its true class, and let

ωneg = ∑
s

ωs1{Ys=0}

2562

STATIONARY FEATURES AND CAT DETECTION

be the total weight of the negative samples. We sample independently M indices S1, . . . ,SM in
{1, . . . ,S} according to the negative sample density

P(Sm = s) =
ωs1{Ys=0}

ωneg
, m = 1, . . . ,M.

Then we re-weight the training samples as follows:

ω′
s =

ωs if Ys = 1

ωneg
‖{m : Sm = s}‖

M
otherwise.

This can be seen as an approximation to the distribution on the full training set obtained by (1) keep-
ing all positive samples with their original weights, and (2) selecting a random subset of negative
samples according to their original weights, and giving them a uniform weight.

However, sampling the negative examples at every boosting step is computationally very ex-
pensive, mainly because it requires loading into memory all the training images, and extracting the
edge features at multiple scales. Consequently, we decompose the total number of stumps V into
B blocks of U stumps, and run this sampling strategy at the beginning of every block. We also
sample a subset of R features among the millions of features available at the beginning of every
block. Hence, our overall learning process can be seen as a standard boosting procedure decom-
posed into B blocks of U steps. At the beginning of every block, we sample M negative samples
among S according to their current boosting weight and we sample R features uniformly among the
Q to consider. We then run U boosting steps based on these features and these training samples.

This process ensures that any sample for which the classifier response is strongly incorrect
will eventually be picked. In our experiments we sample ten negative examples for every positive
example. From a computational perspective this sampling is negligible as it only accounts for about
1% of the total training time.

6. Cat Detection

We now specialize everything above to cat detection. The original training images and available
ground truth are described in §6.1. Then, in §6.2, we define a family of highly robust, base image
features based on counting edge frequencies over rectangular areas, and in §6.3 we propose a way to
index such features with the pose of a cat defined by its head location and scale and belly location.
The specific pose cell hierarchy is described in §6.4 and choice of parameters for the classifiers in
§6.5. Finally, the results of our experiments are presented in §6.6, including the similarity criteria
used for performance evaluation, the post-processing applied to the raw detections in order to reduce
“duplicate” detections and the manner of computing ROC curves.

6.1 Cat Images and Poses

The cat images were randomly sampled from the web site RateMyKitten1 and can be downloaded
from http://www.idiap.ch/folded-ctf. Images of cluttered scenes without cats, mostly home
interiors, were sampled from various web sites. The complete database we are using has 2,330
images containing a total of 1,988 cats.

1. Web site can be found at http://www.ratemykitten.com.

2563

FLEURET AND GEMAN

Figure 6: Each target is labeled by hand with a pose (h,r,b) ∈ Z ×R
+ ×Z specifying the head

location, the head radius and the belly location.

Each cat was manually annotated with one circle roughly outlining the head, from which the
head size (diameter) and head location (center) are derived, and one point placed more or less, quite
subjectively, at the center of mass, which we have referred to as the “belly” location (see Figure 6).
Hence, the pose of a cat is (h,r,b) where h is the location in the image plane Z of the center of the
head, r its radius, and b is the belly location.

For each experiment, we split this database at random into a training set containing 75% of the
images and a test set containing the other 25%. Two-thirds of the training set are used for choosing
the weak learners and one-third for the thresholds.

6.2 Base Image Features

As described in §3, the pose-indexed features are defined in terms of base image features. First,
an image is processed by computing, at every location z ∈ Z, the responses of eight edge-detectors
similar to those proposed in Amit et al. (1998) (see Figures 7 and 8), but at three different scales,
ending up with 24 Boolean features e1(z), . . . ,e24(z) corresponding to four orientations and two
polarities. In addition, we add a variance-based binary test e0(z) which responds positively if the
variance of the gray levels in a 16× 16 neighborhood of z exceeds a fixed threshold. Our features
are based on counting the number of responses of these 25 detectors over a rectangular areas (Fan,
2006), which can be done in constant time by using 25 integral images (Simard et al., 1999).

From these edge maps and the raw gray levels we define the following three types of base image
features:

1. Edge proportion: The proportion of an edge type in a rectangular window. Given a rectan-
gular window W and an edge type λ ∈ {0,1, . . . ,24}, the response is the number of pixels z in
W for which eλ(z) = 1, divided by the total number of pixels in W if λ = 0 or by the number
of pixels in W for which e0(z) = 1 if λ > 0.

2564

STATIONARY FEATURES AND CAT DETECTION

Figure 7: Our edge-detectors: For each of four orientations and two polarities, an edge is detected at
a certain location (the dark circle) if the absolute difference between the intensities of the
two pixels linked by the thick segment is greater than each of the six intensity differences
for pixels connected by a thin segment.

Figure 8: Result of the edge detector. Each one of the eight binary images in the two bottom rows
corresponds to one orientation of the edge detectors of Figure 7.

2565

FLEURET AND GEMAN

Figure 9: From the centroid of any pose cell, we define three reference frames: The head frame is
centered on the head center, of size twice the head size; the belly frame is centered on the
belly and of size four times the head size; the head-belly frame is centered on the middle
point between the head and the belly, of height twice the head size, of width twice the
distance between the head and the belly, and is tilted accordingly.

2. Edge orientation histogram distance: Given again two rectangular windows W1 and W2,
and a scale s, the response is the L1 norm between the empirical eight-bin histograms of
orientations corresponding to the eight edge detectors at scale s.

3. Gray-scale histogram distance: Given two rectangular windows W1 and W2, the response is
the L1 norm between the sixteen-bin empirical histograms of gray-scales for the two windows.

The rational behind the features of type 1 is to endow the classifiers with the ability to check for
the presence of certain pieces of outlines or textures. The motivation for types 2 and 3 is to offer the
capability of checking for similarity in either edge or gray-scale statistics between different parts of
the image, typically to check for a silhouette in the case of very blurry contours. Some examples of
features actually picked during the training are shown in Figures 10 and 11.

6.3 Indexing Features by Pose

As formalized in §3.3, a pose-indexed feature is a real-valued function of both a pose cell and an
image. The features described in the previous section are standard functionals of the image alone.
Since the response of any of them depends on counting certain edge types over rectangular windows
in the image, we construct our family of pose-indexed features indirectly by indexing both the edge
types and the window locations with the pose cell.

2566

STATIONARY FEATURES AND CAT DETECTION

Figure 10: Registration on the true poses of the first feature selected in the HB detector (see §6.5),
which compares edge orientation histograms. Both windows are defined relative to the
head frame.

For any pose cell index k, we compute the average head location h = hk, the average belly
location b = bk, and the average head radius r = rk of the pose cell Yk. From these parameters we
compute three reference frames, as shown on Figure 9:

1. The head frame is a square centered on h and of size 4r.

2. The belly frame is a square centered on b and of size 8r.

3. The head-belly frame is a rectangle centered on the midpoint of h and b, tilted accordingly,
and of height 4r and width twice ‖h−b‖.

Note that the definition of such a frame actually involves the definition of a vector basis, hence
an orientation. The three types of frames are oriented according to the relative horizontal locations
of the head and belly of the cat, so a reflection around a horizontal axis of the image, hence of the
cat pose, would move the points defined in these frames consistently.

We add to the parameterization of each feature window a discrete parameter specifying in which
of these three reference frames the window is defined. Windows relative to the head or the belly
frame are simply translated and scaled accordingly. Windows relative to the head-belly frame are
translated so that their centers remain fixed in the frame, and are scaled according to the average of
the height and width of the frame. See Figures 10 and 11.

Finally, we add another binary flag to windows defined in the head-belly frame to specify if the
edge detectors are also registered. In that case, the orientation of the edges is rotated according to
the tilt of the head-belly frame.

2567

FLEURET AND GEMAN

Figure 11: Registration on the true poses of the third feature selected in the second level of the HB
detector (see §6.5), which compares grayscale histograms. One window is relative to
the head-belly frame, and the second one to the belly frame.

6.4 Hierarchy of Poses

We only consider triples (h,r,b) which are consistent with the relative locations seen on the training
set. For instance, this discards poses with very large ratios ‖h− b‖/r. However, h and b may be
very close together, for example when the belly is behind the head, or very far apart, for example
when the cat is stretched out. Hence the full pose space is Y ⊂ Z ×R

+×Z.

We use a hierarchy with only D = 2 levels in order to concentrate on folded learning with
stationary features. The first level {Y (1)

1 , . . . ,Y (1)
K1

} is based on first restricting the head radius
to [25,200], and on splitting that domain into 15 sub-intervals of the form [r,21/5 r]. For each
such scale interval, we divide the full lattice Z into non-overlapping regular squares of the form
[xh,xh + r/5]× [yh,yh + r/5]. This procedure creates K1 ' 50,000 head parameter cells [xh,xh +
r/5]× [yh,yh + r/5]× [r,21/5 r] for a 640× 480 image. For any such cell, the admissible domain
for the belly locations is the convex envelope of the belly locations seen in the training examples,
normalized in location and scale with respect to the head location and radius.

The second level {Y (2)
1 , . . . ,Y (2)

K2
} is obtained by splitting the belly location domain into regular

squares [xb,xb + r/2]× [yb,yb + r/2]. There are ' 500 such belly squares, hence the total number
of pose cells in the second level is K2 ' 2.5×107.

The top-left illustration in Figure 12 depicts the cells in the first level of the hierarchy as open
circles and cells in the second level as black dot connected to an open circle “kept alive” during
processing the first level. More specifically, as shown in Figure 12, the algorithmic process corre-
sponding to this two-level hierarchy is as follows:

2568

STATIONARY FEATURES AND CAT DETECTION

g(1) g(2)

Figure 12: Parsing a scene with a two-level hierarchy to find cats: First, a classifier g(1) is evaluated
over a sublattice of possible head locations and all alarms above a very low threshold
are retained. Then a classifier g(2) is evaluated for each pair of head-belly locations on
a sublattice consistent with the retained head alarms and with observed statistics about
joint head-belly locations. For clarity, the depicted discretization of the pose space is
idealized, and far coarser than in the actual experiments; for an image of size 640×480
pixels, we consider ' 50,000 head pose cells and ' 2.5×107 head-belly pose cells.

1. The first stage loops over a sublattice of possible head locations and scales in the scene,
evaluates the response of the appropriate first-level classifier and retains all alarms using a
very low (i.e., conservative) threshold.

2. The second stage visits each location and scale tagged by the first stage, scans a sublattice of
all “consistent” belly locations (all those actually observed on training images) and evaluates
an appropriate second-level classifier for every such candidate pair of locations.

2569

FLEURET AND GEMAN

6.5 Detectors

Whereas our aim is to detect both the head and the body, detecting the head alone is similar to
the well-studied problem of detecting frontal views of human faces. As stated earlier, if the pose
reduces to a single position, data-aggregation is straightforward by translating either whole images
or features. Still, detecting cat heads is a logical first step in trying to find cats since the head is
clearly the most stable landmark and the part of the cat with the least variation, assuming of course
that the head is visible, which is the case with our data (for the same reason that family photographs
display the faces of people). Moreover, comparing the performance of varying strategies (field of
view, “checking” for the belly separately, demanding “consistency”, etc.) provides some insight on
the nature of the problem and serves as a simple way of demonstrating the power of the base feature
set and the asymmetrical weighting by sampling. Detecting heads alone does not, however, expose
the full strength of the folded hierarchy; for that we need to address the harder task of accurately
estimating (h,r,b) for the visible cats, our core objective, and for which we will compare our pose-
indexed method with a more standard parts-based detector.

In all the experiments we present, the classifiers are trained as described in §5, with B = 25
blocks of U = 100 stumps (thresholded features), and we optimize over a sample of R = 10,000
pose-indexed features in every such block. The total number of negative samples we consider is
S ' 106, and we sample M ' 104 of these per block.

In measuring performance, we consider the two following detections strategies:

- H+B is a standard parts detector, implemented adaptively. The “+” between H and B indicates
that the two part detectors are trained separately.

The first level classifier g(1) can only use pose-indexed feature defined relatively to the head
frame and the second level classifier g(2) can only use pose-indexed features defined relatively
to the belly frame. Since that second-level detector is designed not to exploit the information
in the joint locations of the head and belly, the frames here have fixed orientation, and reflect-
ing the cat pose horizontally would move but not invert the frames. See §6.3 for details about
the orientations of the frames.

- HB is the hierarchical detector based on the two-level hierarchy and folded learning.

The difference with H+B is that HB uses stationary features in the second level which can
be defined relatively to any of the three reference frames (head, belly or head-belly) in order
to take into account the position of the head in searching for the belly. For instance, a pose-
indexed features in this detector could compare the texture between a patch located on the
head and a patch located on the belly.

6.6 Results

In order to be precise about what a constitutes a true detection, we define two criteria of similarity.
We say that two poses (h,r,b) and (h′,r′,b′) collide if (1) The head radii are very similar: 1/1.25 ≤
r/r′ ≤ 1.25; and (2) Either the head or belly locations are close: min(‖h−h′‖,‖b−b′‖)≤ 0.25

√
r r′.

And we will say that two poses are similar if (1) The head radii are similar: 1/1.5 ≤ r/r ′ ≤ 1.5; (2)
the head locations are nearby each other: ‖h− h′‖ ≤ 2

√
rr′; and (3) the belly locations are nearby

each other: ‖b−b′‖ ≤ 4
√

rr′. See Figure 13.

2570

STATIONARY FEATURES AND CAT DETECTION

Figure 13: Two alarms are considered as similar if the head radii are similar and if, as shown on
this figure, the distance between the two head locations is less than the average head
radius, and if the distance between the belly locations is less than twice the average head
radius. See §6.6. Based on that criterion, if the true pose is the one shown in thin lines
and the thick poses are detections, only the leftmost one would be counted as a true hit.
The three others, shown in dashed lines, would be counted as false alarms.

Given these two criteria, the alarms kept after thresholding the classifier responses are post-
processed with a crude clustering. We visit the alarms in the order of the response of the detector,
and for each alarm we remove all others that collide with it. Then we visit these surviving alarms
again in the order of the response and for each alarm we remove all the other alarms which are
similar.

The procedure we use to produce ROC curves is the following. We run ten rounds in which
the training and test images are selected at random, and in each round we estimate the classifier
thresholds for achieving ten different true-positive rates η (see § 5). Hence, we generate 100 pairs
of rates, each consisting of a true-positive rate and an average number of false alarms per image.
An alarm is counted as true positive if there exists a cat in the image with a similar pose according
to the criterion described above.

The error rates in Figure 2 and Table 2 demonstrate the power of conditioning on the full pose.
Using stationary features to build classifiers dedicated to fine cells allows the search for one part
to be informed by the location of the other, and allows for consistency checks. This is more dis-
criminating than checking for individual parts separately. Indeed, the error rates are cut be a factor
of roughly two at very high true-positive rates and a factor of three at lower true-positive rates.
It should be emphasized as well that even the weaker ROC curve is impressive in absolute terms,
which affirms the efficacy of even the naive stationary features used by the H+B detector and the
modified boosting strategy for learning.

An example of how features selected in the second-level of the HB classifier exploit the full pose
can be seen in Figure 11. Such a feature allows the HB detector to check for highly discriminating
properties of the data, such as the continuity of appearance between the head and the belly, or
discontinuities in the direction orthogonal to the head-belly axis.

More then two-thirds of the false positives are located on or very near cats; see Figure 14. Such
false positives are exceedingly difficult to filter out. For instance, a false head detection lying around
or on the belly will be supported by the second-level classifier because the location of the true belly
will usually be visited.

2571

FLEURET AND GEMAN

TP H+B HB
90% 12.84 5.85
80% 3.53 1.63
70% 1.35 0.50
60% 0.61 0.23
50% 0.33 0.12
40% 0.18 0.06
30% 0.10 0.03

Table 2: Average number of false alarms per images of size 640×480 vs. the true positive rate for
the head-belly detection, as defined by the similarity criterion of §6.6 and Figure 13.

Finally, we performed a similar experiment by testing the classifiers trained on the Ratemykitten
data set on a sample of cat images chosen from the PASCAL VOC2007 challenge set images.2

The PASCAL data set was assembled for evaluating methods for classification, that is, labeling
an entire image according to one of the object categories, rather than methods for object detection
and localization. There are 332 cat images in the PASCAL set; our test set consists of those 201
images for which the body is at least partially visible. This provides an even more challenging test
set than the images from Ratemykitten and the performance of our classifier is somewhat reduced.
For instance, at a true positive rate of 51%, the average number of false alarms per image of size
640× 480 is 0.9. The results on a random sample of twenty of the 201 test images is shown in
Figure 15.

7. Conclusion

We have presented a novel detection algorithm for objects with a complex pose. Our main contri-
bution is the idea of stationary, pose-indexed features, a variation on deformable templates without
whole image transforms. This makes it possible to train pose-specific classifiers without clustering
the data, and hence without reducing the number of training examples. Moreover, combining simul-
taneous training with a sequential exploration of the pose space overcomes the main drawback of
previous coarse-to-fine strategies, especially for going beyond scale and translation. Unlike in ear-
lier variations, graded, tree-structured representations can now be learned efficiently because there
is only one classifier to train per level of the hierarchy rather than one per node.

We have illustrated these stationary features by detecting cats in cluttered still images. As
indicated earlier, the data are available at http://www.idiap.ch/folded-ctf. We chose boosting
with edge and intensity counts, but any base learning algorithm and any flexible base feature set
could be used. Indeed, the framework can accommodate very general features, for instance the
average color or average response of any local feature in an area defined by the pose. The resulting
algorithm is a two-stage process, first visiting potential head locations alone and then examining
additional aspects of the pose consistent with and informed by candidate head locations.

In principle, our approach can deal with very complex detection problems in which multiple
objects of interest are parametrized by a rich hidden pose. However, two basic limitations must

2. Website can be found at http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/.

2572

STATIONARY FEATURES AND CAT DETECTION

Figure 14: Detection results with stationary features and a folded two-level hierarchy on scenes
picked uniformly at random in the RateMykitten test set, with a true-positive rate of
71%. The circle shows the estimated head size and location, and the dot the estimated
belly location.

2573

FLEURET AND GEMAN

Figure 15: Detection results with stationary features and a folded two-level hierarchy on scenes
picked uniformly at random in the PASCAL VOC2007 challenge test set, with a true-
positive rate of 50%. The circle shows the estimated head size and location, and the dot
the estimated belly location.

first be addressed. The first is the design of adequate stationary features. Whereas difficult, this
is far simpler than the search for full geometric invariants. Since the hidden state is explicitly
examined in traversing the hierarchy, there is no need to integrate over all possible values of the
hidden quantities. The second difficulty is labeling a training set with rich ground truth. One
way to tackle this problem is by exploiting other information available during training, for instance
temporal consistency if there are motion data. Our viewpoint is that small, richly annotated, training
sets are at least as appealing for general learning as large ones with minimal annotation.

Acknowledgments

The work of FF was partially supported by the Swiss National Science Foundation under the Na-
tional Centre of Competence in Research (NCCR) on ”Interactive Multimodal Information Man-
agement” (IM2). The work of DG was partially supported by the National Science Foundation
under grants NSF 0427223 and NSF 0625687, and by the Office of Naval Research under contract
N00014-07-1-1002.

We are also extremely grateful to the reviewers for their thoughtful suggestions, as well as to
the web site http://www.ratemykitten.com, and to Harrison Page in particular, for providing us
with the remarkable set of cat images.

2574

STATIONARY FEATURES AND CAT DETECTION

Figure 16: A few positive examples picked uniformly at random in the simplified setting of the
motivational experiment. Top row: samples from the head experiments. Bottom two
rows: samples from the head-belly experiments. The crosses depict the head and belly
centers provided on the training data. The boxes show the admissible pose domain Y .

Appendix A. Quantifying Trade-offs

We summarize two series of experiments designed to study the impact on accuracy of data-fragment-
ation, with and without controlling for total online computation. In both series the goal is to predict
the presence of a target with high accuracy in pose. A more detailed account of these experiments
can be found in Fleuret and Geman (2007).

A.1 Settings

Since training with fragmentation is not feasible for any complete partition of a complex pose space
at a realistic resolution, the images we consider in these experiments have been cropped from the
original data set so that the pose space Y is already strongly constrained.

In the first series of experiments the target pose is the center of the cat head, constrained to
Y = [−20,20]× [−20,20] in a 100× 100 image. It is this pose space that will be investigated
at different resolutions. The top row of Figure 16 shows a few of these scenes with a target. In
the second series of experiments the pose is the pair of locations (h,b) for the head and belly,
constrained to Y = ([0,5]× [0,5])× ([−80,80]× [−20,80]) in a 200× 140 image centered at the
square. The two bottom rows of Figure 16 show a few of these scenes with a target.

In both series, our objective is to compare the performance of classifiers when the training data
are either fragmented or aggregated and when the computational cost is either equalized or not.
More precisely, we consider three partitions of Y into K = 1, 4 and 16 pose cells. In each series,
we build four detection systems. Three of them are trained under data-fragmentation at the three
considered resolutions, namely K = 1, K = 4 or K = 16 pose cells. The fourth classifier is trained
with the pose-indexed, stationary features at the finest resolution K = 16. The stationary features
are based on the head frame alone for the head experiments, and on both the head frame and the
head-belly frame for the head-belly experiments.

2575

FLEURET AND GEMAN

The computational cost for evaluating one such classifier is proportional to the number of stumps
it combines. In the particular case of boosting, a classifier combining only a fixed number of weak
learners is still effective, and hence, unlike many discriminative methods, computation is easy to
control. This motivates a very simple strategy to equalize the cost among experiments: We simply
control the total number of feature evaluations.

As a measure of performance, we estimate the number of false alarms for any given true pos-
itive rate. In order to compare results across resolutions, the labeling of detections as true or false
positives occurs at the coarsest resolution. For simplicity, for the head-belly case, we only score the
estimated head location.

A.2 Results

The results demonstrate the gain in performance in constraining the population provided there is
no fragmentation of the data. In the head experiments, even with fragmentation, higher resolution
results in fewer false alarms. The improvement is marginal at high true positive rates, but increases
to two-fold for a true positive rate of 70%. This is not true for the head-belly experiments, where
sixteen pose cells do worse than four, with or without cost equalization, which can be explained to
some extent by the lower variation in the appearance of cat heads than full cat bodies, and hence
fewer samples may be sufficient for accurate head detection.

As expected, without controlling the on-line computational cost, aggregation with stationary
features is more discriminating than the fragmented classifiers in both experiments and at any true
positive rate, reducing the false positive rate by a factor of three to five. Still, the performance of
the classifiers when cost is equalized shows the influence of computation in this framework: at the
finest resolution, the number of false alarms in the head experiments increases by a factor greater
than four at any true-positive rate, and by two orders of magnitude in the head-belly experiments.

These results also demonstrate the pivotal role of computation if we are to extend this approach
to a realistically fine partition of a complex pose space. Consider an image of resolution 640×480
and a single scale range for the head. Obtaining an accuracy in the locations of the head and the
belly of five pixels requires more than 7× 106 pose cells. Investing computation uniformly among
cells is therefore hopeless, and argues for an adaptive strategy able to distribute computation in a
highly special and uneven manner.

The conclusions drawn can be summarized in two key points:

1. The need for data-aggregation: Dealing with a rich pose by training specialized predictors
from constrained sub-populations is not feasible, both in terms of offline computation and
sample size requirements. Aggregation of data using stationary features appears to be a
sound strategy to overcome the sample size dilemma as it transfers the burden of learning to
the design of the features.

2. The need for adaptive search: If fragmentation can be avoided and a single classifier built
from all the data and analytically transformed into dedicated classifiers, the computation
necessary to cover a partition of a pose space of reasonable accuracy is not realistic if the
effort is uniformly distributed over cells.

As indicated, stationary features provide a coherent strategy for dealing with data-aggregation
but do not resolve the computational dilemma resulting from investigating many possible poses
during scene processing. Hierarchical representations largely do.

2576

STATIONARY FEATURES AND CAT DETECTION

References

Y. Amit, D. Geman, and B. Jedynak. Efficient focusing and face detection. In Face Recognition:
From Theory to Applications. Springer Verlag, 1998.

D. J. Crandall and D. P. Huttenlocher. Weakly supervised learning of part-based spatial models for
visual object recognition. In European Conference on Computer Vision, pages 16–29, 2006.

X. Fan. Learning a Hierarchy of Classifiers for Multi-class Shape Detection. PhD thesis, Johns
Hopkins University, 2006.

F. Fleuret and D. Geman. Coarse-to-fine face detection. International Journal of Computer Vision
(IJCV), 41(1/2):85–107, 2001.

F. Fleuret and D. Geman. Stationary features and cat detection. Technical Report 07-56, IDIAP
Research Institute, October 2007.

Y. Freund and R. E. Schapire. A short introduction to boosting. Journal of Japanese Society for
Artificial Intelligence, 14(5):771–780, 1999.

S. Gangaputra and D. Geman. A design principle for coarse-to-fine classification. In Conference on
Computer Vision and Pattern Recognition, volume 2, pages 1877–1884, 2006.

D.M. Gavrila. Multi-frame hierarchical template matching using distance transforms. In Interna-
tional Conference on Pattern Recognition, 1998.

S. Geman, K. Manbeck, and E. McClure. Coarse-to-fine search and rank-sum statistics in object
recognition. Technical report, Brown University, 1995.

S. Geman, D. F. Potter, and Z. Chi. Composition systems. Quarterly of Applied Mathematics, LX:
707–736, 2002.

U. Grenander. General Pattern Theory. Oxford U. Press, 1993.

D. Huttenlocher and P. Felzenszwalb. Pictorial structures for object recognition. International
Journal of Computer Vision, 61(1):55–79, 2005.

D.P. Huttenlocher and W.J. Rucklidge. A multi-resolution technique for comparing images using
the hausdorff distance. In Conference on Computer Vision and Pattern Recognition, 1993.

Y. LeCun, F. Huang, and L. Bottou. Learning methods for generic object recognition with invariance
to pose and lighting. In Conference on Computer Vision and Pattern Recognition. IEEE Press,
2004.

F. Li, R. Fergus, and P. Perona. A Bayesian approach to unsupervised one-shot learning of object
categories. In International Conference on Computer Vision, volume 2, page 1134, 2003.

J.L. Mundy and A. Zisserman, editors. Geometric Invariance in Computer Vision. MIT Press, 1992.

B. Ommer, M. Sauter, and J. M. Buhmann. Learning top-down grouping of compositional hierar-
chies for recognition. In Conference on Computer Vision and Pattern Recognition, 2006.

2577

FLEURET AND GEMAN

C. Papageorgiou and T. Poggio. A trainable system for object detection. International Journal of
Computer Vision, 38(1):15–33, June 2000.

H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(1):23–28, 1998.

H. Schneiderman and T. Kanade. Object detection using the statistics of parts. International Journal
of Computer Vision, 56(3):151–177, 2004.

P. Simard, L. Bottou, P. Haffner, and Y. LeCun. Boxlets: a fast convolution algorithm for neural
networks and signal processing. In Neural Information Processing Systems, volume 11, 1999.

B. Stenger, A. Thayananthan, P.H.S. Torr, and R. Cipolla. Model-based hand tracking using a
hierarchical bayesian filter. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28
(9):1372–1384, 2006.

P. Viola and M. J. Jones. Robust real-time face detection. International Journal of Computer Vision,
57(2):137–154, 2004.

J. Wu, S. C. Brubaker, M. D. Mullin, and J. M. Rehg. Fast asymmetric learning for cascade face
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30:369–382, 2008.

S.C. Zhu and D. Mumford. A Stochastic Grammar of Images, volume 2 of Foundations and Trends
in Computer Graphics and Vision, pages 259–362. Now Publishers, 2006.

2578

Journal of Machine Learning Research 9 (2008) 2579-2605 Submitted 5/08; Revised 9/08; Published 11/08

Visualizing Data using t-SNE

Laurens van der Maaten LVDMAATEN@GMAIL.COM

TiCC
Tilburg University
P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Geoffrey Hinton HINTON@CS.TORONTO.EDU

Department of Computer Science
University of Toronto
6 King’s College Road, M5S 3G4 Toronto, ON, Canada

Editor: Yoshua Bengio

Abstract

We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each
datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic
Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces
significantly better visualizations by reducing the tendency to crowd points together in the center
of the map. t-SNE is better than existing techniques at creating a single map that reveals structure
at many different scales. This is particularly important for high-dimensional data that lie on several
different, but related, low-dimensional manifolds, such as images of objects from multiple classes
seen from multiple viewpoints. For visualizing the structure of very large data sets, we show how
t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the
data to influence the way in which a subset of the data is displayed. We illustrate the performance of
t-SNE on a wide variety of data sets and compare it with many other non-parametric visualization
techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualiza-
tions produced by t-SNE are significantly better than those produced by the other techniques on
almost all of the data sets.

Keywords: visualization, dimensionality reduction, manifold learning, embedding algorithms,
multidimensional scaling

1. Introduction

Visualization of high-dimensional data is an important problem in many different domains, and
deals with data of widely varying dimensionality. Cell nuclei that are relevant to breast cancer,
for example, are described by approximately 30 variables (Street et al., 1993), whereas the pixel
intensity vectors used to represent images or the word-count vectors used to represent documents
typically have thousands of dimensions. Over the last few decades, a variety of techniques for
the visualization of such high-dimensional data have been proposed, many of which are reviewed
by de Oliveira and Levkowitz (2003). Important techniques include iconographic displays such as
Chernoff faces (Chernoff, 1973), pixel-based techniques (Keim, 2000), and techniques that repre-
sent the dimensions in the data as vertices in a graph (Battista et al., 1994). Most of these techniques
simply provide tools to display more than two data dimensions, and leave the interpretation of the

c©2008 Laurens van der Maaten and Geoffrey Hinton.

VAN DER MAATEN AND HINTON

data to the human observer. This severely limits the applicability of these techniques to real-world
data sets that contain thousands of high-dimensional datapoints.

In contrast to the visualization techniques discussed above, dimensionality reduction methods
convert the high-dimensional data set X = {x1,x2, ...,xn} into two or three-dimensional data Y =
{y1,y2, ...,yn} that can be displayed in a scatterplot. In the paper, we refer to the low-dimensional
data representation Y as a map, and to the low-dimensional representations yi of individual da-
tapoints as map points. The aim of dimensionality reduction is to preserve as much of the sig-
nificant structure of the high-dimensional data as possible in the low-dimensional map. Various
techniques for this problem have been proposed that differ in the type of structure they preserve.
Traditional dimensionality reduction techniques such as Principal Components Analysis (PCA;
Hotelling, 1933) and classical multidimensional scaling (MDS; Torgerson, 1952) are linear tech-
niques that focus on keeping the low-dimensional representations of dissimilar datapoints far apart.
For high-dimensional data that lies on or near a low-dimensional, non-linear manifold it is usu-
ally more important to keep the low-dimensional representations of very similar datapoints close
together, which is typically not possible with a linear mapping.

A large number of nonlinear dimensionality reduction techniques that aim to preserve the local
structure of data have been proposed, many of which are reviewed by Lee and Verleysen (2007).
In particular, we mention the following seven techniques: (1) Sammon mapping (Sammon, 1969),
(2) curvilinear components analysis (CCA; Demartines and Hérault, 1997), (3) Stochastic Neighbor
Embedding (SNE; Hinton and Roweis, 2002), (4) Isomap (Tenenbaum et al., 2000), (5) Maximum
Variance Unfolding (MVU; Weinberger et al., 2004), (6) Locally Linear Embedding (LLE; Roweis
and Saul, 2000), and (7) Laplacian Eigenmaps (Belkin and Niyogi, 2002). Despite the strong per-
formance of these techniques on artificial data sets, they are often not very successful at visualizing
real, high-dimensional data. In particular, most of the techniques are not capable of retaining both
the local and the global structure of the data in a single map. For instance, a recent study reveals
that even a semi-supervised variant of MVU is not capable of separating handwritten digits into
their natural clusters (Song et al., 2007).

In this paper, we describe a way of converting a high-dimensional data set into a matrix of pair-
wise similarities and we introduce a new technique, called “t-SNE”, for visualizing the resulting
similarity data. t-SNE is capable of capturing much of the local structure of the high-dimensional
data very well, while also revealing global structure such as the presence of clusters at several scales.
We illustrate the performance of t-SNE by comparing it to the seven dimensionality reduction tech-
niques mentioned above on five data sets from a variety of domains. Because of space limitations,
most of the (7+1)×5 = 40 maps are presented in the supplemental material, but the maps that we
present in the paper are sufficient to demonstrate the superiority of t-SNE.

The outline of the paper is as follows. In Section 2, we outline SNE as presented by Hinton and
Roweis (2002), which forms the basis for t-SNE. In Section 3, we present t-SNE, which has two
important differences from SNE. In Section 4, we describe the experimental setup and the results
of our experiments. Subsequently, Section 5 shows how t-SNE can be modified to visualize real-
world data sets that contain many more than 10,000 datapoints. The results of our experiments are
discussed in more detail in Section 6. Our conclusions and suggestions for future work are presented
in Section 7.

2580

VISUALIZING DATA USING T-SNE

2. Stochastic Neighbor Embedding

Stochastic Neighbor Embedding (SNE) starts by converting the high-dimensional Euclidean dis-
tances between datapoints into conditional probabilities that represent similarities.1 The similarity
of datapoint x j to datapoint xi is the conditional probability, p j|i, that xi would pick x j as its neighbor
if neighbors were picked in proportion to their probability density under a Gaussian centered at xi.
For nearby datapoints, p j|i is relatively high, whereas for widely separated datapoints, p j|i will be
almost infinitesimal (for reasonable values of the variance of the Gaussian, σi). Mathematically, the
conditional probability p j|i is given by

p j|i =
exp

(

−‖xi − x j‖2/2σ2
i

)

∑k 6=i exp
(

−‖xi − xk‖2/2σ2
i

) , (1)

where σi is the variance of the Gaussian that is centered on datapoint xi. The method for determining
the value of σi is presented later in this section. Because we are only interested in modeling pairwise
similarities, we set the value of pi|i to zero. For the low-dimensional counterparts yi and y j of the
high-dimensional datapoints xi and x j, it is possible to compute a similar conditional probability,
which we denote by q j|i. We set2 the variance of the Gaussian that is employed in the computation
of the conditional probabilities q j|i to 1√

2
. Hence, we model the similarity of map point y j to map

point yi by

q j|i =
exp

(

−‖yi − y j‖2
)

∑k 6=i exp(−‖yi − yk‖2)
.

Again, since we are only interested in modeling pairwise similarities, we set qi|i = 0.
If the map points yi and y j correctly model the similarity between the high-dimensional data-

points xi and x j, the conditional probabilities p j|i and q j|i will be equal. Motivated by this observa-
tion, SNE aims to find a low-dimensional data representation that minimizes the mismatch between
p j|i and q j|i. A natural measure of the faithfulness with which q j|i models p j|i is the Kullback-
Leibler divergence (which is in this case equal to the cross-entropy up to an additive constant). SNE
minimizes the sum of Kullback-Leibler divergences over all datapoints using a gradient descent
method. The cost function C is given by

C = ∑
i

KL(Pi||Qi) = ∑
i

∑
j

p j|i log
p j|i
q j|i

, (2)

in which Pi represents the conditional probability distribution over all other datapoints given data-
point xi, and Qi represents the conditional probability distribution over all other map points given
map point yi. Because the Kullback-Leibler divergence is not symmetric, different types of error
in the pairwise distances in the low-dimensional map are not weighted equally. In particular, there
is a large cost for using widely separated map points to represent nearby datapoints (i.e., for using

1. SNE can also be applied to data sets that consist of pairwise similarities between objects rather than high-dimensional
vector representations of each object, provided these simiarities can be interpreted as conditional probabilities. For
example, human word association data consists of the probability of producing each possible word in response to a
given word, as a result of which it is already in the form required by SNE.

2. Setting the variance in the low-dimensional Gaussians to another value only results in a rescaled version of the final
map. Note that by using the same variance for every datapoint in the low-dimensional map, we lose the property
that the data is a perfect model of itself if we embed it in a space of the same dimensionality, because in the high-
dimensional space, we used a different variance σi in each Gaussian.

2581

VAN DER MAATEN AND HINTON

a small q j|i to model a large p j|i), but there is only a small cost for using nearby map points to
represent widely separated datapoints. This small cost comes from wasting some of the probability
mass in the relevant Q distributions. In other words, the SNE cost function focuses on retaining the
local structure of the data in the map (for reasonable values of the variance of the Gaussian in the
high-dimensional space, σi).

The remaining parameter to be selected is the variance σi of the Gaussian that is centered over
each high-dimensional datapoint, xi. It is not likely that there is a single value of σi that is optimal
for all datapoints in the data set because the density of the data is likely to vary. In dense regions,
a smaller value of σi is usually more appropriate than in sparser regions. Any particular value of
σi induces a probability distribution, Pi, over all of the other datapoints. This distribution has an
entropy which increases as σi increases. SNE performs a binary search for the value of σi that
produces a Pi with a fixed perplexity that is specified by the user.3 The perplexity is defined as

Perp(Pi) = 2H(Pi),

where H(Pi) is the Shannon entropy of Pi measured in bits

H(Pi) = −∑
j

p j|i log2 p j|i.

The perplexity can be interpreted as a smooth measure of the effective number of neighbors. The
performance of SNE is fairly robust to changes in the perplexity, and typical values are between 5
and 50.

The minimization of the cost function in Equation 2 is performed using a gradient descent
method. The gradient has a surprisingly simple form

δC
δyi

= 2∑
j

(p j|i −q j|i + pi| j −qi| j)(yi − y j).

Physically, the gradient may be interpreted as the resultant force created by a set of springs between
the map point yi and all other map points y j. All springs exert a force along the direction (yi − y j).
The spring between yi and y j repels or attracts the map points depending on whether the distance
between the two in the map is too small or too large to represent the similarities between the two
high-dimensional datapoints. The force exerted by the spring between yi and y j is proportional to its
length, and also proportional to its stiffness, which is the mismatch (p j|i −q j|i + pi| j −qi| j) between
the pairwise similarities of the data points and the map points.

The gradient descent is initialized by sampling map points randomly from an isotropic Gaussian
with small variance that is centered around the origin. In order to speed up the optimization and to
avoid poor local minima, a relatively large momentum term is added to the gradient. In other words,
the current gradient is added to an exponentially decaying sum of previous gradients in order to
determine the changes in the coordinates of the map points at each iteration of the gradient search.
Mathematically, the gradient update with a momentum term is given by

Y (t) = Y (t−1) +η
δC
δY

+α(t)
(

Y (t−1)−Y (t−2)
)

,

3. Note that the perplexity increases monotonically with the variance σi.

2582

VISUALIZING DATA USING T-SNE

where Y (t) indicates the solution at iteration t, η indicates the learning rate, and α(t) represents the
momentum at iteration t.

In addition, in the early stages of the optimization, Gaussian noise is added to the map points
after each iteration. Gradually reducing the variance of this noise performs a type of simulated
annealing that helps the optimization to escape from poor local minima in the cost function. If the
variance of the noise changes very slowly at the critical point at which the global structure of the
map starts to form, SNE tends to find maps with a better global organization. Unfortunately, this
requires sensible choices of the initial amount of Gaussian noise and the rate at which it decays.
Moreover, these choices interact with the amount of momentum and the step size that are employed
in the gradient descent. It is therefore common to run the optimization several times on a data set
to find appropriate values for the parameters.4 In this respect, SNE is inferior to methods that allow
convex optimization and it would be useful to find an optimization method that gives good results
without requiring the extra computation time and parameter choices introduced by the simulated
annealing.

3. t-Distributed Stochastic Neighbor Embedding

Section 2 discussed SNE as it was presented by Hinton and Roweis (2002). Although SNE con-
structs reasonably good visualizations, it is hampered by a cost function that is difficult to optimize
and by a problem we refer to as the “crowding problem”. In this section, we present a new technique
called “t-Distributed Stochastic Neighbor Embedding” or “t-SNE” that aims to alleviate these prob-
lems. The cost function used by t-SNE differs from the one used by SNE in two ways: (1) it uses a
symmetrized version of the SNE cost function with simpler gradients that was briefly introduced by
Cook et al. (2007) and (2) it uses a Student-t distribution rather than a Gaussian to compute the sim-
ilarity between two points in the low-dimensional space. t-SNE employs a heavy-tailed distribution
in the low-dimensional space to alleviate both the crowding problem and the optimization problems
of SNE.

In this section, we first discuss the symmetric version of SNE (Section 3.1). Subsequently, we
discuss the crowding problem (Section 3.2), and the use of heavy-tailed distributions to address this
problem (Section 3.3). We conclude the section by describing our approach to the optimization of
the t-SNE cost function (Section 3.4).

3.1 Symmetric SNE

As an alternative to minimizing the sum of the Kullback-Leibler divergences between the condi-
tional probabilities p j|i and q j|i, it is also possible to minimize a single Kullback-Leibler divergence
between a joint probability distribution, P, in the high-dimensional space and a joint probability
distribution, Q, in the low-dimensional space:

C = KL(P||Q) = ∑
i

∑
j

pi j log
pi j

qi j
.

where again, we set pii and qii to zero. We refer to this type of SNE as symmetric SNE, because it
has the property that pi j = p ji and qi j = q ji for ∀i, j. In symmetric SNE, the pairwise similarities in

4. Picking the best map after several runs as a visualization of the data is not nearly as problematic as picking the model
that does best on a test set during supervised learning. In visualization, the aim is to see the structure in the training
data, not to generalize to held out test data.

2583

VAN DER MAATEN AND HINTON

the low-dimensional map qi j are given by

qi j =
exp

(

−‖yi − y j‖2
)

∑k 6=l exp(−‖yk − yl‖2)
, (3)

The obvious way to define the pairwise similarities in the high-dimensional space pi j is

pi j =
exp

(

−‖xi − x j‖2/2σ2
)

∑k 6=l exp(−‖xk − xl‖2/2σ2)
,

but this causes problems when a high-dimensional datapoint xi is an outlier (i.e., all pairwise dis-
tances ‖xi − x j‖2 are large for xi). For such an outlier, the values of pi j are extremely small for
all j, so the location of its low-dimensional map point yi has very little effect on the cost function.
As a result, the position of the map point is not well determined by the positions of the other map
points. We circumvent this problem by defining the joint probabilities pi j in the high-dimensional

space to be the symmetrized conditional probabilities, that is, we set pi j =
p j|i+pi| j

2n . This ensures that
∑ j pi j > 1

2n for all datapoints xi, as a result of which each datapoint xi makes a significant contri-
bution to the cost function. In the low-dimensional space, symmetric SNE simply uses Equation 3.
The main advantage of the symmetric version of SNE is the simpler form of its gradient, which is
faster to compute. The gradient of symmetric SNE is fairly similar to that of asymmetric SNE, and
is given by

δC
δyi

= 4∑
j

(pi j −qi j)(yi − y j).

In preliminary experiments, we observed that symmetric SNE seems to produce maps that are just
as good as asymmetric SNE, and sometimes even a little better.

3.2 The Crowding Problem

Consider a set of datapoints that lie on a two-dimensional curved manifold which is approximately
linear on a small scale, and which is embedded within a higher-dimensional space. It is possible to
model the small pairwise distances between datapoints fairly well in a two-dimensional map, which
is often illustrated on toy examples such as the “Swiss roll” data set. Now suppose that the mani-
fold has ten intrinsic dimensions5 and is embedded within a space of much higher dimensionality.
There are several reasons why the pairwise distances in a two-dimensional map cannot faithfully
model distances between points on the ten-dimensional manifold. For instance, in ten dimensions,
it is possible to have 11 datapoints that are mutually equidistant and there is no way to model this
faithfully in a two-dimensional map. A related problem is the very different distribution of pairwise
distances in the two spaces. The volume of a sphere centered on datapoint i scales as rm, where r is
the radius and m the dimensionality of the sphere. So if the datapoints are approximately uniformly
distributed in the region around i on the ten-dimensional manifold, and we try to model the dis-
tances from i to the other datapoints in the two-dimensional map, we get the following “crowding
problem”: the area of the two-dimensional map that is available to accommodate moderately distant
datapoints will not be nearly large enough compared with the area available to accommodate nearby
datapoints. Hence, if we want to model the small distances accurately in the map, most of the points

5. This is approximately correct for the images of handwritten digits we use in our experiments in Section 4.

2584

VISUALIZING DATA USING T-SNE

that are at a moderate distance from datapoint i will have to be placed much too far away in the
two-dimensional map. In SNE, the spring connecting datapoint i to each of these too-distant map
points will thus exert a very small attractive force. Although these attractive forces are very small,
the very large number of such forces crushes together the points in the center of the map, which
prevents gaps from forming between the natural clusters. Note that the crowding problem is not
specific to SNE, but that it also occurs in other local techniques for multidimensional scaling such
as Sammon mapping.

An attempt to address the crowding problem by adding a slight repulsion to all springs was pre-
sented by Cook et al. (2007). The slight repulsion is created by introducing a uniform background
model with a small mixing proportion, ρ. So however far apart two map points are, qi j can never fall
below 2ρ

n(n−1) (because the uniform background distribution is over n(n−1)/2 pairs). As a result, for
datapoints that are far apart in the high-dimensional space, qi j will always be larger than pi j, leading
to a slight repulsion. This technique is called UNI-SNE and although it usually outperforms stan-
dard SNE, the optimization of the UNI-SNE cost function is tedious. The best optimization method
known is to start by setting the background mixing proportion to zero (i.e., by performing standard
SNE). Once the SNE cost function has been optimized using simulated annealing, the background
mixing proportion can be increased to allow some gaps to form between natural clusters as shown
by Cook et al. (2007). Optimizing the UNI-SNE cost function directly does not work because two
map points that are far apart will get almost all of their qi j from the uniform background. So even
if their pi j is large, there will be no attractive force between them, because a small change in their
separation will have a vanishingly small proportional effect on qi j. This means that if two parts of
a cluster get separated early on in the optimization, there is no force to pull them back together.

3.3 Mismatched Tails can Compensate for Mismatched Dimensionalities

Since symmetric SNE is actually matching the joint probabilities of pairs of datapoints in the high-
dimensional and the low-dimensional spaces rather than their distances, we have a natural way
of alleviating the crowding problem that works as follows. In the high-dimensional space, we
convert distances into probabilities using a Gaussian distribution. In the low-dimensional map, we
can use a probability distribution that has much heavier tails than a Gaussian to convert distances
into probabilities. This allows a moderate distance in the high-dimensional space to be faithfully
modeled by a much larger distance in the map and, as a result, it eliminates the unwanted attractive
forces between map points that represent moderately dissimilar datapoints.

In t-SNE, we employ a Student t-distribution with one degree of freedom (which is the same
as a Cauchy distribution) as the heavy-tailed distribution in the low-dimensional map. Using this
distribution, the joint probabilities qi j are defined as

qi j =

(

1+‖yi − y j‖2
)−1

∑k 6=l (1+‖yk − yl‖2)−1 . (4)

We use a Student t-distribution with a single degree of freedom, because it has the particularly
nice property that

(

1+‖yi − y j‖2
)−1

approaches an inverse square law for large pairwise distances
‖yi − y j‖ in the low-dimensional map. This makes the map’s representation of joint probabilities
(almost) invariant to changes in the scale of the map for map points that are far apart. It also means
that large clusters of points that are far apart interact in just the same way as individual points, so the
optimization operates in the same way at all but the finest scales. A theoretical justification for our

2585

VAN DER MAATEN AND HINTON

High−dimensional distance >

Lo
w

−
di

m
en

si
on

al
 d

is
ta

nc
e

>

0

2

4

6

8

10

12

14

16

18

(a) Gradient of SNE.

High−dimensional distance >

Lo
w

−
di

m
en

si
on

al
 d

is
ta

nc
e

>

−4

−2

0

2

4

6

8

10

12

14

(b) Gradient of UNI-SNE.

High−dimensional distance >

Lo
w

−
di

m
en

si
on

al
 d

is
ta

nc
e

>

−1

−0.5

0

0.5

1

(c) Gradient of t-SNE.

Figure 1: Gradients of three types of SNE as a function of the pairwise Euclidean distance between
two points in the high-dimensional and the pairwise distance between the points in the
low-dimensional data representation.

selection of the Student t-distribution is that it is closely related to the Gaussian distribution, as the
Student t-distribution is an infinite mixture of Gaussians. A computationally convenient property
is that it is much faster to evaluate the density of a point under a Student t-distribution than under
a Gaussian because it does not involve an exponential, even though the Student t-distribution is
equivalent to an infinite mixture of Gaussians with different variances.

The gradient of the Kullback-Leibler divergence between P and the Student-t based joint prob-
ability distribution Q (computed using Equation 4) is derived in Appendix A, and is given by

δC
δyi

= 4∑
j

(pi j −qi j)(yi − y j)
(

1+‖yi − y j‖2)−1
. (5)

In Figure 1(a) to 1(c), we show the gradients between two low-dimensional datapoints yi and y j as
a function of their pairwise Euclidean distances in the high-dimensional and the low-dimensional
space (i.e., as a function of ‖xi − x j‖ and ‖yi − y j‖) for the symmetric versions of SNE, UNI-SNE,
and t-SNE. In the figures, positive values of the gradient represent an attraction between the low-
dimensional datapoints yi and y j, whereas negative values represent a repulsion between the two
datapoints. From the figures, we observe two main advantages of the t-SNE gradient over the
gradients of SNE and UNI-SNE.

First, the t-SNE gradient strongly repels dissimilar datapoints that are modeled by a small pair-
wise distance in the low-dimensional representation. SNE has such a repulsion as well, but its effect
is minimal compared to the strong attractions elsewhere in the gradient (the largest attraction in our
graphical representation of the gradient is approximately 19, whereas the largest repulsion is approx-
imately 1). In UNI-SNE, the amount of repulsion between dissimilar datapoints is slightly larger,
however, this repulsion is only strong when the pairwise distance between the points in the low-
dimensional representation is already large (which is often not the case, since the low-dimensional
representation is initialized by sampling from a Gaussian with a very small variance that is centered
around the origin).

Second, although t-SNE introduces strong repulsions between dissimilar datapoints that are
modeled by small pairwise distances, these repulsions do not go to infinity. In this respect, t-SNE
differs from UNI-SNE, in which the strength of the repulsion between very dissimilar datapoints

2586

VISUALIZING DATA USING T-SNE

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {x1,x2, ...,xn},
cost function parameters: perplexity Perp,
optimization parameters: number of iterations T , learning rate η, momentum α(t).
Result: low-dimensional data representation Y (T) = {y1,y2, ...,yn}.
begin

compute pairwise affinities p j|i with perplexity Perp (using Equation 1)

set pi j =
p j|i+pi| j

2n

sample initial solution Y (0) = {y1,y2, ...,yn} from N (0,10−4I)
for t=1 to T do

compute low-dimensional affinities qi j (using Equation 4)
compute gradient δC

δY (using Equation 5)

set Y (t) = Y (t−1) +η δC
δY +α(t)

(

Y (t−1)−Y (t−2)
)

end
end

is proportional to their pairwise distance in the low-dimensional map, which may cause dissimilar
datapoints to move much too far away from each other.

Taken together, t-SNE puts emphasis on (1) modeling dissimilar datapoints by means of large
pairwise distances, and (2) modeling similar datapoints by means of small pairwise distances. More-
over, as a result of these characteristics of the t-SNE cost function (and as a result of the approximate
scale invariance of the Student t-distribution), the optimization of the t-SNE cost function is much
easier than the optimization of the cost functions of SNE and UNI-SNE. Specifically, t-SNE in-
troduces long-range forces in the low-dimensional map that can pull back together two (clusters
of) similar points that get separated early on in the optimization. SNE and UNI-SNE do not have
such long-range forces, as a result of which SNE and UNI-SNE need to use simulated annealing to
obtain reasonable solutions. Instead, the long-range forces in t-SNE facilitate the identification of
good local optima without resorting to simulated annealing.

3.4 Optimization Methods for t-SNE

We start by presenting a relatively simple, gradient descent procedure for optimizing the t-SNE cost
function. This simple procedure uses a momentum term to reduce the number of iterations required
and it works best if the momentum term is small until the map points have become moderately well
organized. Pseudocode for this simple algorithm is presented in Algorithm 1. The simple algorithm
can be sped up using the adaptive learning rate scheme that is described by Jacobs (1988), which
gradually increases the learning rate in directions in which the gradient is stable.

Although the simple algorithm produces visualizations that are often much better than those
produced by other non-parametric dimensionality reduction techniques, the results can be improved
further by using either of two tricks. The first trick, which we call “early compression”, is to force
the map points to stay close together at the start of the optimization. When the distances between
map points are small, it is easy for clusters to move through one another so it is much easier to
explore the space of possible global organizations of the data. Early compression is implemented
by adding an additional L2-penalty to the cost function that is proportional to the sum of squared

2587

VAN DER MAATEN AND HINTON

distances of the map points from the origin. The magnitude of this penalty term and the iteration at
which it is removed are set by hand, but the behavior is fairly robust across variations in these two
additional optimization parameters.

A less obvious way to improve the optimization, which we call “early exaggeration”, is to
multiply all of the pi j’s by, for example, 4, in the initial stages of the optimization. This means that
almost all of the qi j’s, which still add up to 1, are much too small to model their corresponding pi j’s.
As a result, the optimization is encouraged to focus on modeling the large pi j’s by fairly large qi j’s.
The effect is that the natural clusters in the data tend to form tight widely separated clusters in the
map. This creates a lot of relatively empty space in the map, which makes it much easier for the
clusters to move around relative to one another in order to find a good global organization.

In all the visualizations presented in this paper and in the supporting material, we used exactly
the same optimization procedure. We used the early exaggeration method with an exaggeration
of 4 for the first 50 iterations (note that early exaggeration is not included in the pseudocode in
Algorithm 1). The number of gradient descent iterations T was set 1000, and the momentum term
was set to α(t) = 0.5 for t < 250 and α(t) = 0.8 for t ≥ 250. The learning rate η is initially set to 100
and it is updated after every iteration by means of the adaptive learning rate scheme described by
Jacobs (1988). A Matlab implementation of the resulting algorithm is available at http://ticc.
uvt.nl/˜lvdrmaaten/tsne.

4. Experiments

To evaluate t-SNE, we present experiments in which t-SNE is compared to seven other non-parametric
techniques for dimensionality reduction. Because of space limitations, in the paper, we only com-
pare t-SNE with: (1) Sammon mapping, (2) Isomap, and (3) LLE. In the supporting material, we
also compare t-SNE with: (4) CCA, (5) SNE, (6) MVU, and (7) Laplacian Eigenmaps. We per-
formed experiments on five data sets that represent a variety of application domains. Again because
of space limitations, we restrict ourselves to three data sets in the paper. The results of our experi-
ments on the remaining two data sets are presented in the supplemental material.

In Section 4.1, the data sets that we employed in our experiments are introduced. The setup of
the experiments is presented in Section 4.2. In Section 4.3, we present the results of our experiments.

4.1 Data Sets

The five data sets we employed in our experiments are: (1) the MNIST data set, (2) the Olivetti
faces data set, (3) the COIL-20 data set, (4) the word-features data set, and (5) the Netflix data set.
We only present results on the first three data sets in this section. The results on the remaining two
data sets are presented in the supporting material. The first three data sets are introduced below.

The MNIST data set6 contains 60,000 grayscale images of handwritten digits. For our experi-
ments, we randomly selected 6,000 of the images for computational reasons. The digit images have
28× 28 = 784 pixels (i.e., dimensions). The Olivetti faces data set7 consists of images of 40 indi-
viduals with small variations in viewpoint, large variations in expression, and occasional addition
of glasses. The data set consists of 400 images (10 per individual) of size 92×112 = 10,304 pixels,
and is labeled according to identity. The COIL-20 data set (Nene et al., 1996) contains images of 20

6. The MNIST data set is publicly available from http://yann.lecun.com/exdb/mnist/index.html.
7. The Olivetti faces data set is publicly available from http://mambo.ucsc.edu/psl/olivetti.html.

2588

VISUALIZING DATA USING T-SNE

different objects viewed from 72 equally spaced orientations, yielding a total of 1,440 images. The
images contain 32×32 = 1,024 pixels.

4.2 Experimental Setup

In all of our experiments, we start by using PCA to reduce the dimensionality of the data to 30.
This speeds up the computation of pairwise distances between the datapoints and suppresses some
noise without severely distorting the interpoint distances. We then use each of the dimensionality
reduction techniques to convert the 30-dimensional representation to a two-dimensional map and
we show the resulting map as a scatterplot. For all of the data sets, there is information about the
class of each datapoint, but the class information is only used to select a color and/or symbol for
the map points. The class information is not used to determine the spatial coordinates of the map
points. The coloring thus provides a way of evaluating how well the map preserves the similarities
within each class.

The cost function parameter settings we employed in our experiments are listed in Table 1.
In the table, Perp represents the perplexity of the conditional probability distribution induced by
a Gaussian kernel and k represents the number of nearest neighbors employed in a neighborhood
graph. In the experiments with Isomap and LLE, we only visualize datapoints that correspond to
vertices in the largest connected component of the neighborhood graph.8 For the Sammon mapping
optimization, we performed Newton’s method for 500 iterations.

Technique Cost function parameters
t-SNE Perp = 40
Sammon mapping none
Isomap k = 12
LLE k = 12

Table 1: Cost function parameter settings for the experiments.

4.3 Results

In Figures 2 and 3, we show the results of our experiments with t-SNE, Sammon mapping, Isomap,
and LLE on the MNIST data set. The results reveal the strong performance of t-SNE compared to
the other techniques. In particular, Sammon mapping constructs a “ball” in which only three classes
(representing the digits 0, 1, and 7) are somewhat separated from the other classes. Isomap and
LLE produce solutions in which there are large overlaps between the digit classes. In contrast, t-
SNE constructs a map in which the separation between the digit classes is almost perfect. Moreover,
detailed inspection of the t-SNE map reveals that much of the local structure of the data (such as
the orientation of the ones) is captured as well. This is illustrated in more detail in Section 5 (see
Figure 7). The map produced by t-SNE contains some points that are clustered with the wrong
class, but most of these points correspond to distorted digits many of which are difficult to identify.
Figure 4 shows the results of applying t-SNE, Sammon mapping, Isomap, and LLE to the Olivetti

faces data set. Again, Isomap and LLE produce solutions that provide little insight into the class

8. Isomap and LLE require data that gives rise to a neighborhood graph that is connected.

2589

VAN DER MAATEN AND HINTON

0
1
2
3
4
5
6
7
8
9

(a) Visualization by t-SNE.

(b) Visualization by Sammon mapping.

Figure 2: Visualizations of 6,000 handwritten digits from the MNIST data set.

2590

VISUALIZING DATA USING T-SNE

(a) Visualization by Isomap.

(b) Visualization by LLE.

Figure 3: Visualizations of 6,000 handwritten digits from the MNIST data set.

2591

VAN DER MAATEN AND HINTON

(a) Visualization by t-SNE.

(b) Visualization by Sammon mapping.

(c) Visualization by Isomap.

(d) Visualization by LLE.

Figure 4: Visualizations of the Olivetti faces data set.

structure of the data. The map constructed by Sammon mapping is significantly better, since it
models many of the members of each class fairly close together, but none of the classes are clearly
separated in the Sammon map. In contrast, t-SNE does a much better job of revealing the natural
classes in the data. Some individuals have their ten images split into two clusters, usually because a
subset of the images have the head facing in a significantly different direction, or because they have
a very different expression or glasses. For these individuals, it is not clear that their ten images form
a natural class when using Euclidean distance in pixel space.

Figure 5 shows the results of applying t-SNE, Sammon mapping, Isomap, and LLE to the COIL-
20 data set. For many of the 20 objects, t-SNE accurately represents the one-dimensional manifold
of viewpoints as a closed loop. For objects which look similar from the front and the back, t-SNE
distorts the loop so that the images of front and back are mapped to nearby points. For the four
types of toy car in the COIL-20 data set (the four aligned “sausages” in the bottom-left of the t-
SNE map), the four rotation manifolds are aligned by the orientation of the cars to capture the high

2592

VISUALIZING DATA USING T-SNE

(a) Visualization by t-SNE.

(b) Visualization by Sammon mapping.

(c) Visualization by Isomap.

(d) Visualization by LLE.

Figure 5: Visualizations of the COIL-20 data set.

similarity between different cars at the same orientation. This prevents t-SNE from keeping the
four manifolds clearly separate. Figure 5 also reveals that the other three techniques are not nearly
as good at cleanly separating the manifolds that correspond to very different objects. In addition,
Isomap and LLE only visualize a small number of classes from the COIL-20 data set, because the
data set comprises a large number of widely separated submanifolds that give rise to small connected
components in the neighborhood graph.

5. Applying t-SNE to Large Data Sets

Like many other visualization techniques, t-SNE has a computational and memory complexity that
is quadratic in the number of datapoints. This makes it infeasible to apply the standard version of
t-SNE to data sets that contain many more than, say, 10,000 points. Obviously, it is possible to
pick a random subset of the datapoints and display them using t-SNE, but such an approach fails to

2593

VAN DER MAATEN AND HINTON

� �

�

Figure 6: An illustration of the advantage of the random walk version of t-SNE over a standard
landmark approach. The shaded points A, B, and C are three (almost) equidistant land-
mark points, whereas the non-shaded datapoints are non-landmark points. The arrows
represent a directed neighborhood graph where k = 3. In a standard landmark approach,
the pairwise affinity between A and B is approximately equal to the pairwise affinity be-
tween A and C. In the random walk version of t-SNE, the pairwise affinity between A
and B is much larger than the pairwise affinity between A and C, and therefore, it reflects
the structure of the data much better.

make use of the information that the undisplayed datapoints provide about the underlying manifolds.
Suppose, for example, that A, B, and C are all equidistant in the high-dimensional space. If there
are many undisplayed datapoints between A and B and none between A and C, it is much more
likely that A and B are part of the same cluster than A and C. This is illustrated in Figure 6. In this
section, we show how t-SNE can be modified to display a random subset of the datapoints (so-called
landmark points) in a way that uses information from the entire (possibly very large) data set.

We start by choosing a desired number of neighbors and creating a neighborhood graph for all
of the datapoints. Although this is computationally intensive, it is only done once. Then, for each
of the landmark points, we define a random walk starting at that landmark point and terminating
as soon as it lands on another landmark point. During a random walk, the probability of choosing
an edge emanating from node xi to node x j is proportional to e−‖xi−x j‖2

. We define p j|i to be the
fraction of random walks starting at landmark point xi that terminate at landmark point x j. This has
some resemblance to the way Isomap measures pairwise distances between points. However, as in
diffusion maps (Lafon and Lee, 2006; Nadler et al., 2006), rather than looking for the shortest path
through the neighborhood graph, the random walk-based affinity measure integrates over all paths
through the neighborhood graph. As a result, the random walk-based affinity measure is much less
sensitive to “short-circuits” (Lee and Verleysen, 2005), in which a single noisy datapoint provides
a bridge between two regions of dataspace that should be far apart in the map. Similar approaches
using random walks have also been successfully applied to, for example, semi-supervised learning
(Szummer and Jaakkola, 2001; Zhu et al., 2003) and image segmentation (Grady, 2006).

2594

VISUALIZING DATA USING T-SNE

The most obvious way to compute the random walk-based similarities p j|i is to explicitly per-
form the random walks on the neighborhood graph, which works very well in practice, given that
one can easily perform one million random walks per second. Alternatively, Grady (2006) presents
an analytical solution to compute the pairwise similarities p j|i that involves solving a sparse linear
system. The analytical solution to compute the similarities p j|i is sketched in Appendix B. In pre-
liminary experiments, we did not find significant differences between performing the random walks
explicitly and the analytical solution. In the experiment we present below, we explicitly performed
the random walks because this is computationally less expensive. However, for very large data sets
in which the landmark points are very sparse, the analytical solution may be more appropriate.

Figure 7 shows the results of an experiment, in which we applied the random walk version
of t-SNE to 6,000 randomly selected digits from the MNIST data set, using all 60,000 digits to
compute the pairwise affinities p j|i. In the experiment, we used a neighborhood graph that was
constructed using a value of k = 20 nearest neighbors.9 The inset of the figure shows the same
visualization as a scatterplot in which the colors represent the labels of the digits. In the t-SNE
map, all classes are clearly separated and the “continental” sevens form a small separate cluster.
Moreover, t-SNE reveals the main dimensions of variation within each class, such as the orientation
of the ones, fours, sevens, and nines, or the “loopiness” of the twos. The strong performance of
t-SNE is also reflected in the generalization error of nearest neighbor classifiers that are trained on
the low-dimensional representation. Whereas the generalization error (measured using 10-fold cross
validation) of a 1-nearest neighbor classifier trained on the original 784-dimensional datapoints is
5.75%, the generalization error of a 1-nearest neighbor classifier trained on the two-dimensional
data representation produced by t-SNE is only 5.13%. The computational requirements of random
walk t-SNE are reasonable: it took only one hour of CPU time to construct the map in Figure 7.

6. Discussion

The results in the previous two sections (and those in the supplemental material) demonstrate the
performance of t-SNE on a wide variety of data sets. In this section, we discuss the differences
between t-SNE and other non-parametric techniques (Section 6.1), and we also discuss a number of
weaknesses and possible improvements of t-SNE (Section 6.2).

6.1 Comparison with Related Techniques

Classical scaling (Torgerson, 1952), which is closely related to PCA (Mardia et al., 1979; Williams,
2002), finds a linear transformation of the data that minimizes the sum of the squared errors between
high-dimensional pairwise distances and their low-dimensional representatives. A linear method
such as classical scaling is not good at modeling curved manifolds and it focuses on preserving
the distances between widely separated datapoints rather than on preserving the distances between
nearby datapoints. An important approach that attempts to address the problems of classical scaling
is the Sammon mapping (Sammon, 1969) which alters the cost function of classical scaling by
dividing the squared error in the representation of each pairwise Euclidean distance by the original
Euclidean distance in the high-dimensional space. The resulting cost function is given by

C =
1

∑i j‖xi − x j‖ ∑
i6= j

(‖xi − x j‖−‖yi − y j‖)2

‖xi − x j‖
,

9. In preliminary experiments, we found the performance of random walk t-SNE to be very robust under changes of k.

2595

VAN DER MAATEN AND HINTON

Figure 7: Visualization of 6,000 digits from the MNIST data set produced by the random walk
version of t-SNE (employing all 60,000 digit images).

2596

VISUALIZING DATA USING T-SNE

where the constant outside of the sum is added in order to simplify the derivation of the gradient.
The main weakness of the Sammon cost function is that the importance of retaining small pairwise
distances in the map is largely dependent on small differences in these pairwise distances. In par-
ticular, a small error in the model of two high-dimensional points that are extremely close together
results in a large contribution to the cost function. Since all small pairwise distances constitute the
local structure of the data, it seems more appropriate to aim to assign approximately equal impor-
tance to all small pairwise distances.

In contrast to Sammon mapping, the Gaussian kernel employed in the high-dimensional space
by t-SNE defines a soft border between the local and global structure of the data and for pairs
of datapoints that are close together relative to the standard deviation of the Gaussian, the impor-
tance of modeling their separations is almost independent of the magnitudes of those separations.
Moreover, t-SNE determines the local neighborhood size for each datapoint separately based on the
local density of the data (by forcing each conditional probability distribution Pi to have the same
perplexity).

The strong performance of t-SNE compared to Isomap is partly explained by Isomap’s suscep-
tibility to “short-circuiting”. Also, Isomap mainly focuses on modeling large geodesic distances
rather than small ones.

The strong performance of t-SNE compared to LLE is mainly due to a basic weakness of LLE:
the only thing that prevents all datapoints from collapsing onto a single point is a constraint on the
covariance of the low-dimensional representation. In practice, this constraint is often satisfied by
placing most of the map points near the center of the map and using a few widely scattered points
to create large covariance (see Figure 3(b) and 4(d)). For neighborhood graphs that are almost
disconnected, the covariance constraint can also be satisfied by a “curdled” map in which there are
a few widely separated, collapsed subsets corresponding to the almost disconnected components.
Furthermore, neighborhood-graph based techniques (such as Isomap and LLE) are not capable of
visualizing data that consists of two or more widely separated submanifolds, because such data
does not give rise to a connected neighborhood graph. It is possible to produce a separate map for
each connected component, but this loses information about the relative similarities of the separate
components.

Like Isomap and LLE, the random walk version of t-SNE employs neighborhood graphs, but it
does not suffer from short-circuiting problems because the pairwise similarities between the high-
dimensional datapoints are computed by integrating over all paths through the neighborhood graph.
Because of the diffusion-based interpretation of the conditional probabilities underlying the random
walk version of t-SNE, it is useful to compare t-SNE to diffusion maps. Diffusion maps define a
“diffusion distance” on the high-dimensional datapoints that is given by

D(t)(xi,x j) =

√

√

√

√

√∑
k

(

p(t)
ik − p(t)

jk

)2

ψ(xk)(0)
,

where p(t)
i j represents the probability of a particle traveling from xi to x j in t timesteps through a

graph on the data with Gaussian emission probabilities. The term ψ(xk)
(0) is a measure for the local

density of the points, and serves a similar purpose to the fixed perplexity Gaussian kernel that is em-
ployed in SNE. The diffusion map is formed by the principal non-trivial eigenvectors of the Markov
matrix of the random walks of length t. It can be shown that when all (n−1) non-trivial eigenvec-

2597

VAN DER MAATEN AND HINTON

tors are employed, the Euclidean distances in the diffusion map are equal to the diffusion distances
in the high-dimensional data representation (Lafon and Lee, 2006). Mathematically, diffusion maps
minimize

C = ∑
i

∑
j

(

D(t)(xi,x j)−‖yi − y j‖
)2

.

As a result, diffusion maps are susceptible to the same problems as classical scaling: they assign
much higher importance to modeling the large pairwise diffusion distances than the small ones and
as a result, they are not good at retaining the local structure of the data. Moreover, in contrast to the
random walk version of t-SNE, diffusion maps do not have a natural way of selecting the length, t,
of the random walks.

In the supplemental material, we present results that reveal that t-SNE outperforms CCA (De-
martines and Hérault, 1997), MVU (Weinberger et al., 2004), and Laplacian Eigenmaps (Belkin and
Niyogi, 2002) as well. For CCA and the closely related CDA (Lee et al., 2000), these results can
be partially explained by the hard border λ that these techniques define between local and global
structure, as opposed to the soft border of t-SNE. Moreover, within the range λ, CCA suffers from
the same weakness as Sammon mapping: it assigns extremely high importance to modeling the
distance between two datapoints that are extremely close.

Like t-SNE, MVU (Weinberger et al., 2004) tries to model all of the small separations well but
MVU insists on modeling them perfectly (i.e., it treats them as constraints) and a single erroneous
constraint may severely affect the performance of MVU. This can occur when there is a short-circuit
between two parts of a curved manifold that are far apart in the intrinsic manifold coordinates. Also,
MVU makes no attempt to model longer range structure: It simply pulls the map points as far apart
as possible subject to the hard constraints so, unlike t-SNE, it cannot be expected to produce sensible
large-scale structure in the map.

For Laplacian Eigenmaps, the poor results relative to t-SNE may be explained by the fact that
Laplacian Eigenmaps have the same covariance constraint as LLE, and it is easy to cheat on this
constraint.

6.2 Weaknesses

Although we have shown that t-SNE compares favorably to other techniques for data visualization, t-
SNE has three potential weaknesses: (1) it is unclear how t-SNE performs on general dimensionality
reduction tasks, (2) the relatively local nature of t-SNE makes it sensitive to the curse of the intrinsic
dimensionality of the data, and (3) t-SNE is not guaranteed to converge to a global optimum of its
cost function. Below, we discuss the three weaknesses in more detail.

1) Dimensionality reduction for other purposes. It is not obvious how t-SNE will perform on
the more general task of dimensionality reduction (i.e., when the dimensionality of the data is not
reduced to two or three, but to d > 3 dimensions). To simplify evaluation issues, this paper only
considers the use of t-SNE for data visualization. The behavior of t-SNE when reducing data to two
or three dimensions cannot readily be extrapolated to d > 3 dimensions because of the heavy tails
of the Student-t distribution. In high-dimensional spaces, the heavy tails comprise a relatively large
portion of the probability mass under the Student-t distribution, which might lead to d-dimensional
data representations that do not preserve the local structure of the data as well. Hence, for tasks

2598

VISUALIZING DATA USING T-SNE

in which the dimensionality of the data needs to be reduced to a dimensionality higher than three,
Student t-distributions with more than one degree of freedom10 are likely to be more appropriate.

2) Curse of intrinsic dimensionality. t-SNE reduces the dimensionality of data mainly based on
local properties of the data, which makes t-SNE sensitive to the curse of the intrinsic dimensional-
ity of the data (Bengio, 2007). In data sets with a high intrinsic dimensionality and an underlying
manifold that is highly varying, the local linearity assumption on the manifold that t-SNE implicitly
makes (by employing Euclidean distances between near neighbors) may be violated. As a result,
t-SNE might be less successful if it is applied on data sets with a very high intrinsic dimensional-
ity (for instance, a recent study by Meytlis and Sirovich (2007) estimates the space of images of
faces to be constituted of approximately 100 dimensions). Manifold learners such as Isomap and
LLE suffer from exactly the same problems (see, e.g., Bengio, 2007; van der Maaten et al., 2008).
A possible way to (partially) address this issue is by performing t-SNE on a data representation
obtained from a model that represents the highly varying data manifold efficiently in a number of
nonlinear layers such as an autoencoder (Hinton and Salakhutdinov, 2006). Such deep-layer archi-
tectures can represent complex nonlinear functions in a much simpler way, and as a result, require
fewer datapoints to learn an appropriate solution (as is illustrated for a d-bits parity task by Bengio
2007). Performing t-SNE on a data representation produced by, for example, an autoencoder is
likely to improve the quality of the constructed visualizations, because autoencoders can identify
highly-varying manifolds better than a local method such as t-SNE. However, the reader should note
that it is by definition impossible to fully represent the structure of intrinsically high-dimensional
data in two or three dimensions.

3) Non-convexity of the t-SNE cost function. A nice property of most state-of-the-art dimen-
sionality reduction techniques (such as classical scaling, Isomap, LLE, and diffusion maps) is the
convexity of their cost functions. A major weakness of t-SNE is that the cost function is not convex,
as a result of which several optimization parameters need to be chosen. The constructed solutions
depend on these choices of optimization parameters and may be different each time t-SNE is run
from an initial random configuration of map points. We have demonstrated that the same choice of
optimization parameters can be used for a variety of different visualization tasks, and we found that
the quality of the optima does not vary much from run to run. Therefore, we think that the weakness
of the optimization method is insufficient reason to reject t-SNE in favor of methods that lead to con-
vex optimization problems but produce noticeably worse visualizations. A local optimum of a cost
function that accurately captures what we want in a visualization is often preferable to the global
optimum of a cost function that fails to capture important aspects of what we want. Moreover, the
convexity of cost functions can be misleading, because their optimization is often computationally
infeasible for large real-world data sets, prompting the use of approximation techniques (de Silva
and Tenenbaum, 2003; Weinberger et al., 2007). Even for LLE and Laplacian Eigenmaps, the opti-
mization is performed using iterative Arnoldi (Arnoldi, 1951) or Jacobi-Davidson (Fokkema et al.,
1999) methods, which may fail to find the global optimum due to convergence problems.

7. Conclusions

The paper presents a new technique for the visualization of similarity data that is capable of retaining
the local structure of the data while also revealing some important global structure (such as clusters

10. Increasing the degrees of freedom of a Student-t distribution makes the tails of the distribution lighter. With infinite
degrees of freedom, the Student-t distribution is equal to the Gaussian distribution.

2599

VAN DER MAATEN AND HINTON

at multiple scales). Both the computational and the memory complexity of t-SNE are O(n2), but
we present a landmark approach that makes it possible to successfully visualize large real-world
data sets with limited computational demands. Our experiments on a variety of data sets show
that t-SNE outperforms existing state-of-the-art techniques for visualizing a variety of real-world
data sets. Matlab implementations of both the normal and the random walk version of t-SNE are
available for download at http://ticc.uvt.nl/˜lvdrmaaten/tsne.

In future work we plan to investigate the optimization of the number of degrees of freedom of
the Student-t distribution used in t-SNE. This may be helpful for dimensionality reduction when
the low-dimensional representation has many dimensions. We will also investigate the extension of
t-SNE to models in which each high-dimensional datapoint is modeled by several low-dimensional
map points as in Cook et al. (2007). Also, we aim to develop a parametric version of t-SNE that
allows for generalization to held-out test data by using the t-SNE objective function to train a mul-
tilayer neural network that provides an explicit mapping to the low-dimensional space.

Acknowledgments

The authors thank Sam Roweis for many helpful discussions, Andriy Mnih for supplying the word-
features data set, Ruslan Salakhutdinov for help with the Netflix data set (results for these data sets
are presented in the supplemental material), and Guido de Croon for pointing us to the analytical
solution of the random walk probabilities.

Laurens van der Maaten is supported by the CATCH-programme of the Dutch Scientific Orga-
nization (NWO), project RICH (grant 640.002.401), and cooperates with RACM. Geoffrey Hinton
is a fellow of the Canadian Institute for Advanced Research, and is also supported by grants from
NSERC and CFI and gifts from Google and Microsoft.

Appendix A. Derivation of the t-SNE gradient

t-SNE minimizes the Kullback-Leibler divergence between the joint probabilities pi j in the high-
dimensional space and the joint probabilities qi j in the low-dimensional space. The values of pi j are
defined to be the symmetrized conditional probabilities, whereas the values of qi j are obtained by
means of a Student-t distribution with one degree of freedom

pi j =
p j|i + pi| j

2n
,

qi j =

(

1+‖yi − y j‖2
)−1

∑k 6=l (1+‖yk − yl‖2)−1 ,

where p j|i and pi| j are either obtained from Equation 1 or from the random walk procedure described
in Section 5. The values of pii and qii are set to zero. The Kullback-Leibler divergence between the
two joint probability distributions P and Q is given by

C = KL(P||Q) = ∑
i

∑
j

pi j log
pi j

qi j

= ∑
i

∑
j

pi j log pi j − pi j logqi j. (6)

2600

VISUALIZING DATA USING T-SNE

In order to make the derivation less cluttered, we define two auxiliary variables di j and Z as follows

di j = ‖yi − y j‖,

Z = ∑
k 6=l

(1+d2
kl)

−1.

Note that if yi changes, the only pairwise distances that change are di j and d ji for ∀ j. Hence, the
gradient of the cost function C with respect to yi is given by

δC
δyi

= ∑
j

(

δC
δdi j

+
δC
δd ji

)

(yi − y j)

= 2∑
j

δC
δdi j

(yi − y j). (7)

The gradient δC
δdi j

is computed from the definition of the Kullback-Leibler divergence in Equation 6
(note that the first part of this equation is a constant).

δC
δdi j

= −∑
k 6=l

pkl
δ(logqkl)

δdi j

= −∑
k 6=l

pkl
δ(logqklZ − logZ)

δdi j

= −∑
k 6=l

pkl

(

1
qklZ

δ((1+d2
kl)

−1)

δdi j
− 1

Z
δZ
δdi j

)

The gradient δ((1+d2
kl)

−1)
δdi j

is only nonzero when k = i and l = j. Hence, the gradient δC
δdi j

is given by

δC
δdi j

= 2
pi j

qi jZ
(1+d2

i j)
−2 −2 ∑

k 6=l

pkl
(1+d2

i j)
−2

Z
.

Noting that ∑k 6=l pkl = 1, we see that the gradient simplifies to

δC
δdi j

= 2pi j(1+d2
i j)

−1 −2qi j(1+d2
i j)

−1

= 2(pi j −qi j)(1+d2
i j)

−1.

Substituting this term into Equation 7, we obtain the gradient

δC
δyi

= 4∑
j

(pi j −qi j)(1+‖yi − y j‖2)−1(yi − y j).

Appendix B. Analytical Solution to Random Walk Probabilities

Below, we describe the analytical solution to the random walk probabilities that are employed in the
random walk version of t-SNE (see Section 5). The solution is described in more detail by Grady
(2006).

2601

VAN DER MAATEN AND HINTON

It can be shown that computing the probability that a random walk initiated from a non-landmark
point (on a graph that is specified by adjacency matrix W) first reaches a specific landmark point
is equal to computing the solution to the combinatorial Dirichlet problem in which the boundary
conditions are at the locations of the landmark points, the considered landmark point is fixed to
unity, and the other landmarks points are set to zero (Kakutani, 1945; Doyle and Snell, 1984).
In practice, the solution can thus be obtained by minimizing the combinatorial formulation of the
Dirichlet integral

D[x] =
1
2

xT Lx,

where L represents the graph Laplacian. Mathematically, the graph Laplacian is given by L =
D−W , where D = diag

(

∑ j w1 j,∑ j w2 j, ...,∑ j wn j
)

. Without loss of generality, we may reorder the
landmark points such that the landmark points come first. As a result, the combinatorial Dirichlet
integral decomposes into

D[xN] =
1
2

[

xT
L xT

N

]

[

LL B
BT LN

][

xL

xN

]

=
1
2

(

xT
L LLxL +2xT

NBT xM + xT
NLNxN

)

,

where we use the subscript ·L to indicate the landmark points, and the subscript ·N to indicate the
non-landmark points. Differentiating D[xN] with respect to xN and finding its critical points amounts
to solving the linear systems

LNxN = −BT . (8)

Please note that in this linear system, BT is a matrix containing the columns from the graph Lapla-
cian L that correspond to the landmark points (excluding the rows that correspond to landmark
points). After normalization of the solutions to the systems XN , the column vectors of XN contain
the probability that a random walk initiated from a non-landmark point terminates in a landmark
point. One should note that the linear system in Equation 8 is only nonsingular if the graph is com-
pletely connected, or if each connected component in the graph contains at least one landmark point
(Biggs, 1974).

Because we are interested in the probability of a random walk initiated from a landmark point
terminating at another landmark point, we duplicate all landmark points in the neighborhood graph,
and initiate the random walks from the duplicate landmarks. Because of memory constraints, it is
not possible to store the entire matrix XN into memory (note that we are only interested in a small
number of rows from this matrix, viz., in the rows corresponding to the duplicate landmark points).
Hence, we solve the linear systems defined by the columns of −BT one-by-one, and store only the
parts of the solutions that correspond to the duplicate landmark points. For computational reasons,
we first perform a Cholesky factorization of LN , such that LN =CCT , where C is an upper-triangular
matrix. Subsequently, the solution to the linear system in Equation 8 is obtained by solving the
linear systems Cy = −BT and CxN = y using a fast backsubstitution method.

References

W.E. Arnoldi. The principle of minimized iteration in the solution of the matrix eigenvalue problem.
Quarterly of Applied Mathematics, 9:17–25, 1951.

2602

VISUALIZING DATA USING T-SNE

G.D. Battista, P. Eades, R. Tamassia, and I.G. Tollis. Annotated bibliography on graph drawing.
Computational Geometry: Theory and Applications, 4:235–282, 1994.

M. Belkin and P. Niyogi. Laplacian Eigenmaps and spectral techniques for embedding and cluster-
ing. In Advances in Neural Information Processing Systems, volume 14, pages 585–591, Cam-
bridge, MA, USA, 2002. The MIT Press.

Y. Bengio. Learning deep architectures for AI. Technical Report 1312, Université de Montréal,
2007.

N. Biggs. Algebraic graph theory. In Cambridge Tracts in Mathematics, volume 67. Cambridge
University Press, 1974.

H. Chernoff. The use of faces to represent points in k-dimensional space graphically. Journal of the
American Statistical Association, 68:361–368, 1973.

J.A. Cook, I. Sutskever, A. Mnih, and G.E. Hinton. Visualizing similarity data with a mixture of
maps. In Proceedings of the 11th International Conference on Artificial Intelligence and Statistics,
volume 2, pages 67–74, 2007.

M.C. Ferreira de Oliveira and H. Levkowitz. From visual data exploration to visual data mining: A
survey. IEEE Transactions on Visualization and Computer Graphics, 9(3):378–394, 2003.

V. de Silva and J.B. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction.
In Advances in Neural Information Processing Systems, volume 15, pages 721–728, Cambridge,
MA, USA, 2003. The MIT Press.

P. Demartines and J. Hérault. Curvilinear component analysis: A self-organizing neural network for
nonlinear mapping of data sets. IEEE Transactions on Neural Networks, 8(1):148–154, 1997.

P. Doyle and L. Snell. Random walks and electric networks. In Carus mathematical monographs,
volume 22. Mathematical Association of America, 1984.

D.R. Fokkema, G.L.G. Sleijpen, and H.A. van der Vorst. Jacobi–Davidson style QR and QZ algo-
rithms for the reduction of matrix pencils. SIAM Journal on Scientific Computing, 20(1):94–125,
1999.

L. Grady. Random walks for image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(11):1768–1783, 2006.

G.E. Hinton and S.T. Roweis. Stochastic Neighbor Embedding. In Advances in Neural Information
Processing Systems, volume 15, pages 833–840, Cambridge, MA, USA, 2002. The MIT Press.

G.E. Hinton and R.R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507, 2006.

H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of
Educational Psychology, 24:417–441, 1933.

R.A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural Networks, 1:
295–307, 1988.

2603

VAN DER MAATEN AND HINTON

S. Kakutani. Markov processes and the Dirichlet problem. Proceedings of the Japan Academy, 21:
227–233, 1945.

D.A. Keim. Designing pixel-oriented visualization techniques: Theory and applications. IEEE
Transactions on Visualization and Computer Graphics, 6(1):59–78, 2000.

S. Lafon and A.B. Lee. Diffusion maps and coarse-graining: A unified framework for dimension-
ality reduction, graph partitioning, and data set parameterization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(9):1393–1403, 2006.

J.A. Lee and M. Verleysen. Nonlinear dimensionality reduction of data manifolds with essential
loops. Neurocomputing, 67:29–53, 2005.

J.A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer, New York, NY, USA,
2007.

J.A. Lee, A. Lendasse, N. Donckers, and M. Verleysen. A robust nonlinear projection method. In
Proceedings of the 8th European Symposium on Artificial Neural Networks, pages 13–20, 2000.

K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate Analysis. Academic Press, 1979.

M. Meytlis and L. Sirovich. On the dimensionality of face space. IEEE Transactions of Pattern
Analysis and Machine Intelligence, 29(7):1262–1267, 2007.

B. Nadler, S. Lafon, R.R. Coifman, and I.G. Kevrekidis. Diffusion maps, spectral clustering and
the reaction coordinates of dynamical systems. Applied and Computational Harmonic Analysis:
Special Issue on Diffusion Maps and Wavelets, 21:113–127, 2006.

S.A. Nene, S.K. Nayar, and H. Murase. Columbia Object Image Library (COIL-20). Technical
Report CUCS-005-96, Columbia University, 1996.

S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by Locally Linear Embedding.
Science, 290(5500):2323–2326, 2000.

J.W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers,
18(5):401–409, 1969.

L. Song, A.J. Smola, K. Borgwardt, and A. Gretton. Colored Maximum Variance Unfolding. In
Advances in Neural Information Processing Systems, volume 21 (in press), 2007.

W.N. Street, W.H. Wolberg, and O.L. Mangasarian. Nuclear feature extraction for breast tumor
diagnosis. In Proceedings of the IS&T/SPIE International Symposium on Electronic Imaging:
Science and Technology, volume 1905, pages 861–870, 1993.

M. Szummer and T. Jaakkola. Partially labeled classification with Markov random walks. In Ad-
vances in Neural Information Processing Systems, volume 14, pages 945–952, 2001.

J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, 2000.

2604

VISUALIZING DATA USING T-SNE

W.S. Torgerson. Multidimensional scaling I: Theory and method. Psychometrika, 17:401–419,
1952.

L.J.P. van der Maaten, E.O. Postma, and H.J. van den Herik. Dimensionality reduction: A compar-
ative review. Online Preprint, 2008.

K.Q. Weinberger, F. Sha, and L.K. Saul. Learning a kernel matrix for nonlinear dimensionality
reduction. In Proceedings of the 21st International Confernence on Machine Learning, 2004.

K.Q. Weinberger, F. Sha, Q. Zhu, and L.K. Saul. Graph Laplacian regularization for large-scale
semidefinite programming. In Advances in Neural Information Processing Systems, volume 19,
2007.

C.K.I. Williams. On a connection between Kernel PCA and metric multidimensional scaling. Ma-
chine Learning, 46(1-3):11–19, 2002.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and har-
monic functions. In Proceedings of the 20th International Conference on Machine Learning,
pages 912–919, 2003.

2605

Journal of Machine Learning Research 9 (2008) 2607-2633 Submitted 1/07; Revised 8/08; Published 11/08

Model Selection for Regression with Continuous
Kernel Functions Using the Modulus of Continuity

Imhoi Koo IMHOI.KOO@KIOM.RE.KR

Department of Medical Research
Korea Institute of Oriental Medicine
Daejeon 305-811, Korea

Rhee Man Kil RMKIL@KAIST.AC.KR

Department of Mathematical Sciences
Korea Advanced Institute of Science and Technology
Daejeon 305-701, Korea

Editors: Isabelle Guyon and Amir Saffari

Abstract
This paper presents a new method of model selection for regression problems using the modulus
of continuity. For this purpose, we suggest the prediction risk bounds of regression models using
the modulus of continuity which can be interpreted as the complexity of functions. We also present
the model selection criterion referred to as the modulus of continuity information criterion (MCIC)
which is derived from the suggested prediction risk bounds. The suggested MCIC provides a risk
estimate using the modulus of continuity for a trained regression model (or an estimation function)
while other model selection criteria such as the AIC and BIC use structural information such as the
number of training parameters. As a result, the suggested MCIC is able to discriminate the perfor-
mances of trained regression models, even with the same structure of training models. To show the
effectiveness of the proposed method, the simulation for function approximation using the multi-
layer perceptrons (MLPs) was conducted. Through the simulation for function approximation, it
was demonstrated that the suggested MCIC provides a good selection tool for nonlinear regression
models, even with the limited size of data.
Keywords: regression models, multilayer perceptrons, model selection, information criteria, mod-
ulus of continuity

1. Introduction

The task of learning from data is to minimize the expected risk (or generalization error) of a re-
gression model (or an estimation function) under the constraint of the absence of a priori model of
data generation and with the limited size of data. For this learning task, it is necessary to consider
nonparametric regression models such as artificial neural networks, as the functional form of the
target function is usually unknown. Furthermore, a mechanism to minimize the expected risk from
the limited size of data is required. In this context, the model selection is an important issue in
the selection of a reasonable network size in order to minimize the expected risk. However, the
proper network size (or number of parameters) of a regression model is difficult to choose, as it is
possible to obtain the empirical risk only in the case of the limited size of data while the expected
risk of a regression model should be measured for the entire data distribution. For the expected risk
of a regression model, the loss function of the error square is usually measured, and the expecta-

c©2008 Imhoi Koo and Rhee Man Kil.

KOO AND KIL

tion of the loss function for the entire data distribution is considered. This expected risk can be
decomposed by the bias and variance terms of the regression models. If the number of parameters
is increased, the bias term is decreased while the variance term is increased, and the opposite also
applies. If the number of parameters is exceedingly small and the performance is thus not optimal
due to a large bias term, a situation known as under-fitting of the regression models arises. If the
number of parameters is especially large and the performance is thus not optimal due to a large
variance term, over-fitting of the regression models arises. Hence, a trade-off exists between the
under-fitting and over-fitting of regression models. Here, an important issue is measuring the model
complexity associated with the variance term. Related to this issue, the statistical methods of model
selection use a penalty term for the measurement of model complexity. Well known criteria using
this penalty term are the Akaike information criterion (AIC) (Akaike, 1973), the Bayesian informa-
tion criterion (BIC) (Schwartz, 1978), the generalized cross-validation (GCV) (Wahba et al., 1979),
the minimum description length (MDL) (Rissanen, 1986; Barron et al., 1998), and the risk inflation
criterion (RIC) (Foster and George, 1994). These methods can be well fitted with linear regression
models when enough samples are available. However, they suffer the difficulty of selecting the op-
timal structure of the estimation networks in the case of nonlinear regression models and/or a small
number of samples. For more general forms of regression models, Vapnik (1998) proposed a model
selection method based on the structural risk minimization (SRM) principle. One of the charac-
teristics of this method is that the model complexity is described by structural information such as
the VC dimension of the hypothesis space associated with estimation networks, which indicates the
number of samples that can be shattered, in other words, which can be completely classified by the
given structure of estimation networks. This method can be applied to nonlinear models and also
regression models trained for a small number of samples. For this problem, Chapelle et al. (2002),
Cherkassky (1999), and Cherkassky and Ma (2003) showed that the SRM-based model selection
is able to outperform other statistical methods such as AIC or BIC in regression problems with the
limited size of data. On the other hand, these methods require the actual VC dimension of the hy-
pothesis space associated with the estimation functions, which is usually not easy to determine in
the case of nonlinear regression models. In this context, we consider the bounds on the expected
risks using the modulus of continuity representing a measure of the continuity for the given function.
Lorentz (1986) applied the modulus of continuity to function approximation theories. In the pro-
posed method, this measure is applied to determine the bounds on the prediction risk. To be exact,
it seeks the expected risk of an estimation function when predicting new observations. To describe
these bounds, the modulus of continuity is analyzed for both the target and estimation functions, and
the model selection criterion referred to as the modulus of continuity information criterion (MCIC)
is derived from the prediction risk bounds in order to select the optimal structure of regression mod-
els. One of the characteristics in the suggested MCIC is that it can be estimated directly from the
given samples and a trained estimation function. Through the simulation for function approximation
using multi-layer perceptrons (MLPs), it is demonstrated that the suggested MCIC is effective for
nonlinear model selection problems, even with the limited size of data.

This paper is organized as follows: in Section 2, we introduce the model selection criteria based
on statistics such as the AIC and BIC, the model selection criteria based on Shannon’s information
theory such as the MDL, and the VC dimension based criteria. Section 3 describes the suggested
model selection method referred to as the MCIC method starting from the definition of the modulus
of continuity for continuous functions. We also describe how we can estimate the modulus of
continuity for the regression models with different type of kernel functions. Section 4 describes

2608

MODEL SELECTION FOR REGRESSION

the simulation results for regression problems for various benchmark data using model selection
methods including the suggested MCIC method. Finally, Section 5 presents the conclusion.

2. Model Selection Criteria for Regression Models

For the selection of regression models, the proper criteria for the decision methods are required.
Here, various criteria used for the selection of regression models are described. First, let us consider
a regression problem of estimating a continuous function f in C(X ,R) where X ⊂ R

m (m > 1) and
C(X ,R) is a class of continuous functions. The observed output y for x ∈ X can be represented by

y(x) = f (x)+ ε, (1)

where f (x) represents the target function and ε represents random noise with a mean of zero and a
variance of σ2

ε . Here, for regression problems, a data set D = {(xi,yi)| i = 1, · · · ,N}, where (xi,yi)
represents the ith pair of input and output samples, is considered. It is assumed that these pairs of
input and output samples are randomly generated according to the distribution P(x), x ∈ X ; that is,

yi = f (xi)+ εi, xi ∈ X , (2)

where εi, i = 1, · · · ,N represent independent and identically distributed (i.i.d.) random variables
having the same distribution with ε. For these samples, our goal of learning is to construct an
estimation function fn(x) ∈ Fn (the function space with n parameters) that minimizes the expected
risk

R(fn) =
Z

X×R

L(y, fn(x))dP(x,y) (3)

with respect to the number of parameters n, where L(y, fn(x)) is a given loss functional, usually the
square loss function L(y, fn(x)) = (y− fn(x))2 for regression problems. In general, an estimation
function fn can be constructed as a linear combination of kernel functions; that is,

fn(x) =
n

∑
k=1

wkφk(x), (4)

where wk and φk represent the kth weight value and kernel function, respectively.
To minimize the expected risk (3), it is necessary to identify the distribution P(x,y); however,

this is usually unknown. Rather, we usually find fn by minimizing the empirical risk Remp(fn)
evaluated by the mean of loss function values for the given samples; that is,

Remp(fn) =
1
N

N

∑
i=1

L(yi, fn(xi)). (5)

Here, if the number of parameters n is increased, the empirical risk of (5) is decreased so that the bias
of the estimation function is decreased while the variance of the estimation function is increased, or
vice versa. Therefore, a reasonable trade-off must be made between the bias and variance in order
to minimize the expected risk. One way of solving this problem is to estimate the expected risks
for the given parameters of regression models. In statistical regression models, a popular criterion
is the Akaike information criterion (AIC), in which an estimate of the expected risk is given by

AIC(fn) = Remp(fn)+2 · n
N

σ2
ε (6)

2609

KOO AND KIL

under the assumption that the noise term ε has a normal distribution. Here, the noise term σ̂2
ε can be

estimated by

σ̂2
ε =

RSS
N −DoF(fn)

, (7)

where RSS represents the sum of the square error over the training samples; that is, RSS = NRemp(fn),
and DoF(fn) represents the degree of freedom of an estimation function fn. This criterion is derived
in the sense of the maximum-likelihood estimate of the regression parameters. As an alternative to
this criterion, the Bayesian approach to model selection referred to as the Bayesian information
criterion (BIC) can be considered:

BIC(fn) = Remp(fn)+ logN · n
N

σ2
ε . (8)

Compared to the AIC, the BIC treats complex models more heavily, giving preference to simpler
models, when N > e2, in which e represents the base of natural logarithms. Here, it is important to
note that in both criteria, prior knowledge of the variance of noise term σ2

ε is needed or estimation
of this term using (7) is required. These criteria are good for linear regression models with a large
number of samples, as the AIC and BIC formulas hold asymptotically as the number of samples N
goes to infinity.

As an alternative to the AIC or BIC, a frequently used model selection criterion is the minimum
description length (MDL) criterion. In this method, for the regression model fn and the data D, the
description length l(fn,D) is described by

l(fn,D) = l(D| fn)+ l(fn),

where l(fn) represents the length of the regression model and l(D| fn) represents the length of the
data given the regression model. According to Shannon’s information theory, the description length
in number of bits is then described by

l(fn,D) = − log2 p(D| fn)− log2 p(fn),

where p(fn|D) represents the probability of the output data given the regression model and p(fn)
represents a priori model probability. For a priori model probability, Hinton and Camp (1993) used a
zero-mean Gaussian distribution for the neural network parameters. With the additional assumption
that the errors of the regression model are i.i.d. with a normal distribution, the description length of
the regression model (Cohen and Intrator, 2004) can be described by

MDL(fn) = logRemp(fn)+
n
N

(
log(2π)+ log(

1
n

n

∑
k=1

w2
k)+1

)
. (9)

This formula for the MDL shows that the description length of the regression model is composed of
the empirical risk and the complexity term, which is mainly dependent upon the ratio of the number
of parameters to the number of samples and the mean square of weight values. Here, minimizing
the description length is equivalent to maximizing the posterior probability of the regression model.
Hence the MDL method can be considered as another interpretation of the BIC method. In this
context, a regression model that minimizes the description length should be chosen.

A good measure of model complexity in nonlinear models is the VC dimension (Vapnik, 1998)
of the hypothesis space associated with estimation networks. The VC dimension can represent the

2610

MODEL SELECTION FOR REGRESSION

capacity (or complexity) of the estimation network in terms of the number of samples; that is, the
maximum number of samples which can be shattered (classified in every possible way) by the es-
timation network. As the hypothesis space increases, the empirical risk can be decreased but the
confidence interval associated with the complexity of the estimation network then increases. From
this point of view, it is necessary to make a proper trade-off between the empirical risk and the
confidence interval. The structural risk minimization (SRM) principle considers both the empirical
risk and the complexity of the regression model to decide the optimal structure of the regression
model. In this approach, for the VC dimension hn measured for the hypothesis space Fn of re-
gression models and the confidence parameter δ (a constant between 0 and 1), the expected risk
satisfies the following inequality with a probability of at least 1− δ (Vapnik, 1998; Cherkassky,
1999; Cherkassky and Ma, 2003):

R(fn) 6 Remp(fn)

(
1− c

√
hn(1+ ln(N/hn))− lnδ

N

)−1

+

, (10)

where c represents a constant dependent on the norm and tails of the loss function distribution and
u+ = max{u,0}.

If the basis functions {φ1(x), · · · ,φn(x)} are orthogonal with respect to the probability measure
P(x), the form of (10) can be described in a way that is easier to calculate. For the experimental set
up, Chapelle et al. (2002) suggested the following bound with the confidence parameter δ = 0.1:

R(fn) 6 Remp(fn)TSEB(n,N), (11)

where

TSEB(n, l) =
1+n/(NK)

1− (n/N)
and

K =

(
1−
√

n(1+ ln(2N/n))+4
N

)

+

.

These risk estimates of (10) and (11) were successfully applied to the model selection of regression
problems with the limited size of data. In these risk estimates, the VC dimension of regression
models should be estimated. For the case of nonlinear regression models such as artificial neural
networks, the bounds on VC dimensions (Karpinski and Macintyre, 1995; Sakurai, 1995) can be
determined. However, in general, it is difficult to estimate the VC dimension of nonlinear regression
models accurately.

In this work, we consider a useful method for the selection of nonlinear regression models with
the limited size of data. For this problem, the AIC or BIC method may not be effective in view of the
fact that the number of samples may not be large enough to apply the AIC or BIC method. Moreover,
an estimation of the VC dimension of nonlinear regression models is generally not straightforward.
In this context, we consider to use the modulus of continuity representing a measure of continuity
for the given function. In the proposed method, this measure is applied to determine the bounds
on the prediction risk; that is, the expected risk of the estimation function when predicting new
observations. From this result, a model selection criterion referred to as the modulus of continuity
information criterion (MCIC) is suggested and it is applied to the selection of nonlinear regression
models. The backgrounds and theories related to the suggested method are described in the next
section.

2611

KOO AND KIL

3. Model Selection Criteria Based on the Modulus of Continuity

For the description of the bounds on expected risks, the modulus of continuity defined for continuous
functions is used. In this section, starting from the definition of the modulus of continuity, the
bounds on expected risks are described and the model selection criterion referred to as the MCIC
using the described bounds is suggested.

3.1 The Modulus of Continuity for Continuous Functions

The modulus of continuity is a measure of continuity for continuous functions. First, it is assumed
that X is a compact subset of Euclidean space R

m; that is, the set X is bounded and closed in
Euclidean space R

m. Here, let us consider the case of univariate functions; that is, m = 1. Then,
the measure of continuity w(f ,h) of a function f ∈ C(X) can be described by the following form
(Lorentz, 1986):

ω(f ,h) = max
x,x+t∈X ,|t|6h

| f (x+ t)− f (x)|, (12)

where h is a positive constant. This modulus of continuity of f has the following properties:

• ω(f ,h) is continuous at h for each f ,

• ω(f ,h) is positive and increases as h increases, and

• ω(f ,h) is sub-additive; that is, ω(f ,h1 + h2) 6 ω(f ,h1)+ ω(f ,h2) for positive constants h1

and h2.

As a function of f , the modulus of continuity has the following properties of a semi-norm:

ω(a f ,h) 6 |a|ω(f ,h) for a constant a and

ω(f1 + f2,h) 6 ω(f1,h)+ω(f2,h) for f1 and f2 ∈C(X).

One famous example of the modulus of continuity of a function f is that f is defined on A = [a,b]
(b > a) and satisfies a Lipschitz condition with the constant M > 0 and the exponent α (0 < α 6 1),
denoted by LipMα; that is,

| f (a1)− f (a2)| 6 M|a1 −a2|α, a1,a2 ∈ A.

In this case, the modulus of continuity is given by

ω(f ,h) 6 Mhα.

In the multi-dimensional input spaces; that is, X ⊂ R
m (m > 1), there are different definitions of the

modulus of continuity for a continuous function f . The following two definitions of the modulus of
continuity are considered (Lorentz, 1986; Anastassiou and Gal, 2000):
Definition 1 Let m = 2 and X ⊂ R

m.

• Then, the modulus of continuity for f ∈C(X) is defined by

ωA(f ,h) = sup{| f (x1,y1)− f (x2,y2)|}

subject to

{
(x1,y1),(x2,y2) ∈ X and
‖(x1,y1)− (x2,y2)‖2 6 h, for h > 0.

2612

MODEL SELECTION FOR REGRESSION

• Another definition of the modulus of continuity is

ωB(f ,α,β) = sup

{
| f (x1,y)− f (x2,y)|,
| f (x,y1)− f (x,y2)|

}
(13)

subject to

{
(x1,y),(x2,y),(x,y1),(x,y2) ∈ X and
|x1 − x2| 6 α, |y1 − y2| 6 β, for α,β > 0.

For f ∈ C(X) on a compact subset X ⊂ R
m, where m > 2, it is possible to define the modulus of

continuity by induction.
The main difference in these two definitions of the modulus of continuity is the direction. The

first definition measures the variation of all directions at some point x ∈ X while the second is de-
pendent upon axis directions only at some point x ∈ X . The relationship between the two definitions
of the modulus of continuity can be described by the following lemma:
Lemma 1 For f ∈C(X), two definitions of the modulus of continuity, ωA(f ,h) and ωB(f ,h,h) have
the following relationship:

ωB(f ,h,h) 6 ωA(f ,h) 6 2ωB(f ,h,h),

where h represents a positive constant.
For the proof of this lemma, refer to the Appendix A.1. Furthermore, each definition of the

modulus of continuity has the following upper bound:
Lemma 2 Let f ∈ C1(X), the class of continuous functions having continuous 1st derivative on
X, a compact subset of R

m,m > 1. Then, for h > 0, the modulus of continuity wA and wB have the
following upper bounds:

ωA(f ,h) 6 h

√
m

∑
i=1

∥∥∥∥
∂ f
∂xi

∥∥∥∥
2

∞
and

ωB(f ,h, · · · ,h) 6 h max
16i6m

{∥∥∥∥
∂ f
∂xi

∥∥∥∥
∞

}
,

where xi represents the ith coordinate in the point x = (x1,x2, · · · ,xm) ∈ X and ‖·‖∞ represents the
supremum norm (or L∞ norm); that is, for a real- or complex-valued bounded function g(x),

‖g‖∞ = sup{|g(x)| | x ∈ Xg},

where Xg represents the domain of g.
For the proof of this lemma, refer to the Appendix A.2. From this lemma, the second definition

of the modulus of continuity wB(f ,h,h) was chosen because it has a smaller upper bound compared
to the first modulus of continuity. For our convenience, the notation w(f ,h) is used to represent
wB(f ,h, · · · ,h) in the remaining sections of this paper.

The computation of the modulus of continuity requires the value of h. First, let us consider the
following definition of a density of input samples (Tinman, 1963):
Definition 2 The density D of an input sample set {x1, · · · ,xN}⊂ X, a compact subset of R

m,m > 1,
is defined by

D(x1, · · · ,xN) = sup
x∈X

inf
16i6N

d(xi,x),

2613

KOO AND KIL

where d(xi,x) represents the distance between xi and x ∈ X, which is explicitly any metric function
such that, for every x,y,z ∈ X, the following properties are satisfied: d(x,y) > 0 with the equality
if and only if x = y, d(x,y) = d(y,x), and d(x,z) 6 d(x,y)+d(y,z).

Let us also consider a point x0 ∈ X such that

x0 = argmax
x∈X

| f (x)− fn(x)|.

Then, the value of h can be bounded by

min
16i6N

d(xi,x0) 6 h 6 D(x1, · · · ,xN) (14)

to cover the input space X using balls B(xi,h) with centers as input samples xi and a radius of h:
B(xi,h) = {x|‖xi −x‖< h}. This range of h is considered to describe the modulus of continuity for
the target and estimation functions.

3.2 Risk Bounds Based on the Modulus of Continuity

In this subsection, the modulus of continuity for the target and estimation functions are investigated,
and the manner in which they are related to the expected risks is considered. First, let us consider
the loss function for the observed model y and the estimation function fn(x) with n parameters as
L(y, fn) = |y− fn(x)|. Then, the expected and the empirical risks are defined by the following L1

measure:
R(fn)L1 =

Z

X×R

|y− fn(x)|dP(x,y) and

Remp(fn)L1 =
1
N

N

∑
i=1

|yi − fn(xi)|.

In the first step, let us consider the case of a univariate target function; that is, f ∈C(X) with X ⊂R.
Then, with the definition of the modulus of continuity of (12) and the bound of h as described by
(14), the relationship between the expected and empirical risks is described using the modulus of
continuity as follows:

Theorem 1 Let the target function f ∈C1(X) of (1) with X, a compact subset of R, be approximated
by the estimation function fn of (4), that is, a linear combination of weight parameters wk and basis
functions φk, k = 1, · · · ,n for the given samples (xi,yi), i = 1, · · · ,N generated by (2). Then, for the
confidence parameters δ (a constant between 0 and 1), the expected risk in the L1 sense is bounded
by the following inequality with a probability of at least 1−2δ:

R(fn)L1 6 Remp(fn)L1 +
1

N2

N

∑
i, j=1

(|yi − y j|+ | fn(xi)− fn(x j)|)

+(ω(fn,h0)+C)

√
1

2N
ln

2
δ

and (15)

C = | fn(x0)− fn(x
′
0)|+2‖ f‖∞ +2σε

√
1
δ

for x0,x
′
0 ∈ {x1, · · · ,xN},

where w(fn,h0) represents the modulus of continuity of the estimation function fn and h0 represents
a constant satisfying (14).

2614

MODEL SELECTION FOR REGRESSION

For the proof of this theorem, refer to the Appendix A.3. This theorem states that the expected
risk R(fn)L1 is bounded by the empirical risk Remp(fn)L1 , the second term of (15) representing the
variations of output samples and also the variations of estimation function values for the given
input samples, and the third term representing the modulus of continuity for the estimation function
w(fn,h0) and a constant C associated with target function. Here, let us consider the second term.
By investigating this term further, it can be decomposed it into the empirical risk and the term
depending on the target function. The next corollary shows the bounds on the expected risks with
this decomposition:

Corollary 1 Let Hy be the N ×N matrix in which the i j-th entry is given by |yi − y j|. Then, the
following inequality holds with a probability of at least 1−2δ:

R(fn)L1 6 3Remp(fn)L1 +
2
N

max{λi}+(ω(fn,h0)+C)

√
1

2N
ln

2
δ
, (16)

where λi represents the ith eigenvalue of the matrix Hy.

For the proof of this lemma, refer to the Appendix A.4. This corollary states that the dominant
terms related to the estimation function fn in the expected risk are the empirical risk Remp(fn) and the
modulus of continuity w(fn,h0), as the eigenvalue λi of H f is not dependent upon fn and a constant
C has little influence on the shape of expected risks as the number of parameters n increases. The
bounds on the expected risks of (16) appear to be overestimated, as the empirical risk is multiplied
by 3. However, for the purpose of determining the model selection criteria, an estimation of the tight
bound on the expected risk is not essential. Rather, the coefficient ratio between the empirical risk
and modulus of continuity terms plays an important role for model selection problems because only
these two terms are mainly dependent upon the estimation function fn. From this point of view, the
following model selection criterion referred to as the modulus of continuity information criterion
(MCIC) is suggested:

MCIC(fn) = Remp(fn)L1 +
ω(fn,h0)

3

√
1

2N
ln

2
δ
. (17)

Suppose we have fixed number of samples N. Then, as the number of parameters n increases,
the empirical risk Remp(fn) decreases while the modulus of continuity ω(fn,h0) increases, as the
estimation function fn becomes a more complex function. Accordingly, it is necessary to make a
trade-off between the over-fitting and under-fitting of regression models using the MCIC for the
optimization of the regression models.

This far, univariate continuous functions are addressed. At this point, let us consider the case of
X ⊂R

m with m > 1; that is, the case of multivariate continuous functions. Here, it is possible to show
that the prediction risk bounds take a similar form to those of univariate continuous functions. The
following theorem of the prediction risk bounds for multivariate continuous functions is suggested
using the definition of the modulus of continuity (13):

Theorem 2 Let f ∈C1(X) with X, a compact subset of R
m (m > 1), and h0 be a constant satisfying

(14). Then, for the confidence parameter δ (a constant between 0 and 1), the expected risk in L1

sense is bounded by the following inequality with a probability of at least 1−δ:

R(fn)L1 6 Remp(fn)L1 +

{
ω(f − fn,h0)+ | f (xi0)− fn(xi0)|+σε

√
2
δ

}√
1

2N
ln

2
δ
,

2615

KOO AND KIL

where w(f − fn,h0) represents the modulus of continuity of the function f − fn, h0 represents a
constant satisfying (14), and xi0 represents an element of an input sample set {x1, · · · ,xN}.

For the proof of this theorem, refer to the Appendix B.1. In this theorem, w(f − fn,h0) can be
replaced with w(f ,h0)+ w(fn,h0); that is, the sum of the modulus of continuity for the target and
estimation functions because the following inequalities always hold:

ω(fn,h0)−ω(f ,h0) 6 ω(f − fn,h0) 6 ω(fn,h0)+ω(f ,h0).

The suggested theorem states that the expected risk is mainly bounded by the empirical risk Remp(fn),
the modulus of continuity for the target function w(f ,h0), and also the modulus of continuity for
the estimation function w(fn,h0). As the number of parameters n varies, the empirical risk, the
modulus of continuity for the estimation function, and the term | f (xi0)− fn(xi0)| are changed while
other terms remain constant. Here, in order to find the optimal model complexity n = n∗ that mini-
mizes expected risk R(fn), these varying terms should be considered. In this case, the effect of the
term | f (xi0)− fn(xi0)| is small compared with the other two terms, as the regression model becomes
well fitted to the samples as the number of parameters n increases. This implies that the model
selection criteria for multivariate estimation functions have the same form as (17) except with a
coefficient 1/3 of ω(fn,h0). In practice, the performance of MCIC for model selection problems is
not so sensitive to this coefficient. Summarizing the properties of the suggested MCIC, the distinct
characteristics are described as follows:

• The suggested MCIC is dependent upon the modulus of continuity for the trained estimation
function.

• The suggested MCIC is also dependent upon the value of h0 which varies according to the
sample distribution.

Considering these characteristics, for model selection problems, the MCIC is a measure sensitive to
the trained estimation function using a certain learning algorithm and also sensitive to the distribu-
tion of samples while other model selection criteria such as the AIC and BIC depend on structural
information such as the number of parameters. For the computation of the suggested MCIC, the
modulus of continuity of the trained estimation function should be evaluated, as explained in the
next subsection.

3.3 The Modulus of Continuity for Estimation Functions

The modulus of continuity for the estimation function w(fn,h) is dependent upon the basis func-
tion φk in (4). Here, examples of computing w(fn,h) according to the type of basis functions are
presented:

• A case of the estimation function fn with algebraic polynomials on X = [a,b] ⊂ R:

φk(x) = xk for k = 0,1, · · · ,n.

Applying the mean value theorem to φk, we get

ω(φk,h) 6
∥∥φ′

k

∥∥
∞ ·h

6 kh ·max
{
|a|k−1, |b|k−1

}
, k = 1, · · · ,n.

2616

MODEL SELECTION FOR REGRESSION

Therefore, the modulus of continuity for fn has the following upper bound:

ω(fn,h) 6

n

∑
k=1

kh|wk| ·max
{
|a|k−1, |b|k−1

}
.

• A case of the estimation function fn with trigonometric polynomials φk(x) on X ⊂ R:

φk(x) =

1/2 if k = 0
sin((k +1)x/2) if k = odd number
cos(kx/2) if k = even number

for k = 1, · · · ,n. Applying the mean value theorem to φk, we get

ω(φk,h) 6 ‖φ′
k‖∞h

6

⌊
k
2

⌋
h, for k = 1, · · · ,n.

Therefore, the modulus of continuity for fn has the following upper bound:

ω(fn,h) 6

n

∑
k=0

h|wk| ·
⌊

k
2

⌋
.

• A case of the estimation function fn with sigmoid function φk(x) = φk(x1, · · · ,xm) on X ⊂R
m:

fn(x) =
n

∑
k=1

wkφk(x1, · · · ,xm)+w0,

where

φk(x1, · · · ,xm) = tanh

(
m

∑
j=1

vk jx j + vk0

)
.

Applying the mean value theorem to φk with respect to each coordinate x1, · · · ,xm, we get

| fn(· · · ,x j, · · ·)− fn(· · · ,x j −h, · · ·)| 6 h ·
∥∥∥∥

∂ fn

∂x j

∥∥∥∥
∞

for j = 1, · · · ,m.

Therefore, the modulus of continuity for fn has the following upper bound:

ω(fn,h) 6 h · max
16 j6m

∥∥∥∥
∂ fn

∂x j

∥∥∥∥
∞

6 h · max
16 j6m

∥∥∥∥∥
n

∑
k=1

wkvk j ·
(

1− tanh2

(
m

∑
i=1

vkixi + vk0

))∥∥∥∥∥
∞

6 h · max
16 j6m

n

∑
k=1

∣∣wkvk j
∣∣ . (18)

2617

KOO AND KIL

As shown in these examples, the modulus of continuity for the estimation function fn is dependent
upon the trained parameter values associated with fn and h0 whose range is given by (14). However,
the proper value of h0 satisfying (14) requires the intensive search of the input space. From this
point of view, in practice, the value of h0 is considered as the half of the average distance between
two adjacent samples. Assuming a uniform distribution of input samples, the value of h0 can be
determined from the range of data values in each coordinate. For example, for m dimensional input
patterns, h0 can be determined by

h0 =
1
2

(
1
m

m

∑
i=1

maxi−mini

N −1

)1/m

, (19)

where maxi and mini represent the maximum and minimum values of the samples in the ith coordi-
nate.

After the value of h0 is determined, the computation of the modulus of continuity requires access
to all the parameter values of fn which are obtained after the learning of training samples. In this
context, the computational complexity of the modulus of continuity is proportional to the number
of parameters n in the estimation function, that is, in big-O notation, O(n). This computational
complexity is not so heavy compared to the calculation of the empirical risk term, as it requires
the computational complexity of O(N) and in general, N � n. Hence, in total, the computational
complexity of MCIC is described by O(N) which is equivalent to the computational complexity of
the AIC or BIC.

Once the modulus of continuity is determined, the MCIC can be determined by (17). Then, the
model with the smallest value of MCIC will then be selected. Here, n̂ is selected such that

n̂ = argmin
n

MCIC(fn).

The validity of the suggested MCIC is shown in the next section through the simulation for nonlinear
model selection problems.

4. Simulation

The simulation for function approximation was performed using the multilayer perceptrons (MLPs)
composed of the input, hidden, and output layers. For this simulation, the number of sigmoid units
n in the hidden layer was increased from 1 to 50. Here, fn was denoted as the MLP with a hidden
layer including n sigmoid units with the m dimensional input. The functional form of the estimation
function is given by

fn(x) =
n

∑
k=1

wk tanh(
m

∑
j=1

vk jx j + vk0)+w0,

where vk j and wk represent the input and output weights, respectively, that are associated with
the kth sigmoid unit, and vk0 and w0 represent the bias terms of the kth sigmoid unit and of the
estimation function, respectively. In this regression model, the conjugate gradient method was used
for the training of the input and output weights of the MLPs. As for the different type of kernel
functions, we presented the model selection method using the suggested MCIC for the regression
model with trigonometric polynomials (Koo and Kil, 2006) and showed the effectiveness of the
MCIC compared to other model selection criteria.

2618

MODEL SELECTION FOR REGRESSION

As the benchmark data for this simulation of function approximation, the target functions given
by Donoho and Johnstone (1995) were used: they are Blocks, Bumps, Heavysine, and Doppler
functions, as illustrated in Figure 1. To generate the data for each target function from D-J (Donoho
and Johnstone), the input values xi, i = 1, · · · ,N were generated from a uniform distribution within
the interval of [0,2π]. Here, for the normalization of D-J data, the outputs were adjusted to have
the mean square value of 1 within the interval of [0,2π]. The noise terms were also generated from
a normal distribution with a mean of zero and a standard deviation of σε = 0.2 or 0.4. They were
then added to the target values computed from the randomly generated input values. For these
target functions, 100 sets of N (= 200) training samples were generated randomly to train the MLP.
In addition to the training samples, 1000 test samples were also generated separately according to
identical input and noise distributions.

As for another application of the MCIC, simulations for the target functions with binary output
values were considered using the benchmark data suggested by Hastie et al. (2003): the target value
is defined by

y(x) =

{
1 if∑10

j=1 x j > 5
0 otherwise,

where x is uniformly generated in [0,1]20. For the training of this target function, 100 sets of 50
samples were generated. In addition to the training samples, 500 test samples were also generated
separately. The noise terms were also generated from a normal distribution with a mean of 0 and a
standard deviation of σε = 0.0 or 0.2. They were then added to the target values computed from the
randomly generated input values.

For the simulation of selecting regression models with multi-dimensional input data, the bench-
mark data suggested by Chang and Lin (2001) were also used: they are Abalone, CPU Small, MG,
and Space GA data sets as described in Table 1. For each data set, 30 sets of 500 samples were
randomly generated as the training samples and the remaining samples in each set were used as the
test samples; that is, 30 sets of test samples were also generated. For these data sets, the range of
input and output was normalized between -1 and 1.

Data Set Description No. of Features No. of Data

Abalone predicting the age of abalone 8 4177
CPU Small predicting a computer system activity 12 8192

MG predicting the Mackey-Glass time series 6 1385
Space GA election data on 3107 US counties 6 3107

Table 1: The benchmark data sets for regression problems

For our experiments, various model selection methods such as the AIC, BIC, MDL, and the sug-
gested MCIC-based methods were tested. Once the MLP was trained, the empirical risk Remp(fn)
evaluated by the training samples was obtained, and the estimated risk R̂(fn) value could then be
determined by the AIC, BIC, MDL, and MCIC-based methods. In the cases of the AIC and BIC
methods, we selected the estimation function fn̂ which gives the smallest value of information cri-
terion described as (6) and (8), respectively. In these criteria, we assume that the noise variance
σ2

ε value was known. In the case of MDL, we selected the estimation function f n̂ which gives the
smallest value of the description length of (9). In the suggested method, we used the following form

2619

KOO AND KIL

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

1.5

2

2.5

(a)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

(b)

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

(c)

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d)

Figure 1: Target functions from Donoho and Johnstone (1995): (a), (b), (c), and (d) represent the
Blocks, Bumps, Heavysine, and Doppler functions respectively.

of MCIC for MLPs using the modulus of continuity described as (18):

MCIC(fn) = Remp(fn)L1 +
h0

3
max

16 j6m

n

∑
k=1

∣∣wkvk j
∣∣
√

1
2N

ln
2
δ
, (20)

where h0 was set to the half of the average distance between two adjacent samples using (19) and δ
was set to 0.05. In our case, we selected fn̂ which gave the smallest value of (20).

To compare the performance of the model selection methods, the risks for the selected f n̂ were
evaluated by the test samples and the results were compared with the minimum risk among all risks
for fn, n = 1, · · · ,50. Quantitatively, the log ratio rR of two risks Rtest(fn) and minn R(fn) were
computed:

rR = log
Rtest(fn̂)

minn Rtest(fn)
, (21)

where Rtest represents the empirical risk for the squared error loss function evaluated by the test
samples. This risk ratio represents the quality of the estimated distance between the optimal and the
estimated optimal risks.

2620

MODEL SELECTION FOR REGRESSION

Target AIC BIC MDL MCIC
Functions mean s. dev. mean s. dev. mean s. dev. mean s. dev.

Blocks 0.0255 0.0262 0.0416 0.0411 0.1459 0.0763 0.0371 0.0395
Bumps 0.0393 0.0697 0.0507 0.0718 0.1646 0.1294 0.0458 0.0426

Heavysine 0.0420 0.0537 0.1059 0.1147 0.1071 0.1225 0.0107 0.0160
Doppler 0.0343 0.0523 0.0932 0.0973 0.2318 0.1345 0.0222 0.0359

Table 2: Risk ratios for the regression of the four D-J target functions with σε = 0.2.

Target AIC BIC MDL MCIC
Functions mean s. dev. mean s. dev. mean s. dev. mean s. dev.

Blocks 0.0441 0.0350 0.0853 0.0509 0.1146 0.0563 0.0262 0.0302
Bumps 0.0511 0.0572 0.0804 0.0699 0.1451 0.0810 0.0516 0.0433

Heavysine 0.0846 0.0616 0.1483 0.0773 0.1458 0.0762 0.0130 0.0151
Doppler 0.0801 0.0728 0.1421 0.0860 0.2225 0.1164 0.0218 0.0311

Table 3: Risk ratios for the regression of the four D-J target functions with σε = 0.4.

After all experiments had been repeated for the given number of training sample sets, the means
and standard deviations of the risk ratios of (21) for each target function were presented. First, in
the case of D-J data sets, the simulation results of the model selection using the AIC, BIC, MDL,
and MCIC based methods are presented in Tables 2 and 3. These simulation results showed that
the suggested MCIC method provided the top level performances in all cases except the blocks and
bumps target functions when σε = 0.2 in which the AIC method showed the best performances.
This was mainly due to the fact that the known noise standard deviation of σε was used in the AIC
method. To clarify this fact, another simulation for these target functions in which the AIC and BIC
methods with the estimation of noise variances using (7) were used. These simulation results are
presented in Table 4. In this simulation, as we expected, the suggested MCIC method showed the
best performance.

We also observed the dependency of the number of samples during the selection of regression
models. For this simulation, the numbers of samples were set to N = 100, 200, 400, and 800 for
the regression of the Doppler target function with a noise standard deviation of σε = 0.4. The
simulation results are presented in Table 5. Here, note that the complexity of the doppler target
function increases as the input value decreases. These results showed that the performances of the
AIC, BIC, MDL, and MCIC methods were improved as the number of samples becomes larger as
shown in Table 5. Among these model selection methods, the MCIC method always showed the
better performances compared to other model selection methods, even in the smaller numbers of
samples. This is mainly due to the fact that in the MCIC method, the modulus of continuity, which
can be interpreted as the complexity of the estimation function was computed for each trained
estimation function directly.

In the case of Hastie et al.’s benchmark data, the MDL model selection methods showed some
merits in performances compared to other model selection methods as shown in Table 6. One of
the reasons why the MCIC method does not show the better performances in this target function
compared to other model selection methods is that this target function can be properly solved by
the classification problem (not regression problem) in which the discriminant function is linear.

2621

KOO AND KIL

Target AIC BIC MDL MCIC
Functions mean s. dev. mean s. dev. mean s. dev. mean s. dev.

Blocks 0.0718 0.0612 0.1117 0.0744 0.1459 0.0763 0.0371 0.0395
Bumps 0.1107 0.0933 0.1558 0.1395 0.1646 0.1294 0.0458 0.0426

Table 4: Risk ratios for the regression of blocks and bumps functions with σε = 0.2 using the AIC
and BIC methods with the estimation of noise variances using (7), and the MDL and MCIC
methods.

AIC BIC MDL MCIC
N mean s. dev. mean s. dev. mean s. dev. mean s. dev.

100 0.1072 0.0820 0.1552 0.1119 0.3205 0.1710 0.0794 0.0696
200 0.0801 0.0728 0.1421 0.0860 0.2225 0.1164 0.0218 0.0311
400 0.0477 0.0478 0.1028 0.0670 0.1588 0.0759 0.0077 0.0135
800 0.0174 0.0275 0.0610 0.0565 0.0860 0.0774 0.0035 0.0107

Table 5: The variation of risk ratios for the regression of Doppler function with σε = 0.4 using the
AIC, BIC, MDL, and MCIC methods according to the number of samples N = 100, 200,
400, and 800.

However, even in this case, if the sample size is reduced, the proposed method can have the merits
in performances since the MCIC includes the complexity term of the estimation function using
the modulus of continuity and for smaller number of samples, this complexity term has the high
influence on the bounds on the expected risk. To clarify this fact, we made another simulation
results for the number of samples reduced by half; that is, N = 25 and compared with the previous
simulation results as shown in Table 7. These simulation results showed that the MCIC method
demonstrated the better performances compared to other model selection methods by reducing the
sample size.

AIC BIC MDL MCIC
σε mean s. dev. mean s. dev. mean s. dev. mean s. dev.

0.0 0.3161 0.2197 0.3161 0.2197 0.3100 0.2273 0.4307 0.2624
0.2 0.3400 0.5028 0.3115 0.4658 0.1881 0.1175 0.3034 0.1503

Table 6: Risk ratios for the regression of the binary target function using the AIC, BIC, MDL, and
MCIC methods when the number of samples N is 50.

The simulation results for the selection of regression models with multi-dimensional input data
are summarized in Table 8. These simulation results showed that the suggested MCIC method
achieved top or second level performances compared to other model selection methods. As shown
in the previous case; that is, the regression problem of Hastie et al.’s benchmark data, the MCIC
method is more effective when the sample size is small. To see the effect on smaller number of
samples, we also made another simulation results for the number of samples reduced by half; that is,

2622

MODEL SELECTION FOR REGRESSION

AIC BIC MDL MCIC
σε mean s. dev. mean s. dev. mean s. dev. mean s. dev.

0.0 0.3620 0.1977 0.3620 0.1977 0.3430 0.1855 0.2652 0.1589
0.2 1.7428 0.9582 1.7428 0.9582 0.3169 0.1816 0.2716 0.1743

Table 7: The variation of risk ratios for the regression of the binary target function when the number
of samples is reduced by half; that is, N = 25.

N = 250 and compared with the previous simulation results as shown in Table 9. These simulation
results showed that the MCIC method demonstrated the top level performances compared to other
model selection methods. All of these observations support that the suggested MCIC method is
quite effective for nonlinear regression models especially for smaller number of samples. This is
mainly due to the fact that the complexity term as a form of the modulus of continuity of the trained
regression model provides high influence on selecting the regression model especially for smaller
number of samples. This can be explained by the following observations:

• Once the estimation function is trained, the estimation function provides accurate values for
the training samples. In this estimation function, the variation of the predicted values for the
unobserved data with respect to the function values for the known data (or training samples)
can be described by the modulus of continuity, as presented in the definition of the modulus
of continuity.

• If the number of samples decreases, the density of input space becomes low and it makes a
big value of h. Then, in the suggested MCIC, this makes high influence of the modulus of
continuity compared to the empirical risk which usually has a small value.

• If there are enough number of samples for the target function, the opposite phenomenon of
the above case happens.

In summary, through the simulation for function approximation using the MLPs, we have shown
that the suggested MCIC provides performance advantages for the selection of regression models
compared to other model selection methods in various situations of benchmark data. Compared
to other model selection methods, the MCIC methods provides the considerable merits in perfor-
mances especially when no knowledge of noise variances for the given samples is available and also
when not enough number of samples considering the complexity of target function is available.

5. Conclusion

We have suggested a new method of model selection in regression problems based on the modulus
of continuity. The prediction risk bounds are investigated from a view point of the modulus of
continuity for the target and estimation functions. We also present the model selection criterion
referred to as the MCIC which is derived from the suggested prediction risk bounds. The suggested
MCIC is sensitive to the trained regression model (or estimation function) obtained from a specific
learning algorithm and is also sensitive to the distribution of samples. As a result, the suggested
MCIC is able to discriminate the performances of the trained regression models, even with the
same structure of regression models. To verify the validity of the suggested criterion, the selection

2623

KOO AND KIL

AIC BIC MDL MCIC
Data Set mean s. dev. mean s. dev. mean s. dev. mean s. dev.

Abalone 0.0428 0.0586 0.0496 0.0410 0.0477 0.0493 0.0324 0.0303
CPU Small 0.1646 0.1578 0.1212 0.1158 0.0940 0.0941 0.0941 0.1076

MG 0.0665 0.0442 0.0649 0.0371 0.0523 0.0470 0.0449 0.0343
Space GA 0.0851 0.0612 0.1597 0.0869 0.1039 0.0626 0.0870 0.0526

Table 8: The variation of risk ratios for the regression of the benchmark data sets using the AIC,
BIC, MDL, and MCIC methods when the number of samples N is 500.

AIC BIC MDL MCIC
Data Set mean s. dev. mean s. dev. mean s. dev. mean s. dev.

Abalone 0.1385 0.1947 0.0668 0.1019 0.0618 0.0966 0.0307 0.0418
CPU Small 0.2832 0.2906 0.2864 0.2646 0.2828 0.2929 0.1942 0.2219

MG 0.1451 0.1037 0.0816 0.0947 0.0887 0.0934 0.0456 0.0508
Space GA 0.0768 0.0618 0.1466 0.0872 0.0801 0.0651 0.0659 0.0518

Table 9: The variation of risk ratios for the regression of the benchmark data sets when the number
of samples is reduced by half; that is, N = 250.

of regression models using the MLPs that were applied to function approximation problems was
performed. Through the simulation for function approximation using the MLPs, it was shown that
the model selection method using the suggested MCIC has the advantages of risk ratio performances
over other model selection methods such as the AIC, BIC, and MDL methods in various situations of
benchmark data. Compared to other model selection methods, this merit of regression performances
is significant especially when not enough number of samples considering the complexity of target
function is available. Furthermore, the suggested MCIC method does not require any knowledge of a
noise variance of samples which is usually given or estimated in other model selection methods. For
regression models with other types of estimation functions that have some smoothness constraints,
the suggested MCIC method can be easily extended to the given regression models by evaluating
the modulus of continuity for the corresponding estimation functions.

Acknowledgments

The authors would like to thank to the editors and the anonymous reviewers for their helpful
comments. This work was partially supported by the Korea Science and Engineering Foundation
(KOSEF) grant (M10643020004-07N4302-00400) funded by the Korean Ministry of Education,
Science, and Technology.

Appendix A.

In this appendix, we prove the lemmas 1 and 2 in Section 3.1. We also prove the theorem 1 and
corollary 1 in Section 3.2; that is, the case of univariate target functions.

2624

MODEL SELECTION FOR REGRESSION

A.1 Proof of Lemma 1

Since ωA(f ,h) are considered all directions on h-ball on X , the following inequality always holds:

ωB(f ,h,h) 6 ωA(f ,h).

From the triangular inequality, the following inequality holds:

| f (x1,y1)− f (x2,y2)| 6 | f (x1,y1)− f (x1,y2)|+ | f (x1,y2)− f (x2,y2)|.
Let ‖(x1,y1)− (x2,y2)‖ 6 h. Then, |x1 − x2| 6 h and |y1 − y2| 6 h. Therefore, from the definition
of the modulus of continuity, we obtain

ωA(f ,h) 6 2ωB(f ,h,h).

�

A.2 Proof of Lemma 2

• Upper bound of wA(f ,h): Let x ∈ X and x−h ∈ X satisfying ‖h‖ 6 h. Then,

| f (x)− f (x−h)| 6 |∇ f (x−ξh) ·h| for some ξ ∈ (0,1)

6 ‖h‖‖∇ f (x−ξh)‖
(because of Cauchy-Schwartz inequality)

= ‖h‖
√

m

∑
i=1

∣∣∣∣
∂ f
∂xi

(x−ξh)

∣∣∣∣
2

6 ‖h‖
√

m

∑
i=1

∥∥∥∥
∂ f
∂xi

∥∥∥∥
2

∞
.

Since the last term of the above equation is independent of x ∈ X , we can conclude that

ωA(f ,h) 6 h

√
m

∑
i=1

∥∥∥∥
∂ f
∂xi

∥∥∥∥
2

∞
.

• Upper bound of wB(f ,h,h): Let α ∈ R and |α| 6 h. Here, let us define ei as a vector on R
m

whose i-th coordinate is 1 and the others are 0. Then, there exists ξ ∈ (0,1) such that

| f (x)− f (x−hei)| 6
∣∣∣∣

∂ f
∂xi

(x−ξαei)

∣∣∣∣ |h| for i = 1, · · · ,m.

This implies that

max
i

{| f (x)− f (x−αei)|} 6 |α| max
16i6m

{∣∣∣∣
∂ f
∂xi

(x−ξαei)

∣∣∣∣
}

.

Therefore, we can conclude that

ωB(f ,h, · · · ,h) 6 h max
16i6m

{∥∥∥∥
∂ f
∂xi

∥∥∥∥
∞

}
.

�

2625

KOO AND KIL

A.3 Proof of Theorem 1

Before the description of main proof, let us introduce the Hoeffding inequality (Hoeffding, 1963):
Given i.i.d. random variables Y1, . . . ,YN , let us define a new random variable

SN =
1
N

N

∑
i=1

Yi

and we assume that there exist real numbers ai and bi for i = 1, . . . ,N such that
Pr{Yi ∈ [ai,bi]} = 1. Then, for any ε > 0, we have

Pr{E[SN]−SN > ε} 6 exp

(
− 2ε2N2

∑N
i=1(bi −ai)2

)
.

First, let us consider the noiseless case; that is, y = f (x) in (1). For the input samples x1, · · · ,xN ,
an event A is defined by

1
N

N

∑
i=1

Z

X
| fn(x)− fn(xi)|dP(x)− 1

N

N

∑
j=1

1
N

N

∑
i=1

| fn(x j)− fn(xi)| > ε,

where the first and second terms represent the average over the expectation of | fn(x)− fn(xi)| and
the unbiased estimator of the first term respectively.

Then, from the Hoeffding inequality, the probability of an event A is bounded by

Pr{A} 6 exp

(
−2ε2N

(
maxx∈X

1
N ∑N

i=1 | fn(x)− fn(xi)|
)2

)
.

For the denominator in the argument of the exponent, we can consider the following inequality:

max
x∈X

1
N

N

∑
i=1

| fn(x)− fn(xi)| 6
1
N

N

∑
i=1

max
x∈X

| fn(x)− fn(xi)|

6 max
i

max
x∈X

| fn(x)− fn(xi)|.

Let x′i = argmaxx∈X | fn(x)− fn(xi)|, xi′ = argmin j d(x j,x′i), and hi = d(x′i,xi′) where d(x,y) repre-
sents the distance measure defined by d(x,y) = |x− y|. Then,

max
x∈X

1
N

N

∑
i=1

| fn(x)− fn(xi)| 6 max
i

(
| fn(x

′
i)− fn(xi′)|+ | fn(xi′)− fn(xi)|

)

6 max
i

(ω(fn,hi)+ | fn(xi′)− fn(xi)|)

6 ω(fn,h0)+ | fn(x
′
0)− fn(x0)|,

where h0 ∈ {h1, . . . ,hN} and x0,x′0 ∈ {x1, . . . ,xN} satisfy

ω(fn,hi)+ | fn(xi)− fn(x j)| 6 ω(fn,h0)+ | fn(x0)− fn(x
′
0)| for i, j = 1, · · · ,N.

For the illustration of this concept, refer to Figure 2.

2626

MODEL SELECTION FOR REGRESSION

0

|fn(x′

i) − fn(xi′)| ≤ ω(fn, hi)

xi xi′ x′

i

hi

|fn(x) − fn(xi)|

x· · ·· · · xi′−1 xi′+1

Figure 2: The plot of | fn(x)− fn(xi)| versus x: the value of | fn(x)− fn(xi)| is maximum at x′i and
this maximum value is decomposed by two factors: one is the value of | fn(x)− fn(xi)| at
a sample point xi′ and another is the modulus of continuity ω(fn,hi) with respect to hi.
The value hi is chosen by the distance d(x′i,xi′).

Thus, the probability of an event A is bounded by

Pr{A} 6 exp

(−2ε2N
(ω(fn,h0)+ | fn(x0)− fn(x′0)|)2

)
.

Here, let us set

δ1

2
= exp

(−2ε2N
(ω(fn,h0)+ | fn(x0)− fn(x′0)|)2

)
.

Then, with a probability of at least 1−δ1/2, we have

1
N

N

∑
i=1

Z

X
| fn(x)− fn(xi)|dP(x) 6

1
N2

N

∑
i, j=1

| fn(xi)− fn(x j)|

+

√
1

2N
ln

2
δ1

(
ω(fn,h0)+ | fn(x0)− fn(x

′
0)|
)
. (22)

On the other hand, for the target function f , we can apply a similar method. As a result, with a
probability of at least 1−δ1/2, the following inequality holds:

1
N

N

∑
i=1

Z

X
| f (x)− f (xi)|dP(x) 6

1
N2

N

∑
i, j=1

| f (xi)− f (x j)|+2‖ f‖∞

√
1

2N
ln

2
δ1

. (23)

2627

KOO AND KIL

Let us consider the difference between the expected and empirical errors of | f (x)− fn(x)|:
Z

X
| f (x)− fn(x)|dP(x) − 1

N

N

∑
i=1

| f (xi)− fn(xi)|

=
1
N

N

∑
i=1

Z

X
(| f (x)− fn(x)− f (xi)+ fn(xi)+ f (xi)− fn(xi)|

−| f (xi)− fn(xi)|)dP(x)

6
1
N

N

∑
i=1

Z

X
| f (x)− fn(x)− f (xi)− fn(xi)|dP(x)

6
1
N

N

∑
i=1

Z

X
(| f (x)− f (xi)|+ | fn(x)− fn(xi)|)dP(x).

Then, from (22) and (23), the difference between the true and empirical risks is bounded by the
following inequality with a probability of at least 1−δ1:

Z

X
| f (x)− fn(x)|dP(x)− 1

N

N

∑
i=1

| f (xi)− fn(xi)|

6
1

N2

N

∑
i, j=1

(| f (xi)− f (x j)|+ | fn(xi)− fn(x j)|)

+

√
1

2N
ln

2
δ1

(ω(fn,h0)+ | fn(x0)− fn(y0)|+2‖ f‖∞) . (24)

Second, let us consider the noisy condition; that is, y = f (x)+ ε. Here, we assume that for the
output samples y1, · · · ,yN , the noise terms ε1, . . . ,εN are i.i.d. random variables with a mean of 0
and a variance of σ2

ε . We will define the event B as

|ε| > a, (25)

where a is a positive constant. Then, from the Chebyshev inequality,

Pr{B} 6
σ2

ε
a2 .

Let us set

δ2 =
σ2

ε
a2 .

Then, with a probability of at least 1−δ2,

|ε| 6 σε

√
1
δ2

.

This implies that with a probability of at least 1−δ2,

|y| 6 | f (x)|+ |ε| 6 ‖ f‖∞ +σε

√
1
δ2

.

2628

MODEL SELECTION FOR REGRESSION

Here, let us define the event E as

1
N

N

∑
i=1

Z

R

|y− yi|dP(y)− 1
N

N

∑
i=1

1
N

N

∑
j=1

|y j − yi| > ε.

Then, from the Hoeffding inequality, we obtain

Pr{E|Bc} 6 exp

{
−2ε2N

(
maxy∈R

1
N ∑N

i=1 |y− yi|
)2

}

6 exp

{
−ε2N

2(‖ f‖∞ +σε
√

1/δ2)2

}
.

Let us set
δ1

2
= exp

{
−ε2N

2(‖ f‖∞ +σε
√

1/δ2)2

}
.

Then, with a probability of at least 1−δ1/2−δ2,

1
N

N

∑
i=1

Z

|y− yi|dP(y)− 1
N2

N

∑
i, j=1

|yi − y j| 6
√

2
N

ln
2
δ1

(
‖ f‖∞ +σε

√
1
δ2

)
(26)

since

Pr{Ec} > Pr{Ec,Bc}
> Pr{Ec|Bc}Pr{Bc}

>

(
1− δ1

2

)
(1−δ2)

> 1− δ1

2
−δ2.

Similar to (24), the difference between the expected and empirical risks of |y− fn(x)| is bounded by
Z

X×R

|y− fn(x)|dP(x,y) − 1
N

N

∑
i=1

|yi − fn(xi)|

6
1
N

N

∑
i=1

Z

X×R

|y− yi|+ | fn(x)− fn(xi)|dP(x,y).

Here, let us set δ1 = δ2 = δ. This is possible by controlling the value of a in (25). Then, finally,
from (22) and (26), with a probability of at least 1−2δ

Z

X×R

|y− fn(x)|dP(x,y) − 1
N

N

∑
i=1

|yi − fn(xi)|

6
1

N2

N

∑
i, j=1

(|y j − yi|+ | fn(x j)− fn(xi)|)

+(ω(fn,h0)+C)

√
1

2N
ln

2
δ
, (27)

where C = | fn(x0)− fn(y0)|+2‖ f‖∞ +2σε
√

1/δ. �

2629

KOO AND KIL

A.4 Proof of Corollary 1

Let Hy be a matrix in which the i jth element is given by |yi − y j| and an N dimensional vector a be
given by

a =
1√
N

(1, · · · ,1)T .

Then,
1
N

N

∑
i, j=1

|yi − y j| = aT Hya. (28)

Here, the matrix Hy can be decomposed by

Hy = EΛET =
N

∑
i=1

λieieT
i , (29)

where E represents a matrix in which the ith column vector is the ith eigenvector ei and Λ represents
the diagonal matrix in which the ith diagonal element is the ith eigenvalue λi. Then, from (28) and
(29),

1
N

N

∑
i, j=1

|yi − y j| =
N

∑
i=1

λi(aT ei)
2
6 max

i
{λi}.

Now, let us consider the following inequality:

1
N2

N

∑
i, j=1

| fn(xi)− fn(x j)| 6
1

N2

N

∑
i, j=1

| fn(xi)− yi|

+
1

N2

N

∑
i, j=1

|yi − y j|+
1

N2

N

∑
i, j=1

|y j − fn(x j)|

= 2Remp(fn)L1 +
1

N2

N

∑
i, j=1

|yi − y j|

6 2Remp(fn)L1 +
1
N

max
i
{λi}.

Therefore, from the above inequality and (27), the following inequality holds with a probability of
at least 1−2δ:

R(fn) 6 3Remp(fn)+
2
N

max
i
{λi}+(ω(fn,h0)+C)

√
1

2N
ln

2
δ
.

�

Appendix B.

In this appendix, we prove the theorem 2 in Section 3.2; that is, the case of multivariate target
functions.

2630

MODEL SELECTION FOR REGRESSION

B.1 Proof of Theorem 2

First, let us consider noise free target function; that is,

y = f (x).

The probability that the difference between the expected and empirical risks is larger than a positive
constant ε can be described by

Pr{R(fn)L1 −Remp(fn)L1 > ε} 6 exp

{ −2ε2N
(maxx∈X |y− fn(x)|)2

}
(30)

from the Hoeffding inequality (Hoeffding, 1963). Here, there exist x0 ∈ X and xi0 ∈ {x0, · · · ,xN}
such that

x0 = argmax
x∈X

| f (x)− fn(x)| and d(xi0 ,x0) 6 h0

because f − fn ∈ C(X) and X is a compact subset of R
m. Thus, from the dominator term of the

righthand side of (30), we have

max
x∈X

| f (x)− fn(x)| 6 | f (x0)− fn(x0)− f (xi0)+ fn(xi0)|+ | f (xi0)− fn(xi0)|

6 ω(f − fn,h0)+ | f (xi0)− fn(xi0)|. (31)

Here, we set the bound on the probability of (30) as

exp

{ −2ε2N
(maxx∈X | f (x)− fn(x)|)2

}
6 exp

{ −2ε2N
(ω(f − fn,h0)+ | f (xi0)− fn(xi0)|)2

}

6
δ
2
. (32)

Therefore, from (30), (31), and (32), the following inequality holds with a probability of at least
1−δ/2:

R(fn)L1 6 Remp(fn)L1 +{ω(f − fn,h0)+ | f (xi0)− fn(xi0)|}
√

1
2N

ln
2
δ
. (33)

Second, let us consider the noisy target function; that is,

y = f (x)+ ε.

From Chebyshev inequality, the following inequality always holds:

Pr{|ε| > a} 6
σ2

ε
a2 , (34)

where a represents a positive constant. In this case, from the triangular inequality, |y− fn(x)| has
the following upper bound:

max
x∈X

|y− fn(x)| 6 max
x∈X

| f (x)− fn(x)|+ |ε|. (35)

Let us set the bound on the probability of (34) as

σ2
ε

a2 =
δ
2
. (36)

2631

KOO AND KIL

Then, from (31), (35), and (36), the following inequality holds with a probability of at least 1−δ/2:

max
x∈X

|y− fn(x)| 6 max
x∈X

| f (x)− fn(x)|+σε

√
2
δ

6 ω(f − fn,h0)+ | f (xi0)− fn(xi0)|+σε

√
2
δ
. (37)

Therefore, from (33) and (37), the following inequality holds with a probability of at least 1−δ:

R(fn)L1 6 Remp(fn)L1 +

{
ω(f − fn,h0)+ | f (xi0)− fn(xi0)|+σε

√
2
δ

}√
1

2N
ln

2
δ
.

�

References

H. Akaike. Information theory and an extension of the maximum likelihood principle. In Proceed-
ings of the Second International Symposium on Information Theory, pages 267–281, 1973.

G. Anastassiou and S. Gal. Approximation Theory: Moduli of Continuity and Global Smoothness
Preservation. Birkhäuser, Boston, 2000.

A. Barron, J. Rissanen, and B. Yu. The minimum description length principle in coding and model-
ing. IEEE Transactions on Information Theory, 44:2743–2760, 1998.

C. Chang and C. Lin. LIBSVM: a library for support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

O. Chapelle, V. Vapnik, and Y. Bengio. Model selection for small sample regression. Machine
Learning, 48:315-333, 2002.

V. Cherkassky and Y. Ma. Comparison of model selection for regression. Neural Computation,
15:1691–1714, 2003.

V. Cherkassky, X. Shao, F. Mulier, and V. Vapnik. Model complexity control for regression using
VC generalization bounds. IEEE Transactions on Neural Networks, 10:1075–1089, 1999.

S. Cohen and N. Intrator. On different model selection criteria in a forward and backward regression
hybrid network. International Journal of Pattern Recognition and Artificial Intelligence, 18:847–
865, 2004.

D. Donoho and I. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. Journal of
the American Statistical Association, 90:1200–1224, 1995.

D. Foster and E. George. The risk inflation criterion for multiple regression. Annals of Statistics,
22:1947–1975, 1994.

T. Hastie, R. Tibshirani, and J. Friedman. Note on “comparison of model selection for regression”
by V. Cherkassky and Y. Ma. Neural Computation, 15:1477–1480, 2003.

2632

MODEL SELECTION FOR REGRESSION

G. Hinton and D. van Camp. Keeping neural networks simple by minimizing the description length
of the weights. In Proceedings of the Sixth Annual ACM Conference on Computational Learning
Theory, pages 5–13, 1993.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the Amer-
ican Statistical Association, 58:13-30, 1963.

M. Karpinski and A. Macintyre. Polynomial bounds for VC dimension of sigmoidal neural net-
works. In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing,
pages 200–208, 1995.

I. Koo and R. Kil. Nonlinear model selection based on the modulus of continuity. In Proceedings of
World Congress on Computational Intelligence, pages 3552–3559, 2006.

G. Lorentz. Approximation of Functions. Chelsea Publishing Company, New York, 1986.

J. Rissanen. Stochastic complexity and modeling. Annals of Statistics, 14:1080–1100, 1986.

A. Sakurai. Polynomial bounds for the VC dimension of sigmoidal, radial basis function, and sigma-
pi networks. In Proceedings of the World Congress on Neural Networks, pages 58–63, 1995.

G. Schwartz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

A. Timan. Theory of Approximation of Functions of a Real Variable. English translation 1963,
Pergaman Press, Russian original published in Moscow by Fizmatgiz in 1960.

V. Vapnik. Statistical Learning Theory. J. Wiley, 1998.

G. Wahba, G.Golub, and M. Heath. Generalized cross-validation as a method for choosing a good
ridge parameter. Technometrics, 21:215–223, 1979.

2633

Journal of Machine Learning Research 9 (2008) 2635-2675 Submitted 7/08; Published 12/08

Multi-Agent Reinforcement Learning in Common Interest and Fixed
Sum Stochastic Games: An Experimental Study∗

Avraham Bab BAB@CS.BGU.AC.IL

Ronen I. Brafman BRAFMAN@CS.BGU.AC.IL

Department of Computer Science
Ben-Gurion University
Beer-Sheva 84105, Israel

Editor: Michael Littman

Abstract
Multi Agent Reinforcement Learning (MARL) has received continually growing attention in the
past decade. Many algorithms that vary in their approaches to the different subtasks of MARL have
been developed. However, the theoretical convergence results for these algorithms do not give a
clue as to their practical performance nor supply insights to the dynamics of the learning process
itself. This work is a comprehensive empirical study conducted on MGS, a simulation system de-
veloped for this purpose. It surveys the important algorithms in the field, demonstrates the strengths
and weaknesses of the different approaches to MARL through application of FriendQ, OAL, WoLF,
FoeQ, Rmax, and other algorithms to a variety of fully cooperative and fully competitive domains in
self and heterogeneous play, and supplies an informal analysis of the resulting learning processes.
The results can aid in the design of new learning algorithms, in matching existing algorithms to
specific tasks, and may guide further research and formal analysis of the learning processes.
Keywords: reinforcement learning, multi-agent reinforcement learning, stochastic games

1. Introduction

Multi-Agent Reinforcement Learning (MARL) deals with the problem of learning to behave well
through trial and error interaction within a multi-agent dynamics environment when the environ-
mental dynamic and the algorithms employed by the other agents are initially unknown. Potential
applications of MARL range from load balancing in networks (Schaerf et al., 1995) and e-commerce
(Sridharan and Tesauro, 2000) to planetary exploration by mobile robot teams (Zheng et al., 2006).

MARL adopts the game theory model of a Stochastic (a.k.a. Markov) Game (SG) to model
the multi-agent-environment interaction. The non-cooperative1 game theoretic solution concept for
SGs is the Nash Equilibrium (NE). A NE is a behavioral profile, namely a set of decision rules,
or policies, for all agents, such that no agent can benefit from unilaterally changing its behavior.
However, SGs may have multiple NEs with different values, none of which is necessarily strictly
optimal (i.e., preferable by all agents to all other NEs). Thus, in the general case, it is not clear which
behavior should be considered “optimal,” even when the environmental dynamics and the other
players’ set of possible strategies are known. For this reason, development of MARL algorithms

∗. A preliminary version of this paper that covered some of the results on common-interest games appeared in Bab and
Brafman (2004).

1. In this context, the meaning of ‘non-cooperative’ is that agents are selfish and do not collaborate or communicate
with other agents, except through the game.

c©2008 Avraham Bab and Ronen Brafman.

BAB AND BRAFMAN

has concentrated on algorithms for classes of SGs in which there is a unique NE, or in which all NEs
have the same value. In such cases, it is possible to measure the performance of learning algorithms
against a well defined target.2 In particular, most MARL algorithms are shown to converge to such
NEs in self play in either Common Interest SGs (CISGs) or Fixed Sum SGs (FSSGs), which we
describe next.

CISGs model environments in which the agents share common interests and have no conflicting
interests. In such environments, defining an optimal joint behavior for all agents is straightforward—
it is the joint behavior that maximizes the common interests. However, since the agents are inde-
pendent, they face the task of coordinating such joint behavior in the case in which there are several
optimal options. FSSGs, on the other hand, model environments in which two agents have fully
conflicting interests. In FSSGs, there is a well defined minimax solution (Filar and Vrieze, 1997).

Several different MARL algorithms have been proved to converge in the limit to optimal behav-
ior in CISGs (Littman, 2001; Wang and Sandholm, 2002) and in FSSGs (Littman, 1994). One has
been shown to converge to ε-optimal behavior in polynomial time in both CISGs and FSSGs (Braf-
man and Tennenholtz, 2002, 2003). Since MARL is, by its nature, an online task, determining the
abilities of the algorithms in practical domains is important. However, existing theoretical results
tell us very little about the practical efficacy of the algorithms;3 to this end a comprehensive em-
pirical comparison is necessary. Experimental results that have been published in the literature on
CISGs (Claus and Boutilier, 1997; Wang and Sandholm, 2002; Chalkiadakis and Boutilier, 2003)
and on FSSGs (Littman, 1994; Uther and Veloso, 2003; Bowling and Veloso, 2002), do not meet
this demand. They do not examine representative samples of algorithms and/or use small and simple
test models and/or do not examine online learning. Furthermore, the different experimental setups
used in different publications do not enable cross comparisons of the algorithms they examine.

This work provides a comprehensive empirical study of MARL algorithms in CISGs and FSSGs.
It offers a decomposition of the MARL task into subtasks. It then compares three algorithms for
learning in CISGs: FriendQ (Littman, 2001), OAL (Wang and Sandholm, 2002), and Rmax (Braf-
man and Tennenholtz, 2002); and three algorithms for learning in FSSGs: FoeQ (Littman, 1994,
2001), WoLF (Bowling and Veloso, 2002) and Rmax (Brafman and Tennenholtz, 2002). These
algorithms were selected because they represent a variety of approaches to the offered subtasks,
while providing certain convergence guarantees. We experimented with diverse variants of these
algorithms on several non-trivial test environments which we designed to demonstrate the efficacy
of the different approaches in each of the subtasks. To concentrate attention on the basic learning
task, full state observability and perfect monitoring (that is, the ability to observe the actions of
other agents) are assumed. The results allow us to rank the performance of the algorithms according
to properties of the environment and possible performance measures.

The experiments for this work have been conducted using MGS, a Markov Game Simulation
system developed for this purpose. MGS is implemented in the Java programming language and
supplies interfaces and abstract classes for the simple creation of players and grid worlds and con-
venient logging. We believe that MGS can be of good service to both MARL algorithm designers
and users. MGS is free, open source software available at http://www.cs.bgu.ac.il/˜mal.

2. Much recent work is concerned with the question of how to define and evaluate the performance of learning algo-
rithms in more general games. See, for example, Vohraa and Wellman (2007) which is devoted to this issue.

3. Vidal and Durfee (2003) take a step towards theoretical analysis of the learning dynamics. They offer theoretical
tools to analyzing and predicting behavior of multi-agent systems that are represented by simpler models than SGs.
Powers and Shoham (2005) offer experimental results on iterative games, which are a much simpler model than SGs.

2636

MULTI-AGENT RL IN STOCHASTIC GAMES

The paper is organized as follows. Necessary background is given in Section 2. Sections 3
and 4 describe the particular problems and algorithms for CISGs and FSSGs, respectively, and
present experimental results and analysis. Section 5 describes MGS and Section 6 concludes the
paper.

2. Multi-Agent Reinforcement Learning and Stochastic Games

Multi-Agent Reinforcement Learning (MARL) is an extension of RL (Sutton and Barto, 1998;
Kaelbling et al., 1996) to multi-agent environments. It deals with the problems associated with
the learning of optimal behavior from the point of view of an agent acting in a multi-agent en-
vironment. At the outset, the environmental dynamics and the algorithms employed by the other
players are unknown to the given agent. The environment is modeled by a finite set of states and
the agents-environment interaction is discretized into time steps. At each time step, the players
simultaneously choose actions, available from individual sets of actions. Depending stochastically
on the joint action, the environment transitions into its next state and each player is rewarded. The
present work assumes full state observability and perfect monitoring, namely, the agent observes
the actions taken and rewards received by the other players. It also assumes that the agents have
no additional means of communication. The multi-agent-environment interaction is modeled by a
Stochastic (a.k.a Markov) Game (SG).

Definition 2.1 (Stochastic Game) An SG G := {α,A,S,T,R} consists of:

• α = {1, ...,n} - a set of players. We will typically use n to denote the number of players.

• A = A1×A2× ...×An – a set of joint actions. Ai is a set of private actions available to player
i.

• S - a set of states.

• T : S×A× S→ [0,1] - a transition function. T (s,a,s′) = Pr(s′ | s,a) is the probability that
the system transitions to state s′ when joint action a is taken at state s (∑s′ T (s,a,s′) = 1).

• R : S×A×S→ R
n - a payoff function. [R(s,a,s′)]i is i’s reward upon transition from state s

to state s′ under joint action a.

The behavior of player i in an SG is described by a policy. A policy is a mapping πi : H →
PD(Ai) where H := {(s0,a1,s1,a2, ...,s j) | j ≥ 0} is the set of possible histories of the process
and PD(Ai) is a probability distribution over Ai. A policy that depends only on the current state
of the process, that is, πi : S →PD(Ai) is called stationary. A deterministic policy, that is a
mapping, πi : H → Ai is called pure, whereas a stochastic policy is called mixed. A tuple of
policies π = (π1, . . . ,πn) for n players of a SG is called a policy profile. The objective of an agent
in a SG is to maximize some function of its accumulated payoffs, referred to as the agent’s return.
In this study, the infinite horizon discounted return (IHDR) is considered. The expected IHDR for
player i, resulting from policy profile π, is defined by the sum ∑∞

t=0 γtEπ(ri
t) where ri

t is player i’s
payoff at time t and γ ∈ [0,1) is a discount factor. Consequently, a state-policy value function, V is
defined by Vi(s,π) = ∑∞

t=0 γtEπ(ri
t | s0 = s).

We note that different algorithms optimize different objectives. Yet, typically, the same un-
derlying ideas can be used to formulate different variants of the same basic algorithm that aim to

2637

BAB AND BRAFMAN

maximize different natural objectives. While we use formulations that aim to maximize IHDR, the
games we experiment on are such that any good policy will reach an absorbing state (following
which the agents are placed in their initial states) quickly. In this setting, given a reasonably high
discount factor, γ, IHDR maximizing behavior will be identical to behavior maximizing average
reward. Consequently, we will sometimes find it more natural to report performance measures such
as average reward per step.

For single agent domains, where n = 1, there is always an optimal pure stationary policy that
maximizes V (s,π) for all s∈ S (Filar and Vrieze, 1997). The single-agent state-policy value function
for the optimal policy, referred to as the state-value function, is the unique fixed point of the Bellman
optimality equations

V ∗(s) = max
a∈A

(

R(s,a)+ γ ∑
s′∈S

T (s,a,s′)V ∗(s′)

)

,∀s ∈ S .

An optimal policy may be specified by π∗(s) = argmaxa∈A(R(s,a)+ γ∑s′∈S T (s,a,s′)V ∗(s′)) (Put-
erman, 1994). Many single agent Reinforcement Learning (RL) methods interleave approximation
of the value function with derivation of a learning policy from the current approximation.

In MARL, maximizing the IHDR cannot be done by simply maximizing over (private) policies
since the return depends also on the other players’ policies which, in turn, may depend on the
agent’s actions. Hence, to maximize the IHDR, the agent must adopt a policy that is a best response
to the other players’ policies. Formally, πi is a best response to π−i = (π1, ...,πi−1,πi+1, ...,πn) if
Vi(s,π1, ...,πi, ...,πn)≥Vi(s,π1, ...,π′i, ...,πn) for all π′i and s∈ S. A best response function is defined
by BR(π−i) =

{

πi | πi is a best response to π−i
}

. In general,
T

π−i BR(π−i) = /0, namely, there is no
policy that is a best response to all of the possible behaviors of the other players.

Whereas the goal of single-agent reinforcement learning is clear—maximizes some aggregate
of your reward stream, the picture is more complex in multi-agent settings. Here, one’s performance
depends on what the other agents do, and strategic considerations come to the fore. For instance,
the well-known notion of Nash Equilibria does not, in general, provide a clear target for learning
algorithms, as many such equilibria may exist in a game, none of which dominates the others.
Although some recent work has attempted to clarify this issue (Brafman and Tennenholtz, 2004;
Shoham et al., 2007), there is still no clear agreement on the goal of MARL. However, there are
two special classes of SGs in which there is a clear target for learning: Common-interest SGs, and
Fixed-sum SGs. These are two extreme cases of SGs where players are either fully cooperative or
fully opposed. Much work in the area of MARL has concentrated on these classes of SGs, and
algorithms with good theoretical guarantees exist for each of them. In this paper, we analyze a
number of algorithms for such games.

3. Learning in CISGs

In CISGs, the payoffs are identical for all agents. That is, for any given choice of s,a and s′ and
any pair i, j of agents, we have that [R(s,a,s′)]i = [R(s,a,s′)] j. Therefore, all agents have identical
interests and we may speak of optimal joint policies, namely, policy profiles that maximize the
common IHDR for the team of agents. Such profiles are also NEs because no agent can gain by
deviating from them. CISGs pose all the standard challenges of single-agent RL, in particular the
need to balance exploration and exploitation and to propagate new experience. In addition, they
challenge the agents to coordinate behavior since to obtain maximum value may require that agents

2638

MULTI-AGENT RL IN STOCHASTIC GAMES

select a particular joint action. On the other hand, CISGs do not require that agents confront the
more difficult task of optimizing behavior against an adversary.

For efficient learning in CISGs, agents are required to coordinate on two levels: (i) select
whether to explore or exploit in unison; and (ii) coordinate the exploration and exploitation moves.
This requirement stems from the dependence of the team’s next state on the actions of all its mem-
bers. Hence, it is impossible for the team to exploit unless all agents exploit together, and using the
same choice of exploitation strategy. Exploration, too, can be less effective when only some agents
explore.

Furthermore, even when the model is known, multiple NEs yielding maximal payoffs to the
agents are likely to exist, and the agents still face the task of reaching consensus on which specific
NE to play.

This section describes and compares three algorithms for learning in CISGs: OAL (Wang and
Sandholm, 2002), FriendQ (Littman, 2001), and Rmax (Brafman and Tennenholtz, 2002). They
were selected because each embodies a different approach to learning, while guaranteeing conver-
gence to optimal behavior in CISGs. Diverse variants of these algorithms are examined with the aim
of gaining better understanding of their performance with respect to their approach to exploration-
exploitation, information propagation, and coordination tasks.4 These variants and the tasks on
which they were tested are described in the following subsections.

3.1 FriendQ

FriendQ (Littman, 2001) extends single agent Q-learning into CISGs. After taking a joint action
a = (a1, ...,an) in state s at time t and reaching state s′ with reward rcur, each agent updates its
Q-value estimates for 〈s,a〉 as follows:

Qt(s,a)← (1−αt)Qt−1(s,a)+αt

(

rcur + γmax
a′∈A

Q(s′,a′)

)

.

As in single agent Q-learning, given that ∑∞
t=0 αt = ∞, ∑∞

t=0 α2
t < ∞ and that every joint action is

performed infinitely often in every state, the Q-values are guaranteed to converge asymptotically to
Q∗ (Littman, 2001). Convergence to optimal behavior is achieved using Greedy in the Limit with
Infinite Exploration Learning Policies (GLIELP) (Sutton and Barto, 1998).

There are two types of GLIELPs, directed and undirected. Directed GLIELPs reason about
the uncertainty of the current belief about action values (Kaelbling, 1993; Dearden et al., 1998,
1999; Chalkiadakis and Boutilier, 2003). However, the computational complexity of the underlying
statistical methods makes directed exploration impractical for simulations of the size conducted in
this study.5 Two popular undirected exploration methods are ε-greedy action selection and Boltzman
distributed action selection. There is no established technique for applying Boltzman exploration to
FriendQ, so in our experiments it is executed with ε-greedy exploration only. ε-greedy exploration
is applied to SGs in the following way: each agent randomly picks an exploratory private action
with probability ε, and with probability 1− ε takes its part of an optimal (greedy) joint action with

4. By this we mean the ability of the algorithm to propagate information observed in one state to other states. For
example, Q-learning does not propagate information beyond the current state, unless techniques such as eligibility
traces are used.

5. It can be argued that many realistic applications impose severe constraints on the length of trajectories. In this
case, directed exploration techniques and techniques such as transfer learning appear to be essential for success.
Conducting a study of algorithms for such contexts would seem to be of great interest.

2639

BAB AND BRAFMAN

respect to the current Q-value (Claus and Boutilier, 1997). ε is asymptotically decreased to zero
over time.

Since full state observability, perfect monitoring, and identical initial Q-values to all agents are
assumed, all agents maintain identical Q-values throughout the process, and consequently the same
classification of greedy actions. But, two problems arise: (i) Because randomization is used to select
exploration or exploitation, the agents cannot coordinate their choice of when and what to explore.
(ii) In the case of multiple optimal policies, that is, several joint actions with maximal Q-values in
a certain state, the agents must agree on one such action. The original FriendQ algorithm has no
explicit mechanism for handling these issues.

This work compares some enhanced versions of FriendQ: First, Uncoordinated FriendQ (UFQ),
the simple version described above, is tested. Next, the effect of adding coordination of greedy joint
actions by using techniques introduced by Brafman and Tennenholtz (2003) is examined. Basically,
a shared order over joint actions is used for selecting among equivalent NEs. If such an order is
not built into the agents, it is established during a preliminary phase using an existing technique
(Brafman and Tennenholtz, 2003). This version is referred to as Coordinated FriendQ (CFQ). Then,
coordination of exploration and exploratory actions is added in Deterministic FriendQ (DFQ). In
DFQ, the agents explore and exploit in unison, always exploring the least tried joint action. An
exploratory action is taken each b1/εc′th move. Finally, we add Eligibility Traces (Sutton and
Barto, 1998) to DFQ (ETDFQ).6 Eligibility Traces propagate new experience to update Q-values of
previously visited states and not only the most recently visited state.

3.2 OAL

OAL combines classic model-based reinforcement learning with a new fictitious play algorithm for
action and equilibrium selection named BAP (Biased Adaptive Play) (Wang and Sandholm, 2002).
BAP is an action-selection method for a class of repeated games that contains common interest
games. Here, BAP is described in the context of common interest repeated games. Let m and k
be integers such that 1 ≤ k ≤ m. Each agent maintains a memory of the past m joint actions. At
the first m steps of the repeated game, each player randomly chooses its actions. Starting from step
m+1, each agent randomly samples k out of the m most recent joint actions. Let SPi be the set of k
joint actions drawn by agent i at some time step. If (i) there is a joint action a′ that is estimated to
be ε-optimal, such that for all a ∈ SPi, a−i ⊂ a′ (where a−i ⊂ a′ denotes the fact that the individual
actions of all agents other than agent i are identical in a and a′), and (ii) there is at least one optimal
joint action a ∈ SPi, then agent i chooses its part of the most recent optimal joint action in SPi. If
the above two conditions are not met, then agent i chooses an action ai that maximizes its expected
payoff under the assumption that the other players’ sampled history reflects their future behavior.
This type of action selection is known as fictitious play (Brown, 1951).

EP(ai) = ∑
a−i∈SPi

R(ai∪a−i)
N(a−i,SPi)

k

where N(a−i,SPi) is the number of occurrences of a−i in SPi. Given that there is no sub-optimal NE
and m ≥ k(n + 2), BAP is guaranteed to converge to a NE. It was shown that, for every game that
satisfies these conditions, there is some positive probability p and some positive integer T such that

6. A variant of Eligibility Traces called Replacing Traces was used (Singh and Sutton, 1996). In Replacing Traces, the
eligibility traces are bounded by 1.

2640

MULTI-AGENT RL IN STOCHASTIC GAMES

for any history of plays, with probability at least p, BAP converges to a consensus in T steps. That
is, all players agree in the same joint-action which is a NE.

After observing a transition from state s on action a, OAL updates Q-values according to the
learning rule

Qt+1(s,a) = Rt(s,a)+ γ∑
s′

Tt(s,a,s′)max
a′

Qt(s
′,a′)

where Rt , the approximated mean reward, and Tt , the approximated transition probability are esti-
mated using the statistics gathered up to time t. At each step, OAL constructs a Virtual Game (VG)
for the current state-game (the matrix game defined by the current state’s Q-values) and plays ac-
cording to it. The VG has common payoff 1 for any optimal joint action and payoff 0 for any other
action. In our implementation we use the VG in conjunction with ε-greedy as well as Boltzman
action selection. Boltzman action selection is implemented as follows: At each step, an action is
sampled according to the Boltzman distribution induced by the Expected Payoffs in the current VG

eEP(s,a)/τ

∑b eEP(s,b)/τ .

If a sub-optimal action is sampled, it is explored by the agent, otherwise BAP is executed on the VG
to select an exploitation action.

We examine OAL also with an addition of Prioritized Sweeping (PS) (Moore and Atkeson,
1993) to the underlying Q-learning algorithm (PSOAL). PS is a heuristic method for optimizing
finite propagation of TD-errors in the model. PS attempts to order propagation according to the size
of the change to the Q-values, for example, states that are liable to have a greater update should
be updated first. For comparison, a combination of the model-based Q-learning algorithm used
by OAL with the action and equilibrium-selection technique used by CFQ is also examined. This
combination is referred to as ModelQ (MQ).

3.3 Rmax

Rmax (Brafman and Tennenholtz, 2002) is a model-based algorithm designed to handle learning in
MDPs and in fixed-sum stochastic games. However, because Rmax does not make random decisions
(e.g., random exploration), its MDP version can also be used to tackle MARL in CISGs. Brafman
and Tennenholtz (2003) view a CISG as an MDP controlled by a distributed team of agents and
show how such a team can coordinate its behavior given a deterministic algorithm such as Rmax. In
a preliminary phase of the game, a protocol is used to establish common knowledge of the individual
action sets, of orders over these sets, and of an order over the agents. At each point in time, all agents
have an identical model of the environment and know what joint action needs to be executed next
(when a number of actions are optimal with respect to the current state, the agents use the shared
order over joint actions to select among these actions). Thus, each agent plays its part of this action.
It is shown that even weaker coordination devices can be used, and that these ideas can be employed
even under imperfect monitoring.

Rmax maintains a model of the environment, initialized in a particular optimistic manner. It
always behaves optimally with respect to its current model, while updating this model (and hence
its behavior) when new observations are made. The model M ′ used by Rmax consists of n+1 states
S′ = {s0, ...,sn} where s1, ...,sn correspond to the states of the real model M, and s0 is a fictitious
state.7 The transition probabilities in M′ are initialized to TM′(s,a,s0) = 1 ∀〈s,a〉 ∈ S′×A. The

7. The model may be constructed online as states are discovered.

2641

BAB AND BRAFMAN

reward function is initialized to RM′(s,a) = Rmax ∀〈s,a〉 ∈ S′×A, where Rmax is an upper bound on
maxs∈S,a∈A R(s,a). Each state/joint-action pair in M′ is classified either as known or as unknown.
Initially, all entries are unknown.

Rmax computes an optimal policy with respect to M ′ and follows this policy until some entry
becomes known. It keeps the following records: (i) number of times each action was taken at each
state and the resulting state; (ii) the actual rewards, rac(s,a), received at each entry. An entry (s,a)
becomes known after it has been sampled K1 times, such that with high probability TM(s,a,s′)−ρ≤
PE(s,a,s′|K1) ≤ TM(s,a,s′) + ρ where TM is the transition function in M, PE(s,a, · |K1) is the
empirical transition probability according to the K1 samples, and ρ is the accuracy required from M ′.
When an entry (s,a) becomes known, the following updates are made: TM′(s,a, ·)← PE(s,a, · |K1)
and RM′(s,a)← rac(s,a). Then, a new deterministic optimal policy with respect to the updated
model is computed and followed. Rmax converges to an ε-optimal policy in polynomial number of
steps.

The worst-case bounds on K1 (Brafman and Tennenholtz, 2002) assume maximal entropy on
the transition probabilities, that is, TM(s,a,s′) = 1/|S| for all s,a,s′. These bounds, although polyno-
mial, are impractical. In the experiments, these bounds are violated, which enables us to eliminate
knowledge of the state space size. Furthermore, Rmax is not assumed to be known. Instead, it is
initialized to some positive value and updated online to be twice the highest reward encountered so
far.

3.4 Discussion of Algorithms

Returning to the FriendQ algorithm, the efficiency of GLIELPs depends on the topology and dy-
namic of the environment. If the probability to explore falls low before “profitable” parts of the
environment are sufficiently sampled, the increasing bias to exploit may keep the agents in sub-
optimal states. As a result, GLIELPs can exhibit significant differences depending on the particular
schedule of exploration. In model free algorithms, and FriendQ, in particular, this phenomenon is
intensified by the decreasing learning rate that makes learning from the same experience slower over
time. GLIELPs also suffer from their inability to completely stop exploration at some point. Thus,
even when greedy behavior is optimal, the agent is unable to attain optimal return.

The exploration method of Rmax is less susceptible to the structure of the environment. As long
as Rmax cannot achieve actual return ε-close to optimal, it will have a strong bias for exploration
since unknown entries seem very attractive. This strategy is profitable when the model can be
learned in a short time. However, the theoretical worst-case bounds for convergence in Rmax are
impractical. In practice, much lower values of K1 suffice. Bayesian exploration (Dearden et al.,
1999; Chalkiadakis and Boutilier, 2003) and locality considerations might help to obtain better
adaptive bounds, but these approaches are not pursued here.

GLIELPs make learning “slower” as the agents get “older”. To accelerate learning, an algorithm
can try to use new experience in a more exhaustive manner, using it to improve behavior in previ-
ously visited states. Eligibility traces are used to propagate information in FriendQ. In model-based
algorithms, an exhaustive computation per new experience is too expensive (in CPU time). Thus,
OAL is tested with Prioritized Sweeping and Rmax makes one exhaustive computation each time a
new entry becomes known (and does no further computation).

Exploration in FriendQ and OAL algorithms is not coordinated. Each of the agents indepen-
dently chooses an exploratory action with some diminishing probability. Thus, joint actions that

2642

MULTI-AGENT RL IN STOCHASTIC GAMES

have no element (private action) of some optimal joint action have a lower chance of being ex-
plored. Hence, some popular techniques for decreasing exploration in the single agent case lead to
finite exploration in the multi agent case. For example, taking ε = 1/time for ε-greedy policies will
make the chance of exploring such joint actions 1/timen, where n is the number of agents.

Equilibrium selection in Rmax and CFQ comes with no cost. In OAL, it is essentially a random
protocol for achieving consensus. This protocol may take long to reach consensus with respect to
the current Q-values, but provides for another exploration mechanism at early stages, when Q-values
are frequently updated.

All three algorithms have parameters that need to be preset. Parameter tuning is task specific
and based more on intuition and trial and error than on theoretical results. FriendQ has a range
of parameters for decaying the learning rate, the exploration probability and the eligibility traces,
which also pose inter-parameter dependencies. For decreasing the learning rate parameter, we used
the results presented in Even-Dar and Mansour (2003). OAL takes parameters for history sample
size and for exploration. In this respect, Rmax is friendlier. It has a single and very intuitive
parameter—number of visits to declare an entry known. When the value of this parameter is high,
a very accurate model is learned and behavior will be, eventually, very close to optimal. But this
comes at the cost of possibly unnecessary exploration and delayed exploitation.

Table 1 summarizes the differences between the three algorithms according to the features men-
tioned above.

property UFQ CFQ DFQ OAL Rmax
Exploration ε-greedy with exponential and polynomial

decay of ε
Boltzman &
ε-greedy (polyno-
mial decay)

Greedy w.r.t opti-
mistic model

Coordination None Common order;
non-deterministic

Common order;
deterministic

Random protocol;
non-deterministic

Common order;
deterministic

Greedy Action
Selection

Maximize common return Fictitious
play/consensus

Maximize com-
mon return

Information
Propagation

Single sweep per step & ET Single sweep per
step & PS

Limited exhaus-
tive computations

Parameter Tun-
ing

Many parameters, task sensitive, not intuitive One parameter,
not sensitive,
intuitive

Table 1: Major differences between the experimented algorithms.

3.5 Experimental Results & Analysis

This section describes experiments with the FriendQ, OAL, and Rmax algorithms on three CISGs.
The games were designed to evaluate the effects of exploration, coordination, and information-
propagation methods on performance in different environments. All games are grid-based. The grid
cells are referred to by (row, column) coordinates indexed from (0,0) at the top left corner of the
grid. In all games, the available actions for each agent are up, down, left, right, and stand. The games
were played in both deterministic and stochastic modes. In deterministic mode, the action always
succeeds. In stochastic mode, each action, excluding stand, succeeds with probability 0.6. With
probability 0.4, uniformly at random, the agent is moved to the each of the other adjacent cells or
left in place. Action stand succeeds with probability 1. If the direction of motion is towards a wall,
the player remains in place. Similarly, two players cannot occupy the same position. Therefore, if

2643

BAB AND BRAFMAN

two agents attempt to move into the same cell, they both fail and remain in their current place. Note
that in stochastic mode, these rules apply to the actual (stochastic) outcome of the action.

Additionally, for each game, we examined the results of learning by heterogeneous agents, that
is, agents using different learning algorithms. Finally, to test how well each algorithm scales up
with the number of players, we introduced a fourth game in which the state and action spaces do
not grow too fast with the number of players. With this game, we were able to play games with up
to 5 players.

Adjusting the parameters of the different algorithms was done by a process of trial and error. The
algorithms were repeatedly executed in an experimental setup, varying their parameters between
executions until some optimum was reached. The parameters that achieved the best performance
were then used throughout. Each set of experimental conditions, other than those related to Rmax,
was subjected to 100 repeated trials. For Rmax, 20 trials were carried out using K1 = 50, 40 with
K1 = 100 and 40 with K1 = 200.8 The discount factor was 0.98 in all trials. Unless mentioned
otherwise, the presented results are averages over all trials.

The following parameter settings were tested:

FriendQ

Exploration: ε-greedy with (i) εt ← 1/count0.5000001
t where countt is the number of ex-

ploratory steps taken by time t. (ii)εt ← 0.99998countt . (Unless specified otherwise, (i)
is used.)9

Learning rate: αs,a← 1/n(s,a)0.5000001 where n(s,a) is the number of times action a was
taken in state s.

Q-value were initialized to 0.

OAL

Exploration: For ε-greedy, εt ← 1/count0.5000001
t , as in FriendQ. For Boltzman exploration,

the temperature parameter was decreased by τ← 100/count0.7.

History: Random history sample size k = 5. History memory size m = 20 (m must satisfy
m≥ k× (n+2). OAL with ε-greedy exploration is referred to as ε-OAL, and OAL with
Boltzman exploration is referred to as B-OAL.

Q-value were initialized to 0.

Rmax

Sampling: values of 50, 100, 200 and 300 for K1 (visits to mark an entry known) were
tested.

Accuracy of Policy Iteration: Offline policy iteration was halted when the difference be-
tween two successive approximations was less than 0.001.

8. Because Rmax is a deterministic algorithm, fewer samples were required.
9. Exponential decay of ε violates the infinite exploration condition for convergence.

2644

MULTI-AGENT RL IN STOCHASTIC GAMES

3.5.1 GAME 1

This game, introduced in Hu and Wellman (1998), was devised to emphasize the effects of equilibrium-
selection methods. It has a single goal state (the only reward-yielding state) and several optimal
ways of reaching it. The game is depicted in Figure 1. S(X) and G(X) are the respective initial
and goal positions of agent X . In the goal state G, both agents are in their goal positions and their
reward is 48. Upon reaching the goal, the agents are reset to their initial position. The underlying
SG has 71 states. The optimal behavior in deterministic mode reaches G in four steps and yields an
average reward per step (a.r.p.s.) of 12.10 There are 11 different optimal equilibria. In stochastic
mode, the optimal policies yield an a.r.p.s. of ∼5.285. Algorithms were executed for 107 rounds on
both settings.

S(A)

S(B)

G(B)

G(A)

Figure 1: Game 1 - initial and goal states.

Deterministic Mode
Table 2 reports the number of trials (of 100 in total) in which each algorithm learned a policy,

with four levels of final performance based on the number of steps required to reach the goal. For
this deterministic domain, we find this measure, which is directly correlated with the more standard
a.r.p.s. measure, to be more informative. Here xFQ is a variant of FriendQ in which the agents
explore in unison but do not coordinate exploratory actions. The suffix “εed” denotes exponential
decay of ε. In the present context, the agents’ learning of an optimal policy means that their greedy
choice of actions is optimal. That is, with any residual exploration deactivated. Figure 2 presents
the a.r.p.s. obtained by the agents over time.

steps to

goal

UFQ CFQ xFQ DFQ DFQεed ε-OAL B-OAL B-OALPS MQ Rmax

4 62 49 47 100 100 26 49 41/60 1 100
5 38 49 46 62 51 19/60 49
6+ 2 7 12 29
∞ 21

Table 2: Game 1 – classification of final performance of learned policies for 100 trials of each
algorithm

10. As we noted earlier, our implementation is based on the widely used discounted reward model. But in our goal
oriented domains, optimal and near-optimal strategies require a relatively small number of steps to reach the goal.
Thus, we chose to report the performance of the learned policies using more intuitive measures such as average
reward per step and average steps to reach the goal.

2645

BAB AND BRAFMAN

 0

 2

 4

 6

 8

 10

 12

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06
round number

a
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

s
te

p
.

FriendQ variants on deterministic Game-1.
Average reward over time.
Averaged over 100 trials.

UFQ
CFQ
xFQ
DFQ

DFQeed
DFQETeed

(a) FriendQ variants

 0

 2

 4

 6

 8

 10

 12

 0 200000 400000 600000 800000 1e+06
round number

a
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

s
te

p
.

OAL variants and ModelQ on deterministic Game-1.
Average reward over time.
Averaged over 100 trials.

B-OAL
e-OAL

B-OALPS
MQ

(b) OAL variants and MQ

 0

 2

 4

 6

 8

 10

 12

 0 200000 400000 600000 800000 1e+06
round number

a
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

s
te

p

Rmax on deterministic Game-1.
Average reward over time.
Averaged over 100 trials.

Rmax K1=200
Rmax K1=100
Rmax K1=50

(c) Rmax

 0

 2

 4

 6

 8

 10

 12

 0 200000 400000 600000 800000 1e+06
round number

a
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

s
te

p

Rmax, B-OALPS and DFQETeed on det. Game-1.
 Average reward over time.
 Averaged over 100 trials

DFQETeed
Rmax K1=50

B-OALPS

(d) Rmax; OAL; FriendQ

Figure 2: Game 1 – average reward per step under deterministic mode. (a) presents first 8× 106

rounds. (b), (c) and (d) present first 106 rounds.

As can be inferred from the table, in this problem optimal behavior is such that the agents
reach the goal in four steps. FriendQ converges quickly to second-best behavior (Figure 2a). From
that point on, the average learning curves of UFQ, CFQ and xFQ increase stepwise rather than
continuously (although this is a bit difficult to see in the figure). This behavior results from a
sudden switch of the FriendQ agents from sub-optimal to optimal behavior once the relative order
of the Q-values of different agents changes.

2646

MULTI-AGENT RL IN STOCHASTIC GAMES

ε-OAL does not present a similar trend. In the trials in which OAL converged to second-best
behavior in the first 2.5× 105 rounds, it failed to find an optimal policy even after 107 rounds
(Figure 2b). In DFQ, since exploration is deterministic, this switch is always at the same time,
specifically after 7×106 rounds(Fig. 2a).

Surprisingly, UFQ fares better than CFQ (Table 2, Fig. 2a), in spite of its less sophisticated
coordination strategy. At an early learning stage, dis-coordination leads to exploration. Later on, the
estimated Q-values of optimal actions are rarely equal, and thus, coordinating exploitation does not
pose a problem (at the examined time interval). Exponential decay of ε supplies more exploration at
an early period than polynomial decay (Fig. 3) leading to faster convergence of DFQεed (Fig. 2a).

Eligibility traces did not contribute much in this example. The parameters of eligibility traces
were hard to tune and very sensitive to change in other parameters or environment dynamics.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50000 100000 150000 200000 250000 300000
round number

e
p

s
il
o

n

Exponential vs. Polynomial decay of
e-greedy exploration probabilty

1/x^0.5000001
0.99998^x

(a) Rounds 1 to 300,000

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 300000 400000 500000 600000 700000 800000 900000 1e+06
round number

e
p

s
il
o

n

Exponential vs. Polynomial decay of
e-greedy exploration probabilty

1/x^0.5000001
0.99998^x

(b) Rounds 300,000 to 1,000,000

Figure 3: Exponential vs. polynomial decay of ε-greedy exploration probability

OAL agents converge relatively quickly to optimal or second-best behavior, and from that time
onwards stick to their behavior (Fig. 2b). Whether, in the latter case, they fail to structure the Q-
values properly, or the fictitious play prevents the agents from changing their behavior after the
Q-values are ordered properly, is not clear from the data. B-OAL converges faster and more often
to optimal than ε-OAL (Fig. 2b, Table 2). This behavior seems to stem from the effect of the decay
methods we used. The Boltzman method yields more exploration than the ε-greedy method in the
early period of learning. Later on, ε-greedy maintains a low exploration probability that decays very
slowly while Boltzman exploration drops faster to zero. Thus, even when ε-OAL learns optimal
behavior, it keeps achieving only near-optimal average-reward.

As expected B-OALPS improves on the performance of B-OAL (Fig. 2b, Table 2) because of
its more rapid propagation of learned information.

The performance of ModelQ is inferior to that of OAL (Fig. 2b, Table 2), presumably because
ModelQ does not explore as much as OAL: At early stages of learning, fictitious play provides
OAL with other means of exploration. When the agents make many stochastic action choices in

2647

BAB AND BRAFMAN

early stages of learning, fictitious play amplifies the random behavior. However, at later stages of
learning, deviation from constant action choice is rare and will probably not affect fictitious play. In
this setting, ModelQ shows slower convergence than the model-free FriendQ.

The learning graph of Rmax can be precisely divided into two periods, an initial learning period
in which Rmax attains very low return due to exploration, followed by a period of exploitation in
which Rmax attains optimal return (Fig. 2c). The length of the initial period depends linearly on
K1.11 Figure 2d compares the best performing variant of each algorithm.

Stochastic Mode
Figure 4 presents the results for the stochastic mode. As expected, due to the stochastic effects

of actions, the value of the optimal policy decreases, and more importantly, the learning algorithms
require more trials to converge. By contrast to the deterministic case, MQ performs as well as ε-OAL
(Fig. 4a). This improvement is attributable to additional exploration stemming from the stochastic
nature of the environment. For the same reason, CFQ performs almost the same as UFQ (Fig. 4a).
When we compare the gap between the DFQεed to U/CFQ at the first 106 rounds in stochastic mode
vs. the deterministic mode we find that the gap is smaller. This difference is due to the fact that the
additional early exploration supplied by the exponential decay of ε is redundant in the stochastic
case. The slightly higher return gained by DFQεed later on is due to the faster decay of ε. Another
interesting difference from the deterministic setting is that initially ε-OAL gains lower return than
B-OAL but while B-OAL keeps attaining the same average reward, ε-OAL improves slowly over
time and eventually gains a higher average reward than B-OAL. In this case, the slower convergence
of the exploration probability to zero enables ε-OAL to “overcome” randomly “bad” exploration in
initial learning phases.

Rmax behaves similarly in stochastic and deterministic modes. While the other algorithms
achieve only near-optimal return, Rmax attains optimal return (Fig. 4b,c). Rmax’s strong explo-
ration bias results in low return until model entries are known. From that point on, Rmax attains
an optimal return. The histogram (Fig. 4d) shows that Rmax converges to higher return than the
other algorithms not only in the average case but also in the worst case (i.e., almost all runs of
Rmax were better than the best runs for the other algorithms). Very low values for K1, which mean
rough transition probability estimates, are enough for computing near-optimal behavior. Indeed, the
exploration vs. exploitation tradeoff is evident even in this simple example. We see how a smaller
value of K1 leads to faster convergence, but at the cost of slightly smaller average reward.

Overall, it appears that the major issue for the FQ and OAL class of algorithms is exploration.
As the space of joint-actions is quite large, there are many relevant options to try. Especially in
the deterministic case, the rather standard exploration techniques we used appear to be insufficient.
Although stochastic domains naturally lead to more exploration, we can see that the model-free
algorithms are sub-optimal. It appears that model-free algorithms—at least in their standard form—
have difficulty determining whether certain states were explored sufficiently, and that standard ex-
ploration schemes are too crude. Overall, many of the phenomena observed in Game 1 were present
in Games 2 and 3. Therefore, in the following experiments, only phenomena not observed in Game
1 will be emphasized.

11. If it is known ahead of time that the environment is deterministic, then K1 can be set to 1. Similar locality consider-
ations on stochastic environments can help determine tight bounds on K1.

2648

MULTI-AGENT RL IN STOCHASTIC GAMES

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07
round number

a
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
s
te

p

Variantss of FriendQ and OAL on stochastic Game-1.
Average reward over time.
Averaged over 100 trials

UFQ
CFQ

DFQeed
MQ

OAL btz
OAL eps

(a) FriendQ; OAL; MQ

 0

 1

 2

 3

 4

 5

 6

 0 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05 8e+05 9e+05 1e+06
round number

a
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
s
te

p
 i
n

 l
a

s
t

1
0

,0
0

0
 r

o
u

n
d

s

Rmax on stochastic Game-1.
 Average reward over time
 with different K1 values.
 Averaged over 40 trials,
 1,000,000 rounds per trial

Rmax K1=50
Rmax K1=100
Rmax K1=200
Rmax K1=300

(b) Rmax

 0

 1

 2

 3

 4

 5

 6

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07
round number

a
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
s
te

p

Stochastic Game-1. Average reward over time.
 Averaged over 100 trials

Rmax K1=100
DFQeed

B-OAL

(c) Rmax; FriendQ; OAL

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 0 20 40 60 80 100
number of experiments

a
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
s
te

p
 o

f
le

a
rn

e
d

 p
o

li
c
y

Stochastic Game-1.
Average reward per step of learned policy against # of trials:
x = # of trials in which avg reward of learned policy exceeded y

UFQ
CFQ

DFQeed
Rmax

OAL btz
OAL eps

OAL PS btz

(d) Average reward of learned policies per number of trials

Figure 4: Game 1 – Average reward per step and learned policies per number of trials in stochastic
mode. Subfigures (a) and (c) present all 107 rounds, while (b) presents the first 106

rounds.

3.5.2 GAME 2

This game was designed to minimize the effects of equilibrium selection, to show how GLIELPs
may keep agents exploiting suboptimal possibilities, and to emphasize the importance of coordi-
nated exploration. The game has four goal states and one optimal equilibrium. The game is de-
picted in Figure 5(a). It consists of an additional element, an object that can be moved by the
agents. The agents can move in four directions or stay in place. They can push the object by
standing to its right(left) and moving left(right) and pull the object by standing to its right(left) and

2649

BAB AND BRAFMAN

moving right(left). However, the object is too heavy for one agent and requires cooperation of the
two agents to be moved. The manner by which the object is moved is depicted in Figure 5(b).
Note that the push/pull effect is a by-product of the agents’ moves. Thus, in stochastic mode, what
determines if the action is push or pull is not the chosen action but its actual effect.

S(A) S(B)

xG2 G1

(a) Initial state and Goal states.

A
←

B
←x - A Bx

(b1) Moving the object by pushing simultaneously.

(Agents’ order does not matter).

A
→

B
→x - A Bx

(b2) Moving the object by pushing and pulling simultaneously.

(Agents’ order does not matter).

Figure 5: Game 2

The agents’ goal is to move the object into one of the upper corners of the grid, at which point the
game is reset to its initial state. Moving the object to the upper right (G1) or left (G2) corner yields
a reward of 80 and 27, respectively. The optimal behavior under deterministic mode is to move the
object to G1 in 8 steps. The average reward per step of an optimal strategy under deterministic mode
is 10, and the discounted return is ∼ 465. The second-best strategy is moving the object to G2 in 4
steps, with an a.r.p.s. of 9 and discounted return of ∼ 440. In stochastic mode, the optimal policy
may stochastically lead to one of the goal positions. The a.r.p.s. of the optimal policy in stochastic
mode is ∼ 3.8. The underlying CISG contains 164 states. Algorithms were executed for 3× 107

rounds.

Deterministic Mode
Table 3 classifies the number of trials (of 100 per algorithm) according to the algorithms and

learned policies. Figure 6 shows the a.r.p.s. over time obtained by the different algorithms.
The main reasons for the sub-optimal performance of OAL and CFQ in this game are: (i) Ran-

dom exploration has a greater chance of reaching G2 than G1. Discovering G2 before G1 further
reduces the chance of visiting G1 because of the increasing bias toward exploitation. (ii) Explo-
ration of the CFQ and OAL agents is not coordinated. If reaching G2 is the current greedy policy,
then G1 will not be visited unless both agents explore simultaneously. Game 1 demonstrated an
advantage of exponential decay of the ε-greedy exploration probability over polynomial decay of
this probability. Game 2 demonstrates an opposite phenomenon, Fig. 6a and Table 3 show that CFQ
does better with polynomial decay of ε than with exponential decay. This result stems from finite
exploration supplied by exponential decay. However, this finite amount of exploration is sufficient

2650

MULTI-AGENT RL IN STOCHASTIC GAMES

Goal steps
to
goal

CFQ CFQεed DFQεed ε-OAL B-OAL Rmax

G1 8 100 1 100
G2 3 99 65 54 91
G2 4 1 35 46 8

Table 3: Game 2 – Characteristics of the learned policy on a per-trial basis for each algorithm in
deterministic mode.

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 8.8

 9

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

FriendQ and OAL on deterministic Game-2.
Average reward over time.
Averaged over 100 trials.

CFQ
CFQeed

e-OAL
Boltzman OAL

(a) FriendQ and OAL.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Rmax, B-OAL and DFQeed on deterministic Game-2.
Average reward over time.
Averaged over 100 trials.

Rmax K1=200
Rmax K1=100

Rmax K1=50
B-OAL

DFQeed

(b) Rmax; B-OAL; DFQeed.

Figure 6: Game 2 – Average Reward under deterministic mode. Subfigure (a) presents all 3×107

rounds; Subfigure (b) presents first 3×106 rounds.

when exploration is coordinated as shown by the learning curve of DFQεed (Fig. 6b) and by Table 3.
Furthermore, DFQεed converges to optimal greedy behavior while both CFQ variants do not.

Stochastic Mode
Figure 7 presents statistics for the stochastic mode. It exhibits two interesting phenomena that

have not been observed in the previous experiments. One is that, in contrast to previous results,
ModelQ outperforms ε-OAL (Fig. 7a,c). Since the only difference between ε-OAL and ModelQ is
the greedy action selection method, a reasonable explanation is that BAP (OAL’s action selection
mechanism) delays behavioral change that should follow Q-value updates (which in turn may delay
learning of Q-values). This outcome is because BAP plays a best response to the strategy implied
by the other agent’s past plays. Since both agents react to each other’s past plays using BAP, it
may take long to converge to a new NE when the optimal joint actions are changed. The second
phenomenon is that Rmax requires larger values of K1 to converge to optimal behavior (Fig. 7b).
This finding can be explained by the fact that the optimal behavior involves longer cycles of state
transitions and hence the model has to be more accurate.

As in Game 1, we see that exploration strategies have a great impact on the ability of different
algorithms to converge. In this respect, Game 2 highlights the need for coordinated exploration.

2651

BAB AND BRAFMAN

Thus, in cooperative multi-agent systems, we face the standard problem, clearly visible in Game
1, of ensuring sufficient exploration, but we need to ensure that this exploration is effective by
coordinating exploratory moves of different agents.

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Variantss of FriendQ and OAL stochastic Game-2.
Average reward over time.
Averaged over 100 trials.

CFQ
DFQ

DFQeed
MQ

B-OAL
e-OAL

B-OAL PS

(a) FriendQ and OAL

0

0.5

1

1.5

2

2.5

3

3.5

4

0 3e05 6e05 9e05 1.2e+061.5e+061.8e+062.1e+062.4e+062.7e+06 3e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Rmax, DFQeed and B-OALPS on stochastic Game-2.
Average reward over time.
Averaged over 100 trials (Rmax, averaged over 40 trials).

Rmax K1=50
Rmax K1=100
Rmax K1=200
Rmax K1=300

DFQeed
B-OAL PS

(b) Rmax; B-OALPS; DFQeed

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 20 40 60 80 100
average reward per step of learned policy

n
u
m

b
e
r

o
f
e
xp

e
ri
m

e
n
ts

Stochastic Game-2.
Histogram of average reward per step of learned policy against number of trials:
x = number of trials in which average reward of learned policy exceeded y

CFQ
DFQ

DFQeed
Rmax

MQ
B-OALPS

e-OAL
e-OAL

(c) Average Reward of Learned Policies per Number of Trials

Figure 7: Game 2 – Average reward per step and learned policies per number of trials under stochas-
tic mode. (a) presents all 3×107 rounds; (b) presents first 3×106 rounds.

3.5.3 GAME 3

In the previous games, one had to explore considerable parts of the state space in order to construct
good policies. This game is characterized by a maximum return attainable by staying in a small
local set of states anywhere on the state graph. The initial position of the agents within a 3×3 grid
is random. They are rewarded for reaching a position in which their locations are adjacent. If this
position is attained by unaltered positions of both agents, the reward is 5. If movement is involved,
the reward is 10. Algorithms were executed for 106 rounds.

2652

MULTI-AGENT RL IN STOCHASTIC GAMES

As opposed to previous experiments, in deterministic mode, B-OAL and the FriendQ variants
converged faster to optimal (greedy) behavior than Rmax (Fig. 8a). Rmax explores the whole model
before it starts exploiting while FriendQ’s and OAL’s choice of greedy actions is optimal long before
good estimates of all Q-values are attained. However, in stochastic mode the GLIELPs no longer
have this advantage since stochastic transitions do not enable the agents to concentrate on exploiting
a local set of states (Fig. 8b).

2

3

4

5

6

7

8

9

10

0 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05 8e+05 9e+05 1e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

All algorithms on deterministic Game-3.
Average reward over time.
Averaged over 100 trials

UFQ
CFQ
MQ

e-OAL
B-OAL

Rmax, K1=200
Rmax K1=100
Rmax K1=50

(a) deterministic mode

0

1

2

3

4

5

6

7

8

0 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05 8e+05 9e+05 1e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

All algorithms on stochastic Game-3.
Average reward over time.
Each setup except Rmax averaged over 100 trials.
Each setup of Rmax averaged over 40 trials.

Rmax K1=50
Rmax K1=100
Rmax K1=200

UFQ
CFQ
DFQ
MQ

OAL btz
OAL eps

(b) stochastic mode

Figure 8: Game 3 – average reward per step under deterministic and stochastic modes.

3.5.4 HETEROGENEOUS PLAYERS

A CISG is most naturally viewed as a model of a distributed stochastic system. As such, it is natural
to have in mind a view of a system’s designer, and one would expect such a designer to equip the
players with identical algorithms. However, CISGs arise also when self-interested agents need to
coordinate, typically on the use of some resource, where coordination is beneficial to all parties
involved. Examples include which side of the road to travel on, the meaning attached to a symbol,
etc. Thus, it is natural to ask how the algorithms tested fare in the context of other algorithms. We
reran the above experiments with pairs of different algorithms. The results, presented in Figure 9 are,
quite uniform (similar performance is observed in the deterministic games). The top performance,
and as is clearly visible, by a wide margin, was obtained by OAL+FriendQ. Pairs containing Rmax
performed much worse, with Rmax+OAL typically fairing slightly better than Rmax+FriendQ. In
fact, comparing the results to the homogeneous case, the OAL+FriendQ combination performed
almost optimally in Game 1: 4.7 vs. 5. In Game 2 it obtained 2.3 vs. 3.8, and in Game 3 it
achieved 5.85 vs. 7.2.12 And while Rmax and, to a lesser extent, FriendQ do better against their
own kind, OAL does better against FriendQ. It may be the case that for equilibrium selection, OAL’s
mechanism works best when one agent ”insists” more on a particular equilibrium, thus more quickly
breaking up symmetries.

These results might be interpreted as an indication of the “rigidity” of each of the algorithms.
FriendQ is the simplest of the three algorithms, it makes no internal assumptions about its partners

12. The version of FriendQ used was CFQ with replacing traces. The OAL version used ε-greedy exploration.

2653

BAB AND BRAFMAN

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07
round number

Game 1 Stochastic Setup
a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p OAL vs FriendQ

Rmax vs FriendQ
Rmax vs OAL

(a) Game 1 stochastic mode

0

0.5

1

1.5

2

2.5

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07
round number

Game 2 Stochastic Setup

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p OAL vs FriendQ

Rmax vs FriendQ
Rmax vs OAL

(b) Game 2 stochastic mode

4

4.5

5

5.5

6

6.5

7

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07
round number

Game 3 Stochastic Setup

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

OAL vs FriendQ
Rmax vs FriendQ

Rmax vs OAL

(c) Game 3 stochastic mode

Figure 9: Heterogeneous play games 1-3.

and simply adapts. Rmax is at the other extreme, it strongly relies on the behavior of its partners
in order to systematically explore and then exploit. OAL is somewhere in between. It does have a
sophisticated mechanism for selecting among different equilibria, but this mechanism is stochastic
and can handle noise, and is based on fictitious play, which is a mechanism that adapts to the
empirical behavior of the other agents. Thus, one would expect Rmax to fail when its assumptions
are not met, as its implicit coordination mechanism is based upon them. In contrast, FriendQ and
OAL, which make weak internal assumptions about their peers, should work well, especially when
their opponent shows some flexibility and adaptivity.

3.5.5 n > 2 PLAYERS

So far, we considered only two-player games. The reason is practical: Experiments conducted on
large state spaces take long to execute. It is especially true for Rmax which must solve the MDP
each time the model changes. This effort grows with the state-space, and the state-space grows

2654

MULTI-AGENT RL IN STOCHASTIC GAMES

exponentially with the number of players. Thus, to get an idea of how these algorithms fare with
a large number of players, we devised a simpler, fourth game in which we could run experiment
with up to 5 players. This is a simple linear grid with 5 positions. Players can move to the left and
the right. When two players attempt to move to the same position, the result is with probability 1/3
none move, and with probability 1/3 each one of the players makes the move and the other stays in
place. In the initial state, player i is in position 5− i. The goal position of each player is i. Generally,
the reward at each state is the number of players located at their goal positions. However, when all
players are in their goal position, they receive a reward of 3 times the number of players, at which
point all players transition automatically to the initial position.

0

0.5

1

1.5

2

2.5

3

3.5

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000
round number

Game 4 Rmax Stochastic Setup

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

2 Players
3 Players
4 Players
5 Players

(a) Game 4 R-max

0

0.5

1

1.5

2

2.5

3

3.5

 0 500000 1000000 1500000 2000000
round number

Game 4 OAL Stochastic Setup

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

2 Players
3 Players
4 Players
5 Players

(b) Game 4 OAL

0

0.5

1

1.5

2

2.5

3

3.5

 0 500000 1000000 1500000 2000000
round number

Game 4 Friend-Q Stochastic Setup

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

2 Players
3 Players
4 Players
5 Players

(c) Game 4 Friend-Q

Figure 10: Results for 2-5 players on game 4.

The results are presented in Figure 10. Note the difference in scale for the X-axis for OAL
and FriendQ, which is intended to show that the suboptimal a.r.p.s. to which they converge does
not increase even when we look at millions of steps. As in the previous section, we used the CFQ
version of FriendQ with replacing traces, ε-greedy exploration for OAL, and K1 = 100 for Rmax.

2655

BAB AND BRAFMAN

For all algorithms, the value is greater as the number of players increases due to the game’s
reward definition, which is sensitive to the number of players. All algorithms converge quickly
on this game for all number of players. However, the values they converge to differ. Among the
three algorithms, Rmax converges to the highest average per step reward, FriendQ is next, and OAL
is last. The relative performance is consistent with the performance displayed in the three earlier
two-player games. This finding is a reasonable indication that the relative performance of these
algorithms is qualitatively similar regardless of the number of players, at least for small player sets.

3.5.6 SUMMARY

Section 3.5 presents an experimental study of three fundamentally different algorithm families for
learning in CISGs. The results illustrate the strengths and weaknesses of different aspects of these
algorithms in different settings, highlighting the accentuated importance of effective exploration,
which is enabled in this class of games only by coordinated behavior, the advantage of deterministic
behavior for attaining such coordinated behavior, and the benefits of propagation of information.

Each of the experimental domains emphasizes different aspects of the learning task in CISGs.
The results show that the parameters of OAL and FriendQ are very sensitive to environmental topol-
ogy and dynamic. Exploration and coordination strategies suitable for one environment may be very
inefficient in other environments. Rmax, on the other hand, is stable in this respect. It has a single
parameter, K1, that has to be preset. Its convergence time depends linearly on K1 (and the size of
the state-action space) and it turns out that Rmax converges to near optimal behavior using values
of K1 that achieve faster convergence than that of OAL and FriendQ. However, the convergence
dynamics of Rmax does not suit tasks in which the agents must attain some value during the learn-
ing period, because during its exploration phase, Rmax is indifferent to rewards lower than Rmax.
However, Rmax is also the simplest algorithm, and thus it is easy to alter it, for instance, to obtain
satisficing behavior, for example, by lowering the value of Rmax in the model, or by starting with a
moderate value and then increasing it as better values are observed. Overall, when we control the
algorithm of all agents in the system, Rmax seems to be the best alternative—it converges quickly
to values higher than those of OAL and FriendQ, it does not seem to be sensitive to an increase in
the number of players, except through its effect on the state space, and most importantly, it has very
simple exploration strategy. As we saw in games 1 and 2, the choice of exploration strategy has
much influence on the results of FriendQ and OAL, and the precise choice is sensitive to the nature
of the game, number of equilibria and their nature. Thus, the simple exploration behavior of Rmax
and the potential to alter it in various transparent ways is a clear benefit. Yet, when we may need
to coordinate with other players with unknown coordination mechanisms, or if our underlying state
space is too big for repeated value computations, FriendQ seems to offer the best choice.

4. Learning in FSSGs

In two-player Zero Sum SGs (ZSSGs), the players’ payoffs sum up to zero at every entry. That is,
[R(s,a1,a2)]1 = −[R(s,a1,a2)]2 for every s ∈ S, a1 ∈ A1 and a2 ∈ A2. Such payoffs indicate that
the agents’ interests completely conflict. A ZSSG can be modeled with a single payoff function
R′(s,a1,a2) = [R(s,a1,a2)]1 by redefining Player’s 2 objective as to minimize the IHDR (infinite
horizon discounted reward). For the rest of this section, it is assumed that Player 1 is the max-
imizer and Player 2 is the minimizer the payoff function R. Let V (s,π1,π2) denote the expected
IHDR for starting at state s and playing the profile (π1,π2) of stationary mixed policies there-

2656

MULTI-AGENT RL IN STOCHASTIC GAMES

after, and V (π1,π2) = (V (1,π1,π2), ...,V (|S|,π1,π2)). Since the best response in a ZSSG is also
the worst for the opponent, ZSSGs have a unique NE value. To see this, assume by negation that
V (s,π1,π2) > V (s,µ1,µ2) and that both (π1,π2) and (µ1,µ2) are NE. Since π2 ∈ BR(π1), it follows
that V (s,π1,µ2)≥V (s,π1,π2) > V (s,µ1,µ2), which contradicts µ1 ∈ BR(µ2). The value of a policy
π may be defined as V (π,BR(π)). In ZSSGs, this definition coincides with that of a NE (any pair of
optimal policies is a NE and vice versa).

Consequently, the state-value function V (s) is redefined to be the expected IHDR under a profile
of optimal policies and Q(s,a1,a2) the expected IHDR for taking joint action (a1,a2) in state s and
continuing according to a NE thereafter. For any stationary strategy profile (π1,π2) in a ZSSG G,
(π1(s),π2(s)) is a NE for the matrix games defined by [Q(s,a1,a2)]a1∈A1,a2∈A2

for all s ∈ S if and
only if (π1,π2) is a NE for G and the NE values for the matrix games correspond to the state values
V (s,π1,π2) (Filar and Vrieze, 1997). Thus, the Bellman optimality equations can be rewritten for
ZSSGs as

Q∗(s,a1,a2) = R(s,a1,a2)+ γ∑
s′

T (s,a1,a2,s′)V ∗(s′)

V ∗(s) = ∑
a1∈A1,a2∈A2

π1(a
1)π2(a

2)Q(s,a1,a2) (1)

where (π1,π2) is a NE for the matrix game defined by the Q-values in state s. Given a method that
computes NE for zero sum matrix games, Equation (1) can be used as an iterative approximation
rule to compute the Q-values (Littman, 1994) and given the Q-values an optimal policy can be
derived. The NE policies for a zero sum matrix game M = [r(ai,b j)]

k,l
i=1, j=1 are the solutions to the

linear program that maximizes v under the constraints (Filar and Vrieze, 1997)

{

k

∑
i=1

π(ai)r(ai,b j)≥ v | j ∈ {1, ..., l}

}

.

In the following sections, this linear program is abbreviated as:

v = max
π∈PD(A)

min
b∈B

∑
a∈A

π(a)r(a,b).

If SG G is obtained from ZSSG G′ by adding a constant c to all payoffs of both players, then
V G

i (π1,π2) = V G′
i (π1,π2)+ c/(1− γ) for any policy profile (π1,π2) and the strategic properties of

the game are unchanged. G is referred to as a Fixed Sum Stochastic Game (FSSG). The adversarial
nature of FSSGs calls for agents that perform well not only in self play but also in heterogeneous
play, namely when engaged by agents that employ different learning algorithms. Under this setting,
the exploration/exploitation tradeoff wears a new guise as attempted exploration and exploitation
may be interfered by the opponent.

This section compares three algorithms for learning in FSSGs: FoeQ (Littman, 1994, 2001),
WoLF (Bowling and Veloso, 2002) and Rmax (Brafman and Tennenholtz, 2002). They were se-
lected because they represent different approaches to the exploration/exploitation tradeoff and to
information propagation while providing some theoretical guarantees. Specifically, Rmax and FoeQ
converge to a NE in FSSGs in self-play, while WoLF is known to converge in 2 player, 2 action,
repeated games.

2657

BAB AND BRAFMAN

4.1 FoeQ

FoeQ (a.k.a MinimaxQ) (Littman, 1994, 2001) extends Q-learning into FSSGs by using a sample
backup learning rule based on Equation 1 (Littman, 1994). After taking a joint action (a,b) in state
s at time t and reaching state s′ with reward rcur, the agent updates the Q-value of 〈s,(a,b)〉 by

Qt(s,a,b)← (1−αt)Qt−1(s,a,b)+αt

(

rcur + γ max
π∈PD(A)

min
b′∈B

∑
a′∈A

π(a′)Q(s′,a′,b′)

)

.

Qt converges in the limit to Q∗ under the standard Q-learning conditions stated in Section 3.1. Also,
for similar reasons to those stated in Section 3.1, FoeQ is executed with an ε-greedy learning policy.

4.2 WoLF

WoLF (Bowling and Veloso, 2002) is designed to converge to a best response rather than a NE.
WoLF does not explicitly consider an adversary. It applies the standard single-agent Q-learning rule
to approximate Q-values of private actions and uses hill climbing to update its mixed policy. That
is, the policy is improved by increasing the probability of selecting a greedy action according to a
policy learning rate δ (which is distinct from the Q-value learning rate α), enabling mixed policies.
The uniqueness of WoLF is in using a variable policy learning rate according to the “Win or Learn
Fast” (hence WoLF) principle: if the expected return of the current policy given the current Q-values
is below (above) a certain threshold then a high, δl (low, δw), learning rate is set. A good threshold
would be the NE value of the game because if the player is receiving less than its value, its likely
playing a sub-optimal strategy, whereas if it receives more than the NE value, the other players
must be playing sub-optimally. Since the NE value is unknown, it is approximated by the expected
return of the average policy (averaged over the history of the game) given the current Q-values. The
motivation for the WoLF variable policy learning rate is to enable convergence to a NE. Indeed,
Bowling and Veloso (2002) show that gradient ascent with WoLF is guaranteed to converge to a
NE in self play on two-player, two-action, repeated matrix-games, while gradient ascent without
a variable learning rate is shown not to. Furthermore, they provide empirical results on FSSGs
in which WoLF converges to NE in self play. WoLF, as single agent Q-learning, is guaranteed to
converge in the limit to a best response under the standard conditions and given that the opponent(s)
converge to stationary policies.

4.3 Rmax

Section 3.3 describes the Rmax algorithm in the context of MDPs. The same algorithm is applicable
to FSSGs with the only difference that joint actions are considered and optimal policies with respect
to the fictitious model are computed according to (1). As mentioned in Section 3.3, Rmax always
behaves optimally with respect to an approximated, initially optimistic, model M ′ of the real model
M. Since unknown entries are modeled in an attractive manner in M ′, Rmax has a strong bias to
explore. Seeing that the optimal policy maximizes return against the worst opponent, if the opponent
prevents Rmax from visiting unknown entries then Rmax attains near-optimal return because the
known entries are accurately modeled. Thus, Rmax is guaranteed to either attain near optimal
return in the real model M or, with sufficiently high probability, visit unknown entries (Brafman and
Tennenholtz, 2002). This property assures that Rmax will attain near-optimal average reward after
a polynomial number of steps in FSSGs as well as in MDPs.

2658

MULTI-AGENT RL IN STOCHASTIC GAMES

As in the CISGs experiments, K1, the number of visits required to declare an entry known, is
treated as a parameter that has to be preset and Rmax is not assumed to be known. Instead, Rmax is
initialized to some positive value and updated online to be twice the highest reward encountered so
far.

4.4 Discussion of Algorithms

The shortcoming of GLIELPs discussed in Section 3.4, namely the possibility of untimely greed-
iness, applies also to FoeQ and WoLF in fixed sum environments and may be further exploited
by an informed adversary. Furthermore, FoeQ and WoLF do not reason about how the opponent
affects exploration. Thus, attempted exploration may result, depending on the opponent’s action
choice, in joint actions that are of low informative and materialistic value. FoeQ’s and WoLF’s
single step backups and possible premature decrease of the Q-learning rates may cause poor use of
new experience.

WoLF compensates for the above limitations by the following properties: (i) Hill climbing
adjustment of the policy for enhanced exploration. Specifically, this exploration is regulated by
the variable policy learning rate to explore more while “winning”. The gradual policy update also
prevents formation of big gaps between Q-values of different entries and thus contributes to both fast
adjustment to changes in the adversary’s behavior and reduction of the effect of untimely greediness.
(ii) WoLF’s greedy policy is a best response rather than a NE. This fact results in high payoffs during
learning, fast growth of Q-values and hence fast convergence. (iii) WoLF does not explicitly model
the opponent. It maintains Q-values for the small action space of private actions resulting in faster
propagation of state-action values.

A major conceptual difference between WoLF and both Rmax and FoeQ is the target of learn-
ing, which also implies the definition of greediness during learning. Rmax’s and FoeQ’s greedy
policies are NE policies. Playing a NE policy is the best strategy against a rational opponent. It
also makes sense even if the adversary does not play a BR since it ensures at least the value of the
game. However, playing a NE policy w.r.t. a non-accurate model/Q-values during learning makes
the hidden assumption that the opponent is not only rational but also acts according to the same
model/Q-values. Under heterogeneous play, this assumption is not valid and may result in low pay-
offs during learning. FoeQ typically maintains pessimistic Q-values during learning. The resulting
(greedy) NE learning policy will attempt to avoid entries that are not well known since they seem
unprofitable. Thus, FoeQ’s greedy action choice may have low informative and materialistic value
when engaged in heterogeneous play. For model free algorithms, fast convergence depends on high
payoffs during learning. Rmax does not distinguish exploration from exploitation and guarantees to
either exploit or explore independent of the adversary’s actions. Thus, low payoffs during learning
are traded for faster convergence to a NE policy. However, Rmax is biased to explore and may
play exploratory actions even when it “knows” a submodel in which the value is attainable. WoLF
pursues the best response policy during learning. This strategy is efficient against adversaries that
converge to stationary policies. However, an adversary that knows WoLF’s strategy may play a
“decoy” policy until WoLF’s learning is slow and then switch to a best response.

Notwithstanding formal results (Even-Dar and Mansour, 2003), parameter tuning is still a task
that requires expert experience and intuition. In this respect, WoLF is the most complicated among
the three algorithms. On top of the parameters for decaying exploration and Q learning rates, which
also appear in FoeQ, it involves presetting the decay rate of the policy-learning rates and the relation

2659

BAB AND BRAFMAN

between the two policy-learning rates δw and δl . Rmax is the simplest to tune among the three with
a single parameter, K1, the number of visits to declare an entry “known”.

Finally, We note that our discussion of convergence rates and the especially our experimental
evaluation focuses on the number of time steps,or multi-agent encounters rather than CPU-time.
Although the algorithms we evaluated are all considered practical for online reinforcement learning,
it should be noted that WoLF requires considerably less computation than FoeQ or Rmax since it
does not involve linear programming computations of equilibria.

4.5 Experimental Results & Analysis

This section describes experimental results on three 2-agent fixed-sum grid games. The games were
designed to evaluate the effects of exploration, information propagation, action selection and other
methods, on the performance of FoeQ, WoLF and Rmax in different environments. The algorithms
were tested in both self play and heterogeneous play. The available actions, indexing of the grid,
transition probabilities for the deterministic and stochastic modes, discount factor etcȧre the same
as in the CISG experiments. The process of adjusting the parameters was also similar to the CISG
experiments and was conducted on the “deterministic 3×3 Wall game” (see below).

The following parameter settings were used for testing:

FoeQ

Exploration: ε-greedy, εt←max
{

0.99999countt ,1/count0.5000001
t

}

where countt is the num-
ber of exploratory steps taken by time t.

Learning rate: αs,a←max
{

0.99908n(s,a),1/n(s,a)0.75
}

where n(s,a) is the number of
times action a was taken in state s.

Q-values were initialized to 0.

WoLF

Exploration: ε-greedy, εt ←max
{

0.5000001countt ,1/count0.5000001
t

}

.

Q Learning rate: αs,a←max
{

0.95n(s,a),1/n(s,a)0.0.5000001
}

.

Policy Learning rate: δl = 0.7×αs,ag , δw = 0.175×αs,ag where ag is a greedy action in
the current state s.

Rmax

Sampling: values of 50, 100 and 200 for K1 (visits to mark an entry known) were tested.

Accuracy of Policy Iteration: Offline Policy Iteration was halted when the difference be-
tween two successive approximations was less than 0.001

4.5.1 3×3 WALL GAME

In this 3× 3 grid game, one player, A, is an Attacker and the other, D, is a Defender. Figure 11a
depicts the initial position of the game. A’s goal is to reach the rightmost column of the grid. If
both players try to enter the same square or to enter each other’s current positions (that is, switch
places) then their locations are unchanged. The only exception to this rule is when the players are in
diagonally adjacent squares—in this case A moves and D’s position is unchanged (Fig. 11b), so that

2660

MULTI-AGENT RL IN STOCHASTIC GAMES

the attacker has a slight advantage. The fixed sum of the game is 40. When A reaches the rightmost
column of the grid, it receives a reward of 40, D receives a reward of 0 and the players are reset in
their initial positions. For any other move, A is rewarded by 15 and D is rewarded by 25. The game
was played under deterministic transition probabilities. Every experimental trial was over 4× 106

rounds. The minimax a.r.p.s. for the Attacker is ∼ 21.36.

A D

(a) Initial position

A -

D
6 -

A

D

(b) Attacker passes defender

Figure 11: 3x3 wall game

15

16

17

18

19

20

21

22

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Deterministic Wall game on 3x3 grid.
Rmax in self play.
Attacker’s average reward per step over time.

RmaxK50
RmaxK100
RmaxK200

minimax solution

(a) Rmax in self play

15

16

17

18

19

20

21

22

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Deterministic Wall game on 3x3 grid.
FoeQ and WoLF in self play.
Attacker’s average reward per step over time.

FoeQ
WoLF

minimax solution

(b) FoeQ and WoLF in self play

 14

 16

 18

 20

 22

 24

 26

 0 200000 400000 600000 800000 1e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Deterministic Wall game on 3x3 grid.
Rmax vs FoeQ.
Attacker’s average reward per step over time.

FoeQ attacks RmaxK50
FoeQ attacks RmaxK100
FoeQ attacks RmaxK200

RmaxK50 attacks FoeQ
RmaxK100 attacks FoeQ
RmaxK200 attacks FoeQ

minimax solution
FoeQ attacks WoLF
WoLF attacks FoeQ

(c) Rmax vs FoeQ and WoLF vs FoeQ (only first 106

rounds)

 14

 16

 18

 20

 22

 24

 26

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Deterministic Wall game on 3x3 grid.
Rmax vs WoLF.
Attacker’s average reward per step over time.

WoLF attacks RmaxK50
WoLF attacks RmaxK100
WoLF attacks RmaxK200
RmaxK50 attacks WoLF

RmaxK100 attacks WoLF
RmaxK200 attacks WoLF

minimax solution

(d) Rmax vs WoLF

Figure 12: 3x3 wall game – average reward per step

2661

BAB AND BRAFMAN

Attacker’s policy Defender’s policy
A D K1 u l d r s Q-val KE u l d r s Q-val KE
OptOpt .514 .0 .0 .486 .0 1053 1200 .0 .383 .0 .617 .0 947 1200
RX RX 50 .514 .0 .0 .486 .0 — 838 .0 .383 .0 .617 .0 — 838
RX RX 100 .514 .0 .0 .486 .0 — 833 .0 .383 .0 .617 .0 — 833
RX RX 200 .515 .0 .0 .485 .0 — 831 .0 .385 .0 .615 .0 — 831
FQ FQ .415 .0 .297 .288 .0 966 — .0 .383 .0 .327 .290 947 —
WF WF .279 .006 .279 .432 .004 1095 — .067 .309 .022 .278 .324 966 —
RX FQ 50 .213 .0 .181 .606 .0 — 391 .087 .022 .0 .525 .366 265 —
RX FQ 100 .382 .0 .225 .393 .0 — 295 .054 .066 .068 .597 .215 452 —
RX FQ 200 .154 .0 .241 .605 .0 — 249 .074 .023 .009 .630 .264 715 —
FQ RX 50 .040 .094 .0 .727 .139 204 — .026 .484 .017 .473 .0 — 638
FQ RX 100 .018 .084 .033 .800 .065 338 — .048 .683 .075 .194 .0 — 516
FQ RX 200 .009 .115 .005 .847 .025 517 — .033 .810 .037 .120 .0 — 391
RX WF 50 .262 .0 .262 .476 .0 — 583 .06 .147 .013 .334 .446 958 —
RX WF 100 .388 .0 .170 .442 .0 — 579 .109 .043 .027 .419 .402 997 —
RX WF 200 .442 .025 .348 .185 .0 — 510 .253 .031 .142 .237 .337 1055 —
WF RX 50 .238 .0 .185 .577 .0 1061 — .0 .384 .004 .426 .186 — 487
WF RX 100 .214 .0 .231 .555 .0 1060 — .002 .371 .0 .532 .095 — 411
WF RX 200 .314 .0 .303 .378 .005 1082 — .026 .401 .010 .524 .039 — 365

Table 4: 3× 3 wall game – The first row reports the action probabilities of a NE policy profile in
the initial state, the Q-values for action 〈stand, stand〉 in the initial state and the number
of entries in the game. The next rows classify the average learned policies in the initial
state, the average learned Q-values for actions 〈stand, stand〉/〈stand〉 by the FoeQ/WoLF
players, respectively, in the initial state and the average number of known entries by Rmax,
after 4× 106 rounds, according to the players’ types. RX, FQ and WF are abbreviations
for Rmax, FoeQ and WoLF respectively. The first column, titled A, provides the Attacker’s
type. The second column, titled D, provides the Defender’s type. The third column, titled
K1, states the value of Rmax’s K1 parameter. The columns titled u, l, d, r, s specify
the probabilities for actions up, left, down, right, and stand, respectively, according to the
learned policies. The columns titled Q-val and KE specify the learned Q values by FoeQ
or WoLF and the number of known entries by Rmax.

Figure 12 presents the a.r.p.s. obtained by the different agents playing the Attacker’s role in self
and heterogeneous play.13 Table 4 classifies some significant variables of the average state of the
learning algorithms after 4×106 rounds according to the players’ types.

Self Play
In self play, all algorithms converge to minimax or almost minimax values (Fig. 12a,b). FoeQ

converges to within 0.5 of the minimax value within the first 106 rounds and from then on improves
very slowly because of its increasing bias to exploit combined with its decreasing learning rates.
The FoeQ Defender learns correct Q-values and an optimal policy while the Attacker learns a rough
estimation of the Q-values and a suboptimal policy (Table 4).14 WoLF converges to the minimax
value within 1.5×106 rounds and then oscillates around this value while the players keep updating

13. In figures where the behavior does not change after a certain point, we show only the initial phases. For example, in
Figure 12c).

14. The first row of Table 4 presents the policies as outputted by a value-iteration solver. It should be noted that there are
equivalent optimal policies in the initial state: i. For the Attacker, a probability mass of .514 may be divided in any
way between the actions up and down; ii. For the Defender, the actions right and stand are equivalent since it is next
to the right border of the grid, and for the Attacker, left and stand are equivalent.

2662

MULTI-AGENT RL IN STOCHASTIC GAMES

their best responses to each other (Fig. 12b). WoLF learns almost optimal policies and Q-values
(Table 4). Three main differences make WoLF more robust than FoeQ: first, it maintains a consid-
erably smaller state-action space since it considers only private actions. This difference results in
more efficient back propagation of the Q-values. Second, its learning policy is a best response pol-
icy rather than an equilibrium policy. For this reason, it collects higher rewards during early phases
of learning and in turn the Q-values converge faster. And third, the hill climbing policy updates
combined with the variable learning rate serve as an additional exploration mechanism. As long as
the WoLF players have not converged to equilibrium, an increased policy learning rate will always
be used by one of the players. As in the CISG case, Rmax’s learning period depends almost linearly
on K1. With K1 = 50, Rmax converges to the minimax value within 106 rounds (Fig. 12a). Unlike
the CISG case, Rmax converges to optimal policies before all entries become known (Table 4), thus
the unknown entries will not be (unnecessarily) further explored.

In self play, the identical exploration and exploitation techniques of both players gives rise
to efficient joint exploration and hence to fast convergence to policies that are close or equal to
the minimax policies. In contrast, when the opponents employ different learning algorithms, joint
exploration is impeded.

Heterogeneous Players
Figure 12c depicts the average learning curves for plays of FoeQ against Rmax. The curves start

at ∼ 16.25, which is the a.r.p.s. for the Attacker when random policies are played. The learning
curve for the FoeQ Attacker may be divided into three phases: in the first 50,000 to 100,000 rounds
(depending on K1), FoeQ’s a.r.p.s. increases rapidly, then drops back down to ∼ 17 and changes
very slowly thereafter. During the first phase, Rmax plays exploratory policies that enable FoeQ to
reach its goal states by playing suboptimal policies. As a result, FoeQ propagates Q-values of entries
that are not frequently visited by the NE strategies of the game and constructs a wrong estimate of
the strategic structure of the game. During the next phase, Rmax learns improved strategies. At
this stage, FoeQ is too biased to exploitation and the learning rates for some entries are too small to
overcome the distorted estimation in the first phase. In the third phase, new entries rarely become
known because of FoeQ’s bias to exploit and its slow learning. For lower values of the K1 parameter
in Rmax, FoeQ yields lower return in the first phase but recovers faster in the third phase because the
first phase is shorter for lower values of K1. This property in turn results in lower estimation of the
Q-values (Table 4) and hence smaller gaps between the true strategic structure of the game and the
strategic structure estimated by FoeQ after the first phase. The smaller gaps are easier to overcome
in the third phase. The learning curves and learned values and policies for the opposite mode,
Rmax Attacks FoeQ, are a bit less distinct but express similar dynamics. The main advantages of
Rmax over FoeQ, expressed in the results, are: An exploration technique that is not time dependent
instead of increasing greediness, exhaustive computations instead of single backup per step, and the
Rmax learning technique that is guaranteed to either explore or attain return that is at least near the
minimax, instead of heuristic exploration. Since, from some early stage, FoeQ mainly attempts to
exploit w.r.t. its inaccurate estimation of Q-values and strategic structure and since unknown entries
are estimated by FoeQ as having low Q-values, the joint policy does not frequently reach unknown
entries but rather yields high rewards for Rmax.15 Figure 12c also shows the learning curves for

15. It is known that Q-learning with low initial values can behave sub-optimally. Thus, the observed behavior of FoeQ
may be a consequence of the fact that Q-values are initialized to 0. However, unless prior information about the
possible rewards or their magnitude is available, this appears to be the most unbiased choice.

2663

BAB AND BRAFMAN

plays of FoeQ against WoLF. The combination of FoeQ’s slow learning, fast “aging” and playing
an equilibrium policy w.r.t. its pessimistic estimated Q-values with WoLF’s fast learning of a good
response produces very poor performance for FoeQ in our particular set of experiments.

The average learning curves for plays of WoLF against Rmax, presented in Figure 12d, converge
to the minimax value within the examined time interval under the following settings: Rmax Attacks
and K1 = 50, Rmax Defends and K1 = 50 or K1 = 100. Prior to convergence, WoLF gains return
higher than the minimax. In the cases of convergence to minimax value, Rmax also converges to,
at least almost, a NE policy. WoLF in these cases does not converge to NE but rather to some
other best response (Table 4). The dynamic of the learning process can roughly be divided into
stages, defined by the discovery of new entries by Rmax and the following policy updates. Rmax
starts off with a uniformly mixed policy. Before new entries become known to Rmax, WoLF learns
a deterministic response policy with a higher return to WoLF than the minimax value. In turn,
entries associated with WoLF’s deterministic policy are the first to become known to Rmax. Each
joint policy that results from Rmax’s policy updates has one of the following properties: (i) The
new joint policy seldom visits unknown entries. This policy provides Rmax with return close to or
greater than the minimax. (ii) The new joint policy frequently visits unknown entries and provides
Rmax with higher return than its average so far. (iii) The new joint policy frequently visits unknown
entries and provides Rmax with return equal or lower than its average return so far. In cases (i)
and (ii), WoLF will switch to “learn fast” mode and, unless Rmax is already playing the minimax
policy, will manage to learn a new response policy with return higher than the minimax before the
next stage. This joint policy is guaranteed to visit unknown entries but directs exploration to entries
more profitable to WoLF. WoLF’s hill climbing method, variable learning rate and small action
space enable it to adjust fast to Rmax’s new policies and maintain an average return higher than
the minimax until Rmax converges to the NE policy. Since Rmax starts off with highly exploratory
policies, WoLF is able to attain high payoffs at an early learning phase and thus maintain a high
threshold for determining switching of learning rates. By playing a best response, WoLF directs
joint exploration as to delay convergence of Rmax on one hand and encourage fast growth of its
estimated Q-values on the other.

The relation between the value of K1 in Rmax to the convergence time is not as clear as in self
play because higher values for K1 give WoLF more time to adapt and exploit each new policy of
Rmax. It should be noted that for deterministic models, K1 can be set to 1, leading to very rapid
convergence of Rmax. However, our parameter selection attempts to optimize for a wide range of
environmental dynamics and assumes this dynamic is not known ahead of time.

The phenomena observed in this game were repeated in the games described in the following
sections. Therefore, in the following, only phenomena not observed in the 3× 3 Wall game are
discussed.

4.5.2 5×2 WALL GAME

The transition rules of this game are identical to the 3× 3 Wall game. It is played on a 5× 2 grid
under deterministic transition probabilities. Figure 13 depicts the initial position of the game and A’s
reward structure. When A reaches the right column of the grid in row i, it is rewarded by ri, where
r0 = 100 and ri = ri−1 + 10i for i ∈ {1,2,3,4}, and the agents are reset in their initial positions.
Otherwise A is rewarded by 90. The fixed sum of the game is 200. The minimax a.r.p.s. for the
Attacker is ∼ 105.18. The game is designed to fool GLIELPs with random exploration played by

2664

MULTI-AGENT RL IN STOCHASTIC GAMES

A. If A explores randomly, it will probably discover the high rewards in the top rows before it will
discover the higher rewards in the lower rows. Later, its growing bias to exploit will prevent it from
sufficiently exploring the lower rows.

A D 100

110

130

160

20090

90

90

90

90

Figure 13: 5×2 wall game – initial position and rewards

92

94

96

98

100

102

104

106

108

110

112

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Deterministic Wall game on 5x2 grid.
Rmax in self play.
Attacker’s average reward per step over time.

RmaxK50
RmaxK100
RmaxK200

minimax solution

(a) Rmax in self play

92

94

96

98

100

102

104

106

108

110

112

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Deterministic Wall game on 5x2 grid.
FoeQ and WoLF in self play.
Attacker’s average reward per step over time.

FoeQ
WoLF

minimax solution

(b) FoeQ and WoLF in self play

 90

 95

 100

 105

 110

 115

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Deterministic Wall game on 5x2 grid.
Rmax vs FoeQ.
Attacker’s average reward per step over time.

FoeQ attacks RmaxK50
FoeQ attacks RmaxK100
FoeQ attacks RmaxK200
RmaxK50 attacks FoeQ

RmaxK100 attacks FoeQ
RmaxK200 attacks FoeQ

minimax solution

(c) Rmax vs FoeQ

 90

 95

 100

 105

 110

 115

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Deterministic Wall game on 5x2 grid.
Rmax vs WoLF.
Attacker’s average reward per step over time.

WoLF attacks RmaxK50
WoLF attacks RmaxK100
WoLF attacks RmaxK200
RmaxK50 attacks WoLF

RmaxK100 attacks WoLF
RmaxK200 attacks WoLF

minimax solution

(d) Rmax vs WoLF

Figure 14: 5×2 wall game – average reward per step

2665

BAB AND BRAFMAN

Attacker Defender
A D K1 u l d r s Q-val KE u l d r s Q-val KE
OptOpt .0 .0 1.0 .0 .0 5209 1125 .0 .0 1.0 .0 .0 4790 1125
RX RX 50 .0 .0 1.0 .0 .0 — 761 .0 .0 1.0 .0 .0 — 761
RX RX 100 .0 .0 .971 .029 .0 — 745 .0 .0 1.0 .0 .0 — 745
RX RX 200 .002 .005 .803 .185 .005 — 723 .0 .051 .903 .046 .0 — 723
FQ FQ .648 .0 .0 .306 .045 4783 — .897 .0 .0 .053 .050 4403 —
WF WF .0 .003 .938 .057 .002 5316 — .001 .0 .999 .0 .0 4742 —
RX FQ 50 .0 .0 1.0 .0 .0 — 272 .925 .026 .004 .036 .009 507 —
RX FQ 100 .0 .004 .970 .026 .0 — 229 .949 .006 .0 .023 .022 586 —
RX FQ 200 .049 .053 .473 .075 .350 — 199 .807 .024 .025 .091 .053 728 —
FQ RX 50 .213 .081 .158 .293 .255 1726 — .407 .492 .026 .025 .050 — 88
FQ RX 100 .252 .193 .014 .319 .222 2861 — .297 .652 .007 .031 .013 — 58
FQ RX 200 .312 .165 .033 .318 .172 3926 — .055 .931 .007 .007 .0 — 43
RX WF 50 .0 .029 .971 .0 .0 — 456 .0 .0 1.0 .0 .0 4795 —
RX WF 100 .0 .056 .813 .117 .014 — 438 .0 .0 .992 .004 .004 4832 —
RX WF 200 .0 .014 .718 .268 .0 — 406 .0 .007 .916 .025 .052 4863 —
WF RX 50 .0 .0 .996 .004 .0 5223 — .0 .0 1.0 .0 .0 — 449
WF RX 100 .025 .049 .856 .021 .050 5400 — .133 .059 .675 .106 .026 — 361
WF RX 200 .181 .083 .619 .064 .053 5475 — .176 .213 .391 .084 .136 — 221

Table 5: 5×2 wall game – NE policies and Average learned policies for state 〈(2,0),(2,1)〉, aver-
age learned Q-values for action 〈stand, stand〉/〈stand〉 in the initial state by FoeQ/WoLF,
respectively, and average number of known entries by Rmax, after 4×106 rounds, classi-
fied by players’ types. See format explanation in Table 4.

Figure 14 presents the a.r.p.s. obtained by the different agents playing the Attacker’s role. Table
5 classifies the average learned policies in state 〈(2,0),(2,1)〉 (both players on middle row), the
average learned values for action 〈stand, stand〉/〈stand〉 in the initial state by the FoeQ/WoLF
players and the average number of known entries by the Rmax players, according to the agents
playing A and D. The minimax policy for A and D when they are both in rows 0, 1 or 2 is to move
down. When A and D are both in rows 3 or 4 their minimax policy is mixed.

Self Play
Rmax with K1 = 50 converges to the minimax values (Fig. 14a) and policies (Table 5). With

values of 100 and 200 of K1, Rmax still has a small exploration bias after 4×106 rounds (Table 5)
and attains almost the minimax value (Fig. 14a). WoLF’s convergence to near the minimax value is
exceptionally fast in this domain, despite its GLIELP (Fig. 14b). The gradual increase in payoffs for
attacking in lower rows both guides exploration and speeds up learning by causing many switches
in the learning rate. By employing a high policy learning rate to find a best response, the WoLF
Attacker very quickly discovers the high return in the bottom rows and the WoLF Defender follows
by defending them. FoeQ on the other hand falls in the designed trap and converges to a suboptimal
policy (Fig. 14b). The FoeQ Attacker believes that it can gain higher rewards in the top rows and
assigns a high probability to action up in state 〈(2,0),(2,1)〉 instead of down. The FoeQ defender,
as well, believes that the upper rows are more worth defending and also assigns a high probability
to action up in this state (Fig. 14b, Table 5).16

Heterogeneous Players
Figure 14c shows A’s a.r.p.s. over time for plays of FoeQ against Rmax. FoeQ’s behavior is

16. Again, this behavior, too, could be attributed to low initial Q-values.

2666

MULTI-AGENT RL IN STOCHASTIC GAMES

similar to its behavior in self play. When D is played by FoeQ, it attempts to defend the top rows
while Rmax attacks in the bottom ones. When A is played by FoeQ, it attempts to Attack only in
the top rows (Table 5). Since the entries associated with states of both players being in the bottom
rows are unknown to the Rmax Defender, they are modeled as unrewarding by FoeQ, and hence,
its policy defends only in the top rows. The low numbers of known entries to Rmax (Table 5) is
evidence of FoeQ’s inability to sufficiently explore.

In plays of Rmax against WoLF, the players converge to minimax in the examined time interval
only for Rmax with K1 = 50 and WoLF gains a.r.p.s. higher than the minimax all the way to con-
vergence (Fig. 14d). During the learning period, WoLF’s policy is “one step ahead” of Rmax’s. In
particular, it assigns a greater probability to action down in the middle row. This advantage is also
expressed by the differences in the probability assigned to action down between the learned policies
for the different values of K1 (Table 5). When WoLF plays the Defender, it adjusts quickly to the
behavioral changes of Rmax. When WoLF plays the Attacker, the gradual increase of rewards for
attacking in lower rows directs WoLF’s exploration while maintaining a high a.r.p.s.

Removing the Intermediate Rewards
To eliminate the incentive to explore and learn quickly given to WoLF by the intermediate re-

wards, we studied a variant of the 5× 2 Wall game: the Attacker’s payoffs for attacking in the
second and third rows are modified to 100. All the other payoffs and transitions are unchanged. The
minimax policies and values are also unchanged since the attacker’s optimal policy in both settings
attacks only in the two bottom rows.

 90

 95

 100

 105

 110

 115

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
round number

n
u
m

 o
f
d
is

co
ve

re
d
 e

n
tr

ie
s

Deterministic Wall game on 5x2 grid, second version.
WoLF attacks Rmax and WoLF in selfplay.
WoLF’s a.r.p.s over time.

WoLF attacks RmaxK50
WoLF attacks RmaxK100
WoLF attacks RmaxK200

minimax
WoLF in selfplay

(a) WoLF attacks Rmax and WoLF in self-play

 90

 95

 100

 105

 110

 115

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
round number

n
u
m

 o
f
d
is

co
ve

re
d
 e

n
tr

ie
s

Deterministic Wall game on 5x2 grid, second version.
Rmax attacks WoLF.
Rmax’s a.r.p.s over time.

RmaxK50 attacks WoLF
RmaxK100 attacks WoLF
RmaxK200 attacks WoLF

minimax

(b) Rmax attacks WoLF

Figure 15: Modified 5×2 wall game – a.r.p.s. over time

The convergence of WoLF in self play (Fig. 15a) is slower than its convergence on the first
reward structure, yet still faster than the other algorithms in self play. In plays of WoLF against
Rmax, WoLF has a disadvantage when it plays as the Attacker: The threshold for switching learning
rates does not grow in early learning and hence a low learning rate is more frequent while more
exploration is required to discover the benefits of attacking in the bottom rows. As an Attacker,
WoLF gains a lower return than the minimax value all the way to convergence (Fig. 15a). In the

2667

BAB AND BRAFMAN

Defender’s role, WoLF’s variable learning rate responds to the Rmax Attacker’s ”initiatives,” and
WoLF gains higher return than the minimax value all the way to convergence (Fig. 15b).

4.5.3 2×4 TAG GAME

This section describes the results of executing the algorithms on a stochastic Tag game. The game
is played on a 2× 4 grid with a missing corner. One of the players, C, is the tagger and the other,
E, is the Escaper. Fig. 16 depicts the initial configuration of the game. A tagging event (tag) occurs
when both players have the same positions. In the case of a tag, C receives a reward of 40, E
receives a reward of 0 and the players’ positions are unchanged. Otherwise C’s reward is 15 and E’s
reward is 25. C’s a.r.p.s. under the minimax policy is ∼ 18.22. C’s optimal strategy is to attempt to
trap E in the rightmost cell of the grid while E’s optimal strategy is to avoid this situation. To this
end, the minimax strategy is deterministic at all states except 〈(0,2),(0,3)〉.17 For example, in state
〈(0,1),(1,1)〉 the Escaper should move left and not right to avoid the danger of being forced to the
corner.

C

E

Figure 16: 2x4 tag game – initial position

Figure 17 presents the a.r.p.s. obtained by the different agents playing the tagger’s role. Table
6 classifies the average learned policies in state 〈(0,1),(1,1)〉, the average learned values for action
〈stand, stand〉 / 〈stand〉 in state 〈(0,2),(0,3)〉 by the FoeQ/WoLF players, and the average number
of known entries by the Rmax players, after 4×106 rounds, according to the agents playing C and
E.

Self Play
In self play, the Rmax Escaper does not learn an optimal policy. Furthermore, in contrast to

the deterministic games, E’s policy improves with greater values of K1, although fewer entries
become known (Table 6).18 This is because more sampling is required to approximate the transition
probabilities. However, the learned policies yield an 0.2-optimal return (Fig. 17a), closer to the
optimal value than the other algorithms. FoeQ and WoLF converge to near the minimax value within
the first 6×105 rounds and both learn almost optimal/minimax policies. FoeQ performs much better
in this domain than in the previous deterministic domains because the stochastic transitions amplify
exploration.

Heterogeneous Players
When Rmax plays against FoeQ, more entries become known and FoeQ’s value estimates are

better compared to the deterministic games, again due to the amplification of exploration by the

17. Positions are denoted (row,column), with (0,0) being the upper left position. From state 〈(0,2),(0,3)〉 the players can
transit to state 〈(0,3),(0,2)〉 by the joint action 〈right,left〉 without the occurrence of a tag.

18. Recall that as K1 increases, more visits are required to mark an entry known. Therefore, fewer entries will be marked
within a given time frame.

2668

MULTI-AGENT RL IN STOCHASTIC GAMES

16.5

17

17.5

18

18.5

19

19.5

20

20.5

0 200000 400000 600000 800000 1e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Stochastic Catch game on 2x4 grid with blocked corner.
Rmax in self play.
Catcher’s average reward per step over time.

RmaxK50
RmaxK100
RmaxK200

minimax solution

(a) Rmax in self play (first 106 rounds)

16.5

17

17.5

18

18.5

19

19.5

20

20.5

0 200000 400000 600000 800000 1e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Stochastic Catch game on 2x4 grid with blocked corner.
FoeQ and WoLF in self play.
Catcher’s average reward per step over time.

FoeQ
WoLF

minimax solution

(b) FoeQ and WoLF in self play(first 106 rounds)

15

16

17

18

19

20

21

22

23

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Stochastic Catch game on 2x4 grid with blocked corner.
Rmax vs FoeQ.
Catcher’s average reward per step over time.

FoeQ catches RmaxK50
FoeQ catches RmaxK100
FoeQ catches RmaxK200
RmaxK50 catches FoeQ

RmaxK100 catches FoeQ
RmaxK200 catches FoeQ

minimax solution

(c) Rmax vs FoeQ

 15

 16

 17

 18

 19

 20

 21

 22

 23

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
round number

a
ve

ra
g
e
 r

e
w

a
rd

 p
e
r

st
e
p

Stochastic Catch game on 2x4 grid with blocked corner.
Rmax vs WoLF.
Catcher’s average reward per step over time.

WoLF catches RmaxK50
WoLF catches RmaxK100
WoLF catches RmaxK200

RmaxK50 catches WoLF
RmaxK100 catches WoLF
RmaxK200 catches WoLF

minimax solution

(d) Rmax vs WoLF

Figure 17: 2×4 tag game – average reward per step

stochastic environmental dynamic. When FoeQ plays Escaper against Rmax, FoeQ learns bet-
ter policies when Rmax uses larger values of K1 (Table 6) and receives a greater average reward
(Fig. 17b)—opposite to what was observed in the 3×3 Wall Game. It seems that the longer periods
of Rmax playing fixed policies enable FoeQ to better approximate the different Q-values associated
with that policy. Despite the stochastic nature of the environment playing “in favor” of FoeQ, Rmax
is still superior in heterogeneous play. In plays of Rmax against WoLF, the algorithms converge to
the minimax value in five out of the six different configurations, whereas in the deterministic games
they converged in two or three out of the six. The convergence dynamic is similar to that observed
in the first two games, and WoLF receives an a.r.p.s. greater than the minimax value all the way to
convergence.

2669

BAB AND BRAFMAN

Tagger Escaper
A D K1 u l d r s Q-val KE u l d r s Q-val KE
OptOpt .0 .0 1.0 .0 .0 956 1050 .0 1.0 .0 .0 .0 1044 1050
RX RX 50 .0 .0 1.0 .0 .0 — 844 .0 .450 .0 .550 .0 — 844
RX RX 100 .0 .0 1.0 .0 .0 — 838 .0 .750 .0 .250 .0 — 838
RX RX 200 .0 .0 1.0 .0 .0 — 833 .0 .850 .0 .150 .0 — 833
FQ FQ .0 .0 .995 .005 .0 889 — .002 .769 .0 .229 .0 1048 —
WF WF .0 .0 1.0 .0 .0 922 — .005 .655 .0 .340 .0 1089 —
RX FQ 50 .0 .0 .950 .050 .0 — 742 .138 .278 .164 .225 .195 566 —
RX FQ 100 .0 .0 1.0 .0 .0 — 649 .067 .150 .064 .618 .101 802 —
RX FQ 200 .0 .0 1.0 .0 .0 — 572 .038 .320 .061 .541 .040 952 —
FQ RX 50 .090 .094 .476 .120 .220 448 — .0 .750 .0 .025 .0 — 789
FQ RX 100 .112 .029 .471 .049 .339 618 — .0 .575 .0 .413 .012 — 711
FQ RX 200 .175 .051 .539 .020 .215 720 — .0 .461 .001 .438 .100 — 622
RX WF 50 .0 .0 1.0 .0 .0 — 583 .020 .668 .0 .317 .0 1050 —
RX WF 100 .0 .0 .983 .0 .017 — 547 .015 .601 .002 .383 .0 1063 —
RX WF 200 .0 .050 .850 .0 .010 — 488 .020 .392 .001 .531 .056 1098 —
WF RX 50 .0 .0 .992 .0 .008 973 — .0 .7 .0 .3 .0 — 608
WF RX 100 .003 .001 .994 .0 .002 977 — .0 .65 .0 .35 .0 — 567
WF RX 200 .032 .019 .928 .008 .013 992 — .0 0.7 .0 0.3 .0 — 508

Table 6: 2×4 tag game – NE policies and average learned policies for state 〈(0,1),(1,1)〉, average
Q-values for action 〈stand, stand〉 / 〈stand〉 in state 〈(0,2),(0,3)〉 by FoeQ/WoLF and
average number of known entries by Rmax, after 4× 106 rounds, classified by players’
types. See format explanation in Table 4.

4.5.4 SUMMARY

The adversarial exploration/exploitation tradeoff in FSSGs is more complicated than that observed
in the common interest CISG case. Optimizing behavior during learning introduces a tradeoff be-
tween exercising opponents’ exploration in order to gain higher return (may-be at the expense of
fast convergence to some fixed learning target), to exercising opponents’ exploration for joint ex-
ploration. When one algorithm takes the time to explore, the other algorithm can exploit and obtain
payoff higher than the NE. To this end, learning a best response proves better than learning a NE,
when combined in the WoLF algorithm with other properties that ensure fast adaptation to a chang-
ing adversary.

Indeed, WoLF appears to be the preferred algorithm in heterogeneous play, with good per-
formance in self-play as well. Nevertheless, WoLF fails to converge to NE in heterogeneous play
against an adversary that does converge to a NE, which may be its Achilles heel. WoLF’s robustness
makes up for the classic weakness of GLIELPs discussed in Section 3.4 (that is, the great sensitivity
to the exploration schedule in some domains), but not completely. Thus, while in most cases WoLF
is preferable over the other presented algorithms, in some situations this anomaly manifests itself
and Rmax outperforms WoLF.

Additional practical issues may affect the choice of algorithm for a specific task. WoLF is
computationally more efficient, mainly because it does not involve equilibrium computations. Rmax
is much simpler for pre-tuning, with a single intuitive parameter, but requires solving the underlying
stochastic game.

2670

MULTI-AGENT RL IN STOCHASTIC GAMES

5. MGS

MGS is a Markov Game Simulation system designed to evaluate online performance of MARL
algorithms. Three main software components take part in a simulation:

Players – user-defined implementations of MARL algorithms.

Referee – a user-defined program that represents a multi-agent environment.

Simulator – mediates between the Players and Referee.

MGS provides Java interfaces and an abstract Referee class that implements the backbone of typical
grid-world environments and makes the programming of grid worlds simple and easy. It should be
noted that the description of software components and methods in the rest of this section is for
illustrative purposes and is partial and incomplete.

Modeling real world environments (or simplifications of such environments) as Stochastic Games
is a tedious task for humans. To simplify the modeling task, MGS supports simple creation of grid-
world environments referred to as Grid Games (GG). In a GG, agents can move about between
squares of a grid, move/carry objects etc. GGs induce MGs in which the set of states S are the pos-
sible assignments to the state variables, which are typically the position of the agents and various
objects. Actions change the positions of the agents and the state of the objects.

5.1 The Referee

This program represents a GG. The state variables of the GG are memory variables of the Referee
program and reachable internal states of the Referee correspond to possible assignments to the state
variables. The Referee may manage additional memory variables, that is, variables that capture the
previous assignment to the state variables in order to implement the payoff function. The Referee
implements methods that simulate the environment such as:

• getStateIndex() - enumerates the state space. Returns a unique integer that corresponds to
the current state of the Referee.

• giveActions(int[] actions) - receives the action choices of the players and updates the
state variables to characterize the new state of the environment.

• getPlayerReward(int p) - returns the payoff for player p.

5.2 The Players

They implement the methods:

• play(int s) - returns the action choice in state s.

• update(int s, int[] acts, double r) - updates the algorithm’s model / values accord-
ing to the new state s, other Players’ actions acts and payoff r.

2671

BAB AND BRAFMAN

5.3 The Simulator

This module is the active process during simulation. Schematically, the Simulator loops over the
following steps:

1. get the Players’ actions in the current state.

2. pass the joint action to the Referee.

3. compute the index of the new state of the environment.

4. pass the new state index and payoffs to the players.

Typically, GGs involve actions that move the agents up, down, left and right on a two-dimensional
grid. To unburden the user from modeling these aspects of the environment, they are already built
into the system. The abstract Referee class implements various methods for manipulating the po-
sitions of the agents on a grid represented by a two dimensional integer array. The Simulator also
computes the new positions of the agents according to the five default actions up, left, down,
right and stand, and according to user input transition probabilities. In Step 2 above, the Simula-
tor also passes to the Referee the results of this computation in the form of suggested new positions
for the players.

MGS is a very flexible tool. Despite the implemented GG features, it can in fact be used to model
any discrete state-action space MG (although doing so may require more complicated programming
than the simple implementation of GGs). MGS offers various features that make it a convenient
experimental tool. Input can be specified either by a GUI or by a script. Scripts may specify multiple
independent simulations and may also include parameters for the Players’ algorithms. MGS logs
statistics of payoffs and selected actions and also supports logging by the Players. For further
information on MGS, see http://www.cs.bgu.ac.il/˜mal.

6. Conclusions

This paper presents a large empirical study of representative MARL algorithms conducted using the
MGS tool. Such comprehensive studies in this area are rare. The only other related study we are
aware of appeared in Powers and Shoham (2005) and involved the much simpler class of repeated
games with known game matrices. While most authors run some empirical studies, these often
focus on their algorithms and do provide a comprehensive comparison of strengths and weaknesses.

We believe that our results and analysis can serve to guide researchers in developing more
powerful algorithms and formal analytic tools, and practitioners in selecting and tuning algorithms
for specific tasks. Some of our results are closely related to phenomena observed in single-agent
reinforcement-learning algorithms, especially in common-interest environments, which can be viewed
as describing a distributed version of single-agent RL. In this domain, the issue of exploration vs.
exploitation appears to play a major role in the success of different algorithms. Here, we found
Rmax’s exhaustive approach to be very useful, being much less susceptible to being stuck in lo-
cal minima compared to GLIELP exploration. Of course, one does expect this almost-exhaustive
exploration approach to be costly in large domains. However, in our examples, Rmax was able to
perform well with small sample sizes, partly due to the locality of actions—that is, the fact that
most actions have a small number of possible outcomes and these effects do not change the agent’s
state drastically. In general, many real-world domains tend to have this property. We believe that

2672

MULTI-AGENT RL IN STOCHASTIC GAMES

online identification of locality properties may be used to construct more practical variants of Rmax
as well as other methods. Rmax also provides another capability we found important in common
interest games: coordinated exploration. It also seems to scale well with the number of agents. Per-
haps most important is the fact that it is very simple to understand its behavior, and consequently,
we believe, to modify it given background knowledge. However, Rmax is completely inadequate if
cooperation is to be obtained given a system with heterogeneous agents.

Fixed sum games provided an interesting setting, where we could test algorithms against each
other. We found that learning is more efficient when the greedy component of the learning policy
is a best response rather than a minimax strategy. The WoLF algorithm achieves fast adaptation
to a changing opponent by maintaining values for only the private action space and by regulating
behavior according to the dynamics of the learning process, and it seems to be the best choice in
such competitive environments.

Overall, it seems that there is much potential for improved performance by multi-agent learning
algorithms. We hope this study will motivate the design of algorithms that improve upon the current
state of the art, and we believe that the MGS test bed can be a useful tool for testing such new
techniques.

Acknowledgments

We are grateful to the reviewers for their useful suggestions and comments, and to the associate
editor, Michael Littman, for his many useful and detailed comments. Partial support was provided
by the Paul Ivanier Center for Robotics Research and Production Management, by the Lynn and
William Frankel Center for Computer Science, and by the Israel Science Foundation.

References

A. Bab and R. I. Brafman. An experimental study of different approaches to reinforcement learning
in common interest stochastic games. In ECML, pages 75–86, 2004.

M. H. Bowling and M. M. Veloso. Multiagent learning using a variable learning rate. Artificial
Intelligence, 136(2):215–250, 2002.

R. I. Brafman and M. Tennenholtz. R-max – a general polynomial time algorithm for near-optimal
reinforcement learning. JMLR, 3:213–231, 2002.

R. I. Brafman and M. Tennenholtz. Learning to coordinate efficiently: A model based approach.
JAIR, 19:11–23, 2003.

R I. Brafman and M. Tennenholtz. Efficient learning equilibrium. Artif. Intell., 159:27–47, 2004.

G. W. Brown. Iterative solution of games by fictitious play. In T. C. Koopmans, editor, Activity
Analysis of Production and Allocation. Wiley, 1951.

G. Chalkiadakis and C. Boutilier. Coordination in multiagent reinforcement learning: A Bayesian
approach. In AAMAS’03, 2003.

C. Claus and C. Boutilier. The dynamics of reinforcement learning in cooperative multi-agent
systems. In Proc. Workshop on Multi-Agent Learning, 1997.

2673

BAB AND BRAFMAN

R. Dearden, N. Friedman, and D. Andre. Model based bayesian exploration. In UAI’99, 1999.

R. Dearden, N. Friedman, and S. Russell. Bayesian Q-learning. In AAAI-98, 1998.

E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning Research,
5:1–25, 2003.

J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.

J. Hu and M.P. Wellman. Multiagent Reinforcement Learning: Theoretical Framework and an Algo-
rithm. In Proceedings of the Fifteenth International Conference on Machine Learning (ICML-98),
pages 1095–1100, 1998.

L. P. Kaelbling. Learning in Embedded Systems. The MIT Press: Cambridge, MA, 1993.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4:237–285, 1996.

M. L. Littman. Friend-or-foe Q-learning in general-sum games. In Proc. 18th International Conf.
on Machine Learning, 2001.

M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In Proc. 11th
International Conference on Machine Learning, 1994.

A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning with less data and
less time. Machine Learning, 13:103–130, 1993.

R. Powers and Y. Shoham. Learning against opponents with bounded memory. In Proc. 19th
International Joint Conf. on Artificial Intelligence, 2005.

M. Puterman. Markov Decision Processes. Wiley, New York, 1994.

A. Schaerf, Y. Shoham, and M. Tennenholtz. Adaptive load balancing: A study in multi-agent
learning. Journal of Artificial Intelligence Research, 2:475–500, 1995.

Y. Shoham, R. Powers, and T. Grenager. If Multi-Agent Learning is the Answer, What is the
Question? Artificial Intelligence, 171(7):365–377, 2007.

S. P. Singh and R. S. Sutton. Reinforcement learning with replacing eligibility traces. Machine
Learning, 22(1-3):123–158, 1996.

M. Sridharan and G. Tesauro. Multi-agent Q-learning and regression trees for automated pricing
decisions. In Proc. 17th International Conf. on Machine Learning, pages 927–934. Morgan
Kaufmann, San Francisco, CA, 2000.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

W. Uther and M. Veloso. Adversarial reinforcement learning. Technical report, Carnegie Mellon
University, 2003.

J. M. Vidal and E. H. Durfee. Predicting the expected behavior of agents that learn about agents:
the clri framework. Autonomous Agents and Multi-Agent Systems, 6(1):77–107, 2003.

2674

MULTI-AGENT RL IN STOCHASTIC GAMES

R. V. Vohraa and M. P. Wellman. Foundations of multi-agent learning: Introduction to the special
issue. Artificial Intelligence, 7:363–364, 2007.

X. Wang and T. Sandholm. Reinforcement learning to play an optimal nash equilibrium in team
markov games. In NIPS’02, 2002.

Z. Zheng, M. Shu-gen, C. Bing-gang, Z. Li-ping, and L. Bin. Multiagent reinforcement learning for
a planetary exploration multirobot system. In PRIMA, pages 339–350, 2006.

2675

Journal of Machine Learning Research 9 (2008) 2677-2694 Submitted 10/07; Revised 4/08; Published 12/08

An Extension on “Statistical Comparisons of Classifiers over Multiple
Data Sets” for all Pairwise Comparisons

Salvador Garcı́a SALVAGL@DECSAI.UGR.ES

Francisco Herrera HERRERA@DECSAI.UGR.ES

Department of Computer Science and Artificial Intelligence
University of Granada
Granada, 18071, Spain

Editor: John Shawe-Taylor

Abstract
In a recently published paper in JMLR, Demšar (2006) recommends a set of non-parametric sta-
tistical tests and procedures which can be safely used for comparing the performance of classifiers
over multiple data sets. After studying the paper, we realize that the paper correctly introduces the
basic procedures and some of the most advanced ones when comparing a control method. How-
ever, it does not deal with some advanced topics in depth. Regarding these topics, we focus on more
powerful proposals of statistical procedures for comparing n×n classifiers. Moreover, we illustrate
an easy way of obtaining adjusted and comparable p-values in multiple comparison procedures.

Keywords: statistical methods, non-parametric test, multiple comparisons tests, adjusted p-values,
logically related hypotheses

1. Introduction

In the Machine Learning (ML) scientific community there is a need for rigorous and correct statisti-
cal analysis of published results, due to the fact that the development or modifications of algorithms
is a relatively easy task. The main inconvenient related to this necessity is to understand and study
the statistics and to know the exact techniques which can or cannot be applied depending on the
situation, that is, type of results obtained. In a recently published paper in JMLR by Demšar (2006),
a group of useful guidelines are given in order to perform a correct analysis when we compare a
set of classifiers over multiple data sets. Demšar recommends a set of non-parametric statistical
techniques (Zar, 1999; Sheskin, 2003) for comparing classifiers under these circumstances, given
that the sample of results obtained by them does not fulfill the required conditions and it is not
large enough for making a parametric statistical analysis. He analyzed the behavior of the pro-
posed statistics on classification tasks and he checked that they are more convenient than parametric
techniques.

Recent studies apply the guidelines given by Demšar in the analysis of performance of classifiers
(Esmeir and Markovitch, 2007; Marrocco et al., 2008). In them, a new proposal or methodology is
offered and it is compared with other methods by means of pairwise comparisons. Another type of
studies assume an empirical comparison or review of already proposed methods. In these cases, no
proposal is offered and a statistical comparison could be very useful in determining the differences
among the methods. In the specialized literature, many papers provide reviews on a specific topic
and they also use statistical methodology to perform comparisons. For example, in a review of

c©2008 Salvador Garcı́a and Francisco Herrera.

GARCÍA AND HERRERA

ensembles of decision trees, non-parametric tests are also applied in the analysis of performance
(Banfield et al., 2007). However, only the rankings computed by Friedman’s method (Friedman,
1937) are stipulated and authors establish comparisons based on them, without taking into account
significance levels. Demšar focused his work in the analysis of new proposals, and he introduced
the Nemenyi test for making all pairwise comparisons (Nemenyi, 1963). Nevertheless, the Nemenyi
test is very conservative and it may not find any difference in most of the experimentations. In
recent papers, the authors have used the Nemenyi test in multiple comparisons. Due to the fact
that this test posses low power, authors have to employ many data sets (Yang et al., 2007b) or
most of the differences found are not significant (Yang et al., 2007a; Núñez et al., 2007). Although
the employment of many data sets could seem beneficial in order to improve the generalization of
results, in some specific domains, that is, imbalanced classification (Owen, 2007) or multi-instance
classification (Murray et al., 2005), data sets are difficult to find.

Procedures with more power than Nemenyi’s one can be found in specialized literature. We
have based on the necessity to apply more powerful procedures in empirical studies in which no
new method is proposed and the benefit consists of obtaining more statistical differences among
the classifiers compared. Thus, in this paper we describe these procedures and we analyze their
behavior by means of the analysis of multiple repetitions of experiments with randomly selected
data sets.

On the other hand, we can see other works in which the p-value associated to a comparison
between two classifiers is reported (Garcı́a-Pedrajas and Fyfe, 2007). Classical non-parametric tests,
such as Wilcoxon and Friedman (Sheskin, 2003), may be incorporated in most of the statistical
packages (SPSS, SAS, R, etc.) and the computation of the final p-value is usually implemented.
However, advanced procedures such as Holm (1979), Hochberg (1988), Hommel (1988) and the
ones described in this paper are usually not incorporated in statistical packages. The computation of
the correct p-value, or Adjusted P-Value (APV) (Westfall and Young, 2004), in a comparison using
any of these procedures is not very difficult and, in this paper, we show how to include it with an
illustrative example.

The paper is set up as follows. Section 2 presents more powerful procedures for comparing all
the classifiers among them in a n×n comparison of multiple classifiers and a case study. In Section 3
we describe the procedures for obtaining the APV by considering the post-hoc procedures explained
by Demšar and the ones explained in this paper. In Section 4, we perform an experimental study
of the behavior of the statistical procedures and we discuss the results obtained. Finally, Section 5
concludes the paper.

2. Comparison of Multiple Classifiers: Performing All Pairwise Comparisons

In the paper Demšar (2006), referring to carrying out comparisons of more than two classifiers, a set
of useful guidelines were given for detecting significant differences among the results obtained and
post-hoc procedures for identifying these differences. Friedman’s test is an omnibus test which can
be used to carry out these types of comparison. It allows to detect differences considering the global
set of classifiers. Once Friedman’s test rejects the null hypothesis, we can proceed with a post-hoc
test in order to find the concrete pairwise comparisons which produce differences. Demšar described
the use of the Nemenyi test used when all classifiers are compared with each other. Then, he focused
on procedures that control the family-wise error when comparing with a control classifier, arguing
that the objective of a study is to test whether a newly proposed method is better than the existing

2678

AN EXTENSION ON “STATISTICAL COMPARISONS OF CLASSIFIERS OVER MULTIPLE DATA SETS”

ones. For this reason, he described and studied in depth more powerful and sophisticated procedures
derived from Bonferroni-Dunn such as Holm’s, Hochberg’s and Hommel’s methods.

Nevertheless, we think that performing all pairwise comparisons in an experimental analysis
may be useful and interesting in different cases when proposing a new method. For example, it
would be interesting to conduct a statistical analysis over multiple classifiers in review works in
which no method is proposed. In this case, the repetition of comparisons choosing different control
classifiers may lose the control of the family-wise error.

Our intention in this section is to give a detailed description of more powerful and advanced
procedures derived from the Nemenyi test and to show a case study that uses these procedures.

2.1 Advanced Procedures for Performing All Pairwise Comparisons

A set of pairwise comparisons can be associated with a set or family of hypotheses. Any of the post-
hoc tests which can be applied to non-parametric tests (that is, those derived from the Bonferroni
correction or similar procedures) work over a family of hypotheses. As Demšar explained, the test
statistics for comparing the i-th and j-th classifier is

z =
(Ri −R j)
√

k(k+1)
6N

,

where Ri is the average rank computed through the Friedman test for the i-th classifier, k is the
number of classifiers to be compared and N is the number of data sets used in the comparison.

The z value is used to find the corresponding probability (p-value) from the table of normal dis-
tribution, which is then compared with an appropriate level of significance α (Table A1 in Sheskin,
2003). Two basic procedures are:

• Nemenyi (1963) procedure: it adjusts the value of α in a single step by dividing the value of
α by the number of comparisons performed, m = k(k−1)/2. This procedure is the simplest
but it also has little power.

• Holm (1979) procedure: it was also described in Demšar (2006) but it was used for compar-
isons of multiple classifiers involving a control method. It adjusts the value of α in a step
down method. Let p1, ..., pm be the ordered p-values (smallest to largest) and H1, ...,Hm be
the corresponding hypotheses. Holm’s procedure rejects H1 to H(i−1) if i is the smallest in-
teger such that pi > α/(m− i + 1). Other alternatives were developed by Hochberg (1988),
Hommel (1988) and Rom (1990). They are easy to perform, but they often have a similar
power to Holm’s procedure (they have more power than Holm’s procedure, but the difference
between them is not very notable) when considering all pairwise comparisons.

The hypotheses being tested belonging to a family of all pairwise comparisons are logically
interrelated so that not all combinations of true and false hypotheses are possible. As a simple
example of such a situation suppose that we want to test the three hypotheses of pairwise equality
associated with the pairwise comparisons of three classifiers Ci, i = 1,2,3. It is easily seen from the
relations among the hypotheses that if any one of them is false, at least one other must be false. For
example, if C1 is better/worse than C2, then it is not possible that C1 has the same performance as C3

and C2 has the same performance as C3. C3 must be better/worse than C1 or C2 or the two classifiers
at the same time. Thus, there cannot be one false and two true hypotheses among these three.

2679

GARCÍA AND HERRERA

Based on this argument, Shaffer proposed two procedures which make use of the logical relation
among the family of hypotheses for adjusting the value of α (Shaffer, 1986).

• Shaffer’s static procedure: following Holm’s step down method, at stage j, instead of rejecting
Hi if pi ≤ α/(m− i+1), reject Hi if pi ≤ α/ti, where ti is the maximum number of hypotheses
which can be true given that any (i−1) hypotheses are false. It is a static procedure, that is,
t1, ..., tm are fully determined for the given hypotheses H1, ...,Hm, independent of the observed
p-values. The possible numbers of true hypotheses, and thus the values of ti can be obtained
from the recursive formula

S(k) =
k

[

j=1

{

(

j
2

)

+ x : x ∈ S(k− j)},

where S(k) is the set of possible numbers of true hypotheses with k classifiers being compared,
k ≥ 2, and S(0) = S(1) = {0}.

• Shaffer’s dynamic procedure: it increases the power of the first by substituting α/ti at stage i
by the value α/t∗i , where t∗i is the maximum number of hypotheses that could be true, given
that the previous hypotheses are false. It is a dynamic procedure since t∗i depends not only
on the logical structure of the hypotheses, but also on the hypotheses already rejected at step
i. Obviously, this procedure has more power than the first one. In this paper, we have not
used this second procedure, given that it is included in an advanced procedure which we will
describe in the following.

In Bergmann and Hommel (1988) was proposed a procedure based on the idea of finding all
elementary hypotheses which cannot be rejected. In order to formulate Bergmann-Hommel’s pro-
cedure, we need the following definition.

Definition 1 An index set of hypotheses I ⊆ {1, ...,m} is called exhaustive if exactly all H j, j ∈ I,
could be true.

In order to exemplify the previous definition, we will consider the following case: We have three
classifiers, and we will compare them in a n×n comparison. We will obtain three hypotheses:

• H1 = C1 es equal in behavior than C2.

• H2 = C1 es equal in behavior than C3.

• H3 = C2 es equal in behavior than C3.

and eight possible sets Si:

• S1: All H j are true.

• S2: H1 and H2 are true and H3 is false.

• S3: H1 and H3 are true and H2 is false.

2680

AN EXTENSION ON “STATISTICAL COMPARISONS OF CLASSIFIERS OVER MULTIPLE DATA SETS”

• S4: H2 and H3 are true and H1 is false.

• S5: H1 is true and H2 and H3 are false.

• S6: H2 is true and H1 and H3 are false.

• S7: H3 is true and H1 and H2 are false.

• S8: All H j are false.

Sets S1, S5, S6, S7 and S8 can be possible, because their hypotheses can be true at the same time,
so they are exhaustive sets. Set S2, basing on logically related hypotheses principles, is not possible
because the performance of C1 cannot be equal to C2 and C3, whereas C2 has different performance
than C3. The same consideration can be done to S3 and S4, which are not exhaustive sets.

Under this definition, it works as follows.

• Bergmann and Hommel (1988) procedure: Reject all H j with j /∈ A, where the acceptance set

A =
[

{I : I exhaustive, min{Pi : i ∈ I} > α/|I|}

is the index set of null hypotheses which are retained.

For this procedure, one has to check for each subset I of {1, ...,m} if I is exhaustive, which
leads to intensive computation. Due to this fact, we will obtain a set, named E, which will
contain all the possible exhaustive sets of hypotheses for a certain comparison. A rapid algo-
rithm which was described in Hommel and Bernhard (1994) allows a substantial reduction in
computing time. Once the E set is obtained, the hypotheses that do not belong to the A set are
rejected.

Figure 1 shows a valid algorithm for obtaining all the exhaustive sets of hypotheses, using
as input a list of classifiers C. E is a set of families of hypotheses; likewise, a family of
hypotheses is a set of hypotheses. The most important step in the algorithm is the number
6. It performs a division of the classifiers into two subsets, in which the last classifier k al-
ways is inserted in the second subset and the first subset cannot be empty. In this way, we
ensure that a subset yielded in a division is never empty and no repetitions are produced. For
example, suppose a set C with three classifiers C = {1,2,3}. All possible divisions without
taking into account the previous assumptions are: D1 = {C1 = {},C2 = {1,2,3}},D2 = {C1 =
{1},C2 = {2,3}},D3 = {C1 = {2},C2 = {1,3}},D4 = {C1 = {1,2},C2 = {3}},D5 = {C1 =
{3},C2 = {1,2}},D6 = {C1 = {1,3},C2 = {2}},D7 = {C1 = {2,3},C2 = {1}},D8 = {C1 =
{1,2,3},C2 = {}}. Divisions D1 and D8, D2 and D7, D3 and D6, D4 and D5 are equivalent,
respectively. Furthermore, divisions D1 and D8 are not interesting. Using the assumptions in
step 6 of the algorithm, the possible divisions are: D1 = {C1 = {1},C2 = {2,3}},D2 = {C1 =
{2},C2 = {1,3}},D3 = {C1 = {1,2},C2 = {3}}. In this case, all the divisions are interesting
and no repetitions are yielded. The computational complexity of the algorithm for obtaining
exhaustive sets is O(2n2

). However, the computation requirements may be reduced by means
of using storage capabilities. Relative exhaustive sets for k − i, 1 ≤ i ≤ (k − 2) classifiers
can be stored in memory and there is no necessity of invoking the obtainingExhaustive func-
tion recursively. The computational complexity using storage capabilities is O(2n), so the
algorithm still requires intensive computation.

2681

GARCÍA AND HERRERA

An example illustrating the algorithm for obtaining all exhaustive sets is drawn in Figure 2.
In it, four classifiers, enumerated from 1 to 4 in the C set, are used. The comparisons or hy-
potheses are denoted by pairs of numbers without a separation character between them. This
illustration does not show the case in which the set |Ci|< 2, for simplifying the representation.
When |Ci| < 2, no comparisons can be performed, so the obtainExhaustive function returns
an empty set E.

An edge connecting two boxes represents an invocation of this function. In each box, the list
of classifiers given as input and the first initialization of the E set are displayed. The main
edges, whose starting point is the initial box, are labeled by the order of invocation. Below
the graph, the resulting E subset in each main edge is denoted. The final E will be composed
by the union of these E subsets. At the end of the process, 14 distinct exhaustive sets are
found: E = {(12,13,14,23,24,34),(23,24,34),(13,14,34),(12,14,24),(12,13,23),
(12),(13),(14),(23),(24),(34),(12,34),(13,24),(23,14)}.

Table 1 gives the number of hypotheses (m), the number (2n) of index sets I and the number
of exhaustive index sets (ne) for k classifiers being compared.

Function obtainExhaustive(C = {c1,c2, ...,ck}: list of classifiers)
1. Let E = /0
2. E = E ∪{set of all possible and distinct pairwise comparisons using C}
3. If E == /0

4. Return E
5. End if
6. For all possible divisions of C into two subsets C1 and C2, ck ∈C2 and C1 6= /0

7. E1 = obtainExhaustive(C1)
8. E2 = obtainExhaustive(C2)
9. E = E ∪E1

10. E = E ∪E2

11. For each family of hypotheses e1 of E1

12. For each family of hypotheses e2 of E2

13. E = E ∪ (e1 ∪ e2)
14. End for

15. End for
16. End for
17. Return E

Figure 1: Algorithm for obtaining all exhaustive sets

The following subsections present a case study of a n × n comparison of some well-known
classifiers over thirty data sets. In it, the four procedures explained above are employed.

2.2 Performing All Pairwise Comparisons: A Case Study

In the following, we show an example involving the four procedures described with a comparison
of five classifiers: C4.5 (Quinlan, 1993); One Nearest Neighbor (1-NN) with Euclidean distance,

2682

AN EXTENSION ON “STATISTICAL COMPARISONS OF CLASSIFIERS OVER MULTIPLE DATA SETS”

C = {1, 2, 3, 4}

E = {(12,13,14,23,24,34)}

C2 = {1, 2, 3}

E = {(12,13,23)}

C1 = {1, 2}

E = {(12)}

C2 = {1, 3}

E = {(13)}

C2 = {2, 3}

E = {(23)}

1: E = {(12,13,23),(23),(13),(12)}

2: E = {(12),(34),(12,34)}

3: E = {(13),(24),(13,24)}

4: E = {(23,24,34),(23),(24),(34)}

5: E = {(23),(14),(23,14)}

6: E = {(13,14,34),(13),(14),(34)}

7: E = {(12,14,24),(12),(14),(24)}

C1 = {1, 2}

E = {(12)}

C2 = {3, 4}

E = {(34)}

C1 = {1, 3}

E = {(13)}

C2 = {2, 4}

E = {(24)}

C2 = {2, 3, 4}

E = {(23,24,34)}

C2 = {3, 4}

E = {(34)}

C2 = {2, 4}

E = {(24)}

C1 = {2, 3}

E = {(23)}

C1 = {1, 4}

E = {(14)}

C1 = {2, 3}

E = {(23)}

C2 = {1, 3, 4}

E = {(13,14,34)}

C2 = {3, 4}

E = {(34)}

C2 = {1, 4}

E = {(14)}

C1 = {1, 3}

E = {(13)}

C2 = {1, 2, 4}

E = {(12,14,24)}

C2 = {2, 4}

E = {(24)}

C2 = {1, 4}

E = {(14)}

C1 = {1, 2}

E = {(12)}

1

2

3

4
5

6

7

Figure 2: Example of the obtaining of exhaustive sets of hypotheses considering 4 classifiers

k m =
(k

2

)

2m ne

4 6 64 14
5 10 1024 51
6 15 32768 202
7 21 2097152 876
8 28 2.7 ·108 4139
9 36 6.7 ·1010 21146

Table 1: All pairwise comparisons of k classifiers

2683

GARCÍA AND HERRERA

NaiveBayes, Kernel (McLachlan, 2004)1 and, finally, CN2 (Clark and Niblett, 1989).2 The parame-
ters used are specified in Section 4. We have used 10-fold cross validation and standard parameters
for each algorithm. The results correspond to average accuracy or 1− class error in test data. We
have used 30 data sets.3 Table 2 shows the overall process of computation of average rankings.

Friedman (1937) and Iman and Davenport (1980) tests check whether the measured average
ranks are significantly different from the mean rank R j = 3. They respectively use the χ2 and the
F statistical distributions to determine if a distribution of observed frequencies differs from the
theoretical expected frequencies. Their statistics use nominal (categorical) or ordinal level data,
instead of using means and variances. Demšar (2006) detailed the computation of the critical values
in each distribution. In this case, the critical values are 9.488 and 2.45, respectively at α = 0.05, and
the Friedman’s and Iman-Davenport’s statistics are:

χ2
F = 39.647,FF = 14.309.

Due to the fact that the critical values are lower than the respective statistics, we can proceed
with the post-hoc tests in order to detect significant pairwise differences among all the classifiers.
For this, we have to compute and order the corresponding statistics and p-values. The standard

error in the pairwise comparison between two classifiers is SE =
√

k(k+1)
6N =

√

5·6
6·30 = 0.408. Table

3 presents the family of hypotheses ordered by their p-value and the adjustment of α by Nemenyi’s,
Holm’s and Shaffer’s static procedures.

• Nemenyi’s test rejects the hypotheses [1–4] since the corresponding p-values are smaller than
the adjusted α’s.

• Holm’s procedure rejects the hypotheses [1–5].

• Shaffer’s static procedure rejects the hypotheses [1–6].

• Bergmann-Hommel’s dynamic procedure first obtains the exhaustive index set of hypotheses.
It obtains 51 index sets. We can see them in Table 4. From the index sets, it computes the A
set.4 It rejects all hypotheses H j with j /∈ A, so it rejects the hypotheses [1–8].

Bergmann-Hommel’s dynamic procedure allows to clearly distinguishing among three groups
of classifiers, attending to their performance:

• Best classifiers: C4.5 and NaiveBayes.

• Middle classifiers: 1-NN and CN2.

• Worst classifier: Kernel.

1. Kernel method is a bayesian classifier which employs a non-parametric estimation of density functions through a
gaussian kernel function. The adjustment of the covariance matrix is performed by the ad-hoc method.

2. NaiveBayes and CN2 are classifiers for discrete domains, so we have discretized the data prior to learning with them.
The discretizer algorithm is Fayyad and Irani (1993).

3. Data sets marked with ’*’ have been subsampled being adapted to slow algorithms, such as CN2.
4. We have considered that each classifier follows the order: 1 - C4.5, 2 - 1-NN, 3 - NaiveBayes, 4 - Kernel, 5 - CN2.

For example, the hypothesis 13 represents the comparison between C4.5 and NaiveBayes.

2684

AN EXTENSION ON “STATISTICAL COMPARISONS OF CLASSIFIERS OVER MULTIPLE DATA SETS”

C4.5 1-NN NaiveBayes Kernel CN2
Abalone* 0.219 (3) 0.202 (4) 0.249 (2) 0.165 (5) 0.261 (1)

Adult* 0.803 (2) 0.750 (4) 0.813 (1) 0.692 (5) 0.798 (3)
Australian 0.859 (1) 0.814 (4) 0.845 (2) 0.542 (5) 0.816 (3)

Autos 0.809 (1) 0.774 (3) 0.673 (4) 0.275 (5) 0.785 (2)
Balance 0.768 (3) 0.790 (2) 0.727 (4) 0.872 (1) 0.706 (5)

Breast 0.759 (1) 0.654 (5) 0.734 (2) 0.703 (4) 0.714 (3)
Bupa 0.693 (1) 0.611 (3) 0.572 (4.5) 0.689 (2) 0.572 (4.5)

Car 0.915 (1) 0.857 (3) 0.860 (2) 0.700 (5) 0.777 (4)
Cleveland 0.544 (2) 0.531 (4) 0.558 (1) 0.439 (5) 0.541 (3)

Crx 0.855 (2) 0.796 (4) 0.857 (1) 0.607 (5) 0.809 (3)
Dermatology 0.945 (3) 0.954 (2) 0.978 (1) 0.541 (5) 0.858 (4)

German 0.725 (2) 0.705 (4) 0.739 (1) 0.625 (5) 0.717 (3)
Glass 0.674 (4) 0.736 (1) 0.721 (2) 0.356 (5) 0.704 (3)

Hayes-Roth 0.801 (1) 0.357 (4) 0.520 (2.5) 0.309 (5) 0.520 (2.5)
Heart 0.785 (2) 0.770 (3) 0.841 (1) 0.659 (5) 0.759 (4)

Ion 0.906 (2) 0.359 (5) 0.895 (3) 0.641 (4) 0.918 (1)
Led7Digit 0.710 (2) 0.402 (4) 0.728 (1) 0.120 (5) 0.674 (3)

Letter* 0.691 (2) 0.827 (1) 0.667 (3) 0.527 (5) 0.638 (4)
Lymphography 0.743 (3) 0.739 (4) 0.830 (1) 0.549 (5) 0.746 (2)

Mushrooms* 0.990 (1.5) 0.482 (5) 0.941 (3) 0.857 (4) 0.990 (1.5)
OptDigits* 0.867 (3) 0.098 (1) 0.915 (2) 0.986 (1) 0.784 (4)
Satimage* 0.821 (3) 0.872 (2) 0.815 (4) 0.885 (1) 0.778 (5)

SpamBase* 0.893 (2) 0.824 (4) 0.902 (1) 0.739 (5) 0.885 (3)
Splice* 0.799 (2) 0.655 (4) 0.925 (1) 0.517 (5) 0.755 (3)

Tic-tac-toe 0.845 (1) 0.731 (2) 0.693 (4) 0.653 (5) 0.704 (3)
Vehicle 0.741 (1) 0.701 (2) 0.591 (5) 0.663 (3) 0.619 (4)
Vowel 0.799 (2) 0.994 (1) 0.603 (4) 0.269 (5) 0.621 (3)
Wine 0.949 (4) 0.955 (2) 0.989 (1) 0.770 (5) 0.954 (3)
Yeast 0.555 (3) 0.505 (4) 0.569 (1) 0.312 (5) 0.556 (2)

Zoo 0.928 (2.5) 0.928 (2.5) 0.945 (1) 0.419 (5) 0.897 (4)
average rank 2.100 3.250 2.200 4.333 3.117

Table 2: Computation of the rankings for the five algorithms considered in the study over 30 data
sets, based on test accuracy by using ten-fold cross validation

2685

GARCÍA AND HERRERA

i hypothesis z = (R0 −Ri)/SE p αNM αHM αSH

1 C4.5 vs. Kernel 5.471 4.487 ·10−8 0.005 0.005 0.005
2 NaiveBayes vs. Kernel 5.226 1.736 ·10−7 0.005 0.0055 0.0083
3 Kernel vs. CN2 2.98 0.0029 0.005 0.0063 0.0083
4 C4.5 vs. 1NN 2.817 0.0048 0.005 0.0071 0.0083
5 1NN vs. Kernel 2.654 0.008 0.005 0.0083 0.0083
6 1NN vs. NaiveBayes 2.572 0.0101 0.005 0.01 0.0125
7 C4.5 vs. CN2 2.49 0.0128 0.005 0.0125 0.0125
8 NaiveBayes vs. CN2 2.245 0.0247 0.005 0.0167 0.0167
9 1NN vs. CN2 0.327 0.744 0.005 0.025 0.025

10 C4.5 vs. NaiveBayes 0.245 0.8065 0.005 0.05 0.05

Table 3: Family of hypotheses ordered by p-value and adjusting of α by Nemenyi (NM), Holm
(HM) and Shaffer (SH) procedures, considering an initial α = 0.05

Size 1 Size 2 Size 3 Size 4 Size ≥ 6
(12) (12,34) (12,13,23) (12,13,23,45) (12,13,14,15,23,24,25,34,35,45)
(13) (13,24) (12,14,24) (12,14,24,35) (12,13,14,23,24,34)
(23) (14,23) (13,14,34) (12,34,35,45) (12,13,15,23,25,35)
(14) (12,35) (23,24,34) (13,14,25,34) (12,14,15,24,25,45)
(24) (13,25) (12,15,25) (13,15,24,35) (13,14,15,34,35,45)
(34) (15,23) (13,15,35) (13,24,25,45) (23,24,25,34,35,45)
(15) (12,45) (23,25,35) (14,15,23,45)
(25) (13,45) (14,15,45) (14,23,25,35)
(35) (23,45) (24,25,45) (15,23,24,34)
(45) (14,25) (34,35,45)

(15,24)
(14,35)
(24,35)

Table 4: Exhaustive sets obtained for the case study. Those belonging to the Acceptance set (A) are
typed in bold.

2686

AN EXTENSION ON “STATISTICAL COMPARISONS OF CLASSIFIERS OVER MULTIPLE DATA SETS”

In Demšar (2006), we can find a discussion about the power of Hochberg’s and Hommel’s pro-
cedures with respect to Holm’s one. They reject more hypothesis than Holm’s, but the differences
are in practice rather small (Shaffer, 1995). The most powerful procedures detailed in this paper,
Shaffer’s and Bergmann-Hommel’s, work following the same method of Holm’s procedure, so it
is possible to hybridize them with other types of step up procedures, such as Hochberg’s, Hom-
mel’s and Rom’s methods. When we apply these methods by using the logical relationships among
hypothesis in a static way, they do not control the family-wise error (Hochberg and Rom, 1995).
In opposite, when applying these methods by detecting dynamical relationships, they control the
family-wise error. In Hochberg and Rom (1995), several extensions were given in this way. Fur-
thermore, a small improvement of power in the Bergmann-Hommel procedure described here can
be achieved when using Simes conjecture (Simes, 1986) in the obtaining of A set (see Hommel and
Bernhard, 1999, for more details).

3. Adjusted P-Values

The smallest level of significance that results in the rejection of the null hypothesis, the p-value,
is a useful and interesting datum for many consumers of statistical analysis. A p-value provides
information about whether a statistical hypothesis test is significant or not, and it also indicates
something about ”how significant” the result is: The smaller the p-value, the stronger the evidence
against the null hypothesis. Most important, it does this without committing to a particular level of
significance.

When a p-value is within a multiple comparison, as in the example in Table 3, it reflects the
probability error of a certain comparison, but it does not take into account the remaining compar-
isons belonging to the family. One way to solve this problem is to report APVs which take into
account that multiple tests are conducted. An APV can be compared directly with any chosen sig-
nificance level α. In this paper, we encourage the use of APVs due to the fact that they provide more
information in a statistical analysis.

In the following, we will explain how to compute the APVs depending on the post-hoc procedure
used in the analysis, following the indications given in Wright (1992) and Hommel and Bernhard
(1999). We also include the post-hoc tests explained in Demšar (2006) and other for comparisons
with a control classifier. The notation used in the computation of the APVs is the following:

• Indexes i and j correspond each one to a concrete comparison or hypothesis in the family of
hypotheses, according to an incremental order by their p-values. Index i always refers to the
hypothesis in question whose APV is being computed and index j refers to another hypothesis
in the family.

• p j is the p-value obtained for the j-th hypothesis.

• k is the number of classifiers being compared.

• m is the number of possible comparisons in an all pairwise comparisons design; that is, m =
k·(k−1)

2 .

• t j is the maximum number of hypotheses which can be true given that any (j−1) hypotheses
are false (see the description of Shaffer’s static procedure in Section 2.1).

2687

GARCÍA AND HERRERA

The procedures of p-value adjustment can be classified into:

• one-step.

– Bonferroni APVi: min{v;1}, where v = (k−1)pi.

– Nemenyi APVi: min{v;1}, where v = m · pi.

• step-up.

– Hochberg APVi: max{(k− j)p j : (k−1) ≥ j ≥ i}.

– Hommel APVi: see algorithm at Figure 3.

• step-down.

– Holm APVi (using a control classifier): min{v;1}, where v = max{(k− j)p j : 1 ≤ j ≤ i}.

– Nemenyi APVi: min{v;1}, where v = m · pi.

– Holm APVi (using it in all pairwise comparisons): min{v;1}, where v = max{(m− j +
1)p j : 1 ≤ j ≤ i}.

– Shaffer static APVi: min{v;1}, where v = max{t j p j : 1 ≤ j ≤ i}.

– Bergmann-Hommel APVi: min{v;1}, where v = max{|I|·min{p j, j ∈ I} : I exhaustive, i∈
I}.

1. Set APVi = pi for all i.
2. For each j = k−1,k−2, ...,2 (in that order)

3. Let B = /0.
4. For each i, i > (k−1− j)

5. Compute value ci = (j · pi)/(j + i− k +1).
6. B = B∪ ci.

7. End for
8. Find the smallest ci value in B; call it cmin.
9. If APVi < cmin, then APVi = cmin.
10. For each i, i ≤ (k−1− j)

11. Let ci = min(cmin, j · pi).
12. If APVi < ci, then APVi = ci.

13. End for

Figure 3: Algorithm for calculating APVs based on Hommel’s procedure

Table 5 shows the results in the final form of APVs for the example considered in this section. As
we can see, this example is suitable for observing the difference of power among the test procedures.
Also, this table can provide information about the state of retainment or rejection of any hypothesis,
comparing its associated APV with the level of significance previously fixed.

2688

AN EXTENSION ON “STATISTICAL COMPARISONS OF CLASSIFIERS OVER MULTIPLE DATA SETS”

i hypothesis pi APVNM APVHM APVSH APVBH

1 C4.5 vs .Kernel 4.487 ·10−8 4.487 ·10−7 4.487 ·10−7 4.487 ·10−7 4.487 ·10−7

2 NaiveBayes vs .Kernel 1.736 ·10−7 1.736 ·10−6 1.563 ·10−6 1.042 ·10−6 1.042 ·10−6

3 Kernel vs .CN2 0.0029 0.0288 0.023 0.0173 0.0115
4 C4.5 vs .1NN 0.0048 0.0485 0.0339 0.0291 0.0291
5 1NN vs .Kernel 0.008 0.0796 0.0478 0.0478 0.0319
6 1NN vs .NaiveBayes 0.0101 0.1011 0.0506 0.0478 0.0319
7 C4.5 vs .CN2 0.0128 0.1276 0.0511 0.0511 0.0383
8 NaiveBayes vs .CN2 0.0247 0.2474 0.0742 0.0742 0.0383
9 1NN vs .CN2 0.744 1.0 1.0 1.0 1.0
10 C4.5 vs .NaiveBayes 0.8065 1.0 1.0 1.0 1.0

Table 5: APVs obtained in the example by Nemenyi (NM), Holm (HM), Shaffer’s static (SH) and
Bergmann-Hommel’s dynamic (BH)

4. Experimental Framework

In this section, we want to determine the power and behavior of the studied procedures through
the experiments in which we repeatedly compared the classifiers on sets of ten randomly chosen
data sets, recording the number of equivalence hypothesis rejected and APVs. We follow a similar
method used in Demšar (2006).

The classifiers used are the same as in the case study of the previous subsection: C4.5 with
minimum number of item-sets per leaf equal to 2 and confidence level fitted for optimal accuracy
and pruning strategy, naive Bayesian learner with continuous attributes discretized using Fayyad
and Irani (1993) discretization, classic 1-Nearest-Neighbor classifier with Euclidean distance, CN2
with Fayyad-Irani’s discretizer, star size = 5 and 95% of examples to cover and Kernel classifier
with sigmaKernel = 0.01, which is the inverse value of the variance that represents the radius of
neighborhood. All classifiers are available in KEEL software (Alcalá-Fdez et al., 2008).5

For performing this study, we have compiled a sample of fifty data sets from the UCI machine
learning repository (Asuncion and Newman, 2007), all of them valid for a classification task.6 We
measured the performance of each classifier by means of accuracy in test by using ten-fold cross
validation. As Demšar did, when comparing two classifiers, samples of ten data sets were randomly
selected so that the probability for the data set i being chosen was proportional to 1/(1 + e−kdi),
where di is the (positive or negative) difference in the classification accuracies on that data set and
k is the bias through which we can regulate the differences between the classifiers. With k = 0, the
selection is purely random and as k is being higher, the selected data sets are favorable to a particular
classifier.

In comparisons of multiple classifiers, samples of data sets have to be selected with the prob-
abilities computed from the differences in accuracy of two classifiers. We have chosen C4.5 and
1-NN, due to the fact that we have found significant differences between them in the study con-
ducted before (Section 2.2) which involved thirty data sets. Note that the repeated comparisons
done here only involve ten data sets each time, so the rejection of equivalence of two classifiers is
more difficult at the beginning of the process.

5. It is also available at http://www.keel.es.
6. The data sets used are: abalone, adult, australian, autos, balance, bands, breast, bupa, car, cleveland, dermatol-

ogy, ecoli, flare, german, glass, haberman, hayes-roth, heart, iris, led7digit, letter, lymphography, magic, monks,
mushrooms, newthyroid, nursery, optdigits, pageblocks, penbased, pima, ring, satimage, segment, shuttle, spambase,
splice, tae, thyroid, tic-tac-toe, twonorm, vehicle, vowel, wine, wisconsin, yeast, zoo.

2689

GARCÍA AND HERRERA

Figure 4 shows the results of this study considering the pairwise comparison between C4.5
and 1-NN. It gives an approximation of the power of the statistical procedures considered in this
paper. Figure 4(a) reflects the number of times they rejected the equivalence of C4.5 and 1-NN.
Obviously, the Bergmann-Hommel procedure is the most powerful, followed by Shaffer’s static
procedure. The graphic also informs us about the use of logically related hypothesis, given that the
procedures that use this information have a bias towards the same point and those which do not use
this information, tend to a lower point than the first. When the selection of data sets is purely random
(k = 0), the benefit of using the Bergmann-Hommel procedure is appreciable. Figure 4(b) shows
the average APV of the same comparison of classifiers. As we can see, the Nemenyi procedure is
too conservative in comparison with the remaining procedures. Again, the benefit of using more
sophisticated testing procedures is easily noticeable.

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

re
je

ct
ed

 h
yp

o
th

es
es

Nemenyi Holm Shaffer Bergmann

(a) Number of hypotheses rejected in pairwise compar-
isons

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

av
er

ag
e

p
-v

al
u

e

Nemenyi Holm Shaffer Bergmann

(b) Average APV in pairwise comparisons

Figure 4: C4.5 vs. 1-NN

Figure 5 shows the results of this study considering all possible pairwise comparisons in the
set of classifiers. It helps us to compare the overall behavior of the four testing procedures. Figure
5(a) presents the number of times they rejected any comparison belonging to the family. Although
it could seem that the selection of data sets determined by the difference of accuracy between two
classifiers may not influence on the overall comparison, the graphic shows us that it occurs. Further-
more, the lines drawn follow a parallel behavior, indicating us the relation and magnitude of power
among the four procedures. In Figure 5(b) we illustrate the average APV for all the comparisons of
classifiers. We can notice that the conservatism of the Nemenyi test is obvious with respect to the
rest of procedures. The benefit of using a more advanced testing procedure is similar with respect
to the following less-powerful procedure, except for Holm’s procedure.

Finally, our recommendation on the usage of a certain procedure depends on the results obtained
in this paper and in our experience in understanding and implementing them:

• We do not recommend the use of Nemenyi’s test, because it is a very conservative procedure
and many of the obvious differences may not be detected.

• When we use a considerable number of data sets with regards to number of classifiers, we
could proceed with the Holm procedure.

2690

AN EXTENSION ON “STATISTICAL COMPARISONS OF CLASSIFIERS OVER MULTIPLE DATA SETS”

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

re
je

ct
ed

 h
yp

o
th

es
es

Nemenyi Holm Shaffer Bergmann

(a) Total number of hypotheses rejected

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

av
er

ag
e

p
-v

al
u

e

Nemenyi Holm Shaffer Bergmann

(b) Average APV in all comparisons

Figure 5: All comparisons

• However, conducting the Shaffer static procedure means a not very significant increase of the
difficulty with respect to the Holm procedure. Moreover, the benefit of using information
about logically related hypothesis is noticeable, thus we strongly encourage the use of this
procedure.

• Bergmann-Hommel’s procedure is the best performing one, but it is also the most difficult
to understand and computationally expensive. We recommend its usage when the situation
requires so (i.e., the differences among the classifiers compared are not very significant),
given that the results it obtains are as valid as using other testing procedure.

5. Conclusions

The present paper is an extension of Demšar (2006). Demšar does not deal in depth with some
topics related to multiple comparisons involving all the algorithms and computations of adjusted
p-values.

In this paper, we describe other advanced testing procedures for conducting all pairwise com-
parisons in a multiple comparisons analysis: Shaffer’s static and Bergmann-Hommel’s procedures.
The advantage that they obtain is produced due to the incorporation of more information about
the hypotheses to be tested: in n× n comparisons, a logical relationship among them exists. As a
general rule, the Bergmann-Hommel procedure is the most powerful one but it requires intensive
computation in comparisons involving numerous classifiers. The second one, Shaffer’s procedure,
can be used instead of Bergmann-Hommel’s in these cases. Moreover, we present the methods for
obtaining the adjusted p-values, which are valid p-values associated to each comparison useful to
be compared with any level of significance without restrictions and they also provide more infor-
mation. We have illustrated them with a case study and we have checked that the new described
methods are more powerful than the classical ones, Nemenyi’s and Holm’s procedures.

2691

GARCÍA AND HERRERA

Acknowledgments

This research has been supported by the project TIN2005-08386-C05-01. S. Garcı́a holds a FPU
scholarship from Spanish Ministry of Education and Science. The present paper was submitted as
a regular paper in the JMLR journal. After the review process, the action editor Dale Schuurmans
encourages us to submit the paper to the special topic on Multiple Simultaneous Hypothesis Testing.
We are very grateful to the anonymous reviewers and both action editors who managed this paper
for their valuable suggestions and comments to improve its quality.

Appendix A. Source Code of the Procedures

The source code, written in JAVA, that implements all the procedures described in this paper, is
available at http://sci2s.ugr.es/keel/multipleTest.zip. The program allows the input of
data in CSV format and obtains as output a LATEX document.

References

J. Alcalá-Fdez, L. Sánchez, S. Garcı́a, M.J. del Jesus, S. Ventura, J.M. Garrell, J. Otero, C. Romero,
J. Bacardit, V.M. Rivas, J.C. Fernández, and F. Herrera. KEEL: A software tool to assess evolu-
tionary algorithms to data mining problems. Soft Computing. doi: 10.1007/s00500-008-0323-y,
2008. In press.

A. Asuncion and D.J. Newman. UCI machine learning repository, 2007. URL http://www.ics.
uci.edu/˜mlearn/MLRepository.html.

R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. A comparison of decision tree
ensemble creation techniques. IEEE Transactions on Pattern Anaylisis and Machine Intelligence,
29(1):173–180, 2007.

G. Bergmann and G. Hommel. Improvements of general multiple test procedures for redundant
systems of hypotheses. In P. Bauer, G. Hommel, and E. Sonnemann, editors, Multiple Hypotheses
Testing, pages 100–115. Springer, Berlin, 1988.

P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3(4):261–283, 1989.

J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learn-
ing Research, 7:1–30, 2006.

S. Esmeir and S. Markovitch. Anytime learning of decision trees. Journal of Machine Learning
Research, 8:891–933, 2007.

U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous valued attributes for
classification learning. In Proceedings of the 13th International Joint Conference on Artificial
Intelligence, pages 1022–1029. Morgan-Kaufmann, 1993.

M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. Journal of the American Statistical Association, 32:675–701, 1937.

2692

AN EXTENSION ON “STATISTICAL COMPARISONS OF CLASSIFIERS OVER MULTIPLE DATA SETS”

N. Garcı́a-Pedrajas and C. Fyfe. Immune network based ensembles. Neurocomputing, 70(7-9):
1155–1166, 2007.

Y. Hochberg. A sharper bonferroni procedure for multiple tests of significance. Biometrika, 75:
800–802, 1988.

Y. Hochberg and D. Rom. Extensions of multiple testing procedures based on Simes’ test. Journal
of Statistical Planning and Inference, 48:141–152, 1995.

S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,
6:65–70, 1979.

G. Hommel. A stagewise rejective multiple test procedure. Biometrika, 75:383–386, 1988.

G. Hommel and G. Bernhard. A rapid algorithm and a computer program for multiple test proce-
dures using procedures using logical structures of hypotheses. Computer Methods and Programs
in Biomedicine, 43:213–216, 1994.

G. Hommel and G. Bernhard. Bonferroni procedures for logically related hypotheses. Journal of
Statistical Planning and Inference, 82:119–128, 1999.

R. L. Iman and J. M. Davenport. Approximations of the critical region of the friedman statistic.
Communications in Statistics, pages 571–595, 1980.

C. Marrocco, R. P. W. Duin, and F. Tortorella. Maximizing the area under the ROC curve by pairwise
feature combination. Pattern Recognition, 41:1961–1974, 2008.

G. J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. Wiley Series in Prob-
ability and Mathematical Statistics, 2004.

J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado. Machine learning methods for predicting
failures in hard drives: A multiple-instance application. Journal of Machine Learning Research,
6:783–816, 2005.

P. B. Nemenyi. Distribution-free Multiple Comparisons. PhD thesis, Princeton University, 1963.

M. Núñez, R. Fidalgo, and R. Morales. Learning in environments with unknown dynamics: Towards
more robust concept learners. Journal of Machine Learning Research, 8:2595–2628, 2007.

A. B. Owen. Infinitely imbalanced logistic regression. Journal of Machine Learning Research, 8:
761–773, 2007.

J. R. Quinlan. Programs for Machine Learning. Morgan Kauffman, 1993.

D. M. Rom. A sequentially rejective test procedure based on a modified bonferroni inequality.
Biometrika, 77:663–665, 1990.

J.P. Shaffer. Modified sequentially rejective multiple test procedures. Journal of the American
Statistical Association, 81(395):826–831, 1986.

J.P. Shaffer. Multiple hypothesis testing. Annual Review of Psychology, 46:561–584, 1995.

2693

GARCÍA AND HERRERA

D. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. Chapman &
Hall/CRC, 2003.

R.J. Simes. An improved Bonferroni procedure for multiple tests of significance. Biometrika, 73:
751–754, 1986.

P. H. Westfall and S. S. Young. Resampling-Based Multiple Testing: Examples and Methods for
p-value Adjustment. John Wiley and Sons, 2004.

S. P. Wright. Adjusted p-values for simultaneous inference. Biometrics, 48:1005–1013, 1992.

Y. Yang, G. Webb, K. Korb, and K. M. Ting. Classifying under computational resource constraints:
anytime classification using probabilistic estimators. Machine Learning, 69:35–53, 2007a.

Y. Yang, G. I. Webb, J. Cerquides, K. B. Korb, J. Boughton, and K. M. Ting. To select or to weigh:
A comparative study of linear combination schemes for superparent-one-dependence estimators.
IEEE Transcations on Knowledge and Data Engineering, 19(12):1652–1665, 2007b.

J. H. Zar. Biostatistical Analysis. Prentice Hall, 1999.

2694

Journal of Machine Learning Research 9 (2008) 2695-2698 Submitted 5/08; Revised 9/08; Published 12/08

JNCC2: The Java Implementation Of Naive Credal Classifier 2

Giorgio Corani GIORGIO@IDSIA.CH

Marco Zaffalon ZAFFALON@IDSIA.CH

IDSIA
Istituto Dalle Molle di Studi sull’Intelligenza Artificiale
CH-6928 Manno (Lugano), Switzerland

Editor: Mikio Braun

Abstract

JNCC2 implements the naive credal classifier 2 (NCC2). This is an extension of naive Bayes to
imprecise probabilities that aims at delivering robust classifications also when dealing with small
or incomplete data sets. Robustness is achieved by delivering set-valued classifications (that is,
returning multiple classes) on the instances for which (i) the learning set is not informative enough
to smooth the effect of choice of the prior density or (ii) the uncertainty arising from missing data
prevents the reliable indication of a single class. JNCC2 is released under the GNU GPL license.

Keywords: imprecise probabilities, missing data, naive Bayes, naive credal classifier 2, Java

1. Introduction

JNCC2 is the Java implementation of naive credal classifier 2 (NCC2) (Corani and Zaffalon, 2008).
NCC2 extends naive Bayes (NBC) to imprecise probabilities (Walley, 1991) in order to deliver
reliable classifications even on small or incomplete data sets.

A problem of NBC is that, on small data sets, it may return prior-dependent classifications, that
is, it might identify a different class as the most probable one, depending on the prior density adopted
to infer the classifier. In some cases this can lead NBC to issue fragile predictions. To deal with
this problem, NCC2 specifies a set of prior densities, referred to as prior credal set; the credal set is
then turned into a set of posteriors via element-wise application of Bayes’ rule. Eventually, NCC2
returns the classes that are non-dominated with respect to the set of posterior densities (class c1

dominates class c2 if the probability of c1 is larger than the probability of c2 for all the posteriors).
When faced with an instance that would be classified in a prior-dependent way by naive Bayes,
NCC2 will detect multiple non-dominated classes and will then return multiple classes; this is an
indeterminate classification.

As for missing data, NCC2 assumes that the missingness process (MP) which generates missing
data can be either MAR (that is, missing at random), or unknown; in the latter case, it is referred
to as non-MAR. As MAR missing data can be safely ignored (Little and Rubin, 1987), NCC2
ignores them. On the other hand, NCC2 deals conservatively with non-MAR missing data, that
is, it considers all the possible replacements for non-MAR missing data. NCC2 can handle mixed
situations where some features are subject to a MAR MP and some others to a non-MAR MP;
moreover, the list of features subject to the MAR and to the unknown MP can be different between
training and test set. The conservative treatment of non-MAR missing data generates additional

c©2008 Giorgio Corani and Marco Zaffalon.

CORANI AND ZAFFALON

indeterminacy of NCC2, as a way to preserve reliability despite the information hidden by missing
values and by the fact that the MP is unknown.

NCC2 can hence be seen as separating “easy” instances, over which it returns a single class,
from “hard” instances, over which it returns an indeterminate classification. Experimental evalua-
tions have shown that the accuracy of naive Bayes sharply drops on the hard instances, while on the
same instances NCC2 remains reliable thanks to the indeterminate classifications.

Programming language: Java.
Developer: Giorgio Corani (IDSIA, Switzerland).
Open source license: GNU GPL.
Website: www.idsia.ch/˜giorgio/jncc2.html.
Software required: Java Runtime Environment 5.0 or higher.
Operating system: OS independent.
User interface: command-line.

Figure 1: Essential information about JNCC2.

The zip file downloadable from the JNCC2 website contains executables, sources, examples,
user manual and tutorial. A GUI version of the software will be released in the near future and will
be published on the same website.

2. Indicators of Performance

The performance of NBC is measured by the accuracy, that is, the percentage of correct classifica-
tions.

The performance of NCC2 is measured by several indicators: determinacy: the percentage of
classifications having as output a unique class; single accuracy: the accuracy of NCC2 when it
is determinate; indeterminate output size: the average number of classes returned when NCC2 is
indeterminate; set-accuracy: the percentage of indeterminate classifications that contain the actual
class.

To assess the effectiveness of the approach based on imprecise probabilities, the accuracy of
naive Bayes is moreover measured separately on the instances recognized as hard and easy by
NCC2. If NCC2 is effective at separating easy from hard instances, a significant difference will be
found between the two measures.

Moreover, JNCC2 computes the confusion matrices of NBC and NCC2; in case of NCC2 the
confusion matrix refers to the determinate classifications only.

3. Some Implementation Details

JNCC2 loads data from ARFF files; this is a plain text format, originally developed for WEKA
(Witten and Frank, 2005). A large number of ARFF data sets, including the data sets from the
UCI repository, is available from the address http://www.cs.waikato.ac.nz/ml/weka/index_
datasets.html.

2636

JNCC2, THE IMPLEMENTATION OF NAIVE CREDAL CLASSIFIER 2

As a pre-processing step, JNCC2 discretizes all the numerical features, using the supervised
discretization algorithm of Fayyad and Irani (1993). The discretization intervals are computed on
the training set, and then applied unchanged on the test set.

NCC2 is implemented exploiting the computationally efficient procedure described in (Corani
and Zaffalon, 2008, Appendix A).

Algorithm 1 Pseudocode for validation via testing file.
validateTestFile()

/*loads training and test file; reads list of non-Mar features; discretizes features*/
parseArffFile();
parseArffTestingFile();
parseNonMar();
discretizeNumFeatures();

/*learns and validates NBC*/
nbc = new NaiveBayes(trainingSet);
nbc.classifyInstances(testSet);

/*learns and validates NCC2; the list of non-Mar features in training and testing is required*/
ncc2 = new NaiveCredalClassifier2(trainingSet, nonMarTraining, nonMarTesting);
ncc2.classifyInstances(testingSet);

/*writes output files*/
writePerfIndicators();
writePredictions();

JNCC2 can perform three kinds of experiments: training and testing, cross-validation, and clas-
sification of instances of the test set whose class is unknown. The pseudo code of the experiment
with training and testing is described by Algorithm 1.

4. Examples

To run the following examples, move to the directory examples/completeData, generated under
the JNCC2 directory after unzipping the package. To perform a training and testing experiment,
type for instance:

“java jncc20.Jncc . iris.training.arff iris.testing.arff”.

As a consequence, JNCC2 will load the training and test set, discretize the numerical features, learn
both NBC and NCC2, and use them to predict the instances of the test set. Then it will write the
performance measures and the predictions to file. Similar experiments can be performed also with
the glass and contact-lenses data sets, provided in the same directory.

To run a cross-validation experiment, type for instance:

“java jncc20.Jncc . iris.training.arff cv”.

2637

CORANI AND ZAFFALON

JNCC2 will perform 10 runs of 10-folds stratified cross-validation, that is, 100 training/test experi-
ments. JNCC2 will report the performance indicators to file, together with their observed standard
deviations, but it will not write the predictions. (As a side remark, if one wants to run cross-
validation, there is no need of splitting the original data set into a training and a testing file, as it is
has been done in this directory.)

The directory examples/missingData contains two examples of data sets containing missing
data; a look at the provided files NonMar.txt should make it clear how to declare the non-MAR
features.

The directory examples/unkClasses contains two examples in which the class of the instances
of the testing set is not available. For the iris data set, the experiment is for instance started as
follows:

“java jncc20.Jncc . iris.training.arff iris.testingUnkClasses.arff
unknownclasses”.

Acknowledgments

We are grateful to all the reviewers for their valuable comments. Work for this paper has been
partially supported by the Swiss NSF grants 200021-113820/1 and 200020-116674/1, and by the
Hasler Foundation (Hasler Stiftung) grant 2233.

References

G. Corani and M. Zaffalon. Learning reliable classifiers from small or incomplete data sets: the
naive credal classifier 2. Journal of Machine Learning Research, 9:581–621, 2008.

U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued attributes for
classification learning. In Proceedings of the 13th International Joint Conference on Artificial
Intelligence, pages 1022–1027, San Francisco, CA, 1993. Morgan Kaufmann.

R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data. Wiley, New York, 1987.

P. Walley. Statistical Reasoning With Imprecise Probabilities. Chapman and Hall, New York, 1991.

I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques (2nd
Edition). Morgan Kaufmann, 2005.

2638

Journal of Machine Learning Research 9 (2008) 2699-2731 Submitted 5/08; Published 12/08

Learning Bounded Treewidth Bayesian Networks

Gal Elidan GALEL@HUJI.AC.IL

Department of Statistics
Hebrew University
Jerusalem, 91905, Israel

Stephen Gould SGOULD@STANFORD.EDU

Department of Electrical Engineering
Stanford University
Stanford, CA 94305, USA

Editor: David Maxwell Chickering

Abstract
With the increased availability of data for complex domains, it is desirable to learn Bayesian net-
work structures that are sufficiently expressive for generalization while at the same time allow for
tractable inference. While the method of thin junction trees can, in principle, be used for this pur-
pose, its fully greedy nature makes it prone to overfitting, particularly when data is scarce. In this
work we present a novel method for learning Bayesian networks of bounded treewidth that employs
global structure modifications and that is polynomial both in the size of the graph and the treewidth
bound. At the heart of our method is a dynamic triangulation that we update in a way that facilitates
the addition of chain structures that increase the bound on the model’s treewidth by at most one. We
demonstrate the effectiveness of our “treewidth-friendly” method on several real-life data sets and
show that it is superior to the greedy approach as soon as the bound on the treewidth is nontrivial.
Importantly, we also show that by making use of global operators, we are able to achieve better
generalization even when learning Bayesian networks of unbounded treewidth.
Keywords: Bayesian networks, structure learning, model selection, bounded treewidth

1. Introduction

Recent years have seen a surge of readily available data for complex and varied domains. Accord-
ingly, increased attention has been directed towards the automatic learning of large scale proba-
bilistic graphical models (Pearl, 1988), and in particular to the learning of the graph structure of a
Bayesian network. With the goal of making predictions or providing probabilistic explanations, it is
desirable to learn models that generalize well and at the same time have low inference complexity
or a small treewidth (Robertson and Seymour, 1987).

Chow and Liu (1968) showed that the optimal Markov or Bayesian network can be learned
efficiently when the underlying structure of the network is constrained to be a tree. Learning the
structure of general Bayesian networks, however, is computationally difficult (Dagum and Luby,
1993), as is the learning of simpler structures such as poly-trees (Dasgupta, 1999) or even uncon-
strained chains (Meek, 2001). Several works try to generalize the work of Chow and Liu (1968)
either by making assumptions about the generating distribution (e.g., Narasimhan and Bilmes, 2003;
Abbeel et al., 2006), by searching for a local maxima of a mixture of trees model (Meila and Jor-
dan, 2000), or by providing an approximate method that is polynomial in the size of the graph but

c©2008 Gal Elidan and Stephen Gould.

ELIDAN AND GOULD

exponential in the treewidth bound (e.g., Karger and Srebro, 2001; Chechetka and Guestrin, 2008).
In the context of general Bayesian networks, Bach and Jordan (2002) propose a local greedy ap-
proach that upper bounds the treewidth of the model at each step. Because evaluating the bound
on the treewidth of a graph is super-exponential in the treewidth (Bodlaender, 1996), their approach
relies on heuristic techniques for producing tree-decompositions (clique trees) of the model at hand,
and uses that decomposition as an upper bound on the true treewidth of the model. This approach,
like standard structure search, does not provide guarantees on the performance of the model, but is
appealing in its ability to efficiently learn Bayesian networks with an arbitrary treewidth bound.

While tree-decomposition heuristics such as the one employed by Bach and Jordan (2002) are
efficient and useful on average, there are two concerns when using such a heuristic in a fully greedy
manner. First, even the best of heuristics exhibits some variance in the treewidth estimate (see,
for example, Koster et al., 2001) and thus a single edge modification can result in a jump in the
treewidth estimate despite the fact that adding a single edge to the network can increase the true
treewidth by at most one. More importantly, most structure learning scores (e.g., BIC, MDL, BDe,
BGe) tend to learn spurious edges that result in overfitting when the number of samples is relatively
small, a phenomenon that is made worse by a fully greedy approach. Intuitively, to generalize well,
we want to learn bounded treewidth Bayesian networks where structure modifications are globally
beneficial (contribute to the score in many regions of the network).

In this work we propose a novel approach for efficiently learning Bayesian networks of bounded
treewidth that addresses these concerns. At the heart of our method is the idea of dynamically updat-
ing a valid moralized triangulation of our model in a particular way, and using that triangulation to
upper bound the model’s treewidth. Briefly, we use a novel triangulation procedure that is treewidth-
friendly: the treewidth of the triangulated graph is guaranteed to increase by at most one when an
edge is added to the Bayesian network. Building on the single edge triangulation, we are also able
to characterize sets of edges that jointly increase the treewidth of the triangulation by at most one.
We make use of this characterization of treewidth-friendly edge sets in a dynamic programming ap-
proach that learns the optimal treewidth-friendly chain with respect to a node ordering. Finally, we
learn a bounded treewidth Bayesian network by iteratively augmenting the model with such chains.

Importantly, instead of local edge modifications, our method progresses by making use of chain
structure operators that are more globally beneficial, leading to greater robustness and improving
our ability to generalize. At the same time, we are able to guarantee that the bound on the model’s
treewidth grows by at most one at each iteration. Thus, our method resembles the global nature of
the method of Chow and Liu (1968) more closely than the thin junction tree approach of Bach and
Jordan (2002), while being applicable in practice to any desired treewidth.

We evaluate our method on several challenging real-life data sets and show that our method
is able to learn richer models that generalize better on test data than a greedy variant for a range
of treewidth bounds. Importantly, we show that even when models with unbounded treewidth are
learned, by employing global structure modification operators, we are better able to cope with the
problem of local maxima in the search and learn models that generalize better.

The rest of the paper is organized as follows. After briefly discussing background material
in Section 2, we provide a high-level overview of our approach in Section 3. In Section 4 we
present our treewidth-friendly triangulation procedure in detail, followed by a multiple edge update
discussion in Section 5. In Section 6 we show how to learn a treewidth-friendly chain given a node
ordering and in Section 7 we propose a practical node ordering that is motivated by the properties of

2700

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

our triangulation procedure. We evaluate the merits of our method in Section 8 and conclude with a
discussion in Section 9.

2. Background

In this section we provide a basic review of Bayesian Networks as well as introduce the graph
theoretic concepts of treewidth-decompositions and treewidth.

2.1 Bayesian Networks

Consider a finite set X = {X1, . . . ,Xn} of random variables. A Bayesian network (Pearl, 1988) is
an annotated directed acyclic graph that encodes a joint probability distribution over X . Formally,
a Bayesian network over X is a pair B = 〈G ,Θ〉. The first component, G = (V ,E), is a directed
acyclic graph whose vertices V correspond to the random variables in X . The edges E in the
graph represent direct dependencies between the variables. The graph G represents independence
properties that are assumed to hold in the underlying distribution: each Xi is independent of its
non-descendants given its parents Pai ⊂ X denoted by (Xi ⊥ NonDescendantsi | Pai). The second
component, Θ, represents the set of parameters that quantify the network. Each node is annotated
with a conditional probability distribution P(Xi | Pai), representing the conditional probability of
the node Xi given its parents in G , defined by the parameters ΘXi|Pai

. A Bayesian network defines a
unique joint probability distribution over X given by

P(X1, . . . ,Xn) =
n

∏
i=1

P(Xi | Pai).

A topological ordering OT of variables with respect to a Bayesian network structure is an ordering
where each variable appears before all of its descendants in the network.

Given a Bayesian network model, we are interested in the task of probabilistic inference, or
evaluating queries of the form PB(Y | Z) where Y and Z are arbitrary subsets of X . This task
is, in general, NP-hard (Cooper, 1990), except when G is tree structured. The actual complexity
of inference in a Bayesian network (whether by variable elimination, by belief propagation in a
clique tree, or by cut-set conditioning on the graph) is proportional to its treewidth (Robertson and
Seymour, 1987) which, roughly speaking, measures how closely the network resembles a tree (see
Section 2.2 for more details).

Given a network structure G , the problem of learning a Bayesian network can be stated as
follows: given a training set D = {x[1], . . . ,x[M]} of instances of X ⊆X , we want to learn parameters
for the network. In the Maximum Likelihood setting we want to find the parameter values θ that
maximize the log-likelihood function

logP(D | G ,θ) = ∑
m

logP(x[m] | G ,θ).

This function can be equivalently (up to a multiplicative constant) written as IEP̂[logP(X | G ,θ)]
where P̂ is the empirical distribution in D . When all instances in D are complete (that is, each
training instance assigns values to all of the variables), estimating the maximum likelihood parame-
ters can be done efficiently using a closed form solution for many choices of conditional probability
distributions (for more details see Heckerman, 1998).

2701

ELIDAN AND GOULD

Learning the structure of a network poses additional challenges as the number of possible struc-
tures is super-exponential in the number of variables and the task is, in general, NP-hard (Chicker-
ing, 1996; Dasgupta, 1999; Meek, 2001). In practice, structure learning is typically done using a
local search procedure, which examines local structure changes that are easily evaluated (add, delete
or reverse an edge). This search is usually guided by a scoring function such as the MDL principle
based score (Lam and Bacchus, 1994) or the Bayesian score (BDe) (Heckerman et al., 1995). Both
scores penalize the likelihood of the data to limit the model complexity. An important characteristic
of these scoring functions is that when the data instances are complete the score is decomposable.
More precisely, a decomposable score can be rewritten as the sum

Score(G : D) = ∑
i

FamScoreXi(Pai : D).

where FamScoreXi(Pai : D) is the local contribution of Xi to the total network score. This term
depends only on values of Xi and PaXi in the training instances.

Chow and Liu (1968) showed that maximum likelihood trees can be learned efficiently via a
maximum spanning tree whose edge weights correspond to the empirical information between the
two variables corresponding to the edge’s endpoints. Their result can be easily generalized for any
decomposable score.

2.2 Tree-Decompositions and Treewidth

The notions of tree-decompositions (or clique trees) and treewidth were introduced by Robertson
and Seymour (1987).1

Definition 2.1: A tree-decomposition of an undirected graph H = (V ,E) is a pair ({C i}i∈T ,T) with
{Ci}i∈T a family of subsets of V , one for each node of T , and T a tree such that

•
S

i∈T Ci = V .

• for all edges (v,w) ∈ E there exists an i ∈ T with v ∈Ci and w ∈Ci.

• for all i, j,k ∈ T : if j is on the (unique) path from i to k in T , then Ci∩Ck ⊆C j.

The treewidth of a tree-decomposition ({Ci}i∈T ,T) is defined to be maxi∈T |Ci| − 1. The
treewidth TW (H) of an undirected graph H is the minimum treewidth over all possible tree-
decompositions of H . An equivalent notion of treewidth can be phrased in terms of a graph that is
a triangulation of H .

Definition 2.2: An induced path P = p1—p2 . . . pL in an undirected graph H is a path such that for
every non-adjacent pi, p j ∈ P there is no edge (pi—p j) in H . An induced (non-chordal) cycle is an
induced path whose endpoints are the same vertex.

Definition 2.3: A triangulated or chordal graph is an undirected graph that has no induced cycles.
Equivalently, it is an undirected graph in which every cycle of length greater than three contains a
chord.

1. The properties defining a tree-decomposition are equivalent to the corresponding family preserving and running
intersection properties of clique trees introduced by Lauritzen and Spiegelhalter (1988) at around the same time.

2702

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

It can be easily shown (Robertson and Seymour, 1987) that the treewidth of a given triangulated
graph is the size of the maximal clique of the graph minus one. The treewidth of an undirected
graph H is then equivalently the minimum treewidth over all possible triangulations of H .

For the underlying directed acyclic graph of a Bayesian network, the treewidth can be charac-
terized via a triangulation of the moralized graph.

Definition 2.4: A moralized graph M of a directed acyclic graph G is an undirected graph that
includes an edge (i— j) for every edge (i→ j) in G and an edge (p—q) for every pair of edges
(p→ i),(q→ i) in G .

The treewidth of a Bayesian network graph G is defined as the treewidth of its moralized graph M ,
and corresponds to the complexity of inference in the model. It follows that the maximal clique
of any moralized triangulation of G is an upper bound on the treewidth of the model, and thus its
inference complexity.2

3. Learning Bounded Treewidth Bayesian Networks: Overview

Our goal is to develop an efficient algorithm for learning Bayesian networks with an arbitrary
treewidth bound. As learning the optimal such network is NP-hard (Dagum and Luby, 1993), it
is important to note the properties that we would like our algorithm to have. First, we would like
our algorithm to be provably polynomial in the number of variables and in the desired treewidth.
Thus, we cannot rely on methods such as that of Bodlaender (1996) to verify the boundedness of our
network as they are super-exponential in the treewidth and are practical only for small treewidths.
Second, we want to learn networks that are non-trivial. That is, we want to ensure that we do not
quickly get stuck in local maxima due to the heuristic employed for bounding the treewidth of our
model. Third, similar to the method of Chow and Liu (1968), we want to employ global structure
operators that are optimal in some sense. In this section we present a brief high-level overview
of our algorithm. In the next sections we provide detailed description of the different components
along with proof of correctness and running time guarantees.

At the heart of our method is the idea of using a dynamically maintained moralized triangulated
graph to upper bound the treewidth of the current Bayesian network. When an edge is added to
the Bayesian network we update this (moralized) triangulated graph in a particular manner that is
not only guaranteed to produce a valid triangulation, but that is also treewidth-friendly. That is, our
update is guaranteed to increase the size of the maximal clique of the triangulated graph, and hence
the treewidth bound, by at most one. As we will see, the correctness of our treewidth-friendly edge
update as well as the fact that we can carry it out efficiently will both directly rely on the dynamic
nature of our method. We discuss our edge update procedure in detail in Section 4.

An important property of our edge update is that we can characterize the parts of the network
that are “contaminated” by the update by using the notion of blocks (bi-connected components) in
the triangulated graph. This allows us to define sets of edges that are jointly treewidth-friendly. That
is, these edge sets are guaranteed to increase the treewidth of the triangulated graph by at most one
when all edges in the set are added to the Bayesian network structure. We discuss multiple edge
updates in Section 5.

2. It also follows that the size of a family (a node and its parents) provides a lower bound on the treewidth, although we
will not make use of this property in our work.

2703

ELIDAN AND GOULD

Figure 1: The building blocks of our method for learning Bayesian networks of bounded treewidth
and how they depend on each other.

Building on the characterization of treewidth-friendly sets, we propose a dynamic programming
approach for efficiently learning the optimal treewidth-friendly chain with respect to a node order-
ing. We present this procedure in Section 6. To encourage chains that are rich in structure (have
many edges), in Section 7 we propose a block shortest-path node ordering that is motivated by the
properties of our triangulation procedure.

Finally, we learn Bayesian networks with bounded treewidth by starting with a Chow-Liu tree
(Chow and Liu, 1968) and iteratively applying a global structure modification operator where the
current structure is augmented with a treewidth-friendly chain that is optimal with respect to the
ordering chosen. Appealingly, as each global modification can increase our estimate of the treewidth
by at most one, if our bound on the treewidth is K, at least K such chains will be added before we
even face the problem of local maxima. In practice, as some chains do not increase the treewidth,
many more such chains are added for a given maximum treewidth bound. Figure 1 illustrates the
relationship between the different components of our approach.

Algorithm (1) shows pseudo-code of our method. Briefly, Line 4 initializes our model with a
Chow and Liu (1968) tree; Line 8 produces a node ordering given the model at hand; Line 9 finds the
optimal chain with respect to that ordering; and Line 10 augments the current model with the new
edges. We then use our treewidth-friendly edge update procedure to perform the moralization and
triangulation on M + for each edge added to the Bayesian network G (Line 12). Once the maximal
clique size reaches the treewidth bound K, we continue to add edges greedily until no more edges
can be added without increasing the treewidth (Line 16).

Theorem 3.1: Given a treewidth bound K, Algorithm (1) runs in time polynomial in the number of
variables and K.

2704

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

Algorithm 1: Learning A Bayesian Network with Bounded Treewidth

Input : D // training set1

K // maximum treewidth2

Output: G // a graph structure with treewidth at most K3

G ← maximum scoring spanning tree4

M +← undirected skeleton of G5

k← 16

while k < K and positive scoring edges exist do7

O← node ordering given G and M + // Algorithm (7)8

C ← maximum scoring chain with respect to O // Algorithm (6)9

G ← G ∪C10

foreach (i→ j) ∈ C do11

M +← EdgeUpdate(M +,(i→ j)) // Algorithm (3)12

end foreach13

k← maximal clique size of M +14

end15

Greedily add edges to G that do not increase treewidth beyond K16

return G17

We will prove this result gradually using the developments of the next sections. Note that we
will show that our method is guaranteed to be polynomial both in the size of the graph and the
treewidth bound. Thus, like the greedy thin junction tree approach of Bach and Jordan (2002), it
can be used to learn a Bayesian networks given an arbitrary treewidth bound. It is also important
to note that, as in the case of the thin junction tree method, the above result is only useful if the
actual Bayesian network learned is expressive enough to be useful for generalization. As we will
demonstrate in Section 8, by making use of global treewidth-friendly updates, our method indeed
improves on the greedy approach and learns models that are rich and useful in practice.

4. Treewidth-Friendly Edge Update

In this section we consider the basic building block of our method: the manner in which we update
the triangulated graph when a single edge is added to the Bayesian network structure. Throughout
this section we will build on the dynamic nature of our method and make use of the valid moralized
triangulation graph that was constructed before adding an edge (s→ t) to the Bayesian network
structure. We will start by augmenting it with (s—t) and any edges required for moralization. We
will then triangulate the graph in a treewidth-friendly way, increasing the size of the maximal clique
in the triangulated graph by at most one. For clarity of exposition, we start with a simple variant of
our triangulation procedure in Section 4.1 and refine it in Section 4.2.

4.1 Single-source Triangulation

To gain intuition into how the dynamic nature of our update is useful, we use the notion of induced
paths or paths with no shortcuts (see Section 2), and make explicit the following obvious fact.

2705

ELIDAN AND GOULD

Algorithm 2: SingleSourceEdgeUpdate: Update of M + when adding (s→ t) to G
Input : M + // triangulated moralized graph of G1

(s→ t) // edge to be added to G2

Output: M +
(s→t) // a triangulated moralized graph of G ∪ (s→ t)3

M +
(s→t)←M +∪ (s—t)4

foreach p ∈ Pat do5

M +
(s→t)←M +

(s→t)∪ (s—p) // moralization6

end foreach7

foreach node v on an induced path between s and t ∪Pat in M + do8

M +
(s→t)←M +

(s→t)∪ (s—v)9

end foreach10

return M +
(s→t)11

s

t

p

t

ps

t

ps

t

ps

(a) Bayesian network (b) Addition of (c) Addition of (d) Addition of the
G ∪ (s→ t) (s—t) to M + moralizing edges triangulating edges

(line 4) (lines 5-7) (lines 8-10)

Figure 2: Example showing the application of the single-source triangulation procedure of Algo-
rithm (2) to a simple graph. The treewidth of the original graph is one, while the graph
augmented with (s→ t) has a treewidth of two (maximal clique of size three).

Observation 4.1: Let G be a Bayesian network structure and let M + be a moralized triangulation
of G . Let M(s→t) be M + augmented with the edge (s—t) and with the edges (s—p) for every
parent p of t in G . Then, every non-chordal cycle in M(s→t) involves s and either t or a parent of t
and an induced path between the two vertices.

Stated simply, if the graph was triangulated before the addition of (s → t) to the Bayesian
network, then we only need to triangulate cycles created by the addition of the new edge or those
forced by moralization. This observation immediately suggests the straight-forward single-source
triangulation outlined in Algorithm (2): add an edge (s—v) for every node v on an induced path
between s and t or s and a parent p of t before the edge update. Figure 2 shows an application of the
procedure to a simple graph. Clearly, this naive method results in a valid moralized triangulation of
G ∪ (s→ t). Surprisingly, we can also show that it is treewidth-friendly.

Theorem 4.2: The treewidth of the output graph M +
(s→t) of Algorithm (2) is greater than the

treewidth of the input graph M + by at most one.

2706

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

Proof: Let C be the nodes in any maximal clique M +. We consider the minimal set of edges
required to increase the size of C by more than one and show that this set cannot be a subset of
the edges added by our single-source triangulation. In order for the clique to grow by more than
one node, at least two nodes i and j not originally in C must become connected to all nodes in C.
Since there exists at least one node k ∈C that is not adjacent to i and similarly there exists at least
one node l ∈C not adjacent to j, both edges (i—k) and (j—l) are needed to form the larger clique.
There are two possibilities illustrated below (the dotted edges are needed to increase the treewidth
by two and all other edges between i, j and the current maximal clique are assumed to exist):

C

i j

k, l
C

i j

k l

(a) (i— j) does not exist (b) (i— j) exists

• (i— j) does not exist (a). In this case k and l can be the same node but the missing edge
(i— j) is also required to form the larger clique.

• (i— j) exists (b). In this case k and l cannot be the same node or the original clique was not
maximal since C∪ i∪ j \k would have formed a larger clique. Furthermore one of k or l must
not be connected to both i and j otherwise i— j—k—l—i forms a non-chordal cycle of length
four contradicting our assumption that the original graph was triangulated. Thus, in this case
either (i—l) or (j—k) are also required to form the larger clique.

In both scenarios, at least two nodes have two incident edges and the three edges needed cannot all
be incident to a single vertex. Now consider the triangulation procedure. Since, by construction,
all edges added in Algorithm (2) emanate from s, the above condition (requiring two nodes to have
two incident edges and the three edges not all incident to a single vertex) is not met and the size of
the maximal clique in the new graph cannot be larger than the size of the maximal clique in M + by
more than one. It follows that the treewidth of the moralized triangulated graph cannot increase by
more than one.

One problem with the proposed single-source triangulation, despite it being treewidth-friendly,
is the fact that so many vertices are connected to the source node making the triangulations shallow
(the length of the shortest path between any two nodes is small). While this is not a problem when
considering a single edge update, it can have an undesirable effect on future edges and increases the
chances of the formation of large cliques. As an example, Figure 3 shows a simple case where two
successive single-source edge updates increase the treewidth by two while an alternative approach
increases the treewidth by only one. In the next section, we present a refinement of the single-source
triangulation that is motivated by this example.

2707

ELIDAN AND GOULD

(a) Chain network (b) Triangulation after (c) Triangulation after (d) Alternative
(v1→ v6) is added (v2→ v5) is added triangulation

Figure 3: Example demonstrating that the single-source edge update of Algorithm (2) can be prob-
lematic for later edge additions. (a) shows a simple six nodes chain Bayesian network;
(b) a single-source triangulation when (v1→ v6) is added to the network with a treewidth
of two; (c) a single-source triangulation when in addition (v2→ v5) is added to the model
with a treewidth of three; (d) an alternative triangulation to (b). This triangulation already
includes the edge (v2—v5) and the moralizing edge (v2—v4) and thus is also a valid
moralized triangulation after (v2→ v5) has been added, but has a treewidth of only two.

4.2 Alternating Cut-vertex Triangulation

To refine the single-source triangulation discussed above with the goal of addressing the problem
exemplified in Figure 3 we make use of the concepts of cut-vertices, blocks, and block trees (see,
for example, Diestel, 2005).

Definition 4.3: A block, or biconnected component, of an undirected graph is a set of connected
nodes that cannot be disconnected by the removal of a single vertex. By convention, if the edge
(u—v) is in the graph then u and v are in the same block. Vertices that separate (are in the intersec-
tion of) blocks are called cut-vertices.

It follows directly from the definition that between every two nodes in a block (of size greater than
two), there are at least two distinct paths, that is, a cycle. There are also no simple cycles involving
nodes in different blocks.

Definition 4.4: A block tree B of an undirected graph H is a graph with nodes that correspond both
to cut-vertices and to blocks of H . The edges in the block tree connect any block node Bi with a
cut-vertex node v j if and only if v j ∈ Bi in H .

It can be easily shown that the above connectivity condition indeed forces a tree structure and that
this tree is unique (see Figure 4 for an example). In addition, any path in H between two nodes

2708

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

(a) Bayesian network, G (b) A possible triangulated
graph, M +

(c) Unique block tree, B

Figure 4: Example of a Bayesian network with a corresponding moralized triangulated graph and
the unique block tree. Boxes in the block tree denote cut-vertices, ellipses denote blocks.

in different blocks passes through all the cut-vertices along the path between the blocks in B . An
important consequence that directly follows from the result of Dirac (1961) is that an undirected
graph whose blocks are triangulated is overall triangulated.

We can now describe our improved treewidth-friendly triangulation outlined in Algorithm (3)
and illustrated via an example in Figure 5. First, the triangulated graph is augmented by the edge
(s—t) and any edges needed for moralization (Figure 5(b) and (c)). Second, if s and t are not in
the same block, a block level triangulation is carried out by starting from s and zig-zagging across
the cut-vertices along the unique path between the blocks containing s and t and its parents in the
block tree (Figure 5(d)). Next, within each block along the path (not containing s or t), a chord is
added between the “entry” and “exit” cut-vertices along the block path, thereby short-circuiting any
other node path through the block. In addition, within each such block we perform a single-source
triangulation with respect to s′ by adding an edge (s′—v) between the first cut-vertex s′ and any node
v on an induced path between s′ and the second cut-vertex t ′. The block containing s is treated the
same as other blocks on the path with the exception that the short-circuiting edge is added between s
and the first cut-vertex along the path from s to t. For the block containing t and its parents, instead
of adding a chord between the entry cut-vertex and t, we add chords directly from s to any node v
(within the block) that is on an induced path between s and t (or parents of t) (Figure 5(e)). This is
required to prevent moralization and triangulation edges from interacting in a way that will increase
the treewidth by more than one (see Figure 5(f) for an example). If s and t happen to be in the same
block, then we only triangulate the induced paths between s and t, that is, the last step outlined
above. Finally, in the special case that s and t are in disconnected components of G , the only edges
added are those required for moralization.

We now show that this revised edge update is a valid triangulation procedure and that it is also
treewidth-friendly. To do so we start with the following observations that are a direct consequence
of the definition of a block and block tree.

2709

ELIDAN AND GOULD

Algorithm 3: EdgeUpdate: Update of M + when adding (s→ t) to G
Input : M + // triangulated moralized graph of G1

O // node ordering2

(s→ t) // edge to be added to G3

Output: M +
(s→t) // a triangulated moralized graph of G ∪ (s→ t)4

B ← block tree of M +5

M +
(s→t)←M +∪ (s—t)6

foreach p ∈ Pat do7

M +
(s→t)←M +

(s→t)∪ (s—p) // moralization8

end foreach9

// triangulate (cut-vertices) between blocks
C = {c1, . . . ,cM}← sequence of cut-vertices on the path from s to t ∪Pat in block tree B10

Add (s—cM),(cM—c1),(c1—cM−1),(cM−1—c2), . . . to M +
(s→t)11

// triangulate nodes within blocks on path from s to t ∪Pat

E ←{(s—c1),(c1—c2), . . . ,(cM−1—cM)}12

foreach edge (s′—t ′) ∈ E do13

M +
(s→t)←M +

(s→t)∪ (s′—t ′)14

foreach node v on an induced path between s′ and t ′ in the original block containing15

both do
M +

(s→t)←M +
(s→t)∪ (s′—v)16

end foreach17

end foreach18

// triangulate s with nodes in block containing t ∪Pat

foreach node v on an induced path between s and t ∪Pat in the new block containing them19

do
M +

(s→t)←M +
(s→t)∪ (s—v)20

end foreach21

return M +
(s→t)22

Observation 4.5: (Family Block). Let u be a node in a Bayesian network G and let Pau be the set
of parents of u. Then the block tree for any moralized triangulated graph M + of G has a unique
block containing {u,Pau}.

Observation 4.6: (Path Nodes). Let B = ({Bi}∪{c j},T) be the block tree of M + with blocks
{Bi} and cut-vertices {c j}. Let s and t be nodes in blocks Bs and Bt , respectively. If t is a cut-vertex
then let Bt be the (unique) block that also contains Pat . If s is a cut-vertex, then choose Bs to be the
block containing s closest to Bt in T . Then a node v is on a path from s to t or from s to a parent of
t if and only if it is in a block that is on the unique path from Bs to Bt .

Figure 4(c) shows an example of a block tree for a small Bayesian network. Here, for example,
selecting s to be the node v6 and t to be the node v10 in G , it is clear that all paths between s
and t include only the vertices that are in blocks along the unique block path between Bs and Bt .
Furthermore, every path between s and t passes through all the cut-vertices on this block path, that

2710

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

(a) Bayesian network, G
augmented with (s→ t)

(b) Moralized graph
augmented with (s—t)

(c) Addition of moralizing
edges to Pat

(d) Addition of between-block
zigzag edges

(e) Addition of within-block
triangulation edges (Complete

triangulation from s)

(f) An alternative final
triangulation from cM

Figure 5: Example showing our triangulation procedure (b)-(e) for s and t in different blocks. (The
blocks are {s,v1}, {v1,cM}, and {cM,v2,v3, p1, p2, t} with corresponding cut-vertices v1

and cM). The original graph has a treewidth of two, while the graph augmented with
(s→ t) has treewidth three (maximal clique of size four). An alternative triangulation (f),
connecting cM to t, however, would result in a clique of size five {s,cM, p1, p2, t}.

is, {v2,v1,v9}. We can now use these properties to show that our edge update procedure produces a
valid triangulation.

Lemma 4.7: If M + is a valid moralized triangulation of the graph G then Algorithm (3) produces
a moralized triangulation M +

(s→t) of the graph G(s→t) ≡ G ∪ (s→ t).

Proof: Since M + was triangulated, every cycle of length greater than or equal to four in G(s→t) is
the result of the edge (s—t) or one of the moralizing edges, together with an induced path (path
with no shortcuts) between the endpoints of the edge. We consider three cases:

• s and t are disconnected in M +: There are no induced paths between s and t so the only
edges required are those for moralization. These edges do not produce any induced cycles.

• s and t are in the same block: The edge (s—t) does not create a new block and all simple
cycles that involve both s and t must be within the block. Thus, by construction, the edges
added in Line 16 triangulate all newly introduced induced cycles. If the parents of t are in the
same block as s and t, the same reasoning holds for all induced paths between a parent p of

2711

ELIDAN AND GOULD

t and s. Otherwise, t is a cut-vertex between the block that contains its parents and the block
that contains s. It follows that all paths (including induced ones) from a parent of t to s pass
through t and the edges added for the s, t-block triangulate all newly created induced cycles
that result from the moralizing edges.

• s and t are not in the same block: As noted in Observation 4.6, all paths in M + from s
to t or a parent of t pass through the unique cut-vertex path from the block containing s to
the block containing t and its parents. The edges added in Line 14 short-circuit the in-going
s′ and out-going t ′ of each block creating a path containing only cut-vertices between s and
t. Line 11 triangulates this path by forming cycles of length three containing s′, t ′ and some
other cut-vertex. The only induced cycles remaining are contained within blocks and contain
the newly added edge (s′—t ′) or involve the edge between s and the last cut-vertex (s—cM)
and one of the edges between s and t or a parent of t. It follows that within-block triangulation
with respect to s′ and t ′ will shortcut the former induced cycles, and the edges added from s
in Line 20 will shortcut the later induced cycles.

To complete the proof, we need to show that any edge added from s (or s′) to an induced node v
does not create new induced cycles. Any such induced cycle would have to include an induced path
from the endpoints of the edge added and thus would have been a sub-path of some induced cycle
that includes both s and v. This cycle would have already been triangulated by our procedure.

Having shown that our update produces a valid triangulation, we now prove that our edge update
is indeed treewidth-friendly and that it can increase the treewidth of the moralized triangulated graph
by at most one.

Theorem 4.8: The treewidth of the output graph M +
(s→t) of Algorithm (3) is greater than the

treewidth of the input graph M + by at most one.

Proof: As shown in the proof of Theorem 4.2, the single-source triangulation within a block is guar-
anteed not to increase the maximal clique size by more than one. In addition, from the properties of
blocks it follows directly that the inner block triangulation does not add edges that are incident to
nodes outside of the block. It follows that all the inner block single-source triangulations indepen-
dently effect disjoint cliques. Thus, the only way that the treewidth of the graph can further increase
is via the zig-zag edges. Now consider two cliques in different blocks. Since our block level zig-zag
triangulation only touches two cut-vertices in each block, it cannot join two cliques of size greater
than two into a single larger one. In the simple case of two blocks with two nodes (a single edge) and
that intersect at a single cut-vertex, a zig-zag edge can indeed increase the treewidth by one. In this
case, however, there is no within-block triangulation and so the overall treewidth cannot increase by
more than one.

4.3 Finding Induced Nodes

We finish the description of our edge update (Algorithm (3)) by showing that it can be carried out
efficiently. That is, we have to be able to efficiently find the vertices on all induced paths between
two nodes in a graph. In general, this task is computationally difficult as there are potentially
exponentially many such paths between any two nodes. To cope with this problem, we again make
use of the dynamic nature of our method.

The idea is simple. As implied by Observation 4.1, any induced path between s′ and t ′ in a
triangulated graph will be part of an induced cycle if (s′—t ′) is added to the graph. Furthermore,

2712

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

Algorithm 4: InducedNodes: compute set of nodes on induced path between s′ and t ′ in M +

Input : M + // moralized triangulated graph1

s′, t ′ // two nodes in M +2

Output: I // set of nodes on induced paths between s′ and t ′3

H ← block (subgraph) of M +∪ (s′—t ′) containing s′ and t ′4

I ← /05

while edges being added do6

// maximum cardinality search
X ← all nodes in H except s′7

Y ←{s′}8

while X 6= /0 do9

Find v ∈ X with maximum number of neighbors in Y10

X ← X \{v} and Y ← Y ∪{v} // remove from X , add to Y11

if there exists u,w ∈ Y such that (u—w) /∈H then12

I ← I ∪{u,v,w}13

Add edges (s′—u), (s′—v) and (s′—w) to H14

Restart maximum cardinality search15

end16

end17

end18

return I19

after adding (s′—t ′) to the graph, every cycle detected will involve an induced path between the two
nodes. Using this observation, we can make use of the ability of the maximum cardinality search
algorithm (Tarjan and Yannakakis, 1984) to iteratively detect non-chordal cycles.

The method is outlined in Algorithm (4). At each iteration we attempt to complete a maximum
cardinality search starting from s′ (Line 7 to Line 17). If the search fails, we add the node at which
it failed, v, together with its non-adjacent neighboring nodes {u,w} to the set of induced nodes and
augment the graph with triangulating edges from s′ to each of {u,v,w}. If the search completes then
we have successfully triangulated the graph and hence found all induced nodes. Note that using the
properties of blocks and cut-vertices, we only need to consider the subgraph that is the block created
after the addition of (s′—t ′) to the graph.

Lemma 4.9: (Induced Nodes). Let M + be a triangulated graph and let s′ and t ′ be any two nodes
in M +. Then Algorithm (4) efficiently returns all nodes on any induced path between s′ and t ′ in
M +, unless those nodes are connected directly to s′.

Proof: During a maximum cardinality search, if the next node chosen v has two neighbors u and
w that are not connected then the triplet u—v—w is part of an induced cycle. As the graph was
triangulated before adding the edge (s′—t ′), all such cycles must contain s′ and adding (s′—v)
obviously shortcuts such a cycle. This is also true for v and v′ that are on the same induced cycle.
It remains to show that the edges added do not create new induced cycle. Such an induced cycle
would have to include the edge (s′—v) as well as an induced path between s′ and v. However, such

2713

ELIDAN AND GOULD

a path must have been part of another cycle where v was an induced node and hence would have
been triangulated.

Thus Algorithm (4) returns exactly the set of nodes on induced paths from s′ to t ′ that s′ needs
to connect to in order to triangulate the graph M + ∪ (s—t). The efficiency of our edge update
procedure of Algorithm (3) follows immediately as all other operations are simple.

5. Multiple Edge Updates

In this section we define the notion of a contaminated set, or the subset of nodes that are incident to
edges added to M + in Algorithm (3), and characterize sets of edges that are jointly guaranteed not
to increase the treewidth of the triangulated graph by more than one. We begin by formally defining
the terms contaminate and contaminated set.

Definition 5.1: We say that a node v is contaminated by the addition of the edge (s→ t) to G if
it is incident to an edge added to the moralized triangulated graph M + by a call to Algorithm (3).
The contaminated set for an edge (s→ t) is the set of all nodes v that would be contaminated (with
respect to M +) by adding (s→ t) to G , including s, t, and the parents of t.

Figure 6 shows some examples of contaminated sets for different edge updates. Note that our
definition of contaminated set only includes nodes that are incident to new edges added to M + and,
for example, excludes nodes that were already connected to s before (s→ t) is added, such as the
two nodes adjacent to s in Figure 6(b).

Using the separation properties of cut-vertices, one might be tempted to claim that if the con-
taminated sets of two edges overlap at most by a single cut-vertex then the two edges jointly increase
the treewidth by at most one. This however, is not true in general as the following example shows.

Example 5.2: Consider the Bayesian network shown below in (a) and its triangulation (b) after
(v1 → v4) is added, increasing the treewidth from one to two. (c) is the same for the case when
(v4→ v5) is added to the network. Despite the fact that the contaminated sets (solid nodes) of two
edge additions overlap only by the cut-vertex v4, (d) shows that jointly adding the two edges to the
graph results in a triangulated graph with a treewidth of three.

(a) (b) (c) (d)

The problem in the above example lies in the overlap of block paths between the endpoints of the two
edges, a property that we have to take into account while characterizing sets of treewidth-friendly
edges.

2714

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

(a) (b) (c)

(d) (e) (f)

Figure 6: Some examples of contaminated sets (solid nodes) that are incident to edges added
(dashed) by Algorithm (3) for different candidate edge additions (s→ t) to the Bayesian
network shown in (a). In (b), (c), (d), and (e) the treewidth is increased by one; In (f) the
treewidth does not change.

Theorem 5.3: (Treewidth-friendly pair). Let G be a Bayesian network graph structure and M +

be its corresponding moralized triangulation. Let (s→ t) and (u→ v) be two distinct edges that are
topologically consistent with G . Then the addition of the edges to G does not increase the treewidth
of M + by more than one if one of the following conditions holds:

• the contaminated sets of (s→ t) and (u→ v) are disjoint.

• the endpoints of each of the two edges are not in the same block and the block paths between
the endpoints of the two edges do not overlap and the contaminated sets of the two edge
overlap at a single cut-vertex.

Proof: As in the proof of Algorithm (3) a maximal clique can grow by two nodes only if three
undirected edges are added so that at least two nodes are incident to two of them. Obviously, this

2715

ELIDAN AND GOULD

Algorithm 5: ContaminatedSet: compute contaminated set for (s→ t)

Input : G // Bayesian network1

M + // moralized triangulated graph2

(s→ t) // candidate edge3

Output: Cs,t // contaminated set for (s→ t)4

Cs,t ←{s, t}∪{p ∈ Pat | (s—p) /∈M +}5

foreach edge (s′—t ′) ∈ E in procedure Algorithm (3) with (s′—t ′) /∈M + do6

I = InducedNodes(M +,{s′, t ′})7

Cs,t ← Cs,t ∪{v ∈ I | (s′—v) /∈M +}8

end foreach9

H ←{s} and block containing t ∪Pat10

H ←H ∪{(s—p) | p ∈ Pat}∪ (s—c) where c is the cut-vertex closest to s in the block11

containing t
I = InducedNodes(H ,{s, t})12

Cs,t ← Cs,t ∪{v ∈ I | (s′—v) /∈M +}13

return Cs,t14

can only happen if the contamination sets of the two edge updates are not completely disjoint. Now,
consider the case when the two sets overlap by a single cut-vertex. By construction all triangulating
edges added are along the block path between the endpoints of each edge. Since the block paths of
the two edge updates do not overlap there can not be an edge between a node in the contaminated
set of (s→ t) and the contaminated set of (u→ v) (except for the single cut-vertex). But then
no node from either contaminated set can become part of a clique involving nodes from the other
contaminated set. Thus there are no two nodes that can be added to the same clique. It follows that
the maximal clique size of M +, and hence the treewidth bound, cannot grow by more than one.

The following result is an immediate consequence.

Corollary 5.4: (Treewidth-friendly set). Let G be a Bayesian network graph structure and M +

be its corresponding moralized triangulation. If {(si → ti)} is a set of edges so that every pair of
edges satisfies the condition of Theorem 5.3 then adding all edges to G can increase the treewidth
bound by at most one.

The above result characterizes treewidth-friendly sets. In the search for such sets that are useful
for generalization (see Section 6), we will need be able to efficiently compute the contaminated set
of candidate edges. At the block level, adding an edge between s and t in G can only contaminate
blocks between the block containing s and that containing t and its parents in the block tree for
M + (Observation 4.6). Furthermore, identifying the nodes that are incident to moralizing edges
and edges that are part of the zigzag block level triangulation is easy. Finally, within a block, the
contaminated set is easily computed using Algorithm (4) for finding the induced nodes between two
vertices. Algorithm (5) outlines this procedure. Its correctness follows directly from the correctness
of Algorithm (4) and the fact that it mirrors the edge update procedure of Algorithm (3).

2716

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

6. Learning Optimal Treewidth-Friendly Chains

We now want to build on the results of the previous sections to facilitate the addition of global
moves that are both optimal in some sense and are guaranteed to increase the treewidth by at most
one. Specifically, we consider adding optimal chains that are consistent with some topological node
ordering. On the surface, one might question the need for a specific node ordering altogether if chain
global operators are to be used—given the result of Chow and Liu (1968), one might expect that
learning the optimal chain with respect to any ordering can be carried out efficiently. However, Meek
(2001) showed that learning such an optimal chain over a set of random variables is computationally
difficult. Furthermore, conditioning on the current model, the problem of identifying the optimal
chain is equivalent to learning the (unconditioned) optimal chain.3 Thus, during any iteration of our
algorithm, we cannot expect to find the overall optimal chain.

Instead, we commit to a single node ordering that is topologically consistent and learn the
optimal chain with respect to that order. In this section we will complete the development of our
algorithm and show how we can efficiently learn chains that are optimal with respect to any such
ordering. In Section 7 we will also suggest a useful node ordering motivated by the characteristics
of contaminated sets. We start by formally defining the chains that we will learn.

Definition 6.1: A treewidth-friendly chain C with respect to a node ordering O is a chain with
respect to O such that the contamination conditions of Theorem 5.3 hold for the set of edges in C .

Given a treewidth-friendly chain C to be added for Bayesian network G , we can apply the edge
update of Algorithm (3) successively to every edge in C to produce a valid moralized triangulation
of G ∪C . The result of Theorem 5.4 ensures that the resulting moralized triangulation will have
treewidth at most one greater than the original moralized triangulation M +.

To find the optimal treewidth-friendly chain in polynomial time, we use a straightforward dy-
namic programming approach: the best treewidth-friendly chain that contains (Os → Ot) is the
concatenation of

• the best treewidth-friendly chain from the first node in the order O1 to OF , the first ordered
node contaminated by the edge (Os→ Ot)

• the edge (Os→ Ot)

• the best treewidth-friendly chain starting from OL, the last node contaminated by the edge
(Os→ Ot), to the last node in the order, ON .

O1 OsOF OL ON

optimal chain optimal chain

Ot

We note that when the end nodes are not separating cut-vertices, we maintain a gap so that the
contamination sets are disjoint and the conditions of Theorem 5.3 are met.

3. Consider, for example, the star-network where a single node acts as parent to all other nodes (with no other edges),
then learning the optimal chain amounts to learning a chain over the n−1 children.

2717

ELIDAN AND GOULD

Formally, we define C[i, j] as the optimal chain whose contamination starts at or after Oi and
ends at or before O j. To find the optimal treewidth-friendly chain with respect to a node ordering
O for a Bayesian network with N variables, our goal is then to compute C[1,N]. Using the short-
hand notation F to denote the first node ordered in the contamination set of (s→ t) and L to denote
the last ordered node in the contamination set, we can readily compute C[1,N] via the following
recursive update principle

C[i, j] = max

maxs,t:F=i,L= j(s→ t) no split
maxk=i+1: j−1C[i,k]∪C[k, j] split
/0 leave a gap

where the maximization is with respect to the score (e.g., BIC) of the structures considered. In
simple words, the maximum chain in any sub-sequence [i, j] in the node ordering is the maximum
of three alternatives: all edges whose contamination boundaries are exactly i and j (no split); all two
chain combinations that are in the sub-sequence [i, j] and are joined at some node i < k < j (split); a
gap between i and j in the case that there is no edge whose contamination is contained in this range
and that increases the score.

Algorithm (6) outlines a simple backward recursion that computes C[1,N]. At each node, the
algorithm maintains a list of the best partial chains evaluated so far that contaminates nodes up to,
but not preceding, that node in the ordering. That is, the list of best partial chains is indexed by where
the contamination boundary of each chain starts in the ordering. By recursing backwards from the
last node, the algorithm is able to update this list by evaluating all candidate edges terminating at
the current node. It follows that, once the algorithm iterates past a node t we have the optimal
chain starting from that node. Thus, at the end of the recursion we are left with the optimal non-
contaminating chain starting from the first node in the ordering.

The recursion starts at Line 7. If for node Ot the best chain starting from the succeeding node
Ot+1 is better than the best chain starting from Ot , we replace the best chain from Ot with the one
from Ot+1 simply leaving a gap in the chain (Line 8). Then, for every edge terminating at Ot , we
find the first ordered node OF and the last ordered node OL that would be contaminated by adding
that edge. If the score for the edge plus the score for the best partial non-contaminating chain from
OF is better than the current best partial chain from OL then we replace the best chain from OL with
the one just found (Line 19).

With the ability to learn optimal chains with respect to a node ordering, we have completed the
description of all the components of our algorithm for learning bounded treewidth Bayesian network
outlined in Algorithm (1). Its efficiency is a direct consequence of our ability to learn treewidth-
friendly chains in time that is polynomial both in the number of variables and in the treewidth at
each iteration. For completeness we now restate and prove Theorem 3.1.

Theorem 3.1: Given a treewidth bound K, Algorithm (1) runs in time polynomial in the number of
variables and K.

Proof: The initial Chow-Liu tree and its corresponding undirected skeleton can be obtained in
polynomial time using a standard max-spanning-tree algorithm. The maximum scoring chain can
be computed in polynomial time (using Algorithm (6)) at each iteration. As we proved, the same is
true of the triangulation procedure of Algorithm (3). All other steps are trivial. Since the algorithm
adds at least one edge per iteration it cannot loop for more than K ·N iterations before exceeding a
treewidth of K (where N is the number of variables).

2718

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

Algorithm 6: LearnChain: learn optimal non-contaminating chain with respect to topological
node ordering

Input : O // topological node ordering1

Output: C // non-contaminating chain2

// initialize dynamic programming data
for i = 1 to |O|+1 do3

bestChain[i]← /0 // best chain from i-th node4

bestScore[i]← 0 // best score from i-th node5

end6

// backward recursion
for t = |O| down to 1 do7

if (bestScore[t +1] > bestScore[t]) then8

bestChain[t]← bestChain[t +1]9

bestScore[t]← bestScore[t +1]10

end11

for s = 1 to t−1 do // evaluate edges12

V ← contaminated set for candidate edge (Os→ Ot)13

f ← first ordered node in V // must be ≤ s14

l← last ordered node in V // must be ≥ t15

if bestChain[l].last and (Os→ Ot) do not satisfy the conditions of Theorem 5.3 then16

l← l +1 // leave a gap17

end18

if (∆Score(Os→ Ot)+bestScore[l] > bestScore[f]) then19

bestChain[f]←{(Os→ Ot)}∪bestChain[l]20

bestScore[f]← ∆Score(Os→ Ot)+bestScore[l]21

end22

end23

end24

// return optimal non-contaminating chain
return bestChain[1]25

7. Block-Shortest-Path Ordering

In the previous sections we presented an algorithm for learning bounded treewidth Bayesian net-
works given any topological ordering of the variables. In order to make the most of our method, we
would like our ordering to facilitate rich structures that will have beneficial generalization proper-
ties. Toward that end, in this section we consider the practical matter of a concrete node ordering.
We will present a block shortest-path (BSP) node ordering that is motivated by the specific proper-
ties of our triangulation method.4

4. We also considered several other strategies for ordering the variables. As none was better than the intuitive ordering
described here, we only present results for our block-shortest-path ordering.

2719

ELIDAN AND GOULD

To make our node ordering concrete, since the contamination resulting from edges added within
an existing block is limited to the block, we start by grouping together all nodes that are within a
block (cut-vertices that appear in multiple blocks are included in the first block chosen). Our node
ordering is then a topologically consistent ordering over the blocks combined with a topologically
consistent ordering over the nodes within each block. We use topological consistency to facilitate as
many edges as possible though this is not required by the theory (and, in particular, Theorem 5.3).

We now consider how to order interchangeable blocks by taking into account that our triangu-
lation following an edge addition (s→ t) only involves variables that are in blocks along the unique
path between the block containing s and the block containing t and its parents. The following
example motivates a natural choice for this ordering.

Example 7.1: Consider a Bayesian network with root node R
and three branches: R→ A1 → . . .→ AL, R→ B1 → . . .→ BN ,
and R→ C1 → . . .→ CM . If we add an edge Ai → B j to the
network, then by the block contamination results, our triangu-
lation procedure will touch (almost) every node on the path be-
tween Ai and B j. This implies that we can not include addi-
tional edges of the type Bk → Cl in our chain since the block
path from Bk to R overlaps with the block path from B j to
R. Note, however, that any edge Cp → Cq>p is still allowed
to be added since its contaminated set does not overlap with
that of Ai → B j. Now, consider the two obvious topologi-
cal node orderings: OBFS = (R,A1,B1,C1,A2, . . .) and ODFS =
(R,A1, . . . ,AL,B1, . . . ,BN ,C1, . . .). Only the DFS ordering, ob-
tained by grouping the Bi’s together, allows us to consider such
edge combinations.

Motivated by the above example to order interchangeable blocks, we use a block level depth-
first ordering. The question now is whether a further characterization of the contaminated set can
be provided in order to better order topologically interchangeable nodes within a block. To answer
this question we consider the following example.

Example 7.2: Consider the Bayesian network shown below whose underlying undirected structure
is a valid moralized triangulation and forms a single block. Numbers in the boxes indicate the (undi-
rected) distance of each node from r, a property that we make use of below.

rv2v1 v4v3

v6v5 v9v8v7

s t

0 112 2

1 112 2 33

2720

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

The single edge addition (s→ t) will contaminate every node in the block (other than those already
adjacent to it) since all nodes lie on induced paths between s and t. However other edge additions,
such as (v3→ t) have a much smaller contamination set: {v3, t}.

Based on the above example, one may think that no within-block ordering can improve the
expected contamination of edges added, and that we may be forced to only add a single edge per
block, making our method greedier than we would like. Fortunately, there is a straightforward way
to characterize the within-block contamination set using the notion of shortest path length. Let G
be a Bayesian network over variables X . We denote by dM

min (u,v) the minimum distance (shortest
path) between nodes u,v ∈ X in M +. We note the following useful properties of dM

min (·, ·):

• dM
min (u,v)≥ 0 with equality if and only if u = v

• dM
min (u,w)+dM

min (v,w)≥ dM
min (u,v) with equality if and only if w is on the (possibly non-unique)

shortest path between u and v

• if u and v are disconnected in M + then, by convention, dM
min (u,v) = ∞

Theorem 7.3: Let r, s and t be nodes in some block B (of size ≥ 3) in the triangulated graph M +

with dM
min (r,s)≤ dM

min (r, t). Then for any v on an induced path between s and t we have

dM
min (r,v)≤ dM

min (r, t)

Proof: Since the nodes are all in the same block we know that there must be at least two paths
between any two nodes. Let p and q be the shortest paths from nodes r to s and r to t, respectively
(denoted r

p
. . . s and r

q
. . . t). If p and q meet at some node other than r then they will share the path

from that node to r (otherwise they cannot be shortest paths). Let such a shared node furthest from
r be r′. Then dM

min (r, t) = dM
min (r,r

′)+ dM
min (r

′, t) and dM
min (r,v) ≤ dM

min (r,r
′)+ dM

min (r
′,v) so if the result

holds for r′ it holds for r. Without loss of generality assume that there is no such r′. Now consider
the following cases:

• If q contains v then dM
min (r,v) = dM

min (r, t)−dM
min (v, t) < dM

min (r, t).

• If p contains v then dM
min (r,v) = dM

min (r,s)−dM
min (v,s) < dM

min (r,s)≤ dM
min (r, t).

• Otherwise v is on some other (induced) path between s and t. But now r
p

. . . s . . . v . . . t
q

. . . r
forms a cycle of length ≥ 4. Since M + is triangulated there must be an edge from v to some
node on p or q. There cannot be an edge between s and t or else there would not be any
induced paths between s and t. But then dM

min (r,v)≤ dM
min (r, t).

2721

ELIDAN AND GOULD

Algorithm 7: Block-Shortest-Path Ordering

Input : G // input Bayesian network1

M + // corresponding moralized triangulation2

Output: O // an ordering X1, . . . ,XN3

O← /04

OT ← topological ordering of the nodes in G5

OB← depth-first search ordering of blocks in M +6

while OB 6= /0 do7

B← pop OB8

R← cut-vertex of B with lowest OT9

Push nodes in B to O in order of (OT ,dM
min (R, ·))10

end11

return O12

(a) Bayesian Network, G (b) Block Tree, B (c) BSP Ordering

Figure 7: Concrete example of BSP ordering using the Bayesian network from Figure 4. Nodes in
parentheses are the same distance from the root cut-vertex and can be ordered arbitrarily.

We now use this result to order nodes according to their distance from the cut-vertex in the block
that connects it to the blocks already ordered (which we call the root cut-vertex). Algorithm (7)
shows how our Block-Shortest-Path (BSP) ordering is constructed and Figure 7 demonstrates the
application of that ordering to a concrete example.

Finally, we note that the above ordering, while almost strict, still allows for variables that are
the same distance from the root cut-vertex of the block to be ordered arbitrarily. Indeed, as the
following example shows two nodes that are the same distance from the block cut-vertex can be
symmetrically contaminating. We break such ties arbitrarily.

2722

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

Example 7.4: Consider, again, the example network shown in Example 7.2. The set of nodes
{v2,v3,v6,v7,v8} are all the adjacent to r and so can be ordered arbitrarily. An edge from v2 to
v8 (or vice versa) will contaminate v7. Likewise an edge from v3 to v6 (or vice versa) will also
contaminate v7. It turns out that for any ordering of these nodes, it is always possible to add an
edge that will contaminate other nodes in the set. This is consistent with the contamination result of
Theorem 7.3 since these nodes are all equi-distant from r.

8. Experimental Evaluation

In this section we perform experimental validation of our approach and show that it is beneficial
for learning Bayesian networks of bounded treewidth. Specifically, we demonstrate that by making
use of global structure modification steps, our approach leads to superior generalization. In order to
evaluate our method we compare against two strong baseline approaches.

The first baseline is an improved variant of the thin junction tree approach of Bach and Jordan
(2002). We start, as in our method, with a Chow-Liu forest and iteratively add the single best scoring
edge. To make the approach as comparable to ours as possible, at each iteration, we triangulate the
model using either the maximum cardinality search or minimum fill-in heuristics (see, for example,
Koster et al., 2001), as well as using our treewidth friendly triangulation, and take the triangulation
that results in a lower treewidth.5 As in our method, when the treewidth bound is reached, we
continue to add edges that improve the model selection score until no such edges can be found that
do not also increase the treewidth bound.

The second baseline is an aggressive structure learning approach that combines greedy edge
modifications with a TABU list (e.g., Glover and Laguna, 1993) and random moves. This approach
is not constrained by a treewidth bound. Comparison to this baseline allows us to evaluate the merit
of our method with respect to an unconstrained state-of-the-art search procedure.

We evaluate our method on four real-world data sets that are described below. Where relevant
we also compare our results to the results of Chechetka and Guestrin (2008).

8.1 Gene Expression

In our first experiment, we consider a continuous data set based on a study that measures the expres-
sion of the baker’s yeast genes in 173 experiments (Gasch et al., 2000). In this study, researchers
measured the expression of 6152 yeast genes in response to changes in the environmental condi-
tions, resulting in a matrix of 173× 6152 measurements. The measurements are real-valued and,
in our experiments, we learn sigmoid Bayesian networks using the Bayesian Information Criterion
(BIC) (Schwarz, 1978) for model selection. For practical reasons, we consider the fully observed
set of 89 genes that participate in general metabolic processes (Met). This is the larger of the two
sets used by Elidan et al. (2007), and was chosen since part of the response of the yeast to changes
in its environment is in altering the activity levels of different parts of its metabolism. We treat the
genes as variables and the experiments as instances so that the learned networks indicate possible
regulatory or functional connections between genes (Friedman et al., 2000).

Figure 8 shows test log-loss results for the 89 variable gene expression data set as a function of
the treewidth bound. The first obvious phenomenon is that both our method (solid blue squares) and

5. We note that in all of our experiments there was only a small difference between the minimum fill-in and maximum
cardinality search heuristics for upper bounding the treewidth of the model at hand.

2723

ELIDAN AND GOULD

5 10 15 20 25 30 35 40 45 50 55 60

-5

-4

-3

-2

-1

0

1

T
es

t l
og

-lo
ss

 /
in

st
an

ce

Treewidth bound

Ours

Thin Junction-tree

Aggressive

Figure 8: Average test set log-loss per instance over five folds (y-axis) versus the treewidth bound
(x-axis) for the 89 variable gene expression data set. Compared are our method (solid blue
squares) with the Thin junction tree approach (dashed red circles), and an Aggressive
greedy approach of unbounded treewidth that also uses a TABU list and random moves
(dotted black).

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

11

Iteration

Treewidth bound

Length of chain

Figure 9: Plot showing the number of edges (in the learned chain) added during each iteration for a
typical run with treewidth bound of 10 for the 89 variables gene expression data set. The
graph also shows our treewidth estimate at the end of each iteration.

2724

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

the greedy junction tree approach (dashed red circles) are superior to the aggressive baseline (dotted
black). As one might expect, the aggressive baseline achieves a higher BIC score on training data
(not shown), but overfits due to the scarcity of the data. By greedy edge addition (the junction tree
approach) or global chain addition (our approach), this overfitting is avoided. Indeed, a better choice
of edges, that is, ones chosen using a global operator, can lead to increased robustness and better
generalization. This is evident by the consistent superiority of our method (solid blue squares) over
the greedy variant (dashed red circles). Importantly, even when the treewidth bound is increased
passed the saturation point our method surpasses both the thin junction tree approach of Bach and
Jordan (2002) and the aggressive search strategy. In this case, we are learning unbounded Bayesian
networks and all of the benefit comes from the global nature of our structure modifications.

To qualitatively illustrate the progression of our algorithm from iteration to iteration, we plot
the number of edges in the chain (solid blue squares) and treewidth estimate (dashed red) at the end
of each iteration. Figure 9 shows a typical run for the 89 variable gene expression data set with
treewidth bound set to 10. Our algorithm aggressively adds many edges (making up an optimal
chain) per iteration until parts of the network reach the treewidth bound. At that point (iteration 24)
the algorithm resorts to adding the single best edge per iteration until no more edges can be added
without increasing the treewidth (or that have an adverse effect on the score). To appreciate the
non-triviality of some of the chains learned with 4, 5 or 7 edges, we recall that the example shows
edges added after a Chow-Liu model was initially learned. It is also worth noting that despite their
complexity, some chains do not increase the treewidth estimate and for a given treewidth bound K,
we typically have more than K iterations (in this example 24 chains are added before reaching the
treewidth bound). The number of such iterations is still polynomially bounded as for a Bayesian
network with N variables adding more than K ·N edges will necessarily result in a treewidth that is
greater than K.

In order to verify the efficiency of our method we measured the running time of our algorithm as
a function of treewidth bound. Figure 10 shows results for the 89 variable gene expression data set.
Observe that our method (solid blue squares) and the greedy thin junction tree approach (dashed red
circles) are both approximately linear in the treewidth bound. Appealingly, the additional computa-
tion required by our method is not significant and the differences between the two approaches are at
most 25%. This should not come as a surprise since the bulk of the time is spent on the collection
of sufficient statistics from the data.

It is also worthwhile to discuss the range of treewidths considered in the above experiment as
well as the Haplotype sequence experiment considered below. While treewidths of 30 and beyond
may seem excessive for exact inference, state-of-the-art exact inference techniques (e.g., Darwiche,
2001; Marinescu and Dechter, 2005) can often handle inference in such networks (for some exam-
ples see Bilmes and Dechter, 2006). Since, as shown in Figure 8, it is beneficial to learn models with
large treewidth, methods such as ours for learning and the state-of-the-art techniques for inference
allow practitioners to push the envelope of the complexity of models learned for real applications.

8.2 The Traffic and Temperature Data Sets

We now compare our method to the mutual-information based LPACJT method for learning bounded
treewidth model of Chechetka and Guestrin (2008) (we compare to better of the variants presented
in that work). While providing theoretical guarantees (under some assumptions), their method is
exponential in the treewidth and cannot be used in a setting similar to the gene expression experi-

2725

ELIDAN AND GOULD

0 10 20 30 40 50 60

5

10

15

20

25

30

Treewidth bound

R
un

tim
e

in
 m

in
ut

es
Thin Junction tree

Ours

Figure 10: Running time in minutes on the 89 variable gene expression data set (y-axis) as a func-
tion of treewidth bound (x-axis). The graph compares our method (solid blue squares)
with the thin junction tree approach (dashed red circles). The markers show times for
the 5 different fold runs for each treewidth while the line shows the average running
time.

ment above. Instead, we compare on the two discrete real-life data set considered in Chechetka and
Guestrin (2008). The temperature data is from a two-month deployment of 54 sensor nodes (15K
data points) (Deshpande et al., 2004) where each variable was discretized into 4 bins. The traffic
data set contains traffic flow information measured every five minutes in 32 locations in California
for one month (Krause and Guestrin, 2005). Values were discretized into 4 bins. For both data sets,
to make the comparison fair, we used the same discretization and train/test splits as in Chechetka
and Guestrin (2008). Furthermore, as their method can only be applied to a small treewidth bound,
we also limited our model to a treewidth of two. Figure 11 compares the different methods. Both
our method and the thin junction tree approach significantly outperform the LPACJT on small sam-
ple size. This result is consistent with that reported in Chechetka and Guestrin (2008) and is due
to the fact that the LPACJT method does not naturally use regularization which is crucial in the
sparse-data regime. The performance of our method is comparable to the greedy thin junction tree
approach with no obvious superiority to either method. This should not come as a surprise since
the fact that the unbounded aggressive approach is not significantly better suggests that the strong
signal in the data can be captured rather easily. In fact, Chechetka and Guestrin (2008) show that
even a Chow-Liu tree does rather well on these data sets (compare this to the gene expression data
set where the aggressive variant was superior even at a treewidth of four).

8.3 Haplotype Sequences

Finally we consider a more difficult discrete data set consisting of a sequence of binary single nu-
cleotide polymorphism (SNP) alleles from the Human HapMap project (Consortium, 2003). Our

2726

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

100 200 300 400 500 600 700 800 900 1000

-65

-60

-55

-50

-45
T

es
t l

og
-lo

ss
 /

in
st

an
ce

Training instances

Ours
Thin Junction-tree

Aggressive

Chechetka+Guestrin

100 200 300 400 500 600 700 800 900 1000

-38

-36

-34

-32

-30

T
es

t l
og

-lo
ss

 /
in

st
an

ce

Training instances

Ours

Thin Junction-tree

Aggressive

Chechetka+Guestrin

(a) Temperature (54 variables) (b) Traffic (32 variables)

Figure 11: Average test set log-loss per instance over five folds (y-axis) versus the number of
training instances (x-axis) for the temperature and traffic data sets. Compared are our
method (solid blue squares), the Thin junction tree approach (dashed red circles), an
Aggressive greedy approach of unbounded treewidth that also uses a TABU list and
random moves (dotted black), and the mutual-information based method of Chechetka
and Guestrin (2008) (dash-dot magenta diamonds). For all of our methods except the
unbounded Aggressive, the treewidth bound was set to two.

model is defined over 200 SNPs (variables) from chromosome 22 of a European population consist-
ing of 60 individuals.6 In this case, there is a natural ordering of variables that corresponds to the
position of the SNPs in the DNA sequence. Figure 12 shows test log-loss results when this ordering
is enforced (thicker lines) and when it is not (thinner) lines. Our small benefit over the greedy thin
junction tree approach of Bach and Jordan (2002) when the treewidth bound is non-trivial (>2)
grows significantly when we take advantage of the natural variable order. Interestingly, this same
order decreases the performance of the thin junction tree method. This should not come as a surprise
as the greedy method does not make use of a node ordering, while our method provides optimality
guarantees with respect to a variable ordering at each iteration. Whether constrained to the natural
variable ordering or not, our method ultimately also surpasses the performance of the aggressive
unbounded search approach.

9. Discussion and Future Work

In this work we presented a novel method for learning Bayesian networks of bounded treewidth
in time that is polynomial in both the number of variables and the treewidth bound. Our method
builds on an edge update algorithm that dynamically maintains a valid moralized triangulation in a
way that facilitates the addition of chains that are guaranteed to increase the treewidth by at most
one. We demonstrated the effectiveness of our treewidth-friendly method on real-life data sets, and

6. We considered several different sequences along the chromosome with similar results.

2727

ELIDAN AND GOULD

2 4 6 8 10 12 14 16 18 20

-36

-34

-32

-30

-28

T
es

t l
og

-lo
ss

 /
in

st
an

ce

Treewidth bound

Ours

Thin Junction-tree

[unordered]

Figure 12: Average test set log-loss per data instance over five folds (y-axis) versus the treewidth
bound (x-axis) for the 200 variable Hapmap data set. The graph compares our method
(solid blue squares) with the greedy approach (dashed red circles), and an aggressive
greedy approach of unbounded treewidth that also uses a TABU list and random moves
(dotted black). The thicker lines show the results for a fixed ordering of the variables
according to the location along the DNA sequence. The thinner lines show the results
without any constraint on the node ordering.

showed that by using global structure modification operators, we are able to learn better models
than competing methods even when the treewidth of the models learned is not constrained.

Our method can be viewed as a generalization of the work of Chow and Liu (1968) that is
constrained to a chain structure but that provides an optimality guarantee (with respect to a node
ordering) at every treewidth. In addition, unlike the thin junction trees approach of Bach and Jordan
(2002), we also provide a guarantee that our estimate of the treewidth bound will not increase by
more than one at each iteration. Furthermore, we add multiple edges at each iteration, which in
turn allows us to better cope with the problem of local maxima in the search. To our knowledge,
ours is the first method for efficiently learning bounded treewidth Bayesian networks with structure
modifications that are not fully greedy.

Several other methods aim to generalize the work of Chow and Liu (1968). Karger and Srebro
(2001) propose a method that is guaranteed to learn a good approximation of the optimal Markov
network given a treewidth bound. Their method builds on a hyper-graph that is exponential in the
treewidth bound. Chechetka and Guestrin (2008) also propose an innovative method with theoretical
guarantees on the quality of the learned model (given some mild assumptions on the generating
distribution), but in the context of Bayesian networks. However, like the approach of Karger and
Srebro (2001), the method is exponential in the treewidth bound. Thus, both approaches are only
practical for treewidths that are much smaller than the ones we consider in this work. In addition,
the work of Chechetka and Guestrin (2008) does not naturally allow for the use of regularization.

2728

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

This has significant impact on performance when the number of training samples is limited, as
demonstrated in Section 8.

Meila and Jordan (2000) suggested the use of a mixture of trees, generalizing the Chow-Liu
tree on an axis that is orthogonal to a more complex Bayesian network. They provide an efficient
method for obtaining a (penalized) likelihood local maxima but their work is limited to a particular
and relatively simple structure. Dasgupta (1999) suggested the use of poly-trees but proved that
learning the optimal poly-tree is computationally difficult. Other works study this question but in
the context where the true distribution is assumed to have bounded treewidth (e.g., Beygelzimer and
Rish, 2004; Abbeel et al., 2006, and references within).

Our method motivates several exciting future directions. It would be interesting to see to what
extent we could overcome the limitation of having to commit to a specific node ordering at each
iteration. While we provably cannot consider any node ordering, it may be possible to polynomially
provide a reasonable approximation. Second, it may be possible to refine our characterization of the
contamination that results from an edge update, which in turn may facilitate the addition of more
complex treewidth-friendly structures at each iteration. Finally, we are most interested in explor-
ing whether tools similar to the ones employed in this work could be used to dynamically update
the bounded treewidth structure that is the approximating distribution in a variational approximate
inference setting.

Acknowledgments

We are grateful to Ben Packer for many useful discussions and comments. Much of the current
work was carried out while Gal Elidan was in Stanford University.

References

P. Abbeel, D. Koller, and A. Y. Ng. Learning factor graphs in polynomial time and sample com-
plexity. Journal of Machine Learning Research, 7:1743–1788, 2006.

F. Bach and M. I. Jordan. Thin junction trees. In T. G. Dietterich, S. Becker, and Z. Ghahramani,
editors, Advances in Neural Information Processing Systems 14, Cambridge, Mass., 2002. MIT
Press.

A. Beygelzimer and I. Rish. Approximability of probability distributions. In Advances in Neural
Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

J. Bilmes and R. Dechter. Evaluation of probabilistic inference, the
twenty second conference on uncertainty in artificial intelligence.
ssli.ee.washington.edu/∼bilmes/UAI06InferenceEvaluation, 2006.

H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. SIAM
Journal on Computing, 25:1305–1317, 1996.

A. Chechetka and C. Guestrin. Efficient principled learning of thin junction trees. In Advances in
Neural Information Processing Systems 20, pages 273–280. MIT Press, Cambridge, MA, 2008.

2729

ELIDAN AND GOULD

D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and H. J. Lenz,
editors, Learning from Data: Artificial Intelligence and Statistics V, pages 121–130. Springer-
Verlag, New York, 1996.

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees.
IEEE Trans. on Info. Theory, 14:462–467, 1968.

The International HapMap Consortium. The international hapmap project. Nature, 426:789–796,
2003.

G. F. Cooper. The computational complexity of probabilistic inference using Bayesian belief net-
works. Artificial Intelligence, 42:393–405, 1990.

P. Dagum and M. Luby. An optimal approximation algorithm for baysian inference. Artificial
Intelligence, 60:141–153, 1993.

A. Darwiche. Recursive conditioning. Artificial Intelligence, 126, 2001.

S. Dasgupta. Learning polytrees. In K. Laskey and H. Prade, editors, Proc. Fifteenth Conference
on Uncertainty in Artificial Intelligence (UAI ’99), pages 134–141, San Francisco, 1999. Morgan
Kaufmann.

A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-driven data acquisition
in sensor networks. In Proceedings of the Very Large Data Bases (VLDB) Conference, 2004.

R. Diestel. Graph Theory. Springer, 3rd edition, 2005.

G. A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Univer-
sität Hamburg 25, Universität Hamburg, 1961.

G. Elidan, I. Nachman, and N. Friedman. “ideal parent” structure learning for continuous variable
bayesian networks. Journal of Machine Learning Research, 8:1799–1833, 2007.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze expression
data. Computational Biology, 7:601–620, 2000.

A. Gasch, P. Spellman, C. Kao, O. Carmel-Harel, M. Eisen, G. Storz, D. Botstein, and P. Brown.
Genomic expression program in the response of yeast cells to environmental changes. Molecular
Biology of the Cell, 11:4241–4257, 2000.

F. Glover and M. Laguna. Tabu search. In C. Reeves, editor, Modern Heuristic Techniques for
Combinatorial Problems, Oxford, England, 1993. Blackwell Scientific Publishing.

D. Heckerman. A tutorial on learning with Bayesian networks. In M. I. Jordan, editor, Learning in
Graphical Models. Kluwer, Dordrecht, Netherlands, 1998.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20:197–243, 1995.

D. Karger and N. Srebro. Learning markov networks: maximum bounded tree-width graphs. In
Symposium on Discrete Algorithms, pages 392–401, 2001.

2730

LEARNING BOUNDED TREEWIDTH BAYESIAN NETWORKS

A. Koster, H. Bodlaender, and S. Van Hoesel. Treewidth: Computational experiments. Technical
report, Universiteit Utrecht, 2001.

A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical models. In
F. Bacchus and T. Jaakkola, editors, Proc. Twenty First Conference on Uncertainty in Artificial
Intelligence (UAI ’05), San Francisco, 2005. Morgan Kaufmann.

W. Lam and F. Bacchus. Learning Bayesian belief networks: An approach based on the MDL
principle. Computational Intelligence, 10:269–293, 1994.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical structures
and their application to expert systems. J. of the Royal Statistical Society, B 50(2):157–224, 1988.

R. Marinescu and R. Dechter. And/or branch-and-bound for graphical models. IJCAI, 2005.

C. Meek. Finding a path is harder than finding a tree. Journal of Artificial Intelligence Research,
15:383–389, 2001.

M. Meila and M. I. Jordan. Learning with mixtures of trees. Journal of Machine Learning Research,
1:1–48, 2000.

M. Narasimhan and J. Bilmes. Pac-learning bounded tree-width graphical models. In M. Chickering
and J. Halpern, editors, Proc. Twenieth Conference on Uncertainty in Artificial Intelligence (UAI
’04), San Francisco, 2003. Morgan Kaufmann.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

N. Robertson and P. D. Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal of
Algorithms, 7:309–322, 1987.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

R. Tarjan and M. Yannakakis. Simple linear time algorithms to test chordality of graphs, test acyclic-
ity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing,
13:3:566–579, 1984.

2731

Journal of Machine Learning Research 9 (2008) 2733-2759 Submitted 10/07; Revised 7/08; Published 12/08

Automatic PCA Dimension Selection for High Dimensional Data and
Small Sample Sizes

David C. Hoyle DAVID.HOYLE@MANCHESTER.AC.UK

North West Institute for BioHealth Informatics,
University of Manchester, Faculty of Medical and Human Sciences,
University Place (East), Oxford Rd., Manchester, M13 9PL, UK.

Editor: Chris Williams

Abstract

Bayesian inference from high-dimensional data involves the integration over a large number of
model parameters. Accurate evaluation of such high-dimensional integrals raises a unique set of
issues. These issues are illustrated using the exemplar of model selection for principal component
analysis (PCA). A Bayesian model selection criterion, based on a Laplace approximation to the
model evidence for determining the number of signal principal components present in a data set,
has previously been show to perform well on various test data sets. Using simulated data we show
that for d-dimensional data and small sample sizes, N, the accuracy of this model selection method
is strongly affected by increasing values of d. By taking proper account of the contribution to the
evidence from the large number of model parameters we show that model selection accuracy is
substantially improved. The accuracy of the improved model evidence is studied in the asymptotic
limit d → ∞ at fixed ratio α = N/d, with α < 1. In this limit, model selection based upon the
improved model evidence agrees with a frequentist hypothesis testing approach.

Keywords: PCA, Bayesian model selection, random matrix theory, high dimensional inference

1. Introduction

The generation of high dimensional data is fast becoming a common place occurrence. Exam-
ples range from genomics and molecular biology, for example high-throughput single nucleotide
polymorphism (SNP) genotyping scans (Price et al., 2006) and microarray gene expression studies
(Golub et al., 1999), to geophysical imaging, for example hyperspectral image data (Landgrebe,
2002). Intuitive visualization of the data and construction of novel features from the data are key
tasks in processing such high-dimensional data. This often involves dimensionality reduction, for
which a number of algorithms exist. Principal component analysis (PCA) is a ubiquitous method
of data analysis and dimensionality reduction (Joliffe, 1986). Its utility and success stems from the
simplicity of the method - one simply calculates the eigenvectors and eigenvalues of the sample
covariance matrix Ĉ of the data set. A subset of the eigenvectors of Ĉ, the principal components,
are then selected to represent the data. A ‘kernelized’ version has been formulated - kernel PCA
(Scholköpf, Smola, and Müller, 1998), and building on probabilistic formulations (Roweis, 1998;
Tipping and Bishop, 1999a) it has also been extended to a mixture of principal component analysers
(Tipping and Bishop, 1999b). In the latter case a number of local linear models are embedded in
the high dimensional data space, with the properties of each local model being determined from the
local responsibility-weighted covariance matrix.

c©2008 David C. Hoyle.

HOYLE

Clearly selection of the correct number of principal components is crucial to the success of PCA
in representing a data set. Identification of the appropriate signal dimensionality is just a model
selection process to which the techniques of Bayesian model selection can be applied via a suitable
approximation of the Bayesian evidence (MacKay, 1992). What is the most suitable method of
approximating the evidence for high-dimensional data and what are the inherent problems? These
are the research questions we address and a roadmap for the paper is given below,

• In Section 2 we motivate why high-dimensional small sample size data sets present a challenge
for Bayesian model selection.

• In Section 3 we summarize the behaviour of the eigenvectors and eigenvalues of sample co-
variance matrices formed from high-dimensional small sample size data sets.

• In Section 4.1 we review the formalism of Bayesian model selection for PCA, and evalu-
ate through simulation the model selection accuracy of an existing approximation to the Bayesian
evidence.

• In Section 4.2 we develop an improved approximation to the Bayesian evidence specifically
for high dimensional data.

• In Section 5 we evaluate the asymptotic properties of the improved approximation to the model
evidence.

• In Section 6 the model selection performance of the improved approximation to the model
evidence is compared with a frequentist hypothesis testing approach to model selection.

2. The Challenge of High-Dimensional Data for Bayesian Model Selection

A number of Bayesian formulations of PCA have followed from the probabilistic formulation of
Tipping and Bishop (1999a), with the necessary marginalization being approximated through both
Laplace approximations (Bishop, 1999a; Minka, 2000, 2001a) and variational bounds (Bishop,
1999b). More recently, work within the statistics research community has used a Bayesian vari-
ational approach to derive an explicit conditional probability distribution for the signal dimension
given the data (Šmı́dl and Quinn, 2007). However, these results have only been tested on low di-
mensional data with relatively large sample sizes. A somewhat more tractable expression for the
signal dimension posterior was also obtained by Minka (2000, 2001a) and it is that Bayesian for-
mulation of PCA that we draw upon. By performing a Laplace approximation (Wong, 1989), that
is, expanding about the maximum posterior solution, Minka derived an elegant approximation to
the probability, the model evidence p(D|k), of observing a data set D given the number of principal
components k (Minka, 2000, 2001a). The signal dimensionality of the given data set is then esti-
mated by the value of k that maximizes p(D|k). As with any Bayesian model selection procedure, if
the data has truly been generated by a model of the form proposed, then one is guaranteed to select
the correct model dimensionality as the sample increases to an infinite size. Minka’s dimensionality
selection method performs well when tested on data sets of moderate size and dimensionality. In-
deed, the Laplace approximation incorporates the leading order term in an asymptotic expansion of
the Bayesian evidence, with the sample size N playing the role of the ‘large’ parameter, and so we
would expect the Laplace approximation to be increasingly accurate as N → ∞. In real-world data
sets, such as those emanating from molecular biology experiments, the number of variables d is
often very much greater than the sample size N, with d ∼ 104 yet N ∼ 10 or N ∼ 102 not uncommon
(Hoyle and Rattray, 2003). Typically, data sets with a sample size of N = 100 might be considered
as large enough to be well approximated by the asymptotic limit N → ∞, and therefore the Laplace

2734

AUTOMATIC PCA DIMENSIONALITY SELECTION

approximation to be appropriate. However, though retaining only a small number of terms from the
asymptotic expansion of the evidence would be increasingly accurate as N → ∞, individual expan-
sion coefficients may be significant due to the large data dimensionality d. This suggests that for
real finite sample size data sets, higher order terms in the asymptotic expansion not encapsulated
within the Laplace approximation will make significant contributions to the evidence, and model
selection based upon a simplistic application of the Laplace approximation will perform poorly.
What then defines a ‘large’ sample size N is clearly dependent on the data dimensionality d. We
would expect the conjectures about the previously derived Laplace approximation to the evidence to
be increasingly true when the data dimensionality is very much larger than the sample size, that is,
N � d, the situation encountered for many modern data sets. For high dimensional data, rather than
considering the evidence to be close to its value obtained in the asymptotic limit N → ∞ at fixed d,
it may be more appropriate to consider the evidence as being close to its value in the distinguished
limit d,N → ∞ at fixed α = N/d. Within this paradigm, developing a suitable Gaussian approxi-
mation requires us to identify all contributions to the evidence that would scale extensively, that is
increase linearly with N, as N,d → ∞ at fixed α. This would be increasingly important for α < 1,
where the contribution to the evidence resulting from many features can be significant. Ideally we
should re-formulate the evidence as an integration over a set of variables which remains finite in
number in the distinguished limit.

To be more explicit, consider that the Bayesian approach to model selection in PCA starts from
the probability p(D|k,θ)p(θ|k) and integrates over the model parameters θ to obtain the evidence
p(D|k). This integration is often evaluated by the aforementioned Laplace approximation - expan-
sion about the maximum of p(D|k,θ)p(θ|k) and evaluation of the consequent tractable Gaussian
integrals. For high-dimensional data the model parameters may consist of a small set of parameters,
θk, of order of the signal dimensionality k, and a much larger set of parameters, θd , of order of
the data dimensionality. For example, the latter may be the principal vectors, in the d-dimensional
space, that form part of the model. Overall we can write θ = (θd,θk). Integration over θd provides
a significant contribution to p(D|k) due simply to the large number of individual model param-
eters that we are integrating over. In this scenario, the values of θk obtained from maximizing
R

p(D|k,θd,θk)p(θd,θk|k)dθd and p(D|k,θd,θk)p(θd,θk|k) do not coincide. In fact for large val-
ues of d they may be significantly different. The more accurate estimates of θk are naturally obtained
from the maximum of

R

p(D|k,θd,θk)p(θd,θk|k)dθd , and consequently the more accurate estimates
of the evidence p(D|k) are obtained by expanding about this maximum.

The distorting effects of high dimensionality upon covariance matrix eigenvalue spectra and
eigenvectors are well known from random matrix theory (RMT) studies (Johnstone, 2006). The
RMT studies inform us about the expected sample covariance eigenvalue spectrum in the limit
d → ∞ (at fixed α), and consequently the limits of any model selection procedure based upon the
observed eigenvalue spectra. As PCA is based upon the eigenvalues and eigenvectors of Ĉ, under-
standing their behaviour for small sample sizes and high data dimensions is key to understanding
the behaviour of the existing model selection criterion, including the Bayesian model selection ap-
proach of Minka. Results from RMT studies are summarized in Section 3.

3. High-Dimensional Sample Covariance Matrices

We envisage a scenario where one has N, d-dimensional data vectors ξµ,µ = 1, . . . ,N, with sample
mean ξ̄, which are drawn from a multi-variate Gaussian distribution with covariance C. The eigen-

2735

HOYLE

values of C we denote by Λi, i = 1, . . . ,d. The sample data vectors ξµ contain both signal and noise
components so we represent,

C = σ2I +
S

∑
m=1

σ2AmBmBT
m , BT

mBm′ = δmm′ , Am ≥ 0 ∀m , (1)

corresponding to a population covariance C that contains a small number, S, of orthogonal sig-
nal components, {Bm}S

m=1, but that is otherwise isotropic. Here, σ2 represents the variance of the
additive noise component of the sample data vectors. Such models have been termed “spiked” co-
variance models within the statistics research literature (Johnstone, 2001), due to the small number
of δ-function spikes in the population covariance eigenspectrum. In this case the population eigen-
values are Λi = σ2(1 + Ai), i ≤ S and Λi = σ2, i > S. The signal strengths σ2Am merely determine
the population covariance eigenvalues corresponding to signal directions, and so the number of sig-
nal components S is commonly estimated by some process of inspection of the ordered eigenvalues
λi, i = 1, . . . ,d, of the sample covariance matrix Ĉ = N−1 ∑µ(ξµ − ξ̄)(ξµ − ξ̄)T .

When the sample size is greater than the dimensionality, that is, N > d, the sample covariance
eigenvalues λi may be reasonable estimators of the population covariance eigenvalues Λi, and in-
deed are asymptotically unbiased estimators, that is, λi → Λi as N → ∞ for fixed dimensionality d
(Anderson, 1963). However, for small sample sizes N ≤ d the sample covariance Ĉ is singular with
a d −N + 1 degenerate zero eigenvalue. Similarly, the non-zero sample covariance eigenvalues,
λi, i = 1, . . . ,N −1, can display considerable bias. This is reflected in the expected eigenspectrum,
ρ(λ), which is simply defined as the expectation over data sets of the empirical eigenvalue density,

ρ(λ) = Eξ

(

1
d

d

∑
i=1

δ(λ−λi)

)

.

Here δ(x) is the Dirac δ-function, and we have used Eξ(·) to denote expectation over the ensemble
of sample data sets. The empirical eigenvalue density is considered to be a self-averaging quantity,
such that as N → ∞ the eigenvalue density from any individual sample covariance matrix is well
represented by the ensemble average. Therefore, for large sample covariance matrices studying
the behaviour of the expected sample covariance eigenvalue distribution provides us with insight
into the behaviour of individual sample covariance matrices and consequently the behaviour of any
model selection algorithms based upon the sample covariance eigenvalues.

When no signal components are present, that is, C = σ2I , and in the limit d → ∞ with α = N/d
fixed, the expected distribution of sample eigenvalues tends to the Marčenko-Pastur distribution
(Marčenko and Pastur, 1967),

ρ(λ) = ρbulk(λ) = (1−α)Θ(1−α)δ(λ)

+
α

2πλσ2

√

max[0,(λ−λmin)(λmax −λ)] , (2)

where λmax = σ2(1+α− 1
2)2, λmin = σ2(1−α− 1

2)2, and Θ(x) is the Heaviside step function. Figure 1
shows examples of the Marčenko-Pastur distribution for different values of α. It should be noted that
although the mean sample eigenvalue is an unbiased estimator of σ2, that is,

R ∞
0− dλλρbulk(λ) = σ2,

the individual non-zero sample covariance eigenvalues lie in the interval [λmin,λmax] and so for α < 1
are highly biased estimators of the corresponding population eigenvalues.

2736

AUTOMATIC PCA DIMENSIONALITY SELECTION

0 5 10 15 20

λ

0

0.05

0.1

0.15

0.2

0.25

Pr
ob

ab
ili

ty
 D

en
si

ty

α = 0.5

α = 0.25
α = 0.1

Figure 1: The Marčenko-Pastur limiting distribution for sample covariance eigenvalues, at α =
0.1, 0.25, 0.5. In all cases σ2 = 1. We have shown only the part of the distribution
pertaining to non-zero eigenvalues. For α < 1 there is also a δ-function peak at λ = 0 due
to the singular nature of the sample covariance matrix - see main text.

Hoyle and Rattray (2004a) studied the expected behaviour of the sample covariance eigenvalue
spectrum for “spiked” covariance models in the asymptotic limit d → ∞ at fixed α, by using tech-
niques from statistical physics. Similar results have been obtained within the statistics research
community (Baik and Silverstein, 2006). As the addition of a small number, S, of signal directions
provides a relatively small perturbation to an isotropic population covariance, the majority, or bulk
of eigenvalues are still distributed according to the Marčenko-Pastur law. For this reason we have
used ρbulk(λ) to denote the Marčenko-Pastur distribution. For the “spiked” covariance models of
Equation (1) the expected eigenvalue distribution ρ(λ) is modified from ρbulk(λ). At finite but large
values of d and N the expected sample covariance eigenvalue density can be approximated by,

ρ(λ) = (1−α)Θ(1−α)δ(λ) +
1
d

S

∑
m=1

δ(λ−λu(Am))Θ(α−A−2
m)

+

(

1−d−1
S

∑
m=1

Θ(α−A−2
m)

)

α
2πλσ2

√

max[0,(λ−λmin)(λmax −λ)] , (3)

where λu(A) = σ2(1 + A)(1 +(αA)−1). A number of interesting features are present in this spec-
trum. A transition occurs at α = A−2

m , such that for α > A−2
m a sample eigenvalue located at

λ = λu(Am) can be resolved separately from the remaining Marčenko-Pastur bulk of eigenvalues.
Thus for S signal components within the “spiked” covariance model we can observe up to S transi-
tions in the sample covariance eigenspectrum, on increasing α. The first transition point α = A−2

1
corresponds to the transition point in learning the leading signal direction B1. The scenario of learn-
ing a single signal component B1 of strength A1 has been studied by Reimann et al. (1996), who

2737

HOYLE

considered the behaviour (as d → ∞ at fixed α) of the expectation value of R2
1, where R1 = B1 ·J1 is

the overlap between the first principal component J1 of the sample covariance and B1. One observes
the phenomenon of retarded learning whereby R2

1 = 0 for α < A−2
1 and R2

1 > 0 for α > A−2
1 . This has

been generalized to learning multiple orthogonal signals and one observes a separate retarded learn-
ing transition at α = A−2

m for each of the overlaps R2
m = (Bm ·Jm)2, where Jm is the mth principal

component (Hoyle and Rattray, 2007). That the ability to detect the signal components is reflected
in the sample covariance eigenvalue structure (with retarded learning transitions coinciding with
transitions in the eigenspectrum) demonstrates the utility of the sample covariance eigenspectrum
for model selection. It also highlights that if the true signal dimensionality is S then asymptotically
we have at most only S sample covariance eigenvalues separated from the Marčenko-Pastur bulk
distribution, dependent on the value of α. If, for the given value of α, we have Ŝ eigenvalues sepa-
rated from the Marčenko-Pastur bulk distribution, then the asymptotic equivalence of the observed
sample covariance eigenspectra when C contains S signals or Ŝ ≤ S signals means that no correct
Bayesian model selection procedure can, asymptotically, select greater than Ŝ principal components
(applying an Occam’s Razor like argument), since both models are equally capable of explaining
the observed eigenspectra. Equally, for sufficiently small α it is impossible, asymptotically, to dis-
tinguish the sample spectrum from one which has been generated from a model containing no signal
structure, that is, from a population covariance C = σ2I . Within these constraints placed by the ex-
pected behaviour of the observed eigenspectra we now attempt to derive a suitable Bayesian model
selection procedure that performs well in the distinguished asymptotic limit N,d → ∞ at fixed α.

4. Bayesian Model Selection

In this section we summarize the Bayesian model selection procedure for PCA. We start in Section
4.1 by reproducing the formulation of the Bayesian model evidence as outlined by Minka (2000,
2001a) and the subsequent Laplace approximation. In Section 4.2 we re-express the evidence in
a form that is more suitable for application of a Gaussian approximation when d,N → ∞ at fixed
α < 1.

4.1 Laplace Approximation of Minka

The data vectors ξµ are modelled as being drawn from a multi-variate Gaussian distribution with
mean m and covariance Σ = vI +HHT . Thus Σ acts as a model of the true population covariance
C. The matrix H represents the signal considered present in the data and so is modelled as being
due to a small number, k, of orthogonal signal components ui, i = 1, . . . ,k. Consequently we set,

H = U(L− vIk)
1/2W , UT U = Ik , W T W = Ik ,

where the columns of the orthonormal matrix U are formed from the vectors ui. The parameter
v provides an estimator of the true population noise level σ2. The diagonal matrix L has ele-
ments li, i = 1, . . . ,k, which represent estimators of the population covariance eigenvalues Λi. The
orthonormal matrix W represents an irrelevant rotation within the subspace and is subsequently
eliminated from the calculation. Model selection proceeds via the standard use of Bayes’ theorem,

p(H,m,v|D) =
p(D|H,m,v)p(H,m,v)

p(D)
.

2738

AUTOMATIC PCA DIMENSIONALITY SELECTION

The signal dimensionality, k, is implicit in the matrix H . With a non-informative prior, the mean
m can be integrated out to yield the probability of observing the data set D given H and v (Minka,
2001a),

p(D|H,v) = N−d/2(2π)−(N−1)d/2|HHT + vI|−(N−1)/2 exp

(

−N
2

tr((HHT + vI)−1Ĉ)

)

.

Given a prior p(U ,W ,L,v) the evidence for a signal dimensionality k is then,

p(D|k) =
Z

dUdW dLdv p(D|U ,W ,L,v)p(U ,W ,L,v) .

The integration over the elements li, i = 1, . . . ,k is restricted to the region li ≥ 0∀i. Similarly,
the integration over U and W is over the entire space of d × k and k × k orthonormal matrices
respectively. For the relevant integration over U this is equivalent to integration over the Stiefel
manifold Vk(R

d) defined by the set of all orthonormal k-frames in R
d (James, 1954) .

Minka chooses a conjugate prior,

p(U ,W ,L,v) ∝ |HHT + vI|−(η+2)/2 exp(−η
2

tr((HHT + vI)−1)) , (4)

where the hyper-parameter η controls the sharpness of the prior. For a non-informative prior η
should be small and ultimately we shall take η → 0+ in our resulting approximation to the evidence
p(D|k). With the prior given in Equation (4) the evidence is Minka (2000, 2001a),

p(D|k) =
Nk(d)

Area(Vk(Rd))

Z

dUdLdv |HHT + vI|−(N+1+η)/2

× exp(−N
2

tr((HHT + vI)−1(Ĉ +N−1ηI))) , (5)

with,

Nk(d) =
N−d/2(2π)−(N−1)d/2

Γ
(

(1
2 η+1)(d − k)−1

) (η(d − k)/2)(1
2 η+1)(d−k)−1 1

Γ(η/2)k (η/2)ηk/2 ,

and here 1/Area(Vk(R
d)) is the reciprocal of the area of the Stiefel manifold Vk(R

d) (James, 1954),

1
Area(Vk(Rd))

= 2−k
k

∏
i=1

Γ((d − i+1)/2)π−(d−i+1)/2 .

The dependence of Nk(d) upon k is relatively weak compared to other factors contributing to
ln p(D|k), and so Minka drops Nk(d) from further consideration in approximating p(D|k). As with
the maximum likelihood case (Tipping and Bishop, 1999a), for a fixed choice, k, of the number of
principal components, the maximum posterior estimators for {ui}k

i=1 are known to be the eigenvec-
tors of Ĉ corresponding to the k largest eigenvalues of Ĉ. Minka approximates the evidence p(D|k)
in Equation (5) using a Laplace approximation, expanding about the maximum posterior solution.
The stationary point values of v and {li}k

i=1 are denoted by v̂ and {l̂i}k
i=1 respectively, and are given

by (on taking η → 0),

l̂i =
Nλi

N −1
' λi , v̂ =

N ∑d
j=k+1 λ j

(N +1)(d − k)−2
. (6)

2739

HOYLE

Within this approximation l̂i provides a point estimate of the ith population covariance eigenvalue
Λi. For α < 1, as we have already commented in the previous section, λi can be highly biased and
consequently a poor point estimate of Λi. Continuing with the Laplace approximation and setting
m = dk− k(k +1)/2, Minka finds (again after taking η → 0),

p(D|k) ' 1
Area(Vk(Rd))

(

k

∏
j=1

λ j

)−N/2

v̂−N(d−k)/2(2π)(m+k)/2|AZ|−1/2N−k/2 , (7)

where,

|AZ| =
k

∏
i=1

d

∏
j=i+1

(Λ̂−1
j − Λ̂−1

i)(λi −λ j)N .

The estimator Λ̂i is given by Λ̂i = l̂i ' λi for i ≤ k and Λ̂i = v̂ for i > k.
Figure 2 shows simulation estimates of the performance of a model selection criterion based

upon the evidence given by Equation (7). We have sampled data vectors ξµ from a population
covariance C containing three signal components. The noise level has been set to σ2 = 1 and
the signal strengths are A2

1 = 30,A2
2 = 20,A2

3 = 10. The simulation results are averages evaluated
over 1000 simulated data sets. Plotted in Fig.2(a) is the probability of selecting the correct model
dimension against d, for different fixed values of N. As expected the accuracy of the model selection
decreases with increasing d, with greater accuracy for larger sample sizes N at a given value of d.
Plotted in Fig.2(b) is the probability of selecting the correct model dimension against d, for different
fixed values of α. Note that the smallest value studied, α = 0.2, is still greater than the retarded
learning transition point of the weakest signal component, which occurs at α = A−2

3 = 0.1.
The accuracy of the model selection procedure can potentially be improved by noting that PCA

can simply be considered as constructing a representation of a matrix, in this case the mean centred
sample data matrix. As such the transpose of the representation of the mean centred data matrix is
equally as valid, which can be evaluated as the eigen-decomposition of the transpose of the mean
centred data matrix. Given that we then model the transposed data matrix using k, N-dimensional
vectors rather than k, d-dimensional vectors, then with N < d and thus effectively lower model com-
plexity, we would expect model selection based upon using the transposed mean centred data matrix
to display superior accuracy. This is borne out by simulation results for model selection accuracy
when applied to the transposed centred data matrix that are also shown in Fig.2. In all cases shown
in Fig.2 the accuracy of the model selection is greater when using the transpose of the mean centred
data matrix. One should note from Fig.2a, that even with transposing the centred data matrix, the
model selection accuracy decreases with increasing data dimensionality d, at fixed sample size N.
Taking a data set with α < 1 and transposing does not produce an effective value of α that is larger
than one - if true this would suggest one could have arbitrarily large effective values of α (by taking
d → ∞ at fixed N) and consequently asymptotically perfect model selection even though, as has
already been highlighted, the expected spectrum in this limit is indistinguishable from that obtained
by sampling from a distribution with an isotropic population covariance matrix. Consequently the
accuracy of model selection based upon the sample covariance eigenspectrum will always decrease
with increasing d, at fixed N, due to the distorting effects of high data dimensionality. We can at-
tempt to mitigate these effects by taking proper account of the high dimensional contributions to the
model evidence. This we do in the next section.

2740

AUTOMATIC PCA DIMENSIONALITY SELECTION

200 400 600 800 1000

Dimension d
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 C

or
re

ct

N=100
N = 200
N = 400

(a)

200 400 600 800 1000

Dimension d
0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty
 C

or
re

ct

α = 0.2
α = 0.3
α = 0.4

(b)

Figure 2: Probability of correct model selection using the method of Minka. The solid lines provide
a guide to the eye. (a) & (b) Plots of model selection accuracy against data dimension d
- (a) Fixed values of N, (b) Fixed values of α. The data is generated with a population
covariance C containing three signal components -see main text for details. Solid sym-
bols represent simulation results from the model selection procedure applied to the mean
centred data matrix, whilst open symbols represent simulation results from the model
selection procedure applied to the transpose of the mean centred data matrix.

4.2 Overlap Method

Although for α < 1 the top k eigenvectors of Ĉ are the maximum posterior choice of model prin-
cipal components {ui}k

i=1, for non-maximum posterior choices of U one still has a large rotational
degeneracy of the k-frame within the d-dimensional space, which will make a large contribution
to the integral in Equation (5). The integrand in Equation (5) can be written in terms of the over-
laps Ri j = ui · v j between the model principal components ui, i = 1, . . . ,k, and the eigenvectors
v j, j = 1, . . . ,N −1, of Ĉ that correspond to the non-zero eigenvalues of Ĉ. One finds,

|HHT + vI|−(N+1+η)/2 exp(−N
2

tr((HHT + vI)−1(Ĉ +N−1ηI)))

= exp

[

−N +1+η
2

(

k

∑
i=1

ln li +(d − k) lnv

)

− N
2v

N−1

∑
j=1

λ j

+
N
2

k

∑
i=1

(v−1 − l−1
i)

N−1

∑
j=1

λ jR
2
i j −

ηd
2v

+
η
2

k

∑
i=1

(v−1 − l−1
i)

]

.

This suggests performing the integration over {ui}k
i=1 in terms of {Ri j}. The volume element

that results from integrating over {ui}k
i=1 at fixed {Ri j} is detM (d−N−1)/2 ×Area(Vk(R

d−N+1)),
where the matrix elements Mii′ = δii′ − ∑ j Ri jRi′ j. For high dimensional spaces we might ex-
pect the vectors ui,ui′ to be orthogonal over any high-dimensional subspace, not just the entire
d-dimensional space. Therefore we can approximate the matrix elements by Mii′ = δii′(1−∑ j R2

i j),
and detM is easily evaluated. With this approximation the evidence is,

2741

HOYLE

p(D|k) ' Nk(d)
Area(Vk(R

d−N+1))

Area(Vk(Rd))

Z

∏
i j

dRi j

Z

∏
i

dli

Z

dv

× exp

[

d −N −1
2

k

∑
i=1

ln
(

1−
N−1

∑
j=1

R2
i j

)

− N +1+η
2

(

k

∑
i=1

ln li +(d − k) lnv

)

− N
2v

N−1

∑
j=1

λ j +
N
2

k

∑
i=1

(v−1 − l−1
i)

N−1

∑
j=1

λ jR
2
i j −

ηd
2v

+
η
2

k

∑
i=1

(v−1 − l−1
i)

]

. (8)

Approximations to the model evidence can now be made by approximating this integration
over the overlap variables {Ri j}, and consequently this approach is termed the “overlap” method.
For large values of d and N we would expect the integral in Equation (8) to be dominated by the
stationary points of the exponent and a Laplace approximation to the integral can be constructed.
Denoting stationary point values by v̂, l̂i, R̂i j, it is an easy matter to find that, on taking η → 0,
stationary points of Equation (8) satisfy for some j,

1− R̂2
i j =

(v̂−1 − l̂−1
i)Nλ j

d −N −1
, R̂i j′ = 0 , j′ 6= j .

The dominant stationary point solution has the overlap between the ith signal direction estimate, ui

and the ith sample covariance eigenvector, vi, being non-zero, that is, R̂2
ii > 0, R̂2

ii′ = 0,∀i 6= i′,
For j > k the dominant stationary point has R̂2

i j = 0. Within this approximation the expectation
value of R2

i j will be O(N−1) due to small fluctuations about this stationary point. However, we
have an extensive number, that is, proportional to N, of such overlap variables. Thus we expect
∑ j>k R2

i j ∼ 1, and consequently the contribution from these small fluctuations cannot be ignored.
The fluctuations in Ri j, for j > k, collectively affect the stationary point behaviour of the overlaps
Ri j for j ≤ k. To progress we integrate out the fluctuations by setting,

bi = ∑
j>k

R2
i j ,

and perform the integration over {Ri j} j>k by writing,

Z

∏
i

∏
j>k

dRi j =
Z

∏
i

∏
j>k

dRi j ∏
i

dbi δ

(

bi − ∑
j>k

R2
i j

)

.

Using the standard Fourier representation of a Dirac δ-function,

δ(x) =
1

2π

Z i∞

−i∞
d pepx ,

we obtain,

Z

∏
i

∏
j>k

dRi j =
1

(2π)k

Z

∏
i

dbi d pi ∏
i

∏
j>k

dRi j exp

[

∑
i

pi

(

bi − ∑
j>k

R2
i j

)]

, (9)

2742

AUTOMATIC PCA DIMENSIONALITY SELECTION

where the path of integration for pi is between −i∞ and +i∞. Combining the integrand in Equa-
tion (9) with the integrand in Equation (8), the integration over {Ri j} j>k is Gaussian and so easily
performed. We obtain,

Z

dv
Z k

∏
i=1

dlidbid pi ∏
i

∏
j≤k

dRi j exp

(

k

∑
i=1

pibi +
1
2
(d −N −1)

k

∑
i=1

ln[1−
k

∑
j=1

R2
i j −bi]

−1
2

k

∑
i=1

∑
j>k

ln[2pi −N(v−1 − l−1
i)λ j] −

N +1
2

[

k

∑
i=1

ln li + (d − k) lnv

]

−N
2

v−1
N−1

∑
j=1

λ j +
N
2

k

∑
i=1

(v−1 − l−1
i)

k

∑
j=1

λ jR
2
i j

)

. (10)

With the path of integration for pi being along the imaginary axis the remaining integrals in
Equation (10) are approximated via steepest descent (Wong, 1989). For brevity we give only the
solutions to the saddle point equations, with the caret again denoting saddle-point values of the
corresponding integration variables,

v̂ =
N

(N +1)(d − k)

[

N−1

∑
j=1

λ j −
k

∑
i=1

(1+N−1)l̂i

]

, (11)

0 = l̂2
i v̂−1(1+N−1) − l̂i(λiv̂

−1 −α−1 +1+N−1(k +3)) + λi , (12)

R̂2
ii = 1 − (d −N −1)

N(v̂−1 − l̂−1
i)λi

− 1
N ∑

j>k

1

(v̂−1 − l̂−1
i)(λi −λ j)

, (13)

R̂2
i j = 0 , j 6= i , j ≤ k ,

p̂i =
N
2

(v̂−1 − l̂−1
i)λi , (14)

b̂i = 1 − R̂2
ii −

(d −N −1)

N(v̂−1 − l̂−1
i)λi

. (15)

Again the saddle-point solution values v̂ and l̂i provide us with point estimates for the popula-
tion noise level σ2 and population signal eigenvalue Λi respectively. Equations (11) and (12) can be
solved efficiently via an iterative process starting from an initial estimate of v̂ = d−1 ∑ j λ j. Obtain-
ing real-valued estimates, l̂i, for the population covariance eigenvalues is clearly dependent upon
the quadratic equation in (12) having a non-negative discriminant. In practice, we have interpreted
complex-valued estimates l̂i for a particular choice of signal dimensionality k as meaning that the
particular choice for k is not appropriate and should not be considered. From analysis of the asymp-
totic behaviour of the “overlap” approximation (see next section) we find that the discriminant of
Equation (12) becomes negative for sample covariance eigenvalues λi which are below the edge of
the Marčenko-Pastur bulk distribution given in Equation (2), that is, λi < λmax = σ2(1 + α− 1

2)2, so
that indeed a negative discriminant is consistent with attempting to extract more signal components
than can be genuinely distinguished from an isotropic population covariance. In other words com-
plex solutions to Equation (12) suggest that the data do not support a model with that number, k, of
signal components.

Once solutions for v̂ and {l̂i}k
i=1 have been obtained, values for R̂2

ii, p̂i, b̂i follow from Equations
(13), (14) and (15) respectively. Following Minka (2001a) and dropping the relatively weak k-
dependence in Nk(d) we derive an approximation for the log-evidence as,

2743

HOYLE

200 400 600 800 1000

Dimension d
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 C

or
re

ct

N = 100
N = 200
N = 400

(a)

200 400 600 800 1000

Dimension d
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 C

or
re

ct

α = 0.2
α = 0.3
α = 0.4

(b)

Figure 3: Plot of model selection accuracy for the “overlap” method. (a)Plot of model selection ac-
curacy against data dimension d at fixed values of N. (b)Plot of model selection accuracy
against data dimension for fixed values of α. For comparison open symbols represent
simulation results from the model selection procedure of Minka applied to the transpose
of the mean centred data matrix.

ln p(D|k) ' N
2

k

∑
i=1

(v̂−1 − l̂−1
i)λi −

k
2
(d −N −1) + k

d −N −1
2

ln

(

d −N −1
N

)

− d −N −1
2

k

∑
i=1

ln((v̂−1 − l̂−1
i)λi) − k

2
(N − k) lnN − N − k

2

k

∑
i=1

ln(v̂−1 − l̂−1
i)

− 1
2

k

∑
i=1

∑
j>k

ln(λi −λ j) − N +1
2

k

∑
i=1

ln l̂i −
N +1

2
(d − k) ln v̂ − N

2
v̂−1

N−1

∑
j=1

λ j

+
k
2
(N − k−1) ln2π + ln

(

Area(Vk(R
d−N+1))

Area(Vk(Rd))

)

− 1
2

lndetHs

+
3k + k2 +1

2
ln2π , (16)

where Hs is the Hessian of the exponent in the integrand evaluated at the saddle point. The last two
terms in (16) come from integrating over the small fluctuations about the saddle point. Since the
Hessian is of small dimension, and so not strongly dependent on N and d, we subsequently drop
the last two terms from our approximation of the log-evidence. The “overlap” approximation to the
log-evidence, given in Equation (16), can be used for model selection by selecting the value of k
that has the highest value of ln p(D|k).

Figure 3 shows simulation estimates of the accuracy of the “overlap” model selection criterion
given in Equation (16). Fig.3(a) shows the probability of selecting the correct model dimension
against d, for different fixed values of N. Plotted in Fig.3(b) is the probability of selecting the
correct model dimension against d, for different fixed values of α. Sample sizes and model pa-

2744

AUTOMATIC PCA DIMENSIONALITY SELECTION

rameter values are identical to those in Figure 2. Also reproduced (open symbols) in Fig.3(a) and
Fig.3(b) are the simulation estimates of model selection accuracy for Minka’s approximation to the
model evidence applied to the transposed mean centred data. From Fig.3(a) it is clear that the “over-
lap” model selection criterion only suffers from degradation in performance at significantly higher
values of dimension d compared to the approximation to the evidence in Equation (7). Similarly,
Fig.3(b) demonstrates the superior model selection accuracy of the “overlap” method for increasing
dimensionality d, at fixed values of α.

5. Asymptotic Analysis

The “overlap” approximation to the model evidence has been developed by applying a steepest
descent approximation to the Bayesian evidence that has been re-formulated in terms of integration
over variables that remain finite in number in the distinguished asymptotic limit d,N →∞, at fixed α.
The “overlap” approximation essentially contains the leading order term of an asymptotic expansion
of the evidence in that distinguished limit. It would be expected that the approximation to the model
evidence would therefore become increasingly accurate in this limit. Note that this is very different
from the traditional large sample limit N → ∞ at fixed d, for which Minka’s approximation to the
Bayesian evidence will become increasingly accurate. It has been argued that since for many real
high-dimensional data sets α � 1, one would expect that approximations to the model evidence that
are accurate in the distinguished limit will have superior model selection accuracy at finite values
of d,N. The simulation results presented in Fig.3 would appear to confirm this. However, more
concrete understanding of the accuracy of the “overlap” method in the distinguished asymptotic
limit is required. A theoretical analysis of model selection accuracy in this limit would provide us
with a firmer comparison of Minka’s original Laplace approximation and the “overlap” method, in
addition to the comparison provided by simulation study in Section 4.2. A number of quantities
such as the eigenvalue spectrum are self-averaging in the asymptotic limit, that is, have vanishing
sampling variation, so that for large data dimensions, d, the value for a single data set, {ξµ}, is
well approximated by the ensemble average over data sets. Studying the ensemble expectation, in
the asymptotic limit of d → ∞ at fixed α, of the “overlap” approximation to the model evidence
provides us with insight into its accuracy as a model selection procedure for high dimensional data.

From Equation (11) it is evident that v̂ = d−1 ∑N−1
j=1 λ j + O(N−1) as N → ∞. Consequently, due

to the self-averaging nature of the sample covariance eigenvalue spectrum, we have that v̂ → Eξ(λ)
as N → ∞, where we have used Eξ(·) to denote expectation over the ensemble of sample data sets.
We already commented in Section 3 that Eξ(λ) = σ2 in the asymptotic limit N → ∞ at fixed α,
and so v̂ provides an asymptotically unbiased estimate of the population noise level. Estimates of
the population signal eigenvalues are given by {l̂i}k

i=1, and in the distinguished asymptotic limit
solutions to Equation (12) for l̂i are given by,

l̂i =
v̂
2

[

(1+λiv̂
−1 −α−1)±

√

(1+λiv̂−1 −α−1)2 − 4λiv̂−1

]

. (17)

If we consider a “spiked” population covariance model of the form in Equation (1) the population
covariance eigenvalues correspond to signal eigenvalues Λi = σ2(1+Ai), i ≤ S and noise eigenval-
ues Λi = σ2, i > S. The resulting expected sample covariance eigenspectrum is given in Equation
(3). Taking those sample eigenvalues which are separated from the bulk and also those at the upper
bulk edge and substituting into Equation (17) we obtain on setting v̂ = σ2 (on taking the positive

2745

HOYLE

solution branch),

l̂i = σ2(1+Ai) , for λi = σ2(1+Ai)(1+(1/αAi)) ,

l̂i = σ2(1+α− 1
2) , for λi = σ2(1+α− 1

2)2 .

For sample covariance eigenvalues that are below the edge of the Marčenko-Pastur bulk distribution,
that is, λi < σ2(1+α− 1

2)2, we obtain only complex solutions from Equation (17). Conversely, when
λi = σ2(1 + Ai)(1 +(1/αAi)), that is, when the sample covariance spectrum displays eigenvalues
which are distinct from the bulk of the distribution, the estimator l̂i = σ2(1+Ai) = Λi and so gives
an asymptotically unbiased estimate of the population signal eigenvalue Λi.

What is the asymptotic behaviour of the log-evidence? Inspecting Equation (16) we can see
that, potentially, we need to evaluate O(N−1) contributions to Eξ(v̂). However, it is easily shown
that O(N−1) contributions to Eξ(v̂) cancel out when evaluating Eξ(ln p(D|k)), and so we do not
pursue them further here. We can evaluate the ensemble average Eξ(∑ j>k ln(λi −λ j)) through use
of the replica trick (see Appendix A). Specifically we have for α > A−2

i ,

lim
N,d→∞

N−1Eξ

(

∑
j>k

ln(λi −λ j)

)

= lnσ2 − (α−1 −1) ln(1+Ai) + α−1 lnAi +
1

αAi
, (18)

whilst for α < A−2
i we have,

lim
N,d→∞

N−1Eξ

(

∑
j>k

ln(λi −λ j)

)

= lnσ2 − (α−1 −1) ln(1+α− 1
2) + α−1 lnα− 1

2 + α− 1
2 . (19)

The asymptotic behaviour of the ratio Area(Vk(R
d−N+1))/Area(Vk(R

d)) is easily evaluated to give,

ln

(

Area(Vk(R
d−N+1))

Area(Vk(Rd))

)

=
Nk
2

[

− lnπ + ln
d
2
− (α−1 −1) ln(1−α) −1

]

+ O(lnN) . (20)

Substituting Equations (18),(19),(20) and the asymptotic values for v̂ and l̂i into Equation (16), we
obtain after some straight-forward algebra,

Eξ(ln p(D|k)) =
N
2

k

∑
i=1

Θ(α−A−2
i)

[

Ai −
1

αAi
+ (α−1 −1) ln

(

1+Ai

1+(1/αAi)

)

+ α−1 ln

(

1

αA2
i

)]

− Nd
2

lnσ2 − Nd
2

+ O(lnN) . (21)

If we set x = α−1 we can write the summand in Equation (21) as Θ(α−A−2
i) f (x,Ai) where,

f (x,A) = A + x lnx + (x−1) ln(1+A) − 2x lnA − (x−1) ln(1+ xA−1) − xA−1 .

We find that,

f (A2,A) = 0 ,
∂ f
∂x

∣

∣

∣

∣

x=A2

= 0 ,
∂2 f
∂x2 > 0 for x < A2 ,

and so for α > A−2
i the summand in Equation (21) is positive. Consequently if α > A−2

i , so that the
sample covariance eigenvalue spectrum reflects the presence of the signal Bi, then the addition of

2746

AUTOMATIC PCA DIMENSIONALITY SELECTION

ith principal component results in an increase in the asymptotic approximation to the log-evidence.
Conversely if α < A−2

i there is no change in the asymptotic approximation to the log-evidence on
including the ith principal component. This is a satisfying result since we have already commented
in Section 3 that for α < A−2

i the sample covariance eigenspectrum is asymptotically indistinguish-
able from that produced from a population model with Ai ≡ 0, and so therefore from a Bayesian
model selection perspective all population models with Ai < α− 1

2 are equally likely (provide an
equally accurate description of the observed data). Ultimately this is due to the fact that we are
considering models with a finite number, k, of signal components, and so in the asymptotic limit
we are considering a vanishingly small proportion of sample covariance eigenvalues as representing
signal components. With the non-zero sample covariance eigenvalues giving a dense covering of
the range [λmin,λmax] in the asymptotic limit, the largest few sample covariance eigenvalues, which
are not distinct from the Marčenko-Pastur bulk distribution given in Equation (2) will be aggregated
at the upper edge of the bulk, where they do not lead to any change in the log-evidence. For finite
sample sizes we would expect the higher order terms in the expansion of the log-evidence to lead
to a decrease in the log-evidence on inclusion of principal components that correspond to sample
covariance eigenvalues that are below the bulk edge. However, in the asymptotic limit we can ap-
ply an Occam’s Razor like argument and only select those principal components that increase the
log-evidence. The limiting model selection estimate, Ŝ, for the true signal dimensionality, S, then
simply corresponds to counting the number of sample covariance eigenvalues that are beyond the
upper edge of the Marčenko-Pastur bulk distribution. That is,

Ŝ =
d

∑
j=1

Θ(λ j − λmax) .

The asymptotic analysis of the “overlap” method reveals that unbiased estimates of the pop-
ulation signal eigenvalues can be recovered and that, asymptotically, model selection based upon
the “overlap” approximation to the log-evidence performs optimally. From Fig.2b it would ap-
pear that, at least for larger values of α, model selection based upon Minka’s approximation to the
log-evidence also approaches 100% accuracy as d → ∞. Is it possible that the two different approx-
imations to the log-evidence asymptotically have the same model selection performance? Starting
from Minka’s approximation to the Bayesian evidence p(D|k) given in Equation (7) we have,

ln p(D|k) ' − lnArea(Vk(R
d)) − N

2

k

∑
i=1

lnλi −
N
2

(d − k) ln v̂ +
m+ k

2
ln2π

−1
2

k

∑
i=1

d

∑
j=i+1

[

ln(Λ̂−1
j − Λ̂−1

i) + ln(λi −λ j) + lnN
]

− k
2

lnN , (22)

where Λ̂i = Nλi/(N − 1) for i ≤ k and Λ̂i = v̂ for i > k, with v̂ defined in Equation (6). In this
instance O(N−1) contributions to Eξ(v̂) do make a contribution to the leading order asymptotic
term in Eξ(ln p(D|k)). From the definition of the point estimate v̂ in (6) we find,

Eξ(v̂) = (1+N−1(kα−1))Eξ(d
−1trĈ) − α

N

k

∑
j=1

Eξ(λ j) + O(N−2) .

For the “spiked” covariance model of Equation (1) this can then be refined to,

2747

HOYLE

Eξ(v̂) = σ2 +
ασ2

N

S

∑
j=1

A j +
σ2

N
(kα−1)

−ασ2

N

k

∑
i=1

[

Θ(α−A−2
i)(1+Ai)(1+(1/αAi)) + Θ(A−2

i −α)(1+α− 1
2)2
]

+ O(N−2) .

Retaining only k-dependent terms, the leading order asymptotic contribution to Eξ(ln p(D|k)) can
be obtained within this approximation as,

Eξ(ln p(D|k)) =
N
2

k

∑
i=1

[

Θ(α−A−2
i) fM(x,Ai) + Θ(A−2

i −α) fM(x,α− 1
2)
]

+ O(lnN) ,

where the subscript M on the function fM(x,A) is used to denote the asymptotic incremental change
to the log-evidence obtained from Minka’s approximation given in Equation (22), and again x =
α−1. Specifically fM(x,A) is given as,

fM(x,A) = A + x lnx + (x−1) ln(1+A) − 2x lnA − x ln
[

1+ xA−1 + xA−2] . (23)

The transition point at which a signal component is strong enough to be distinguishable from the
Marčenko-Pastur bulk distribution in Equation (2) is given by a signal strength A = α− 1

2 . If we put
A = yα− 1

2 = y
√

x, then y directly measures the signal strength relative to that at which it is first
detectable. We can then write Equation (23) as,

fM(x,A = y
√

x) = (x−1) ln(1+ y
√

x) − x ln
(

1+ y
√

x+ y2) + y
√

x .

A plot of fM(x = α−1,A = yα− 1
2) against y for different fixed values of α is shown in Figure 4. From

Fig.4 we can see that at the transition point, y = 1, fM is negative, and so selection of the ith principal
component will result in a reduction of the log-evidence, even if the signal strength Ai is sufficiently
strong enough for the ith sample covariance eigenvalue to be distinct from the Marčenko-Pastur bulk
distribution. Thus, even though a detectable signal is present model selection based upon Equation
(22) would not include that signal component. For the largest value of α shown fM does not become
positive until approximately y > 1.8. Therefore, even for α = 0.9, not until the signal strength Ai is
1.8 times stronger than it need be for detection will the ith signal component be correctly selected
whilst using Minka’s approximation to the log-evidence in Equation (22). For smaller values of α
even stronger signal strengths are required, for example, y > 2.0 at α = 0.1. For the simulations
results shown in Fig.2b it is only at the largest value of α shown that we have fM > 0 for all three
signal components, and thus that all three signal components are guaranteed to be detectable in the
asymptotic limit.

6. Comparison with Frequentist Approaches

In the distinguished asymptotic limit N,d →∞ the model selection process based upon the “overlap-
method”approximation to the log-evidence simplifies (after applying a Occam’s Razor like argu-
ment) to retaining those principal components whose corresponding eigenvalues are greater than

2748

AUTOMATIC PCA DIMENSIONALITY SELECTION

1.5 1.75 2 2.25 2.5
y

-0.4

-0.2

0

0.2

0.4

f M

α = 0.1

α = 0.3

α = 0.5

α = 0.7

α = 0.9

Figure 4: Plot of the function fM(x = α−1,A = yα− 1
2) against y for different values of α. N fM/2

represents the incremental change (to leading order) in the log-evidence on retaining a
principal component corresponding to a signal component of strength A = yα− 1

2 . The
horizontal dashed line denotes the zero level for fM.

the upper spectral edge, λmax = σ2(1+α− 1
2)2, of the bulk eigenvalue distribution. Whilst this result

appears intuitive from the viewpoint of the behaviour of eigenspectra of large sample covariance
matrices presented in Section 3, we have also shown that not all approximations to the Bayesian ev-
idence reduce in the asymptotic limit to this optimal choice for model selection. How then does the
“overlap” method for model selection compare to other approaches, for example more traditional
non-Bayesian approaches for dimensionality selection in PCA? In the asymptotic limit N → ∞,
where we have an infinite amount of data, we would naively expect frequentist and correctly formu-
lated Bayesian approaches to model selection to give similar answers.

One of the most commonly applied techniques for dimensionality selection for PCA is to select
sample covariance eigenvalues (and corresponding eigenvectors) that account for a fixed percentage
of the total variance, for example, 90%. Typically this may only be the top two or three eigenvalues.
Alternative methods consist of producing a ‘scree plot’, that is, plot of eigenvalue against rank, and
attempting to detect by eye an ‘elbow’ in the plot where there is a significant change in scale of the
sample covariance eigenvalues, supposedly reflecting the change from signal dominated eigenvalues
to noise dominated eigenvalues. However, with sample covariance eigenvalues potentially being
highly biased even when the population covariance is isotropic this is not always a reliable or easily
implemented technique.

Hypothesis tests have been developed to detect departure from sphericity of the population co-
variance, based upon using trĈ as the test statistic (John, 1971; Nagao, 1973). This approach has
been modified by Ledoit and Wolf (2002) to account for smaller sample sizes but is still essentially
only appropriate for α > 1. The effect of smaller values of α can be accounted for since the asymp-
totic form of the expected spectrum is given by the Marčenko-Pastur distribution (2) when C = σ2I .
Wachter has used this by producing Q-Q plots of the sample covariance eigenvalue quantiles against
the Marčenko-Pastur distribution quantiles (Wachter, 1976). Sample covariance eigenvalues above

2749

HOYLE

the 45 degree line in these Wachter plots indicate potentially signal containing principal compo-
nents. At finite values of d a more principled, but non-Bayesian, approach would be to perform a
series of iterative hypothesis tests whereby the null-hypothesis H0 is that of a model containing k
signal components. Comparison of the (k + 1)th sample covariance eigenvalue, λk+1, against the
sampling distribution of λk+1 under H0 would allow for potential rejection of the null-hypothesis
and inclusion of the (k +1)th principal component as representing genuine signal in the data. After
setting a rate at which one wishes to control the Type-I error, for example, γ = 0.05, testing of the
(k +1)th,(k +2)th, . . . principal components proceed via,

H0 : C ≡ σ̂2I , σ̂2 = d−1 ∑d
j=1 λ j , k = 0

whilep(λ > λk+1|k,d,N) < γ
k → k +1
Λ̂k = λk

σ̂2 = (d − k)−1 ∑d
j=k+1 λ j

H0 : C ≡ diag(Λ̂1, . . . , Λ̂k, σ̂2, . . . , σ̂2)
end while

To implement this testing procedure we need the cumulative sampling distribution p(λ > λk+1|k,d,N)
of the (k + 1)th sample covariance eigenvalue under the null hypothesis of C containing k signal
components - that is the probability, when the population covariance contains only k signal compo-
nents, of the (k +1)th sample covariance eigenvalue being larger than the eigenvalue λk+1 observed
in the real sample data. Johnstone (2001) has derived the sampling distribution for k = 0 by ex-
tending the analysis of Tracy and Widom (1996) on the Gaussian Orthogonal Ensemble (GOE) of
random matrices. We can define location and scale constants,

µNd = N−1
(√

N −1 +
√

d
)2

,

and

σNd = N−1
(√

N −1 +
√

d
)

(

1√
N −1

+
1√
d

)
1
3

.

Then for data drawn from an isotropic population covariance, C = σ2I , the largest sample co-
variance eigenvalue λ1 (suitably centred and scaled) converges in distribution to the Tracy-Widom
distribution W1. Specifically one has,

(λ1/σ2)−µNd

σNd

D→W1 ∼ F1 ,

where,

F1(s) = exp

{

−1
2

Z ∞

s
q(x)+(x− s)q2(x)dx

}

,

with q(x) being the solution to the Painlevé II differential equation that is asymptotically equivalent
to the Airy function Ai(x),

d2q(x)
dx2 = xq(x) + 2q3(x) ,

q(x) ∼ Ai(x) , x → ∞ .

2750

AUTOMATIC PCA DIMENSIONALITY SELECTION

200 400 600 800 1000

Dimension d
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 C

or
re

ct

(a)

N = 100
N = 200
N = 400

200 400 600 800 1000

Dimension d
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 C

or
re

ct

(b)

α = 0.2
α = 0.3
α = 0.4

Figure 5: Comparison of the model selection accuracy for the “overlap” method (solid black sym-
bols) with a null hypothesis test based upon the Tracy-Widom distribution for the largest
eigenvalue of a sample covariance matrix (open symbols). a)Plot of model selection ac-
curacy against data dimension d at fixed values of N. (b)Plot of model selection accuracy
against data dimension for fixed values of α.

Note that the centering constant µNd → λmax, up to an irrelevant factor of σ2. That is, the edge of the
Marčenko-Pastur distribution, as N,d → ∞ at fixed α. More recent analysis of the distribution of
λ1 when the data is complex and contains signal has been performed by Baik et al. (2005). The au-
thors provide conjectures for the behaviour of the sampling distribution of λ1 when the data is real,
based upon their analysis of the complex case, but this still does not provide a means of calculating
the sampling distribution p(λk+1|k,d,N) for k > 0. Instead Johnstone (2001) derives the inequality
p(λ > λk+1|k,d,N) < p(λ > λ1|0,d − k,N), with the latter distribution being given in terms of the
Tracy-Widom distribution. Consequently, at finite N this provides a conservative hypothesis test
since use of p(λ1|0,d − k,N) yields an over-estimate of the tail area of the sampling distribution
p(λk+1|k,d,N), and therefore an over-estimate of the Type-I error rate. With the variance σ2

Nd tend-
ing to zero as N → ∞, then in the asymptotic limit N → ∞ the series of hypothesis tests given above
corresponds simply to determining how many sample covariance eigenvalues λi are above λmax - the
edge of the Marčenko-Pastur bulk distribution - and so, as naively expected, is in agreement with
the behaviour of the “overlap” method in the distinguished asymptotic limit.

Although in the distinguished asymptotic limit the Bayesian and frequentist approaches to
model selection agree, it is interesting to compare model selection accuracies for finite values of
N and d. For real data sets the sampling distribution of the individually ranked eigenvalues will
have an effect upon the performance of the hypothesis test approach and likewise accuracy of point
estimates for model parameters will impact upon the performance of the Bayesian methods. Fig-
ure 5 shows the model selection accuracy for the “overlap” method compared to that for the null
hypothesis test outlined above that is based upon the Tracy-Widom distribution. Fig.5(a) shows
the probability of selecting the correct model dimension against d, for different fixed values of N.
Plotted in Fig.5(b) is the probability of selecting the correct model dimension against d, for differ-
ent fixed values of α. Sample sizes and model parameter values are identical to those in Figure 2

2751

HOYLE

and Figure 3. We have controlled the Type-I error at the 5% level (γ = 0.05) with the value of the
abscissa for the 95th centile of the Tracy-Widom distribution taken from Johnstone (2001). Within
Fig.5(b) we would expect all model selection accuracies to converge to 1 as d,N → ∞ since all the
signal strengths have been chosen to be above their respective retarded learning transition points and
therefore the sample eigenvalues corresponding to signal directions are all distinguishable from the
Marčenko-Pastur bulk in this limit. However, for finite d and N Fig.5(a) and (b) reveal that overall
the hypothesis testing approach has a superior model selection accuracy when both N and α are
relatively small. By definition, the hypothesis test only considers a sample covariance eigenvalue
to represent a signal if it exceeds that expected from the null model by more than reasonable sam-
pling variation. As sampling variation will be greater at smaller values of N we might expect the
hypothesis testing approach to be more sensitive for model selection than the “overlap” approach
within this regime, particularly since higher order terms in the asymptotic expansion of the Bayesian
evidence, that have not been incorporated into the “overlap” evidence approximation, will be more
significant for smaller values of d and N. For larger values of d and N, the conservative nature of
any hypothesis testing approach may adversely affect its model selection accuracy in comparison to
a Bayesian evidence based approach.

7. Discussion & Conclusions

For calculations within high-dimensional inference problems we have argued that, rather than using
results obtained by considering the traditional large sample limit N →∞, better approximations may
be obtained by considering them to be close to the asymptotic value obtained in some distinguished
limit, even though the sample size N may naively be considered large enough for routine application
of the Laplace approximation to be accurate. What constitutes a large sample size, N, should clearly
be defined with respect to the data dimensionality d. For PCA the appropriate distinguished asymp-
totic limit is d,N → ∞, with α = N/d fixed, though for other models different distinguished limits
may need to be considered in order to observe meaningful non-trivial behaviour that is distinct from
the large sample limit, N → ∞. For example, statistical physics studies of independent component
analysis (ICA) suggests that d → ∞ with N = αd

3
2 at fixed α would be the appropriate distinguished

limit to consider (Urbanczik, 2003). However, irrespective of the particular distinguished limit con-
sidered when developing an asymptotic approximation, one needs to be careful to keep track of the
increasing number of contributions as d → ∞, and potentially large contributions resulting from the
rotational degeneracy of the integrand in the formulation of the Bayesian evidence.

The effect of high data dimensionality on model selection accuracy when α < 1 is apparent from
the simulation results shown in Fig.2a and Fig.3a. Ultimately this is due to the biased sample covari-
ance eigenvalues and the poor accuracy of the sample covariance eigenvectors in representing the
signal directions when α < 1. The high-dimensional nature of the data leads to high-dimensional
integral formulations of the Bayesian evidence. Approximation of the evidence has to be done
carefully. Within the “overlap” method, inclusion of large contributions to the evidence from ro-
tational degeneracy of the model k−frame and extensive Gaussian fluctuations leads to improved
model selection accuracy. The observation that reformulating the integrand can lead to improved
Laplace estimates of marginal distributions is not necessarily a new one (MacKay, 1998). For high-
dimensional data the reformulation is essential, and for the “overlap” method reformulation of the
evidence calculation in terms of a finite number of variables has ultimately led to an integrand that
is better approximated by a single Gaussian, via a steepest descent calculation. There may exist

2752

AUTOMATIC PCA DIMENSIONALITY SELECTION

potentially superior estimation schemes, based upon a Gaussian parametrization of the integrand,
that perform well when the integrand is essentially unimodal, for example expectation propagation
based schemes (Minka, 2001b) or variational approximation similar to that employed by Bishop
(1999b) for model selection within Bayesian PCA, although it should be noted that Bishop (1999b)
does not impose an orthogonal constraint upon the low dimensional decomposition of the popula-
tion covariance. However, it is the fact that one has to reformulate the evidence calculation for a
Gaussian approximation to be accurate that is our main finding here, not the particular choice of
approximation scheme that one employs once the reformulation has been made. Of greater interest
perhaps is the fact that we have been able to demonstrate the asymptotic equivalence of the Bayesian
evidence based model selection criterion and the frequentist hypothesis testing approach to model
selection. Furthermore, analysis of the asymptotic behaviour of the “overlap” approximation to the
log-evidence reveals that the estimators of the population signal eigenvalues are unbiased, at least
for the “spiked” covariance models considered here.

The influence of high data dimensionality on estimates of model parameters can be explicitly
demonstrated by re-visiting Minka’s original Laplace approximation to the evidence. Although
Minka’s derivation provides a poorer approximation to the model evidence, in the distinguished
limit N,d → ∞ at fixed α, in comparison to the “overlap” approximation, it is still the correct
leading order approximation in the asymptotic limit N → ∞ at arbitrary fixed values of d. Therefore
it contains information about how the model evidence behaves for large values of N and d. This
suggests that Minka’s Laplace approximation to the model evidence could be re-used to develop
improved point estimates of population covariance eigenvalues {Λi}. One proceeds by noting that
the eigenvectors of Ĉ are the maximum posterior estimates of U for arbitrary choices of {li} and
v, since projection of the sample data onto the sample covariance eigenvectors retains the greatest
variance. We can simply re-use Minka’s approach to perform the Gaussian integration over U about
this maximum posterior point, yielding p(D|{li},v) which can then be optimized with respect to {li}
and v. Specifically we have the following approximation to the log-evidence (taking η → 0),

−N +1
2

(

k

∑
i=1

ln li + (d − k) lnv

)

− N
2v

N−1

∑
j=1

λ j +
N
2

k

∑
i=1

(v−1 − l−1
i)λi

− 1
2

ln |AZ| + lnNk(d) − lnArea(Vk(R
d)) +

m+ k
2

ln2π − k
2

lnN , (24)

ln |AZ| = m lnN +
k

∑
i=1

(

(d − k) ln(v−1 − l−1
i) +

k

∑
j=i+1

ln(l−1
j − l−1

i) +
d

∑
j=i+1

ln(λi −λ j)

)

.

It should be noted that the contribution from ln |AZ| is extensive in d and therefore affects the
construction of point estimates for {li} and v. Retaining only extensive terms in Equation (24) and
locating stationary points with respect to li and v yields estimators l̂i, v̂. In the asymptotic limit
N → ∞ these estimators are given by,

0 = v̂−1 l̂2
i − l̂i(1+ v̂−1λi −α−1) + λi ,

v̂ = d−1
N−1

∑
j=1

λ j .

2753

HOYLE

The equation above, determining the asymptotic behaviour of the estimator l̂i is asymptotically
identical to that given in Equation (12) for the “overlap” method and so, as already noted, gives
asymptotically unbiased estimates for the population signal eigenvalue. Although this leading order
approximation to the log-evidence can yield asymptotically unbiased estimators of the population
covariance eigenvalues, it is still not an accurate estimation of the log-evidence and will still give
inferior model selection performance in comparison to the “overlap” method. This is because higher
order terms in the asymptotic expansion of the integral in Equation (5) will also be extensive in N,
on taking the asymptotic limit N,d → ∞ at fixed α. Ultimately this can seen from the “overlap”
reformulation of the integral defining the evidence, which introduces higher than quadratic order
terms in the extensive integration variables Ri j in the exponent of the integrand in Equation (8).
These higher than quadratic order terms only arise for α < 1 due to the contribution of the de-
terminant detM (d−N−1)/2 that results on changing integration variables from orthonormal vectors
{ui}k

i=1 of the model k-frame to the overlap variables Ri j. However, as we have demonstrated with
the increased model selection accuracy of the “overlap” method, it is important to explicitly refor-
mulate the integration in terms of variables that are finite in number even in the asymptotic limit
N,d → ∞ at fixed α.

For the simulations presented within this paper we have taken the signal dimensionality k to
be finite and relatively small, for example, k = 1,2,3, so that k � N < d. This choice reflects the
current interest in “spiked” covariance models and the generic challenge of identifying a fixed low-
dimensional subspace as more and more features are considered. However, it is entirely feasible to
imagine scenarios where the signal dimensionality is much larger than k = 3, and potentially even
comparable to the sample size N. The derivation of the approximation to the log-evidence given in
Equation (16) is valid for any finite value of k and thus can be used for model selection even for data
sets where larger values of k are appropriate. Studying the accuracy of model selection for such data
sets would prove more problematic. What would be the appropriate asymptotic limit to consider? If
we consider a distinguished limit characterised by N/d → α < 1 and k/N → β < 1 as N,d,k → ∞,
then any asymptotic analysis will need to take account of the effect a non-vanishing proportion
of signal population eigenvalues has upon the distribution of sample covariance eigenvalues. The
signal directions would no longer represent a small number of rank one perturbations of the identity
matrix, with the consequence that the limiting sample covariance eigenvalue distribution would no
longer correspond to the Marčenko-Pastur distribution given in Equation (2). Whilst tools exist to
characterise the expected sample covariance eigenspectrum for an arbitrary population covariance
eigenspectrum (Marčenko and Pastur, 1967; Wachter, 1978; Hoyle and Rattray, 2004b), obtaining
closed form analytical results and proving the asymptotic correctness of the model selection for an
arbitrary expected sample eigenspectrum would be difficult.

Finally, we should comment that we have illustrated ideas and concepts using model selection
for PCA, in particular for α < 1. Even today, with readily available compute power and sophis-
ticated statistical learning algorithms, PCA is still a popular tool for dimensionality reduction or
exploratory analysis. The application of PCA to extremely high-dimensional small sample size data
sets has only increased the need for accurate model selection procedures. We also chose PCA as
our exemplar because there already exists an elegant formulation of the Bayesian model selection
problem (Minka, 2000, 2001a), and an approximation to the model evidence obtained by routine ap-
plication of the Laplace approximation had already been developed. However, we believe that many
of the ideas presented here are valid more generally. A large contribution to the Bayesian evidence
for PCA arises from the rotational degeneracy of the model likelihood, that is, that there are many

2754

AUTOMATIC PCA DIMENSIONALITY SELECTION

orientations of the k-frame formed by the model signal vectors, {ui}k
i=1, that are equally capable

of accounting for the observed data. This ultimately stems from the fact that we are attempting to
make inferences about vectors in R

d whilst we only have N sample vectors from which to construct
a basis for the space. Thus, the degeneracy of the model likelihood is due to a combination of small
sample size, N < d, and that the likelihood is expressed in terms of projections of the sample data
onto the model signal vectors. This is true irrespective of whether the signal vectors {ui}k

i=1 are
constrained to be orthogonal or not, and so we expect that the issues illustrated here with PCA will
be equally applicable to a number of other dimensionality reduction algorithms.

Acknowledgments

The author would like to thank Dr. Magnus Rattray for beneficial discussions and comments on the
manuscript.

Appendix A.

Evaluation over data sets of the expectation value, Eξ(∑ j>k ln(λi −λ j)) (for i ≤ k), would appear
to be problematic. Since we are interested in the leading order behaviour of this expectation value,
that is, the scaling with N, we can change the summation over j to include only those eigenvalues in
the bulk distribution given in Equation (2). Potentially the leading order term can then be evaluated
via,

lim
N,d→∞

N−1Eξ

(

∑
j>k

ln(λi −λ j)

)

= α−1
Z λmax

λmin

dλ ln(λi −λ)ρbulk(λ) , (25)

and where ρbulk(λ) is the Marčenko-Pastur bulk distribution given in Equation (2). Even if some
sample covariance eigenvalues λ j lie outside the Marčenko-Pastur bulk for j > k the asymptotic
result given in (25) is still valid since N−1 ln(λi −λ) ∼ O(N−1) for λi > λ > λmax. Thus contribu-
tions to N−1Eξ(∑ j>k ln(λi − λ j)) from a small number of sample eigenvalues outside of the bulk
distribution are vanishingly small in the asymptotic limit. The direct evaluation of the integral in
(25) is difficult, so we prefer to use an indirect method. Since we are restricting the summation over
j to eigenvalues in the bulk then if we denote the interval [λmin,λmax] ≡ Ibulk, we can write,

lim
N,d→∞

N−1Eξ

(

∑
λ j∈Ibulk

ln(λi −λ j)

)

= lim
N,d→∞

N−1Eξ

(

tr ln(λiI − N−1G)
)

. (26)

where G is the Gram matrix formed from N, d-dimensional samples drawn from a multi-variate
zero-mean Gaussian distribution with population covariance C = σ2I , that is, the matrix G has
elements Gµµ′ = ξT

µ ξµ′ . The expectation, over data sets {ξµ}N
µ=1, of tr ln(λiI − N−1G) is performed

with the aid of the replica trick, which uses the representation,

lny = lim
n→0

(yn −1)

n
.

The calculation proceeds in a straight-forward fashion. We only give brief details here and the
reader is referred to more in-depth explanations, given elsewhere, of the use of the replica trick in
statistical physics and machine learning (Mezard et al., 1987; Hertz et al., 1991; Engel and Van den

2755

HOYLE

Broeck, 2001). We find that evaluation of Equation (26) is given by the extremal value (with respect
to x and q1) of,

−
{

lnx +
q1

x
− α−1 ln(1−σ2x) − α−1σ2q1

1−σ2x
− λi(x+q1) + 1

}

. (27)

Differentiating with respect to x and q1 the expression in (27) is easily maximized to give (for
λi = σ2(1+Ai)(1+α−1A−1

i)),

lnσ2 − (α−1 −1) ln(1+Ai) + α−1 lnAi +
1

αAi
. (28)

Here we have assumed the sample covariance eigenvalue λi will correspond to that from a “spiked”
population covariance and that we are above the retarded learning transition for the ith signal com-
ponent. For α < A−2

i we are below the retarded learning transition for the ith signal and we expect

λi to be located approximately at the upper edge of the bulk distribution so that λi ' σ2(1+α− 1
2)2.

We expect the summation in N−1 ∑ j>k ln(λi − λ j) will still converge since it is restricted to j >
k ≥ i. Setting λi = λmax in the previous replica calculation still yields a well-behaved estimate for
limN→∞ N−1Eξ

(

∑ j>k ln(λi −λ j)
)

, namely,

lnσ2 − (α−1 −1) ln(1+α− 1
2) + α−1 lnα− 1

2 + α− 1
2 . (29)

Since Ai = α− 1
2 is the limit at which λi is indistinguishable from the bulk distribution, that is,

λi → λmax, it is unsurprising that Equation (29) is obtained as the limit of Equation (28) as Ai →α− 1
2 .

Figure 6a compares the limiting theoretical estimates for N−1Eξ

(

∑ j>k ln(λi −λ j)
)

, given in
Equations (28) and (29) with simulation for different values of α. Different plotted symbols rep-
resent different values of i, with i = 1, . . . ,5 running from top to bottom respectively. For each
series we have set k = i in the evaluation of the simulation averages. This was considered to be
better than artificially setting k = 3, the true signal dimensionality which in general would not be
known. Although in some cases, for evaluation of the simulation averages, this will lead to sum-
mation over sample covariance eigenvalues that are outside of the Marčenko-Pastur bulk distribu-
tion these will make only O(N−1) contributions to N−1Eξ

(

∑ j>k ln(λi −λ j)
)

, and so the simulation
averages still provide a relevant test of the theoretical estimate of the asymptotic limiting value
limN→∞ N−1Eξ

(

∑ j>k ln(λi −λ j)
)

. Asymptotically, in the limit N → ∞ and for the population co-
variance signal strengths chosen, three sample covariance eigenvalues are expected to be separated
from the bulk distribution over the entire range of α plotted. Consequently we expect simulation
averages to have a distinctly different behaviour for i ≤ 3 compared to i > 3. A common limiting
value for N−1Eξ

(

∑ j>k ln(λi −λ j)
)

when i > 3 is apparent from Figure 6a. Figure 6b compares
simulation averages with the theoretical estimates in Equations (28) and (29) for different signal
strengths. In this case the population covariance contains a single signal component, of strength A,
whilst we have fixed α = 0.1. The sample covariance eigenspectrum is expected to display a tran-
sition at A = 1.0/

√
α ' 3.16. This is clearly reflected in the behaviour of the simulation average.

The convergence towards the limiting theoretical estimate is also apparent from the comparison of
simulation averages for d = 1000 and d = 2000.

References

T.W. Anderson. Asymptotic theory for principal component analysis. Annals of Mathematical
Statistics, 34:122–148, 1963.

2756

AUTOMATIC PCA DIMENSIONALITY SELECTION

0 0.1 0.2 0.3 0.4 0.5
α

0

1

2

3

4

5

E
(N

-1
Σ j>

iln
(λ

i-λ
j))

(a)

0 5 10 15 20 25
A

1.5

2

2.5

3

3.5

E
(N

-1
Σ j>

1ln
(λ

1 -
 λ

j)
)

(b) d = 1000
d = 2000
Theory

Figure 6: Comparison of simulation averages of N−1Eξ

(

∑ j>i ln(λi −λ j)
)

with the limiting the-
oretical estimates given in Equations (28) and (29). Figure a shows behaviour of
the expectation value with α for i = 1, . . . ,5. Solid symbols show simulation aver-
ages whilst the solid lines show the corresponding theoretical estimates. We have set
d = 1000 and σ2 = 1. The population covariance contains three signal components with
A1 = 50,A2 = 30,A3 = 20. Figure b shows comparison of the theoretical result with sim-
ulation for different signal strengths, at two different values of the data dimensionality d.
We have set α = 0.1,σ2 = 1. The population covariance contains a single signal compo-
nent with signal strength A. For both Figure a and Figure b simulation averages are taken
over 1000 matrices, and error bars of the simulation averages are smaller than the size of
the plotted symbols.

J. Baik and J.W. Silverstein. Eigenvalues of large sample covariance matrices of spiked population
models. Journal of Multivariate Analysis, 97:1382–1408, 2006.

J. Baik, G. Ben Arous, and S. Peche. Phase transition of the largest eigenvalue for non-null complex
sample covariance matrices. Annals of Probability, 33:1643–1697, 2005.

C.M. Bishop. Bayesian PCA. In M.S. Kearns, S.A. Solla, and D.A. Cohn, editors, Advances in
Neural Information Processing Systems, pages 382–388. MIT Press, 1999a.

C.M. Bishop. Variational principal components. In Proceedings Ninth International Conference on
Artificial Neural Networks, ICANN’99, pages 509–514. IEE, 1999b.

A. Engel and C. Van den Broeck. Statistical Mechanics of Learning. CUP, Cambridge, 2001.

T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L.
Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S. Lander. Molecular classification
of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:
531–537, 1999.

2757

HOYLE

J.A. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural Computation (Santa
Fe Institute Studies in the Sciences of Complexity). Addison-Wesley, Redwood City, CA, 1991.

D.C. Hoyle and M. Rattray. PCA learning for sparse high-dimensional data. Europhysics Letters,
62:117–123, 2003.

D.C. Hoyle and M. Rattray. Principal-component-analysis eigenvalue spectra from data with
symmetry-breaking structure. Physical Review E, 69:026124, 2004a.

D.C. Hoyle and M. Rattray. Statistical mechanics of learning multiple orthogonal signals : asymp-
totic theory and fluctuation effects. Physical Review E, 75:016101, 2007.

D.C. Hoyle and M. Rattray. A statistical mechanics analysis of gram matrix eigenvalue spectra.
In J. Shawe-Taylor and Y. Singer, editors, Proceedings of COLT’04, Conference on Learning
Theory, Banff, Canada, 2004. Lecture Notes in Artificial Intelligence. Springer-Verlag, 2004b.

A.T. James. Normal multivariate analysis and the orthogonal group. Annals of Mathematical Statis-
tics, 25:40–75, 1954.

S. John. Some optimal multivariate tests. Biometrika, 58:123–127, 1971.

I.M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis.
Annals of Statistics, 29:295–327, 2001.

I.M. Johnstone. High dimensional statistical inference and random matrices. In M. Sanz-Solé,
J. Soria, J.L. Varona, and J. Verdera, editors, Proceedings of International Congress of Mathe-
maticians, Madrid, 2006. European Mathematical Society Publishing House, 2006.

I.T. Joliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.

D. Landgrebe. Hyperspectral image data analysis as a high dimensional signal processing problem.
IEEE Signal Processing Magazine, 19:17–28, 2002.

O. Ledoit and M. Wolf. Some hypothesis tests for the covariance matrix when the dimension is
large compared to the sample size. Annals of Statistics, 30:1081–1102, 2002.

D.J.C. MacKay. Choice of basis for Laplace approximation. Machine Learning, 33:77–86, 1998.

D.J.C MacKay. Bayesian interpolation. Neural Computation, 4:415–447, 1992.

V.A. Marčenko and L.A. Pastur. Distribution of eigenvalues for some sets of random matrices.
Math. USSR-Sb, 1:457–483, 1967.

M. Mezard, G. Parisi, and M. Virasoro. Spin Glass Theory and Beyond. World Scientific Publishing,
Singapore, 1987.

T.P. Minka. Automatic choice of dimensionality for PCA. In T.K. Leen, T.G. Dietterich, and
V. Tresp, editors, NIPS 13, pages 598–604. MIT Press, 2001a.

T.P. Minka. Automatic choice of dimensionality for PCA. Technical Report TR-
514, M.I.T. Media Laboratory Perceptual Computing Section, 2000. Available from
http://vismod.media.mit.edu/tech-reports/TR-514-ABSTRACT.html.

2758

AUTOMATIC PCA DIMENSIONALITY SELECTION

T.P. Minka. Expectation propagation for approximate Bayesian inference. In Proceedings of the
17th Conference in Uncertainty in Artificial Intelligence, UAI-2001, pages 362–369, 2001b.

H. Nagao. On some test criteria for covariance matrix. Annals of Statistics, 1:700–709, 1973.

A.L. Price, N.J. Patterson, R.M. Plenge, M.A. Weinblatt, N.A. Shadick, and D. Reich. Principal
components analysis corrects for stratification in genome-wide association studies. Nature Ge-
netics, 38:904–909, 2006.

P. Reimann, C. Van den Broeck, and G.J. Bex. A gaussian scenario for unsupervised learning.
Journal of Physics A:Mathematical and General., 29:3521–3535, 1996.

S. Roweis. EM algorithms for PCA and SPCA. In M I. Jordan, M J. Kearns, and S. A. Solla, editors,
Advances in Neural Information Processing Systems, volume 10. MIT Press, 1998.

B. Scholköpf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10:1299–1319, 1998.

M.E. Tipping and C.M. Bishop. Probabilistic principal component analysis. J. Royal Statistical
Society B, 61:611–622, 1999a.

M.E. Tipping and C.M. Bishop. Mixtures of probabilistic principal component analysers. Neural
Computation, 11:443–482, 1999b.

C.A. Tracy and H. Widom. On orthogonal and symplectic matrix ensembles. Communications in
Mathematical Physics, 177:727–754, 1996.

R. Urbanczik. Statistical physics of independent component analysis. Europhysics Letters, 64:
564–570, 2003.

V. Šmı́dl and A. Quinn. On Bayesian principal component analysis. Computational Statistics and
Data Analysis, 51:4101–4123, 2007.

K.W. Wachter. In David C. Hoaglin & Roy E. Welsch, editor, Proceedings of the Ninth Inter-
face Symposium Computer Science and Statistics, page 299, Boston, 1976. Prindle, Weber and
Schmidt.

K.W. Wachter. The strong limits of random matrix spectra for sample matrices of independent
elements. Annnals Probability, 6:1–18, 1978.

R. Wong. Asymptotic Approximations of Integrals. Academic Press, Boston, MA, 1989.

2759

Journal of Machine Learning Research 9 (2008) 2761-2801 Submitted 1/08; Revised 9/08; Published 12/08

Robust Submodular Observation Selection

Andreas Krause KRAUSEA@CS.CMU.EDU

Computer Science Department
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213

H. Brendan McMahan MCMAHAN@GOOGLE.COM

Google, Inc.
4720 Forbes Ave.
Pittsburgh, PA 15213

Carlos Guestrin GUESTRIN@CS.CMU.EDU

Computer Science Department and Machine Learning Department
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213

Anupam Gupta ANUPAMG@CS.CMU.EDU

Computer Science Department
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213

Editor: Chris Williams

Abstract

In many applications, one has to actively select among a set of expensive observations before mak-
ing an informed decision. For example, in environmental monitoring, we want to select locations
to measure in order to most effectively predict spatial phenomena. Often, we want to select ob-
servations which are robust against a number of possible objective functions. Examples include
minimizing the maximum posterior variance in Gaussian Process regression, robust experimental
design, and sensor placement for outbreak detection. In this paper, we present the Submodular Satu-
ration algorithm, a simple and efficient algorithm with strong theoretical approximation guarantees
for cases where the possible objective functions exhibit submodularity, an intuitive diminishing
returns property. Moreover, we prove that better approximation algorithms do not exist unless
NP-complete problems admit efficient algorithms. We show how our algorithm can be extended to
handle complex cost functions (incorporating non-unit observation cost or communication and path
costs). We also show how the algorithm can be used to near-optimally trade off expected-case (e.g.,
the Mean Square Prediction Error in Gaussian Process regression) and worst-case (e.g., maximum
predictive variance) performance. We show that many important machine learning problems fit our
robust submodular observation selection formalism, and provide extensive empirical evaluation on
several real-world problems. For Gaussian Process regression, our algorithm compares favorably
with state-of-the-art heuristics described in the geostatistics literature, while being simpler, faster
and providing theoretical guarantees. For robust experimental design, our algorithm performs fa-
vorably compared to SDP-based algorithms.

c©2008 Andreas Krause, H. Brendan McMahan, Carlos Guestrin and Anupam Gupta.

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

Keywords: observation selection, experimental design, active learning, submodular functions,
Gaussian processes

1. Introduction

In tasks such as sensor placement for environmental monitoring or experimental design, one has
to select among a large set of possible, but expensive, observations. In environmental monitoring,
we can choose locations where measurements of a spatial phenomenon (such acidicity in rivers and
lakes, cf., Figure 1(a)) should be obtained. In experimental design, we frequently have a menu of
possible experiments which can be performed. Often, there are several different objective functions
which we want to simultaneously optimize. For example, in the environmental monitoring prob-
lem, we want to minimize the marginal posterior variance of our acidicity estimate at all locations
simultaneously. In experimental design, we often have uncertainty about the model parameters, and
we want our experiments to be informative no matter what the true parameters of the model are. In
sensor placement for contamination detection in water distribution networks (cf., Figure 1(b)), we
want to place sensors in order to quickly detect any possible contamination event.

Our goal in all these problems is to select observations (sensor locations, experiments) which
are robust against a worst-case objective function (location to evaluate predictive variance, model
parameters, contamination event, etc.). Often, the individual objective functions, for example, the
marginal variance at one location, or the information gain for a fixed set of parameters (Das and
Kempe, 2008; Krause et al., 2007b; Krause and Guestrin, 2005; Guestrin et al., 2005), satisfy sub-
modularity, an intuitive diminishing returns property: Adding a new observation helps less if we
have already made many observations, and more if we have made few observation thus far. While
NP-hard, the problem of selecting an optimal set of k observations maximizing a single submodular
objective can be approximately solved using a simple greedy forward-selection algorithm, which
is guaranteed to perform near-optimally (Nemhauser et al., 1978). However, as we show, this sim-
ple myopic algorithm performs arbitrarily badly in the case of a worst-case objective function. In
this paper, we address the fundamental problem of nonmyopically selecting observations which are
robust against such an adversarially chosen submodular objective function. In particular:

• We present SATURATE, an efficient algorithm for the robust submodular observation selection
problem. Our algorithm guarantees solutions which are at least as informative as the optimal
solution, at only a slightly higher cost.

• We prove that our approximation guarantee is the best possible, that is, the guarantee cannot
be improved unless NP-complete problems admit efficient algorithms.

• We discuss several extensions of our approach, handling complex cost functions and trading
off worst-case and average-case performance.

• We extensively evaluate our algorithm on several real-world tasks, including minimizing
the maximum posterior variance in Gaussian Process regression, finding experiment designs
which are robust with respect to parameter uncertainty, and sensor placement for outbreak
detection.

This manuscript is organized as follows. In Section 2, we formulate the robust submodular
observation selection problem, and in Section 3, we analyze its hardness. We subsequently present

2762

ROBUST SUBMODULAR OBSERVATION SELECTION

SATURATE, an efficient approximation algorithm for this problem (Section 4), and show that our ap-
proximation guarantees are best possible, unless NP-complete problems admit efficient algorithms
(Section 5). In Section 6, we discuss how many important machine learning problems are instances
of our robust submodular observation selection formalism. We then discuss extensions (Section 7)
and evaluate the performance of SATURATE on several real-world observation selection problems
(Section 8). Section 9 presents heuristics to improve the computational performance of our algo-
rithm, Section 10 reviews related work, and Section 11 presents our conclusions.

(a) NIMS deployed at UC Merced (b) Water distribution network

Figure 1: (a) Deployment of the Networked Infomechanical System (NIMS, Harmon et al., 2006)
to monitor a lake near UC Merced. (b) Illustration of the municipal water distribution
network considered in the Battle of the Water Sensor Networks challenge (cf., Ostfeld
et al., 2008).

2. Robust Submodular Observation Selection

In this section, we first review the concept of submodularity (Section 2.1), and then introduce the
robust submodular observation selection (RSOS) problem (Section 2.2).

2.1 Submodular Observation Selection

Let us consider a spatial prediction problem, where we want to estimate the pH values across a
horizontal transect of a river, for example, using the NIMS robot shown in Figure 1(a). We can
discretize the space into a finite number of locations V , where we can obtain measurements, and
model a joint distribution P(XV) over variables XV associated with these locations. One example
of such models, which have found common use in geostatistics (cf., Cressie, 1991), are Gaussian
Processes (cf., Rasmussen and Williams, 2006). Based on such a model, a typical goal in spatial
monitoring is to select a subset of locations A ⊆ V to observe, such that the average predictive
variance,

V (A) =
1
n ∑

i

σ2
i|A ,

2763

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

is minimized (cf., Section 6.1 for more details). Hereby, σ2
i|A denotes the predictive variance at

location i after observing locations A , that is,

σ2
i|A =

Z
P(xA)E

[
(Xi−E [Xi | xA])2 | xA

]
dxA .

Unfortunately, the problem
A∗ = argmin

|A |≤k
V (A)

is NP-hard in general (Das and Kempe, 2008), and the number of candidate solutions is very large,
so generally we cannot expect to efficiently find the optimal solution. Fortunately, as Das and
Kempe (2008) show, in many cases, the variance reduction

Fs(A) = σ2
s −σ2

s|A

at any particular location s, satisfies the following diminishing returns behavior: Adding a new
observation reduces the variance at s more, if we have made few observations so far, and less, if we
have already made many observations. This formalism can be formalized using the combinatorial
concept of submodularity (cf., Nemhauser et al., 1978):

Definition 1 A set function F : 2V → R is called submodular, if for all subsets A ,B ⊆ V it holds
that F(A ∪B)+F(A ∩B)≤ F(A)+F(B).

Nemhauser et al. (1978) prove a convenient characterization of submodular functions: F is
submodular if and only if for all A ⊆B ⊆V and s∈V \B it holds that F(A∪{s})−F(A)≥F(B∪
{s})− F(B). This characterization exactly matches our diminishing returns intuition about the
variance reduction Fs at location s. Since each of the variance reduction functions Fs is submodular,
the average variance reduction

F(A) = V (/0)−V (A) =
1
n ∑

s
Fs(A)

is also submodular. The average variance reduction is also monotonic, that is, for all A ⊆ B ⊆ V it
holds that F(A)≤ F(B), and normalized (F(/0) = 0).

Hence, the problem of minimizing the average variance is an instance of the problem

max
A⊆V

F(A), subject to |A | ≤ k, (1)

where F is normalized, monotonic and submodular, and k is a bound on the number of observations
we can make. As Krause and Guestrin (2007a) show, many other observation selection problems
are instances of Problem (1).

Since solving Problem (1) is NP-hard in most interesting instances (Feige, 1998; Krause et al.,
2006, 2007b; Das and Kempe, 2008), in practice, heuristics are often used. One such heuristic is
the greedy algorithm. This algorithm starts with the empty set, and iteratively adds the element
s∗ = argmaxs∈V \A F(A ∪{s}), until k elements have been selected. Perhaps surprisingly, a funda-
mental result by Nemhauser et al. (1978) states that for submodular functions, the greedy algorithm
achieves a constant factor approximation:

2764

ROBUST SUBMODULAR OBSERVATION SELECTION

Theorem 2 (Nemhauser et al. 1978) In the case of any normalized, monotonic submodular func-
tion F, the set AG obtained by the greedy algorithm achieves at least a constant fraction (1−1/e)
of the objective value obtained by the optimal solution, that is,

F(AG)≥ (1−1/e) max
|A |≤k

F(A).

Moreover, no polynomial time algorithm can provide a better approximation guarantee unless P =
NP (Feige, 1998).

2.2 The Robust Submodular Observation Selection (RSOS) Problem

For phenomena, such as the one indicated in Figure 2(a), which are spatially homogeneous (isotropic),
maximizing this average variance reduction leads to effective variance reduction everywhere in the
space. However, many spatial phenomena are nonstationary, being smooth in certain areas and
highly variable in others, such as the example indicated in Figure 2(b). In such a case, maximizing
the average variance reduction will typically put only few examples in the areas highly variable
areas. However, those regions are typically the most interesting, since they are most difficult to
predict. In such cases, we might want to simultaneously minimize the variance everywhere in the
space.

−3

−2

−1

0

1

2

3

Horizontal position

A
m

pl
itu

de

(a) High average variance

−3

−2

−1

0

1

2

3

Horizontal position

A
m

pl
itu

de

(b) High maximum variance

Figure 2: Spatial predictions using Gaussian Processes with a small number of observations. The
blue solid line indicates the unobserved latent function, and blue squares indicate observa-
tions. The plots also show confidence bands (green). Dashed line indicates the prediction.
(b) shows an example with high maximum predictive variance, but low average variance,
whereas (a) shows an example with high average variance, but lower maximum variance.
Note, that in (b) we are most uncertain about the most variable (and interesting, since
it is hard to predict) part of the curve, suggesting that the maximum variance should be
optimized.

More generally, in many applications (such as the spatial monitoring problem discussed above,
and several other examples which we present in Section 6), we want to perform equally well with
respect to multiple objectives. We will hence consider settings where we are given a collection of

2765

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

A F1(A) F2(A) mini Fi(A)
/0 0 0 0
{s1} n 0 0
{s2} 0 n 0
{t1} 1 1 1
{t2} 1 1 1
{s1,s2} n n n
{s1, t1} n+1 1 1
{s1, t2} n+1 1 1
{s2, t1} 1 n+1 1
{s2, t2} 1 n+1 1
{t1, t2} 2 2 2

Table 1: Functions F1 and F2 used in the counterexample.

normalized monotonic submodular functions F1, . . . ,Fm, and we want to solve

max
A⊆V

min
i

Fi(A), subject to |A | ≤ k. (2)

The goal of Problem (2) is to find a set A of observations, which is robust against the worst possible
objective, mini Fi, from our set of possible objectives. Consider the spatial monitoring setting for
example, and assume that the prior variance σ2

i is constant (we will relax this assumption in Sec-
tion 7.2) over all locations i. Then, the problem of minimizing the maximum variance, as motivated
by the example in Figure 2, is equivalent to maximizing the minimum variance reduction, that is,
solving Problem (2) where Fi is the variance reduction at location i.

We call Problem (2) the Robust Submodular Observation Selection (RSOS) problem. Note,
that even if the Fi are all submodular, Fwc(A) = mini Fi(A) is generally not submodular. In fact,
we show below that, in this setting, the simple greedy algorithm (which performs near-optimally in
the single-criterion setting) can perform arbitrarily badly. While the example in Table 1 might seem
artificial, as we show in Section 8 (especially Section 8.3), the greedy algorithm exhibits very poor
performance when applied to practical problems.

3. Hardness of the Robust Submodular Observation Selection Problem

Given the near-optimal performance of the greedy algorithm for the single-objective problem, a nat-
ural question is if the performance guarantee generalizes to the more complex robust optimization
setting. Unfortunately, this hope is far from true, even in the simpler case of modular (additive)
functions Fi. Consider a case with two submodular functions, F1 and F2, where the set of observa-
tions is V = {s1,s2, t1, t2}. The functions take values as indicated in Table 1. Optimizing for a set
of 2 elements, the greedy algorithm maximizing Fwc(A) = min{F1(A),F2(A)} would first choose
t1 (or t2), as this choice increases the objective min{F1,F2} by 1, as opposed to 0 for s1 and s2. The
greedy solution for k = 2 would then be the set {t1, t2}, obtaining a score of 2. However, the optimal
solution with k = 2 is {s1,s2}, with a score of n. Hence, as n→ ∞, the greedy algorithm performs
arbitrarily worse than the optimal solution.

2766

ROBUST SUBMODULAR OBSERVATION SELECTION

Given that the greedy algorithm performs arbitrarily badly, our next hope would be to obtain a
different good approximation algorithm. However, we can show that most likely this is not possible:

Theorem 3 Unless P = NP, there cannot exist any polynomial time approximation algorithm for
Problem (2). More precisely: If there exists a positive function γ(·) > 0 and an algorithm that, for
all n and k, in time polynomial in the size of the problem instance n, is guaranteed to find a set A ′
of size k such that mini Fi(A ′)≥ γ(n)max|A |≤k mini Fi(A), then P = NP.

Thus, unless P = NP, there cannot exist any algorithm which is guaranteed to provide, for example,
even an exponentially small fraction (γ(n) = 2−n) of the optimal solution. All proofs can be found
in the Appendix.

4. The Submodular Saturation Algorithm

We now present an algorithm that finds a set of observations which perform at least as well as the
optimal set, but at slightly increased cost; moreover, we show that no efficient algorithm can provide
better guarantees (under reasonable complexity-theoretic assumptions).

4.1 Algorithm Overview

For now we assume that all Fi take only integral values; this assumption is relaxed in Section 7.1.
The key idea is to consider the following alternative problem formulation:

max
c,A

c, subject to Fi(A)≥ c for 1≤ i≤ m and |A | ≤ k. (3)

We want a set A of size at most k, such that Fi(A) ≥ c for all i, and c is as large as possible. Note
that Problem (3) is equivalent to the original Problem (2): Maximizing c subject to the existence of
a set A , |A | ≤ k such that Fi(A)≥ c for all i is equivalent to maximizing mini Fi(A).

Now suppose we had an algorithm that, for any given value c, solves the following optimization
problem:

Ac = argmin
A
|A | subject to Fi(A)≥ c for 1≤ i≤ m (4)

that is, finds the smallest set A with Fi(A)≥ c for all i. If this set has at most k elements, then c (and
the set A) is feasible for the RSOS Problem (3). If we cannot find a set A satisfying Fi(A)≥ c for
all i and containing at most k elements, then c is infeasible. A binary search on c would then allow
us to find the optimal solution with the maximum feasible c. We call Problem (4) the MINCOVERc

problem, as it requires to find the smallest set guaranteeing an equal amount of coverage, c, for all
objective functions Fi.

Since Theorem 3 rules out any approximation algorithm which respects the constraint k on the
size of the set A , our only hope for non-trivial guarantees requires us to relax this constraint. Our
algorithm is based on the following approach:

• We define a relaxed version of the RSOS problem with a superset of feasible solutions that
we call RELRSOS.

• We will maintain a lower bound (a feasible solution) for RELRSOS, and an upper bound for
RSOS.

2767

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

0 mini Fi(V)

c

cmaxcmin

feasible c for RSOS

feasible c for RelRSOS search interval

c* c’

Figure 3: Illustration of feasible regions for the RSOS and RELRSOS problems. [cmin,cmax] is
the search interval during some iteration of SATURATE. c∗ is the optimal solution to the
RSOS problem, and c′ is the solution that will eventually be returned by SATURATE.

• We will then successively improve the upper and lower bounds using a binary search pro-
cedure. Upon convergence, we are thus guaranteed a feasible solution to RELRSOS, that
performs at least as well as the optimal solution to the RSOS problem.

We now define the RELRSOS problem, the relaxed version of the RSOS Problem (3).

max
c,A

c, subject to Fi(A)≥ c for 1≤ i≤ m and |A | ≤ αk. (5)

Hereby, α ≥ 1 is a parameter relaxing the constraint on |A |. If α = 1, we recover the RSOS
Problem (3).

As described above, our goal will be to approximately solve the RELRSOS Problem (5) for a
fixed constant α. More formally, we will develop an efficient algorithm, SATURATE, which returns
a solution (c′,A ′) that is feasible for the RELRSOS Problem (5), and achieves a score that is at
least as good as an optimal solution (c∗,A∗) to the RSOS Problem (3), that is, c′ ≥ c∗ and |A ′| ≤
α|A∗| ≤ αk.

The basic idea of SATURATE is to use the binary search procedure (maintaining a search interval
[cmin,cmax]) as described above, but using an approximate algorithm, GPC (for Greedy Partial Cov-
erage) that we will develop below, for the MINCOVERc Problem (4). When invoked with a fixed
value c, the GPC algorithm will return a feasible solution |A ′c| to the MINCOVERc Problem (4). We
will furthermore guarantee that

• |A ′c| > αk implies that c > c∗, that is, c is an upper bound to the RSOS Problem (3), and
hence it is safe to set cmax = c, and

• |A ′c| ≤ αk implies that A ′c is a feasible solution (lower bound) to the RELRSOS Problem (5).
A ′c is then kept as best current solution and we can set cmin = c.

The binary search procedure will hence always maintain an upper bound cmax to the RSOS Prob-
lem (3), and a lower bound cmin to the RELRSOS Problem (5). Upon termination, it is thus guaran-
teed to find a solution AS for which it holds that mini Fi(AS)≥ c∗ (since AS is an upper bound to the
RSOS Problem (3)) and |AS| ≤ αk (since AS is feasible for the RELRSOS Problem (5)). Hence,
the approximate solution AS obtains minimum value at least as high as the best possible score ob-
tainable using k elements, but using slightly more (at most αk) elements than k elements. Figure 3
illustrates the feasible regions of the RSOS and RELRSOS problems, as well as the binary search
procedure.

2768

ROBUST SUBMODULAR OBSERVATION SELECTION

4.2 Algorithm Details

We will now provide formal details for the algorithm sketched in Section 4.1. As trivial lower
and upper bounds for the RSOS problem we can initially set cmin = 0 ≤ mini Fi(/0), and cmax =
mini Fi(V), due to monotonicity of the Fi.

First, we will develop the efficient algorithm GPC which approximately solves the MINCOVERc

Problem (4). For any value c that could possibly be feasible (i.e., 0 ≤ c ≤ mini Fi(V)), define
F̂i,c(A) = min{Fi(A),c}, the original function Fi truncated at score level c. The key insight is that
these truncated functions F̂i,c remain monotonic and submodular (Fujito, 2000). Figure 4 illustrates
this truncation concept. Let Fc(A) = 1

m ∑i F̂i,c(A) be their average value. Since monotonic sub-
modular functions are closed under convex combinations, Fc is also submodular and monotonic.
Furthermore, Fi(A) ≥ c for all 1 ≤ i ≤ m if and only if Fc(A) = c. Hence, in order to determine
whether some c is feasible for Problem (5), we need to determine whether there exists a set of size
at most αk such that Fc(A) = c. Note, that due to monotonicity of Fc and the choice of c it holds
that that c = Fc(V). We hence need to solve the following optimization problem:

A∗c = argmin
A⊆V

|A |, such that Fc(A) = Fc(V). (6)

Problems of the form minA |A | such that F(A) = F(V), where F is a monotonic submodular
function, are called submodular covering problems. Since Fc satisfies these requirements, the
MINCOVERc Problem (6) is an instance of such a submodular covering problem. While such prob-
lems are NP-hard in general (Feige, 1998), Wolsey (1982) shows that the greedy algorithm, that
starts with the empty set (A = /0) and iteratively adds the element s increasing the score the most
until F(A) = F(V), achieves near-optimal performance on this problem. We can hence use the
greedy algorithm applied to the truncated functions Fc as our approximate algorithm GPC, which
is formalized in Algorithm 1. Using Wolsey’s result and the observation that α can be chosen
independently of the truncation threshold c, we find:

Lemma 4 Given integral valued1 monotonic submodular functions F1, . . . ,Fm and a (feasible) con-
stant c, Algorithm 1 (with input Fc) finds a set AG such that Fi(AG)≥ c for all i, and |AG| ≤ α|A∗c |,
where A∗c is an optimal solution to Problem (6), and

α = 1+ log

(
max
s∈V

∑
i

Fi({s})
)

.

We can compute this approximation guarantee α for any given instance of the RSOS problem.
Hence, if for a given value of c the greedy algorithm returns a set of size greater than αk, there cannot
exist a solution A ′ with |A ′| ≤ k with Fi(A ′) ≥ c for all i. Thus, c is an upper bound to the RSOS
Problem (3). We can use this argument to conduct the binary search discussed in Section 4.1 to find
the optimal value of c. The binary search procedure maintains an interval [cmin,cmax], initialized
[0,mini Fi(V)]. At every iteration, we test the current center of the interval, c = (cmin + cmax)/2,
and check feasibility of c using the greedy algorithm. If c is feasible, we retain the current best
feasible solution and set cmin = c. If c is infeasible (which we detect by comparing the number of
elements picked by the greedy algorithm with αk), we set cmax = c.

1. This bound is only meaningful for integral Fi, otherwise it could be arbitrarily improved by scaling the Fi. We relax
the constraint on integrality of the Fi in Section 7.1.

2769

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

|A|

F(A)

min(F(A),c)

Figure 4: Truncating an objective function F preserves submodularity and monotonicity.

GPC (Fc, c)
A ← /0;
while Fc(A) < c do

foreach s ∈ V \A do δs← Fc(A ∪{s})−Fc(A);
A ← A ∪{argmaxs δs};

end

Algorithm 1: The greedy submodular partial cover (GPC) algorithm.

We call Algorithm 2, which formalizes this procedure, the submodular saturation algorithm
(SATURATE), as the algorithm considers the truncated objectives F̂i,c, and chooses sets which satu-
rate all these objectives. In the pseudo-code of Algorithm 2 we pass α as a parameter. Theorem 5
(given below) states that SATURATE, when applied with α chosen as in Lemma 4, is guaranteed
to find a set which achieves worst-case score mini Fi at least as high as the optimal solution, if we
allow the set to be logarithmically (a factor α) larger than the optimal solution.

Theorem 5 For any integer k, SATURATE finds a solution AS such that

min
i

Fi(AS)≥ max
|A |≤k

min
i

Fi(A) and |AS| ≤ αk,

for α = 1+ log(maxs∈V ∑i Fi({s})). The total number of submodular function evaluations is

O
(
|V |2m log

(
mmin

i
Fi(V)

))
.

Note, that the algorithm still makes sense for any value of α. However, if α < 1+log(maxs∈V ∑i Fi({s})),
the guarantee of Theorem 5 does not hold. As argued in Section 4.1, if we had an exact algorithm for
submodular coverage, then we would set α = 1, and SATURATE would return the optimal solution
to the RSOS problem. Since, in our experience, the greedy algorithm for optimizing submodular
functions works very effectively (cf., Krause et al. 2007b), in our experiments, we call SATURATE

with α = 1. This choice empirically performs very well, as demonstrated in Section 8.

2770

ROBUST SUBMODULAR OBSERVATION SELECTION

SATURATE (F1, . . . ,Fm,k,α)
cmin← 0; cmax←mini Fi(V); Abest ← /0;
while (cmax− cmin)≥ 1

m do
c← (cmin + cmax)/2;
Define Fc(A)← 1

m ∑i min{Fi(A),c};
Â ← GPC(Fc,c);
if |Â|> αk then

cmax← c;
else

cmin← c; Abest = Â
end

end

Algorithm 2: The Submodular Saturation algorithm.

If we apply SATURATE to the example problem described in Section 3, we would start with
cmax = n. Running the coverage algorithm (GPC) with c = n/2 would first pick element s1 (or s2),
since Fc({s1}) = n/2, and, next, pick s2 (or s1 resp.), hence finding the optimal solution.

The worst-case running time guarantee is quite pessimistic, and in practice the algorithm is
much faster: Using a priority queue and lazy evaluations, Algorithm 1 can be sped up drastically.
Lazy evaluations exploit the fact that, due to submodularity, the differences δs(A) = Fc(XA∪s)−
Fc(XA) that are computed by GPC are monotonically decreasing in A , which allows to avoid a
large number of function evaluations (cf., Robertazzi and Schwartz 1989 for details). In addition,
for many submodular functions Fi, such as the variance reduction, it is often cheaper to compute
Fc(XA∪s)−Fc(XA) instead of Fc(XA∪s). This observation can be exploited to drastically speed up
GPC. Furthermore, in practical implementations, one would stop GPC once αk +1 elements have
been selected, which already proves that the optimal solution with k elements cannot achieve score
c. Also, Algorithm 2 can be terminated once cmax− cmin is sufficiently small; in our experiments,
10-15 iterations usually sufficed.

5. Hardness of Bicriterion Approximation

Guarantees of the form presented in Theorem 5 are often called bicriterion guarantees. Instead
of requiring that the obtained objective score is close to the optimal score and all constraints are
exactly met, a bicriterion guarantee requires a bound on the suboptimality of the objective, as well
as bounds on how much the constraints are violated. Theorem 3 showed that—unless P = NP—no
approximation guarantees can be obtained which do not violate the constraint on the cost k, thereby
necessitating the bricriterion analysis.

One might ask, whether the guarantee on the size of the set, α, can be improved. Unfortunately,
this is not likely, as the following result shows:

Theorem 6 If there were a polynomial time algorithm which, for any integer k, is guaranteed to
find a solution AS such that mini Fi(AS)≥max|A |≤k mini Fi(A) and |AS| ≤ βk, where β≤ (1−ε)(1+
logmaxs∈V ∑i Fi({s})) for some fixed ε > 0, then NP⊆ DTIME(nlog logn).

2771

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

Hereby, DTIME(nlog logn) is a class of deterministic, slightly superpolynomial (but sub-exponential)
algorithms (Feige, 1998); the inclusion NP⊆DTIME(nlog logn) is considered unlikely (Feige, 1998).
Taken together, Theorem 3 and Theorem 6, provide strong theoretical evidence that SATURATE

achieves best possible theoretical guarantees for the problem of maximizing the minimum over a
set of submodular functions.

6. Examples of Robust Submodular Observation Selection problems

We now demonstrate that many important machine learning problems can be phrased as RSOS
problems. Section 8 provides more details and experimental results for these domains.

6.1 Minimizing the Maximum Kriging Variance

Consider a Gaussian Process (GP) (cf., Rasmussen and Williams, 2006) XV defined over a finite
set of locations (indices) V . Hereby, XV is a set of random variables, one variable Xs for each
location s ∈ V . Given a set of locations A ⊆ V which we observe, we can compute the predictive
distribution P(XV \A | XA = xA), that is, the distribution of the variables XV \A at the unobserved
locations V \A , conditioned on the measurements at the selected locations, XA = xA . Let σ2

s|A
be the residual variance after making observations at A . Let ΣAA be the covariance matrix of
the measurements at the chosen locations A , and ΣsA be the vector of cross-covariances between
the measurements at s and A . Then, the predictive variance (often called Kriging variance in the
geostatistics literature), given by

σ2
s|A = σ2

s −ΣsAΣ−1
AAΣAs,

depends only on the set A , and not on the observed values xA .2 As argued in Section 2, an often
(especially in the case of nonstationary phenomena) appropriate criterion is to select locations A
such that the maximum marginal variance is as small as possible, that is, we want to select a subset
A∗ ⊆ V of locations to observe such that

A∗ = argmin
|A |≤k

max
s∈V

σ2
s|A . (7)

Let us assume for now that the a priori variance σ2
s is constant for all locations s (in Section 7, we

show how our approach generalizes to non-constant marginal variances). Furthermore, let us define
the variance reduction Fs(A) = σ2

s −σ2
s|A . Solving Problem (7) is then equivalent to maximizing

the minimum variance reduction over all locations s. For a particular location s, Das and Kempe
(2008) show that the variance reduction Fs (often) is a monotonic submodular function. Hence the
problem

A∗ = argmax
|A |≤k

min
s∈V

Fs(A) = argmax
|A |≤k

min
s∈V

σ2
s −σ2

s|A

is an instance of the RSOS problem.

2. This independence is a particular property of the Gaussian distribution. When such independence is present, there is
no benefit of sequentially selecting observations (cf., Krause and Guestrin, 2007b).

2772

ROBUST SUBMODULAR OBSERVATION SELECTION

6.2 Variable Selection under Parameter Uncertainty

Consider an application, where we want to diagnose a failure of a complex system, by perform-
ing a number of tests. We can model this problem by using a set of discrete random variables
XV = {X1, . . . ,Xn} indexed by V = {1, . . . ,n}, which model both the hidden state of the system
and the outcomes of the diagnostic tests. The interaction between these variables is modeled by
a joint distribution P(XV | θ) with parameters θ. Krause et al. (2007b) and Krause and Guestrin
(2005) show that many variable selection problems can be formulated as the problem of optimizing
a submodular utility function (measuring, for example, the information gain I(XU ,XA) with respect
to some variables of interest U, or the mutual information I(XA ;XV \A) between the observed and
unobserved variables, etc.). However, the informativeness of a chosen set A typically depends on
the particular parameters θ, and these parameters might be uncertain. In some applications, it might
not be reasonable to impose a prior distribution over θ, and we may want to perform well even
under the worst-case parameters. In these cases, we can associate, with each parameter setting θ, a
different submodular objective function Fθ, for example,

Fθ(A) = I(XA ;XU | θ),

and we might want to select a set A which simultaneously performs well for all possible parameter
values. In practice, we can discretize the set of possible parameter values θ (for example around
a 95% confidence interval estimated from initial data) and optimize the worst case Fθ over the
resulting discrete set of parameters.

6.3 Robust Experimental Designs

Another application is experimental design under nonlinear dynamics (Flaherty et al., 2006). The
goal is to estimate a set of parameters θ of a nonlinear function y = f (x,θ) + w, by providing a
set of experimental stimuli x, and measuring the (noisy) response y. In many cases, experimental
design for linear models (where y = A(x)T θ + w with Gaussian noise w) can be efficiently solved
by semidefinite programming (Boyd and Vandenberghe, 2004). In the nonlinear case, a common
approach (cf., Chaloner and Verdinelli, 1995) is to linearize f around an initial parameter estimate
θ0, that is,

y = f (x,θ0)+V (x)(θ−θ0)+w, (8)

where V (x) is the Jacobian of f with respect to the parameters θ, evaluated at θ0. Subsequently, a
locally-optimal design is sought, which is optimal for the linear design Problem (8) for initial pa-
rameter estimates θ0. Flaherty et al. (2006) show that the efficiency of such a locally optimal design
can be very sensitive with respect to the initial parameter estimates θ0. Consequently, they develop
an efficient semi-definite program (SDP) for E-optimal design (i.e., the goal is to minimize the max-
imum eigenvalue of the error covariance) which is robust against perturbations of the Jacobian V .
However, it might be more natural to directly consider robustness with respect to perturbation of the
initial parameter estimates θ0, around which the linearization is performed. We show how to find
(Bayesian A-optimal) designs which are robust against uncertainty in these parameter estimates. In
this setting, the objectives Fθ0(A) are the reductions of the trace of the parameter covariance,

Fθ0(A) = tr
(

Σ(θ0)
θ

)
− tr

(
Σ(θ0)

θ|A
)

,

2773

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

Figure 5: Securing a municipal water distribution network against contaminations performed under
knowledge of the sensor placement is another instance of the RSOS problem.

where Σ(θ0) is the joint covariance of observations and parameters after linearization around θ0; thus,
Fθ0 is the sum of marginal parameter variance reductions, which are (often) individually monotonic
and submodular (Das and Kempe, 2008), and so Fθ0 is monotonic and submodular as well. Hence,
in order to find a robust design, we maximize the minimum variance reduction, where the minimum
is taken over (a discretization into a finite subset of) all initial parameter values θ0.

6.4 Sensor Placement for Outbreak Detection

Another class of examples are outbreak detection problems on graphs, such as contamination detec-
tion in water distribution networks (Leskovec et al., 2007). Here, we are given a graph G = (V ,E),
and a phenomenon spreading dynamically over the graph. We define a set of intrusion scenarios
I ; each scenario i ∈ I models an outbreak (e.g., spreading of contamination) starting from a given
node s ∈ V in the network. By placing sensors at a set of locations A ⊆ V , we can detect such an
outbreak, and thereby minimize the adverse effects on the network.

More formally, for each possible outbreak scenario i ∈ I and for each node v ∈ V we define
the detection time Ti(v) as the time when the outbreak affects node v (and Ti(v) = ∞ if node v is
never affected). We furthermore define a penalty function πi(t) which models the penalty incurred
for detecting outbreak i at time t. We require πi(t) to be monotonically non-decreasing in t (i.e., we
never prefer late over early detection), and bounded above by πi(∞) ∈ R. Our goal is to minimize
the worst-case penalty: We extend πi to observation sets A as πi(A) = πi (mins∈A Ti(s)). Then, our
goal is to solve

A∗ = argmin
|A |≤k

max
i∈I

πi(A).

Equivalently, we can define the penalty reduction Fi(A) = πi(∞)−πi(A). Clearly, Fi(/0) = 0, Fi

is monotonic. In Leskovec et al. (2007), it was shown that Fi is also guaranteed to be submodular.
For now, let us assume that πi(∞) is constant for all i (we will relax this assumption in Section 7.2).
Our goal in sensor placement is then to select a set of sensors A such that the minimum penalty

2774

ROBUST SUBMODULAR OBSERVATION SELECTION

reduction is as large as possible, that is, we want to select

A∗ = argmax
|A |≤k

min
i∈I

Fi(A).

In other words, an adversary observes our sensor placement A , and then decides on an intrusion i
for which our utility Fi(A) is as small as possible. Hence, our goal is to find a placement A which
performs well against such an adversarial opponent.

6.5 Robustness Against Sensor Failures and Feature Deletion

Another interesting instance of the RSOS problem arises in the context of robust sensor placements.
For example, in the outbreak detection problem, sensors might fail, due to hardware problems or
manipulation by an adversary. We can model this problem in the following way: Consider the
case where all sensors at a subset B ⊆ V of locations fail. Given a submodular function F (e.g.,
the utility for placing a set of sensors), and the set B ⊆ V of failing sensors, we can define a
new function FB(A) = F(A \B), corresponding to the (reduced) utility of placement A after the
sensor failures. It is easy to show that if F is nondecreasing and submodular, so is FB . Hence, the
problem of optimizing sensor placements which are robust to sensor failures results in a problem of
simultaneously maximizing a collection of submodular functions, for example, for the worst-case
failure of k′ < k sensors we solve

A∗ = argmax
|A |≤k

min
|B|≤k′

FB(A).

We can also combine the optimization against adversarial contamination scenarios as discussed in
Section 6.3 with adversarial sensor failures, and optimize3

A∗ = argmax
|A |≤k

min
i∈I

min
|B|≤k′

Fi(A \B).

Another important problem in machine learning is feature selection. In feature selection, the goal
is to select a subset of features which are informative with respect to, for example, a given clas-
sification task. One objective frequently considered is the problem of selecting a set of features
which maximize the information gained about the class variable XY after observing the features XA ,
F(A) = H(XY)−H(XY | XA), where H denotes the Shannon entropy. Krause and Guestrin (2005)
show, that in a large class of graphical models, the information gain F(A) is in fact a submodular
function. Now we can consider a setting, where an adversary can delete features which we selected
(as considered, for example, by Globerson and Roweis 2006). The problem of selecting features ro-
bustly against such arbitrary deletion of, for example, m features, is hence equivalent to the problem
of maximizing min|B|≤m FB(A), where B are the deleted features.

3. Note that for larger values of k′, computing the average truncated utility can be computationally complex. See
Section 9 for possible approaches to reduce this complexity. Also note that in practice, one can expect that sensor
failures have structure (e.g., sensors that are spatially collocated, or share other common features, are more likely to
simultaneously fail). Such structured failures can potentially be modeled by appropriately choosing the collection of
sets B of failing nodes.

2775

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

6.5.1 IMPROVED GUARANTEES FOR SENSOR FAILURES

As discussed above, in principle, we could find a placement robust to single sensor failures by using
SATURATE to (approximately) solve

A∗ = argmax
|A |≤k

min
s

Fs(A).

However, since |V | can be very large, and the approximation guarantee α depends logarithmi-
cally on |V |, such a direct approach might not be desirable. We can improve the guarantee from
O(log |V |) to O(log(k log |V |)), which typically is much tighter, if k |V |/ log |V | (i.e., we place
far fewer sensors than we have possible sensor locations). We can improve the approximation guar-
antee drastically by noticing that Fs(A) = F(A) if s /∈ A . Hence,

Fc(A) =
|V |− |A |
|V | min{F(A),c}+ 1

|V | ∑s∈A
F̂s,c(A).

We can replace this objective by a new objective function,

F
′
c(A) =

k′ − |A |
k′

min{F(A),c}+ 1
k′ ∑s∈A

F̂s,c(A)

for some constant k̂ to be specified below. This modified objective is still monotonic and submodular
when restricted to sets of size at most k̂. It still holds that, for all subsets |A | ≤ k̂, that

F
′
c(A)≥ c⇔ Fs(A)≥ c for all s ∈ V .

How large should we choose k̂? We have to choose k̂ large enough such that SATURATE will never
choose sets larger than k̂. A sufficient choice for k̂ is hence �αk�, where α = 1+log(|V |maxs∈V F({s})).
For this choice of k̂, our new approximation guarantee will be

α′ = 1+ log

(
αkmax

s∈V
F({s})

)
= 1+ log

((
1+ log

(
|V |max

s∈V
F({s})

))
kmax

s∈V
F({s})

)
≤ 1+2log

(
k log(|V |)max

s∈V
F({s})

)

Hence, for the new objective F
′
c, we get a tighter approximation guarantee, α′ = 1+

2log(k log(|V |)maxs∈V F({s})), which now depends logarithmically on k log |V |, instead of the
number of available locations |V |. Note that this same approach can also provide tighter approxi-
mation guarantees in the case of multiple sensor failures.

7. Extensions

We now show how some of the assumptions made in our presentation above can be relaxed. We
also discuss several extensions, allowing more complex cost functions, and the tradeoff between
worst-case and average-case scores.

2776

ROBUST SUBMODULAR OBSERVATION SELECTION

7.1 Non-integral Objectives

In our analysis of SATURATE (Section 4), we have assumed, that each of the objective functions Fi

only take values in the positive integers. However, most objective functions of interest in observation
selection (such as those discussed in Section 6) typically do not meet this assumption. If the Fi take
on rational numbers, we can scale the objectives by multiplying by their common denominator.

If we allow small additive approximation error (i.e., are indifferent if the approximate solution
differs from the optimal solution in low order bits), we can also approximate the values assumed
by the functions Fi by their highest order bits. In this case, we replace the functions Fi(A) by the
approximations

F ′i (A) =
�2 jFi(A)�

2 j .

By construction, F ′i (A)≤ Fi(A)≤ F ′i (A)(1+2− j), that is, F ′i is within a factor of (1+2− j) of Fi.
Also, 2 jF ′i (A) is integral. However, F ′i (A) is not guaranteed to be submodular. Nevertheless, an
analysis similar to the one presented by Krause et al. (2007b) can be used to bound the effect of
this approximation on the theoretical guarantees α obtained by the algorithm, which will now scale
linearly with the number j of high order bits considered. In practice, as we show in Section 8, SAT-
URATE provides state-of-the-art performance, even without rounding the objectives to the highest
order bits.

7.2 Non-constant Thresholds

Consider the example of minimizing the maximum variance in Gaussian Process regression. Here,
the Fi(A) = σ2

i −σ2
i|A denote the variance reductions at location i. However, rather than guaranteeing

that Fi(A) ≥ c for all i (which, in this example, means that the minimum variance reduction is
c), we want to guarantee that σ2

i|A ≤ c for all i, which requires a different amount of variance
reduction for each location. We can easily adapt our approach to handle this case: Instead of defining
F̂i,c(A) = min{Fi(A),c}, we define F̂i,c(A) = min{Fi(A),σ2

i − c}, and then again perform binary
search over c, but searching for the smallest c instead. The algorithm, using objectives modified in
this way, will bear the same approximation guarantees.

7.3 Non-uniform Observation Costs

We can extend SATURATE to the setting where different observations have different costs. In
the spatial monitoring setting for example, certain locations might be more expensive to acquire
a measurement from. Suppose a cost function g : V → R

+ assigns each element s ∈ V a posi-
tive cost g(s); the cost of a set of observations is then g(A) = ∑s∈A g(s). The problem is to find
A∗ = argmaxA⊂V mini Fi(A) subject to g(A)≤ B, where B > 0 is a budget we can spend on making
observations. In this case, we use the rule

δs← Fc(A ∪{s})−Fc(A)
g(s)

in Algorithm 1. For this modified algorithm, Theorem 5 still holds, with |A | replaced by g(A)
and k replaced by B. This more general result holds, since the analysis of the greedy algorithm
for submodular covering of Wolsey (1982), which we used to prove Lemma 4, applies to the more
general setting of non-uniform cost functions.

2777

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

7.4 Handling More Complex Cost Functions

So far, we considered problems where we are given an additive cost function g(A) over the possible
sets A of observations. In some applications, more complex cost functions arise. For example,
when placing wireless sensor networks, the placements A should not only be informative (i.e., Fi(A)
should be high for all utility functions Fi), but the placement should also have low communication
cost. Krause et al. (2006) describe such an approach, where the cost g(A) measures the expected
number of retransmissions required for sending messages across an optimal routing tree connecting
the sensors A . Formally, the observations s are considered to be nodes in a graph G = (V ,E), with
edge weights w(e) for each edge e ∈ E . The cost g(A) is the cost of a minimum Steiner Tree (cf.,
Vazirani 2003) connecting the observations A in the graph G .

More generally, we want to solve problems of the form

argmax
A

min
i

Fi(A) subject to g(A)≤ B,

where g(A) is a complex cost function. The key insight of the SATURATE algorithm is that the non-
submodular robust optimization problem can be approximately solved by solving a submodular
covering problem. In the case where g(A) = |A | this problem requires solving (6). More generally,
we can apply SATURATE to any problem where we can (approximately) solve

Ac = argmin
A⊆V

g(A), such that Fc(A) = c. (9)

Problem (9) can be (approximately) solved for a variety of cost functions, such as those arising from
communication constraints (Krause et al., 2006) and path constraints (Singh et al., 2007; Meliou
et al., 2007).

Let us summarize our analysis as follows:

Proposition 7 Assume we have an algorithm which, given a monotonic submodular function F and
a cost function g, returns a solution A ′ such that F(A ′) = F(V) and

g(A ′)≤ αF min
A :F(A)=F(V)

g(A),

where αF depends on the function F. SATURATE, using this covering algorithm, can obtain a
solution AS to the RSOS problem such that

min
i

Fi(AS)≥ max
g(A)≤B

min
i

Fi(A),

and
g(AS)≤ αFB,

where αF is the approximation factor of the covering algorithm, when applied to F = 1
m ∑i Fi.

Note that the formalism developed in this section also allows to handle robust versions of com-
binatorial optimization problems such as the Knapsack (cf., Martello and Toth, 1990), Orienteering
(cf., Laporte and Martello, 1990; Blum et al., 2003) and Budgeted Steiner Tree (cf., Johnson et al.,
2000) problems. In these problems, instead of a general submodular objective function, the special
case of a modular (additive) function F is optimized:

A∗ = argmax
g(A)≤B

F(A).

2778

ROBUST SUBMODULAR OBSERVATION SELECTION

0 50 100 150 200 250 300 350
0

1000

2000

3000

4000

5000

6000

7000

Average−case population affected

W
or

st
−c

as
e

po
pu

la
tio

n
af

fe
ct

ed

Knee in
Pareto curve

Only optimize for
average case

Only optimize for worst case

Figure 6: Tradeoff curve for simultaneously optimizing the average- and worst-case score in the
water distribution network monitoring application. Notice the knee in the tradeoff curve,
indicating that by performing multi-criterion optimization, solutions performing well for
both average- and worst-case scores can be obtained.

The problems differ only in the choice of the complex cost function. In Knapsack for example, g
is additive, in the Budgeted Steiner Tree problem, g(A) is the cost of a minimum Steiner tree con-
necting the nodes A in a graph, and in Orienteering, g(A) is the cost of a shortest path connecting
the nodes A in a graph. In practice, often the utility function F(A) is not exactly known, and a
solution is desired which is robust against worst-case choice of the utility function. Since modular
functions are a special case of submodular functions, such problems can be approximately solved
using Proposition 7.

7.5 Trading Off Average-case and Worst-case Scores

In some applications, optimizing the worst-case score Fwc(A) = mini Fi(A) might be a too pes-
simistic approach. On the other hand, ignoring the worst-case and only optimizing the average-case
(the expected score under a distribution over the objectives) Fac(A) = 1

m ∑i Fi(A) might be too op-
timistic. In fact, in Section 8 we show that optimizing the average-case score Fac can often lead to
drastically poor worst-case scores. In general, we might be interested in solutions, which perform
well both in the average- and worst-case scores.

Formally, we can define a multicriterion optimization problem, where we intend to optimize
the vector [Fac(A),Fwc(A)]. In this setting, we can only hope for Pareto-optimal solutions (cf.,
Boyd and Vandenberghe, 2004, in the context of convex functions). A set A∗, |A∗| ≤ k is called
Pareto-optimal, if it is not dominated, that is, there does not exist another set B , |B| ≤ k with
Fac(B) > Fac(A∗) and Fwc(B)≥ Fwc(A∗) (or Fac(B)≥ Fac(A∗) and Fwc(B) > Fwc(A∗)).

One possible approach to find such Pareto-optimal solutions is constrained optimization:4 for a
specified value of cac, we desire a solution to

A∗ = argmax
|A |≤k

Fwc(A) such that Fac(A)≥ cac. (10)

4. Another approach is scalarization, where we optimize Fλ(A) = λFwc(A)+ (1−λ)Fac(A) for some λ, 0 < λ < 1.
SATURATE can be modified to handle such scalarized objectives as well.

2779

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

By specifying different values of cac in (10), we would obtain different Pareto-optimal solutions.5

Figure 6 presents an example of several Pareto-optimal solutions, based on data from the outbreak
detection problem (Details will be discussed in Section 8.3). This curve shows that, using the
techniques described below, multicriterion solutions can be found which combine the advantages of
worst-case and average-case solutions.

We can modify SATURATE to solve Problem (10) in the following way. Let us again assume
we know the optimal value cwc achievable for Problem (10). Then, Problem (10) is equivalent to
solving

A∗ = argmin
A
|A | subject to Fwc(A)≥ cwc and Fac(A)≥ cac.

Now, using our notation from Section 4, this problem is again equivalent to

A∗ = argmin
A
|A | subject to Fcwc,cac = cwc + cac, (11)

where
Fcwc,cac(A) = Fcwc(A)+min{Fac(A),cac}.

Note that Fcwc,cac is a submodular function, and hence (11) is a submodular covering problem, which
can be approximately solved using the greedy algorithm.

For any choice of cac, we can find the optimal value of cwc by performing binary search on cwc.
We summarize our analysis in the following Theorem:

Theorem 8 For any integer k and constraint cac, SATURATE finds a solution AS (if it exists) such
that

Fwc(AS)≥ max
|A |≤k,Fac(A)≥cac

Fwc(A),

Fac(AS) ≥ cac, and |AS| ≤ αk, for α = 1 + log(2maxs∈V ∑i Fi({s})). Each such solution AS is
approximately Pareto-optimal, that is, there does not exist a set B , |B| ≤ k such that B dominates
AS. The total number of submodular function evaluations is O

(|V |2m log(∑i Fi(V))
)
.

8. Experimental Results

In this section, we present experimental results on several robust observation selection problems.

8.1 Minimizing the Maximum Kriging Variance

First, we use SATURATE to select observations in a GP to minimize the maximum posterior variance
(cf., Section 6.1). We consider three data sets: [T] temperature data from a deployment of 52 sensors
at Intel Research Berkeley, [P] Precipitation data from the Pacific Northwest of the United States
(Widmann and Bretherton, 1999) and [L] temperature data from the NIMS sensor node (Harmon
et al., 2006) deployed at a lake near the University of California, Merced. For the three monitoring
problems, [T], [P], and [L], we discretize the space into 46, 167 and 86 locations each, respectively.
For [T], we consider the empirical covariance matrix of temperature sensor measurements obtained
over a period of 5 days. For [P], we consider the empirical covariance of 50 years of data, which
we preprocessed as described by Krause et al. (2007b). For [L], we train a nonstationary Gaussian
Process using data from a single scan of the lake by the NIMS sensor node, using a method described
by Krause and Guestrin (2007b).

2780

ROBUST SUBMODULAR OBSERVATION SELECTION

0 20 40 60 80 100
0.5

1

1.5

2

2.5

Number of sensors

M
ax

im
um

 m
ar

gi
na

l v
ar

ia
nc

e

Greedy

Saturate

Simulated
Annealing (SA)

Saturate
+ SA

(a) [P] Algorithm comparison

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

Number of sensors

M
ar

gi
na

l v
ar

ia
nc

e

Max. var.
opt. avg.
(Greedy) Max. var.

opt. max.
(Saturate)

Avg. var.
opt. max.
(Saturate)

Avg. var.
opt. avg.
(Greedy)

(b) [P] Avg. vs max. variance

0 10 20 30 40

10−1

100

Number of sensors

M
ax

im
um

 m
ar

gi
na

l v
ar

ia
nc

e

Greedy

Saturate

Saturate
+ SA

SA

(c) [T] Algorithm comparison

2 4 6 8 10
10−2

10−1

100

Number of sensors

M
ar

gi
na

l v
ar

ia
nc

e Max. var.
opt. avg.
(Greedy) Max. var.

opt. max.
(Saturate)

Avg. var.
opt. max.
(Saturate)

Avg. var.
opt. avg. (Greedy)

(d) [T] Avg. vs max. variance

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

Number of sensors

M
ax

im
um

 m
ar

gi
na

l v
ar

ia
nc

e

Greedy

Simulated
annealing Saturate

+ SA

Saturate

(e) [L] Algorithm comparison

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Number of sensors

M
ar

gi
na

l v
ar

ia
nc

e

Max. var.
opt. avg.
(Greedy) Max. var.

opt. var.
(Saturate)

Avg. var.
opt. max.
(Saturate)

Avg. var.
opt. avg.
(Greedy)

(f) [L] Avg. vs max. variance

Figure 7: (a,c,e) SATURATE, greedy and SA on the (a) precipitation, (b) building temperature and
(c) lake temperature data. SATURATE performs comparably with the fine-tuned SA al-
gorithm, and outperforms it for larger placements. (b,d,f) Optimizing for the maximum
variance (using SATURATE) leads to low average variance, but optimizing for average
variance (using greedy) does not lead to low maximum variance.

2781

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

0 10 20 30 40 50 60
0

100

200

300

400

500

Number of observations

R
un

ni
ng

 ti
m

e
(s

) Simulated
Annealing (SA)

Saturate+SA

Saturate

Greedy

Figure 8: Running time for algorithms on the precipitation data set [P].

In the geostatistics literature, the predominant choice of optimization algorithms for selecting
locations in a GP to minimize the (maximum and average) predictive variance are carefully tuned lo-
cal search procedures, prominently simulated annealing (cf., Sacks and Schiller 1988; Wiens 2005;
van Groenigen and Stein 1998). We compare our SATURATE algorithm against a state-of-the-art
implementation of such a simulated annealing (SA) algorithm, first proposed by Sacks and Schiller
(1988). We use an optimized implementation described recently by Wiens (2005). This algorithm
has 7 parameters which need to be tuned, describing the annealing schedule, distribution of itera-
tions among several inner loops, etc. We use the parameter settings as reported by Wiens (2005),
and present the best result of the algorithm among 10 random trials. In order to compare observation
sets of the same size, we called SATURATE with α = 1.

Figures 7(a), 7(c) and 7(e) compare simulated annealing, SATURATE, and the greedy algorithm
which greedily selects elements which decrease the maximum variance the most on the three data
sets. We also used SATURATE to initialize the simulated annealing algorithm (using only a single
run of simulated annealing, as opposed to 10 random trials). In all three data sets, SATURATE ob-
tains placements which are drastically better than the placements obtained by the greedy algorithm.
Furthermore, the performance is very close to the performance of the simulated annealing algo-
rithm. In our largest monitoring data set [P], SATURATE even strictly outperforms the simulated
annealing algorithm when selecting 30 and more sensors. Furthermore, as Figure 8 shows, SATU-
RATE is significantly faster than simulated annealing, by factors of 5-10 for larger problems. When
using SATURATE in order to initialize the simulated annealing algorithm, the resulting performance
almost always resulted in the best solutions we were able to find with any method, while still exe-
cuting faster than simulated annealing with 10 random restarts as proposed by Wiens (2005). These
results indicate that SATURATE compares favorably to state-of-the-art local search heuristics, while
being faster, requiring no parameters to tune, and providing theoretical approximation guarantees.

Optimizing for the maximum variance could potentially be considered too pessimistic. Hence
we compared placements obtained by SATURATE, minimizing the maximum marginal posterior
variance, with placements obtained by the greedy algorithm, where we minimize the average marginal
variance. Note, that, whereas the maximum variance reduction is non-submodular, the average vari-
ance reduction is (often) submodular (Das and Kempe, 2008), and hence the greedy algorithm can

5. In fact, all Pareto-optimal solutions can be found in this way (Papadimitriou and Yannakakis, 2000).

2782

ROBUST SUBMODULAR OBSERVATION SELECTION

be expected to provide near-optimal placements. Figures 7(b), 7(d) and 7(f) present the maximum
and average marginal variances for both algorithms. On all three data sets, our results show that
if we optimize for the maximum variance we still achieve comparable average variance. If we
optimize for average variance however, the maximum posterior variance remains much higher.

8.2 Robust Experimental Design

We consider the robust design of experiments (cf., Section 6.3) for the Michaelis-Menten mass-
action kinetics model, as discussed by Flaherty et al. (2006). The goal is least-square parameter
estimation for a function y = f (x,θ), where x is the chosen experimental stimulus (the initial sub-
strate concentration S0), and θ = (θ1,θ2) are two parameters as described by Flaherty et al. (2006).
The stimulus x is chosen from a menu of six options, x ∈ {1/8,1,2,4,8,16}, each of which can be
repeatedly chosen. The goal is to produce a fractional design w = (w1, . . . ,w6), where each com-
ponent wi measures the relative frequency according to which the stimulus xi is chosen. Since f is
nonlinear, f is linearized around an initial parameter estimate θ0 = (θ01,θ02), and approximated by
its Jacobian Vθ0 . Classical experimental design considers the error covariance of the least squares
estimate θ̂, Cov(θ̂ | θ0,w) = σ2(V T

θ0
WVθ0)

−1, where W = diag(w), and aims to find designs w which
minimize this error covariance. E-optimality, the criterion adopted by Flaherty et al. (2006), mea-
sures smallness in terms of the maximum eigenvalue of the error covariance matrix. The optimal w
can be found using Semidefinite Programming (SDP) (Boyd and Vandenberghe, 2004).

The estimate Cov(θ̂ | θ0,w) depends on the initial parameter estimate θ0, where linearization
is performed. However, since the goal is parameter estimation, a “certain circularity is involved”
(Flaherty et al., 2006). To avoid this problem, Flaherty et al. (2006) find a design wρ(θ0) by solving
a robust SDP which minimizes the error size, subject to a worst-case perturbation Δ on the Jacobian
Vθ0 ; the robustness parameter ρ bounds the spectral norm of Δ. As evaluation criterion, Flaherty
et al. (2006) define a notion of efficiency, which is the error size of the optimal design with correct
initial parameter estimate, divided by the error when using a robust design obtained at the wrong
initial parameter estimates, that is,

efficiency≡ λmax[Cov(θ̂ | θtrue,wopt(θtrue)))]
λmax[Cov(θ̂ | θtrue,wρ(θ0))]

,

where wopt(θ) is the E-optimal design for parameter θ. They show that for appropriately chosen
values of ρ, the robust design is more efficient than the optimal design, if the initial parameter θ0

does not equal the true parameter.
While their results are very promising, an arguably more natural approach than perturbing the

Jacobian would be to perturb the initial parameter estimate, around which linearization is performed.
For example, if the function f describes a process which behaves characteristically differently in
different “phases”, and the parameter θ controls which of the phases the process is in, then a robust
design should intuitively “hedge” the design against the behavior in each possible phase. In such
a case, the uniform distribution (which the robust SDP chooses for large ρ) would not be the most
robust design.

If we discretize the space of possible parameter perturbations (within a reasonably chosen inter-
val), we can use SATURATE to find robust experimental designs. While the classical E-optimality
is not submodular (Krause et al., 2007b), Bayesian A-optimality is (usually) submodular (Das and
Kempe, 2008; Krause et al., 2007b). Here, the goal is to minimize the trace instead of maximum

2783

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

A B C

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Initial parameter estimate θ
02

E
ffi

ci
en

cy
 (

w
.r

.t.
 E

-o
pt

im
al

ity
)

Classical
E-optimal

design

SDP
ρ = 10-3

true θ
2

Saturate

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Initial parameter estimate θ
02

E
ffi

ci
en

cy
 (

w
.r

.t.
 E

-o
pt

im
al

ity
)

Classical
E-optimal

design

SDP
ρ = 10-3

true θ
2

Saturate

(a) Low uncertainty in θ0

A B C

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Initial parameter estimate θ
02

E
ffi

ci
en

cy
 (

w
.r

.t.
 E

-o
pt

im
al

ity
)

Classical
E-optimal

design

SDP
ρ = 10-3

true θ
2

Saturate

SDP
ρ = 16.3

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Initial parameter estimate θ
02

E
ffi

ci
en

cy
 (

w
.r

.t.
 E

-o
pt

im
al

ity
)

Classical
E-optimal

design

SDP
ρ = 10-3

true θ
2

Saturate

SDP
ρ = 16.3

(b) High uncertainty in θ0

Figure 9: Efficiency of robust SDP of Flaherty et al. (2006) and SATURATE on a biological experi-
mental design problem. (a) Low assumed uncertainty in initial parameter estimates: SDP
performs better in region C, SATURATE performs better in region A. (b) High assumed
uncertainty in initial parameter estimates: SATURATE outperforms the SDP solutions.

eigenvalue size of the covariance matrix. Furthermore, we equip the parameters θ with an uninfor-
mative normal prior (which we chose as diag([202,202])) as typically done in Bayesian experimental
design. We then minimize the expected trace of the posterior error covariance, tr(Σθ|A). Hereby, A
is a discrete design of 20 experiments, where each option xi can be chosen repeatedly. In order to
apply SATURATE, for each θ0, we define Fθ0(A) as the normalized variance reduction

Fθ0(A) =
1

Zθ0

(
tr
(

Σ(θ0)
θ

)
− tr

(
Σ(θ0)

θ|A
))

.

The normalization Zθ0 is chosen such that Fθ0(A) = 1 if

A = argmax
|A ′|=20

Fθ0(A
′),

that is, if A is chosen to maximize only Fθ0 . SATURATE is then used to maximize the worst-case
normalized variance reduction.

We reproduced the experiment of Flaherty et al. (2006), where the initial estimate of the second
component θ02 of θ0 was varied between 0 and 16, the “true” value being θ2 = 2. For each initial
estimate of θ02, we computed a robust design, using the SDP approach and using SATURATE, and
compared them using the efficiency metric of Flaherty et al. (2006). Note that this efficiency metric
is defined with respect to E-optimality, even though we optimize Bayesian A-optimality, hence po-
tentially putting SATURATE at a disadvantage. We first optimized designs which are robust against
a small perturbation of the initial parameter estimate. For the SDP, we chose a robustness parameter
ρ = 10−3, as reported in Flaherty et al. (2006). For SATURATE, we considered an interval around
[θ 1

1+ε ,θ(1+ ε)], discretized in a 5×5 grid, with ε = .1.
Figure 9(a) shows three characteristically different regions, A, B, C, separated by vertical lines.

In region B which contains the true parameter setting, the E-optimal design (which is optimal if

2784

ROBUST SUBMODULAR OBSERVATION SELECTION

the true parameter is known, that is, θ02 = θ2) performs similar to both robust methods. Hence, in
region B (i.e., small deviation from the true parameter), robustness is not really necessary. Outside
of region B however, where the standard E-optimal design performs badly, both robust designs do
not perform well either. This is an intuitive result, as they were optimized to be robust only to small
parameter perturbations.

Consequently, we compared designs which are robust against a large parameter range. For SDP,
we chose ρ = 16.3, which is the maximum spectral variation of the Jacobian when we consider
all initial estimates from θ02 varying between 0 and 16. For SATURATE, we optimized a single
design which achieves the maximum normalized variance reduction over all values of θ02 between
0 and 16. Figure 9(b) shows, that in this case, the design obtained by SATURATE achieves an
efficiency of 69%, whereas the efficiency of the SDP design is only 52%. In the regions A and
C, the SATURATE design strictly outperforms the other robust designs. This experiment indicates
that designs which are robust against a large range of initial parameter estimates, as provided by
SATURATE, can be more efficient than designs which are robust against perturbations of the Jacobian
(the SDP approach).

8.3 Outbreak Detection

Consider a city water distribution network, delivering water to households via a system of pipes,
pumps, and junctions. Accidental or malicious intrusions can cause contaminants to spread over the
network, and we want to select a few locations (pipe junctions) to install sensors, in order to detect
these contaminations as quickly as possible (cf., Section 6.3). In August 2006, the Battle of Water
Sensor Networks (BWSN) (Ostfeld et al., 2006) was organized as an international challenge to find
the best sensor placements for a real (but anonymized) metropolitan water distribution network,
consisting of 12,527 nodes. In this challenge, a set of intrusion scenarios is specified, and for each
scenario a realistic simulator provided by the EPA (Rossman, 1999) is used to simulate the spread
of the contaminant for a 48 hour period. An intrusion is considered detected when one selected
node shows positive contaminant concentration. BWSN considered a variety of impact measures,
including the time to detection (called Z1), and the size of the affected population calculated using
a realistic disease model (Z2). The goal of BWSN was to minimize the expectation of the impact
measures Z1 and Z2 given a uniform distribution over intrusion scenarios.

In this paper, we consider the adversarial setting, where an opponent chooses the contamination
scenario with knowledge of the sensor locations. The objective functions Z1 and Z2 are in fact
submodular for a fixed intrusion scenario (Leskovec et al., 2007), and so the robust optimization
problem of minimizing the impact of the worst possible intrusion fits into our formalism. For these
experiments, we consider scenarios which affect at least 10% of the network, resulting in a total
of 3424 scenarios. Figures 10(a) and 10(b) compare the greedy algorithm, SATURATE and the
simulated annealing (SA) algorithm for the problem of maximizing the worst-case detection time
(Z1) and worst-case affected population (Z2).

Interestingly, the behavior is very different for the two objectives. For the affected population
(Z2), greedy performs reasonably, and SA sometimes even outperforms SATURATE. For the detec-
tion time (Z1), however, the greedy algorithm did not improve the objective at all, and SA performs
poorly. The reason is that for Z2, the maximum achievable scores, Fi(V), vary drastically, since
some scenarios have much higher impact than others. Hence, there is a strong “gradient”, as the
worst-case objective changes quickly when the high impact scenarios are covered. This gradient

2785

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

0 10 20 30
0

500

1000

1500

2000

2500

3000

Number of sensors

M
ax

im
um

 d
et

ec
tio

n
tim

e
(m

in
ut

es
)

Greedy

Simulated
Annealing

Saturate

(a) [W] Algorithm Comparison for Z1

5 10 15 20 25 30
0

0.5

1

1.5

2

x 104

Number of sensors

M
ax

im
um

 p
op

ul
at

io
n

af
fe

ct
ed

Greedy

Saturate

Simulated
Annealing

Saturate + SA

(b) [W] Algorithm Comparison for Z2

0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

Number of sensors

D
et

ec
tio

n
tim

e
(m

in
ut

es
)

Max. DT
opt. avg.
(Greedy)

Max. DT
opt. max.
(Saturate)

Avg. DT
opt. max.
(Saturate)

Avg. DT
opt. avg.
(Greedy)

(c) [W] Avg. vs max. Z1

2 4 6 8 10
0

0.5

1

1.5

2

x 104

Number of sensors

P
op

ul
at

io
n

af
fe

ct
ed

Max. PA
opt. avg.
(Greedy) Max. PA

opt. max.
(Saturate)

Avg. PA
opt. max. (Saturate)

Avg. PA
opt. avg.
(Greedy)

(d) [W] Avg. vs max. Z2

Figure 10: (a,b) compare SATURATE, greedy and SA in the water network setting, when optimiz-
ing worst-case detection time (Z1, (a)) and affected population (Z2, (b)). SATURATE

performs comparably to SA for Z2 and strictly outperforms SA for Z1. (c,d) compare
optimizing for the worst-case vs. average-case objectives. Optimizing for the worst-case
leads to good average case performs, but not vice versa.

allows greedy and SA to work well. On other hand, for Z1, the maximum achievable scores, Fi(V),
are constant, since all scenarios have the same simulation duration. Unless all scenarios are de-
tected, the worst-case detection time stays constant at the simulation length. Hence, many node
exchange proposals considered by SA, as well as the addition of a new sensor location by greedy,
do not change the worst-case objective, and the algorithms have no useful performance metric.

Figures 10(c) and 10(d) compare the placements of SATURATE (when optimizing the worst-case
penalty), and greedy (when optimizing the average-case penalty, which is submodular). Similarly
to the results in the GP setting, optimizing the worst-case score leads to reasonable performance
in the average case score, but not necessarily vice versa (especially when considering the detection
time).

2786

ROBUST SUBMODULAR OBSERVATION SELECTION

0 200 400 600 800
0

500

1000

1500

2000

2500

3000

Average case detection time (h)

W
or

st
 c

as
e

de
te

ct
io

n
tim

e
(h

)

k=5
k=10

k=15
k=20

(a) [W] Pareto curve for Z1

0 500 1000 1500 2000
0

2000

4000

6000

8000

10000

12000

Average case population affected

W
or

st
 c

as
e

po
pu

la
tio

n
af

fe
ct

ed

k=5

k=10

k=15

k=20

(b) [W] Pareto curve for Z2

Figure 11: Experiments on trading off worst-case and average-case penalties on the water network
[W] data, minimizing detection time (a) and affected population (b).

We also performed experiments trading off the worst-case and average-case penalty reductions,
using the approach discussed in Section 7.5. We first ran the greedy algorithm to optimize the
average-case score, and then ran SATURATE to optimize the worst-case score. We considered the
average-case scores cgreedy

ac and cSaturate
ac obtained by both algorithms, and uniformly discretized the

interval bounded by these average-case scores. For each score level cac in the discretization, we use
the modified SATURATE algorithm as described in Section 7.5, maximizing the worst-case score,
subject to a constraint on the average-case score. Each possible value of the constraint on cac can
lead to a different solution, trading off average- and worst-case scores. Figure 11(a) presents the
tradeoff curve obtained in this fashion for the detection time (Z1) metric, for different numbers
k of placed sensors. We generally observe that there is more variability in the worst-case score
than in the average-case score. We can also see that when placing 5 sensors, there is a prominent
knee in the tradeoff curve, effectively achieving the minimum worst-case penalty but drastically
reducing the average-case penalty incurred when compared to only optimizing for the worst-case
score. The other tradeoff curves do not exhibit quite such prominent knees, but nevertheless allow
flexibility in trading off worst- and average-case scores. Figure 11(b) presents the same experiment
for the population affected (Z2) metric. Here, we notice prominent knees when placing k = 15 and
20 sensors. We can generally conclude that trading off average- and worst-case scores allows to
effectively achieve a compromise between too pessimistic (only optimizing for the worst case) and
optimistic (only optimizing for the average case) objectives.

8.4 Sensor Failures

We also performed experiments on analyzing worst-case sensor failures (cf., Section 6.5). We con-
sider the outbreak detection application, and optimize the average score, that is, F(A) = 1

m ∑i Fi(A)
(modeling, for example, accidental contaminations). We use SATURATE in order to optimize the
modified objective function F

′
c described in Section 6.5.1, for increasing numbers of sensors k. We

also use the greedy algorithm to optimize sensor placements, ignoring possible sensor failures. For
both algorithms, we compute the expected scores (penalty reductions Z1 and Z2) in the case of no

2787

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

Number of sensors

Ti
m

e
to

 d
et

ec
tio

n
(Z

1)
No failure (Greedy)

No failure
(Saturate)

1 failure
(Saturate)

1 failure
(Greedy)

(a) [W] Sensor failures for Z1

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

Number of sensors

P
op

ul
at

io
n

af
fe

ct
ed

 (Z
2)

No failure (Greedy)

No failure (Saturate)

1 failure
(Saturate)

1 failure
(Greedy)

(b) [W] Sensor failures for Z2

Figure 12: (a,b) compare Greedy (ignoring sensor failures) and SATURATE (optimizing for the
worst-case sensor failure) on water network data with detection time (a) and popula-
tion affected (b) scores.

sensor failure, and in the case of a single, worst-case sensor failure. Figure 12(a) presents the results
for the time to detection objective (Z1). We can see, that initially, with small numbers of sensors,
failures can strongly diminish the Z1 score. However, as the number of sensors increases, the place-
ment scores optimized using SATURATE for sensor failures quickly approach those of Greedy in the
case of no sensor failures. Hence, even if only a small number of sensors are placed, SATURATE can
quickly exploit redundancy and find sensor placements, which perform well both with and without
sensor failures. On the other hand, when not taking sensor failures into account, such failures can
drastically diminish the utility of a placed set of sensors. Figure 12(b) presents analogous results
when minimizing the affected population (Z2).

8.5 Parameter Uncertainty

We also conducted experiments on selecting variables under parameter uncertainty (cf., Section 6.2).
More specifically, we consider a sensor placement problem for monitoring temperature in a building.
In such a problem, we would like to place sensors in order to get accurate predictions at various
times of the day. However, since phenomena such as temperature in buildings change over time, at
different times of the day, different placements would be most informative.

In our experiment, we consider the temperature data set [T], and learn four models, described by
parameters θ1, . . . ,θ4, during four six-hour time periods over the day: 12am-6am, 6am-12pm, 12pm-
6pm and 6pm-12am. As models, we use the empirical covariances Σ(θi) from the corresponding
time periods of the 5 day historical training data. We also use the single model Σ for the entire
day, as described in Section 8.1. We then use the greedy algorithm to optimize sensor placement
of increasing sizes for the single model Σ, optimizing the average variance reduction objective
function. Similarly, we use SATURATE to optimize the minimum variance reduction over the four
models Σ(i), normalized by the average variance over the entire space.

Subsequently, we used both placements to compute the average Root Mean Squared (RMS)
prediction error over the entire day on 2 days of held out test data. We also computed the maximum

2788

ROBUST SUBMODULAR OBSERVATION SELECTION

0 2 4 6 8 10
0

0.5

1

1.5

2

Number of sensors

M
ar

gi
na

l v
ar

ia
nc

e

Max. var.
opt. avg.
(Greedy)

Max. var.
opt. max.
(Saturate)

Avg. var.
opt. max.
(Saturate)

Avg. var.
opt. avg.
(Greedy)

Figure 13: [T] Average and Maximum variance when optimizing for four different covariance mod-
els obtained during different parts of the day.

RMS error over the four six-hour time periods. Figure 13 presents the results of this experiment.
While the average RMS error is roughly equal for both placements, the maximum RMS error is
larger for the greedy sensor placement, as compared to the robust placement of SATURATE, espe-
cially for small numbers of sensors (six and less sensors).

9. Reducing the Number of Objective Functions

In many of the examples considered in Section 6, the number m of objective functions Fi can be quite
large (e.g., one Fi per parameter setting, or outbreak scenario), which impacts both the running time
(which depends linearly on m) and the approximation guarantees (which depend logarithmically
on m) of SATURATE. Hence, showing that we can work with a smaller set of objectives has both
computational and theoretical advantages.

9.1 Removal of Dominated Strategies

One direct approach to eliminate objective functions (and hence speed up computation and improve
the approximation guarantee) is to remove dominated objectives. An objective function Fi is dom-
inated by another objective Fj, if Fi(A) ≥ Fj(A) for all sets A ⊆ V . Hence, an Fi is dominated by
Fj if an adversary can always reduce our score by choosing Fj instead of Fi. For example, when
considering sensor failures or feature deletion (as discussed in Section 6.5), for two sets B ⊆B ′, the
objective FB is dominated by the objective FB ′ , that is, the score decreases more if more sensors fail.
Similarly, in the case of outbreak detection, some outbreak scenarios have much more impact on the
network than others. Even though objective functions measuring the impact reductions Fi for sce-
narios i ∈ I might not be exactly dominated, they might be ε-dominated, that is, Fi(A)≥ Fj(A)− ε
for some ε > 0 and all A ⊆ V . In such cases, these approximately dominated scenarios can be
removed, incurring at most an error of ε in the quality of the approximate solution.

2789

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

9.2 Constraint Generation

Another possible approach to reduce the number m of objective functions is constraint generation
(cf., Benders 1962). In this approach, one starts with an arbitrary single objective function, F1.
In iteration j + 1, (j ≥ 1), after functions F1, . . . ,Fj have been considered, one searches for set A j

maximizing maxA min1≤i≤ j Fj(A). Subsequently, one selects Fj+1 minimizing mini Fi(A j). The
iteration terminates once Fj+1 is contained in the already selected objectives F1, . . . ,Fj. Another
option is to terminate once the new objective Fj+1 is ε-dominated by some objective Fi, 1≤ i≤ j. In
this case, the approximate solution is guaranteed to incur at most an absolute error of ε as compared
to the optimal solution.

In order to implement this constraint generation scheme, one must be able to efficiently solve
problem mini Fi(A j). In some settings, this problem might admit an efficient (perhaps approximate)
solution. In many problems, such as the experimental design setting, one actually wants to per-
form well against an (uncountably) infinite set of possible objective functions, corresponding to
parameters θ ∈ D in some (typically compact and convex set D). In such a setting, minθ Fθ(A j)
could potentially be (at least heuristically) solved using a numerical optimization approach such as
a conjugate gradient method.

10. Related Work

In this section, we review related work in submodular function optimization, robust discrete opti-
mization, robust methods in statistics, sensor placement, game theory and machine learning.

10.1 Submodular Function Optimization

In their seminal work, Nemhauser et al. (1978) and Wolsey (1982) analyze the greedy algorithm
for optimizing monotonic submodular functions. Lovász (1983) discusses the relationship between
submodular functions and convexity. He also shows that under certain conditions, the minimum of
two submodular functions remains submodular (and hence can be efficiently optimized using the
greedy algorithm). The objective functions resulting from observation selection problems typically
do not satisfy these properties, and, as we have shown, the greedy algorithm can perform arbitrarily
badly. Fujito (2000) uses submodularity of truncated functions to find sets with partial submodu-
lar coverage; however, they do not consider the case of multiple objectives, which we address in
this paper. Bar-Ilan et al. (2001) consider covering problems for a generalization of submodular
functions; they use a similar binary search technique combined with multiple applications of the
greedy algorithm. Their approach does not apply to maximizing the minimum over a set of sub-
modular functions. Golovin and Streeter (2008) present an algorithm for online maximization of
a single submodular set function. An interesting question for future work would be to investigate
whether our approach for maximizing the minimum over a collection of submodular functions can
be generalized to an online setting as well.

A large part of the theory of optimizing submodular functions is concerned with minimizing
instead of maximizing a single submodular function. Queyranne (1995) present the first algorithm
for minimizing symmetric submodular functions; Iwata et al. (2001) and Schrijver (2000) present
combinatorial algorithms for minimizing arbitrary (not necessarily symmetric) submodular func-
tions.

2790

ROBUST SUBMODULAR OBSERVATION SELECTION

10.2 Robust Discrete Optimization

Robust optimization of submodular functions is an instance of a robust discrete optimization prob-
lem. In such problems, the goal generally is to perform well with respect to a worst-case choice
of evaluation scenario. Other instances of robust discrete problems have been studied by a number
of authors. Kouvelis and Yu (1997) introduce several notions of robust discrete problems, presents
hardness results and a class of robust problems that can be optimally solved. Averbakh (2001) shows
that a class of robust optimization problems (selecting a k-element subset of elements of minimum
cost) is solvable in polynomial time if the uncertain cost coefficients are contained in an interval, but
NP-hard under an arbitrary (finite) set of adversarially chosen scenarios. Bertsimas and Sim (2003)
proposes a class of robust mixed integer programs, accommodating uncertainty both in cost and
data coefficients. They show that in certain cases (robust matching, spanning tree, etc.), the robust
formulations are solvable in polynomial time if the non-robust problem instances are solvable in
polynomial time. In the case of NP-hard but α-approximable non-robust problems, they show that
the corresponding robust formulations also remain α-approximable. However, their results do not
transfer to our setting of robust submodular optimization, since in this case, even though non-robust
solutions are (1−1/e) approximable, the non-robust formulation does not admit any approximation
guarantees (cf., Section 3).

10.3 Robust Methods in Statistics

In this section, we review related work in robust experimental design and robust spatial prediction.

10.3.1 ROBUST EXPERIMENTAL DESIGN

Experimental design under parameter uncertainty has been studied in statistics; most of the earlier
work is reviewed in the excellent survey of Chaloner and Verdinelli (1995). In the survey, the authors
discuss Bayesian approaches to handling parameter uncertainty, as well as robust Bayesian (cf.,
Berger 1984) approaches, which perform worst-case analyses over prior and likelihood functions.
In experimental design, most approaches have focused on locally optimal designs, that is, those
selecting an optimal design based on a linearization around an initial parameter estimate, for reasons
of computational tractability. In order to cope with uncertainty in the initial parameter estimates
around which linearization is performed, heuristic techniques have been developed, such as the SDP
based approach of Flaherty et al. (2006), or a clustering heuristic described by Dror and Steinberg
(2006). We are not aware of approaches which allow to find designs in the context of such parameter
uncertainty that bear theoretical guarantees similar to the approach described in this paper.

10.3.2 MINIMAX KRIGING

Minimizing the maximum predictive variance in Gaussian Process regression has been proposed as
a design criterion by Burgess et al. (1981) and since then extensively used. (cf., Sacks and Schiller,
1988; van Groenigen and Stein, 1998). To our knowledge, prior to this work, no algorithms with
approximation guarantees are known for this criterion.

Several authors consider the problem of spatial prediction under unknown covariance parame-
ters. Pilz et al. (1996) describes an approach for selecting—for a fixed set of observed sites—the
Kriging estimate minimizing the maximum prediction error, where the worst-case over a fixed class
of covariance functions is assumed. Wiens (2005) consider a similar setting but also addresses

2791

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

the design problem of choosing locations in order to minimize the mean squared prediction error
against the worst-case covariance function. Algorithmically, Wiens (2005) use the simulated anneal-
ing algorithm described in Section 8.1 with 7 tuned parameter settings. Note that the SATURATE

algorithm can be used in this context as well.

10.4 Sensor Placement and Facility Location

Carr et al. (2006) consider the problem of robust sensor placements in water distribution networks.
They formulate Mixed Integer Programs for selecting sensor placements robust against uncertainty
in adversarial strategies and in water demands. Due to computational complexity of Mixed Integer
Programming, in their experiments, they used only small networks of at most 470 nodes. SATURATE

can potentially be applied to handle uncertainty in demands as well, which is an interesting direction
for future work. Watson et al. (2006) consider different notions of robustness in the context of
water distribution networks, intended to remove some of the pessimistic assumptions of purely
robust sensor placements. They develop integer programs, as well as heuristics, and apply them to
networks of similar size as the one considered in this paper. Their local search heuristic performs a
sequence of local moves similar to those performed by the simulated annealing algorithm considered
in Section 8.3, and does not provide any theoretical guarantees.

Closely related to the adversarial outbreak detection problem is the k-center problem. In this
problem, one is given a graph G = (V ,E) along with a distance function defined over pairs of
nodes in V . The goal is to select a subset A ⊆V of size at most k, such that the maximum distance
between any unselected node s∈V \A and its nearest center s′ ∈A is minimized. For this problem,
Minieka (1970) discuss a technique reducing the solution of this problem to a sequence of set cover
problems combined in a binary search, similar in spirit to SATURATE. However, they do not dis-
cuss any implications regarding approximation guarantees, and do not consider the case of arbitrary
submodular functions. Mladenovic et al. (2003) presents a Tabu search heuristic for k-center, also
without theoretical guarantees. Gonzalez (1985) and Hochbaum and Shmoys (1985) present a 2
approximation for the k-center problem in the case of symmetric distance functions satisfying the
triangle inequality. Panigrahy and Vishwanathan (1998) present a log∗(n) approximation in the case
of distance functions satisfying the asymmetric triangle inequality, which is shown to be best possi-
ble by Chuzhoy et al. (2005). Chuzhoy et al. (2005) also show that even for bicriterion algorithms
(such as SATURATE), k-center is log∗(n) hard to approximate, even if O(k) additional centers can
be selected. Note that SATURATE can be used to solve k-center problems (without any requirements
on symmetry or on the triangle inequality), hence the bicriterion hardness result of Chuzhoy et al.
(2005) gives further evidence on the tightness of the guarantees described in Section 5.

Anthony et al. (2008) consider robust and stochastic notions of facility location problems (such
as k-center and k-median, where, instead of the maximum distance the average distance is opti-
mized). In contrast to the robust problems in this paper which want to select k elements to maximize
the minimum value achieved by these k elements over the m scenarios, the problems in Anthony
et al. (2008) try to select k “centers” in a metric space to minimize the maximum cost incurred over
the m scenarios—where the cost is some function of the distances between non-selected vertices
to the selected centers. For several such robust cost-minimization problems in cases where dis-
tances satisfy the symmetric triangle inequality, they present an algorithm that opens k “centers”
and achieves an approximation ratio of O(logn + logm) (where n is the number of nodes in the

2792

ROBUST SUBMODULAR OBSERVATION SELECTION

graph, and m is the number of scenarios): this should be compared to the impossibility results for
approximating robust value-maximization problems presented in this paper.

10.5 Relationship to Game Theory and Allocation Problems

The RSOS problem can be viewed as the problem of finding an optimal pure strategy for a zero-sum
matrix game with player ordering. In this matrix game, the rows would correspond to the possible
sensor placements, and the columns would correspond to the objective functions Fi. The entry for
cell (A ,Fi) is our payoff Fi(A). In the RSOS problem, we want to select a row of the matrix, our
adversary selects a column Fi (knowing our choice A , hence the player ordering) minimizing our
score Fi(A). A very related class of game theoretic problems are allocation problems. In these
problems, one is typically given a set V of objects, and the goal is to allocate the objects to m
agents (bidders), each of whom has a (potentially different) valuation function Fi(Ai) defined over
subsets of received items Ai. The problem of finding the best such allocation (partition) is NP-hard,
but recently, several approximation algorithms have been proposed. The allocation problem most
similar to the RSOS problem is

π∗ = argmax
partition π=(A1,...,Am)

min
i

Fi(Ai).

The main difference is that in the allocation problem, the full set V is partitioned into subsets
A1, . . . ,Am, and the functions Fi are evaluated on the respective subset Ai each. In the case of
additive objective functions Fi, Asadpour and Saberi (2007) provide an O(

√
k log3 k) approximation

algorithm. In the case of the function being subadditive (which is implied by, and is more general
than, submodularity), Ponnuswami and Khot (2007) present an O(2k−1) approximation algorithm.
For settings where the sum of the valuations is optimized, that is,

π∗ = argmax
partition π=(A1,...,Am)

∑
i

Fi(Ai),

Feige (2006) develop a randomized 2-approximation for subadditive and 1−1/e approximation for
submodular valuation functions.

The problem of trading off safety (i.e., improvements in worst-case scores) and average case
performance has been studied by several authors. Johanson et al. (2007) consider the problem of
opponent modeling in games, and develop an algorithm which can exploit opponents which it can
accurately model, and falls back to a safe (Nash) strategy in case the models do not capture the oppo-
nents behavior. Their algorithm has a tradeoff parameter which controls the eagerness of exploiting,
and they present Pareto-curves similar to those presented in Section 7.5. However, their approach
does not apply to our robust submodular observation selection setting. Watson et al. (2006) con-
sider different optimization problem formulations allowing to control risk in the water distribution
network monitoring application, but they only present heuristic algorithms without guarantees for
coping with large networks.

10.6 Relationship to Machine Learning

Submodular function optimization has found increasing use in machine learning. The algorithm
of Queyranne (1995) for minimizing symmetric submodular functions has been used for learning
graphical models by Narasimhan and Bilmes (2004) and for clustering by Narasimhan et al. (2005).

2793

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

We are not aware of any work on optimizing the minimum over a collection of submodular func-
tions.

Observation selection approaches have been used in the context of active learning (cf., Sollich,
1996; Freund et al., 1997; Axelrod et al., 2001; MacKay, 1992; Cohn, 1994). Test point selection
has been used to minimize average predictive variance in Gaussian Processes regression by Seo
et al. (2000), and to speed up Gaussian Process inference in the Informative Vector Machine (IVM)
by Seeger et al. (2003); Lawrence et al. (2003). In these approaches, the sequential setting is consid-
ered, where previous measurements are taken into account when deciding on the next observation
to make. A note by Seeger (2004) proves that the greedy algorithm in the IVM optimizes a sub-
modular function. The extension of the robust techniques discussed in this paper, which address the
a priori selection problem (i.e., observations are selected before measurements are obtained), to the
sequential setting is an important direction for future research.

Balcan et al. (2006) consider the problem of active learning in the presence of adversarial noise.
While their method is very different, our results potentially generalize to active learning settings,
since, as Hoi et al. (2006) show, certain active learning objectives are (approximately) submodular.

Price and Messinger (2005) consider the problem of constructing recommendation sets, and
show that this problem is an instance of a k-median problem (cf., Section 10.4). The analogue of
the k-center problem in the preference set construction would be to construct a preference set which
maximizes the utility of displayed items under worst-case instantiation of the parameters. This
analogue seems natural, and an interesting direction for future work would be to explore the use of
SATURATE in the recommendation set context.

10.7 Relationship to Previous Work of the Authors

A previous version of this paper appeared in (Krause et al., 2007a). The present version is signifi-
cantly extended, providing new theoretical analyses (described in Section 7, Section 9), new exam-
ples demonstrating the generality of the observation selection problem (Section 6) and additional
empirical results (Section 8). In previous work, the authors demonstrated that several important ob-
servation selection objectives are submodular (Krause et al., 2007b; Leskovec et al., 2007; Krause
and Guestrin, 2005, 2007a). Krause et al. (2006) consider the problem of optimizing the placement
of a network of wireless sensors. In this context, the chosen locations must be both informative and
communicate well, constraining the chosen locations not to be too far apart. Singh et al. (2007) and
Meliou et al. (2007) consider the problem of planning informative paths for multiple robots, where
the informativeness is modeled using a submodular objective function, and a constraint on path
lengths connecting the locations is specified. In the context of such more complex (communica-
tion and path) constraints—similarly to the robust setting—the greedy algorithm can fail arbitrarily
badly, and more complex algorithms have to be developed. Using the techniques described in Sec-
tion 7.4, both approaches can be made robust with respect to a worst-case submodular function.

11. Conclusions

In this paper, we considered the RSOS problem of robustly selecting observations which are infor-
mative with respect to a worst-case submodular objective function. We demonstrated the generality
of this problem, and showed how it encompasses the problem of sensor placements which minimize
the maximum posterior variance in Gaussian Process regression, variable selection under parameter
uncertainty, robust experimental design, and detecting events spreading over graphs, even in the

2794

ROBUST SUBMODULAR OBSERVATION SELECTION

case of adversarial sensor failures. In each of these settings, the individual objectives are submod-
ular and can be approximated well using, for example, the greedy algorithm; the robust objective,
however, is not submodular.

We proved that there cannot exist any approximation algorithm for the robust optimization prob-
lem if the constraint on the observation set size must be exactly met, unless P = NP. Consequently,
we presented an efficient approximation algorithm, SATURATE, which finds observation sets which
are guaranteed to be least as informative as the optimal solution, and only logarithmically more ex-
pensive. In a strong sense, this guarantee is the best possible under reasonable complexity theoretic
assumptions.

We provided several extensions to our methodology, accommodating more complex cost func-
tions (non-uniform observation costs, communication and path costs). Additionally, we described
how a compromise between worst-case and average-case performance can be achieved. We also dis-
cussed several approaches for reducing the number of objective functions, improving both running
times and theoretical guarantees.

We extensively evaluated our algorithm on several real-world problems. For Gaussian Process
regression, for example, we showed that SATURATE compares favorably to state-of-the-art heuris-
tics, while being simpler, faster, and providing theoretical guarantees. For robust experimental
design, SATURATE performs favorably compared to SDP based approaches. We believe that the
ideas developed in this paper will help the development of robust monitoring systems and provide
new insights for adapting machine learning algorithms to cope with adversarial environments.

Acknowledgments

We would like to thank Michael Bowling for helpful discussions. We would also like to thank
the anonymous referees for their helpful insights and detailed feedback. This work was partially
supported by NSF Grants No. CNS-0509383, CNS-0625518, CCF-0448095, CCF-0729022, ARO
MURI W911NF0710287 and a gift from Intel. Anupam Gupta and Carlos Guestrin were partly sup-
ported by Alfred P. Sloan Fellowships, Carlos Guestrin by an IBM Faculty Fellowship and an ONR
Young Investigator Award N00014-08-1-0752 (2008-2011). Andreas Krause was partly supported
by a Microsoft Research Graduate Fellowship.

Appendix A. Proofs

Proof [Theorem 3] Consider a hitting set instance with m subsets Si ⊆ V on a ground set V . Our
task is to select a set A ⊆V with which intersects all sets Si, and such that |A |= k is as small as pos-
sible. For each set Si, define a function Fi such that Fi(A) = 1 if A intersects Si, and 0 otherwise. It
can be seen that Fi is clearly monotonic. Fi is also submodular, since for A ⊆B ⊆V and x ∈V \B ,
if Fi(B) = 0 and Fi(B ∪{x}) = 1, then it x ∈ Si, hence Fi(A ∪{x}) = 1 and Fi(A) = 0. Now as-
sume the optimal hitting set A∗ is of size k. Hence mini Fi(A∗) = 1. If there were an algorithm for
solving Problem (2) with approximation guarantee γ(n) it would select a set A ′ of size |A ′| ≤ k with
mini Fi(A ′) ≥ γ(n)mini Fi(A∗) = γ(n) > 0. But mini Fi(A ′) > 0 implies mini Fi(A ′) = 1, hence A ′
would be a hitting set. Hence, this approximation algorithm would be able to decide, whether there
exists a hitting set of size k, contradicting the NP-hardness of the hitting set problem (Feige, 1998).

2795

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

Proof [Lemma 4] Wolsey (1982) proves that, given a monotonic submodular function F on a ground
set V , it holds that that greedy algorithm (GPC), applied to the optimization problem

min
A
|A | such that F(A) = F(V)

returns a solution A ′ such that |A ′| ≤ |A∗|(1+ logmaxs∈V F({s})), where A∗ is an optimal solution.
We apply Wolsey’s result to the monotonic submodular function Fc. In order to use GPC in the
inner loop of the binary search over c, we need to make sure that the approximation guarantee for
the greedy algorithm is independent of c. This can be achieved by choosing

α = 1+ log

(
max
s∈V

∑
i

Fi({s})
)
≥ 1+ log

(
mmax

s∈V
Fc({s})

)
,

that is, the choice of α stated in Lemma 4 is independent of the truncation threshold c.

Proof [Theorem 5] Lemma 4 proves that during each of the iterations of the saturation algorithm
it holds that mini Fi(A∗) ≤ cmax, where A∗ is an optimal solution. Furthermore, it holds that
mini Fi(Abest) ≥ cmin, and |Abest | ≤ αk. Since the Fi are integral, if cmax− cmin < 1

m then it must
hold that mini Fi(Abest)≥mini Fi(A∗) as claimed by Theorem 5.

For the running time, since at the first iteration, cmax− cmin ≤ mini Fi(V), and cmax− cmin is
halved during each iteration, it follows that after 1+�log2 mmini Fi(V)� iterations, cmax−cmin < 1

m ,
at which point the algorithm terminates. During each iteration, Algorithm 1 is invoked once, which
requires O(|V |2m) function evaluations.

Proof [Theorem 6] We use the same hitting set construction as in Theorem 3. If there were an algo-
rithm for selecting a set A ′ of size |A ′| ≤ βk with mini Fi(A ′) = 1, and β≤ (1−ε)α, for some fixed
ε > 0, then we would have an approximation algorithm for hitting set with guarantee (1− ε) logm
which would imply NP⊆ DTIME(nlog logn) (Feige, 1998).

Proof [Theorem 8] The proof is analogous to the proof of Theorem 5. The approximation guarantee
α is established by noticing that the greedy algorithm is applied to the modified (integral) objective

Fcwc,cac(A) = ∑
i

min{Fi(A),cwc}+min

{
∑

i

Fi(A),mcac

}
.

The guarantee α is obtained from the analysis of the greedy submodular coverage algorithm of
Wolsey (1982), similar to Lemma 4. Approximate Pareto-optimality follows directly from Pareto-
optimality of any solution to (10).

References

B. M. Anthony, V. Goyal, A. Gupta, and V. Nagarajan. A plant location guide for the unsure. In
SODA, 2008.

2796

ROBUST SUBMODULAR OBSERVATION SELECTION

A. Asadpour and A. Saberi. An approximation algorithm for max-min fair allocation of indivisible
goods. In STOC, pages 114–121, New York, NY, USA, 2007. ACM Press. ISBN 978-1-59593-
631-8. doi: http://doi.acm.org/10.1145/1250790.1250808.

I. Averbakh. On the complexity of a class of combinatorial optimization problems with uncertainty.
Mathematical Programming, 90:263–272, 2001.

S. Axelrod, S. Fine, R. Gilad-Bachrach, R. Mendelson, and N. Tishby. The information of obser-
vations and application for active learning with uncertainty. Technical report, Jerusalem: Leibniz
Center, Hebrew University, 2001.

M. F. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning. In ICML, 2006.

J. Bar-Ilan, G. Kortsarz, and D. Peleg. Generalized submodular cover problems and applications.
Theoretical Computer Science, 250(1-2):179–200, January 2001.

J. F. Benders. Partitioning procedures for solving mixed-variables programming problems. Nu-
merische Mathematik, 4:238–252, 1962.

J. Berger. Robustness of Bayesian Analyses, chapter The robust Bayesian viewpoint, page 63144.
North-Holland, 1984.

D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathematical Pro-
gramming, 98:49–71, 2003.

A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approximation algo-
rithms for orienteering and discounted-reward tsp. In FOCS, page 46, 2003.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge UP, March 2004.

T.M. Burgess, R. Webster, and A.B. McBratney. Optimal interpolation and isarithmic mapping of
soil properties. iv. sampling strategy. Journal of Soil Science, 32:643–659, 1981.

R. D. Carr, H. J. Greenberg, W. E. Hart, G. Konjevod, E. Lauer, H. Lin, T. Morrison, and C. A.
Phillips. Robust optimization of contaminant sensor placement for community water systems.
Mathematical Programming Series B, 107:337–356, 2006.

K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statistical Science, 10(3):
273–304, Aug. 1995. ISSN 08834237.

J. Chuzhoy, S. Guha, E. Halperin, S. Khanna, G. Kortsarz, R. Krauthgamer, and J. Naor. Asymmet-
ric k-center is log∗ n-hard to approximate. Journal of the ACM, 52(4):538–551, 2005.

D. A. Cohn. Neural network exploration using optimal experiment design. In Jack D. Cowan, Gerald
Tesauro, and Joshua Alspector, editors, Advances in Neural Information Processing Systems,
volume 6, pages 679–686. Morgan Kaufmann Publishers, Inc., 1994.

N. A. C. Cressie. Statistics for Spatial Data. Wiley, 1991.

A. Das and D. Kempe. Algorithms for subset selection in linear regression. In ACM Symposium on
the Theory of Computing (STOC), 2008.

2797

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

H. A. Dror and D. M. Steinberg. Robust experimental design for multivariate generalized linear
models. Technometrics, 48(4):520–529, 2006.

U. Feige. On maximizing welfare when utility functions are subadditive. In STOC, 2006.

U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4), 1998.

P. Flaherty, M. Jordan, and A. Arkin. Robust design of biological experiments. In NIPS, 2006.

Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee
algorithm. Machine Learning, 28(2-3):133–168, 1997.

T. Fujito. Approximation algorithms for submodular set cover with applications. TIEICE, 2000.
URL citeseer.ist.psu.edu/article/fujito00approximation.html.

A. Globerson and S. Roweis. Nightmare at test time: Robust learning by feature deletion. In ICML,
2006.

D. Golovin and M. Streeter. Online algorithms for maximizing submodular set functions. In Sub-
mitted to SODA, 2008.

T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci.,
38(2-3):293–306, 1985. ISSN 0304-3975.

C. Guestrin, A. Krause, and A. Singh. Near-optimal sensor placements in Gaussian processes. In
Machine Learning, Proceedings of the Twenty-Second International Conference (ICML), 2005.

T. C. Harmon, R. F. Ambrose, R. M. Gilbert, J. C. Fisher, M. Stealey, and W. J. Kaiser. High
resolution river hydraulic and water quality characterization using rapidly deployable networked
infomechanical systems (nims rd). Technical Report 60, CENS, 2006.

D. Hochbaum and D. Shmoys. A best possible heuristic for the k-center problem. Mathematics of
Operations Research, 10(2):180–184, 1985.

S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu. Batch mode active learning and its application to
medical image classification. In ICML, 2006.

S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm for mini-
mizing submodular functions. Journal of the ACM, 48(4):761–777, 2001.

M. Johanson, M. Zinkevich, and M. Bowling. Computing robust counter-strategies. In NIPS, 2007.

D. S. Johnson, M. Minkoff, and S. Phillips. The prize collecting steiner tree problem: theory and
practice. In SODA, 2000.

P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications. Kluwer Academic
Publishers, 1997.

A. Krause and C. Guestrin. Near-optimal value of information in graphical models. In UAI, 2005.

A. Krause and C. Guestrin. Near-optimal observation selection using submodular functions. In
AAAI Nectar track, 2007a.

2798

ROBUST SUBMODULAR OBSERVATION SELECTION

A. Krause and C. Guestrin. Nonmyopic active learning of gaussian processes: An exploration—
exploitation approach. In ICML, 2007b.

A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal sensor placements: Maximizing
information while minimizing communication cost. In Proceedings of the Fifth International
Symposium on Information Processing in Sensor Networks (IPSN), 2006.

A. Krause, B. McMahan, C. Guestrin, and A. Gupta. Selecting observations against adversarial
objectives. In NIPS, 2007a.

A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaussian processes:
Theory, efficient algorithms and empirical studies. In To appear in the JMLR, 2007b.

G. Laporte and S. Martello. The selective travelling salesman problem. Disc. App. Math, 26:193–
207, 1990.

N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse gaussian process methods: The informative
vector machine. In Advances in Neural Information Processing Systems (NIPS) 16, 2003.

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective
outbreak detection in networks. In KDD, 2007.

L. Lovász. Submodular functions and convexity. Mathematical Programming - State of the Art,
pages 235–257, 1983.

D. MacKay. Information-based objective functions for active data selection. Neural Computation,
4(4):590–604, 1992.

S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations. John
Wiley & Sons, 1990.

A. Meliou, A. Krause, C. Guestrin, and J. M. Hellerstein. Nonmyopic informative path planning in
spatio-temporal models. In AAAI, 2007.

E. Minieka. The m-center problem. SIAM Rev, 12(1):138–139, 1970.

N. Mladenovic, M. Labbé, and P. Hansen. Solving the p-center problem with tabu search and
variable neighborhood search. Networks, 42(1):48–64, 2003.

M. Narasimhan and J. Bilmes. Pac-learning bounded tree-width graphical models. In Uncertainty
in Artificial Intelligence, 2004.

M. Narasimhan, N. Jojic, and J. Bilmes. Q-clustering. In NIPS, 2005.

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing sub-
modular set functions. Mathematical Programming, 14:265–294, 1978.

A. Ostfeld, J. G. Uber, and E. Salomons. Battle of water sensor networks: A design challenge for
engineers and algorithms. In 8th Symposium on Water Distribution Systems Analysis, 2006.

2799

KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

A. Ostfeld, J. G. Uber, E. Salomons, J. W. Berry, W. E. Hart, C. A. Phillips, J. Watson, G. Dorini,
P. Jonkergouw, Z. Kapelan, F. di Pierro, S. Khu, D. Savic, D. Eliades, M. Polycarpou, S. R.
Ghimire, B. D. Barkdoll, R. Gueli, J. J. Huang, E. A. McBean, W. James, A. Krause, J. Leskovec,
S. Isovitsch, J. Xu, C. Guestrin, J. VanBriesen, M. Small, P. Fischbeck, A. Preis, M. Propato,
O. Piller, G. B. Trachtman, Z. Y. Wu, and T. Walski. The battle of the water sensor networks
(BWSN): A design challenge for engineers and algorithms. To appear in the Journal of Water
Resources Planning and Management, 2008.

R. Panigrahy and S. Vishwanathan. An O(log∗ n) approximation algorithm for the asymmetric p-
center problem. Journal of Algorithms, 27(2):259–268, 1998.

C. H. Papadimitriou and M. Yannakakis. The complexity of tradeoffs, and optimal access of web
sources. In FOCS, 2000.

J. Pilz, G. Spoeck, and M. G. Schimek. Geostatistics Wollongong, volume 1, chapter Taking account
of uncertainty in spatial covariance estimation, pages 302–313. Kluwer, 1996.

A. K. Ponnuswami and S. Khot. Approximation algorithms for the max-min allocation problem. In
APPROX, 2007.

R. Price and P. R. Messinger. Optimal recommendation sets: Covering uncertainty over user pref-
erences. In AAAI, 2005.

M. Queyranne. A combinatorial algorithm for minimizing symmetric submodular functions. In
SODA, 1995.

C. E. Rasmussen and C. K. I. Williams. Gaussian Process for Machine Learning. Adaptive Com-
putation and Machine Learning. MIT Press, 2006.

T. G. Robertazzi and S. C. Schwartz. An accelerated sequential algorithm for producing D-optimal
designs. SIAM Journal of Scientific and Statistical Computing, 10(2):341–358, March 1989.

L. A. Rossman. The epanet programmer’s toolkit for analysis of water distribution systems. In
Annual Water Resources Planning and Management Conference, 1999.

J. Sacks and S. Schiller. Statistical Decision Theory and Related Topics IV, Vol. 2. Springer, 1988.

A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polynomial
time. J. Combin. Theory Ser. B, 80(2):346–355, 2000. ISSN 0095-8956.

M. Seeger. Greedy forward selection in the informative vector machine. Technical report, University
of California at Berkeley, 2004.

M. Seeger, C. K. I. Williams, and N. D. Lawrence. Fast forward selection to speed up sparse
gaussian process regression. In Proceedings of the Ninth International Workshop on Artificial
Intelligence and Statistics (AISTATS), 2003.

S. Seo, M. Wallat, T. Graepel, and K. Obermayer. Gaussian process regression: Active data selection
and test point rejection. In Proceedings of the International Joint Conference on Neural Networks
(IJCNN), volume 3, pages 241–246, 2000.

2800

ROBUST SUBMODULAR OBSERVATION SELECTION

A. Singh, A. Krause, C. Guestrin, W. Kaiser, and M. Batalin. Efficient planning of informative paths
for multiple robots. In IJCAI, 2007.

P. Sollich. Learning from minimum entropy queries in a large committee machine. Physical Review
E, 53:R2060–R2063, 1996.

J.W. van Groenigen and A. Stein. Constrained optimization of spatial sampling using continuous
simulated annealing. J. Environ. Qual., 27:1078–1086, 1998.

V. V. Vazirani. Approximation Algorithms. Springer, 2003.

J. Watson, W. E. Hart, and R. Murray. Formulation and optimization of robust sensor placement
problems for contaminant warning systems. In Water Distribution System Symposium, 2006.

M. Widmann and C. S. Bretherton. 50 km resolution daily precipitation for the pacific northwest.
http://www.jisao.washington.edu/data sets/widmann/, May 1999.

D. P. Wiens. Robustness in spatial studies ii: minimax design. Environmetrics, 16:205–217, 2005.

L.A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem. Com-
binatorica, 2:385–393, 1982.

2801

Journal of Machine Learning Research 9 (2008) 2803-2846 Submitted 6/08; Published 12/08

Magic Moments for Structured Output Prediction

Elisa Ricci ELISA.RICCI@DIEI.UNIPG.IT

Dept. of Electronic and Information Engineering
University of Perugia
06125 Perugia, Italy

Tijl De Bie TIJL.DEBIE@GMAIL.COM

Dept. of Engineering Mathematics
University of Bristol
Bristol, BS8 1TR, UK

Nello Cristianini NELLO@SUPPORT-VECTOR.NET

Dept. of Engineering Mathematics and Dept. of Computer Science
University of Bristol
Bristol, BS8 1TR, UK

Editor: Michael Collins

Abstract

Most approaches to structured output prediction rely on a hypothesis space of prediction functions
that compute their output by maximizing a linear scoring function. In this paper we present two
novel learning algorithms for this hypothesis class, and a statistical analysis of their performance.
The methods rely on efficiently computing the first two moments of the scoring function over the
output space, and using them to create convex objective functions for training. We report exten-
sive experimental results for sequence alignment, named entity recognition, and RNA secondary
structure prediction.

Keywords: structured output prediction, discriminative learning, Z-score, discriminant analysis,
PAC bound

1. Introduction

The last few years have seen a growing interest in learning algorithms that operate over structured
data: given a set of training input-output pairs, they learn to predict the output corresponding to
a previously unseen input, where either the input or the output (or both) are more complex than
traditional data types such as vectors.

Examples of such problems abound: learning to align biological sequences, learning to parse
strings, learning to translate natural language, learning to find the optimal route in a graph, learning
to understand speech, and much more. This problem setting subsumes as a special case the standard
regression, binary classification, and multiclass classification problems. In fact in many cases the
structured output prediction approach matches practice more closely. However, this broad generality
and applicability comes with a number of significant theoretical and practical challenges.

In standard regression the output space is real-valued, and in classification the output space
consists of a relatively small unstructured set of labels. In contrast, in structured output prediction
the output space is typically massive, containing a rich structure relating the different output values

c©2008 Elisa Ricci, Tijl De Bie and Nello Cristianini.

RICCI, DE BIE AND CRISTIANINI

with each other. Because of this, even the prediction task itself requires a search (or optimization)
over the complete output space, which in itself is often nontrivial. A fortiori, the task of learning to
predict poses important new challenges in comparison with standard machine learning approaches
such as regression and classification.

1.1 Graphical and Grammatical Models for Structured Data

An immediate approach for structured output prediction would be to use a probabilistic model
jointly over the input and the output variables. Probabilistic graphical models (PGMs) or stochastic
context free grammars (SCFGs) are two examples of techniques that allow one to specify proba-
bilistic models for a variety of inputs and outputs, explicitly encoding the structure that is present.
For a given input, the predicted output can then be found as the one that maximizes the a posteriori
probability. This way of predicting structured outputs is referred to as maximum a posteriori (MAP)
estimation. The learning phase then boils down to modeling the distribution of the joint of input and
output data.

However, it is well known that this indirect approach of first modeling the distribution (dis-
regarding the prediction task of interest) and subsequently using MAP estimation for prediction,
risks to be suboptimal. Instead a direct discriminative approach is more appropriate, which directly
focuses on the prediction task of interest. Such methods, known as discriminative learning algo-
rithms (DLAs), make predictions by optimizing a scoring function over the output space, where this
scoring function has not necessarily a probabilistic interpretation.

Recently studied DLAs include maximum entropy Markov models (McCallum et al., 2000),
conditional random fields (CRFs) (Lafferty et al., 2001), re-ranking with perceptron (Collins, 2002b),
hidden Markov perceptron (HMP) (Collins, 2002a), sequence labeling with boosting (Altun et al.,
2003a), maximal margin (MM) algorithms (Altun et al., 2003b; Taskar et al., 2003; Tsochantaridis
et al., 2005), Gaussian process models (Altun et al., 2004), and kernel conditional random fields
(Lafferty et al., 2004).

Interestingly, both the generative modeling approach and the DLAs mentioned above make use
of formally the same hypothesis class of prediction functions. In particular, they all make use of
a scoring function that is linear in a set of parameters to score each element of the output space.
In the generative approach, this linear function is the log-probability of the joint of the input and
output data; in the discriminative approach this can be any linear function. The actual prediction
function then selects the output that achieves the highest value of the scoring function (i.e., the
highest score). In the generative approach this means that the a posteriori (log)-probability of the
output is maximized, such that the MAP estimate is obtained as pointed out above.

1.2 The Contributions of this Paper

In this paper we will adopt the hypothesis space of prediction functions defined as above. The
distribution of scores induced by any hypothesis over all possible outputs is a central concept in
various approaches, and can be used to compare hypotheses, and hence to train. For example MM
approaches (Altun et al., 2003b; Taskar et al., 2003; Tsochantaridis et al., 2005) prescribe to seek
hypotheses that make the score of the correct outputs in the training set larger than all incorrect ones
(by a certain margin).

We argue that the problem can be better approached by considering the entire distribution of
the scores over the output space, and in particular by computing its first two moments. Different

2804

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

choices of parameters can be assessed by comparing (a function of) those moments. Such an ap-
proach would account for all possible output values at once, rather than just the ones with a high
score as in the maximum margin approaches. However these moments cannot be computed by
brute force enumeration: in all practical cases the output space is far too large to exhaustively tra-
verse it. Nevertheless in this paper we show how the first and second order moments can often be
computed efficiently by means of dynamic programming (DP), without explicitly enumerating the
output space. We provide specific examples of how these moments can be computed for three types
of structured output prediction problems: the sequence alignment problem, sequence labeling, and
learning to parse with a context free grammar for RNA secondary structure prediction.

We then present two ways in which these moments can be used to design a convex objective
function for a learning algorithm. The first approach is the maximization of the Z-score, a common
statistical measure of surprise, which is large if the scores of the correct outputs in the training set are
significantly different from the scores of all incorrect outputs in the output space. We show that the
Z-score is a convex cost function, such that it can be optimized efficiently. A second approach—
also convex—is reminiscent of Fisher’s discriminant analysis (FDA). We call this new algorithm
SODA (structured output discriminant analysis) since the optimization criterion is a similar function
of the first and second order statistics as in FDA.

We report extensive experimental results for the proposed algorithms applied to three different
problem settings: learning to align, sequence labeling, and RNA folding.

Finally we derive learning-theoretic bounds on the performance of these algorithms, showing
that the SODA cost function is related to the rank of the correct output among the other outputs
and analyzing its statistical stability within the Rademacher framework; additionally, we present a
general PAC bound that applies to any algorithm using this hypothesis class.

1.3 Outline of this Paper

The rest of the paper is structured as follows: Section 2 formally introduces the problem of struc-
tured output learning and the hypothesis space considered. Section 3 deals with the computation of
the first and second order moments of the score distribution through DP. In Section 4 we introduce
the two algorithms. In Section 5 we present our experimental results, and in Section 6 we outline
learning-theoretical bounds, whose proof is however left for the appendix.

2. Learning to Predict Structured Outputs

We address the general problem of learning a prediction function h : X → Y , with Y a potentially
highly structured space containing a potentially large number N of elements. The learning is based
on a training set of input-output pairs T = {(x1, ȳ1),(x2, ȳ2), . . . ,(x`, ȳ`)} drawn i.i.d. from some
fixed but unknown distribution P(x,y) over X ×Y . The inputs and the outputs may be highly
structured objects that parameterize sequences, trees or graphs. For example in sequence alignment
learning the output variables parameterize the alignment between two sequences, in sequence la-
beling y is the label sequence associated to the observed sequence x, and when learning to parse y
represents a parse tree corresponding to a given sequence x.

2805

RICCI, DE BIE AND CRISTIANINI

2.1 Scoring Functions, Prediction Functions, and the Hypothesis Space

As in standard machine learning approaches, we consider learning methods that choose the pre-
diction function from a hypothesis space by minimizing a cost function evaluated on the training
data. To establish the type of hypothesis space we will consider, we will rely on the notion scoring
function, which is a function s : X ×Y → R that assigns a numerical score s(x,y) to a pair (x,y) of
input-output variables. Furthermore, we will assume that s is linear in a parameter vector θ ∈ R

d :

Definition 1 (Linear scoring function) A linear scoring function is a function sθ : X ×Y → R

defined as:

sθ(x,y) = θT φ(x,y), (1)

where the vector φ(x,y) = (φ1(x,y), φ2(x,y), . . . , φd(x,y))T is defined by a specified set of integer-
valued feature functions φi : X ×Y → [0,C] for a fixed upper bound C.

Based on this, we can define prediction functions as considered in this paper as follows:

Definition 2 (Prediction function) Given a linear scoring function sθ, we can define a prediction
function hθ : X → Y as:

hθ(x) = argmax
y∈Y

sθ(x,y). (2)

This type of prediction function has been used in previous approaches for structured output predic-
tion. For example, when using a discrete-valued PGM to model the joint distribution of the input
and output data, the logarithm of the probability distribution is a linear scoring function as defined
above. The vector φ(x,y) is then the vector of sufficient statistics, and the parameter vector θ corre-
sponds to the logarithms of the clique potentials or conditional probabilities. Then, a MAP estimator
corresponds to a prediction function as defined above. Furthermore, note that each feature function
φi that counts a sufficient statistic is either an indicator function, or the sum of an indicator function
evaluated on a set of cliques over which the parameter θi is reused. Therefore, each of the features
must be an integer between 0 and the number of cliques C, as required for linear scoring functions
in Definition 1.

Typically, in PGMs the parameters θ would be inferred by Maximum Likelihood. On the con-
trary in DLAs θ is computed by minimizing criteria that are more directly linked to the prediction
performance. Moreover with DLAs richer feature vectors (with features not necessarily associated
to clique potentials or conditional probabilities) are allowed to describe more effectively the relation
between input and output variables. This means that the score sθ(x,y) looses its interpretation as a
log-likelihood function.

In summary, the hypothesis space we consider in this paper is defined as:

H = {hθ : θ ∈ R
d}. (3)

This is a slightly larger hypothesis space as compared to the one considered in PGMs, since the
parameters θ are not restricted to represent log probabilities.

While we choose to abandon the probabilistic interpretations, it is often worthwhile to keep
the analogy with PGMs in mind: they teach us when the evaluation of the prediction function
(2) can be carried out efficiently by means of Viterbi-like algorithms, despite the huge size of the

2806

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

output space Y . In fact, it is often convenient to define or derive the scoring function starting from
a PGM, to ensure that it is easily maximized by a dynamic programming procedure such as the
Viterbi algorithm. Subsequently the constraints on the parameters that are meant to guarantee that
the scoring function is a log-probability function can be removed, in order to arrive at a hypothesis
space of the form (3).

2.2 Ideal Loss Functions

In order to select an appropriate prediction function from the hypothesis space, a cost function needs
to be defined. Here we will provide an overview of a few conceptually interesting cost functions,
but which are unfortunately hard to optimize. Nevertheless, they can often be approximated as seen
from literature, and as we will demonstrate further on.

Consider a loss function Lθ that maps the input x and the true training output ȳ to a positive
real number Lθ(x, ȳ), in some way measuring the discrepancy between the prediction hθ(x) and ȳ.
Empirical risk minimization strategies attempt to find the vector θ ∈R

d such that the empirical risk,
defined as:

Rθ(T) =
1
`

`

∑
i=1

Lθ(xi, ȳi)

is minimized, in hopes that this will guarantee that the expected loss E{Lθ(x, ȳ)} is small as well.
Often it is beneficial to introduce regularization in order to prevent overfitting to occur, but let us
first consider on the empirical risk itself.

Clearly the choice of the loss function is critical, and different choices may be appropriate in dif-
ferent situations. The simplest one is a natural extension of the zero-one loss in binary classification
task, defined as:

LZO
θ (x, ȳ) = I(hθ(x) 6= ȳ)

where I(·) is an indicator function. Unfortunately the zero-one loss function is discontinuous and
NP-hard to optimize. Therefore algorithms such as CRFs (Lafferty et al., 2001) and MM methods
(Altun et al., 2003b) minimize an upper bound on this loss rather than the loss itself, combined with
an appropriate regularization term.

However, in structured output prediction, the zero-one loss is quite crude, in the sense that it
makes no distinction in the type of mistake that has been made. For example, assume that the
outputs y are sequences of length m, or vectors: y = (y1,y2, . . . ,ym). In that case, a wrong prediction
is likely to be less damaging if it is due to only one or a few incorrectly predicted symbols in the
sequence. A better loss function that distinguishes incorrect predictions in this way is the Hamming
loss, originally proposed in Taskar et al. (2003) for MM algorithms:

LH
θ (x, ȳ) = ∑

j

I(hθ, j(x) 6= ȳ j),

counting the number of elements (i.e., the symbols in a sequence, or coordinates in a vector) of the
output where a mistake has been made.

However, the Hamming loss is not necessarily a good measure for the severity of an incorrect
prediction. For example, certain sentences can be parsed in totally different ways that can all be
correct, with a large Hamming distance separating them. Similarly, RNA molecules can have two

2807

RICCI, DE BIE AND CRISTIANINI

totally different stable fold states, both with functional relevance. Therefore, where perfect predic-
tion of the data cannot be achieved using the hypothesis space considered, it could be more useful
to measure the fraction of outputs for which the score is ranked higher than for the correct output.
This is the main motivation to use what we call the relative ranking (RR) loss:

LRR
θ (x, ȳ) =

1
N

N

∑
j=1

I(s(x, ȳ) ≤ s(x,y j)),

We refer to this loss as the relative ranking loss, since the rank divided by the total size of the
output space N is computed. This loss and related loss functions have been proposed in Freund et
al. (1998), Schapire and Singer (1999) and Altun et al. (2003a).

2.3 Playing with Sequences: Labeling, Aligning and Parsing

In order to further clarify the framework of structured output learning we present three typical
problems which we will use in the rest of the paper as illustrative examples: sequence labeling
learning, sequence alignment learning and parse learning.

2.3.1 SEQUENCE LABELING LEARNING

In sequence labeling tasks a sequence is taken as an input, and the output to be predicted is a se-
quence that annotates the input sequence, that is, with a symbol corresponding to each symbol in
the input sequence. This problem arises in several application such as gene finding or protein struc-
ture prediction in computational biology or named entity recognition and part of speech tagging in
the natural language processing field. Traditionally a special type of PGM, namely hidden Markov
models (HMMs) (Rabiner, 1989), is used in sequence labeling, where the parameters can be learned
by maximum likelihood, and subsequently predictions can be made by MAP estimation. In order
to derive a DLA for this setting, we will first derive the prediction function corresponding to MAP
estimation based on HMMs, and subsequently remove the constraints on the parameters that allow
for the probabilistic interpretation of HMMs. Then an appropriate cost function for discrimination
can be optimized to select a good parameter setting.

In an HMM (Fig. 1) there is a sequence of observed variables x = (x1,x2, ...,xm) ∈ X which
will be the input in the terminology of the paper, along with a sequence of corresponding hidden
variables y = (y1,y2, ...,ym) ∈ Y , in the present terminology corresponding to the output sequence
to be predicted. Each observed symbol xi is an element of the observed symbol alphabet Σx, and
the hidden symbols yi are elements of Σy, with no = |Σx| and nh = |Σy| the respective alphabet sizes.
Therefore the output space is Y = Σy

m, while X = Σx
m. The number of cliques C = 2m−1 of the

HMM graphical model is equal to the number of edges.

An HMM is defined as a probabilistic model for the joint distribution of the hidden and observed
sequence, whereby it is assumed that the probability distribution of each hidden symbol yk depends
solely on the value of the previous symbol in the sequence yk−1 (this is the Markov assumption
which is quantified by P(yk|yk−1)). Furthermore, it is assumed that the probability distribution of
the observed symbol xk depends solely on the value of yk (quantified by the emission probability
distribution P(xk|yk)). For simplicity, we ignore the probability distribution of the first element of
the hidden chain in this exposition. The MAP estimator predicts the hidden sequence y that is most

2808

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

Figure 1: The graph of an HMM with m = 4.

likely given the observation sequence x. In formulas:

h(x) = argmax
y∈Y

P(y|x) = argmax
y∈Y

P(y,x)

P(x)
= argmax

y∈Y
P(y)P(x|y),

= argmax
y∈Y

m

∏
k=2

P(yk|yk−1)
m

∏
k=1

P(xk|yk),

= argmax
y∈Y

[
m

∑
k=2

logP(yk|yk−1)+
m

∑
k=1

logP(xk|yk)

]
,

where we made use of the fact that the argmax of a function is equal to the argmax of its logarithm.
Thus, to fully specify the HMM, one needs to consider all the transition probabilities (denoted

ti j for i, j ∈ Σy for the transition from symbol i to j), and the emission probabilities (denoted eio for
the emission of symbol o ∈ Σx by symbol i ∈ Σy). Using this notation, we can rewrite the prediction
function as follows (with I(·) equal to one if the equalities between brackets hold):

h(x) = argmaxy∈Y ∑
i, j∈Σy

log(ti j)
m

∑
k=2

I(yk−1 = i,yk = j)

+ ∑
i∈Σy,o∈Σx

log(eio)
m

∑
k=1

I(yk = i,xk = o).

For simplicity of notation let us replace all logarithms of parameters ti j and eio by parameters
θi summarized in a d = nhno + n2

h dimensional parameter vector θ. Additionally, let us summa-
rize the corresponding sufficient statistics ∑m

k=2 I(yk−1 = i,yk = j) and ∑m
k=1 I(yk = i,xk = o) in a

corresponding feature vector φ(x,y) = [φ1(x,y) φ2(x,y) . . . φd(x,y)]T . (Note that these sufficient
statistics count the number of occurrences of each specific transition and emission.) Then we can
rewrite the prediction function in a linear form as required:

hθ(x) = argmax
y∈Y

θT φ(x,y).

This prediction can be evaluated efficiently by means of the Viterbi algorithm. Note that in order
to learn the parameters by means of maximum likelihood estimation, constraints are imposed to
ensure that they represent log-probabilities. In order to arrive at a DLA that operates in the same
setting, it suffices to ignore these constraints, and to minimize an appropriate empirical risk subject
to some regularization, as outlined in Section 2.2. Moreover relaxing also the Markov assumption
the proposed formulation can be extended to the case of arbitrary features. In general in fact the

2809

RICCI, DE BIE AND CRISTIANINI

vector φ(x,y) contains not only statistics associated to transition and emission probabilities but also
any feature that reflects the properties of the objects represented by the nodes of the HMM. For
example in most of the natural language processing tasks, feature vectors also contain information
about spelling properties of words. Sometimes also the so-called ‘overlapping features’ (Lafferty
et al., 2001) are employed, which indicate relations between observations and some previous and
future labels. Most of DLAs dealing with this task have proceeded in this way (McCallum et al.,
2000; Lafferty et al., 2001; Collins, 2002a; Altun et al., 2003a,b; Taskar et al., 2003).

2.3.2 SEQUENCE ALIGNMENT LEARNING

As second case studied, we consider the problem of learning how to align sequences: given as
training examples a set of correct pairwise global alignments, find the parameter values that ensure
sequences are optimally aligned. This task is also known as inverse parametric sequence alignment
problem (IPSAP) and since its introduction in Gusfield et al. (1994), it has been widely studied
(Gusfield and Stelling, 1996; Kececioglu and Kim, 2006; Joachims et al., 2005; Pachter and Sturm-
fels, 2004; Sun et al., 2004).

Consider two strings S1 and S2 of lengths n1 and n2 respectively. The strings are ordered se-
quences of symbols si ∈ S , with S a finite alphabet of size nS . In case of biological applications,
for DNA sequences the alphabet contains the symbols associated with nucleotides (S = {A,C,G,T}),
while for amino acids sequences the alphabet is S = {A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V}.

An alignment of two strings S1 and S2 of lengths n1 and n2 is defined as a pair of sequences T1

and T2 of equal length n ≥ n1,n2 that are obtained by taking S1 and S2 respectively and inserting
symbols − at various locations in order to arrive at strings of length n. Two symbols in T1 and T2

are said to correspond if they occur at the same location in the respective string. If corresponding
symbols are equal, this is called a match. If they are not equal, this is a mismatch. If one of the
symbols is a −, this is called a gap.

With each possible match, mismatch or gap a score is attached. To quantify these scores, three
score parameters can be used: one for matches (θm), one for mismatches (θs), and one for gaps
(θg). In analogy with the notation in this paper, the pair of given sequences S1 and S2 represent the
input variable x while their alignment is the output y. The score of the global alignment is defined
as the sum of this score over the length of T1 and T2, that is, as a linear function of the alignment
parameters:

sθ(x,y) = θT φ(x,y) = θmm+θss+θgg

where φ(x,y) = [m s g]T and m, s and g represent the number of matches, mismatches and gaps in the
alignment. Fig. 2 depicts a pairwise alignment between two sequences and the associated path in the
alignment graph. The number N of all possible alignments between S1 and S2 is clearly exponential
in the size of the two strings. However, an efficient DP algorithm for computing the alignment with
maximal score ȳ is known in literature: the Needleman-Wunsch algorithm (Needleman, 1970).

The scoring models presented above consider a local form of gap penalty: the gap penalty is
fixed independently of the other gaps in the alignment. However for biological reasons it is often
preferable to consider an affine function for gap penalties, that is to assign different costs if the gap
starts (gap opening penalty θo) in a given position or if it continues (gap extension penalty θe). Then
the score of an alignment is:

sθ(x,y) = θmm+θss+θoo+θee

2810

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

Figure 2: An alignment y between two sequences S1 and S2 can be represented by a path in the
alignment graph.

where m, s, o and e represent the number of match, mismatch, gap openings and gap extensions
respectively and θm, θs, θo, θe are the associated costs. As before we can define the vectors θ =
[θm θs θo θe]

T and φ(x,y) = [m s o e]T . Therefore the score is still a linear function of the parameters
and the prediction can be computed by a DP algorithm.

More often a different model is considered where a (symmetric) scoring matrix specifies dif-
ferent score values for each possible pair of symbols. In general there are d = nS (nS +1)

2 different
parameters in θ associated with the symbols of the alphabet plus two additional ones corresponding
to the gap penalties. This means that to align sequences of amino acids we have 210 parameters
to determine plus other 2 parameters for gap opening and gap extension. We denote with z jk the
number of pairs where a symbol of T1 is j and it corresponds to a symbol k in T2. Again the score is
a linear function of the parameters:

sθ(x,y) = ∑
j≥k

θ jkz jk +θoo+θee

and the optimal alignment is computed by the Needleman-Wunsch algorithm.

2.3.3 LEARNING TO PARSE

In learning to parse the input x is given by a sequence, and the output is given by its associated
parse tree according to a context free grammar. Usually weighted context-free grammars (WCFGs)
(Manning and Schetze, 1999) are used to approach this problem. Learning to parse has been already
studied as a particular instantiation of structured output learning, both in natural language processing
applications (Tsochantaridis et al., 2005; Taskar et al., 2004) and in computational biology for RNA
secondary structure alignment (Sato and Sakakibara, 2005) and prediction (Do et al., 2006). In this
paper we consider the latter and we use WCFGs to model the structure of RNA sequences. Two
examples of RNA secondary structure for two sequences are shown in Fig. 3.

A WCFG is defined as five tuples (ϒ,Σx,R,S,θ), where ϒ = {ϒ1, . . . ,ϒ|ϒ|} is a set of nontermi-
nals, Σx = {X1, . . . ,X|Σx|} is a set of terminals, R = {ϒi → α|ϒi ∈ ϒ,α ∈ (ϒ∪Σx)

∗} is a set of rules,

2811

RICCI, DE BIE AND CRISTIANINI

Figure 3: Two examples of RNA secondary structures for two sequences of the Rfam
database (Griffiths-Jones et al., 2003).

S ∈ ϒ is the starting symbol, and θ is a set of weights. We use rules of the forms ϒi → X , ϒi → ϒ jϒk,
ϒi → Xϒ jX ′, and ϒi → ϒ j′ (j′ > i). R is also indexed by an ordering {r1, . . . ,r|R|} and d = |R|. Each
node in the parse tree y corresponds to a grammar rule and each weight θi ∈ θ is associated with a
rule ri ∈ R. Given a sequence x and an associated parse tree y we can define a feature vector φ(x,y)
which contains a count of the number of occurrences of each of the rules in the parse tree y. Given
a parameter vector θ, the prediction function hθ(x) is computed by finding the best parse tree. For
SCFGs, this can be done efficiently with the Cocke-Younger-Kasami (CYK) algorithm (Younger,
1967).

3. Computing the Moments of the Scoring Function

An interesting corollary of the proposed structured output approach based on linear scoring func-
tions is that certain statistics of the score s(x,y) can be expressed as function of the parameter vector
θ. More specifically given an observed vector x, we can consider the first order moment or mean
M1,θ (x) and the centered second order moment or covariance M2,θ (x) of the scores along all pos-
sible N output variables y j. It is straightforward to see that M1,θ (x) is a linear function of θ, that
is,

M1,θ (x) ,
1
N

N

∑
j=1

sθ(x,y j)

= θT 1
N

N

∑
j=1

φ(x,y j)

= θT µ

with µ = [µ1 . . .µd]
T = 1

N ∑N
j=1 φ(x,y j). Similarly, for the covariance:

M2,θ (x) ,
1
N

N

∑
j=1

(sθ(x,y j)−M1,θ(x))2

= θT

(
1
N

N

∑
j=1

(φ(x,y j)−µ)(φ(x,y j)−µ)T

)
θ

2812

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

= θTCθ.

The matrix C is a matrix with elements:

cpq =
1
N

N

∑
j=1

(φp(x,y j)−µp)(φq(x,y j)−µq) (4)

=
1
N

N

∑
j=1

(
φp(x,y j)φq(x,y j)

)
−µpµq = vpq −µpµq

where 1 ≤ p,q ≤ d.

3.1 Magic Moments

It should be clear that in practical structured output learning problems the number N of possible
output vectors associated to a given input x can be massive. At first sight, this leaves little hope that
the above sums can ever be computed for realistic problems. However, it turns out that the same
ideas that allow one to perform inference in PGMs allow one to compute these sums efficiently
using DP, be it with somewhat more complicated recursions.

The underlying ideas to derive the recursions for µ are based on the commutativity of the semi-
ring that is used in the Viterbi (or more generally the max-product and related algorithms) in PGMs.
In particular, this recursion is used in various forms:

E

{
k

∑
i=1

ai

}
= E

{
k−1

∑
i=1

ai

}
+E {ak} ,

where the expectations are jointly over independent random variables ai. For the recursions for the
second order moment (which can be used to compute the centered second order moment as shown
in (4)), the following recursive expression is applied in different variations:

E

(
k

∑
i=1

ai

)2

 = E

(
k−1

∑
i=1

ai

)2

+2E

{
ak

k−1

∑
i=1

ai

}
+E

{
a2

k

}
,

where again the expectations are jointly over independent random variables ai. Note that the middle
term on the right hand side is computed by previous iterations for the first order moment. For
concreteness, we will now consider separately the three illustrative scenarios introduced above.

3.2 Sequence Labeling Learning

Given a fixed input sequence x, we show here for the sequence labeling example that the elements
of µ and C can be computed exactly and efficiently by dynamic programming routines.

We first consider the vector µ and construct it in a way that the first nhno elements contain the
mean values associated with the emission probabilities and the remaining n2

h elements correspond
to transition probabilities. Each value of µ can be determined by Algorithm 1.

In the emission part for each element a nh ×m dynamic programming table µe
pq is considered.

The index p denotes the hidden state (1 ≤ p ≤ nh) and q refers to the observation (1 ≤ q ≤ no). For
example the first component of µ corresponds to the DP table µe

11. In practice each cell of the DP

2813

RICCI, DE BIE AND CRISTIANINI

table correspond to a node of the HMM trellis. At the same time another nh ×m DP table, denoted
by π, is considered and filled in a way that each element π(i, j) contains the number of all possible
paths in the HMM trellis terminating at position (i, j). Then a recursive relation is considered to
compute each element µe

pq(i, j), ∀1 ≤ j ≤ m, ∀1 ≤ i ≤ nh. Basically at step (i, j) the mean value
µe

pq(i, j) is given summing the occurrences of emission probabilities epq at the previous steps (e.g.,
∑i µe

pq(i, j−1)π(i, j−1)) with the number of paths in the previous steps (if the current observation
x j is q and the current state y j is p) and dividing this quantity by π(i, j).

In a similar way the mean values associated to the transition probabilities are computed. Dy-
namic programming tables µt

pz, 1 ≤ p,z ≤ nh are filled with recursive formulas in Algorithm 4 in
appendix E.

Analogously the elements of the covariance matrix C can be obtained. We have five sets of
values: variances of emission probabilities (ce

pq, 1 ≤ p ≤ nh,1 ≤ q ≤ no), variances of transition
probabilities (ct

pz, 1 ≤ p,z ≤ nh), covariances of emission probabilities (ce
pqp′q′ , 1 ≤ p, p′ ≤ nh,1 ≤

q,q′ ≤ no), covariances of transition probabilities (ct
pzp′z′ , 1≤ p, p′,z,z′ ≤ nh) and mixed covariances

(cet
pqp′z, 1≤ p, p′,z≤ nh,1≤ q≤ no). To determine each of them we consider (4) and we compute the

values ve
pq, vt

pz, ve
pqp′q′ , vt

pzp′z′ and vet
pqp′z since the mean values are already known. This computation

is again performed following Algorithm 1 but with recursive relations given in Algorithm 4, in
appendix E (the number 5, 11, 12 in Algorithm 4 are meant to indicate the lines of Algorithm 1
where the formulas must be inserted).

Algorithm 1 Computation of µe
pq for sequence labeling learning

1: Input: x = (x1,x2, ...,xm), p, q.
2:

3: for i = 1 to nh

4: π(i,1) := 1
5: if q = x1 ∧ p = i, then µe

pq(i,1) := 1
6: end
7: for j = 2 to m
8: for i = 1 to nh

9: M := 0
10: π(i, j) := ∑i π(i, j−1)
11: if q = x j ∧ p = i, then M := 1

12: µe
pq(i, j) := ∑i(µ

e
pq(i, j−1)+M)π(i, j−1)

π(i, j)
13: end
14: end
15:

16: Output: ∑i µe
pq(i,m)π(i,m)

∑i π(i,m)

3.2.1 COMPUTATIONAL COST ANALYSIS

At first sight the calculation of µ and C requires running a DP algorithm like Algorithm 1 d times
for µ and d2 times for C. Hence the overall computational cost seems to depend strongly on d.
However, most of the DP routines are redundant since many cells of µ and C have the same values.
In fact, the following can be shown:

2814

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

Proposition 3 The number of dynamic programming routines required to calculate µ and C in-
creases linearly with the size of the observation alphabet.

An outline of proof can be found in appendix A.
Algorithms 1 and 4 assume that the HMM is ‘fully connected’, that is, transitions are allowed

from and to any possible hidden states and every symbol can be emitted in every state. However,
this condition is often not satisfied in practical applications. We should point out that their adap-
tation for such situations is straightforward and involves computing only sums that correspond to
allowed paths in the DP table. In this case the number of distinct parameters as well as the compu-
tational cost increases with respect to complete models. However this effect may be offset by the
fact that each DP becomes less time consuming. Furthermore the mean and the covariance values
associated to transition probabilities are independent from observations. To calculate them a closed
form expression can be used without the need of running any DP routine.

Moreover usually in most applications the size of the observation alphabet (for example the size
of the dictionary in a natural language processing system) is very large while the sequences to be
labeled are short. This means that the number of distinct observations in each sequence x is much
lower than no. In such cases the number of different values in µ and C scales linearly with it.

We point out that the proposed algorithm can be easily extended to the case of arbitrary features
in the vector φ(x,y) (not only those associated with transition and emission probabilities). To com-
pute µ and C in these situations the derivation of appropriate formulas similar to those of µe

pq, ce
pq

and cet
pqp′z is straightforward.

3.2.2 ESTIMATING µ AND C BY RANDOM SAMPLING

Still, the computational cost increases with the number of features since for HMMs that are not
‘fully connected’, it may occur that the number of different values in the matrix C scales quadrat-
ically with the observations alphabet size no. However we show that in this case accurate and
efficient approximation algorithms can be used to obtain close estimates of the mean and the vari-
ance values with a significantly reduced computational cost. This can be achieved by considering a
finite subsample of all possible values for the output y, rather than using the DP approaches. This
comment holds generally for all learning problems considered in this paper, and we come back to
this in the theoretical discussion in 6.1 as well as in the experimental results in 5 to support this
claim empirically.

3.3 Sequence Alignment Learning

For the sequence alignment learning task we consider separately the three parameter model, the
model with affine gap penalties and the model with substitution matrices.

3.3.1 THE SIMPLEST SCORING SCHEME: MATCH, MISMATCH, GAP

In this model the vector µ = [µm µs µg]
T contains the average number of matches, mismatches and

gaps computed considering all possible alignments. Its elements can be obtained using Algorithm
2. In a nutshell, the algorithm works as follows. First, a matrix π is filled. Every cell π(i, j) contains
the number of all possible alignments between two prefixes of the strings S1 and S2. In fact each
alignment corresponds to a path in the alignment graph associated with the DP matrix. At the same
time the DP tables for µm, µs and µg are gradually filled according to appropriate recursive relations.

2815

RICCI, DE BIE AND CRISTIANINI

For example each element µm(i, j) is computed dividing the total number of matches by the number
of alignments π(i, j). If a match occur in position (i, j) (M = 1) the total number of matches at
step (i, j) is obtained adding to the number of matches in the previous steps (µm(i, j−1)π(i, j−1),
µm(i− 1, j − 1)π(i− 1, j − 1) and µm(i− 1, j)π(i− 1, j)) π(i− 1, j − 1) times a match. Once the
algorithm is terminated, the mean values can be read in the cells µm(n1,n2), µs(n1,n2) and µg(n1,n2).

The covariance matrix C is the 3×3 matrix with elements cpq, p,q∈{m,s,g} and it is symmetric
(csg = cgs, cmg = cgm, csm = cms). Each value cpq can be obtained considering (4) and computing the
associated values vpq with appropriate recursive relations (see Algorithm 2).

3.3.2 AFFINE GAP PENALTIES

As before we can define the vector µ = [µm µs µo µe]
T and the covariance matrix C as the 4× 4

symmetric matrix with elements cpq with p,q ∈ {m,s,o,e}. The values of µ and C are computed
with DP. In particular µm, µs, vmm, vms and vss are calculated as above, while the other values are
obtained with the formulas in Algorithm 5 in appendix E. The terms vse and vso are missing since
they can be calculated with the same formulas of vme and vmo simply changing M with 1−M and
µm with µs. Note that in some situations for low values of (i, j) some terms are not defined (i.e.,
π(i, j−3) when j = 2). In such situations they must be ignored in the computation.

3.3.3 EXTENSION TO A GENERAL SCORING MATRIX

The formulas illustrated in the previous paragraphs can be extended to the case of a general substi-
tution matrix with minor modifications. Concerning the mean values, µo and µe are calculated as
before. For the others it is:

µzpq(i, j) :=
µzpq(i−1, j)π(i−1, j)+µzpq(i, j−1)π(i, j−1)+(µzpq(i−1, j−1)+M)π(i−1, j−1)

π(i, j)

where M = 1 when two corresponding symbols in the alignment are equal to p and q or vice versa
with p,q ∈ S . The matrix C is a symmetric matrix 212× 212. The values veo, vee and voo are
calculated as above. The derivation of formulas for vzpqzp′q′ is straightforward from vms considering
the appropriate values for M and the mean values. The formulas for vzo and vze follow with minor
modification from vmo and vme.

3.4 Learning to Parse

For a given input string x, let µp and cpq be the mean of occurrences of rule p and the covariance
between the numbers of occurrences of rules p and q, respectively, that is, the elements of µ and C.
The following relations hold:

µp =
1
N

N

∑
j=1

φp(x,y j) =
1
N

ψp,

ncpq =
1
N

N

∑
j=1

(
φp(x,y j)φq(x,y j)

)
−µpµq =

1
N

γpq −µpµq,

where N is the number of all possible parse trees associated to x, ψp is the number of occurrences
of the rule p in all the parse tree y j given x, and γpq denotes the cooccurrences of p and q.

To compute C and µ an algorithm based on a bottom-up dynamic programming can be devel-
oped. Similarly to sequence labeling three types of recurrence equations must be defined: one to

2816

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

Algorithm 2 Computation of µ and C with matches, mismatches and gaps.
1: Input: a pair of sequences S1 and S2.
2:
3: π(0,0) := 1
4: µm(0,0) = µs(0,0) = µg(0,0) := 0
5: vmm(0,0) = vms(0,0) = vss(0,0) = vsg(0,0) = vmg(0,0) = vgg(0,0) := 0
6: for i = 1 : n1

7: π(i,0) := 1
8: µg(i,0) := µg(i−1,0)+1
9: vgg(i,0) := vgg(i−1,0)+2µg(i−1,0)+1

10: end
11: for j = 1 : n2

12: π(0, j) := 1
13: µg(0, j) := µg(0, j−1)+1
14: vgg(0, j) := vgg(0, j−1)+2µg(0, j−1)+1
15: end
16: for i = 1 : n1

17: for j = 1 : n2

18: π(i, j) := π(i−1, j−1)+π(i, j−1)+π(i−1, j)
19: if s1(i) = s2(j) then M := 1 else M := 0

20: µm(i, j) := µm(i−1, j)π(i−1, j)+µm(i, j−1)π(i, j−1)+(µm(i−1, j−1)+M)π(i−1, j−1)
π(i, j)

21: µs(i, j) := µs(i−1, j)π(i−1, j)+µs(i, j−1)π(i, j−1)+(µs(i−1, j−1)+(1−M))π(i−1, j−1)
π(i, j)

22: µg(i, j) := µg(i−1, j)+1)π(i−1, j)+(µg(i, j−1)+1)π(i, j−1)+µg(i−1, j−1)π(i−1, j−1)
π(i, j)

23: vmm(i, j) := 1
π(i, j) (vmm(i−1, j)π(i−1, j)+ vmm(i, j−1)π(i, j−1)

24: +(vmm(i−1, j−1)+2Mµm(i−1, j−1)+M)π(i−1, j−1))
25: vss(i, j) := 1

π(i, j) (vss(i−1, j)π(i−1, j)+ vss(i, j−1)π(i, j−1)

26: +(vss(i−1, j−1)+2(1−M)µs(i−1, j−1)+(1−M))π(i−1, j−1))
27: vgg(i, j) := 1

π(i, j) (vgg(i−1, j)+2µg(i−1, j)+1)π(i−1, j)

28: +(vgg(i, j−1)+2µg(i, j−1)+1)π(i, j−1)+ vgg(i−1, j−1)π(i−1, j−1))
29: vmg(i, j) := 1

π(i, j) (vmg(i−1, j)+µm(i−1, j))π(i−1, j)+(vmg(i, j−1)

30: +µm(i, j−1))π(i, j−1)+(vmg(i−1, j−1)+Mµg(i−1, j−1))π(i−1, j−1))
31: vsg(i, j) := 1

π(i, j) (vsg(i−1, j)+µs(i−1, j))π(i−1, j)+(vsg(i−1, j−1)

32: +(1−M)µg(i−1, j−1)+(vsg(i, j−1)+µs(i, j−1))π(i, j−1))π(i−1, j−1))
33: vms(i, j) := 1

π(i, j) (vms(i−1, j)π(i−1, j)+ vms(i, j−1)π(i, j−1)

34: +(vms(i−1, j−1)+Mµs(i−1, j−1)+(1−M)µm(i−1, j−1))π(i−1, j−1))
35: end
36: end
37:
38: Output: µm(n1,n2), µs(n1,n2), µg(n1,n2),
39: cmm(n1,n2) := vmm(n1,n2)−µm(n1,n2)

2,
40: css(n1,n2) := vss(n1,n2)−µm(n1,n2)

2,
41: cgg(n1,n2) := vgg(n1,n2)−µm(n1,n2)

2,
42: cms(n1,n2) := vms(n1,n2)−µm(n1,n2)µs(n1,n2),
43: cmg(n1,n2) := vmg(n1,n2)−µm(n1,n2)µg(n1,n2),
44: csg(n1,n2) := vsg(n1,n2)−µs(n1,n2)µg(n1,n2)
45:

2817

RICCI, DE BIE AND CRISTIANINI

compute the number of parse trees N, another the number of occurrences ψ of each parameter, and
the latter the number of cooccurrences γ of each pair of parameters.

For a given input string x = (x1 x2 . . . xm), xs denotes the s-th symbol of x, and xs|t the substring
from the s-th symbol to the t-th symbol. We count the number of possible trees N given x with a
DP algorithm such as the CYK algorithm. We use two types of auxiliary variables, π(s, t,ϒi) and
π(s, t,ϒi,α) which are the number of possible parse trees whose root is ϒi for substring xs|t , and
the number of possible parse trees whose root is applied to rule ϒi → α for substring xs|t , where
(ϒi → α) ∈ R.

Then π(s, t,ϒi) is calculated as follows:

π(s, t,ϒi) = ∑
α:(ϒi→α)∈ϒ

π(s, t,ϒi,α),

where:

π(s, t,ϒi,α) =

1 α = X ∈ Σx, s = t, and X = xs,
t−1

∑
r=s

π(s,r,ϒk1)π(r +1, t,ϒk2) α = ϒk1 ϒk2 and s < t,

π(s, t,ϒk) α = ϒk,
π(s+1, t −1,ϒk) α = XϒkX ′, X = xs, and X ′ = xt ,
0 otherwise.

Upon completion of the recursion, N = π(1,m,S) is the number of all possible parse trees given x.
We then count the number of occurrences of each rule in all possible parse trees. ψp(s, t,ϒi)

denotes the number of occurrences of rule p in all possible parse trees whose root is ϒi for xs|t . We
compute ψp(s, t,ϒi) as follows:

ψp(s, t,ϒi) = ∑
α:(ϒi→α)∈ϒ

ψp(s, t,ϒi,α),

where:

ψp(s, t,ϒi,α)

=

1 α = X = xs, s = t,
and p = ϒi → X ,

t−1

∑
r=s

(ψp(s,r,ϒk1)π(r +1, t,ϒk2)

+π(s,r,ϒk1)ψp(r +1, t,ϒk1))
+I(p,ϒi → α)π(s,r,ϒk1)π(r +1, t,ϒk2) α = ϒk1 ϒk2 , and s < t,
ψp(s, t,ϒk)+ I(p,ϒi → α)π(s, t,ϒk) α = ϒk,
ψp(s+1, t −1,ϒk)+ I(p,ϒi → α)π(s+1, t −1,ϒk) α = XϒkX ′ and s+1 < t,
0 otherwise.

with I(p,ϒi → α) = 1 if p = (ϒi → α), otherwise it is I(p,ϒi → α) = 0. Then, ψp(1,m,S) is the
number of occurrences of p in all parse trees given x.

We count the number of cooccurrences γpq(s, t,ϒi) in each pair p and q of rules. γpq(s, t,ϒi,α)
denotes the number of cooccurrences in all possible parse trees whose root is ϒi for xs|t . We calculate
γpq(s, t,ϒi) as follows:

γpq(s, t,ϒi) = ∑
α:(ϒi→α)∈ϒ

γpq(s, t,ϒi,α),

2818

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

where:

γpq(s, t,ϒi,α)

=

0 α = X and p 6= q,
1 α = X and p = q = (ϒi → α),
t−1

∑
r=s

(
γpq(s,r,ϒk1)π(r +1, t,ϒk2)

+π(s,r,ϒk1)γpq(r +1, t,ϒk2)
+ψp(s,r,ϒk1)ψq(r +1, t,ϒk2)
+ψq(s,r,ϒk1)ψp(r +1, t,ϒk2)
+I(p,ϒi → α) f (p,s,r, t,ϒk1 ,ϒk2)
+I(q,ϒi → α) f (q,s,r, t,ϒk1 ,ϒk2)

+I(p,ϒi → α)I(q,ϒi → α)π(s,r,ϒk1)π(r +1, t,ϒk2)
)

α = ϒk1 ϒk2 and s < t,

γpq(s, t,ϒk)
+I(p,ϒi → α)ψq(s, t,ϒi) +I(q,ϒi → α)ψp(s, t,ϒi)
+I(p,ϒi → α)I(q,ϒi → α)π(s, t,ϒi) α = ϒk,
γpq(s+1, t −1,ϒk)
+I(p,ϒi → α)ψq(s+1, t −1,ϒk)
+I(q,ϒi → α)ψp(s+1, t −1,ϒk)
+I(p,ϒi → α)I(q,ϒi → α)π(s+1, t −1,ϒk) α = XϒkX ′, s+1 < t,

xs = X , and xt = X ′,
0 otherwise

with f (p,s,r, t,ϒk1 ,ϒk2) = ψp(s,r,ϒk1)π(r + 1, t,ϒk2) + π(s,r,ϒk1)ψp(r + 1, t,ϒk2). Finally,
γpq(1,m,S) is the number of cooccurrences of rules p and q in all parse trees given x.

In the following section we discuss how we can use the computed first and second order statistics
to define a suitable objective function which can be optimized for structured output learning tasks.

4. Moment-based Approaches to Structured Output Prediction

Suppose we have a training set of input-output pairs T = {(x1, ȳ1),(x2, ȳ2), . . . ,(x`, ȳ`)}. The task
we consider is to find the parameter values θ such that the optimal given output variables ȳi can
be reconstructed from xi, ∀ 1 ≤ i ≤ `. We want to fulfill this task by defining a suitable objective
function which is a convex function of the first and second order statistics we presented before.
Based on this idea we introduce two possible approaches.

4.1 Training Sets of Size One

To give an intuition of the main idea behind both methods, we first analyze the situation where the
training set in made of only one pair (x, ȳ). In this situation, both methods are identical to each
other.

The idea is to consider the distribution of the scores for all possible y. We then define a measure
of separation between the score of the correct training output, and the entire distribution of all
scores for all possible outputs. More specifically, the objective function we propose is the difference
between the score of the true output and the mean score of the distribution, divided by the square
root of the variance as a normalization. Mathematically:

max
θ

sθ(x, ȳ)−M1,θ (x)√
M2,θ (x)

= max
θ

θT b√
θTCθ

(5)

2819

RICCI, DE BIE AND CRISTIANINI

where b = φ(x, ȳ)− µ is the difference between the feature vector associated to the optimal output
and the average feature vector µ. Maximizing this objective over θ means that we search for a
parameter vector θ that makes the score of the correct output ȳ as different as possible from the
mean score, measured in number of standard deviations. This corresponds to a well known quantity
in statistics: the Z-score. Given the distribution of all possible scores (i.e., given its mean and its
variance), the Z-score of the correct pair (x, ȳ) is defined as the number of standard deviations its
score s(x, ȳ) is away from the mean of the distribution.

The Z-score is an interesting measure of separation between the correct output and the bulk
of all possible outputs corresponding to a given input. Under normality assumptions, it is directly
equivalent to a p-value. Hence, maximizing the Z-score can be interpreted as maximizing the sig-
nificance of the score of the correct pair: the larger the Z-score, the more significant it is, and the
fewer other outputs would achieve a larger score. If the normality assumption is too unrealistic, one
could still apply a (looser) Chebyshev tail bound to show that the number of scores that exceed the
score of a large training output score sθ(x, ȳ) is small.

To quantify this connection between the Z-score of a training pair and the rank of its score among
all other scores, we would like to introduce an alternative formulation for optimization problem (5).

Proposition 4 Optimization problem (5) is equivalent to:

minθ
1
N ∑N

j=1 ξ2
j

s.t. θT
(
φ(x, ȳ)−φ(x,y j)

)
= 1+ξ j ∀ j

(6)

in the sense that it is optimized by the same value of θ or a scalar multiple of it.

Proof Substituting ξ j from the constraint in the objective, the objective of optimization problem
(6) is equivalent to:

1
N

θT
N

∑
j=1

(φ(x, ȳ)−φ(x,y j))(φ(x, ȳ)−φ(x,y j))
T θ− 2

N
θT

N

∑
j=1

(φ(x, ȳ)−φ(x,y j))+1

=
1
N

θT
N

∑
j=1

(µ−φ(x,y j))(µ−φ(x,y j))
T θ+θT (φ(x, ȳ)−µ)(φ(x, ȳ)−µ)T θ

−2(φ(x, ȳ)−µ)+1

= θTCθ+(θT b−1)2.

Hence, the optimization problem (6) is equivalent to:

minθ θTCθ+(θT b−1)2.

Now, note that the objective in optimization problem (5) is invariant with respect to scaling of θ.
Hence, we can fix the scale arbitrarily, and require θT b = 1. The optimization problem then reduces
to (using the monotonicity of the square root):

minθ θTCθ
s.t. θT b = 1.

The optimality conditions of the former are Cθ + bbT θ = b ⇔Cθ = (1−bT θ)b, and the Lagrange
optimality conditions of the latter are Cθ = λb with λ a Lagrange multiplier. Hence, both optimal-
ity conditions and optimization problems are equivalent in the sense that they are optimized by the

2820

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

same θ up to a scaling factor.

The following interesting theorem now establishes the link between the relative ranking loss
LRR

θ as defined in Section 2.2 and the above optimization problem.

Theorem 5 (Relative ranking loss upper bound) Let us denote by L RRU
θ (x, ȳ) the value of the ob-

jective of optimization problem (6) evaluated on training pair (x, ȳ):

LRRU
θ (x, ȳ) =

1
N

N

∑
j=1

ξ2
i =

1
N

N

∑
j=1

(
θT (φ(x, ȳ)−φ(x,y j)

)
−1
)2

.

Then,

LRRU
θ (x, ȳ) ≥ LRR

θ (x, ȳ).

(The RRU in the superscript stands for Relative Ranking Upper bound.)
Proof The rank of sθ(x, ȳ) among all sθ(x,y j) for all possible y j is given by the number of y j for
which θT

(
φ(x, ȳ)−φ(x,y j)

)
≤ 0. Hence, this is the number of times that ξi ≤ −1 in optimization

problem (6), such that the objective is at least as large as the rank divided by N, that is, the relative
rank.

Additionally, we would like to point out that optimization problem (5) and equivalently (6) is
also strongly connected to Fisher’s discriminant analysis (FDA). Intuitively, maximizing our objec-
tive function corresponds to maximizing the distance between the mean of the distribution of the
scores for all possible incorrect pairs and the ‘mean’ of the ‘distribution’ of the score for the single
correct output, normalized by the sum of the standard deviations (note that one class reduces to one
data point so the associated standard deviation is zero). Then (5) is equivalent to performing FDA
when one class reduces to a single data point as defined by the correct training label.

4.2 Training Sets of General Sizes

Having introduced the main idea on the special case of a training set of size 1, we now turn back
to the general situation where we are interested in computing the optimal parameter vector given a
training set T of ` pairs of sequences. We will consider two different generalizations to which we
refer as the Z-score based approach, and as structured output discriminant analysis (SODA).

4.3 Z-score Based Algorithm

In the first generalization, we will emphasize the Z-score interpretation. For training sets containing
more than one input-output pair, we need to redefine the Z-score for a set of ` pairs of sequences
T = {(x1, ȳ1),(x2, ȳ2), . . . ,(x`, ȳ`)}. A natural way is to do this based on the global score: the sum
of the scores for all sequence pairs in the set. Its mean is the sum of the means for all sequence
pairs (xi, ȳi) separately, and can be summarized by b̄ = ∑i bi. Similarly, for the covariance matrix:
C̄ = ∑iCi. Hence, the Z-score definition can naturally be extended to more than one input-output
pair by using b̄ and C̄ instead of b and C in (5). In summary, extending the optimization problem (5)
to the general situation of a given training set T , the optimization problem we are interested in is:

maxθ
θT b̄√
θTC̄θ

. (7)

2821

RICCI, DE BIE AND CRISTIANINI

The solution of (7) can be computed by simply solving the linear system C̄θ = b̄, where C̄ is a
symmetric positive definite matrix. If C̄ is not symmetric positive definite, regularization can be
introduced in a straightforward way (similar as in FDA) by solving (C̄ + λI)θ = b̄ instead. This
effectively amounts to restricting the norm of θ to small values. Then the optimal parameter vector
can be obtained extremely efficiently by using iterative methods such as the conjugate gradient
method.

4.3.1 INCORPORATING THE HAMMING DISTANCE

A nice property of this approach is that it can be extended to take into account the Hamming distance
between the output vectors. For each pair (x,y) we consider the score:

s(x,y) = θT φ(x,y)+δH(y, ȳ) = θ′T φ′(x,y)

where we have defined the vectors θ′T =
[
θT 1

]
and φ′(x,y)T =

[
φ(x,y)T δH(y, ȳ)

]
. It is easy

to verify that the associated optimization problem has the same form of (7) when the vectors θ′

and φ′ are considered. In practice the covariance matrix C is augmented with one column (and
one row, since it is symmetric) containing the covariance values between the loss term and all the
other parameters. We refer to this column as cδ. Analogously the mean vector is augmented by
one value (µδ) that represents the mean value of the terms δH(y, ȳ) computed along all negative
pseudoexamples. When the Hamming distance is adopted the computation of µδ and cδ can be
realized with DP algorithms. For example for sequence labeling learning Algorithm 1 is used with
recursive relations similar to those in Algorithm 4.

4.3.2 Z-SCORE APPROACH WITH CONSTRAINTS

As a side remark, let us draw a connection with existing MM approaches such as described in Taskar
et al. (2003) and in Tsochantaridis et al. (2005).

Their approach to structured output learning is to explicitly search for the parameter values θ
such that the optimal hidden variables ȳi can be reconstructed from xi, ∀1 ≤ i ≤ `. In formulas these
conditions can be expressed as:

θT φ(xi, ȳi) ≥ θT φ(xi,yi
j) ∀1 ≤ i ≤ ` ∀1 ≤ j ≤ Ni. (8)

This set of constraints defines a convex set in the parameter space and its number is massive, due to
the huge size of the output space. To obtain an optimal set of parameters θ that successfully fulfill
(8) usually an optimization problem is formulated with these constraints, together with a suitable
objective function. In MM approaches for example this objective function is typically chosen to be
the squared norm of the parameter vector.

Interestingly, using the Z-score as objective function, we observe that most (and often all) of
the constraints (8) are satisfied automatically, which often leads to a satisfactory result with a good
generalization performance without considering the constraints explicitly.

However, in the cases where the result of (7) still violates some of the constraints and one wishes
to avoid this, one can choose to impose these explicitly. The resulting optimization problem is still
convex and it reduces to:

minθ θTC̄θ (9)

s.t., θT b̄ ≥ 1

θT φ(xi, ȳi) ≥ θT φ(xi,yi
j) ∀1 ≤ i ≤ ` ∀1 ≤ j ≤ Ni.

2822

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

We have developed an incremental algorithm that implements problem (9), shown in Algorithm
3 (see Tsochantaridis et al., 2005, for a similar approach and a more detailed study). First a feasible
solution is determined without adding any constraints. Then the following steps are repeated until
convergence. For each training example, the most likely hidden variables are determined by a
Viterbi-like algorithm. If its score is higher than the given one, the associated constraint is added
to the set of constraints of the problem (9) and (9) is solved. The convergence is guaranteed from
the convexity of the problem. Each added constraint provides the effect of restricting the feasible
region.

Algorithm 3 Iterative algorithm to incorporate the active constraints.

Input: The training set T = {(x1, ȳ1)(x2, ȳ2) . . .(x`, ȳ`)}

C := �
for i = 1, . . . , ` compute bi and Ci

Compute b̄ := ∑i bi and C̄ := ∑iCi

Find θopt solving (7)
Repeat

exit := 0
for i = 1, . . . , `

Compute ỹi := argmaxy θT
optφ(xi,y)

If θT
opt(φ(xi, ȳi)−φ(xi, ỹi)) ≤ 0

exit := 1
C := C ∪{θT (φ(xi, ȳi)−φ(xi, ỹi)) ≥ 0}
Find θopt solving (7) s.t. C

end
end

until exit = 1

Output: θopt

Often, real data sets do not allow a feasible solution θ. A possible way to deal with this problem
is by the introduction of slack variables or relaxing the constraints by requiring the inequalities to
hold subject to the small possible used-defined tolerance ε (Ricci et al., 2007). However, we argue
that in such cases simply optimizing the Z-score as described earlier without adding any constraints
may offer a natural and computationally attractive alternative to using soft-margin constraints.

4.3.3 RELATED WORK

It is worth noting that the Z-score has previously been used in the context of sequence alignment,
although in previous work it was computed with respect to different distributions. In Doolittle
(1981) Z-scores are used to assess the significance of a pairwise alignment between two aminoacid
sequences and are computed calculating the mean and the standard deviation values over a random
sample taken from a standard database or obtained permuting the given sequence. A high Z-score
corresponds to an alignment that is less likely to occur by chance and therefore biologically signifi-
cant.

2823

RICCI, DE BIE AND CRISTIANINI

To our knowledge, there are no methods to calculate the Z-scores on a set of random sequences
in exact way. The only attempt to this aim is due to Booth et al. (2004). They proposed an efficient
algorithm that finds the standardized score in the case of permutations of the original sequences
but this approach is limited to the ungapped sequences. We have to stress that we consider a much
wider range of applications (not only sequence alignment) and a slightly different definition of
the Z-score: for example, for sequence alignment for each pair of given sequences the mean and
standard deviation are computed over the set of all possible alignments (also with gaps and not only
the optimal ones) without any permutations.

4.4 SODA: Structured Output Discriminant Analysis

Another way to extend problem (5) to the general situation of a training set T is to minimize the
empirical risk associated to the upper bound on the relative ranking loss R RRU , defined in the usual
way as:

R RRU
θ (T) =

`

∑
i=1

LRRU
θ (xi, ȳi).

This simple summing of the loss for individual data points leaves the connection with FDA more
intact, hence the name SODA for structured output discriminant analysis. As usual in empirical
risk minimization, the hope is that minimizing the empirical risk will ensure that the expected loss
E(x,ȳ)

{
LRRU

θ (x, ȳ)
}

(here the relative ranking loss) is small as well, and we will shortly prove that
this is the case in 6.1. Filling everything in, the resulting empirical risk minimization problem
becomes:

minθ

`

∑
i=1

1
Ni

Ni

∑
j=1

ξ2
i j (10)

s.t. θT (φ(xi, ȳi)−φ(xi,yi
j)) = 1+ξi j ∀i.

This is the optimization problem we solve in SODA. To solve it easily, and to elucidate more clearly
the analogy with the Z-score approach, we rewrite it one more time as follows.

Proposition 6 Optimization problem (10) is equivalent to:

max
θ

θT b∗√
θTC∗θ

(11)

where we have defined b∗ = ∑i bi and C∗ = ∑i(Ci + bibi
T). Here, by equivalent we mean that the

optimal values for θ differ by a constant scaling factor only. It can be solved efficiently by solving
the linear system of equations C∗θ = b∗.

Note that this optimization problem has the same shape as (7) and can be solved again with conjugate
gradient algorithms.
Proof We can follow exactly the same procedure as in the proof of Theorem 5 to show that opti-
mization problem (11) is equivalent with:

min
θ

`

∑
i=1

θTCiθ+(θT bi −1)2 ⇔ min
θ

θT
`

∑
i=1

(Ci +bib
T
i)θ−2θT

`

∑
i=1

bi +1

⇔ min
θ

θTC∗θ−2θb∗ +1.

2824

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

MM HMP CRFs
Z-score 5.67e−11 1.97e−7 0.016
SODA 5.12e−10 3.13e−6 0.04

Table 1: p-values for level of noise p = 0.4 and for an HMM with nh = 2 and no = 4.

The optimality conditions is C∗θ = b∗. In a similar way as in the proof of Theorem 5, we can show
that the optimality conditions of optimization problem (10) are given by C∗θ = λb∗, leading to the
same value for θ after appropriate scaling.

5. Experimental Results

In this subsection we provide some experimental results for the three illustrative examples proposed:
sequence labeling, sequence alignment and sequence parse learning.

5.1 Sequence Labeling Learning

The first series of experiments, developed in the context of sequence labeling learning, analyzes the
behavior of the Z-score based algorithm and of the SODA using both artificial data and sequences
of text for named entity recognition. The main aim of this section is to compare our approaches
with other existing DLAs on small and medium size data sets.

5.2 Simulation Results

We first present experiments that demonstrate the robustness of our approaches in problems with an
increasing degree of noise. We consider two different HMMs, one with nh = 2, no = 4 and one with
nh = 3, no = 5, with assigned transition and emission probabilities. For these models, we generate
hidden and observed sequences of length 100. The training set size is fixed to 20 pairs, while the
test set is made up of 100 pairs. Then we add some noise with probabilities p ∈ [0,1] flipping labels
in hidden sequences. More specifically we consider three different scenarios: absence of noise
(p = 0), moderate level of noise (p = 0.2) and noisy data (p = 0.4). After learning the parameter,
the labeling error (average number of incorrect labels) is measured. We observe the performance of
the proposed approaches in comparison with other DLAs such as CRFs, hidden Markov perceptron
(HMP) and a MM method with Hamming loss (SVM-struct implementation Tsochantaridis et al.,
2005) and linear kernel. The regularization parameters associated to each method are determined
based on the performance on a separate validation set of 100 sequences generated together with the
training and the test sets. Results are averaged over 1000 training/test samples. In both cases our
algorithms outperform other methods for high level of noise, as can be expected (Fig. 4). We also
observe slightly better performance of the SODA with respect to the Z-score based algorithm for
low p values while with the Z-score a smaller test error is achieved with very noisy data.

To assess the significance of the results obtained comparing our methods with the other DLAs
we also run some paired t-tests and compute the associated p-values for both the HMM models and
all the levels of noise. Here we only show the p-values obtained by the experiments with high level

2825

RICCI, DE BIE AND CRISTIANINI

p=0.0 p=0.2 p=0.4
0

10

20

30

40

50

Noise level

T
es

t e
rr

or

Z−score
SODA
CRFs
HMP
MM

p=0.0 p=0.2 p=0.4
0

10

20

30

40

50

Noise level

T
es

t e
rr

or

Z−score
SODA
CRFs
HMP
MM

(a) (b)

Figure 4: Average number of incorrect labels at varying level of noise for an HMM with (a) nh = 2
and no = 4 and (b) nh = 3 and no = 5.

MM HMP CRFs
Z-score 11.11e−6 3.01e−12 0.0076
SODA 8.8e−4 5.45e−10 0.16

Table 2: p-values for level of noise p = 0.4 and for an HMM with nh = 3 and no = 5.

of noise (Tab. 1 and Tab. 2) in order to demonstrate that our approaches significantly outperforms
HMP and the MM algorithm in situations where data are noisy. In this scenario SODA and Z-
score achieve better performance than CRFs even if in this case the difference of the test error
is less evident. On the other hand we also observe that for separable data (absence of noise) the
MM algorithm does significantly better than our algorithms (e.g., for the HMM model with nh = 2
and no = 4 the p-value is 5.04e−9 for SODA and 1.06e−11 for the Z-score algorithm). A similar
situation occurs also for the HMP (e.g., for the HMM model with nh = 2 and no = 4 the p-value is
8.65e−5 for SODA and 4.86e−6 for the Z-score algorithm). However SODA and Z-score approach
still outperform CRFs (e.g., for the HMM model with nh = 2 and no = 4 the p-value is 3.51e−4 for
SODA and 2.53e−3 for the Z-score algorithm).

For this series of experiments we also depict some typical learning curves computed for all
DLAs considered. We show the curves associated to a HMM model with nh = 3, no = 5, sequences
of length equal to 50 and noise level p = 0.2. In this case for the MM algorithm the soft margin
parameter C is set equal to 1 and a constant ε = 10−12 specifies the accuracy for constraints to be
satisfied. The maximum number of iterations of the averaged perceptron is T = 100. CRFs are
optimized using a conjugate gradient method. Concerning our approaches we plot results just for
the SODA since in this situation (moderate quantity of noise) the learning curves for the Z-score
algorithm is almost superimposed to the SODA’s one. For the SODA the regularization parameter
is λ = 10−8. The SODA performs better than other methods and among the competing DLAs, the
MM approach provides the best performance (Fig. 5.a). Moreover if for the same experiment we
also examine the training time we observe (Fig. 5.b) that SODA is definitely faster than the MM
algorithm especially for larger data sets.

2826

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

5 10 15 20 25 30
30

32

34

36

38

40

42

44

Training set size

T
es

t e
rr

or
CRFs
MM
HMP
SODA

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Training set size

T
im

e

SODA
MM

(a) (b)

Figure 5: (a) Average number of incorrect labels and (b) computational time as function of the
training set size for an HMM with nh = 3 and no = 5.

A further series of experiments have been conducted to confirm the theoretical results presented
in the previous subsection, that is, we want to show that learning with SODA is effectively achieved
when mean and covariance matrices are estimated considering just a small subset of incorrect out-
puts (i.e., incorrect hidden label sequences), taken by random sampling. In fact in the situations
where the size of the hidden and the observed space is large and long sequences must be consid-
ered, the computation of b∗ and C∗ with DP can be quite time consuming. Then using random
sampling, the computational burden of DP is avoided and the labeling accuracy is still reasonably
high, if a sufficient number of possible outputs is sampled. To support this claim we conduct the
following experiment. Sequences of length 10 are considered. The training set is fixed to 50 pairs,
the test set contains 100 pairs. Sequence pairs are generated with a level of noise p = 0.2 obtained
by flipping labels. We pick various HMMs: the hidden alphabet size is fixed, nh = 3, while no

varies. The average labeling error on test set and the time required for computation are reported for
SODA with exact matrices, when matrices are computed on a set of 50 and 200 random paths and
for the MM method. Results are shown in Fig. 6. While the performance in terms of labeling error
are essentially the same for all the algorithms (Fig. 6.a), the computational advantage considering
the training time for the sampling approaches is considerable (Fig. 6.b).

5.3 Named Entity Recognition

The second series of experiments have been performed in the context of named entity recognition
(NER). In NER phrases in text must be classified as belonging to predefined categories such as
persons, organizations, locations, temporal and numerical expressions.

We consider 300 sentences extracted from the Spanish news wire article corpus used for the
Special Session of CoNLL2002 on NER. Our subset contains more than 7000 tokens (about 2000
unique) and each sentence has an average length of 30 words. The hidden alphabet is limited to
nh = 9 different labels, since the expression types are only persons, organizations, locations and
miscellaneous names. Our aim here is not to compete with large scale NER systems but to perform
comparison with previous methods so we deliberately choose a small subset and an experimental

2827

RICCI, DE BIE AND CRISTIANINI

2 4 6 8
0

5

10

15

20

25

30

35

40

n
o

T
es

t e
rr

or
SODA (50 paths)
SODA (200 paths)
SODA (DP)
MM

2 4 6 8
0

2

4

6

8

10

12

14

n
o

T
im

e
(s

ec
)

SODA (50 paths)
SODA (200 paths)
SODA (DP)
MM

(a) (b)

Figure 6: (a) Labeling error on test set and (b) average training time as function of the observation
alphabet size no.

setup similar to that in Altun et al. (2003b). We perform experiments into different settings: HMM
features (the parameters to be determined are the transition and emission probabilities) (S1) and
HMM features of the previous and the next words (S2). Experiments have been made with a 5-fold
cross validation. We compare the performances of our approaches with CRFs, HMP and the MM
algorithm with Hamming loss in (Altun et al., 2003b). For the SODA and the Z-score algorithm
the regularization parameter is λ = 10−8. For CRFs we used a public available software (Kudo,
2005) where a quasi-newton optimization technique method is used for optimization. For the MM
algorithm a linear kernel is considered, C = 1 and ε = 0.01. The number of iterations of the HMP
is T = 200.

The test errors, reported in Tab. 3, demonstrate the competitiveness of the proposed methods.
SODA outperforms all the other approaches for S1, while it performs slightly worse than the MM
algorithm for features S2. On the other hand for S2 the best performance is obtained by the Z-score
algorithm.

Since the length of feature vectors is large, our approaches are generally slower than MM meth-
ods. For very large numbers of parameters, in fact, the time required to compute b∗ and C∗ may
exceed the computation time of competing MM approaches. However, in this case, the sampling
strategy can be used to approximate the matrices C∗ and b∗. For example in the S1 setting, the
average running time for the SODA is about 9967.47 sec while with SVM-struct the same task is
performed in 1043.16 sec. However with the use of approximate matrices computed sampling on
150 random paths and solving the linear system by a conjugate gradient method the computational
time is only 656.46 sec.

Z-score SODA MM HMP CRFs
S1 11.07 10.13 10.97 20.99 11.96
S2 7.89 8.27 8.11 13.78 8.25

Table 3: Classification error on test set on NER (300 sentences).

2828

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

Z-score SODA MM HMP CRFs
S1 9.43 8.80 9.35 11.01 9.07
S2 8.57 8.01 7.33 7.83 8.40

Table 4: Classification error on test set on NER (1500 sentences).

To address this problem of scalability of our approach when the number of features is large we
also developed a method for solving the linear systems of SODA and of the Z-score approach which
is ad hoc for problems such as NER where the size of the observation alphabet no (i.e., the size of
dictionary) tends to be huge while the size of the hidden alphabet nh (i.e., the number of different
labels) is moderate.

The main problem of using our algorithms for tasks with a large number of features is repre-
sented by the fact that the matrices C∗ and C̄ needs to be stored into memory. Moreover solving
the corresponding linear systems with conjugate gradient techniques has computational cost O(d2)
which is problematic when d is large. To overcome these difficulties we propose an approach
which exploits the sparsity and the redundancy of the covariance matrices to limit the storage re-
quirements and to solve the corresponding linear system with reduced computational cost. This
approach is briefly presented in appendix B in the case of sequence labeling and HMM features but
an extension of it for other possible configurations of features is possible and quite easy to derive.

Using this method we are able to perform experiments for the NER task on a large subset of
the Spanish news wire article corpus of CoNLL2002. We used 1500 sentences which correspond
to a dictionary of about 10000 different words. The hidden alphabet is again represented by nh = 9
different labels. The experimental setting is the same of the small data set: we consider the same
configuration for features (S1 and S2) and we compare the performances of our approaches with
CRFs (using CRFs toolkit Kudo, 2005), HMP and the MM algorithm with Hamming loss (SVM-
struct implementation Tsochantaridis et al., 2005). Experiments have been made with a 5-fold cross
validation procedure and the regularization parameters which provide better performances have
been set for all the methods.

From the results, shown in Tab. 4, we can draw similar conclusions that for the small data set:
SODA outperforms all the other approaches for S1, while the MM algorithm provides the smallest
test error for S2. It is somehow surprising that the HMP provides the second best performance for
S2 despite its simplicity. We explain this result considering that with an increased set of features the
data tend to be more separable and the HMP tend to outperform our approaches and CRFs.

Note that without having developed an ad hoc method such as that described in appendix B we
would not have been able to run this second series of experiments on a normal machine since our
d ×d covariance matrices are too large to fit into memory (d is about 90000 only for set of features
S1!). For sake of clarity we should also say that sometimes using this method we experienced
numerical problems (especially for small regularization parameters) that are probably due to the
fact that the approach is based on formulas for matrix inversions. Therefore in the future we plan
to develop a better method (e.g., based on updating matrices decompositions such as Cholesky) in
order to overcome numerical difficulties.

2829

RICCI, DE BIE AND CRISTIANINI

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Number of constraints

A
ve

ra
ge

 n
um

be
r

of
 c

or
re

ct
 h

id
de

n
se

qu
en

ce
s

(%
)

Z−score (constr)
MM
HMP

Figure 7: Average number of correctly reconstructed hidden sequences for an HMM with nh = 2
and no = 4.

5.4 Z-score with Constraints

The last series of experiments shows some results associated with the Z-score approach with con-
straints (9). We observe experimentally that this approach improves the performance of the uncon-
strained problem (7) if the noise in the data is limited (i.e., in the feasible or nearly feasible case).
For example for the experiments in Fig. 4 when the noise level is p = 0 with the constrained Z-score
the labeling error is 3.96 and 5.76 respectively for the HMM with nh = 2, no = 4 and for the HMM
with nh = 3, no = 5 while for the unconstrained problem the error is 5.39 and 9.87 respectively.

Moreover, comparing Algorithm 3 with other iterative approaches (HMP Collins 2002b and
MM algorithm Tsochantaridis et al. 2005), the use of the Z-score as objective function ensures
that the number of iterations is generally much smaller. Then the computational cost is greatly
reduced since adding one inequality means running the Viterbi algorithm. To demonstrate this, we
perform the following experiment. A pair of observed and hidden sequences of length m = 100
is considered. The task is to estimate the values of transition and emission probabilities such that
the observed sequences are generated by the hidden one. The number of constraints needed in the
training phase to reconstruct the matrices is averaged on 100 experiments. In Fig. 7 the histograms
obtained binning the number of constraints needed to reconstruct the original transition and emission
probabilities is shown for an HMM with nh = 2 and no = 4. For sake of comparison the number
of constraints needed when learning is performed with the perceptron (Collins, 2002b) and a MM
approach (Tsochantaridis et al., 2005) is also provided. As expected, optimizing the Z-score, much
less constraints are needed.

5.5 Sequence Alignment Learning

The second series of experiments has been performed in the context of sequence alignment learning.
The aim of this section is to compare the performance of our algorithms with a traditional genera-
tive approach. Among the proposed methods we present the results associated to SODA since the
performance obtained with the Z-score algorithm are nearly identical.

We construct substitution matrices with elements generated randomly but such that the values
on the main diagonal are larger than the other. In particular we consider two types of matrices
associated respectively with a 3 parameter model (i.e., matches, mismatches and gaps) and a 211

2830

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

n SODA (3) SODA (211) Generative HMP
1 5.1±1.2 96.12±13.3 98.14±14.5 93.8±12.1
2 2.9±0.8 84.7±7.5 98.01±12.2 83.98±8.6
5 2.32±1.0 74.81±6.2 97.4±7.4 76.13±5.2

10 2.11±0.7 60.08±3.2 92.93±5.2 57.93±2.9
20 2.1±0.5 43.18±2.2 79.13±4.2 42.68±2.1
50 1.87±0.3 35.56±1.4 48.31±2.9 31.92±1.2
100 1.53±0.4 30.84±1.0 32.05±1.5 28.4±0.9
500 0.98±0.3 23.47±0.2 26.11±0.6 21.7±0.4

Table 5: Classification error (mean and standard deviation) on test set as function of the training set
size n.

parameter models (substitution matrix plus gap penalty). Starting from these matrices we then
generate random pairs of sequences of length 10 from a 20 letter alphabet. Pairs are constructed
in a way that 50% of symbols between the two sequences are equal. The task we consider is to
reconstruct the given matrices starting from training sets of varying size n.

Table 5 shows the results in terms of the test error (number of incorrectly aligned sequences), av-
eraged on 100 runs. A small regularization value λ = 10−12 is used for SODA. The first two columns
of Tab. 5 present the test error for SODA respectively for the 3 and the 211 parameter model. As
expected from theory, the convergence to zero error is faster for the 3 parameter model. For the
211 parameter model we also compare SODA with a generative sequence alignment model, where
substitution rates between amino acids are computed using Laplace estimates. The gap penalty must
be set manually and we choose the value θg = −0.1 which guarantees the best performance on the
test set. The third column of Tab. 5 shows the associated results: SODA performs better than the
generative approach, especially for training set of small size. We also compare the performance of
our method with another discriminative approach: the hidden Markov perceptron. In this situation
the test error of SODA is slightly larger than that of the HMP. This is in accordance to what we ob-
serve in the sequence labeling learning task: when data are linearly separable other discriminative
approaches appear more suitable than SODA.

For the SODA algorithm with the 211 parameter model and for a training set with n = 100
aligned pairs we also depict the substitution matrix computed by SODA and we compare it with the
given one. As one can easily observe, the computed matrix has a similar structure of the correct
matrix, having the elements with higher values on the diagonal (Fig. 8).

Note that, in the context of sequence alignment, being the number of parameters limited at most
to 211 the training phase is not time consuming even for large training set. In fact the computational
cost is dominated by the calculation of mean and covariance matrices which can be greatly sped up
by sampling while solving the linear system C∗θ = b∗ is indeed very fast. Here we only consider
training sets of size up to 500 pairs of sequences since the advantage in terms of test error for
SODA (and in general for all discriminative approaches) with respect to generative approaches is
more evident for training sets of small sizes.

2831

RICCI, DE BIE AND CRISTIANINI

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(a) (b)

Figure 8: Comparison between a given substitution matrix (a) and the matrix computed with SODA
(b) for n = 100.

accession no sequences max. length
RF00032 64 27
RF00260 35 51
RF00436 24 55
RF00164 29 43
RF00480 647 52

Table 6: Summary of the data set of RNA sequences

5.6 Learning to Parse

Lastly, we analyze the RNA secondary structure prediction problem: given an RNA sequence, the
task is to predict the basepairs in the sequence. With weighted context-free grammars, this predic-
tion can be accomplished by parsing the RNA sequence. To describe basepairs in RNA sequences,
we used the G6 grammar in Dowell and Eddy (2004), which we call G = {ϒ,Σx,R,S,θ}, where ϒ =
{S,L,F}, Σx = {a,u,g,c}, and R = {S → LS|L,L → aFu|uFa|gFc|cFg|gFu|uFg|a|u|c|g,F →
aFu|uFa|gFc|cFg|gFu|uFg|LS}. We consider RNA sequences of five families (see Tab. 6) ex-
tracted from the Rfam database (Griffiths-Jones et al., 2003). We use sequences including only
standard basepairs, that is, a–u, c–g, and g–u.

Results for the experiments conducted with Z-score with constraints, with a generative model,
and with the hidden Markov perceptron in a 5-fold cross validation setting are shown. Weights of
the grammar are optimized with a training set, and structures associated to sequences in the test set
are predicted by the Viterbi algorithm. For the Z-score with constraints, the best results obtained
varying the regularization parameter are reported. For the HMP, values ranging from T=100 to
T=1000 are used as the number of iterations, and the best result is shown. For the generative model,
parameters are estimated with Laplace smoothing.

We measure the performance of the methods in terms of sensitivity and specificity of predicted
basepairs. The sensitivity is defined as the number of correctly predicted basepairs over the number

2832

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

of true basepairs, and the specificity is the number of correctly predicted basepairs over the number
of predicted basepairs. In Tab. 7, the values of sensitivity and specificity corresponding to the
maximum product, are shown for each algorithm. The Z-score and the HMP have comparable
performances and generally outperform the generative approach. For the Z-score approach also the
average number of constraints is shown: it is worth noting that only very few constraints are needed
for each family, often less than the number of iterations in the HMP by an order of magnitude or
more.

6. Statistical Learning Analysis

We present here two learning theory results. The first one is specific for the ranking loss in any
algorithm using this hypothesis space, and hence covers the SODA algorithm. The second one
applies to any algorithm using the zero-one loss with this hypothesis class, and hence covers most
previous approaches.

Z-score (constr) Generative HMP
accession sens. spec. no constraints sens. spec. sens. spec.
RF00032 100 95.98 2.0 100 95.53 100 95.59
RF00260 98.77 94.80 6.0 98.97 100 98.57 98.90
RF00436 91.11 90.61 27.6 44.16 53.30 90.27 86.53
RF00164 76.14 73.47 37.8 65.51 62.55 87.06 78.32
RF00480 99.08 89.89 78.2 99.88 86.43 98.83 94.78

Table 7: Prediction on 5-fold cross validation. Average sensitivity and specificity are shown.

6.1 Rademacher Theory for SODA

Here we present a Rademacher bound for the SODA showing that learning based on this upper
bound on the relative rank is effectively achieved. For full generality, we want our bound to hold
also in the case where the matrices µ and C are estimated by sampling, as we suggested in subsection
3.2.2. We also provide some experimental results for this in the following subsection. Hence, our
bound needs to account for finiteness in two ways. First of all for each input-output pair only a
limited number n of incorrect outputs may be considered to estimate µ and C; secondly only a finite
number ` of input-output pairs is given in the training set.

In appendix C, we prove the following theorem. It shows that the empirical expectation of the
estimated loss (estimated by computing C and b by random sampling) is a good approximate upper
bound for the expected loss. Hereby it is good to keep in mind that this loss itself is an upper bound
for the relative ranking loss, such that the Rademacher bound is also a bound on the expectation of
the relative ranking loss.

Theorem 7 (Rademacher bound for SODA) With probability at least 1− δ over the joint of the
random sample T and the random samples from the output space for each (x, ȳ) ∈ T that are taken
to approximate the matrices C∗ and b∗, the following bound holds for any θ with squared norm
smaller than c:

E(x,ȳ)

{
LRRU

θ (x, ȳ)
}

≤ Ê(x,ȳ)

{
L̂RRU

θ (x, ȳ)
}

2833

RICCI, DE BIE AND CRISTIANINI

+ Ê(x,ȳ)

{
R̂1,(x,ȳ)

}
+ R̂2

+ 3M

√
log(2`/δ)

2n
+3M

√
log(2/δ)

2`
.

whereby we assume that the number of random samples for each training pair is equal to n.
The Rademacher complexity terms R̂1,(x,ȳ) and R̂2 decrease with 1√

n and 1√
`

respectively, such

that the bound becomes tight for increasing n and `, as long as n grows faster than log(`).

For details relating to the exact value of the Rademacher complexity terms, the value of the constant
M, and the proofs, we refer to the appendix C.

6.2 PAC Bound

In appendix D, we prove the following theorem that applies to a generic DLA: given a training set
of sample pairs (xi, ȳi), can we learn to predict the output for a previously unseen observation? For
example, given a training set of aligned protein sequences, can we learn how to align a previously
unseen pair? Or, given a training set of correctly parsed sentences, can we learn how to parse a
previously unseen sentence? To be clear, in this section we consider the zero-one loss only, which
has been considered most often in previous work on structured output learning.

DLAs directly learn the model parameters such that the accuracy of the prediction is somehow
optimized. All these algorithms are in some sense empirical risk minimizers, in that they optimize
the prediction performance on a training set. However till now there have been few works trying to
address the question whether a small empirical risk guarantees a small expected risk. A first gen-
eralization bound has been developed by Collins for the case of the perceptron algorithm (Collins,
2002a) and a capacity bound in terms of covering numbers for the maximum margin approach
has been proposed by Taskar et al. (2003). These bounds have subsequently been reconsidered in
McAllester (2007) and have been improved in order to achieve consistency for any arbitrary loss. In
this paper we answer the learnability question affirmatively from another point of view, independent
of the learning approach taken, and we propose a new PAC bound which makes use of a result which
bounds the cardinality of the hypothesis space of prediction functions derived from DLAs.

We go back to the original problem of structured output learning. Given is a training set T =
{(x1, ȳ1),(x2, ȳ2), . . . ,(x`, ȳ`)} of observation-output pairs, with observations xi ∈ X and outputs
ȳi ∈ Y jointly drawn i.i.d. from an unspecified probability distribution P(x,y). Based on T we want
to infer a prediction function hθ : X → Y such that the probability P(hθ(x) = ȳ) of an observation-
output pair (x, ȳ) with hθ(x) = ȳ is as large as possible. For learnability, the choice of hθ should be
restricted to a limited hypothesis space, and DLAs provide one way to achieve this.

Our hypothesis space H is the space containing all prediction functions hθ with θ ∈ R
d , defined

as:

hθ(x) = argmax
y∈Y

sθ(x,y) = argmax
y∈Y

θT φ(x,y),

and this for a fixed feature map φ with integer features between 0 and C.
For this hypothesis space we can prove (in appendix D) the following theorem.

Theorem 8 (On the PAC-learnability of structured output prediction) Given a hypothesis space
H of prediction functions hθ as defined above. Furthermore, consider a training set T =

2834

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

{(x1, ȳ1),(x2, ȳ2), . . . ,(x`, ȳ`)} of observation-output pairs, sampled i.i.d. from a fixed but unknown
distribution. Then, with probability at least 1− δ over the random sample T , for any hθ ∈ H for
which hθ(xi) = ȳi for all (xi, ȳi) ∈ T the expected risk can be bounded as:

E(x,ȳ)∼D{hθ(x) 6= ȳ} ≤ d2 log(2C)− (d −2) log(d −2)+d − log(δ)

`
.

We can thus conclude that learning is guaranteed as soon as ` >> d2 log(2C).
This result proves that learning based on DLAs can be achieved effectively, and d and C are the

factors that are relevant in determining the learning rate. Importantly this bound holds regardless
of the method used to estimate the parameter vector θ. Interestingly, it suggests that the number
C (bounded by to the number of cliques for DLAs derived from PGMs) is less important than the
number of parameters d.

Note that this bound only holds for the realizable case, such that its practical relevance is limited.
Furthermore, unlike the results from McAllester (2007), the bound does not depend on the norm of
the weight vector θ, making it loose for small values of ‖θ‖. Nevertheless, we believe it is of interest
due to the simplicity of its derivation based on results from combinatorics and basic PAC theory.

7. Conclusions

We have presented a formal framework for learning to predict over structured output spaces. The
hypothesis space we consider is based on linear scoring functions, much like most previous ap-
proaches to this problem.

The distribution of this linear scoring function over all possible outputs contains information
that we can use to train the parameters of the learning algorithm. We can compute efficiently the
first two moments of this distribution, and we use them to derive convex objective functions for
parameter optimization.

In this way, we have derived two new efficient algorithms for structured output prediction that
rely on these statistics, both of which can be solved by solving one linear system of equations.

Interestingly, and thanks to the use of the moments, one of the proposed objective functions
(SODA) represents a convex upper bound on the relative ranking loss: the fraction of outputs from
the output space that rank better than the correct output. Thanks to this property, SODA naturally
and adequately deals with the infeasible case where there exists no parameter setting for which the
correct given pairs are optimal. We justify this fact theoretically, providing a Rademacher bound,
and experimentally, reporting results that are competitive with existing methods, and better than
other methods in the infeasible case.

Acknowledgments

We are most grateful to Nobuhisa Ueda since without him the section on SCFG’s would not have
been possible. We also thank the anonymous reviewers for providing us with their valuable com-
ments. This work was partially supported by NIH grant R33HG00 3070-01, the EU project SMART
and the PASCAL network of excellence. The work of Nello Cristianini is partially supported by a
Royal Society Wolfson Merit Award.

2835

RICCI, DE BIE AND CRISTIANINI

Appendix A. Proof of Proposition 3

The number of DP routines needed to compute µ and C are 7no +6.
In fact in general in the mean vector µ there are no + 1 different values. All the elements asso-

ciated to transition probabilities assume the same values while for emission probability µe
pq = µe

e f ,
∀ q = f .

We analyze the structure of the matrix C. It is a symmetric block matrix made basically by
three components: the block associated to emission probabilities, that of transition probabilities and
that relative to mixed terms. To compute it 6no + 5 DP routines are required. In the emission part
there are 2no possible different values since ce

pq = ce
e f , ∀q = f , ce

pqp′q′ = 0, ∀q 6= q′ and ce
pqp′q′ =

ce
e f e′ f ′ ∀q = q′ = f = f ′. In the transition block there are only 5 possible different values. In

particular for the second order moments, it holds that ct
pz = ct

eg, ∀p = z = e = g and ct
pz = ct

eg,
∀p = e, z = g and p 6= z. For the remaining three values there holds that ct

pzp′z′ = 0, ∀p 6= p′, z 6= z′,
ct

pzp′z′ = ct
ege′g′ , ∀p = p′, z 6= z′, e = e′, g 6= g′ and ct

pzp′z′ = ct
ege′g′ , ∀p 6= p′, z = z′, e 6= e′, g = g′.

The block relative to mixed terms is made of 4no possible different value. In fact there are no values
cet

pqp′z with p = p′ = z′, no values cet
pqp′z, with p = p′, p′ 6= z′, no values cet

pqp′z, with p = z′, p′ 6= z′

and no values cet
pqp′z, with p 6= p′, z 6= z′.

The redundancy in the structure of matrix C and of the vector µ can be observed in Fig. 9 for an
HMM with ns = 3 and no = 4.

2

4

6

8

10

12

14

16

18

20

7

7.5

8

8.5

9

9.5

10

10.5

11

5 10 15 20

2

4

6

8

10

12

14

16

18

20 −2

0

2

4

6

8

10

12

14

(a) (b)

Figure 9: Mean vector and covariance matrix for an HMM with ns = 3 and no = 4.

Appendix B. Solving Linear Systems for Large Feature Spaces

This paragraph provides a brief description of an approach for solving the linear systems C∗θ = b∗

and C̄θ = b̄ avoiding to store the entire matrices C∗ and C̄. This approach is suited to sequence
labeling problems and HMM features and it is particularly effective for problems when nh, the size
of the hidden state alphabet, is small and no, the size of the observation alphabet, is large.

We describe the procedure to solve C∗θ = b∗. In fact it subsumes the method for solving C̄θ = b̄.
The main idea behind this procedure is that exploiting the structure of C∗ we can store just a part of
it and compute the optimal parameter vector θ effectively.

The matrix C∗ in case of sequence labeling and HMMs features is sparse and redundant. In fact
this matrix is given by the sum of two parts: C̄ = ∑iCi and BBT = ∑i bib

T
i . We first consider the

2836

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

first part C̄ = ∑iCi. Each Ci is very sparse and has a regular structure as discussed in appendix A.
Then also the matrix C̄ has the same structure, that is, is a matrix made by four block:

C̄ =

(
E M

MT T

)
.

Here E denotes the block associated to emission probabilities, T that corresponding to transition
probabilities and M that relative to mixed terms. We are interested in finding the inverse of the
matrix C̄ without storing it entirely. Note that in many situations (e.g., sequence labeling problems
for text analysis such as NER or POS) the emission part represents the main bottleneck in the
computation of the inverse since its size is dependent on no (e.g., the size of the dictionary). The
size of the transition part instead is usually moderate since it is given by n2

h (e.g., the number of
different tags). The inverse of C̄ can be computed by:

C̄−1
=

(
E−1 +E−1MP−1MT E−1 −E−1MP−1

−P−1MT E−1 P−1

)

where P = T −MT E−1M represent the Schur complement of E. The inverse of the matrix E can be
computed easily due to the structure of the matrix E. In fact E is a block matrix:

E =

Ed Eo Eo · · · Eo

Eo Ed Eo · · · Eo
...

.
...

Eo · · · Eo Eo Ed

where Ed and Eo are both diagonal matrices. Therefore we can rewrite the matrix E as:

E =

Ed −Eo 0 0 · · · 0
0 Ed −Eo 0 · · · 0
...

.
...

0 · · · 0 0 Ed −Eo

+

I
I
...
I

Eo

(
I I · · · I

)

= D+HT EoH.

Then the inverse can be computed easily considering the formula for the inverse of a sum of matri-
ces:

E−1 = D−1 −D−1HT (I +EoHD−1HT)−1EoHD−1

where D is a diagonal matrix. Due to the special structure of D, H and E, it turns out that the inverse
of E is also a block matrix with similar structure of E, that is,

E−1 =

Ēd Ēo Ēo · · · Ēo

Ēo Ēd Ēo · · · Ēo
...

.
...

Ēo · · · Ēo Ēo Ēd

where Ēd = (Ed −Eo)
−1 and Ēo = Ēd(I + EoNH Ēd)

−1Ēd (NH is a diagonal matrix with elements
on the main diagonal equal to nh). Then it is not necessary to compute and store the entire matrix
E−1 but only the small blocks Ēd and Ēo.

2837

RICCI, DE BIE AND CRISTIANINI

Once the matrix E−1 has been obtained then the computation of the Schur complement P and
its inverse it is straightforward. This is not a time consuming procedure since its size n2

h is typ-
ically small and E−1 is very sparse. Due to the redundancy and the particular structure of the
matrix M we can also compute quite easily all the other terms. In particular the matrix obtained by
E−1MP−1MT E−1 is a block matrix made by nh ×nh equal blocks. Then it suffices to compute and
to store just one of each block.

The inverse of the matrix C̄ has then been obtained and we can use it directly to compute the
solution of the linear system for the Z-score approach θ = C̄−1b̄. Instead if we want to obtain the
optimal parameter vector associated to SODA we must compute the solution of the linear system
(C̄+BBT)θ = b∗. In practice what we need is a method to perform n rank one updates (one for each
sample in the training set) of the inverse of the matrix C̄ without storing the matrices C̄−1 and BBT

entirely. We can use the Sherman-Morrison-Woodbury formula:

C̄ +BBT = C̄−1 −C̄−1B(I +BTC̄−1B)BTC̄−1

to calculate the solution of our linear system:

θ = (C̄ +BBT)−1b∗ = C̄−1b∗−C̄−1B(I +BTC̄−1B)BTC̄−1b∗.

In practice we first compute z = C̄−1b∗ and use this value to solve the linear system by Cholesky
decomposition:

(I +BTC̄−1B)t = BT z.

Note that the cost of this operation is O(n3) but it is usually moderate since n << d. The compu-
tational cost here is dominated by the calculation of z since in theory it requires d3 multiplications.
However in practice this cost is still reasonable since C̄−1 tend to be sparse. Once we have computed
t we can obtain our solution for SODA simply by θ = z− C̄−1Bt.

Appendix C. Proof of the Rademacher Bound

We consider two types of randomness in our bound: the randomness in choosing the finite sample
of training input-output pairs, and the randomness in sampling from the output space for each of the
training inputs. Our aim is to provide a learning theory bound for the expected relative rank of the
score sθ(x, ȳ) among all scores sθ(x,y) for all y ∈ Y .

More exactly, we are interested in bounding E(x,ȳ)

{
LRRU

θ (x, ȳ)
}

where the value of the loss

LRRU
θ (x, ȳ) = Ey

{[
θT (φ(x, ȳ)−φ(x,y))−1

]2}
is known to be an upper bound on the relative rank

of the score of (x, ȳ) among all scores of (x,y) for all possible y (see Theorem 5).
For clarity, let us first consider a fixed training pair (x, ȳ). We will derive a Rademacher bound

that shows that the loss function LRRU
θ (x, ȳ) is approximately upper bounded by its empirical esti-

mate L̂RRU
θ (x, ȳ) = Êy

{[
θT (φ(x, ȳ)−φ(x,y))−1

]2}
, obtained by averaging over a random sample

of n values of y. In particular we will show that with a probability of at least 1−δ1 over the random
sample of size n:

LRRU
θ (x, ȳ) ≤ L̂RRU

θ (x, ȳ)+ R̂1,(x,ȳ) +3M

√
log(1/δ1)

2n
,

2838

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

with R̂1,(x,ȳ) an empirical Rademacher complexity term. The constant M is an upper bound on the
value of LRRU

θ (x, ȳ) valid for all allowable θ, and is a finite number. Such an upper bound can be
computed as M = (C

√
dc + 1)2, by considering the constraint ‖θ‖2 ≤ c and the fact that for all d

features 0 ≤ φi(x,y) ≤C.
Second, we will show that the expectation of L RRU

θ (x, ȳ) over (x, ȳ) is approximately upper
bounded by its empirical expectation over the training set of size l. We will show that with proba-
bility at least 1−δ2 over the training set T of size `,

E(x,ȳ)

{
LRRU

θ (x, ȳ)
}
≤ Ê(x,ȳ)

{
LRRU

θ (x, ȳ)
}

+ R̂2 +3M

√
log(1/δ2)

2`
,

with R̂2(T) an empirical Rademacher complexity term, and with the same constant M.
Putting these two partial results together with δ1 = δ

2` and δ2 = δ
2 , we have shown the following

theorem:

Theorem 9 (Rademacher bound for SODA) With probability at least 1− δ2 − `δ1 = 1− δ over
the joint of the random sample T and the random samples from the output space for each (x, ȳ)∈ T ,
the following bound holds for any θ with squared norm smaller than c:

E(x,ȳ)

{
LRRU

θ (x, ȳ)
}

≤ Ê(x,ȳ)

{
L̂RRU

θ (x, ȳ)
}

+ Ê(x,ȳ)

{
R̂1,(x,ȳ)

}
+ R̂2

+ 3M

√
log(2`/δ)

2n
+3M

√
log(2/δ)

2`
.

The first term on the right hand side of the inequality is the empirical risk, which is minimized
on the training set. The next two terms are Rademacher complexity terms, and we will see below
that these decrease to zero with increasing ` and n. Also the last two terms decrease to zero with
increasing ` and n, as long as n is chosen to increase faster than log(`).

Both these partial results can be derived by using the generalization error bound in Bartlett and
Mendelson (2002, Theorem 2) and applying the McDiarmid’s concentration inequality (McDiarmid,
1989). In the following we show how to compute upper bounds on the empirical Rademacher
complexities R̂1,(x,ȳ) and R̂2.

C.1 Rademacher Bound for the Relative Rank of a Single Pair

Given a training pair (x, ȳ) and a set {y1,y2, . . . ,yn} of n randomly sampled values for y correspond-
ing to x. For notational convenience, let us denote ϕ j = φ(x, ȳ)−φ(x,y j). Then we can write the
empirical estimate of the loss as

L̂RRU
θ (x, ȳ) =

1
n

n

∑
j=1

(
θT ϕ j −1

)2
.

Using this notation, and with σ a vector of length n containing the independently distributed
Rademacher variables σ j being uniformly distributed over 1 and −1, the Rademacher complex-
ity term R̂1,(x,ȳ) can be written and bounded as:

R̂1,(x,ȳ) = Eσ

{
max

θ

∣∣∣∣∣
2
n

n

∑
j=1

σ j
(
θT ϕ j −1

)2

∣∣∣∣∣

}

2839

RICCI, DE BIE AND CRISTIANINI

= Eσ

{
max

θ

∣∣∣∣∣
2
n

n

∑
j=1

σ j
(
(θT ϕ j)

2 −2(θT ϕ j)+1
)
∣∣∣∣∣

}

≤ Eσ

{
max

θ

2
n

(∣∣∣∣∣
n

∑
j=1

σ j(θT ϕ j)
2

∣∣∣∣∣+
∣∣∣∣∣

n

∑
j=1

2σ j(θT ϕ j)

∣∣∣∣∣+
∣∣∣∣∣

n

∑
j=1

σ j

∣∣∣∣∣

)}
. (12)

The first equality is the definition of the empirical Rademacher complexity, and the second equality
is a trivial rewriting. The first inequality holds since the absolute value of the sum is smaller than
or equal to the sum of absolute values. We now first use the fact that the maximum of a sum of
functions is smaller than or equal to the sum of their maxima to show that:

(12) ≤ 2
n

Eσ

{
max

θ

∣∣∣∣∣
n

∑
j=1

σ j(θT ϕ j)
2

∣∣∣∣∣+max
θ

∣∣∣∣∣
n

∑
j=1

2σ j(θT ϕ j)

∣∣∣∣∣+max
θ

∣∣∣∣∣
n

∑
j=1

σ j

∣∣∣∣∣

}

=
2
n

Eσ

√√√√max
θ

(
n

∑
j=1

σ j(θT ϕ j)
2

)2

+
2
n

Eσ

√√√√max
θ

(
n

∑
j=1

2σ j(θT ϕ j)

)2

+
2
n

Eσ

√√√√max
θ

(
n

∑
j=1

σ j

)2

. (13)

Here we used the fact that the absolute value is the square root of the square, and that the square
root of a positive function is maximized when that function itself is maximized. We proceed by
rewriting this expression using bracket notation, 〈a,b〉 denoting the inner product between vectors
(or matrices) a and b. Furthermore, we use the fact that the maximum of a sum (or expectation)
is smaller than or equal to the sum (or expectation) of the maxima of the individual sums, to show
that:

(13) ≤ 2
n

√√√√Eσ

{
max

θ

n

∑
j,k=1

σ jσk〈θθT ,ϕ jϕT
j 〉〈θθT ,ϕkϕT

k 〉
}

+
2
n

√√√√Eσ

{
max

θ

n

∑
j,k=1

4σ jσk〈θ,ϕ j〉〈θ,ϕk〉
}

+
2
n

√√√√Eσ

{
n

∑
j,k=1

σ jσk

}
. (14)

We now invoke the Cauchy-Schwartz inequality, and use the fact that ‖θ‖2 ≤ c and hence ‖θθT‖2 ≤
c2, to show that:

(14) ≤ 2
n

√√√√Eσ

{
n

∑
j,k=1

σ jσkc2‖ϕ j‖2‖ϕk‖2

}

+
2
n

√√√√Eσ

{
n

∑
j,k=1

4cσ jσk‖ϕ j‖‖ϕk‖
}

+
2
n

√√√√Eσ

{
n

∑
j,k=1

σ jσk

}
. (15)

2840

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

Since for i 6= k, there holds that Eσ
{

σ jσk
}

= 0 and Eσ

{
σ2

j

}
= 1, we can finally write that:

(15) =
2√
n

(
c

√
1
n

n

∑
j=1

‖ϕ j‖4 +2
√

c

√
1
n

n

∑
j=1

‖ϕ j‖2 +1

)
.

In summary, we have found the following upper bound on the first empirical Rademacher com-
plexity:

Proposition 10 (Rademacher complexity R̂1,(x,ȳ)) The Rademacher complexity term R̂1,(x,ȳ) can
be bounded as:

R̂1,(x,ȳ) ≤
2√
n

(
c

√
1
n

n

∑
j=1

‖ϕ j‖4 +2
√

c

√
1
n

n

∑
j=1

‖ϕ j‖2 +1

)
,

which, given the boundedness of ‖ϕ j‖, decreases to zero as n increases to infinity, as required.

C.2 Rademacher Complexity for the Empirical Expectation of the Loss

Given a randomly sampled training set T = {(x1, ȳ1),(x2, ȳ2), . . . ,(x`, ȳ`)}. The empirical expecta-
tion of the loss can be written as:

Ê(x,ȳ)

{
LRRU

θ (x, ȳ)
}

=
1
`

`

∑
i=1

LRRU
θ (xi, ȳi)

=
1
`

`

∑
i=1

(
1
Ni

Ni

∑
j=1

(θT ϕi
j −1)2

)
,

where ϕi
j = φ(xi,yi

j)−φ(xi, ȳi) and Ni is the cardinality of the output space corresponding to xi.

For notational convenience, let us introduce the matrix Φi containing all vectors ϕi
j
T as its rows.

Then we can rewrite the expected loss function in a more compact form as:

Ê(x,ȳ)

{
LRRU

θ (x, ȳ)
}

=
1
`

`

∑
i=1

‖Φiθ−1‖2

Ni

=
1
`

`

∑
i=1

〈θθT ,ΦiT Φi〉−2〈θ,ΦiT 1〉+ 〈1,1〉
Ni

.

We have rewritten this in a form that contains a term linear in θθT , a term linear in θ, and a constant
term. It is exactly this decomposition of the empirical expectation of the loss that has allowed us to
derive a bound on the Rademacher term R̂1,(x,ȳ), so we can follow the same principles here. We
omit the details here, and just state the result:

Proposition 11 (Rademacher complexity R̂2) The Rademacher complexity term R̂2 can be bounded
as:

R̂2 ≤
2√
`

c

√√√√1
`

`

∑
i=1

(
∑Ni

j,k=1(ϕ
i
j
T ϕi

k)
2

N2
i

)
+2

√
c

√√√√1
`

`

∑
i=1

∥∥∥∥∥
∑Ni

j=1 ϕi
j

Ni

∥∥∥∥∥

2

+1

 ,

which again decreases to zero as ` increases to infinity.

2841

RICCI, DE BIE AND CRISTIANINI

Appendix D. Proof of the PAC Bound

This section contains the proof of the PAC bound stated in subsection 6.2.

D.1 Bounding the Effective Cardinality of the Hypothesis Space

The number of possible functions mapping the input space on the output space is potentially huge:
|Y ||X | for an observation space of size |X | and an output space of size |Y |. To make this more

concrete, for the HMM prediction problem discussed earlier, this is equal to
(
nm

h

)nm
o = nmnm

o
h , which

is doubly exponential in the length of the sequences m.
It would clearly be impossible to achieve learning if we had to consider all of these possible

functions mapping observations onto outputs. However, we will show that the hypothesis class of
prediction functions defined above contains only a very small subset of these functions. This means
that, while the cardinality of functions hθ is infinite (one such function for each θ∈R

d), the effective
cardinality is low, since many of these functions are equivalent. We will subsequently use this upper
bound on the effective cardinality to obtain a PAC bound on the generalization.

To upper bound the effective cardinality of the hypothesis space H , we borrow and reformulate
the so-called few inference functions theorem by Elizalde (to appear) in the terminology of the
present paper:

Theorem 12 (Elizalde) Let d and C be fixed positive integers. Let φ : X ×Y →{0,1, . . . ,C}d be a
fixed function (called the feature map). Then the hypothesis space H defined as H ={

hθ|hθ(x,y) = argmaxy θT φ(x,y)|θ ∈ R
d
}

has an effective cardinality of at most

K =
2d2−d+1

(d −2)!
Cd(d−1).

that is, the number of different prediction functions in H is at most K.

D.2 A PAC Bound for Learning Prediction Functions

Based on the effective cardinality of the hypothesis space we can now derive a PAC bound on the
expected risk. Let us derive the bound for the case where the empirical risk is equal to zero. Deriving
a PAC bound in the case of nonzero empirical risk is a well-known variation (Vapnik, 1998), and
we will not discuss it in the current paper.

The probability of classifying all the ` training examples correctly with any fixed prediction
function is:

P(all ` correct |p) ≤ (1− p)` ≤ exp(−`p)

where p is the expected risk for this prediction function. However in general, the prediction function
is chosen from the hypothesis space H . The probability over the sample that any of K prediction
functions with an expected error rate of at least p faultlessly performs on all training examples is
bounded by

P(all ` correct, for any prediction function ∈ H |p) ≤ K exp(−`p),

where K is the effective cardinality of H . Hence, the probability to get a zero training set error,
for any of the prediction functions and thus for any of the parameter values, is at most K exp(−`p),

2842

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

where p is the minimal error probability. Thus, we found an upper bound which holds with confi-
dence at least δ for the expected error rate p as:

p ≤ log(K)− log(δ)

`

As we have seen in Theorem 12, the effective cardinality of H is upper bounded by K =
2d2−d+1

(d−2)! Cd(d−1), and thus (using log(n!) ≤ n log(n)−n), we have proven the Theorem 8.

Appendix E. Algorithms

This section contains additional formulas that can be used for moments computation respectively in
case of sequence labeling (Algorithm 4) and of sequence alignment (Algorithm 5).

Algorithm 4 Extra formulas for sequence labeling
11: if z = i then M := 1
12: µt

pz(i, j) := ∑i µt
pz(i, j−1)π(i, j−1)+Mπ(p, j−1)

π(i, j)

5: if q = x1 ∧ p = i then ve
pq(i,1) := 1

11: if q = x j ∧ p = i then M := 1

12: ve
pq(i, j) := ∑i(v

e
pq(i, j−1)+2Mµe

pq(i, j−1)+M)π(i, j−1)

π(i, j)

11: if q′ = x j ∧ p′ = i then M1 := 1
if q = x j ∧ p = i then M2 := 1

12: ve
pqp′q′(i, j) :=

∑i(v
e
pqp′q′ (i, j−1)+M1µe

pq(i, j−1)+M2µe
p′q′ (i, j−1))π(i, j−1)

π(i, j)

5: if p = i then vt
pz(i,2) = 1

11: if p = i then M := 1

12: vt
pz(i, j) := ∑i(v

t
pz(i, j−1)π(i, j−1))+(2Mµt

pz(p, j−1)+M)π(p, j−1)

π(i, j)

11: if p′ = j then M1 := 1
if p = j then M2 := 1

12: vt
pzp′z′(i, j) :=

(∑i vt
pzp′z′ (i, j−1)π(i, j−1)+M1µt

pz(p′, j−1)π(p′, j−1)+M2µt
p′z′ (p, j−1)π(p, j−1))

π(i, j)

11: if z′ = i then M1 := 1
if q = x j ∧ p = i then M2 := 1

12: vet
pqp′z(i, j) :=

(∑i vet
pqp′z(i, j−1)π(i, j−1)+M1µe

pq(p′, j−1)π(p′, j−1)+M2µt
p′z′ (p, j)π(p, j))

π(i, j)

References

Y. Altun, T. Hofmann, and M. Johnson. Discriminative learning for label sequences via boosting. In
Advances in Neural Information Processing Systems (NIPS), pages 977-984, Vancouver, British
Columbia, 2003.

2843

RICCI, DE BIE AND CRISTIANINI

Algorithm 5 Extra formulas for affine gap penalties

µe(i, j) := 1
π(i, j)(µe(i−1, j)π(i−1, j)+π(i−2, j)+µe(i, j−1)π(i, j−1)

+π(i, j−2)+µe(i−1, j−1)π(i−1, j−1))

µo(i, j) := 1
π(i, j)(µo(i−1, j)π(i−1, j)+π(i−1, j)−π(i−2, j)+

µo(i, j−1)π(i, j−1)+π(i, j−1)−π(i, j−2)+µo(i−1, j−1)π(i−1, j−1))

voo(i, j) := 1
π(i, j)(voo(i−1, j−1)π(i−1, j−1)+ voo(i−1, j)π(i−1, j)

+2(µo(i−1, j)π(i−1, j)−µo(i−2, j)π(i−2, j)−π(i−2, j)+π(i−3, j))
+π(i−1, j)−π(i−2, j)+ voo(i, j−1)π(i, j−1)+2(µo(i, j−1)π(i, j−1)
−µo(i, j−2)π(i, j−2)−π(i, j−2)+π(i, j−3))+π(i, j−1)−π(i, j−2)

vee(i, j) := 1
π(i, j)(vee(i−1, j−1)π(i−1, j−1)+ vee(i−1, j)π(i−1, j)

+2µe(i−2, j)π(i−2, j)+2π(i−3, j)+π(i−2, j)+ vee(i, j−1)π(i, j−1)
+2µe(i, j−2)π(i, j−2)+2π(i, j−3)+π(i, j−2))

vmo(i, j) := 1
π(i, j)((vmo(i−1, j)+µm(i−1, j))π(i−1, j)−µm(i−2, j)π(i−2, j)

+(vmo(i, j−1)+µm(i, j−1))π(i, j−1)−µm(i, j−2)π(i, j−2)
+(vmo(i−1, j−1)+Mµo(i−1, j−1))π(i−1, j−1))

vme(i, j) := 1
π(i, j)((vme(i−1, j−1)+Mµe(i−1, j−1))π(i−1, j−1)

+vme(i−1, j)π(i−1, j)+µm(i−2, j)π(i−2, j)+ vme(i, j−1)π(i, j−1)
+µe(i, j−2)π(i, j−2))

veo(i, j) := 1
π(i, j)(veo(i−1, j−1)π(i−1, j−1)+ veo(i, j−1)π(i, j−1)

+µo(i, j−2)π(i, j−2)+π(i, j−2)−2π(i, j−3)+µe(i, j−1)π(i, j−1)
−µe(i, j−2)π(i, j−2)+ veo(i−1, j)π(i−1, j)+µo(i−2, j)π(i−2, j)
+π(i−2, j)−2π(i−3, j)+µe(i−1, j)π(i−1, j)−µe(i−2, j)π(i−2, j))

Y. Altun, T. Hofmann, and A. J. Smola. Gaussian process classification for segmenting and annotat-
ing sequences. In Proceedings of the Twenty-first International Conference on Machine Learning
(ICML), Banff, Alberta, Canada, 2004.

Y. Altun, I. Tsochantaridis, T. Hofmann. Hidden Markov support vector machines. In Proceedings of
the Twentieth International Conference on Machine Learning (ICML), pages 3-10, Washington,
DC, USA, 2003.

P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3:463-482, 2002.

H.S. Booth, J.H. Maindonald, S.R. Wilson, and J.E. Gready. An efficient Z-score algorithm for
assessing sequence alignments. Journal of Computational Biology, 11(4):616-25, 2004.

2844

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

M. Collins. Discriminative training methods for hidden Markov models: Theory and experiments
with perceptron algorithms. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1-8, 2002.

M. Collins. Ranking algorithms for named-entity extraction: boosting and the voted perceptron.
In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL),
pages 489-496, 2002.

C. B. Do, D. A. Woods, and S. Batzoglou. CONTRAfold: RNA secondary structure prediction
without physics-based models. Bioinformatics, 22:e90-8, 2006.

R.F. Doolittle. Similar amino acid sequences: chance or common ancestry. Science, 214:149-159,
1981.

R. D. Dowell and S. R. Eddy. Evaluation of several lightweight stochastic context-free grammars
for RNA secondary structure prediction. BMC Bioinformatics, 5(71):1-14, 2004.

S. Elizalde and K. Woods. Bounds on the number of inference functions of a graphical model.
Statistica Sinica, 17:1395-1415, 2007.

Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combin-
ing preferences. In Proceedings of the Fifteenth International Conference on Machine Learning
(ICML), pages 170-178, Madison, Wisconson, USA, 1998.

S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S.R. Eddy. Rfam: an RNA family
database. Nucleic Acids Research, 31(1):439-441, 2003.

D. Gusfield, K. Balasubramanian, and D. Naor. Parametric optimization of sequence alignment.
Algorithmica, 12:312-326, 1994.

D. Gusfield and P. Stelling. Parametric and inverse-parametric sequence alignment with XPARAL.
Methods in Enzymology, 266:481-494, 1996.

T. Joachims, T. Galor, and R. Elber, Learning to align sequences: a maximum-margin approach, In
New Algorithms for Macromolecular Simulation, B. Leimkuhler, LNCS Vol. 49, Springer, 2005.

J. Kececioglu and E. Kim, Simple and fast inverse alignment, In Proceedings of the Tenth ACM Con-
ference on Research in Computational Molecular Biology (RECOMB), pages 441-455, Venice,
Italy, 2006.

T. Kudo. CRF++: Yet another CRF toolkit, 2005. [http://crfpp.sourceforge.net].

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: probabilistic models for seg-
menting and labeling data. In Proceedings of the Eighteenth International Conference on Machine
Learning (ICML), pages 282-289, Williamstown, MA, USA, 2001.

J. Lafferty, X. Zhu, and Y. Liu. Kernel conditional random fields: representation and clique selec-
tion. In Proceedings of the Twenty-first International Conference on Machine Learning (ICML),
pages 64-71, Banff, Alberta, Canada, 2004.

2845

RICCI, DE BIE AND CRISTIANINI

C. D. Manning and H. Schuetze. Foundations of Statistical Natural Language Processing. MIT
Press, Cambridge, MA, 1999.

D. McAllester. Generalization bounds and consistency for structured labeling in predicting struc-
tured data. Predicting Structured Data, edited by G. Bakir, T. Hofmann, B. Scholkopf, A. Smola,
B. Taskar, and S. V. N. Vishwanathan, MIT Press, 2007.

A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information extrac-
tion and segmentation. In Proceedings of the Seventeenth International Conference on Machine
Learning, pages 591-598, Stanford, CA, USA, 2000.

C. McDiarmid. On the method of bounded differences, London Mathematical Society Lecture Note
Series, 141:148-188, 1989.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of Molecular Biology, 48:443-453, 1970.

L. Pachter and B. Sturmfels. Parametric inference for biological sequence analysis. In Proceedings
of the National Academy of Sciences USA, 101(46):16138-16143, 2004.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257-286, 1989.

E. Ricci, T. De Bie, and N. Cristianini. Learning to align: a statistical approach. In Proceedings of
the Seventh International Symposium on Intelligent Data Analysis (IDA), pages 25-36, Ljubljana,
Slovenia, 2007.

K. Sato and Y. Sakakibara. RNA secondary structural alignment with conditional random fields.
Bioinformatics, 21(Suppl 2):ii237-ii242, 2005.

R. Schapire and Y. Singer. Improved boosting algorithms using confidencerated predictions. Ma-
chine Learning, 37(3):297-336, 1999.

F. Sun, D. Fernandez-Baca, and W. Yu. Inverse parametric sequence alignment. Journal of Algo-
rithms, 53(1):36-54, 2004.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In In Advances in Neural In-
formation Processing Systems (NIPS), Vancouver and Whistler, British Columbia, Canada, 2003.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. Max-margin parsing. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1-8,
Barcelona, Spain, 2004.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and
interdependent output variables, Journal of Machine Learning Research, 6(9):1453-1484, 2005.

V. N. Vapnik. Statistical Learning Theory. Wiley & Sons, Inc., 1998.

D. H. Younger. Recognition and parsing of context-free languages in time n3. Information and
Control, 2(10):189-208, 1967.

2846

Journal of Machine Learning Research 9 (2008) 2847-2880 Submitted 7/08; Revised 11/08; Published 12/08

Structural Learning of Chain Graphs via Decomposition

Zongming Ma∗ ZONGMING@STANFORD.EDU

Xianchao Xie† XXIE@FAS.HARVARD.EDU

Zhi Geng ZGENG@MATH.PKU.EDU.CN

School of Mathematical Sciences, LMAM
Peking University
Beijing 100871, China

Editor: David Maxwell Chickering

Abstract
Chain graphs present a broad class of graphical models for description of conditional independence
structures, including both Markov networks and Bayesian networks as special cases. In this paper,
we propose a computationally feasible method for the structural learning of chain graphs based
on the idea of decomposing the learning problem into a set of smaller scale problems on its de-
composed subgraphs. The decomposition requires conditional independencies but does not require
the separators to be complete subgraphs. Algorithms for both skeleton recovery and complex ar-
row orientation are presented. Simulations under a variety of settings demonstrate the competitive
performance of our method, especially when the underlying graph is sparse.

Keywords: chain graph, conditional independence, decomposition, graphical model, structural
learning

1. Introduction

Graphical models are widely used to represent and analyze conditional independencies and causal
relationships among random variables. Monographs on this topic include Cowell et al. (1999),
Cox and Wermuth (1996), Edwards (2000), Lauritzen (1996), Pearl (1988) and Spirtes et al. (2000).
Two most well-known classes of graphical models are Markov networks (undirected graph) and
Bayesian networks (directed acyclic graph). Wermuth and Lauritzen (1990) introduced the broader
class of block-recursive graphical models (chain graph models), which includes, but is not limited
to, the above two classes.

Among a multitude of research problems about graphical models, structural learning (also
called model selection in statistics community) has been extensively discussed and continues to
be a field of great interest. There are primarily two categories of methods: score-based methods
(using AIC, BIC, posterior score, etc.) and constraint-based methods (using significance testing).
Lauritzen (1996, Section 7.2) provides a good summary of the most important works done in the
last century. Recent works in this area include Ravikumar et al. (2008), Friedman et al. (2007),
Kalisch and Bühlmann (2007), Meinshausen and Bühlmann (2006), Tsamardinos et al. (2006),
Ellis and Wong (2006), Friedman and Koller (2003), Chickering (2002), Friedman et al. (1999), etc.
However, most of these studies are exclusively concerned with either Markov networks or Bayesian

∗. Also in the Department of Statistics, Stanford University, Stanford, CA 94305.
†. Also in the Department of Statistics, Harvard University, Cambridge, MA 02138.

c©2008 Zongming Ma, Xianchao Xie and Zhi Geng.

MA, XIE AND GENG

networks. To our limited knowledge, Studený (1997) is the only work that addresses the issue of
learning chain graph structures in the literature. Recently, Drton and Perlman (2008) studied the
special case of Gaussian chain graph models using a multiple testing procedure, which requires
prior knowledge of the dependence chain structure.

Chain graph models are most appropriate when there are both response-explanatory and sym-
metric association relations among variables, while Bayesian networks specifically deal with the
former and Markov networks focus on the later. Given the complexity of many modern systems
of interest, it is usually desirable to include both types of relations in a single model. See also
Lauritzen and Richardson (2002).

As a consequence of the versatility, chain graph models have received a growing attention as a
modeling tool in statistical applications recently. For instance, Stanghellini et al. (1999) constructed
a chain graph model for credit scoring in a case study in finance. Carroll and Pavlovic (2006)
employed chain graphs to classify proteins in bioinformatics, and Liu et al. (2005) used them to
predict protein structures. However, in most applications, chain graphs are by far not as popular as
Markov networks and Bayesian networks. One important reason, we believe, is the lack of readily
available algorithms for chain graph structure recovery.

To learn the structure of Bayesian networks, Xie et al. (2006) proposed a ‘divide-and-conquer’
approach. They showed that the structural learning of the whole DAG can be decomposed into
smaller scale problems on (overlapping) subgraphs. By localizing the search of d-separators, their
algorithm can reduce the computational complexity greatly.

In this paper, we focus on developing a computationally feasible method for structural learning
of chain graphs along with this decomposition approach. As in structural learning of a Bayesian
network, our method starts with finding a decomposition of the entire variable set into subsets, on
each of which the local skeleton is then recovered. However, unlike the case of Bayesian networks,
the structural learning of chain graph models is more complicated due to the extended Markov
property of chain graphs and the presence of both directed and undirected edges. In particular, the
rule in Xie et al. (2006) for combining local structures into a global skeleton is no longer applicable
and a more careful work must be done to ensure a valid combination. Moreover, the method for
extending a global skeleton to a Markov equivalence class is significantly different from that for
Bayesian networks.

In particular, the major contribution of the paper is twofold: (a) for learning chain graph skele-
tons, an algorithm is proposed which localizes the search for c-separators and has a much reduced
runtime compared with the algorithm proposed in Studený (1997); (b) a polynomial runtime algo-
rithm is given for extending the chain graph skeletons to the Markov equivalence classes. We also
demonstrate the efficiency of our methods through extensive simulation studies.

The rest of the paper is organized as follows. In Section 2, we introduce necessary background
for chain graph models and the concept of decomposition via separation trees. In Section 3, we
present the theoretical results, followed by a detailed description of our learning algorithms. More-
over, we discuss the issue of how to construct a separation tree to represent the decomposition. The
computational analysis of the algorithms are presented in Section 4. Numerical experiments are
reported in Section 5 to demonstrate the performance of our method. Finally, we conclude with
some discussion in Section 6. Proofs of theoretical results and correctness of algorithms are shown
in Appendices.

2848

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

2. Definitions and Preliminaries

In this section, we first introduce the necessary graphical model terminology in Section 2.1 and then
give the formal definition of separation trees in Section 2.2.

2.1 Graphical Model Terminology

For self-containedness, we briefly introduce necessary definitions and notations in graph theory
here, most of which follow those in Studený (1997) and Studený and Bouckaert (2001). For a
general account, we refer the readers to Cowell et al. (1999) and Lauritzen (1996).

A graph G = (V,E) consists of a vertex set V and an edge set E. For vertices u,v ∈ V , we say
that there is an undirected edge u− v if (u,v) ∈ E and (v,u) ∈ E. If (u,v) ∈ E and (v,u) 6∈ E, we
say that there is a directed edge from u to v and write u→ v. We call undirected edges lines and
directed edges arrows. The skeleton G ′ of a graph G is the undirected graph obtained by replacing
the arrows of G by lines. If every edge in graph G is undirected, then for any vertex u, we define
the neighborhood neG (u) of u to be the set of vertices v such that u− v in G .

A route in G is a sequence of vertices (v0, · · · ,vk),k≥ 0, such that (vi−1,vi)∈ E or (vi,vi−1)∈ E
for i = 1, · · · ,k, and the vertices v0 and vk are called terminals of the route. It is called descending
if (vi−1,vi) ∈ E for i = 1, · · · ,k. We write u 7→ v if there exists a descending route from u to v.
If v0, · · · ,vk are distinct vertices, the route is called a path. A route is called a pseudocycle if
v0 = vk, and a cycle if further k≥ 3 and v0, · · · ,vk−1 are distinct. A (pseudo) cycle is directed if it is
descending and there exists at least one i ∈ {1, · · · ,k}, such that (vi,vi−1) /∈ E.

A graph with only undirected edges is called an undirected graph (UG). A graph with only
directed edges and without directed cycles is called a directed acyclic graph (DAG). A graph that
has no directed (pseudo) cycles is called a chain graph.

By a section of a route ρ = (v0, · · · ,vk) in G , we mean a maximal undirected subroute σ :
vi− ·· ·− v j, 0 ≤ i ≤ j ≤ k of ρ. The vertices vi and v j are called the terminals of the section σ.
Further the vertex vi (or v j) is called a head-terminal if i > 0 and vi−1 → vi in G (or j < k and
v j ← v j+1 in G), otherwise it is called a tail-terminal. A section σ of a route ρ is called a head-to-
head section with respect to ρ if it has two head-terminals, otherwise it is called non head-to-head.
For a set of vertices S ⊂V , we say that a section σ : vi−·· ·− v j is outside S if {vi, · · · ,v j}∩S = /0.
Otherwise we say that σ is hit by S.

A complex in G is a path (v0, · · · ,vk), k≥ 2, such that v0→ v1, vi−vi+1 (for i = 1, · · · ,k−2) and
vk−1← vk in G , and no additional edge exists among vertices {v0, · · · ,vk} in G . We call the vertices
v0 and vk the parents of the complex and the set {v1, · · · ,vk−1} the region of the complex. The set
of parents of a complex κ is denoted by par(κ). Note that the concept of complex was proposed in
Studený (1997) and is equivalent to the notion of ‘minimal complex’ in Frydenberg (1990).

An arrow in a graph G is called a complex arrow if it belongs to a complex in G . The pattern of
G , denoted by G∗, is the graph obtained by turning the arrows that are not in any complex of G into
lines. The moral graph G m of G is the graph obtained by first joining the parents of each complex
by a line and then turning arrows of the obtained graph into lines.

Studený and Bouckaert (2001) introduced the notion of c-separation for chain graph models.
Hereunder we introduce the concept in the form that facilitates the proofs of our results. We say that
a route ρ on G is intervented by a subset S of V if and only if there exists a section σ of ρ such that:

1. either σ is a head-to-head section with respect to ρ, and σ is outside S; or

2849

MA, XIE AND GENG

2. σ is a non head-to-head section with respect to ρ, and σ is hit by S.

Definition 1 Let A,B,S be three disjoint subsets of the vertex set V of a chain graph G , such that
A,B are nonempty. We say that A and B are c-separated by S on G , written as 〈A, B |S 〉sep

G , if every
route with one of its terminals in A and the other in B is intervented by S. We also call S a c-separator
for A and B.

For a chain graph G = (V,E), let each v ∈ V be associated with a random variable Xv with
domain Xv and µ the underlying probability measure on ∏v∈V Xv. A probability distribution P on
∏v∈V Xv is strictly positive if dP(x)/dµ > 0 for any x ∈ ∏v∈V Xv. From now on, all probability
distributions considered are assumed to be strictly positive. A probability distribution P on ∏v∈V Xv

is faithful with respect to G if for any triple (A,B,S) of disjoint subsets of V such that A and B are
non-empty, we have

〈A, B |S 〉sep
G ⇔ XA XB |XS , (1)

where XA = {Xv : v ∈ A} and XA XB|XS means the conditional independency of XA and XB given
XS; P is Markovian with respect to G if (1) is weakened to

〈A, B |S 〉sep
G ⇒ XA XB |XS .

In the rest of the paper, A B|S is used as short notation for XA XB|XS when confusion is unlikely.
It is known that chain graphs can be classified into Markov equivalence classes, and those in the

same equivalence class share the same set of Markovian distributions. The following result from
Frydenberg (1990) characterizes equivalence classes graphically: Two chain graphs are Markov
equivalent if and only if they have the same skeleton and complexes, that is, they have the same
pattern. The following example illustrates some of the concepts that are introduced above.

Example 1. Consider the chain graph G in Fig. 1(a). D→ F−E←C and F→ K←G are the two
complexes. The route ρ = (D,F,E, I,E,C) is intervented by an empty set since the head-to-head
section (E→)I(←E) is outside the empty set. It is also intervented by E since the non head-to-head
section (D→)F−E(→ I) is hit by E. However, D and C are not c-separated by E since the route
(D,F,E,C) is not intervented by E. The moral graph G m of G is shown in Fig. 1(b), where edges
C−D and F−G are added due to moralization. ■

A C E I J

B D F K

G H

A C E I J

B D F K

G H

(a) (b)

Figure 1: (a) a chain graph G ; (b) its moral graph G m.

2850

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

2.2 Separation Trees

In this subsection, we introduce the notion of separation trees which is used to facilitate the rep-
resentation of the decomposition. The concept is similar to the junction tree of cliques and the
independence tree introduced for DAG as ‘d-separation trees’(Xie et al., 2006).

Let C = {C1, · · · ,CH} be a collection of distinct variable sets such that for h = 1, · · · ,H, Ch ⊆V .
Let T be a tree where each node corresponds to a distinct variable set in C , to be displayed as a
triangle (see, for example, Fig. 2). The term ‘node’ is used for a separation tree to distinguish from
the term ‘vertex’ for a graph in general. An undirected edge e = (Ci,C j) connecting nodes Ci and
C j in T is attached with a separator S = Ci ∩C j, which is displayed as a rectangle. A separator
S is connected to a node C if there is some other node C′, such that S attaches to the edge (C,C′).
Removing an edge e or equivalently, removing a separator S from T splits T into two subtrees
T1 and T2 with node sets C1 and C2 respectively. We use Vi = ∪C∈CiC to denote the unions of the
vertices contained in the nodes of the subtree Ti for i = 1,2.

Definition 2 A tree T with node set C is said to be a separation tree for a chain graph G = (V,E)
if

1. ∪C∈CC = V , and

2. for any separator S in T with V1 and V2 defined as above by removing S, we have
〈V1\S, V2\S |S 〉

sep
G .

Notice that a separator is defined in terms of a tree whose nodes consist of variable sets, while
the c-separator is defined based on a chain graph. In general, these two concepts are not related,
though for a separation tree its separator must be some corresponding c-separator in the underlying
chain graph.

Example 1. (Continued). Suppose that

C = {{A,B,C},{B,C,D},{C,D,E},{D,E,F},{E, I,J},{D,F,G,H,K}}

is a collection of vertex sets. A separation tree T of G in Fig. 1(a) with node set C is shown
in Fig. 2. If we delete the separator {D,E}, we obtain two subtrees T1 and T2 with node sets
C1 = {{A,B,C},{B,C,D},{C,D,E}} and C2 = {{D,E,F},{E, I,J},{D,F,G,H,K}}. In G , the
separator S = {D,E} c-separates V1\S = {A,B,C} and V2\S = {F,G,H, I,J,K}. ■

 B
CD

 A
BC

 C
DE

 D
EF

 E
I J

 DF
GHK

BC CD DE E DF

Figure 2: A separation T of the graph G in Fig. 1(a).

Not surprisingly, the separation tree could be regarded as a scheme for decomposing the knowl-
edge represented by the chain graph into local subsets. Reciprocally, given a separation tree, we

2851

MA, XIE AND GENG

can combine the information obtained locally to recover the global information, an idea that will be
formalized and discussed in subsequent sections.

The definition of separation trees for chain graphs is similar to that of junction trees of cliques,
see Cowell et al. (1999) and Lauritzen (1996). Actually, it is not difficult to see that a junction tree
of a chain graph G is also its separation tree. However, we point out two differences here: (a) a
separation tree is defined with c-separation and it does not require that every node is a clique or
that every separator is complete on the moral graph; (b) junction trees are mostly used as inference
engines, while our interest in separation trees is mainly derived from its power in facilitating the
decomposition of structural learning.

3. Structural Learning of Chain Graphs

In this section, we discuss how separation trees can be used to facilitate the decomposition of the
structural learning of chain graphs. Theoretical results are presented first, followed by descriptions
of several algorithms that are the summary of the key results in our paper. It should be emphasized
that even with perfect knowledge on the underlying distribution, any two chain graph structures in
the same equivalence class are indistinguishable. Thus, we can only expect to recover a pattern
from the observed data, that is, an equivalence class to which the underlying chain graph belongs.
To this end, we provide two algorithms: one addresses the issue of learning the skeleton and the
other focuses on extending the learned skeleton to an equivalence class. We also discuss at the end
of the section the problem of constructing separation trees. Throughout the rest of the paper, we
assume that any distribution under consideration is faithful with respect to some underlying chain
graph.

3.1 Theoretical Results

It is known that for P faithful to a chain graph G = (V,E), an edge (u,v) is in the skeleton G ′ if and
only if Xu / Xv |XS for any S ⊆ V \ {u,v} (see Studený 1997, Lemma 3.2 for a proof). Therefore,
learning the skeleton of G reduces to searching for c-separators for all vertex pairs. The following
theorem shows that with a separation tree, one can localize the search into one node or a small
number of tree nodes.

Theorem 3 Let T be a separation tree for a chain graph G . Then vertices u and v are c-separated
by some set Suv ⊂V in G if and only if one of the following conditions hold:

1. u and v are not contained together in any node C of T ,

2. u and v are contained together in some node C, but for any separator S connected to C,
{u,v}* S, and there exists S′uv ⊆C such that 〈u, v |S′uv 〉

sep
G ,

3. u and v are contained together in a node C and both of them belong to some separator con-
nected to C, but there is a subset S′uv of either

S

u∈C′C
′ or

S

v∈C′C
′ such that 〈u, v |S′uv 〉

sep
G .

For DAGs, condition 3 in Theorem 3 is unnecessary, see Xie et al. (2006, Theorem 1). However,
the example below indicates that this is no longer the case for chain graphs.

Example 1. (Continued). Consider the chain graph in Fig. 1(a) and its separation tree in Fig. 2. Let
u = D and v = E. The tree nodes containing u and v together are {C,D,E} and {D,E,F}. Since the

2852

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

separator {D,E} is connected to both of them, neither condition 1 nor 2 in Theorem 3 is satisfied.
Moreover, u/ v|S for S = /0,{C} or {F}. However, we have u v|{C,F}. Since {C,F}= S′ is a sub-
set of both

S

u∈C′C
′ = {B,C,D}∪{C,D,E}∪{D,E,F}∪{D,F,G,H,K}= {B,C,D,E,F,G,H,K}

and
S

v∈C′C
′ = {C,D,E}∪{D,E,F}∪{E, I,J} = {C,D,E,F, I,J}, condition 3 of Theorem 3 ap-

plies. ■

Given the skeleton of a chain graph, we extend it into the equivalence class by identifying and
directing all the complex arrows, to which the following result is helpful.

Proposition 4 Let G be a chain graph and T a separation tree of G . For any complex κ in G , there
exists some tree node C of T such that par(κ)⊆C.

By Proposition 4, to identify the parents for each complex, we need only pay attention to those
vertex pairs contained in each tree node.

3.2 Skeleton Recovery with Separation Tree

In this subsection, we propose an algorithm based on Theorem 3 for the identification of chain graph
skeleton with separation tree information.

Let G be an unknown chain graph of interest and P be a probability distribution that is faithful
to it. The algorithm, summarized as Algorithm 1, is written in its population version, where we
assume perfect knowledge of all the conditional independencies induced by P.

Algorithm 1 consists of three main parts. In part 1 (lines 2-10), local skeletons are recovered
in each individual node of the input separation tree. By condition 1 of Theorem 3, edges deleted in
any local skeleton are also absent in the global skeleton. In part 2 (lines 11-16), we combine all the
information obtained locally into a partially recovered global skeleton which may have extra edges
not belonging to the true skeleton. Finally, we eliminate such extra edges in part 3 (lines 17-22).

The correctness of Algorithm 1 is proved in Appendix B. We conclude this subsection with
some remarks on the algorithm.

Remarks on Algorithm 1:

1. Although we assume perfect conditional independence knowledge in Algorithm 1, it remains
valid when these conditional independence relations are obtained via performing hypotheses
tests on data generated over P as in most real-world problems. When this is the case, we
encounter the problem of multiple testing. See Sections 3.4 and 5 for more details.

2. The c-separator set S is not necessary for skeleton recovery. However, it will be useful later
in Section 3.3 when we try to recover the pattern based on the learned skeleton.

3. Part 3 of Algorithm 1 is indispensable as is illustrated by the following example.

Example 1. (Continued) We apply Algorithm 1 to the chain graph G in Fig. 1(a) and the corre-
sponding separation tree given in Fig. 2. The local skeletons recovered in part 1 of the algorithm
are shown in Fig. 3(a). The c-separators found in this part are SBC = {A}, SCD = {B}, SEJ = {I},
SDK = {F,G}, SDH = {F,G}, SFG = {D}, SFH = {G} and SHK = {G}. In part 2, the local skeletons
are combined by deleting the edges that are absent in at least one of the local skeletons, leading to
the result in Fig. 3(b). The edge B−C is deleted since it is absent in the local skeleton for the tree

2853

MA, XIE AND GENG

Algorithm 1: Skeleton Recovery with a Separation Tree.

Input: A separation tree T of G ; perfect conditional independence knowledge about P.
Output: The skeleton G ′ of G ; a set S of c-separators.
Set S = /0;1

foreach Tree node Ch do2

Start from a complete undirected graph Gh with vertex set Ch;3

foreach Vertex pair {u,v} ⊂Ch do4

if ∃Suv ⊂Ch s.t. u v|Suv then5

Delete the edge (u,v) in Gh;6

Add Suv to S ;7

end8

end9

end10

Combine the graphs Gh = (Ch,Eh),h = 1, · · · ,H into an undirected graph G ′ = (V,∪H
h=1Eh);11

foreach Vertex pair {u,v} contained in more than one tree node and (u,v) ∈ G ′ do12

if ∃Ch s.t. {u,v} ⊂Ch and (u,v) /∈ Eh then13

Delete the edge (u,v) in G ′;14

end15

end16

foreach Vertex pair {u,v} contained in more than one tree node and (u,v) ∈ G ′ do17

if u v|Suv for some Suv ⊂ neG ′(u) or neG ′(v) such that it is not a subset of any Ch with18

{u,v} ⊂Ch then
Delete the edge (u,v) in G ′;19

Add Suv to S ;20

end21

end22

node {A,B,C}. In part 3, we need to check D−E and D−F . D−E is deleted since D E|{C,F},
and we record SDE = {C,F}. The recovered skeleton is finally shown in Fig. 3(c). ■

3.3 Complex Recovery

In this subsection, we propose Algorithm 2 for finding and orienting the complex arrows of G after
obtaining the skeleton G ′ in Algorithm 1. We call this stage of structural learning complex recov-
ery. As in the previous subsection, we assume separation tree information and perfect conditional
independence knowledge. For simplicity, let Sc denote V\S for any vertex set S⊆V .

Example 1. (Continued) After performing Algorithm 1 to recover the skeleton of G , we apply
Algorithm 2 to find and orient all the complex arrows. For example, when we pick [C,D] in line 2
of Algorithm 2 and consider C−E in line 3 for the inner loop, we find SCD = {B} and C/ D|SCD∪
{E}. Therefore, we orient C → E in line 5. Similarly, we orient D → F,F → K and G → K
when considering [D,C] with D−F (in the inner loop), [F,G] with F −K and [G,F] with G−K
and observing that C/ D|SCD ∪{F} and F / G|SFG ∪{K}, where the c-separators SCD = {B} and

2854

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

A C

B

C

B D

C E

D

E

D F

E

 I

J D F K

G H

A C E I J

B D F K

G H

(a) (b)

A C E I J

B D F K

G H

(c)

Figure 3: (a) local skeletons recovered in part 1 of Algorithm 1 for all nodes of T in Fig. 2; (b)
partially recovered global skeleton of G in part 2 of Algorithm 1; (c) completely recovered
global skeleton of G in part 3 of Algorithm 1.

Algorithm 2: Complex Recovery.

Input: Perfect conditional independence knowledge; the skeleton G ′ and the set S of
c-separators obtained in Algorithm 1.

Output: The pattern G∗ of G .
Initialize G∗ = G ′;1

foreach Ordered pair [u,v] such that Suv ∈ S do2

foreach u−w in G∗ do3

if u/ v|Suv∪{w} then4

Orient u−w as u→ w in G ∗;5

end6

end7

end8

Take the pattern of G ∗.9

SFG = {K} were obtained during the execution of Algorithm 1. We do not orient any other edge in
Algorithm 2. The resulting graph is shown in Fig. 4, which is exactly the pattern for our original
chain graph G in Fig. 1(a). ■

The correctness of Algorithm 2 is guaranteed by Proposition 4. For the proof, see Appendix B.

Remarks on Algorithm 2:

1. As Algorithm 1, Algorithm 2 is valid when independence test is correctly performed using
data and again, multiple testing becomes an important issue here.

2855

MA, XIE AND GENG

A C E I J

B D F K

G H

Figure 4: The pattern of G recovered by applying Algorithm 2.

2. In Algorithm 2, the set S obtained in Algorithm 1 helps avoid the computationally expensive
looping procedure taken in the pattern recovery algorithm in Studený (1997) for complex
arrow orientation.

3. Line 9 of Algorithm 2 is necessary for chain graphs in general, see Example 2 below.

4. To get the pattern of G ∗in line 9, at each step, we consider a pair of candidate complex arrows
u1→ w1 and u2→ w2 with u1 6= u2, then we check whether there is an undirected path from
w1 to w2 such that none of its intermediate vertices is adjacent to either u1 or u2. If there
exists such a path, then u1 → w1 and u2 → w2 are labeled (as complex arrows). We repeat
this procedure until all possible candidate pairs are examined. The pattern is then obtained by
removing directions of all unlabeled arrows in G ∗.

Example 2. Consider the chain graph G̃ in Fig. 5(a) and the corresponding separation tree T̃
in Fig. 5(e). After applying Algorithm 1, we obtain the skeleton G̃ ′ of G̃ . In the execution of
Algorithm 2, when we pick [B,F] in line 2 and A in line 3, we have B F| /0, that is, SBF = /0, and
find that B/ F|A. Hence we orient B−A as B→ A in line 5, which is not a complex arrow in G̃ .
Note that we do not orient A−B as A→ B: the only chance we might do so is when u = A, v = F
and w = B in the inner loop of Algorithm 2, but we have B ∈ SAF and the condition in line 4 is not
satisfied. Hence, the graph we obtain before the last step in Algorithm 2 must be the one given in
Fig. 5(c), which differs from the recovered pattern in Fig. 5(d). This illustrates the necessity of the
last step in Algorithm 2. To see how the edge B→ A is removed in the last step of Algorithm 2, we
observe that, if we follow the procedure described in Remark 4 on Algorithm 2, the only chance
that B→ A becomes one of the candidate complex arrow pair is when it is considered together with
F → D. However, the only undirected path between A and D is simply A−D with D adjacent to B.
Hence B→ A stays unlabeled and will finally get removed in the last step of Algorithm 2. ■

3.4 Sample Versions of Algorithms 1 and 2

In this section, we present a brief description on how to obtain a sample version of the previous
algorithms and the related issues.

To apply the previous methods to a data set, we proceed in the exactly same way as before. The
only difference in the sample version of the algorithms lies in that statistical hypothesis tests are
needed to evaluate the predicate on line 5, 13 and 19 in Algorithm 1 and on line 4 in Algorithm
2. Specifically, conditional independence test of two variables u and v given a set C of variables is
required. Let the null hypothesis H0 be u v|C and alternative H1 be that H0 may not hold. Generally

2856

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

C

B A

D

F E

C

B A

D

F E

C

B A

D

F E

C

B A

D

F E

(a) (b) (c) (d)

(e)

Figure 5: (a) the chain graph G̃ in Example 2; (b) the skeleton G̃ ′ of G̃ ; (c) the graphical structure
G̃∗ before executing the last line in Algorithm 2; (d) the graphical structure G̃∗ obtained
after executing Algorithm 2; (e) a separation tree T̃ for G̃ in (a).

we can use the likelihood ratio test statistic

G2 =−2log
sup{L(θ|D) under H0}

sup{L(θ|D) under H1}
,

where L(θ|D) is the likelihood function of parameter θ with observed data D. Under H0, the statis-
tic G2 asymptotically follows the χ2 distribution with d f degrees of freedom being equal to the
difference of the dimensions of parameters for the alternative and null hypothesis (Wilks, 1938).

Let Xk be a vector of variables and N be the sample size. For the case of a Gaussian distribution,
the test statistic for testing Xi X j|Xk can be simplified to

G2 = −N× log(1− corr2(Xi,X j|Xk))

= N× log
det(Σ̂{i,k}{i,k})det(Σ̂{ j,k}{ j,k})

det(Σ̂{i, j,k}{i, j,k})det(Σ̂k,k)
,

which has an asymptotic χ2 distribution with d f = 1. Actually, the exact null distribution or a better
approximate distribution of G2 can be obtained based on Bartlett decomposition, see Whittaker
(1990) for details.

For the discrete case, let Nm
s be the observed frequency in a cell of Xs = m where s is an index set

of variables and m is category of variables Xs. For example, Nabc
i jk denotes the frequency of Xi = a,

X j = b and Xk = c. The G2 statistic for testing Xi X j|Xk is then given by

G2 = 2 ∑
a,b,c

Nabc
i jk log

Nabc
i jk Nc

k

Nac
ik Nbc

jk

,

which is asymptotically distributed as a χ2 distribution under H0 with degree of freedom

df = (#(Xi)−1)(#(X j)−1) ∏
Xl∈Xk

#(Xl),

where #(X) is the number of categories of variable X .

2857

MA, XIE AND GENG

3.4.1 THE MULTIPLE TESTING PROBLEM

As mentioned in the remarks of Algorithms 1 and 2, when perfect knowledge of the population
conditional independence structure is not available, we turn to hypotheses testing for obtaining
these conditional independence relations from data and run into the problem of multiple testing.
This is because we need to test the existence of separators for multiple edges, and we typically
consider more than one candidate separators for each edge.

Although a theoretical analysis of the impact of the multiple testing problem on the overall
error rate (see, for example, Drton and Perlman 2008) for the proposed method is beyond the scope
of this paper, simulation studies are conducted on randomly generated chain graphs to show the
impact of choices of different significance levels on our method in Section 5.1. Based on our
empirical study there, we feel that choosing a small significance level (e.g., α = 0.005 or 0.01) for
the individual tests usually yields good and stable results when the sample size is reasonably large
and the underlying graph is sparse.

3.5 Construction of Separation Trees

Algorithms 1 and 2 depend on the information encoded in the separation tree. In the subsection, we
address the issue of how to construct a separation tree.

As proposed by Xie et al. (2006), one can construct a d-separation tree from observed data, from
domain or prior knowledge of conditional independence relations or from a collection of databases.
Their arguments are also valid in the current setting. In the rest of this subsection, we first extend
Theorem 2 of Xie et al. (2006), which guarantees that their method for constructing a separation tree
from data is valid for chain graph models. Then we propose an algorithm for constructing a separa-
tion tree from background knowledge encoded in a labeled block ordering (Roverato and La Rocca,
2006) of the underlying chain graph. We remark that Algorithm 2 of Xie et al. (2006), which con-
structs d-separation trees from hyper-graphs, also works in the current context.

3.5.1 FROM UNDIRECTED INDEPENDENCE GRAPH TO SEPARATION TREE

For a chain graph G = (V,E) and a faithful distribution P, an undirected graph U with a vertex set
V is an undirected independence graph (UIG) of G if for any u,v ∈V ,

(u,v) is not an edge of U ⇒ u v | V \{u,v} in P. (2)

We generalize Theorem 2 of Xie et al. (2006) as follows.

Theorem 5 Let G be a chain graph. Then a junction tree constructed from any undirected inde-
pendence graph of G is a separation tree for G .

Since there are standard algorithms for constructing junction trees from UIGs (see Cowell et al.
1999, Chapter 4, Section 4), the construction of separation trees reduces to the construction of
UIGs. In this sense, Theorem 5 enables us to exploit various techniques for learning UIGs to serve
our purpose.

As suggested by relation (2), one way of learning UIGs from data is testing the required con-
ditional independencies. Agresti (2002) and Anderson (2003) provides general techniques for
discrete and Gaussian data respectively. Recently, there are also works on estimating UIGs via
`1-regularization, see, for instance, Friedman et al. (2007) for Gaussian data and Ravikumar et al.

2858

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

(2008) for the discrete case. Edwards (2000, Chapter 6) presents some other established methods
for UIG learning, including those that are valid when XV includes both continuous and discrete
variables. All these methods can be used to construct separation trees from data.

3.5.2 FROM LABELED BLOCK ORDERING TO SEPARATION TREE

When learning graphical models, it is a common practice to incorporate substantive background
knowledge in structural learning, mostly to reduce the dimensionality of the search spaces for both
computational and subject matter reasons.

Recently, Roverato and La Rocca (2006) studied in detail a general type of background knowl-
edge for chain graphs, which they called labeled block ordering. We introduce this concept here
and investigate how it is related to the construction of separation trees.

By summarizing Definitions 5 and 6 in Roverato and La Rocca (2006), we define the labeled
block ordering as the following.

Definition 6 Let V1, · · · ,Vk be a partition of a set of vertices V . A labeled block ordering B of V
is a sequence (V li

i , i = 1, · · · ,k) where li ∈ {u,d,g} and with the convention that Vi = V g
i . We say a

chain graph G = (V,E) is B-consistent if

1. every edge connecting vertices A ∈Vi and B ∈V j for i 6= j is oriented from A→ B if i < j;

2. for every li = u, the subgraph GVi is a UG;

3. for every li = d, the subgraph GVi is a DAG;

4. for every li = g, the subgraph GVi may have both directed and undirected edges.

Example 1. (Continued) Let V1 = {A,B,C,D,E,F}, V2 = {G,H,K} and V3 = {I,J}. Then Fig. 6
shows that for a labeled block ordering B = (V g

1 ,V g
2 ,V d

3), G in Fig. 1(a) is B-consistent. ■

C E

A F

B D

K

G H

I

J

V g
1 V g

2 V d
3

Figure 6: A labeled block ordering B = (V g
1 ,V g

2 ,V d
3) for which G in Fig. 1(a) is B-consistent.

To show how labeled block ordering helps learning separation trees, we start with the following
simple example.

Example 3. Suppose that the underlying chain graph is the one in Fig. 7(a) which is B-consistent
with B = {V g

1 ,V g
2 ,V g

3 }. Then for V1 = {A,B},V2 = {C,D} and V3 = {E,F}, we have V1 V3|V2.
Together with the total ordering on them, we can construct the DAG in Fig. 7(b) with vertices as

2859

MA, XIE AND GENG

blocks Vi, i = 1,2,3, which depicts the conditional independence structures on the three blocks. By
taking the junction tree of this DAG and replacing the blocks by the vertices they contain, we obtain
the tree structure in Fig. 7(c). This is a separation tree of the chain graph in Fig. 7(a). ■

A C E

B D F

V g
1 V g

2 V g
3

V1

V2

V3

(a) (b) (c)

Figure 7: (a) a chain graph with a labeled block ordering; (b) the DAG constructed for the blocks;
(c) the tree structure obtained from the junction tree of the DAG in (b).

Below we propose Algorithm 3 for constructing a separation tree from labeled block order-
ing knowledge. The idea is motivated by the preceding toy example. By omitting independence
structures within each block, we can treat each block as a vertex in a DAG. The total ordering on
the blocks and the conditional independence structures among them enable us to build a DAG on
these blocks. By taking the junction tree of this particular DAG, we obtain a separation tree of the
underlying chain graph model.

Algorithm 3: Separation Tree Construction with Labeled Block Ordering.

Input: A labeled block ordering B = (V li
i , i = 1, · · · ,k) of V ; perfect conditional

independence knowledge.
Output: A separation tree T of G .
Construct a DAG D with blocks Vi, i = 1, · · · ,k;1

Construct a junction tree T by triangulating D;2

In T , replace each block Vi by the original vertices it contains.3

We note that a labeled block ordering gives a total ordering of the blocks Vi, i = 1, · · · ,k. Given a
total ordering of the vertices of a DAG, one can use the Wermuth-Lauritzen algorithm (Spirtes et al.,
2000; Wermuth and Lauritzen, 1983) for constructing (the equivalence class of) the DAG from con-
ditional independence relations. Spirtes et al. (2000) also discussed how to incorporate the total
ordering information in the PC algorithm for constructing DAGs from conditional independence
relations. Since these approaches rely only on conditional independence relations, they can be used
in Algorithm 3 for constructing the DAG D . The only difference is that each vertex represents a
random vector rather than a random variable now. The correctness of Algorithm 3 is proved in
Appendix B.

2860

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

3.5.3 SEPARATION TREE REFINEMENT

In practice, the nodes of a separation tree constructed from a labeled block ordering or other methods
may still be large. Since the complexities of our skeleton and complex recovery algorithms are
largely dominated by the cardinality of the largest node on the separation tree, it is desirable to
further refine our separation tree by reducing the sizes of the nodes. To this end, we propose the
following algorithm.

Algorithm 4: Separation Tree Refinement.

Input: A crude separation tree Tc for G ; perfect conditional independence knowledge.
Output: A refined separation tree T for G .
Construct an undirected independence subgraph over each node of Tc;1

Combine the subgraphs into a global undirected independence graph Ḡ whose edge set is the2

union of all edge sets of subgraphs;
Construct a junction tree T of Ḡ .3

If the current separation tree contains a node whose cardinality is still relatively large, the above
algorithm can be repeatedly used until no further refinement is available. However, we remark that
the cardinality of the largest node on the separation tree is eventually determined by the sparseness
of the underlying chain graph together with other factors including the specific algorithms for con-
structing undirected independence subgraphs and junction tree. The correctness of the algorithm is
proved in Appendix B.

4. Computational Complexity Analysis

In this section, we investigate the computational complexities of Algorithms 1 and 2 and compare
them with the pattern recovery algorithm proposed by Studený (1997). We divide our analysis into
two stages: (a) skeleton recovery stage (Algorithm 1); (b) complex recovery stage (Algorithm 2).
In each stage, we start with a discussion on Studený’s algorithm and then give a comprehensive
analysis of ours.

4.1 Skeleton Recovery Stage

Let G = (V,E) be the unknown chain graph, p the number of vertices and e the number of edges,
including both lines and arrows. In Studený’s algorithm, to delete an edge between a vertex pair
u and v, we need to check the independence of u and v conditional on all possible subsets S of
V\{u,v}. Therefore, the complexity for investigating each possible edge in the skeleton is O(2p)
and hence the complexity for constructing the global skeleton is O(p22p).

For Algorithm 1, suppose that the input separation tree has H nodes {C1, · · · ,CH} where H ≤ p
and m = max{card(Ch),1≤ h≤ H}. The complexity for investigating all edges within each tree
node is thus O(m22m). Thus, the complexity for the first two parts of Algorithm 1 is O(Hm22m).
For the analysis of the third step, suppose that k = max{card(S),S ∈ T } is the cardinality of the
largest separator on the separation tree. Since the tree with H nodes has H−1 edges, we also have
H−1 separators. Thus, the edge to be investigated in step 3 is O(Hk2). Then, let d be the maximum
of the degrees of vertices in the partially recovered skeleton obtained after step 2. By our algorithm,

2861

MA, XIE AND GENG

the complexity for checking each edge is O(2d). Hence, the total complexity for step 3 is O(Hk22d).
Combining all the three parts, the total complexity for our Algorithm 1 is O(H(m22m + k22d)). It
is usually the case that m, k and d are much smaller than p, and therefore, our Algorithm 1 is
computationally less expensive than Studený’s algorithm, especially when G is sparse.

4.2 Complex Recovery Stage

For complex arrow orientation, Studený’s algorithm needs to first find a candidate complex structure
of some pre-specified length l and then check a collection of conditional independence relations.
Finding a candidate structure can be accomplished in a polynomial (of p) time. The complexity
of the algorithm is determined by the subsequent investigation on conditional independence rela-
tions. Actually, the number of conditional independence relations to be checked for each candidate
structure is 2p−2−1. Hence, the complexity of Studený’s algorithm is exponential in p.

In Algorithm 2, the computational complexity of the large double loop (lines 2-8) is determined
by the number of conditional independence relations we check in line 4. After identifying u,w and
v, we need only to check one single conditional independence with the conditioning set Suv∪{w},
which can be done in O(1) time. The pair {u,w}must be connected on G ′, thus the number of such
pairs is O(e). Since the number of v for each {u,w} pair is at most p, we execute line 4 at most O(pe)
times. The complexity for the double loop part is thus controlled by O(pe). Next we show that the
complexity for taking the pattern of the graph is O(e2(p + e)). As in the remarks on Algorithm 2,
in each step, we propose a pair of candidate complex arrows u1→ w1 and u2→ w2 and then check
whether there is an undirected path from w1 to w2 whose intermediate vertices are adjacent to neither
u1 nor u2. This can be done by performing a graph traversal algorithm on an undirected graph which
is obtained by deleting all existing arrows on the current graph with the adjacency relations checked
on the original graph. By a breadth-first search algorithm, the complexity is O(p + e) (Cormen et
al., 2001). Since the number of candidate complex arrow pairs is controlled by O(e2), the total
complexity for finding the pattern is O(e2(p + e)). Since pe = O(e2(p + e)), the total complexity
for Algorithm 2 is O(e2(p+ e)).

By incorporating the information obtained in the skeleton recovery stage, we greatly reduce
the number of conditional independence tests to be checked and hence obtain an algorithm of only
polynomial time complexity for the complex recovery stage. The improvement is achieved with
additional cost: we need to store the c-separator information Suv’s obtained from Algorithm 1 in the
set S . The possible number of {u,v} combinations is O(p2), while the length of Suv is O(p). Hence,
the total space we need to store S is O(p3), which is still polynomially complex.

4.3 Comparison with a DAG Specific Algorithm When the Underlying Graph is a DAG

In this subsection, we compare our algorithm with Algorithm 1 in Xie et al. (2006) that is designed
specifically for DAG structural learning when the underlying graph structure is a DAG. We make
this choice of the DAG specific algorithm so that both algorithms can have the same separation tree
as input and hence are directly comparable.

Combining the analyses in the above two subsections, we know that the total complexity of our
general algorithm is O(H(m22m + k22d) + e2(p + e)), while the complexity of the DAG specific
algorithm is O(Hm22m) as claimed in Xie et al. (2006, Section 6). So the extra complexity in
the worst case is O(Hk22d + e2(p + e)). The term that might make a difference is O(Hk22d),
which occurs as the complexity of step 3 in our Algorithm 1 and involves an exponential term in

2862

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

d. Note that d is defined as the maximum degree of the vertices in the partially recovered skeleton
G ′ obtained after step 2 of Algorithm 1, where G ′ is exactly the skeleton for the underlying DAG
in the current situation (i.e., step 3 of Algorithm 1 does not make any further modification to G ′
when G is a DAG). Hence, if the underlying graph is sparse, d is small and the extra complexity
O(Hk22d + e2(p+ e)) is well under control.

Therefore, if we believe that the true graph is sparse, the case where our decomposition approach
is most applicable, we can apply our general chain graph structural learning algorithm without
worrying much about significant extra cost even when the underlying graph is indeed a DAG.

5. Simulation

In this section, we investigate the performance of our algorithms under a variety of circumstances
using simulated data sets. We first demonstrate various aspects of our algorithms by running them
on randomly generated chain graph models. We then compare our methods with DAG-specific
learning algorithms on data generated from the ALARM network, a Bayesian network that has
been widely used in evaluating the performance of structural learning algorithms. The simulation
results show the competitiveness of our algorithms, especially when the underlying graph is sparse.
From now on, we refer to our method as the LCD (Learn Chain graph via Decomposition) method.
Algorithms 1 and 2 have been implemented in the R language. All the results reported here are
based on the R implementation.

5.1 Performance on Random Chain Graphs

To assess the quality of a learning method, we adopt the way Kalisch and Bühlmann (2007) used in
investigating the performance of PC algorithm on Bayesian networks. We perform our algorithms
on randomly generated chain graphs and report summary error measures.

5.1.1 DATA GENERATION PROCEDURE

First we discuss the way in which the random chain graphs and random samples are generated.
Given a vertex set V , let p = |V | and N denote the average degree of edges (including undirected
and pointing out and pointing in) for each vertex. We generate a random chain graph on V as
follows:

1. Order the p vertices and initialize a p× p adjacency matrix A with zeros;

2. For each element in the lower triangle part of A, set it to be a random number generated from
a Bernoulli distribution with probability of occurrence s = N/(p−1);

3. Symmetrize A according to its lower triangle;

4. Select an integer k randomly from {1, · · · , p} as the number of chain components;

5. Split the interval [1, p] into k equal-length subintervals I1, · · · , Ik so that the set of variables
falling into each subinterval Im forms a chain component Cm;

6. Set Ai j = 0 for any (i, j) pair such that i ∈ Il, j ∈ Im with l > m.

2863

MA, XIE AND GENG

This procedure then yields an adjacency matrix A for a chain graph with (Ai j = A ji = 1) rep-
resenting an undirected edge between Vi and V j and (Ai j = 1,A ji = 0) representing a directed edge
from Vi to Vj. Moreover, it is not hard to see that E[vertex degree] = N where an adjacent vertex can
be linked by either an undirected or a directed edge.

Given a randomly generated chain graph G with ordered chain components C1, · · · ,Ck, we gen-
erate a Gaussian distribution on it via the incomplete block-recursive regression as described in
Wermuth (1992). Let Xm be the |Cm|×1 random vector, and X = (X T

k , · · · ,XT
1)T . Then we have the

block-recursive regression system as
B∗X = W ∗ ,

where

B∗ =

Σk,k Σk,k−1 · · · Σk,1

0 Σk−1,k−1.k · · · Σk−1,1.k

...
.

...
0 · · · 0 Σ1,1.23···k

.

Let

T =

Σk,k 0
. . .

0 Σ1,1.23···k

be the block-diagonal part of B∗. Each block diagonal element Σi,i.i+1···k of B∗ is the inverse co-
variance matrix of Xi conditioning on (Xi+1, · · · ,Xk), an element of which is set to be zero if the
corresponding edge within the chain component is missing. The upper triangular part of B∗ has all
the conditional covariances between Xi and (X1, · · · ,Xi−1). The zero constraints on the elements
correspond to missing directed edges among different components. Finally, W ∗ ∼ N(0,T).

For the chain component Ci, suppose the corresponding vertices are Vi1 , · · · ,Vir , and in general,
let B∗[Vl,Vm] be the element of B∗ that corresponds to the vertex pair (Vl,Vm). In our simulation, we
generate the B∗ matrix in the following way:

1. For the diagonal block Σi,i.i+1···k of B∗, for 1 ≤ j < j′ ≤ r, we fix B∗[Vi j ,Vi j] = 1 and set
B∗[Vi j ,Vi j′

] = 0 if the vertices Vi j and Vi j′
are non-adjacent in Ci and otherwise sampled ran-

domly from (−1.5/r,−0.5/r)∪ (0.5/r,1.5/r), and finally we symmetrize the matrix accord-
ing to its upper triangular part.

2. For Σi, j.i+1···k,1≤ j≤ i−1, an element B∗[Vl,Vm] is set to be zero if Vl ∈Ci is not pointed to by
an arrow starting from Vm ∈C1∪ ·· ·∪Ci−1, and sampled randomly from (−1.5/r,−0.5/r)∪
(0.5/r,1.5/r) otherwise.

3. If any of the block diagonal elements in B∗ is not positive semi-definite, we repeat Step (1)
and (2).

After setting up the B∗ matrix, we take its block diagonal to obtain the T matrix. For fixed B∗

and T , we first draw i.i.d. samples of W ∗ from N(0,T), and then pre-multiply them by (B∗)−1 to
get random samples of X . We remark that faithfulness is not necessarily guaranteed by the current
sampling procedure and quantifying the deviation from the faithfulness assumption is beyond the
scope of this paper.

2864

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

5.1.2 PERFORMANCE UNDER DIFFERENT SETTINGS

We examine the performance of our algorithm in terms of three error measures: (a) the true positive
rate (TPR) and (b) the false positive rate (FPR) for the skeleton and (c) the structural Hamming
distance (SHD) for the pattern. In short, TPR is the ratio of # (correctly identified edge) over total
number of edges, FPR is the ratio of # (incorrectly identified edge) over total number of gaps and
SHD is the number of legitimate operations needed to change the current pattern to the true one,
where legitimate operations are: (a) add or delete an edge and (b) insert, delete or reverse an edge
orientation. In principle, a large TPR, a small FPR and a small SHD indicate good performance.

In our simulation, we change three parameters p (the number of vertices), n (sample size) and
N (expected number of adjacent vertices) as follows:

• p ∈ {10,40,80},

• n ∈ {100,300,1000,3000,10000,30000},

• N ∈ {2,5}.

For each (p,N) combination, we first generate 25 random chain graphs. We then generate a
random Gaussian distribution based on each graph and draw an identically independently distributed
(i.i.d.) sample of size n from this distribution for each possible n. For each sample, three different
significance levels (α = 0.005, 0.01 or 0.05) are used to perform the hypothesis tests. We then
compare the results to access the influence of the significance testing level on the performance of our
algorithms. A separation tree is obtained through the following ‘one step elimination’ procedure:

1. We start from a complete UIG over all p vertices;

2. We test zero partial correlation for each element of the sample concentration matrix at the
chosen significance level α and delete an edge if the corresponding test doesn’t reject the null
hypothesis;

3. An UIG is obtained after Step 2 and its junction tree is computed and used as the separation
tree in the algorithms.

The plots of the error measures are given in Fig. 8, 9 and 10. From the plots, we see that: (a) our
algorithms yield better results on sparse graphs (N = 2) than on dense graphs (N = 5); (b) the TPR
increases with sample size while the SHD decreases; (c) the behavior of FPR is largely regulated by
the significance level α used in the individual tests and has no clear dependence on the sample size
(Note that FPRs and their variations in the middle columns of Fig. 8, 9 and 10 are very small since
the vertical axes have very small scales); (d) large significance level α(=0.05) typically yields large
TPR, FPR and SHD while the advantage in terms of a larger TPR (compared to α = 0.005 or 0.01)
fades out as the sample size increases and the disadvantage in terms of a larger SHD becomes much
worse; (e) accuracy in terms of TPR and SHD based on α = 0.005 or α = 0.01 is very close while
choosing α = 0.005 does yield a consistently (albeit slightly) lower FPR across all the settings in
the current simulation. Such empirical evidence suggests that in order to account for the multiple
testing problem, we can choose a small value (say α = 0.005 or 0.01 for the current example) for
the significance level of individual tests. However, the optimal value for a desired overall error rate
may depend on the sample size and the sparsity of the underlying graph.

2865

MA, XIE AND GENG

2.0 2.5 3.0 3.5 4.0 4.5

0.
6

0.
7

0.
8

0.
9

1.
0

p = 10 , N = 2

log10(sample size)

T
P

R

2.0 2.5 3.0 3.5 4.0 4.5

0.
00

0
0.

01
0

0.
02

0

p = 10 , N = 2

log10(sample size)

F
P

R

2.0 2.5 3.0 3.5 4.0 4.5

1
2

3
4

5
6

7

p = 10 , N = 2

log10(sample size)

S
H

D

2.0 2.5 3.0 3.5 4.0 4.5

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

p = 10 , N = 5

log10(sample size)

T
P

R

2.0 2.5 3.0 3.5 4.0 4.5

0.
02

0
0.

03
0

0.
04

0
0.

05
0

p = 10 , N = 5

log10(sample size)

F
P

R

2.0 2.5 3.0 3.5 4.0 4.5

15
20

25
30

p = 10 , N = 5

log10(sample size)

S
H

D

Figure 8: Error measures of the algorithms for randomly generated Gaussian chain graph models:
average over 25 repetitions with 10 variables. The two rows correspond to N = 2 and
N = 5 cases and the three columns give three error measures: TPR, FPR and SHD in each
setting respectively. In each plot, the solid/dashed/dotted lines correspond to significance
levels α = 0.01/0.005/0.05.

Finally, we look at how our method scales with the sample size, which is not analyzed explicitly
in Section 4. The average running times vs. the sample sizes are plotted in Fig. 11. It can be
seen that: (a) the average run time scales approximately linearly with log(sample size); and (b) the
scaling constant depends on the sparsity of the graph. The simulations were run on an Intel Core
Duo 1.83GHz CPU.

5.2 Learning the ALARM Network

As we have pointed out in Section 1, Bayesian networks are special cases of chain graphs. It is of
interest to see whether our general algorithms still work well when the data are actually generated
from a Bayesian network. For this purpose, in this subsection, we perform simulation studies on
both Gaussian and discrete case for the ALARM network in Fig. 12 and compare our algorithms for
general chain graphs with those specifically designed for Bayesian networks. The network was first
proposed in Beinlich et al. (1989) as a medical diagnostic network.

5.2.1 THE GAUSSIAN CASE

In the Gaussian case, for each run of the simulation, we repeat the following steps:

2866

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

2.0 2.5 3.0 3.5 4.0 4.5

0.
6

0.
7

0.
8

0.
9

1.
0

p = 40 , N = 2

log10(sample size)

T
P

R

2.0 2.5 3.0 3.5 4.0 4.5

0.
00

2
0.

00
4

0.
00

6
0.

00
8

p = 40 , N = 2

log10(sample size)

F
P

R

2.0 2.5 3.0 3.5 4.0 4.5

0
5

10
15

20
25

30

p = 40 , N = 2

log10(sample size)

S
H

D

2.0 2.5 3.0 3.5 4.0 4.5

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

p = 40 , N = 5

log10(sample size)

T
P

R

2.0 2.5 3.0 3.5 4.0 4.5

0.
00

4
0.

00
8

0.
01

2

p = 40 , N = 5

log10(sample size)

F
P

R

2.0 2.5 3.0 3.5 4.0 4.5

60
80

10
0

12
0

14
0

16
0

p = 40 , N = 5

log10(sample size)

S
H

D

Figure 9: Error measures of the algorithms for randomly generated Gaussian chain graph models:
average over 25 repetitions with 40 variables. Display setup is the same as in Fig. 8.

1. A Gaussian distribution on the network is generated using a recursive linear regression model,
whose coefficients are random samples from the uniform distribution on (−1.5,−0.5) ∪
(0.5,1.5) and residuals are random samples from N(0,1).

2. A sample of size n is generated from the distribution obtained at step 1.

3. We run the LCD algorithms, the DAG learning algorithms proposed in Xie et al. (2006) and
the PC algorithm implemented in the R package pcalg (Kalisch and Bühlmann, 2007) all
with several different choices of the significance level α. The one step elimination procedure
described in Section 5.1.2 was used to construct the separation trees for the LCD and DAG
methods.

4. We record the number of extra edges (FP), the number of missing edges (FN) and the struc-
tural Hamming distance (SHD) compared with the true pattern for all the three learned pat-
terns.

We performed 100 runs for each sample size n ∈ {1000,2000,5000,10000}. For each sample,
we allow three different significance levels α ∈ {0.05,0.01,0.005} for all the three methods. Table
1 documents the averages and standard errors (in parentheses) from the 100 runs for each method-
parameter-sample size combination.

As shown in Table 1, compared with the DAG method (Xie et al., 2006), the LCD method
consistently yields a smaller number of false positives and the differences in false negatives are
consistently smaller than two on recovering the skeleton of the network. The SHDs obtained from

2867

MA, XIE AND GENG

2.0 2.5 3.0 3.5 4.0 4.5

0.
4

0.
6

0.
8

1.
0

p = 80 , N = 2

log10(sample size)

T
P

R

2.0 2.5 3.0 3.5 4.0 4.5

0.
00

0
0.

00
2

0.
00

4
0.

00
6

p = 80 , N = 2

log10(sample size)

F
P

R

2.0 2.5 3.0 3.5 4.0 4.5

0
20

40
60

80
10

0
12

0

p = 80 , N = 2

log10(sample size)

S
H

D

2.0 2.5 3.0 3.5 4.0 4.5

0.
2

0.
4

0.
6

0.
8

p = 80 , N = 5

log10(sample size)

T
P

R

2.0 2.5 3.0 3.5 4.0 4.5

0.
00

1
0.

00
3

0.
00

5
0.

00
7

p = 80 , N = 5

log10(sample size)

F
P

R

2.0 2.5 3.0 3.5 4.0 4.5

10
0

15
0

20
0

25
0

30
0

35
0

p = 80 , N = 5

log10(sample size)

S
H

D

Figure 10: Error measures of the algorithms for randomly generated Gaussian chain graph models:
average over 25 repetitions with 80 variables. Display setup is the same as in Fig. 8.

our algorithms are usually comparable to those from the DAG method when α = 0.05 and the
difference is usually less than five when α = 0.01 or 0.005. Moreover, we remark that as sample
size grows, the power of the significance test increases, which leads to better performance of the
LCD method as in the case of other hypothesis testing based methods. However, from Table 1, we
find that the LCD performance increases more rapidly in terms of SHD. One plausible reason is
that in Algorithm 2, we identify complex arrows by rejecting conditional independence hypotheses
rather than direct manipulation as in the algorithms specific for DAG and hence have some extra
benefit in terms of accuracy as the power of the test becomes greater.

Finally, the LCD method consistently outperforms the PC algorithm in all three error measures.
Such simulation results confirm that our method is reliable when we do not know the information
that the underlying graph is a DAG, which is usually untestable from data.

5.2.2 THE DISCRETE CASE

In this section, a similar simulation study with discrete data sampled from the ALARM network is
performed. The variables in the network are allowed to have two to four levels. For each run of the
simulation, we repeat the following steps:

1. For each variable Xi and fixed configuration pai of its parents, we define the conditional
probability P(Xi = j|pai) = r j/∑L

k=1 rk, where L is the number of levels of Xi and {r1, · · · ,rL}
are random numbers from the Uniform(0,1) distribution.

2. A sample of size n is generated from the above distribution.

2868

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

2.0 2.5 3.0 3.5 4.0 4.5

0.
05

0.
07

0.
09

0.
11

p = 10 , N = 2

log10(sample size)

T
IM

E
(s

ec
)

2.0 2.5 3.0 3.5 4.0 4.5

0.
4

0.
8

1.
2

1.
6

p = 40 , N = 2

log10(sample size)

T
IM

E
(s

ec
)

2.0 2.5 3.0 3.5 4.0 4.5

2
4

6
8

10
12

14

p = 80 , N = 2

log10(sample size)

T
IM

E
(s

ec
)

2.0 2.5 3.0 3.5 4.0 4.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

p = 10 , N = 5

log10(sample size)

T
IM

E
(s

ec
)

2.0 2.5 3.0 3.5 4.0 4.5

0
2

4
6

8
10

12
14

p = 40 , N = 5

log10(sample size)

T
IM

E
(s

ec
)

2.0 2.5 3.0 3.5 4.0 4.5

0
50

10
0

15
0

p = 80 , N = 5

log10(sample size)

T
IM

E
(s

ec
)

Figure 11: Running times of the algorithms on randomly generated Gaussian chain graph models:
average over 25 repetitions. The two rows correspond to N = 2 and 5 cases and the three
columns represent p = 10, 40 and 80 respectively. In each plot, the solid/dashed/dotted
lines correspond to significance levels α = 0.01/0.005/0.05.

+

,

-

/ 0

1

2 3

+*

+,

+.

+/

+1

+2

+3

,+

,,

,-

,.

,/

,0

,2

,3 -*

-+

-,

-.

-/.

++

,*

,1

--

+-

+0

-0

-1

Figure 12: The ALARM network.

3. We run three algorithms designed specifically for DAG that have been shown to have a good
performance: MMHC (Max-Min Hill Climbing: Tsamardinos et al., 2006), REC (Recursive:
Xie and Geng, 2008) and SC (Sparse Candidate: Friedman et al., 1999) with several different
choice of parameters. We also perform the LCD learning algorithm with different choices
of the significance level. For the LCD method, a grow-shrink Markov blanket selection is

2869

MA, XIE AND GENG

Alg (Level α) n = 1000 n = 2000 n = 5000 n = 10000

DAG (3.09, 4.05, 17.3) (3.17, 3.14, 15.2) (3.48, 2.07, 12.4) (3.16, 1.62, 10.5)
(0.05) (0.18, 0.19, 0.61) (0.16, 0.16, 0.54) (0.18, 0.16, 0.55) (0.17, 0.11, 0.46)

DAG (0.87, 3.41, 12.2) (0.87, 2.60, 9.90) (0.71, 1.60, 6.02) (0.58, 1.24, 5.23)
(0.01) (0.08, 0.19, 0.64) (0.09, 0.17, 0.54) (0.08, 0.14, 0.41) (0.08, 0.10, 0.36)

DAG (0.61, 3.34, 11.4) (0.54, 2.50, 8.77) (0.36, 1.49, 5.43) (0.33, 1.08, 4.14)
(0.005) (0.08, 0.19, 0.60) (0.07, 0.16, 0.52) (0.07, 0.12, 0.38) (0.06, 0.11, 0.39)

LCD (2.06, 5.19, 19.0) (2.10, 4.25, 16.7) (2.5, 3.07, 14.0) (2.15, 2.38, 11.3)
(0.05) (0.16, 0.19, 0.58) (0.15, 0.17, 0.53) (0.15, 0.15, 0.50) (0.15, 0.14, 0.39)

LCD (0.41, 4.93, 15.8) (0.34, 4.01, 12.9) (0.44, 2.82, 9.79) (0.30, 2.10, 7.11)
(0.01) (0.06, 0.21, 0.61) (0.06, 0.17, 0.50) (0.07, 0.15, 0.41) (0.05, 0.13, 0.40)

LCD (0.22, 4.86, 15.3) (0.12, 3.85, 12.2) (0.13, 2.85, 9.14) (0.14, 1.95, 6.49)
(0.005) (0.05, 0.21, 0.61) (0.03, 0.16, 0.52) (0.04, 0.14, 0.41) (0.03, 0.13, 0.40)

PC (4.72, 7.98, 38.4) (5.03, 6.79, 38.5) (4.94, 5.19, 35.2) (4.41, 4.21, 31.9)
(0.05) (0.22, 0.23, 0.73) (0.23, 0.23, 0.73) (0.24, 0.20, 0.79) (0.26, 0.19, 0.89)

PC (3.45, 9.23, 37.9) (3.11, 7.78, 34.8) (3.27, 5.88, 31.5) (2.98, 4.87, 30.9)
(0.01) (0.19, 0.26, 0.78) (0.19, 0.22, 0.76) (0.20, 0.21, 0.79) (0.22, 0.20, 0.88)

PC (3.14, 9.61, 38.1) (2.95, 8.05, 35.6) (3.03, 6.15, 31.4) (2.88, 5.13, 30.4)
(0.005) (0.20, 0.27, 0.69) (0.18, 0.23, 0.79) (0.20, 0.21, 0.78) (0.22, 0.20, 0.79)

Table 1: Simulation results for Gaussian samples from the ALARM network. Averages and stan-
dard errors for (FP, FN, SHD) from 100 runs.

performed on the data to learn the UIG and the junction tree of the UIG is supplied as the
separation tree for the algorithm.

4. For each algorithm, we recorded the FP, FN and SHD of the recovered pattern under each
choice of the learning parameter.

We performed 100 runs for each of the four different sample sizes n∈{1000,2000,5000,10000},
and in each run, we allow the following choices of the learning parameters:

2870

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

Alg (Level α) n = 1000 n = 2000 n = 5000 n = 10000

MMHC (0.27, 7.77, 34.0) (0.16, 5.15, 27.9) (0.08, 2.61, 20.6) (0.03, 1.53, 16.0)
(0.05) (0.05, 0.25, 0.57) (0.04, 0.19, 0.48) (0.03, 0.15, 0.47) (0.02, 0.10, 0.45)

MMHC (0.13, 8.39, 34.6) (0.08, 5.53, 28.2) (0.07, 2.96, 21.2) (0.00, 1.64, 16.1)
(0.01) (0.04, 0.26, 0.57) (0.03, 0.19, 0.48) (0.03, 0.16, 0.46) (0.00, 0.10, 0.45)

MMHC (0.13, 8.79, 35.3) (0.09, 5.77, 28.6) (0.06, 3.09, 21.4) (0.01, 1.75, 16.3)
(0.005) (0.04, 0.26, 0.57) (0.03, 0.18, 0.51) (0.03, 0.16, 0.47) (0.01, 0.11, 0.46)

REC (6.20, 4.95, 40.1) (6.49, 3.52, 35.9) (6.20, 1.77, 28.9) (6.39, 0.80, 25.1)
(0.05) (0.24, 0.19, 0.71) (0.24, 0.13, 0.74) (0.23, 0.11, 0.68) (0.23, 0.08, 0.73)

REC (1.57, 5.52, 33.2) (1.82, 3.64, 27.2) (2.06, 1.80, 20.0) (2.31, 0.86, 16.2)
(0.01) (0.13, 0.22, 0.58) (0.13, 0.14, 0.48) (0.12, 0.11, 0.56) (0.14, 0.09, 0.52)

REC (1.02, 5.72, 32.9) (1.23, 3.76, 26.3) (1.20, 1.86, 18.6) (1.64, 0.90, 14.6)
(0.005) (0.10, 0.22, 0.55) (0.10, 0.15, 0.49) (0.08, 0.12, 0.49) (0.12, 0.09, 0.47)

SC (0.63, 7.35, 34.2) (0.50, 4.71, 27.8) (0.59, 2.50, 21.7) (0.81, 1.53, 18.1)
(5) (0.07, 0.26, 0.60) (0.09, 0.18, 0.49) (0.09, 0.14, 0.53) (0.11, 0.10, 0.56)

SC (0.85, 7.30, 34.5) (0.76, 4.65, 28.3) (0.94, 2.36, 22.0) (1.30, 1.32, 18.1)
(10) (0.09, 0.25, 0.64) (0.09, 0.18, 0.52) (0.09, 0.14, 0.53) (0.13, 0.10, 0.59)

LCD (2.92, 8.49, 38.9) (2.50, 5.94, 32.17) (2.18, 3.41, 25.17) (1.99, 2.18, 19.8)
(0.05) (0.17, 0.21, 0.53) (0.16, 0.18, 0.51) (0.14, 0.13, 0.46) (0.12, 0.10, 0.50)

LCD (1.07, 8.16, 37.8) (0.97, 5.63, 31.7) (0.80, 3.40, 23.1) (0.68, 2.11, 17.2)
(0.01) (0.09, 0.20, 0.46) (0.09, 0.16, 0.42) (0.09, 0.13, 0.46) (0.09, 0.09, 0.42)

LCD (0.69, 8.14, 38.4) (0.67, 5.84, 31.8) (0.40, 3.31, 23.2) (0.41, 2.09, 17.1)
(0.005) (0.08, 0.19, 0.41) (0.08, 0.17, 0.43) (0.07, 0.13, 0.45) (0.07, 0.09, 0.40)

Table 2: Simulation results for discrete samples from the ALARM network. Averages and standard
errors for (FP, FN, SHD) from 100 runs.

2871

MA, XIE AND GENG

• For MMHC, REC and LCD, we allow three different significance levels α∈{0.05,0.01,0.005};
and

• For SC, we allow the learning parameters to be either 5 or 10.

The means and standard errors from the 100 runs of all the four learning methods are summa-
rized in Table 2. It can be seen that REC could yield the best result when the learning parameter is
appropriately chosen. However, all the other methods are more robust against the choice of learning
parameters. For the LCD method, all the three error measures: FP, FN and SHD are consistently
comparable to those of methods specifically designed for DAG. Moreover, as in the Gaussian case,
the power of the tests used in the LCD method grows as the sample size become larger, which makes
the LCD method even more competitive, especially in terms of SHD. For example, when the sam-
ple size reaches 10000, the LCD method with α = 0.01 or 0.005 outperforms the sparse candidate
method with parameters 5 or 10.

6. Discussion

In this paper, we presented a computationally feasible method for structural learning of chain graph
models. The method can be used to facilitate the investigation of both response-explanatory and
symmetric association relations among a set of variables simultaneously within the framework of
chain graph models, a merit not shared by either Bayesian networks or Markov networks.

Simulation studies illustrate that our method yields good results in a variety of situations, espe-
cially when the underlying graph is sparse. On the other hand, the results also reveal that the power
of the significance test has an important influence on the performance of our method. With fixed
number of samples, one can expect a better accuracy if we replace the asymptotic test used in our
implementation with an exact test. However, there is a trade-off between accuracy and computa-
tional time.

The results in this paper also raised a number of interesting questions for future research. We
briefly comment on some of those questions here. First, the separation tree plays a key role in
Algorithms 1 and 2. Although the construction of separation trees has been discussed in Xie et al.
(2006) and Section 3.5 here, we believe that there is room for further improvements. Second,
we have applied hypothesis testing for the detection of local separators in Algorithm 1 and also in
complex arrow determination in Algorithm 2. It shall be interesting to see whether there exists some
alternative approach, preferably not based on hypothesis testing, to serve the same purpose here. A
theoretical analysis of the effect of multiple testing on the overall error rate of the procedure is also
important. In addition, it is a common practice to incorporate prior information about the order of the
variables in graphical modelling. Therefore, incorporation of such information into our algorithms
is worth investigation. Finally, our approach might be extendible to the structural learning of chain
graph of alternative Markov properties, for example, AMP chain graphs (Andersson et al., 2001)
and multiple regression chain graphs (Cox and Wermuth, 1996).

An R language package lcd that implements our algorithms is available on the first author’s
website: www.stanford.edu/˜zongming/software.html.

2872

www.stanford.edu/~zongming/software.html

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

Acknowledgments

The authors would like to thank two referees for their valuable suggestions and comments which
improve the presentation of the previous version of the paper. We would also like to thank Profes-
sor John Chambers and Xiangrui Meng for their help on the simulation study. This research was
supported by NSFC (10771007, 10431010, 10721403), 863 Project of China (2007AA01Z437),
MSRA and MOE-Microsoft Key Laboratory of Statistics and Information Technology of Peking
University. The first author was also supported in part by grants NSF DMS 0505303 and NIH EB
R01 EB001988.

Appendix A. Proofs of Theoretical Results

In this part, we give proofs to theorems and propositions. We first give a definition and several
lemmas that are to be used in later proofs.

Definition 7 Let T be a separation tree for a CG G with the node set C = {C1, · · · ,CH}. For any
two vertices u and v in G , the distance between u and v in the tree T is defined by

d(u,v) = min
Ci3u,C j3v

d(Ci,C j),

where d(Ci,C j) is the distance between nodes Ci and C j in T . We call Ci and C j minimizers for u
and v if they minimize the distance d(Ci,C j).

Lemma 8 Let ρ be a route from u to v in a chain graph G , and W the set of all vertices on ρ (W
may or may not contain the two end vertices). Suppose that ρ is intervented by S ⊂V . If W ⊂ S, ρ
is also intervented by W and any vertex set containing W.

Proof Since ρ is intervented by S and W ⊂ S, there must be a non head-to-head section σ of ρ that
is hit by S and actually every non head-to-head section of ρ is hit by S. Thus, σ is also hit by W and
any vertex set containing W . Hence, ρ is intervented.

Lemma 9 Let T be a separation tree for a chain graph over vertex set V and K a separator of
T which separates T into two subtrees T1 and T2 with variable sets V1 and V2. Suppose that
u ∈V1\K, v ∈V2\K and ρ is a route from u to v in G . Let W denote the set of all vertices on ρ (W
may or may not contain the two end vertices). Then ρ is intervented by W ∩K and by any vertex set
containing W ∩K.

Proof Since u ∈ V1\K and v ∈ V2\K, there must be a sequence from s (may be u) to y (may be v)
in ρ = (u, · · · ,s, t, · · · ,x,y, · · · ,v) such that s ∈ V1\K, y ∈ V2\K and all vertices from t to x in this
sequence are contained in K. Otherwise, every vertex of ρ is either in V1\K or in V2\K. This implies
that there exists w ∈ V1\K and z ∈ V2\K on ρ that are adjacent, which is contradictory to the fact
that 〈V1\K,V2\K|K〉

sep
G . Without loss of generality, we can suppose that y is the first vertex (from

the left) of ρ that is not in V1.
Let ρ′ be the sub-route of the sequence (s, t, · · · ,x,y), and W ′ be the vertex set of ρ′ excluding

s and y. Since W ′ ⊂ K, we know from Lemma 8 that there is at least one non head-to-head section

2873

MA, XIE AND GENG

(w.r.t. ρ′) on ρ′ and every non head-to-head section of ρ′ is hit by W ′. We are to show that there
is at least one non head-to-head section of ρ that is hit by K and hence W ∩K as well as any set
containing W ∩K.

The only problem arises when ρ′ is part of a head-to-head section of ρ. Otherwise, there is some
non head-to-head section of ρ′ that is (part of) a non head-to-head section of ρ.

Thus, we suppose that the head-to-head section of ρ is

s′→ s”−·· ·− s− t−·· ·− x− y−·· ·− y”← y′.

By our assumption on y, we know that s′ ∈ V1. If s′ ∈ K, then the non head-to-head section con-
taining s′ is hit by K. If s′ ∈V1\K and y′ ∈ K, then the non head-to-head section containing y′ gives
the result. If s′ ∈ V1\K and y′ ∈ V1\K, then we can consider the sub-route starting from y′. This is
legitimate since every non head-to-head section of that sub-route is also non head-to-head w.r.t. ρ.
Hence, we need only consider the case that s′ ∈ V1\K and y′ ∈ V2\K. In this case, let t ′ be the last
(from left) vertex in this section that is adjacent to s′ and x′ the first vertex after t ′ in this section
that is adjacent to y′. Since chain graphs cannot have directed pseudocycles, we know that s′→ t ′

and y′→ x′. Then we have s′ / y′|K, which is contradictory to the property of separation trees that
〈V1\K,V2\K|K〉

sep
G . This completes our proof.

Lemma 10 Let u and v be two non adjacent vertices in a chain graph G and ρ a route from u to v
in T . If ρ is not contained in An(u)∪An(v), then ρ is intervented by any subset S of An(u)∪An(v).

Proof Since ρ is not contained in An(u)∪An(v), there exist four vertices s, t,x and y, such that
ρ = (u, · · · ,s, t, · · · ,x,y, · · · ,v), with {s,y} ⊂ An(u)∪An(v) and {t, · · · ,x}∩ [An(u)∪An(v)] = /0.
Then we have s→ t and x← y, since otherwise t and/or x must be in An(u)∪An(v). Thus, there
exists at least one head-to-head section between s and y on ρ such that it is not hit by any subset of
An(u)∪An(v). Hence, ρ is intervented by any subset S of An(u)∪An(v).

Lemma 11 Let T be a separation tree for a chain graph G over V and C a node of T . Let u and
v be two vertices in C which are non adjacent in G . If u and v are not contained simultaneously in
any separator connected to C, then there exists a subset S of C which c-separates u and v in G .

Proof Define
S = [An(u)∪An(v)]∩ [C\{u,v}].

We show below that 〈u,v|S〉sep
G .

To this end, let ρ be any fixed route from u to v in G . If ρ is not contained in An(u)∪An(v), by
Lemma 10, ρ is intervented by S. Otherwise, we divide the problem into the following six possible
situations:

1. u−·· ·− u′← x, x 6= v, x ∈C, where u−·· ·− u′ means the first (from left) section of ρ that
contains u;

2. u−·· ·−u′→ x−·· ·− x′→ y, x 6= v, x ∈C;

2874

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

3. u−·· ·−u′→ x−·· ·− x′← y, x 6= v, x ∈C, y ∈C;

4. u−·· ·−u′→ x−·· ·− x′← y, x 6= v, x ∈C, y /∈C;

5. u−u′−·· ·− v′− v, u−u′−·· ·− v′→ v or u−u′−·· ·− v′← v;

6. u−·· ·−u′→ x or u−·· ·−u′← x, x /∈C.

We prove the desired result situation by situation.
For situation 1, we have that x ∈ An(u), which, together with x ∈C implies that x ∈ S. The non

head-to-head section containing x is hit by S, and ρ is thus intervented.
For situation 2, since x ∈ An(u)∪An(v) and x /∈ An(u), we have x ∈ An(v). Together with

x ∈C, this gives x ∈ S and the non head-to-head section containing x is hit by S.
For situation 3, since chain graphs do not admit directed pseudocycles, we know that x /∈An(u)

and y 6= v. Similar to situation 2, we have x ∈ An(v) and hence y ∈ An(v). The non head-to-head
section containing y is hit by S.

For situation 4, suppose that C′ is one of the nodes on T that contains y. Consider first the case
when v belongs to the separator K connected to C and the next node on the path from C to C ′ on T .
By our assumption, u /∈ K. We divide the problem into the following three cases:

(i) {u, · · · ,u′}∩S 6= /0: u−·· ·−u′ is hit by S and ρ is hence intervented;

(ii) {u, · · · ,u′}∩S = /0,{x, · · · ,x′}∩S = /0: the head-to-head section x−·· ·−x′ is not hit by S and
ρ is intervented;

(iii) {u, · · · ,u′}∩S = /0,{x, · · · ,x′}∩S 6= /0: there must exist some x∗ ∈ {x, · · · ,x′} such that x∗ ∈
C∩An(v) and x∗ 6= v. Since {u, · · · ,u′}∩ S = /0 and u y|K, there should be no complex in
the induced subgraph of (u, · · · ,u′,x, · · · ,x′,y). Otherwise, there exists some u∗ ∈ {u, · · · ,u′},
such that (u∗,y) is an edge on

(

GAn(u,y,K)

)m
, which implies u/ y|K since {u, · · · ,u′}∩K = /0.

However, this requires that there is some u∗∗ ∈ {u, · · · ,u′} such that (u∗∗,y) is an edge on G ,
which again implies that u/ y|K. Hence, this case can never happen.

Next, we consider the case that v /∈ K. The assumption that {x, · · · ,x′} ⊂ An(v) implies that there
exists at least one ′ →′ on the sub-route l ′ of ρ from y to v. Consider the rightmost one of such
arrows, there is no further ′←′ closer to the right end v than it is. Otherwise, any vertex w between
them satisfies w∈An(u) and w∈ de(v), which is contradictory to the fact that v∈ de(u) here. Thus,
this case reduces to one of the situations 1, 5 and 6 with u replaced by v.

For situation 5, since u and v are non adjacent, we know that v′ 6= u and u′ 6= v. If {u′, · · · ,v′}∩
S = /0, then {u′, · · · ,v′}∩C ⊂ {u,v}. We can eliminate vertices from the left such that {u′, · · · ,v′}∩
C ⊂ {v}. This will not influence our result since any non head-to-head section of the sub-route
is (part of) a non head-to-head section of ρ. Since u′ 6= v and {u′, · · · ,v′} ∩C ⊂ {v}, we have
u′ /∈C. Suppose that u′ ∈C′ and K is the separator related to C and the next node on the path from
C to C′ on T . Then u ∈ K,v /∈ K and u′ v|K. However, since {u′, · · · ,v′} ∩C ⊂ {v}, we have
{u, · · · ,u′}∩K = /0, which is impossible. Hence {u′, · · · ,v′}∩S 6= /0 and ρ is intervented.

For situation 6, consider first the case that u− ·· · − u′ ← x. If {u, · · · ,u′}∩ S 6= /0, then ρ is
intervented by S. Otherwise, suppose that x ∈ C′ and K is the separator connected to C and the
next node on the path from C to C′ in T . If v ∈ K, then u /∈ K and {u, · · · ,u′} ∩K ⊂ {v}. If
{u, · · · ,u′}∩K = {v}, then it reduces to situation 5. If {u, · · · ,u′}∩K = /0, then u/ x|K, which is

2875

MA, XIE AND GENG

contradictory to the definition of separation tree. If v /∈ K, then by the above argument, we must
have u ∈ K. Consider the sub-route of ρ starting with x. It is legitimate to do so since any non
head-to-head section of the sub-route is also non head-to-head in ρ. By Lemma 9, at least one non
head-to-head section is hit by W ∩K where W is the vertex set of the sub-route excluding the two
end vertices. We know that W ∩K ⊂ S∪{u,v}. If the non head-to-head section is hit at u or v,
we can consider the further sub-route starting at that point and it is again legitimate by the same
reason. Finally, we can reduce to the case where W ∩K ⊂ S. Thus, ρ is intervented by S. This also
completes the proof of situation 4. For the other case in this situation, all the argument is the same
up to the point where v /∈ K and u ∈ K. We can consider reversing the vertex sequence, then with
u replaced by v, it must be in one of the situations 1 to 4, the second case in situation 6 or the first
case in situation 6 with u /∈ K. This complete the proof of the lemma.

Proof of Theorem 3. The sufficiency of condition 1 is given by Lemma 9. The sufficiencies of
conditions 2 and 3 are trivial by the definition of c-separation.

Now we show the necessity part of the theorem. If d(u,v) > 0, by Lemma 9, any separator K
on the path from minimizers Ci to C j c-separates u and v. If d(u,v) = 0, we consider the following
two possible cases: (1) u and v are not contained simultaneously in any separator connected to C
for some node C on T containing both u and v; (2) otherwise. For the first case, Lemma 11 shows
that there exists some S′ ⊂C that c-separates u and v. Otherwise, since 〈u,v|bdG (u)∪ bdG (v)〉sep

G ,

bdG (u)⊂
S

u∈C C and bdG (v)⊂
S

v∈C C, we know that at least one of the conditions 2 and 3 holds.

Proof of Proposition 4. We verify Proposition 4 by contradiction. Let us suppose that u and v are
parents of a complex κ = (u,w1, · · · ,wk,v),k ≥ 1 in T and that for any node C on T , {u,v}∩C 6=
{u,v}. Now suppose that u ∈C1, v ∈C2 and K is the separator related to C1 and the next node on
the path from C1 to C2 on T . If u /∈ K and v /∈ K, we must have that {w1, · · · ,wk}∩K 6= /0. This
implies that u/ v|K, which is contrary to the definition of separation trees. Hence, without loss of
generality, we may suppose that u ∈ K, and this enables us to go one node closer to C2 on the path.
Then after finite steps, we will consider two adjacent nodes on T . Repeating the above argument
ensures that {u,v} belongs to one of these two nodes.

Appendix B. Proofs for Correctness of the Algorithms

Before proving the correctness of the algorithms, we need several more lemmas.

Lemma 12 Suppose that u and v are two adjacent vertices in G , then for any separation tree T for
G , there exists a node C in T which contains both u and v.

Proof If not, then there exists a separator K on T , such that u ∈ V1\K and v ∈ V2\K where Vi

denotes the variable set of the subtree Ti induced by removing the edge attached by the separator S,
for i = 1 and 2. This implies u v|K, which is impossible.

Lemma 13 Any arrow oriented in line 5 of Algorithm 2 is correct in the sense that it is an arrow
with the same orientation in G .

2876

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

Proof We prove the lemma by induction. If we don’t orient any arrow in line 5, then the lemma
holds trivially. Otherwise, suppose u→ w is the first arrow we orient by considering the ordered
triple 〈u,v,w〉, then we show that it cannot be u−w or u← w in G . If it is u−w in G , then by
Lemma 11, if u and v are not in any separator simultaneously, there exists some Suv ⊂Ch such that
u v|Suv and w ∈ Suv. Otherwise, u v|bdG (u)∪bdG (v), and we know that w ∈ bdG (u)∪bdG (v)⊂
bdG ′(u)∪ bdG ′(v). Thus we won’t orient it as u→ w. A similar argument holds for the case when
u← w in G .

Now suppose that the k-th arrow we orient is correct, let’s consider the k + 1-th. Suppose
it’s u′ → w′ by considering the order triple 〈u′,v′,w′〉. Then the above argument holds exactly
with u,v and w substituted by u′,v′ and w′. However, for here, the claim that bdG (u′)∪ bdG (v′) ⊂
bdG ′(u′)∪bdG ′(v′) holds by the induction assumption.

Lemma 14 Suppose that H is a graph, if we disorient any non-complex arrow in H , the pattern of
H does not change.

Proof First, we note that we will not add or delete edge in H , so the skeleton of H does not change.
Second, we only disorient non-complex arrows, and hence those complexes in H before disori-

entation remain complexes after disorientation since the subgraph induced by any complex does not
change.

Finally, we show that there will not be new complex. If there appears a new complex, say
u→ w1−·· · ,−wl ← v, we must have l ≥ 2. Since it was not a complex before disorientation, one
of the lines in w1− ·· · −wl must be the arrow disoriented. Suppose we have wi → wi+1 before
disorientation, then wi→ wi+1−·· ·−wl ← v was a complex before disorientation. Hence, the dis-
oriented arrow wi→ wi+1 was a complex arrow, which contradicts our assumption.

Correctness of Algorithm 1. On the one hand, by Studený (1997, Lemma 3.2), we know that for
any chain graph G , there is an edge between two vertices u and v if and only if u/ v|S for any subset
S of V . Thus, line 6 of Algorithm only deletes those edges that cannot appear in the true skeleton.
So do lines 14 and 19.

On the other hand, if u and v are not adjacent in G , by Theorem 3, it must be under one of
the three possible conditions. If it is in condition 1, we will never connect them since we do not
connect any vertex pair that is never contained in any node simultaneously. If it is in condition
2, then we will disconnect them in line 6 and line 14. Finally, if it is in condition 3, then either
u v|bdG (u) or u v|bdG (v). By our previous discussion, we know that before starting line 17, we
have bdG (u)⊂ neG ′(u) and bdG (v)⊂ neG ′(v) for the G ′ at that moment. Thus, we will disconnect
u and v in line 19.

Correctness of Algorithm 2. By Proposition 4, Lemma 12 and the correctness of Algorithm
1, we know that every ordered vertex triple 〈u,v,w〉 in G with u→ w a complex arrow and v the
parent of (one of) the corresponding complex(es) is considered in line 4 of Algorithm 2. If the triple
〈u,v,w〉 is really in this situation, then we know that u/ v|Suv∪{w}, and hence we orient u−w as
u→ w. Moreover, Lemma 13 prevents us from orienting u−w as w→ u during the execution of
Algorithm 2. This proves that we will orient every complex arrow right before starting line 9 in
Algorithm 2.

2877

MA, XIE AND GENG

Then by Lemma 13, the G∗ before starting line 9 is a hybrid graph with the same pattern as G .
Thus Lemma 14 guarantees that we obtain the pattern of G after line 9.

Correctness of Algorithm 3. First of all, we show that any conditional independence relation
represented by D is also represented by G . This is straightforward by noting the following two
facts:

1. assuming positivity, both DAG models and chain graph models are closed subset of graphoids
under 5 axioms, see Pearl (1988) and Studený and Bouckaert (2001);

2. any conditional independence relation used in constructing D is represented by G .

Then by Xie et al. (2006, Theorem 2), the T in line 2 is a separation tree of D . With the block
vertices substituted, by the definition of separation trees, the output T of Algorithm 3 is a separation
tree of G .

Correctness of Algorithm 4. Xie et al. (2006, Theorem 3) guarantees the correctness of Algo-
rithm 4.

References

A. Agresti. Categorical Data Analysis. John Wiley & Sons, Hoboken, NJ., 2nd edition, 2002.

T. W. Anderson. An Introduction to Multivariate Statistical Analysis. John Wiley & Sons, Hoboken,
NJ., 3rd edition, 2003.

S. A. Andersson, D. Madigan, and M. D. Perlman. Alternative Markov properties fror chain graphs.
Scand. J. Statist., 28:33–85, 2001.

I. Beinlich, H. Suermondt, R. Chevaz, and G. Cooper. The alarm monitoring system: A case
study with two probabilistic inference techniques for belief networks. In Proceedings of the 2nd
European Conference on Artificail Intelligence in Medicine, pages 247–256. Springer-Verlag,
Berlin, 1989.

S. Carroll and V. Pavlovic. Protein calassification using probabilistic chain graphs and the gene
ontology structure. Bioinformatics, 22(15):1871–1878, 2006.

D. M. Chickering. Learning equivalence classes of bayesian-network structures. J. Mach. Learn.
Res., 2:445–498, 2002.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic Networks and
Expert Systems. Springer-Verlag, New York, 1999.

D. R. Cox and N. Wermuth. Multivariate Dependencies: Models, Analysis and Interpretation.
Chapman and Hall, London, 1996.

M. Drton and M. Perlman. A sinful approach to gaussian graphical model selection. J. Stat. Plan.
Infer., 138:1179–1200, 2008.

D. Edwards. Introduction to Graphical Modelling. Springer-Verlag, New York, 2nd edition, 2000.

2878

STRUCTURAL LEARNING OF CHAIN GRAPHS VIA DECOMPOSITION

B. Ellis and W. H. Wong. Learning bayesian network structures from experimental data. URL
http://www.stanford.edu/group/wonglab/doc/EllisWong-061025.pdf. 2006.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical
lasso. Biostatistics, 2007. doi: doi:10.1093/biostatistics/kxm045.

N. Friedman and D. Koller. Being bayesian about network structure: a bayesian approach to struc-
ture discovery in bayesian networks. Mach. Learn., 50:95–126, 2003.

N. Friedman, I. Nachmana, and D. Pe’er. Learning bayesian network structure from massive
datasets: The ”sparse candidate” algorithm. In Proceedings of the Fifteenth Conference on Un-
certainty in Artificail Intelligence, pages 206–215, Stockholm, Sweden, 1999.

M. Frydenberg. The chain graph markov property. Scand. J. Statist., 17:333–353, 1990.

M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the pc-
algorithm. J. Mach. Learn. Res., 8:616–636, 2007.

S. L. Lauritzen. Graphical Models. Claredon Press, Oxford, 1996.

S. L. Lauritzen and T. S. Richardson. Chain graph models and their causal interpretations (with
discussion). J. R. Statist. Soc. B, 64:321–361, 2002.

Y. Liu, Xing E. P., and J. Carbonell. Predicting protein folds with structural repeats using a chain
graph model. In Proceedings of the 22nd International Conference on Machine Learning, 2005.

N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the lasso.
Ann. Statist., 34:1436–1462, 2006.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Francisco, CA, 1988.

P. Ravikumar, M. J. Wainwright, and J. Lafferty. High-dimensional graphi-
cal model selection using `1-regularized logistic regression. Technical Report
750, Department of Statistics, University of California, Berkeley., 2008. URL
http://www.stat.berkeley.edu/tech-reports/750.pdf.

A. Roverato and L. La Rocca. On block ordering of variables in graphical modelling. Scand. J.
Statist., 33:65–81, 2006.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. MIT Press, Cambridge,
MA, 2nd edition, 2000.

E. Stanghellini, K. J. McConway, and D. J. Hand. A discrete variable chain graph for applicants for
credit. J. R. Statist. Soc. C, 48:239–251, 1999.

M. Studený. A recovery algorithm for chain graphs. Int. J. Approx. Reasoning, 17:265–293, 1997.

M. Studený and R. R. Bouckaert. On chain graph models for description of conditional indepen-
dence structures. Ann. Statist., 26:1434–1495, 2001.

2879

http://www.stanford.edu/group/wonglab/doc/EllisWong-061025.pdf
http://www.stat.berkeley.edu/tech-reports/750.pdf

MA, XIE AND GENG

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing bayesian network
structure learning algorithm. Mach. Learn., 65:31–78, 2006.

N. Wermuth. On block-recursive linear regression equations. Revista Brasileira de Probabilidade
e Estatistica, 6:1–56, 1992.

N. Wermuth and S. L. Lauritzen. Graphical and recursive models for contingency tables.
Biometrika, 72:537–552, 1983.

N. Wermuth and S. L. Lauritzen. On substantive research hypotheses, conditional independence
graphs and graphical chain models. J. R. Statist. Soc. B, 52:21–50, 1990.

J. Whittaker. Graphical Models in Applied Multivariate Statistics. John Wiley & Sons, 1990.

S. Wilks. The large-sample distribution of the likelihood ratio for testing composite hypotheses.
Ann. Math. Stat., 20:595–601, 1938.

X. Xie and Z. Geng. A recursive method for structural learning of directed acyclic graphs. J. Mach.
Learn. Res., 9:459–483, 2008.

X. Xie, Z. Geng, and Q. Zhao. Decomposition of structural learning about directed acyclic graphs.
Artif. Intell., 170:442–439, 2006.

2880

