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Abstract
Efficient and expressive comparison of sequences is an essential procedure for learning with se-
quential data. In this article we propose a generic framework for computation of similarity mea-
sures for sequences, covering various kernel, distance andnon-metric similarity functions. The
basis for comparison is embedding of sequences using a formal language, such as a set of natu-
ral words,k-grams or all contiguous subsequences. As realizations of the framework we provide
linear-time algorithms of different complexity and capabilities using sorted arrays, tries and suffix
trees as underlying data structures.

Experiments on data sets from bioinformatics, text processing and computer security illustrate
the efficiency of the proposed algorithms—enabling peak performances of up to 106 pairwise com-
parisons per second. The utility of distances and non-metric similarity measures for sequences as
alternatives to string kernels is demonstrated in applications of text categorization, network intru-
sion detection and transcription site recognition in DNA.
Keywords: string kernels, string distances, learning with sequential data

1. Introduction

Sequences of discrete symbols are one of the fundamental data representations in computer sci-
ence. A great deal of applications—from search engines to document ranking, from gene finding to
prediction of protein functions, from network surveillance tools to anti-virus programs—critically
depend on analysis of sequential data. Providing an interface to sequential data is therefore an
essential prerequisite for applications of machine learning in these domains.

Machine learning algorithms have been traditionally designed for vectorial data—probably due
to the availability of well-defined calculus and mathematical analysis tools. A largebody of such
learning algorithms, however, can be formulated in terms of pairwise relationships between objects,
which imposes a much looser constraint on the type of data that can be handled. Thus, a powerful
abstraction between algorithms and data representations can be established.

The most prominent example of such abstraction iskernel-based learning(e.g., Müller et al.,
2001; Scḧolkopf and Smola, 2002) in which pairwise relationships between objects areexpressed
by a Mercer kernel, an inner product in a reproducing kernel Hilbertspace. Following the seminal
work of Boser et al. (1992), various learning methods have been re-formulated in terms of kernels,
such as PCA (Scḧolkopf et al., 1998b), ridge regression (Cherkassky et al., 1999), ICA (Harmeling
et al., 2003) and many others. Although the initial motivation for the “kernel trick” was to allow
efficient computation of an inner product in high-dimensional feature spaces, the importance of an
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abstraction from data representation has been quickly realized (e.g., Vapnik, 1995). Consequently
kernel-based methods have been proposed for non-vectorial domains, such as analysis of images
(e.g., Scḧolkopf et al., 1998a; Chapelle et al., 1999), sequences (e.g., Jaakkolaet al., 2000; Watkins,
2000; Zien et al., 2000) and structured data (e.g., Collins and Duffy, 2002; Gärtner et al., 2004).

Although kernel-based learning has gained significant attention in recentyears, a Mercer kernel
is only one of many possibilities for defining pairwise relationships between objects. Numerous
applications exist for which relationships are defined as metric or non-metricdistances (e.g., An-
derberg, 1973; Jacobs et al., 2000; von Luxburg and Bousquet, 2004), similarity or dissimilarity
measures (e.g., Graepel et al., 1999; Roth et al., 2003; Laub and Müller, 2004; Laub et al., 2006) or
non-positive kernel functions (e.g., Ong et al., 2004; Haasdonk, 2005). It is therefore imperative to
address pairwise comparison of objects in a most general setup.

The aim of this contribution is to develop ageneral frameworkfor pairwise comparison of
sequences. Its generality is manifested by the ability to handle a large number of kernel func-
tions, distances and non-metric similarity measures. From considerations of efficiency, we focus
on algorithms with linear-time asymptotic complexity in the sequence lengths—at the expense of
narrowing the scope of similarity measures that can be handled. For example, we do not consider
super-linear comparison algorithms such as the Levenshtein distance (Levenshtein, 1966) and the
all-subsequences kernel (Lodhi et al., 2002).

The basis of our framework is embedding of sequences in a high-dimensional feature space
using aformal language, a classical tool of computer science for modeling semantics of sequences.
Some examples of such languages have been previously used for string kernels, such as the bag-
of-words,k-gram or contiguous-subsequence kernel. Our formalization allows oneto use a much
larger set of possible languages in a unified fashion, for example subsequences defined by a finite
set of delimiters or position-dependent languages. A further advantageof embedding using formal
languages is separation of embedding models from algorithms, which allows one to investigate
different data structures to obtain optimal efficiency in practice.

Several data structures have been previously considered for specific similarity measures, such
as hash tables (Damashek, 1995), sorted arrays (Sonnenburg et al.,2007), tries (Leslie et al., 2002;
Shawe-Taylor and Cristianini, 2004; Rieck et al., 2006), suffix trees using matching statistics (Vish-
wanathan and Smola, 2004), suffix trees using recursive matching (Rieck et al., 2007) and suffix
arrays (Teo and Vishwanathan, 2006). All of these data structures allow one to develop linear-time
algorithms for computation of certain similarity measures. Most of them are also suitable for the
general framework developed in this paper; however, certain trade-offs exist between their asymp-
totic run-time complexity, implementation difficulty and restrictions on embedding languages they
can handle. To provide an insight into these issues, we propose and analyze three data structures
suitable for our framework:sorted arrays, tries andsuffix treeswith an extension to suffix arrays.
The message of our analysis, supported by experimental evaluation, is that the choice of an optimal
data structure depends on the embedding language to be used.

This article is organized as followed: In Section 2 we review related work onsequence com-
parison. In Section 3 we introduce a general framework for computation of similarity measures for
sequences. Algorithms and data structures for linear-time computation are presented in Section 4.
We evaluate the run-time performance and demonstrate the utility of distinct similaritymeasures in
Section 5. The article is concluded in Section 6
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2. Related Work

Assessing the similarity of two sequences is a classical problem of computer science. First ap-
proaches, the string distances of Hamming (1950) and Levenshtein (1966), originated in the domain
of telecommunication for detection of erroneous data transmissions. The degree of dissimilarity be-
tween two sequences is determined by computing the shortest trace of operations—insertions, dele-
tions and substitutions—that transform one sequence into the other (Sankoff and Kruskal, 1983).
Applications in bioinformatics motivated extensions and adaptions of this concept, for example
defining sequence similarity in terms of local and global alignments (Needleman and Wunsch, 1970;
Smith and Waterman, 1981). However, similarity measures based on the Hamming distance are re-
stricted to sequences of equal length and measures derived from the Levenshtein distance (e.g., Liao
and Noble, 2003; Vert et al., 2004), come at the price of computational complexity: No linear-time
algorithm for determining the shortest trace of operations is currently known. One of the fastest
exact algorithms runs inO(n2/ logn) for sequences of lengthn (Masek and Patterson, 1980).

A different approach to sequence comparison originated in the field of information retrieval with
the vector space or bag-of-words model (Salton et al., 1975; Salton, 1979). Textual documents are
embedded into a vector space spanned by weighted frequencies of contained words. The similarity
of two documents is assessed by an inner-product between the corresponding vectors. This concept
was extended tok-grams—k consecutive characters or words—in the domain of natural language
processing and computer linguistic (e.g., Suen, 1979; Cavnar and Trenkle, 1994; Damashek, 1995).
The idea of determining similarity of sequences by an inner-product was revived in kernel-based
learning in the form of bag-of-words kernels (e.g., Joachims, 1998; Drucker et al., 1999; Joachims,
2002) and various string kernels (e.g., Zien et al., 2000; Leslie et al., 2002; Vishwanathan and
Smola, 2004). Moreover, research in bioinformatics and text processing advanced the capabilities of
string kernels, for example, by considering gaps, mismatches and positionsin sequences (e.g., Lodhi
et al., 2002; Leslie et al., 2003; Leslie and Kuang, 2004; Rousu and Shawe-Taylor, 2005; R̈atsch
et al., 2007). The comparison framework proposed in this article shares the concept of embedding
sequences with all of the above kernels, in fact most of the linear-time stringkernels (e.g., Joachims,
1998; Leslie et al., 2002; Vishwanathan and Smola, 2004) are enclosed inthe framework.

A further alternative for comparison of sequences are kernels derived from generative proba-
bility models, such as the Fisher kernel (Jaakkola et al., 2000) and the TOPkernel (Tsuda et al.,
2002). Provided a generative model, for example a HMM trained over a corpus of sequences or
modeled from prior knowledge, these kernel functions essentially correspond to inner-products of
partial derivatives over model parameters. The approach enables thedesign of highly specific sim-
ilarity measures which exploit the rich structure of generative models, for example, for prediction
of DNA splice sites (R̈atsch and Sonnenburg, 2004). The run-time complexity of the kernel com-
putation, however, is determined by the number of model parameters, so thatonly simple models
yield run-time linear in the sequence lengths. Moreover, obtaining a suitable parameter estimate for
a probabilistic model can be difficult or even infeasible in practical applications.

3. Similarity Measures for Sequential Data

Before introducing the framework for computation of similarity measures, we need to establish
some basic notation. Asequencex is a concatenation of symbols from analphabetA. The set of
all possible concatenations of symbols fromA is denoted byA∗ and the set of all concatenations
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of lengthk by Ak. A formal language L⊆A∗ is any set of finite-length sequences drawn fromA
(Hopcroft and Motwani, 2001). The length of a sequencex is denoted by|x| and the size of the
alphabet by|A|. A contiguous subsequencew of x is denoted byw ⊑ x, a prefix ofx by w ⊑p x
and a suffix byw ⊑s x. Alternatively, a subsequencew of x ranging from positioni to j is referred
to asx[i .. j ].

3.1 Embedding Sequences using a Formal Language

The basis for embedding of a sequencex is a formal languageL, whose elements are sequences
spanning an|L|-dimensional feature space. We refer toL as theembedding languageand to a
sequencew ∈ L as awordof L. There exist numerous ways to defineL reflecting particular aspects
of application domains, yet we focus on three definitions that have been widely used in previous
research:

1. Bag-of-words. In this model,L corresponds to a set of words from a natural language.L can
be either defined explicitly by providing a dictionary or implicitly by partitioning sequences
according to a set of delimiter symbolsD ⊂A (e.g., Salton, 1979; Joachims, 2002).

L = Dictionary (explicit), L = (A\D)∗ (implicit).

2. K-grams andblended k-grams. For the case ofk-grams (in bioinformatics often referred
to ask-mers),L is the set of all sequences of lengthk (e.g., Damashek, 1995; Leslie et al.,
2002). The model ofk-grams can further be “blended” by considering all sequences from
length j up tok (e.g., Shawe-Taylor and Cristianini, 2004).

L =A
k (k-grams), L =

k
⋃

i= j

A
i (blendedk-grams).

3. Contiguous sequences. In the most general case,L corresponds to the set of all contiguous
sequences or alternatively to blendedk-grams with infinitek (e.g., Vishwanathan and Smola,
2004; Rieck et al., 2007).

L =A
∗ or L =

∞
⋃

i=1

A
i .

Note that the alphabetA in the embedding languages may also be composed of higher semantic
constructs, such as natural words or syntactic tokens. In these casesa k-gram corresponds tok
consecutive words or tokens, and a bag-of-words models could represent textual clauses or phrases.

Given an embedding languageL, a sequencex can be mapped into the|L|-dimensional feature
space by calculating a functionφw(x) for everyw ∈ L appearing inx. The embedding function8
for a sequencex is given by

8 : x 7→ (φw(x))w∈L with φw(x) := occ(w,x) ·Ww (1)

where occ(w,x) is the number of occurrences ofw in the sequencex andWw a weighting assigned
to individual words. Alternatively occ(w,x) may be defined as frequency, probability or binary flag
for the occurrences ofw in x.
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While the choice and design of an embedding languageL offer a large degree of flexibility,
it is often necessary to refine the amount of contribution for each wordw ∈ L, for example it is
a common practice in text processing to ignore stop words and terms that do not carry semantic
content. In the embedding function (1) such refinement is realized by the weighting termWw. The
following three weighting schemes for definingWw have been proposed in previous research:

1. Corpus dependent weighting.The weightWw is based on the occurrences ofw in the corpus
of sequences (see Salton et al., 1975). Most notable is the inverse document frequency (IDF)
weighting, in whichWw is defined over the number of documentsN and the frequencyd(w)

of w in the corpus.
Ww = log2 N− log2 d(w)+1.

If occ(w,x) is the frequency ofw in x, the embedding function (1) corresponds to the well-
known term frequency and inverse document frequency (TF-IDF) weighting scheme.

2. Length dependent weighting.The weightWw is based on the length|w| (see Shawe-Taylor
and Cristianini, 2004; Vishwanathan and Smola, 2004), for example, so that longer words
contribute more than shorter words to a similarity measure. A common approach isdefining
Ww using a decay factor 0≤ λ≤ 1.

Ww = λ−|w|.

3. Position dependent weighting.The weightWw is based on the position ofw in x. Vish-
wanathan and Smola (2004) propose a direct weighting scheme, in whichWw is defined over
positional weightsW(k,x) for each positionk in x as

Ww =Wx[i .. j ] =
j

∑

k=i

W(k,x).

An indirect approach to position dependent weighting can be implemented by extending the
alphabetA with positional information toÃ=A×N, so that every element(a,k) ∈ Ã of the
extended alphabet is a pair of a symbola and a positionk.

The introduced weighting schemes can be coupled to further refine the embedding based on
L, for example, in text processing the impact of a particular term might be influenced by the term
frequency, inverse document frequency and its length.

3.2 Vectorial Similarity Measures for Sequences

With an embedding languageL at hand, we can now express common vectorial similarity measures
in the domain of sequences. Table 1 and 2 list well-known kernel and distance functions (see Vapnik,
1995; Scḧolkopf and Smola, 2002; Webb, 2002) in terms ofL. The histogram intersection kernel
in Table 1 derives from computer vision (see Swain and Ballard, 1991; Odone et al., 2005) and the
Jensen-Shannon divergence in Table 2 is defined usingH(x, y)= x log 2x

x+y + y log 2y
x+y .

A further and rather exotic class of vectorial similarity measures aresimilarity coefficients(see
Sokal and Sneath, 1963; Anderberg, 1973). These coefficients have been designed for comparison
of binary vectors and often express non-metric properties. They are constructed using three summa-
tion variablesa,b andc, which reflect the number of matching components (1/1), left mismatching
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Kernel k(x,y)

Linear
∑

w∈L φw(x)φw(y)

Polynomial
(∑

w∈L φw(x)φw(y)+ θ
)p

Sigmoidal tanh
(∑

w∈L φw(x)φw(y)+ θ
)

Gaussian exp
(
−d(x,y)2

2σ2

)

Histogram intersection
∑

w∈L min(φw(x),φw(y))

Table 1: Kernel functions for sequential data.

Distance d(x,y)

Manhattan
∑

w∈L |φw(x)−φw(y)|

χ2 distance
∑

w∈L
(φw(x)−φw(y))2

φw(x)+φw(y)

Canberra
∑

w∈L
|φw(x)−φw(y)|
φw(x)+φw(y)

Minkowskip
∑

w∈L |φw(x)−φw(y)|p

Distance d(x,y)

Chebyshev maxw∈L |φw(x)−φw(y)|

Geodesic arccos
∑

w∈L φw(x)φw(y)

Hellinger2
∑

w∈L
(
√

φw(x)−
√

φw(y))2

Jensen-Shannon
∑

w∈L H(φw(x),φw(y))

Table 2: Distance functions for sequential data.

components (0/1) and right mismatching components (1/0) in two binary vectors. Common similar-
ity coefficients are given in Table 3. For application to non-binary vectorsthe summation variables
a,b,c can be extended in terms of an embedding languageL (Rieck et al., 2006):

a=
∑

w∈L

min(φw(x),φw(y)),

b=
∑

w∈L

[φw(x)−min(φw(x),φw(y))] ,

c=
∑

w∈L

[φw(y)−min(φw(x),φw(y))] .

The above definition ofa matches the histogram intersection kernelk provided in Table 1, so that
alternatively all summation variables can be expressed by

a= k(x,y), b= k(x,x)−k(x,y), c= k(y,y)−k(x,y). (2)

Sim. Coeff. s(x,y)

Simpson a/min(a+b,a+c)

Jaccard a/(a+b+c)

Braun-Blanquet a/max(a+b,a+c)

Czekanowski,
Sørensen-Dice

2a/(2a+b+c)

Sim. Coeff. s(x,y)

Kulczynski (1) a/(b+c)

Kulczynski (2)
1
2(a/(a+b)+a/(a+c))

Otsuka, Ochiai a/
√

(a+b)(a+c)

Sokal-Sneath,
Anderberg

a/(a+2(b+c))

Table 3: Similarity coefficients for sequential data
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Hence, one can consider the similarity coefficients given in Table 3 as variations of the histogram
intersection kernel, for example, the Jaccard coefficient can be formulated solely in terms ofk:

s(x,y)=
a

a+b+c
=

k(x,y)

k(x,x)+k(y,y)−k(x,y)
.

3.3 A Generic Framework for Similarity Measures

All of the similarity measures introduced in the previous section share a similar mathematical con-
struction: an inner component-wise function is aggregated over each dimension using an outer
operator, for example, the linear kernel is defined as the sum of component-wise products and the
Chebyshev distance as the maximum of component-wise absolute differences.

One can exploit this shared structure to derive a unified formulation for similarity measures
(Rieck et al., 2006, 2007), consisting of an inner functionm and an outer operator⊕ as follows

s(x,y)=
⊕

w∈L

m(φw(x),φw(y)). (3)

For convenience in later design of algorithms, we introduce a “multiplication” operator⊗ which
corresponds to executing the⊕ operationk times. Thus, for anyn ∈ N andx ∈ R, we define⊗ as

x⊗ n := x⊕ . . .⊕ x
︸ ︷︷ ︸

n

.

Given the unified form (3), kernel and distance functions presented inTable 1 and 2 can be
re-formulated in terms of⊕ andm. Adaptation of similarity coefficients to the unified form (3)
involves a re-formulation of the summation variablesa, b andc. The particular definitions of outer
and inner functions for the presented similarity measures are given in Table4. The polynomial and
sigmoidal kernels as well as the Geodesic distance are not shown since they can be expressed using
a linear kernel. For the Chebyshev distance the operator⊗ represents the identity function, while
for all other similarity measures it represents a multiplication.

Kernel ⊕ m(x, y)

Linear + x · y
Histogram inters. + min(x, y)

Sim. Coef. ⊕ m(x, y)

Variablea + min(x, y)

Variableb + x−min(x, y)

Variablec + y−min(x, y)

Distance ⊕ m(x, y)

Manhattan + |x− y|
χ2 distance + (x− y)2/(x+ y)

Canberra + |x− y|/(x+ y)

Minkowskip + |x− y|p
Chebyshev max |x− y|
Hellinger2 + (

√
x−√y)2

Jensen-Shannon + H(x, y)

Table 4: Unified formulation of similarity measures.

As a last step towards the development of comparison algorithms, we need to address the high
dimensionality of the feature space induced by the embedding languageL. The unified form (3)
theoretically involves computation ofm over allw ∈ L, which is practically infeasible for mostL.
Yet the feature space induced byL is sparse, since a sequencex comprises only a limited number of
contiguous subsequences—at most(|x|2+|x|)/2 subsequences. As a consequence of the sparseness
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only very few termsφw(x) andφw(y) in the unified form (3) have non-zero values. We exploit this
fact by definingm(0,0)= e, wheree is the neutral element for the operator⊕, so that for anyx ∈R

holds
x⊕ e= x, e⊕ x = x.

By assigningm(0,0) to e, the computation of a similarity measure can be reduced to cases where
eitherφw(x) > 0 or φw(y) > 0, as the termm(0,0) does not affect the result of expression (3). We
can now refine the unified form (3) by partitioning the similarity measures intoconjunctiveand
disjunctivemeasures using an auxiliary functionm̃:

s(x,y)=
⊕

w∈L

m̃(φw(x),φw(y)).

1. Conjunctive similarity measures. The inner functionm only accounts pairwise non-zero
components, so that for anyx ∈ R holdsm(x,0)= eandm(0,x)= e.

m̃(x, y)=
{

m(x, y) if x > 0 and y > 0

e otherwise.

Kernel functions fall into this class, except for the distance-based RBFkernel. By using a
kernel to express similarity coefficients as shown in expression (2), similarity coefficients
also exhibit the conjunctive property.

2. Disjunctive similarity measures. The inner functionm requires at least one component to
be non-zero, otherwisem(0,0)= eholds.

m̃(x, y)=
{

m(x, y) if x > 0 or y > 0

e otherwise.

Except for the Geodesic distance, all of the presented distances fall intothis class. Depend-
ing on the embedding language, this class is computational more expensive than conjunctive
measures.

As a result, any similarity measure, including those in Table 1, 2 and 3, composed of an inner
and outer function can be applied for efficient comparison of embedded sequences, if (a) a neutral
elemente for the outer function⊕ exists and (b) the inner functionm is either conjunctive or
disjunctive, that is at leastm(0,0)= eholds.

4. Algorithms and Data Structures

We now introduce data structures and algorithms for efficient computation ofthe proposed similarity
measures. In particular, we present three approaches differing in capabilities and implementation
complexity covering simple sorted arrays, tries and generalized suffix trees. For each approach,
we briefly present the involved data structure, provide a discussion of the comparison algorithm
and give run-time bounds for extraction and comparison of embedded sequences. Additionally, we
provide implementation details that improve run-time performance in practice.

As an example running through this section we consider the two sequencesx = abbaaand
y= baaaabfrom the binary alphabetA= {a,b} and the embedding language of 3-grams,L =A3.
For a data structure storing multiple wordsw ∈ L of possibly different lengths, we denote byk the
length of longest words.
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4.1 Sorted Arrays

Data structure. A simple and intuitive representation for storage of embedded sequences are
sorted arraysor alternatively sorted lists (Joachims, 2002; Rieck et al., 2006; Sonnenburg et al.,
2007). Given an embedding languageL and a sequencex, all wordsw ∈ L satisfyingw ⊑ x are
maintained in an arrayX along with their embedding valuesφw(x). Each fieldx of X consists of
two attributes: the stored wordword[x] and its embedding valuephi[x]. The length of an arrayX
is denoted by|X|. In order to support efficient comparison, the fields ofX are sorted by contained
words, for example, using the lexicographical order of the alphabetA. Figure 1 illustrates the sorted
arrays of 3-grams extracted from the two example sequencesx andy.

X

word[x] phi[x]

abb | 1 baa | 1 bba | 1

Y aaa | 2 aab | 1 baa | 1

Figure 1: Sorted arrays of 3-grams forx = abbaa and y = baaaab. The number in each field
indicates the number of occurrences.

Algorithm. Comparison of two sorted arraysX andY is carried out by looping over the fields
of both arrays in the manner of merging sorted arrays (Knuth, 1973). During each iteration the
inner functionm is computed over contained words and aggregated using the operator⊕. The
corresponding comparison procedure in pseudo-code is given in Algorithm 1. Herein, we denote
the case where a wordw is present inx andy asmatchand the case ofw being contained in either
x or y asmismatch. For run-time improvement, these mismatches can be ignored in Algorithm 1 if
a conjunctive similarity measure is computed (cf. Section 3.3).

Algorithm 1 Array-based sequence comparison
1: function COMPARE(X,Y : Array) : R

2: s← e, i ← 1, j ← 1
3: while i ≤ |X| or j ≤ |Y| do
4: x← X[i ], y← Y[ j ]
5: if y= NIL or word[x] < word[y] then ⊲ Mismatch atx
6: s← s⊕m(phi[x],0)

7: i ← i +1
8: else ifx = NIL or word[x] > word[y] then ⊲ Mismatch aty
9: s← s⊕m(0,phi[y])

10: j ← j +1
11: else ⊲ Match atx andy
12: s← s⊕m(phi[x],phi[y])
13: i ← i +1, j ← j +1

14: return s
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Run-time. The comparison algorithm based on sorted arrays is simple to implement, yet it does
not enable linear-time comparison for all embedding languages, for example, if L =A∗. However,
sorted arrays enable linear-time similarity measures, if there existO(|x|) words withw ⊑ x, which
implies allw ∈ L have no or constant overlap inx. Examples are the common bag-of-words and
k-gram embedding languages.

Under these constraints a sorted array is extracted from a sequencex in O(k|x|) time using
linear-time sorting, for example, radix sort (Knuth, 1973), wherek is the maximum length of all
wordsw ∈ L in x. The comparison algorithm requires at most|x|+ |y| iterations, so that the worst-
case run-time isO(k(|x|+ |y|)). For extraction and comparison the run-time complexity is linear in
the sequence lengths due to the constraint on constant overlap of words, which impliesk|x| ∈ O(|x|)
for anyk andx.

Implementation notes. The simple design of the sorted array approach enables a very efficient
extension. If we consider a CPU with registers ofb bits, we restrict the maximum word lengthk, so
that every word fits into a CPU register. This restriction enables storage and comparison operations
to be performed directly on the CPU, that is operations on wordsw with |w| ≤ k are executed in
O(1) time. Depending on the size of the alphabet|A| and the CPU bitsb, the maximum word
length is⌊b/ log2 |A|⌋. In many practical applications one can strongly benefit from this extensions,
ask is either bounded anyway, for example, fork-grams, or longer words are particular rare and
do not increase accuracy significantly. For example on current 64 bit CPU architectures one can
restrictk to 32 for DNA sequences with|A| = 4 and tok= 10 for textual documents with|A| ≤ 64.
Alternatively, embedded words may also be represented using hash values of b bits, which enables
considering words of arbitrary length, but introduces a probability for hash collisions (Knuth, 1973).

Another extension for computation of conjunctive measures using sorted arrays has been pro-
posed by Sonnenburg et al. (2007). If two sequencesx and y have unbalanced sizes|x| ≪ |y|,
one loops over the shorter sorted arrayX and performs a binary search procedure onY, in fa-
vor of processing both sorted arrays in parallel. The worst-case run-time for this comparison is
O(k(|x| log2 |y|)), so that one may automatically apply this extension if for two sequencesx andy
holds|x| log2 |y|< |x|+ |y|.

4.2 Tries

Data structure. A trie is a tree structure for storage and retrieval of sequences. The edgesof a
trie are labeled with symbols ofA (Fredkin, 1960; Knuth, 1973). A path from the root to a marked
nodex represents a stored sequence, hereafter denoted byx̄. A trie nodex contains a vector of size
|A| linking to child nodes, a binary flag to indicate the end of a sequencemark[x] and an embedding
valuephi[x].1 The i -th child node representing thei -th symbol inA is accessed viachild[x, i ]. If
the i -th child is not presentchild[x, i ] = NIL .

A sequencesx is embedded using a trieX by storing allw ∈ L with w ⊑ x and corresponding
φw(x) in X (Shawe-Taylor and Cristianini, 2004). Figure 2 shows tries of 3-grams for the two ex-
ample sequencesx andy. Note, that for the embedding language ofk-grams considered in Figure 2
all marked nodes are leaves, while for other embedding languages they maycorrespond to inner
nodes, for example, for the case of blendedk-grams, where every node in a trie marks the end of a
sequence.

1. For convenience, we assume that child nodes are maintained in a vector, while in practice sorted lists, balanced trees
or hash tables may be preferred.
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mark[x]
phi[x]

X Y

a b a b

b a b a a

b a a a b a

(1) (1) (1) (2) (1) (1)

Figure 2: Tries of 3-grams forx = abbaa and y = baaaab. The number in brackets at leaves
indicate the number of occurrences. Marked nodes are squared. Whitenodes are implicit
and not maintained in a compact trie representation.

Algorithm. Comparison of two tries is performed as in Algorithm 2: Starting at the root nodes,
one recursively traverses both tries in parallel. If the traversal passes at least one marked node the in-
ner functionm is computed as either a matching or mismatching word occurred (Rieck et al., 2006).
To simplify presentation of the algorithm, we assume thatmark[NIL ] returns false andchild[NIL , i ]
returnsNIL .

Algorithm 2 Trie-based sequence comparison
1: function COMPARE(X,Y : Trie) : R

2: s← e
3: if X = NIL and Y = NIL then ⊲ Base case
4: return s
5: for i ← 1, |A| do
6: x← child[X, i ], y← child[Y, i ]
7: if mark[x] and not mark[y] then ⊲ Mismatch atx
8: s← s⊕m(phi[x],0)

9: if not mark[x] and mark[y] then ⊲ Mismatch aty
10: s← s⊕m(0,phi[y])

11: if mark[x] and mark[y] then ⊲ Match atx andy
12: s← s⊕m(phi[x],phi[y])

13: s← s⊕COMPARE(x, y)

14: return s

Run-time. The trie-based approach enables linear-time similarity measures over a larger set of
formal languages than sorted arrays. For tries we require allw ∈ L with w⊑ x to have either constant
overlap inx or to be prefix of another word, for example, as for the blendedk-gram embedding
languages.

To determine the run-time complexity on tries, we need to consider the following property: A
trie storingn words of maximum lengthk has depthk and at mostkn nodes. Thus, a sequencex
containingO(|x|) words of maximum lengthk is embedded using a trie inO(k|x|) run-time. As an
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invariant for the comparison procedure, the nodesx andy in Algorithm 2 stay at the same depth in
each recursion. Hence, the comparison algorithm visits at mostk|x|+k|y| nodes, which results in
a worst-case run-time ofO(k(|x| + |y|)). The extraction and comparison run-time is linear in the
sequence lengths, as we require words to either have constant overlap, which impliesk|x| ∈ O(|x|),
or to be prefix of another word, which implies that both words share an identical path in the trie.

Implementation notes. The first extension for the trie data structure is aggregation of embedding
values in nodes. If in Algorithm 2 a mismatch occurs at nodex, the algorithm recursively descends
to all child nodes ofx. At this point, however, it is clear that all nodes belowx will also be
mismatches, as all wordsw with x̄ ⊑p w are not present in the compared trie. This fact can be
exploited by maintaining an aggregated valueϕx at each nodex given by

ϕx :=
⊕

w∈I

φw(x) with I = {w ∈ L | x̄ ⊑p w}.

Instead of recursively descending at a mismatching nodex, one usesϕx to retrieve the aggregation
of all lower embedding values. The extension allows disjunctive similarity measures to be computed
as efficient as conjunctive measures at a worst-case run-time ofO(kmin(|x|, |y|)).

The second extension originates from the close relation of tries and suffixtrees. The nodes
of a trie can be classified asimplicit if they link to only one child node and asexplicit otherwise.
By iteratively removing implicit nodes and appending their labels to edges of explicit parent nodes
one obtains acompact trie(cf. Knuth, 1973; Gusfield, 1997). Edges are labeled by subsequences
encoded using indicesi and j pointing tox[i .. j ]. The major benefit of compact tries is reduced
space complexity, which decreases fromO(k|x|) to O(|x|) independent of the maximum lengthk
of stored words.

4.3 Generalized Suffix Trees

Data structure. A generalized suffix tree(GST) is a compact trie containing all suffixes of a set of
sequencesx1, . . . ,xl (Gusfield, 1997). Every path in a GST from the root to a leaf corresponds to one
suffix. A GST is obtained by extending each sequencexi with a delimiter $i /∈A and constructing
a suffix tree from the concatenationz= x1$1 . . .xl $l .

For each GST nodev we denote bychildren[v] the set of child
root

v

depth[v]

length[v]

nodes, bylength[v] the number of symbols on the incoming edge, by
depth[v] the total number of symbols on the path from the root node to
v and byphi[v, i ] the number of suffixes ofxi passing through nodev.
As every subsequence ofxi is a prefix of some suffix,phi[v, i ] reflects
the occurrences (alternatively frequency or binary flag) for all subse-
quences terminating on the edge tov. An example of a GST is given in

Figure 3. In the remaining part we focus on the case of two sequencesx andy delimited by $1 and
$2, computation of similarity measures over a set of sequences being a straightforward extension.

Algorithm. Computation of similarity measures is carried out by traversing a GST in depth-first
order (Rieck et al., 2007). An implementation in pseudo-code is given in Algorithm 3. At each
nodev the inner functionm is computed usingphi[v,1] andphi[v,2]. To account for different
words along an edge and to support various embedding languages the function FILTER is employed,
which selects appropriate contributions similar to the weighting introduced by Vishwanathan and
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a $1 $2 b

(2,4) (2,2)

a $1 b aa $2 baa$1

(1,3) (1,1) (1,1)

a $1 b$2 $2 baa$1 aab$2 $1

(0,2)

ab$2 b$2

Figure 3: Generalized suffix tree forx= abbaa$1 andy= baaaab$2. The numbers in brackets at
each inner nodev correspond tophi[v,1] andphi[v,2]. Edges are shown with associated
subsequences instead of indices.

Smola (2004). At a nodev the function takeslength[v] anddepth[v] of v as arguments to determine
how much the node and its incoming edge contribute to the similarity measure, for example, for the
embedding language ofk-grams only nodes up to a path depth ofk need to be considered.

Algorithm 3 GST-based sequence comparison
1: function COMPARE(X,Y : A∗) : R

2: T← CONCAT(X,Y)

3: S← SUFFIXTREE(T)

4: return TRAVERSE(root[S])

5: function TRAVERSE(v : Node) :R
6: s← e
7: for c← children[v] do
8: s← s⊕ TRAVERSE(c) ⊲ Depth-first traversal

9: n← FILTER(length[v],depth[v]) ⊲ Filter words on edge tov
10: s← s⊕m(phi[v,1],phi[v,2])⊗ n
11: return s

Algorithm 4 shows a filter function fork-grams. The filter returns 0 for all edges that do not
correspond to ak-gram, either because they are too shallow or too deep in the GST, and returns 1 if
ak-gram terminates on the edge to a nodev.

Algorithm 4 Filter function fork-grams,L =Ak

function FILTER(v : Node) :N
if depth[v] ≥ k and depth[v]− length[v] < k then

return 1
return 0
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Another example of a filter is given in Algorithm 5. The filter implements the embedding
languageL =A∗. The incoming edge to a nodev contributes to a similarity measure bylength[v],
because exactlylength[v] contiguous subsequences terminate on the edge tov.

Algorithm 5 Filter function for all contiguous subsequences,L =A∗

function FILTER(v : Node) :N
return length[v]

The bag-of-words model can be implemented either by encoding each wordas a symbol ofA or
by augmenting nodes to indicate the presence of delimiter symbols on edges. Further definitions of
weighting schemes for string kernels, which are suitable for Algorithm 3, are given by Vishwanathan
and Smola (2004).

Run-time. Suffix trees are well-known for their ability to enhance run-time performance of string
algorithms (Gusfield, 1997). The advantage exploited herein is that a suffix tree comprises a
quadratic amount of information, namely all suffixes, in a linear representation. Thus, a GST en-
ables linear-time computation of similarity measures, even if a sequencex containsO(|x|2) words
and the embedding language corresponds toL =A∗.

There are well-known algorithms for linear-time construction of suffix trees(e.g., Weiner, 1973;
McCreight, 1976; Ukkonen, 1995), so that a GST for two sequencesx andy can be constructed in
O(|x|+ |y|) using the concatenationz= x$1y$2 . As a GST contains at most 2|z| nodes, the worst-
case run-time of any traversal isO(|z|) = O(|x| + |y|). Consequently, computation of similarity
measures between sequences using a GST can be realized in time linear in the sequence lengths
independent of the complexity ofL.

Implementation notes. In practice the GST algorithm may suffer from high memory consump-
tion, due to storage of child nodes and suffix links. To alleviate this problem an alternative data
structure with similar properties—suffix arrays—was proposed by Manber and Myers (1993). A
suffix array is an integer array enumerating the suffixes of a sequencez in lexicographical order. It
can be constructed in linear run-time, however, algorithms with super-linearrun-time are surpris-
ingly faster on real-world data (see Manzini and Ferragina, 2004; Maniscalco and Puglisi, 2007).

Abouelhoda et al. (2004) propose a generic procedure for replacing suffix trees with enhanced
suffix array, for example, as performed for the string kernel computation of Teo and Vishwanathan
(2006). This procedure involves several auxiliary data structures for maintenance of child nodes and
suffix links. In our implementation we follow a different approach based onthe work of Kasai et al.
(2001a) and Kasai et al. (2001b). Using a suffix array and an array of longest-common prefixes
(LCP) for suffixes, we replace the traversal of the GST by looping over a generalized suffix array in
linear time.

Application of suffix arrays reduces memory requirements by a factor of 4. About 11|z| bytes
are required for the modified GST algorithm: 8 bytes for a suffix and inverse suffix array, 2 bytes
for sequence indices and on average 1 byte for an LCP array. In comparison, a suffix tree usu-
ally requires over 40|z| bytes (Abouelhoda et al., 2004) and the enhanced suffix array of Teoand
Vishwanathan (2006) about 19|z| bytes.

36



SIMILARITY MEASURES FORSEQUENTIAL DATA

5. Experiments and Applications

In order to evaluate the run-time performance of the proposed comparisonalgorithms in practice and
to investigate the effect of different similarity measures on sequential data,we conducted experi-
ments on real world sequences. We chose nine data sets from the domains of bioinformatics, text
processing and computer security. Details about each data set, containedsequences and references
are given in Table 5.

Name Sequence type # |A| |x|µ Reference
Bioinformatics
ARTS DNA sequences 46794 4 2400 Sonnenburg et al. (2006)
C.Elegans DNA sequences 10025 4 10000 Wormbase WS120
SPROT Protein sequences 150807 23 467 O’Donovan et al. (2002)
Text processing
Reuters News articles 19042 92 839 Lewis (1997)
Heise News articles 30146 96 1800www.heise.de
RFC Text documents 4589 106 49954www.rfc-editor.org
Computer security
HIDS System call traces 25979 83 156 Lippmann et al. (2000)
NIDS Connection payloads 21330 116 1274 Lippmann et al. (2000)
Spam Emails bodies 33702 176 1539 Metsis et al. (2006)

Table 5: Data sets of sequences. The number of sequences in each setis denoted by #, the alphabet
size by|A| and the average sequence length by|x|µ.

5.1 Run-time Experiments

The linear-time algorithms presented in Section 4 build on data structures of increasing complexity
and capability—sorted arrays are simple but limited in capabilities, tries are more involved, yet
they do not cover all embedding languages and generalized suffix treesare relatively complex and
support the full range of embedding languages. In practice, however, it is the absolute and not
asymptotic run-time that matters. Since the absolute run-time is affected by hiddenconstant factors,
depending on design and implementation of an algorithm, it can only be evaluatedexperimentally.

Therefore each algorithm was implemented using enhancements covered in implementation
notes. In particular, for Algorithm 1 we incorporated 64-bit variables to realize a sorted 64-bit ar-
ray, for Algorithm 2 we implemented a compact trie representation and for Algorithm 3 we used
generalized suffix arrays in favor of suffix trees. For each of thesealgorithms we conducted experi-
ments using different embedding languages to assess the run-time on the datasets given in Table 5.

We applied the following experimental procedure and averaged run-time over 10 individual
runs: 500 sequences are randomly drawn from a data set and a 500×500 matrix is computed for the
Manhattan distance using a chosen embedding language. The run-time of thematrix computation is
measured and reported in pairwise comparisons per second. Note, that due to the symmetry of the
Manhattan distance only(n2+n)/2 comparisons need to be performed for ann×n matrix.
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Figure 4: Run-time of sequences comparison over wordk-grams for different algorithms. The x-
axis gives the wordk-gram lengths. The y-axis shows the number of comparison opera-
tions per second in log-scale.

Embedding language: bag-of-words. As a first embedding language, we consider the bag-of-
words model. Since natural words can be defined only for textual data, we limit the focus of this
experiment to text data sets in Table 5. In particular, we use the embedding language ofword
k-grams—covering the classic “bag of words” as word 1-grams—by using an alphabet of words
instead of characters. Each symbol of the alphabet is stored in 32 bits, sothat up to 232 different
words can be represented. Experiments are conducted for values ofk ranging from 1 to 8.

Figure 4 shows the run-time performance of the implemented algorithms as a function of k on
the Reuters, Heise and RFC data sets. The sorted array approach significantly outperforms the other
algorithms on all data sets, yet it can only be applied fork ≤ 2, as it is limited to 64 bits. For small
values ofk suffix arrays require more time for each comparison compared to compact tries, while
for k > 5 their performance is similar to compact tries. This difference is explained bythe number
of uniquek-gramsνx in each sequencex. For small values ofk often holdsνx < |x|, so that a trie
comparison requiresO(k(νx+ νy)) time in contrast toO(|x| + |y|) for a suffix array. The worse
run-time performance on the RFC data set is due to longer sequences.

Embedding language: k-grams. For this experiment we focus on the embedding language ofk-
grams, which is not limited to a particular type of sequences, so that experiments were conducted for
all data sets in Table 5. In contrast to the previous setup,k-grams are associated with the original
alphabet of each data set: DNA bases and proteins for bioinformatics, characters for texts, and
system calls and bytes for computer security. For each data set the value of k is varied from 1 to 19.

The run-time as a function ofk for each data set and algorithm is given in Figure 5. The sorted
array approach again yields the best performance on all data sets. Moreover, the limitation of sorted
arrays to 64 bits does not effect all data sets, so that for DNA allk-gram lengths can be computed.
The suffix array slightly outperforms the trie comparison for larger value of k, as its worst-case
run-time is independent of the length ofk-grams. Absolute performance in terms of the number of
comparisons per second differs among data sets due to different average sequence lengths. For data
sets with short sequences (e.g., HIDS, ARTS) performance rates up to 106 comparisons per second
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Figure 5: Run-time of sequences comparison overk-grams for different algorithms. The x-axis
gives thek-gram lengths. The y-axis shows the number of comparison operations per
second in log-scale.
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are attainable, while for data sets with longer sequences (e.g., Spam, RFC) generally up to 103−104

comparisons per second are achievable at best.

5.2 Applications

We now demonstrate that the ability of our approach to compute diverse similaritymeasures is
beneficial in real applications, especially in unsupervised learning scenarios. Our experiments are
performed for: (a) categorization of news articles, (b) intrusion detection in network traffic (c) tran-
scription start site recognition in DNA sequences.

Unsupervised text categorization. For this experiment news articles from the topics “Coffee”,
“Interest”, “Sugar” and “Trade” in the Reuters data set are selected.The learning task is to cate-
gorize these articles using clustering, without any prior knowledge of labels. As preprocessing we
remove all stop words and words that occur in single articles only. We then compute dissimilar-
ity matrices for the Euclidean, Manhattan and Jensen-Shannon distances using the bag-of-words
embedding language as discussed in Section 3. The embedded articles are finally assigned to four
clusters using complete linkage clustering (see Duda et al., 2001).

Figure 6(a) shows projections of the embedded articles obtained from the dissimilarity matrices
using multidimensional scaling (see Duda et al., 2001). Although projections are limited in describ-
ing high-dimensional data, they visualize structure and, thus, help to interpret clustering results.
For example, the projection of the Euclidean distances in Figure 6(a) noticeably differs in shape
compared to the Manhattan and Jensen-Shannon distances.

The cluster assignments are presented in Figure 6(b) and the distribution oftopic labels among
clusters is given in Figure 6(c). For the Euclidean distance the clustering fails to unveil features
discriminative for article topics, as the majority of articles is assigned to a single cluster. In compar-
ison, the Manhattan and Jensen-Shannon distance allow categorization ofthe topics “Coffee” and
“Sugar”, due to observed high frequencies of respective words in articles. However, the Manhattan
distance does no allow discrimination of the other two topics, as both are mixed among two clus-
ters. The Jensen-Shannon distance enables better separation of all four topics. The topics “Coffee”
and “Sugar” are almost perfectly assigned to clusters and the topics “Interest” and “Trade” each
constitute the majority in a respective cluster.

Network intrusion detection. Network intrusion detection aims to automatically identify hacker
attacks in network traffic. As labels for such data are hard to obtain in practice, unsupervised
learning has gained attention in intrusion detection research. The NIDS dataset used for the run-
time experiments (cf. Table 5) is known to contain major artifacts (see McHugh,2000). In order
to provide a fair investigation of the impact of various similarity measures on detection of attacks,
we generated a smaller private data set. Normal traffic was recorded from the members of our
laboratory by providing a virtual network. Additionally attacks were injectedby a security expert.

For this experiment we pursue an unsupervised learning approach to network intrusion detection
(Rieck and Laskov, 2007). The incoming byte sequences of network connections are embedded
using the language of 5-grams, and Zeta, an unsupervised anomaly detection method based onk-
nearest neighbors, is applied over the following similarity measures: the Euclidean, Manhattan and
Jensen-Shannon distance and the second Kulczynski coefficient (see Section 3.2).

ROC curves for the detection of attacks in the network protocols HTTP, FTPand SMTP are
shown in Figure 7. Application of the Jensen-Shannon distance and second Kulczynski coefficient

40



SIMILARITY MEASURES FORSEQUENTIAL DATA

Projection of Euclidean distances Projection of Manhattan distances

Coffee
Interest
Sugar
Trade

Projection of Jensen−Shannon distances

(a) Projection of embedded articles with true topic label assignments

Clustering of Euclidean distances Clustering of Manhattan distances

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Clustering of Jensen−Shannon distances

(b) Projection of embedded articles with cluster assignments

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Clusters

T
op

ic
 r

at
io

Topic ratio for Euclidean distance

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

Clusters

T
op

ic
 r

at
io

Topic ratio for Manhattan distance

Coffee
Interest
Sugar
Trade

1 2 3 4
0

0.1

0.2

0.3

0.4

Clusters

T
op

ic
 r

at
io

Topic ratio for Jensen−Shannon distance

(c) Ratio of topic labels in clusters of embedded articles

Figure 6: Clustering of Reuters articles using different similarity measures (bag-of-words).

yield the highest detection accuracy. Over 78% of all attacks are identifiedwith no false-positives
in an unsupervised setup. In comparison, the Euclidean and Manhattan distance give significantly
lower detection rates on the FTP and SMTP protocols. The poor detection performance of the latter
two similarity measures emphasizes that choosing a discriminative similarity measureis crucial for
achieving high accuracy in a particular application.

Transcription start site recognition. The last application focuses on recognition of transcription
start sites (TSS), which mark the beginning of genes in DNA. We consider the ARTS data set, which
comprises human DNA sequences that either cover the TSS of protein coding genes or have been
extracted randomly from the interior of genes. Following the approach of Sonnenburg et al. (2006)
these sequences are embedded using the language of 6-grams and a support vector machine (SVM)
and a baggedk-nearest neighbor classifier are trained and evaluated on the different partitions of
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Figure 7: ROC curves for unsupervised anomaly detection on 5-grams ofnetwork connections and
attacks recorded at our laboratory.
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Figure 8: ROC curves for supervised and unsupervised recognition of transcription start sites (TSS)
on 6-grams of DNA sequences (ARTS data set).

the data set. Each method is evaluated for the Euclidean distance, the Manhattan distance and
the second Kulczynski coefficient. As only 10% of the sequences in the data set correspond to
transcription start sites, we additionally apply the unsupervised outlier detection method Gamma
(Harmeling et al., 2006), which is similar to the method employed in the previous experiment.

Figure 8 shows the performance achieved by the baggedk-nearest neighbor classifier and the
unsupervised learning method.2 The accuracy in both setups strongly depends on the chosen sim-
ilarity measures. The metric distances yield better accuracy in the supervisedsetup. The second
Kulczynski coefficient and also the Manhattan distance perform significantly better than the Eu-
clidean distance in unsupervised application. In the absence of labels these measures express better
discriminative properties for TSS recognition, that are difficult to accessthrough Euclidean dis-
tances. For the supervised application, the classification performance is limited for all similarity

2. Results for the SVM are similar to the baggedk-nearest neighbor classifier and have been omitted.
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measures, as only some discriminative features for TSS recognition are encapsulated ink-gram
models (cf. Sonnenburg et al., 2006).

6. Conclusions

The framework for comparison of sequences proposed in this article provides means for efficient
computation of a large variety of similarity measures, including kernels, distances and non-metric
similarity coefficients. The framework is based on embedding of sequencesin a high-dimensional
feature space using formal languages, such ask-grams, contiguous subsequences, etc. Three im-
plementations of the proposed framework using different data structureshave been discussed and
experimentally evaluated.

Although all three data structures that were considered—sorted arrays, tries and generalized
suffix trees—have asymptotically linear run-time, significant differences inthe absolute run-time
have been observed in our experiments. The constant factors are affected by various design issues
illustrated by our remarks on implementation of the proposed algorithms. In general, we have
observed a consistent trade-off between run-time efficiency and complexity of embedding languages
a particular data structure can handle. Sorted arrays are the most efficient data structure; however,
their applicability is limited tok-grams and bag-of-words models. On the other end of the spectrum
are generalized suffix trees (and their more space-efficient implementationusing suffix arrays) that
can handle unrestricted embedding languages—at a cost of more complicated algorithms and lower
efficiency. The optimal data structure for computation of similarity measures thus depends on the
embedding language to be used in a particular application.

The proposed framework offers machine learning researchers an opportunity to use a large va-
riety of similarity measures for applications that involve sequential data. Although an optimal sim-
ilarity measure—as it is well known and has been also observed in our experiments—depends on
a particular application, the technical means for seamless incorporation of various similarity mea-
sures can be of great utility in practical applications of machine learning. Especially appealing is the
possibility for efficient computation of non-Euclidean distances over embedded sequences, which
extend applicable similarity measures for sequences beyond inner-products and kernel functions.

In general, the proposed framework demonstrates an important advantage of abstracting data
representation—in the form of pairwise relationships—from learning algorithms, which will hope-
fully motivate further investigation of learning algorithms using a general form of such abstraction.
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Abstract

Conventional SVM-based image coding methods are founded on independently restricting the dis-
tortion in every image coefficient at some particular image representation. Geometrically, this im-
plies allowing arbitrary signal distortions in an n-dimensional rectangle defined by the ε-insensitivity
zone in each dimension of the selected image representation domain. Unfortunately, not every im-
age representation domain is well-suited for such a simple, scalar-wise, approach because statis-
tical and/or perceptual interactions between the coefficients may exist. These interactions imply
that scalar approaches may induce distortions that do not follow the image statistics and/or are
perceptually annoying. Taking into account these relations would imply using non-rectangular ε-
insensitivity regions (allowing coupled distortions in different coefficients), which is beyond the
conventional SVM formulation.

In this paper, we report a condition on the suitable domain for developing efficient SVM image
coding schemes. We analytically demonstrate that no linear domain fulfills this condition because
of the statistical and perceptual inter-coefficient relations that exist in these domains. This theoret-
ical result is experimentally confirmed by comparing SVM learning in previously reported linear
domains and in a recently proposed non-linear perceptual domain that simultaneously reduces the
statistical and perceptual relations (so it is closer to fulfilling the proposed condition). These results
highlight the relevance of an appropriate choice of the image representation before SVM learning.

Keywords: image coding, non-linear perception models, statistical independence, support vector
machines, insensitivity zone
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1. Problem Statement: The Diagonal Jacobian Condition

Image coding schemes based on support vector machines (SVM) have been successfully introduced
in the literature. SVMs have been used in the spatial domain (Robinson and Kecman, 2000), in the
block-DCT domain (Robinson and Kecman, 2003), and in the wavelet domain (Ahmed, 2005; Jiao
et al., 2005). These coding methods take advantage of the ability of the support vector regression
(SVR) algorithm for function approximation using a small number of parameters (signal samples, or
support vectors) (Smola and Schölkopf, 2004). In all current SVM-based image coding techniques,
a representation of the image is described by the entropy-coded weights associated to the support
vectors necessary to approximate the signal with a given accuracy. Relaxing the accuracy bounds
reduces the number of needed support vectors. In a given representation domain, reducing the
number of support vectors increases the compression ratio at the expense of bigger distortion (lower
image quality). By applying the standard SVR formulation, a certain amount of distortion in each
sample of the image representation is allowed. In the original formulation, scalar restrictions on the
errors are introduced using a constant ε-insensitivity value for every sample.

Recently, this procedure has been refined by Gómez-Pérez et al. (2005) using a profile-dependent
SVR (Camps-Valls et al., 2001) that considers a different ε for each sample or frequency. This
frequency-dependent insensitivity, ε f , accounts for the fact that, according to simple (linear) per-
ception models, not every sample in linear frequency domains (such as DCT or wavelets) contributes
to the perceived distortion in the same way.

Despite different domains have been proposed for SVM training (spatial domain, block-DCT
and wavelets) and different ε insensitivities per sample have been proposed, in conventional SVR
formulation, the particular distortions introduced by regression in the different samples are not
coupled. In all the reported SVM-based image coding schemes, the RBF kernel is used and the
penalization parameter is fixed to an arbitrarily large value. In this setting, considering n-sample
signals as n-dimensional vectors, the SVR guarantees that the approximated vectors are confined
in n-dimensional rectangles around the original vectors. These rectangles are just n-dimensional
cubes in the standard formulation or they have certain elongation if different ε f are considered in
each axis, f . Therefore, in all the reported SVM-based coding methods, these rectangles are always
oriented along the axes of the (linear) image representation. According to this, a common feature
of these (scalar-wise) approaches is that they give rise to decoupled distortions in each dimension.
Pérez-Cruz et al. (2002) proposed a hyperspherical insensitivity zone to correct the penalization
factor in each dimension of multi-output regression problems, but again, restrictions to each sample
were still uncoupled.

This scalar-wise strategy is not the best option in domains where the different dimensions of
the image representation are not independent. For instance, consider the situation where actually
independent components, r f , are obtained from a given image representation, y, applying some
eventually non-linear transform, R:

y R−→ r.

In this case, SVM regression with scalar-wise error restriction makes sense in the r domain. How-
ever, the original y domain will not be suitable for the standard SVM regression unless the matrix
∇R is diagonal (up to any permutation of the dimensions, that is, only one non-zero element per
row). Therefore, if transforms that achieve independence have non-diagonal Jacobian, scalar-wise
restrictions in the original (coupled coefficients) domain y are not allowed.
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Figure 1: Insensitivity regions in different representation domains, y (left) and r (right), related by
a non-diagonal transform ∇R and its inverse ∇R−1.

Figure 1 illustrates this situation. The shaded region in the right plot (r domain) represents
the n-dimensional box determined by the ε f insensitivities in each dimension ( f =1,2), in which a
scalar-wise approach is appropriate due to independence among signal coefficients. Given that the
particular ∇R transform is not diagonal, the corresponding shaded region in the left plot (the original
y domain) is not aligned along the axes of the representation. This has negative implications: note
that for the highlighted points, smaller distortions in both dimensions in the y domain (as implied by
SVM with tighter but scalar ε f insensitivities) do not necessarily imply lying inside the insensitivity
region in the final truly independent (and meaningful) r domain. Therefore, the original y domain is
not suitable for the direct application of conventional SVM, and consequently, non-trivial coupled
insensitivity regions are required.

Summarizing, in the image coding context, the condition for an image representation y to be
strictly suitable for conventional SVM learning is that the transform that maps the original repre-
sentation y to an independent coefficient representation r must be locally diagonal.

As will be reviewed below, independence among coefficients (and the transforms to obtain them)
may be defined in both statistical and perceptual terms (Hyvarinen et al., 2001; Malo et al., 2001;
Epifanio et al., 2003; Malo et al., 2006). On the one hand, a locally diagonal relation to a statistically
independent representation is desirable because independently induced distortions (as the conven-
tional SVM approach does) will preserve the statistics of the distorted signal, that is, it will not
introduce artificial-looking artifacts. On the other hand, a locally diagonal relation to a perceptually
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independent representation is desirable because independently induced distortions do not give rise
to increased subjective distortions due to non-trivial masking or facilitation interactions between the
distortions in each dimension (Watson and Solomon, 1997).

In this work, we show that conventional linear domains do not fulfill the diagonal Jacobian
condition in either the statistical case or in the perceptual case. This theoretical result is experimen-
tally confirmed by comparing SVM learning in previously reported linear domains (Robinson and
Kecman, 2003; Gómez-Pérez et al., 2005) and in a recently proposed non-linear perceptual domain
that simultaneously reduces the statistical and the perceptual relations (Malo et al., 2006), thus, this
non-linear perceptual domain is closer to fulfilling the proposed condition.

The rest of the paper is structured as follows. Section 2 reviews the fact that linear coefficients
of the image representations commonly used for SVM training are neither statistically independent
nor perceptually independent. Section 3 shows that transforms for obtaining statistical and/or per-
ceptual independence from linear domains have non-diagonal Jacobian. This suggests that there is
room to improve the performance of conventional SVM learning reported in linear domains. In Sec-
tion 4, we propose the use of a perceptual representation for SVM training because it strictly fulfills
the diagonal Jacobian condition in the perceptual sense and increases the statistical independence
among coefficients, bringing it closer to fulfilling the condition in the statistical sense. The experi-
mental image coding results confirm the superiority of this domain for SVM training in Section 5.
Section 6 presents the conclusions and final remarks.

2. Statistical and Perceptual Relations Among Image Coefficients

Statistical independence among the coefficients of a signal representation refers to the fact that the
joint PDF of the class of signals to be considered can be expressed as a product of the marginal
PDFs in each dimension (Hyvarinen et al., 2001). Simple (second-order) descriptions of statistical
dependence use the non-diagonal nature of the covariance matrix (Clarke, 1985; Gersho and Gray,
1992). More recent and accurate descriptions use higher-order moments, mutual information, or the
non-Gaussian nature (sparsity) of marginal PDFs (Hyvarinen et al., 2001; Simoncelli, 1997).

Perceptual independence refers to the fact that the visibility of errors in coefficients of an image
may depend on the energy of neighboring coefficients, a phenomenon known in the perceptual
literature as masking or facilitation (Watson and Solomon, 1997). Perceptual dependence has been
formalized just up to second order, and this may be described by the non-Euclidean nature of the
perceptual metric matrix (Malo et al., 2001; Epifanio et al., 2003; Malo et al., 2006).

2.1 Statistical Relations

In recent years, a variety of approaches, known collectively as “independent component analysis”
(ICA), have been developed to exploit higher-order statistics for the purpose of achieving a unique
linear solution for coefficient independence (Hyvarinen et al., 2001). The basis functions obtained
when these methods are applied to images are spatially localized and selective for both orientation
and spatial frequency (Olshausen and Field, 1996; Bell and Sejnowski, 1997). Thus, they are similar
to basis functions of multi-scale wavelet representations.

Despite its name, linear ICA does not actually produce statistically independent coefficients
when applied to photographic images. Intuitively, independence would seem unlikely, since images
are not formed from linear superpositions of independent patterns: the typical combination rule
for the elements of an image is occlusion. Empirically, the coefficients of natural image decom-
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Figure 2: Statistical interaction of two particular coefficients of the local Fourier Transform with
their neighbors in a natural image database. The absolute value of the frequency of these
coefficients is | f |= 10.8 and | f |= 24.4 cycles/degree (cpd).

positions in spatially localized oscillating basis functions are found to be fairly well decorrelated
(i.e., their covariance is almost zero). However, the amplitudes of coefficients at nearby spatial posi-
tions, orientations, and scales are highly correlated (even with orthonormal transforms) (Simoncelli,
1997; Buccigrossi and Simoncelli, 1999; Wainwright et al., 2001; Hyvarinen et al., 2003; Gutiérrez
et al., 2006; Malo et al., 2006; Malo and Gutiérrez, 2006). This suggests that achieving statistical
independence requires the introduction of non-linearities beyond linear ICA transforms.

Figure 2 reproduces one of many results that highlight the presence of statistical relations of
natural image coefficients in block PCA or linear ICA-like domains: the energy of spatially localized
oscillating filters is correlated with the energy of neighboring filters in scale and orientation (see
Gutiérrez et al., 2006). A remarkable feature is that the interaction width increases with frequency,
as has been reported in other domains, for example, wavelets (Buccigrossi and Simoncelli, 1999;
Wainwright et al., 2001; Hyvarinen et al., 2003), and block-DCT (Malo et al., 2006).

In order to remove the remaining statistical relations in the linear domains y, non-linear ICA
methods are necessary (Hyvarinen et al., 2001; Lin, 1999; Karhunen et al., 2000; Jutten and Karhunen,
2003). Without lack of generality, non-linear ICA transforms can be schematically understood as a
two-stage process (Malo and Gutiérrez, 2006):

x
T

((
hh

T−1

y
R

((
hh

R−1

r , (1)

where x is the image representation in the spatial domain, and T is a global unitary linear transform
that removes second-order and eventually higher-order relations among coefficients in the spatial
domain. Particular examples of T include block PCA, linear ICAs, DCT or wavelets. In the ICA
literature notation, T is the separating matrix and T−1 is the mixing matrix. The second transform
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R is an additional non-linearity that is introduced in order to remove the statistical relations that still
remain in the y domain.

2.2 Perceptual Relations

Perceptual dependence among coefficients in different image representations can be understood
by using the current model of V1 cortex. This model can also be summarized by the two-stage
(linear and non-linear) process described in Equation (1). In this perceptual case, T is also a linear
filter bank applied to the original input image in the spatial domain. This filter bank represents the
linear behavior of V1 neurons whose receptive fields happen to be similar to wavelets or linear ICA
basis functions (Olshausen and Field, 1996; Bell and Sejnowski, 1997). The second transform, R,
is a non-linear function that accounts for the masking and facilitation phenomena that have been
reported in the linear y domain (Foley, 1994; Watson and Solomon, 1997). Section 3.2 gives a
parametric expression for the second non-linear stage, R: the divisive normalization model (Heeger,
1992; Foley, 1994; Watson and Solomon, 1997).

This class of models is based on psychophysical experiments assuming that the last domain,
r, is perceptually Euclidean (i.e., perfect perceptual independence). An additional confirmation of
this assumption is the success of (Euclidean) subjective image distortion measures defined in that
domain (Teo and Heeger, 1994). Straightforward application of Riemannian geometry to obtain the
perceptual metric matrix in other domains shows that the coefficients of linear domains x and y, or
any other linear transform of them, are not perceptually independent (Epifanio et al., 2003).

Figure 3 illustrates the presence of perceptual relations between coefficients when using linear
block frequency or wavelet-like domains, y: the cross-masking behavior. In this example, the visi-
bility of the distortions added on top of the background image made of periodic patterns has to be
assessed. This is a measure of the sensitivity of a particular perceptual mechanism to distortions in
that dimension, ∆y f , when mechanisms tuned to other dimensions are simultaneously active, that
is, y f ′ 6= 0, with f ′ 6= f . As can be observed, low frequency noise is more visible in high frequency
backgrounds than in low frequency backgrounds (e.g., left image). Similarly, high frequency noise
is more visible in low frequency backgrounds than in high frequency ones (e.g., right image). That
is to say, a signal of a specific frequency strongly masks the corresponding frequency analyzer, but
it induces a smaller sensitivity reduction in the analyzers that are tuned to different frequencies. In
other words, the reduction in sensitivity of a specific analyzer gets larger as the distance between
the background frequency and the frequency of the analyzer gets smaller. The response of each fre-
quency analyzer not only depends on the energy of the signal for that frequency band, but also on the
energy of the signal in other frequency bands (cross-masking). This implies that a different amount
of noise in each frequency band may be acceptable depending on the energy of that frequency band
and on the energy of neighboring bands. This is what we have called perceptual dependence among
different coefficients in the y domain.

At this point, it is important to stress the similarity between the set of computations to obtain
statistically decoupled image coefficients and the known stages of biological vision. In fact, it has
been hypothesized that biological visual systems have organized their sensors to exploit the partic-
ular statistics of the signals they have to process. See Barlow (2001), Simoncelli and Olshausen
(2001), and Simoncelli (2003) for reviews on this hypothesis.

In particular, both the linear and the non-linear stages of the cortical processing have been
successfully derived using redundancy reduction arguments: nowadays, the same class of linear
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3 cpd 6 cpd 12 cpd 24 cpd

Figure 3: Illustrative example of perceptual dependence (cross-masking phenomenon). Equal en-
ergy noise of different frequency content, 3 cycl/deg (cpd), 6 cpd, 12 cpd and 24 cpd,
shown on top of a background image. Sampling frequency assumes that these images
subtend an angle of 3 deg.

stage T is used in transform coding algorithms and in vision models (Olshausen and Field, 1996;
Bell and Sejnowski, 1997; Taubman and Marcellin, 2001), and new evidence supports the same
idea for the second non-linear stage (Schwartz and Simoncelli, 2001; Malo and Gutiérrez, 2006).
According to this, the statistical and perceptual transforms, R, that remove the above relations from
the linear domains, y, would be very similar if not the same.

3. Statistical and Perceptual Independence Imply Non-diagonal Jacobian

In this section, we show that both statistical redundancy reduction transforms (e.g., non-linear ICA)
and perceptual independence transforms (e.g., divisive normalization), have non-diagonal Jacobian
for any linear image representation, so they are not strictly suitable for conventional SVM training.

3.1 Non-diagonal Jacobian in Non-linear ICA Transforms

One possible approach for dealing with global non-linear ICA is to act differentially by breaking
the problem into local linear pieces that can then be integrated to obtain the global independent
coefficient domain (Malo and Gutiérrez, 2006). Each differential sub-problem around a particular
point (image) can be locally solved using the standard linear ICA methods restricted to the neighbors
of that point (Lin, 1999).

Using the differential approach in the context of a two-stage process such as the one in Equa-
tion (1), it can be shown that (Malo and Gutiérrez, 2006):

r = r0 +
Z x

x0

T`(x′)dx′ = r0 +
Z x

x0

∇R(Tx′)Tdx′, (2)

where T`(x′) is the local separating matrix for a neighborhood of the image x′, and T is the global
separating matrix for the whole PDF. Therefore, the Jacobian of the second non-linear stage is:

∇R(y) = ∇R(Tx) = T`(x)T−1. (3)
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As local linear independent features around a particular image, x, differ in general from global
linear independent features, that is, T`(x) 6= T, the above product is not the identity nor diagonal in
general.

3.2 Non-diagonal Jacobian in Non-linear Perceptual Transforms

The current response model for the cortical frequency analyzers is non-linear (Heeger, 1992; Wat-
son and Solomon, 1997). The outputs of the filters of the first linear stage, y, undergo a non-linear
sigmoid transform in which the energy of each linear coefficient is weighted by a linear Contrast
Sensitivity Function (CSF) (Campbell and Robson, 1968; Malo et al., 1997) and is further normal-
ized by a combination of the energies of neighbor coefficients in frequency,

r f = R(y) f =
sgn(y f ) |α f y f |γ

β f +∑n
f ′=1 h f f ′ |α f ′ y f ′ |γ

, (4)

where α f (Figure 4[top left]) are CSF-like weights, β f (Figure 4[top right]) control the sharpness
of the response saturation for each coefficient, γ is the so called excitation exponent, and the matrix
h f f ′ determines the interaction neighborhood in the non-linear normalization of the energy. This in-
teraction matrix models the cross-masking behavior (cf. Section 2.2). The interaction in this matrix
is assumed to be Gaussian (Watson and Solomon, 1997), and its width increases with the frequency.
Figure 4[bottom] shows two examples of this Gaussian interaction for two particular coefficients in
a local Fourier domain. Note that the width of the perceptual interaction neighborhood increases
with the frequency in the same way as the width of the statistical interaction neighborhood shown
in Figure 2. We used a value of γ = 2 in the experiments.

Taking derivatives in the general divisive normalization model, Equation (4), we obtain

∇R(y) f f ′ = sgn(y f )γ

(

α f |α f y f |γ−1

β f +∑n
f ′=1 h f f ′ |α f ′y f ′ |γ

δ f f ′−
α f ′ |α f y f |γ|α f ′y f ′ |γ−1

(β f +∑n
f ′=1 h f f ′ |α f ′y f ′ |γ)2 h f f ′

)

, (5)

which is not diagonal because of the interaction matrix, h, which describes the cross-masking be-
tween each frequency f and the remaining f ′ 6= f .

Note that the intrinsic non-linear nature of both the statistical and perceptual transforms, Equa-
tions (3) and (5), makes the above results true for any linear domain under consideration. Specifi-
cally, if any other possible linear domain for image representation is considered, y′ = T′ y, then the
Jacobian of the corresponding independence transform, R′, is

∇R′(y′) = ∇R(y)T′−1,

which, in general, will also be non-diagonal because of the non-diagonal and point-dependent nature
of ∇R(y).

To summarize, since no linear domain fulfills the diagonal Jacobian condition in either statistical
or perceptual terms, the negative situation illustrated in Figure 1 may occur when using SVM in
these domains. Therefore, improved results could be obtained if SVM learning were applied after
some transform achieving independent coefficients, R.

4. SVM Learning in a Perceptually Independent Representation

In order to confirm the above theoretical results (i.e., the unsuitability of linear representation do-
mains for SVM learning) and to assess the eventual gain that can be obtained from training SVR
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Figure 4: Parameters of the perceptual model: α f (top left), β f (top right). Bottom figures repre-
sent perceptual interaction neighborhoods h f f ′ of two particular coefficients of the local
Fourier domain.

in a more appropriate domain, we should compare the performance of SVRs in previously reported
linear domains (e.g., block-DCT or wavelets) and in one of the proposed non-linear domains (either
the statistically independent domain or the perceptually independent domain).

Exploration of the statistical independence transform may have academic interest but, in its
present formulation, it is not practical for coding purposes: direct application of non-linear ICA
as in Equation (2) is very time-consuming for high dimensional vectors since lots of local ICA
computations are needed to transform each block, and a very large image database is needed for a
robust and significant computation of R. Besides, an equally expensive differential approach is also
needed to compute the inverse R−1 for image decoding. In contrast, the perceptual non-linearity
(and its inverse) are analytical. These analytical expressions are feasible for reasonable block sizes,
and there are efficient iterative methods that can be used for larger vectors (Malo et al., 2006).
In this paper, we explore the use of a psychophysically-based divisive normalized domain: first
compute a block-DCT transform and then apply the divisive normalization model described above
for each block. The results will be compared to the first competitive SVM coding results (Robinson
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and Kecman, 2003) and the posterior improvements reported by Gómez-Pérez et al. (2005), both
formulated in the linear block-DCT domain.

As stated in Section 2, by construction, the proposed domain is perceptually Euclidean with per-
ceptually independent components. The Euclidean nature of this domain has an additional benefit:
the ε-insensitivity design is very simple because a constant value is appropriate due to the constant
perceptual relevance of all coefficients. Thus, direct application of the standard SVR method is
theoretically appropriate in this domain.

Moreover, beyond its built-in perceptual benefits, this psychophysically-based divisive normal-
ization has attractive statistical properties: it strongly reduces the mutual information between the
final coefficients r (Malo et al., 2006). This is not surprising according to the hypothesis that try to
explain the early stages of biological vision systems using information theory arguments (Barlow,
1961; Simoncelli and Olshausen, 2001). Specifically, dividing the energy of each linear coefficient
by the energy of the neighbors, which are statistically related with it, cf. Figure 2, gives coefficients
with reduced statistical dependence. Moreover, as the empirical non-linearities of perception have
been reproduced using non-linear ICA in Equation (2) (Malo and Gutiérrez, 2006), the empirical di-
visive normalization can be seen as a convenient parametric way to obtain statistical independence.

5. Performance of SVM Learning in Different Domains

In this section, we analyze the performance of SVM-based coding algorithms in linear and non-
linear domains through rate-distortion curves and explicit examples for visual comparison. In addi-
tion, we discuss how SVM selects support vectors in these domains to represent the image features.

5.1 Model Development and Experimental Setup

In the (linear) block-DCT domain, y, we use the method introduced by Robinson and Kecman
(2003) (RKi-1), in which the SVR is trained to learn a fixed (low-pass) number of DCT coefficients
(those with frequency bigger than 20 cycl/deg are discarded); and the method proposed by Gómez-
Pérez et al. (2005) (CSF-SVR), in which the relevance of all DCT coefficients is weighted according
to the CSF criterion using an appropriately modulated ε f . In the non-linear domain, r, we use the
SVR with constant insensitivity parameter ε (NL-SVR). In all cases, the block-size is 16×16, that
is, y, r ∈ R

256. The behavior of JPEG standard is also included in the experiments for comparison
purposes.

As stated in Section 1, we used the RBF kernel and arbitrarily large penalization parameter
in every SVR case. In all experiments, we trained the SVR models without the bias term, and
modelled the absolute value of the DCT, y, or response coefficients, r. All the remaining free
parameters (ε-insensitivity and Gaussian width of the RBF kernel σ) were optimized for all the
considered models and different compression ratios. In the NL-SVM case, the parameters of the
divisive normalization used in the experiments are shown in Figure 4. After training, the signal is
described by the uniformly quantized Lagrange multipliers of the support vectors needed to keep the
regression error below the thresholds ε f . The last step is entropy coding of the quantized weights.
The compression ratio is controlled by a factor applied to the thresholds, ε f .
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5.2 Model Comparison

In order to assess the quality of the coded images, three different measures were used: the standard
(Euclidean) RMSE, the Maximum Perceptual Error (MPE) (Malo et al., 2000; Gómez-Pérez et al.,
2005; Malo et al., 2006) and the also perceptually meaningful Structural SIMilarity (SSIM) index
(Wang et al., 2004). Eight standard 256×256 monochrome 8 bits/pix images were used in the exper-
iments. Average rate-distortion curves are plotted in Figure 5 in the range [0.05, 0.6] bits/pix (bpp).
According to these entropy-per-sample data, original file size was 64 KBytes in every case, while
the compressed image sizes were in the range [0.4, 4.8] KBytes. This implies that the compression
ratios were in the range [160:1, 13:1].

In general, a clear gain over standard JPEG is obtained by all SVM-based methods. According
to the standard Euclidean MSE point of view, the performance of RKi-1 and CSF-SVR algorithms
is basically the same (note the overlapped curves in Figure 5(a)). However, it is widely known
that the MSE results are not useful to represent the subjective quality of images, as extensively re-
ported elsewhere (Girod, 1993; Teo and Heeger, 1994; Watson and Malo, 2002). When using more
appropriate (perceptually meaningful) quality measures (Figures 5(b)-(c)), the CSF-SVR obtains a
certain advantage over the RKi-1 algorithm for all compression rates, which was already reported
by Gómez-Pérez et al. (2005). In all measures, and for the whole considered entropy range, the
proposed NL-SVR clearly outperforms all previously reported methods, obtaining a noticeable gain
at medium-to-high compression ratios (between 0.1 bpp (80:1) and 0.3 bpp (27:1)). Taking into ac-
count that the recommended bit rate for JPEG is about 0.5 bpp, from Figure 5 we can also conclude
that the proposed technique achieves the similar quality levels at a lower bit rate in the range [0.15,
0.3] bpp.

Figure 6 shows representative visual results of the considered SVM strategies on standard im-
ages (Lena and Barbara) at the same bit rate (0.3 bpp, 27:1 compression ratio or 2.4 KBytes in
256×256 images). The visual inspection confirms that the numerical gain in MPE and SSIM shown
in Figure 5 is also perceptually significant. Some conclusions can be extracted from this figure.
First, as previously reported by Gómez-Pérez et al. (2005), RKi-1 leads to poorer (blocky) results
because of the crude approximation of the CSF (as an ideal low-pass filter) and the equal relevance
applied to the low-frequency DCT-coefficients. Second, despite the good performance yielded by
the CSF-SVR approach to avoid blocking effects, it is worth noting that high frequency details are
smoothed (e.g., see Barbara’s scarf). These effects are highly alleviated by introducing SVR in the
non-linear domain. See, for instance, Lena’s eyes, her hat’s feathers or the better reproduction of
the high frequency pattern in Barbara’s clothes.

Figure 7 shows the results obtained by all considered methods at a very high compression ratio
for the Barbara image (0.05 bpp, 160:1 compression ratio or 0.4 KBytes in 256×256 images).
This experiment is just intended to show the limits of methods performance since it is out of the
recommended rate ranges. Even though this scenario is unrealistic, differences among methods are
still noticeable: the proposed NL-SVR method reduces the blocky effects (note for instance that the
face is better reproduced). This is due to a better distribution of support vectors in the perceptually
independent domain.

5.3 Support Vector Distribution

The observed different perceptual image quality obtained with each approach is a direct conse-
quence of support vector distribution in different domains. Figure 8 shows a representative example
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Figure 5: Average rate distortion curves over eight standard images (Lena, Barbara, Boats, Einstein,
Peppers, Mandrill, Goldhill, Camera man) using objective and subjective measures for
the considered JPEG (dotted) and the SVM approaches (RKi-1 dash-dotted, CSF-SVR
dashed and NL-SVR solid). RMSE distortion (top), Maximum Perceptual Error, MPE
(middle) (Malo et al., 2000; Gómez-Pérez et al., 2005; Malo et al., 2006), and Structural
SIMilarity index, SSIM (bottom) (Wang et al., 2004).
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NL+SVR NL+SVR

Figure 6: Examples of decoded Lena (left) and Barbara (right) images at 0.3 bits/pix. From top to
bottom: JPEG, RKi-1, CSF-SVR, and NL-SVR.
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(a) (b)

(c) (d)

Figure 7: Examples of decoded Barbara images at a high compression ratio of 0.05 bits/pix (160:1)
for (a) JPEG, (b) RKi-1, (c) CSF-SVR, and (d) NL-SVR.

of the distribution of the selected support vectors by the RKi-1 and the CSF-SVR models working
in the linear DCT domain, and the NL-SVM working in the perceptually independent non-linear do-
main r. Specifically, a block of Barbara’s scarf at different compression ratios is used for illustration
purposes.

The RKi-1 approach (Robinson and Kecman, 2003) uses a constant ε but, in order to consider the
low subjective relevance of the high-frequency region, the corresponding coefficients are neglected.
As a result, this approach only allocates support vectors in the low/medium frequency regions. The
CSF-SVR approach uses a variable ε according to the CSF and gives rise to a more natural con-
centration of support vectors in the low/medium frequency region, which captures medium to high
frequency details at lower compression rates (0.5 bits/pix). Note that the number of support vectors
is bigger than in the RKi-1 approach, but it selects some necessary high-frequency coefficients to
keep the error below the selected threshold. However, for bigger compression ratios (0.3 bits/pix),
it misrepresents some high frequency, yet relevant, features (e.g., the peak from the stripes). The
NL-SVM approach works in the non-linear transform domain, in which a more uniform coverage
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Figure 8: Signal in different domains and the selected support vectors by the SVM models in a
block of the Barbara image at 0.3 bits/pix (top row) and 0.5 bits/pix (bottom row). Differ-
ent domains are analyzed: (a) linear DCT using RKi-1, (b) linear DCT with CSF-SVM,
and (c) non-linear perceptual domain with standard ε-SVM (NL-SVR).

of the domain is done, accounting for richer (and perceptually independent) coefficients to perform
efficient sparse signal reconstruction.

It is important to remark that, for a given method (or domain), tightening ε f implies (1) consid-
ering more support vectors, and (2) an increase in entropy (top and bottom rows in Figure 8, 0.3 bpp
to 0.5 bpp). However, note that the relevant measure is the entropy and not the number of support
vectors: even though the number of selected support vectors in the r domain is higher, their variance
is lower, thus giving rise to the same entropy after entropy coding.

6. Conclusions

In this paper, we have reported a condition on the suitable domain for developing efficient SVM
image coding schemes. The so-called diagonal Jacobian condition states that SVM regression with
scalar-wise error restriction in a particular domain makes sense only if the transform that maps this
domain to an independent coefficient representation is locally diagonal. We have demonstrated that,
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in general, linear domains do not fulfill this condition because non-trivial statistical and perceptual
inter-coefficient relations do exist in these domains.

This theoretical finding has been experimentally confirmed by observing that improved com-
pression results are obtained when SVM is applied in a non-linear perceptual domain that starts
from the same linear domain used by previously reported SVM-based image coding schemes. These
results highlight the relevance of an appropriate image representation choice before SVM learning.

Further work is tied to the use of SVM-based coding schemes in statistically, rather than per-
ceptually, independent non-linear ICA domains. In order to do so, local PCA instead of local ICA
may be used in the local-to-global differential approach (Malo and Gutiérrez, 2006) to speed up the
non-linear computation.
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Abstract
The max-sum classifier predicts n-tuple of labels from n-tuple of observable variables by maximiz-
ing a sum of quality functions defined over neighbouring pairs of labels and observable variables.
Predicting labels as MAP assignments of a Random Markov Field is a particular example of the
max-sum classifier. Learning parameters of the max-sum classifier is a challenging problem be-
cause even computing the response of such classifier is NP-complete in general. Estimating param-
eters using the Maximum Likelihood approach is feasible only for a subclass of max-sum classifiers
with an acyclic structure of neighbouring pairs. Recently, the discriminative methods represented
by the perceptron and the Support Vector Machines, originally designed for binary linear classifiers,
have been extended for learning some subclasses of the max-sum classifier. Besides the max-sum
classifiers with the acyclic neighbouring structure, it has been shown that the discriminative learn-
ing is possible even with arbitrary neighbouring structure provided the quality functions fulfill some
additional constraints. In this article, we extend the discriminative approach to other three classes
of max-sum classifiers with an arbitrary neighbourhood structure. We derive learning algorithms
for two subclasses of max-sum classifiers whose response can be computed in polynomial time: (i)
the max-sum classifiers with supermodular quality functions and (ii) the max-sum classifiers whose
response can be computed exactly by a linear programming relaxation. Moreover, we show that the
learning problem can be approximately solved even for a general max-sum classifier.

Keywords: max-xum classifier, hidden Markov networks, support vector machines

1. Introduction

Let (T ,E) be an undirected graph, where T is a finite set of objects and E ⊆
(T

2

)

is a set of object
pairs defining a neighborhood structure. A pair {t, t ′} of objects belonging to E will be called
neighbors or neighboring objects. Let each object t ∈ T be characterized by an observation xt and
a label yt which take values from a finite set X and Y , respectively. We denote an ordered |T |-tuple
of observations by x = (xt ∈ X | t ∈ T ) and an ordered |T |-tuple of labels by y = (yt ∈ Y | t ∈ T ).
Each object t ∈ T is assigned a function qt : Y ×X → R which determines a quality of a label
yt given an observation xt . Each object pair {t, t ′} ∈ E is assigned a function gtt ′ : Y ×Y → R
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which determines the quality of labels yt and yt ′ . We adopt the convention gtt ′(y,y′) = gt ′t(y′,y).
Let q ∈ R

|T ||X ||Y | and g ∈ R
|E ||Y |2 be ordered tuples which contain elements qt(y,x), t ∈ T , x ∈ X ,

y ∈ Y and gtt ′(y,y′), {t, t ′} ∈ E , y,y′ ∈ Y , respectively. We consider a class of structured classifiers
f : X T → Y T parametrized by (q,g) that predict labeling y from observations x by selecting the
labeling with the maximal quality, that is,

f (x;q,g) = argmax
y∈Y T

F(x,y;q,g) = argmax
y∈Y T

[

∑
t∈T

qt(yt ,xt)+ ∑
{t,t ′}∈E

gtt ′(yt ,yt ′)

]

. (1)

We will call the classification rule of the form (1) a max-sum classifier. The problem of computing
the output of the max-sum classifier, that is, the evaluation of the right-hand side of (1) is called
the max-sum labeling problem or shortly the max-sum problem (it is also known as the weighted
constraint satisfaction problem). The max-sum problem is known to be NP-complete in general.
We will use the six-tuple (T ,E ,Y ,q,g,x) to denote a max-sum problem instance which must be
solved to classify x.

This article deals with a problem of learning the parameters (q,g) of a max-sum classifier from a
finite training set L =

{

(x j,y j) ∈ X T ×Y T | j ∈ {1, . . . ,m}
}

. Henceforth we will use the shortcut
J = {1, . . . ,m}.

A typical example of a max-sum classifier is the maximum aposteriori (MAP) estimation in
Markov models. In this case, the observations x and the labels y are assumed to be realizations of
random variables X = (Xt | t ∈ T ) and Y = (Yt | t ∈ T ). It is assumed that only the pairs of variables
(Xt ,Yt), t ∈ T and (Yt ,Yt ′), {t, t ′} ∈ E are directly statistically dependent. Then the joint probability
of X and Y is given by the Gibbs distribution

P(x,y;q,g) =
1
Z

expF(x,y;q,g) , (2)

where Z is the partition function which normalizes the distribution. The optimal Bayesian classifier
which minimizes the probability of misclassification f (x) 6= y assigns labels according to y∗ =
argmaxy∈Y T P(y |x). It is easy to see that the classifier (1) coincides with the optimal one which
minimizes the misclassifications.

Applications of the classifier (1) are image de-noising (Besag, 1986), image labeling (Chou and
Brown, 1990) stereo matching (Boykov et al., 2001), natural language processing (Collins, 2002),
3D image segmentation (Anguelov et al., 2005), etc.

1.1 Existing Approaches to Learning Max-Sum Classifiers

A generative approach to learning a max-sum classifier is based on an estimation of parameters
(q,g) of the Gibbs distribution (2). Having the distribution estimated, a classifier minimizing an
expected risk (Bayesian risk) for a given loss function can be inferred using the Bayesian decision
making framework. Maximum-Likelihood (ML) estimation methods are well known for Markov
models with an acyclic graph (T ,E) (see, for example, Schlesinger and Hlaváč, 2002). In the
general case, however, the ML estimation is not tractable because no polynomial time algorithm is
known for computing a partition function exactly. Approximate methods to compute the partition
function are based on a Gibbs sampler (Hinton and Sejnowski, 1986; Jerrum and Sinclair, 1993).
Another disadvantage of the generative approach is the fact that little is known about an expected
risk of the classifiers inferred from an imprecisely estimated statistical model.
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A discriminative approach is an alternative method which does not require explicit modeling of
the underlying probability distribution. It is based on a direct optimization of classifier parameters
(q,g) in order to minimize an error estimate of a classifier performance computed on a finite train-
ing set. It is easy to see that the score function F(x,y;q,g) of the max-sum classifier (1) is linear
in its parameters (q,g) which allows to exploit methods for learning linear classifiers. In the case
of a consistent training set, that is, if there exists a classifier with zero empirical error, the problem
of learning a linear classifier can be expressed as a problem of satisfying a set of linear inequali-
ties. This problem is efficiently solvable by the perceptron algorithm. Variants of the perceptron
algorithm for learning parameters of the max-sum classifier (1) with a chain and tree neighborhood
structure were published in Schlesinger and Hlaváč (2002) and Collins (2002). These algorithms
exploit the fact that a perceptron can be used whenever the response of the learned classifier can be
computed efficiently. This applies for the acyclic neighbourhood structure since the response of the
max-sum classifier can be computed by the dynamic programming (DP).

The Support Vector Machines (SVM) (Vapnik, 1998) are another representative of a discrimi-
native approach for learning linear classifiers which has proved to be successful in numerous ap-
plications. Unlike the perceptron algorithm, the SVMs allows learning also from an inconsistent
training set. Learning is formulated as minimization of a regularized risk functional which can be
further transformed to a convex quadratic programming (QP) task suitable for optimization. The
original SVMs are designed for learning the classifiers which estimate a single label. In the recent
years, the SVMs have been extended for learning linear classifiers which can estimate a set of inter-
dependent labels. In particular, the Hidden Markov Support Vector Machines (Altun and Hofmann,
2003; Altun et al., 2003) and the Max-Margin Markov Networks (Taskar et al., 2004b) were pro-
posed for learning max-sum classifiers with an acyclic neighboring structure. In this case, learning
requires solving a QP task with a huge number of linear constraints proportional to the cardinality
of the output space of the classifier. In analogy to the perceptron, this task is tractable if there ex-
ists an efficient algorithm that solves the loss-augmented classification (LAC) task which involves
optimizing (1) with the loss function added to the objective function F(x,y;q,g) (c.f. Section 3.2
for details). For additively decomposable loss functions, the LAC task becomes an instance of the
max-sum problem easily solvable by the DP provided the neighbourhood structure is acyclic.

Learning of the Associative Markov Networks (AMN) with an arbitrary neighbourhood struc-
ture E was proposed by Taskar et al. (2004a). The AMN is the max-sum classifier with the quality
functions g restricted in a way similar to the Potts model. The LAC task was approximated by a
linear programming (LP) relaxation specially derived for the AMN model. Incorporating an LP re-
laxation into the SVM QP task, Taskar et al. (2004a) constructed a new compact QP task which has
only a polynomial number of constraints. Even though the resulting QP task is polynomially solv-
able, general purpose QP solvers do not provide a practical solution since they scale poorly with
the problem and training set size. Recently, Taskar et al. (2006) proposed a reformulation of the
structured learning problem as a convex-concave saddle-point problem which is efficiently solvable
by the dual extragradient algorithm. This new framework is applicable for structured classifiers for
which a certain projection step can be solved. Taskar et al. (2006) showed that the projection step
is tractable for the max-sum classifiers with supermodular functions g and binary labels |Y | = 2.

Tsochantaridis et al. (2005) proposed a general framework for learning linear classifiers with an
interdependent labels. Their approach is based on solving the underlying SVM QP task by a cutting
plane algorithm which requires as a subroutine an algorithm solving the LAC task for the particular
classifier. The approach cannot be directly applied for the general max-sum classifiers since the
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LAC task is not tractable. An alternative approach to the cutting plane algorithm was proposed by
Ratliff and Bagnell (2006) who used subgradient methods for optimizing the SVM QP task. This
approach also relies on an efficient solution to the LAC task.

An approximated cutting plane algorithm was proposed in Finley and Joachims (2005) to learn
a specific structured model for correlation clustering. The inference as well as the corresponding
LAC task of this clustering model are NP-complete. The authors suggested to replace an exact
solution of the LAC task required in the cutting plane algorithm by its polynomially solvable LP
relaxation.

1.2 Contributions

In this article, we build on the previously published approaches which use the perceptron and the
SVMs for learning the max-sum classifiers. We propose learning algorithms for three classes of
max-sum classifiers for which, up to our knowledge, the discriminative approaches have not been
applied yet. Namely, the contributions of the article are as follows:

• We formulate and solve the problem of learning the supermodular max-sum classifier with
an arbitrary neighbourhood structure E and without any restriction on the number of labels
|Y | (Taskar et al., 2006, consider only two labels). We propose a variant of the perceptron
algorithm for learning from a consistent training set. For an inconsistent training set, we
extend the cutting plane algorithm of Tsochantaridis et al. (2005) such that it maintains the
quality functions g supermodular during the course of the algorithm thus making the LAC
task efficiently solvable.

• We formulate and solve the problem of learning the max-sum classifier with a strictly trivial
equivalent which is a subclass of max-sum classifiers with a trivial equivalent. We will show
in Section 2 that the latter class can be equivalently characterized by the fact that the LP
relaxation (Schlesinger, 1976; Koster et al., 1998; Chekuri et al., 2001; Wainwright et al.,
2002) is tight for it. It is known, that the class of problems with a trivial equivalent contains
acyclic problems (Schlesinger, 1976) and supermodular problems (Schlesinger and Flach,
2000). We will extend this result to show that problems with a strictly trivial equivalent which
we can learn contain the acyclic and the supermodular max-sum problems with a unique
solution.

Learning of the max-sum classifiers with a strictly trivial equivalent leads to an optimization
problem with a polynomial number of linear constraints. We propose variants of the per-
ceptron and of the cutting plane algorithm for learning from a consistent and an inconsistent
training set, respectively. In this case, the LAC task does not require any specialized max-sum
solver since it can be solved exhaustively. Moreover, the QP task to which we transform the
learning problem is of the same form as the QP task required for ordinary multi-class SVMs
(Crammer and Singer, 2001) which allows using existing optimization packages.

• We formulate the problem of learning the general max-sum classifier, that is, without any
restriction on the neighborhood structure E and the quality functions g. We show that the
learning problem can be solved approximately by a variant of the cutting plane algorithm
proposed by Finley and Joachims (2005) which uses the LP relaxation to solve the LAC task
approximately. In contrast to Taskar et al. (2004a), we do not incorporate the LP relaxation
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to the SVM QP task but we keep it separately which allows to exploit existing solvers for LP
relaxation of the max-sum problem.

For a simplicity, we will concentrate on the max-sum classifier (1). All the proposed methods,
however, are applicable whenever the set of labels Y is finite and the quality functions are linear in
parameters, that is, they are of the form qt(xt ,yt) = 〈w,Ψt(xt ,yt)〉 and gtt ′(yt ,yt) = 〈w,Ψtt ′(yt ,yt ′)〉
where w ∈ R

d is a parameter vector and Ψt : X ×Y → R
d , Ψtt ′ : Y ×Y → R

d are arbitrary fixed
mappings. Furthermore, all the proposed algorithms can be introduced in the form containing
only dot products between Ψt(x,y) and Ψtt ′(y,y′) which allows to use the kernel functions (Vap-
nik, 1998).

1.3 Structure of the Article

The article is organized as follows. In Section 2, we describe three classes of the max-sum classifiers
for which we will later derive learning algorithms. Perceptron algorithm and the SVM framework
for learning linear classifiers with an interdependent labels is reviewed in Section 3. In Section 4,
we formulate problems of learning the max-sum classifiers from a consistent training set and we
propose variants of the perceptron algorithm for their solution. In Section 5, we formulate problems
of learning the max-sum classifiers from inconsistent training set using the SVM framework. In
Section 6, we propose an extended cutting plane algorithm to solve the learning problem defined in
Section 5. Section 7 describes experiments. Finally, in Section 8 we give conclusions.

2. Classes of Max-Sum Problems

In the rest of the article, we consider the max-sum problems P = (T ,E ,Y ,q,g,x) in which (T ,E)
is an arbitrary undirected connected graph and q are arbitrary quality functions. The three classes
of the max-sum problems described below differ in the structure of the finite set of labels Y and the
quality functions g.

2.1 General Max-Sum Problem and LP Relaxation

The first class which we consider is the general max-sum problem with no restrictions imposed on
Y and g. Solving (1) when P is a general max-sum problem is known to be NP-complete. An ap-
proximate solution can be found by the linear programming (LP) relaxation proposed independently
by Schlesinger (1976), Koster et al. (1998), Chekuri et al. (2001), and Wainwright et al. (2002). We
introduce only the basic concepts of the LP relaxation necessary for this article. For more details
on the topic we refer to the mentioned publications or to a comprehensive survey in Werner (2007)
from which we adopted notation and terminology.

Let (T ×Y ,EY ) denote an undirected graph with edges EY = {{(t,y),(t ′,y′)} | {t, t ′}∈E ,y,y′ ∈
Y }. This graph corresponds to the trellis diagram used to visualize Markov chains. Each node
(t,y) ∈ T ×Y and each edge {(t,y),(t ′,y′)} ∈ EY is assigned the numbers βt(y) and βtt ′(y,y′), re-

spectively. Let βββ ∈R
|T ||Y |+|E ||Y |2 be an ordered tuple which contains elements βt(y), (t,y)∈ T ×Y

and βtt ′(y,y′), {(t,y),(t ′,y′)} ∈ EY . Let ΛP denote a set of relaxed labelings which contains vectors
βββ satisfying

∑
y′∈Y

βtt ′(y,y
′) = βt(y) , {t, t ′} ∈ E ,y ∈ Y , ∑

y∈Y
βt(y) = 1 , t ∈ T , βββ ≥ 0 .
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The LP relaxation of (1) reads

βββ∗ = argmax
βββ∈ΛP

[

∑
t∈T

∑
y∈Y

βt(y)qt(y,xt)+ ∑
(t,t ′)∈E

∑
(y,y′)∈Y 2

βtt ′(y,y
′)gtt ′(y,y

′)

]

. (3)

It can be seen that solving (3) with an additional constraint βββ ∈ {0,1}T is an integer programming
problem equivalent to (1). Further, we will introduce concepts of equivalent problems, equivalent
transformations and trivial problems which are tightly connected to the LP relaxation.

A representation of the max-sum problem P = (T ,E ,Y ,q,g,x) is not minimal since there exists
an infinite number of equivalent max-sum problems P′ = (T ,E ,Y ,q′,g′,x) with different quality
functions (q′, g′) but the same quality for all labelings: the max-sum problems P and P′ are called
equivalent if F(x,y;q,g) = F(x,y;q′,g′) for all y ∈ Y T (Schlesinger, 1976; Wainwright et al.,
2002).

Next, we introduce a transformation of a max-sum problem to its arbitrary equivalent. These
equivalent transformations are originally due to Schlesinger (1976) and recently are also known
as reparametrization in Wainwright et al. (2002) and Kolmogorov (2006). Let ϕtt ′ : Y → R and
ϕt ′t : Y → R be a pair of functions introduced for each pair of neighbouring objects {t, t ′} ∈ E , that
is, we have 2|E | functions in total. The value ϕtt ′(y) is called potential at label y of an object t in the
direction t ′. Note that the potentials correspond to messages in belief propagation (see, for example,
Pearl, 1988; Yedidia et al., 2005). We will use ϕϕϕ∈R

2|E ||Y | to denote an ordered tuple which contains
elements ϕtt ′(y), {t, t ′} ∈ E , y ∈Y and ϕt ′t(y′), {t, t ′} ∈ E , y′ ∈ Y . Let N (t) = {t ′ ∈ T | {t, t ′} ∈ E}
denote the set of objects neighbouring with the object t ∈ T . Finally, let Pϕϕϕ = (T ,E ,Y ,qϕϕϕ,gϕϕϕ,x)
denote the max-sum problem constructed from the max-sum problem P = (T ,E ,Y ,q,g,x) by the
following transformation

gϕϕϕ
tt ′(y,y

′) = gtt ′(y,y
′)+ϕtt ′(y)+ϕt ′t(y

′) , {t, t ′} ∈ E ,y,y′ ∈ Y , (4a)

qϕϕϕ
t (y,xt) = qt(y,xt)− ∑

t ′∈N (t)

ϕtt ′(y) , t ∈ T ,y ∈ Y . (4b)

By substituting (4) to F(x,y;q,g) = F(x,y;q′,g′) it is easy to show that the problems P and Pϕϕϕ are
equivalent for arbitrary potentials ϕϕϕ. Moreover, it has been shown (Schlesinger, 1976; Kolmogorov,
2006) that the converse is also true, that is, if any two max-sum problems are equivalent then they
are related by (4) for some potentials ϕϕϕ.

Now, we can define the class of trivial max-sum problems. Node (t,y) is called maximal if
qt(y,xt) = maxy∈Y qt(y,xt) and edge {(t,y),(t ′,y′)} is called maximal if gtt ′(y,y′) = maxy,y′∈Y gtt ′(y,y′).
The max-sum problem P is called trivial if there exists a labeling y which can be formed only from
the maximal nodes and edges. Checking whether a given P is trivial leads to an instance of a con-
straint satisfaction problem CSP (also called consistent labeling problem) (Rosenfeld et al., 1976;
Haralick and Shapiro, 1979). The CSP is NP-complete in general and it is equivalent to solving a
max-sum problem when the quality functions (q,g) take only two values {−∞,0}. Let U(x;q,g) be
a height (also called energy) of the max-sum problem P defined as a sum of qualities of the maximal
nodes and the maximal edges, that is,

U(x;q,g) = ∑
t∈T

max
y∈Y

qt(y,xt)+ ∑
{t,t ′}∈E

max
y,y′∈Y

gtt ′(y,y
′) . (5)

Comparing (1) and (5) shows that U(x;q,g) is an upper bound on the quality of the optimal labeling,
that is, U(x;q,g) ≥ maxy∈Y T F(x,y;q,g). It is easy to see that the upper bound is tight if and only
if the max-sum problem is trivial. The following result is central to the LP relaxation:
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Theorem 1 Schlesinger (1976); Werner (2005) Let C be a class of equivalent max-sum problems.
Let C contain at least one trivial problem. Then any problem in C is trivial if and only if it has
minimal height.

This suggests to solve the max-sum problem P by searching for an equivalent Pϕϕϕ with the minimal
height, which leads to

ϕϕϕ∗ = argmin
ϕϕϕ

U(x;qϕϕϕ,gϕϕϕ) . (6)

The problem (6) can be expressed as an LP task which is known to be a dual to the LP relaxation (3).
Having ϕϕϕ∗ one can try to verify whether Pϕϕϕ∗

is trivial, that is, whether there exists a labeling com-
posed of the maximal nodes and edges of Pϕϕϕ∗

. If such labeling is found then it is the optimal solution
of the max-sum problem P. Otherwise, one can use heuristics to find an approximate solution by
searching for such labeling which contains as much maximal nodes and edges as possible.

Though (6) is solvable in polynomial time, a general purpose LP solvers are applicable only for
small instances. A specialized solvers for LP relaxation were published in Koval and Schlesinger
(1976). Recently, Wainwright et al. (2002) and Kolmogorov (2006) proposed a tree-reweighted
algorithm based on minimizing a more general upper bound composed of trees spanning the graph
(T ,E) of which (5) is a special case.

We propose a learning algorithm for a general max-sum classifier which requires an arbitrary
LP relaxation solver as a subroutine. We only require that the LP solver returns an approximate
solution ŷ and an upper bound on maxy∈Y T F(x,y;q,g).

2.2 Supermodular Max-Sum Problems

Definition 1 A function gtt ′ : Y ×Y → R is supermodular if

1. The set of labels Y is totally ordered; w.l.o.g. we consider Y = {1,2, . . . , |Y |} endowed with
the natural order.

2. For each four-tuple (yt ,y′t ,yt ′ ,y′t ′) ∈ Y 4 of labels such that yt > y′t and yt ′ > y′t ′ the following
inequality holds:

gtt ′(yt ,yt ′)+gtt ′(y
′
t ,y

′
t ′) ≥ gtt ′(yt ,y

′
t ′)+gtt ′(y

′
t ,yt ′). (7)

A max-sum problem in which the label set Y is totally ordered and all the functions g are supermod-
ular is called a supermodular max-sum problem. In addition, we will also consider the max-sum
problem in which the inequalities (7) are fulfilled strictly. In this case the corresponding max-sum
problem will be called strictly supermodular.

A naive approach to check whether a given max-sum problem is supermodular amounts to
verifying all |E | · |Y |4 inequalities in (7). We will use a more effective way which requires to check
only |E | · (|Y |−1)2 inequalities thanks to the following well-known theorem:

Theorem 2 The function gtt ′ : Y ×Y →R is supermodular if for each each pair of labels (y,y′) ∈ Y 2

such that y+1 ∈ Y , y′ +1 ∈ Y the following inequality holds

gtt ′(y,y
′)+gtt ′(y+1,y′ +1) ≥ gtt ′(y,y

′ +1)+gtt ′(y+1,y′). (8)
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Proof The proof follows trivially from the equality

gtt ′(yt ,yt ′)+gtt ′(y
′
t ,y

′
t ′)−gtt ′(yt ,y

′
t ′)−gtt ′(y

′
t ,yt ′)

= ∑
yt>z≥y′t

yt′>z′≥y′
t′

[

gtt ′(z,z
′)+gtt ′(z+1,z′ +1)−gtt ′(z,z

′ +1)−gtt ′(z+1,z′)

]

,

and the fact that all the summands are non-negative by the condition (8).

A similar proposition holds for strictly supermodular problems: a max-sum problem is strictly
supermodular if for each pair of neighboring objects {t, t ′}∈E and for each pair of labels (y,y′) ∈ Y 2

such that y+1 ∈ Y , y′ +1 ∈ Y the following inequality holds:

gtt ′(y,y
′)+gtt ′(y+1,y′ +1) > gtt ′(y,y

′ +1)+gtt ′(y+1,y′). (9)

In this paper, we exploit the fact that the optimal solution of the supermodular problems can be
found in a polynomial time (Schlesinger and Flach, 2000). Kolmogorov and Zabih (2002) proposed
an efficient algorithm for the binary case |Y | = 2 which is based on transforming the supermodular
max-sum problem to the max-flow problem from the graph theory. A not widely known extension
for a general case |Y |> 2 was proposed in Kovtun (2004) and Schlesinger (2005). We will propose
learning algorithms which require an arbitrary solver for the supermodular max-sum problem as a
subroutine.

2.3 Max-Sum Problems with Strictly Trivial Equivalent

In this section we consider max-sum problems with a strictly trivial equivalent which is a subclass
of problems with a trivial equivalent described in Section (2.1). The main reason for defining this
subclass is that these problems are more suitable for learning than problems with a trivial equiv-
alent. It was shown (Schlesinger, 1976; Schlesinger and Flach, 2000) that problems with a trivial
equivalent contain two well-known polynomially solvable subclasses of max-sum problems: (i) the
problems with an acyclic neighborhood structure E and (ii) the supermodular problems. We will
give a similar result which applies for the problems with a strictly trivial equivalent. In particu-
lar, we will show that the class of problems with a strictly trivial equivalent contains all acyclic
and supermodular problems which have a unique solution. This shows that learning algorithms for
the max-sum classifiers with a strictly trivial equivalent introduced below are applicable for a wide
range of polynomially solvable problems.

Max-sum problems with a trivial equivalent are those for which LP relaxation (6) is tight,
that is, U(x;qϕϕϕ∗

,gϕϕϕ∗
) = maxy∈Y T F(x,y;q,g), and thus maxy∈Y T F(x,y;q,g) can be computed in

a polynomial time. The tight LP relaxation, however, does not imply that the optimal solution
y∗ = argmaxy∈Y T F(x,y;q,g) can be found in a polynomial time. As we mentioned, to find y∗ from
(qϕϕϕ∗

,gϕϕϕ∗
) requires searching for a labeling formed only by the maximal nodes and edges which need

not be unique. Finding such labeling leads to the CSP which is NP-complete. We exploit the fact
that the labeling can be found trivially if all the maximal nodes and edges are unique. As a result,
the optimal solution y∗ can be found in a polynomial time by solving the LP relaxation and finding
the maximal nodes and edges.
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Definition 2 Max-sum problem P is strictly trivial if:

1. There exists a unique maximal node (t,y) for each object t ∈ T .

2. For each maximal edge {(t,y),(t ′,y′)} ∈ EY the nodes (t,y) and (t ′,y′) are maximal.

It is clear that a strictly trivial problem has a unique solution which is composed of all maximal
nodes and edges. Checking whether a given problem is strictly trivial requires only O(|T ||Y |+
|E ||Y |2) operations, that is, finding the maximal nodes and edges and checking if they are unique
and if they form a labeling.

Recall that the max-sum problem P has a strictly trivial equivalent if there exists a strictly trivial
problem which is equivalent to P. Finally, we give a theorem which asserts that the class of prob-
lems with a strictly trivial equivalent includes at least the acyclic problems and the supermodular
problems which have a unique solution.

Theorem 3 Let P = (T ,E ,Y ,q,g,x) be a max-sum problem and let P have a unique solution. If
(T ,E) is an acyclic graph or quality functions g are supermodular then P is equivalent to some
strictly trivial problem.

Proof is given in Appendix A.

3. Discriminative Approach to Learning Structured Linear Classifiers

In this section, we review the discriminative approach to learning linear classifiers which we will
later apply to the max-sum classifiers.

Let x ∈ XXX and y ∈ YYY be observations and labels generated according to some fixed unknown
distribution P(x,y). We are interested in designing a classifier f : XXX → YYY which estimates labels
from observations. Let L : YYY ×YYY → R be a loss function penalizing a prediction f (x) by a penalty
L(y, f (x)) provided the true output is y. The goal is to find a classifier which minimizes the expected
(Bayesian) risk

R[ f ] =
Z

XXX×YYY
L(y, f (x)) dP(x,y) .

The risk R[ f ] cannot be directly minimized because the distribution P(x,y) is unknown. Instead, we
are given a finite training set L = {(x j,y j) ∈XXX ×YYY | j ∈ J } i.i.d. sampled from P(x,y).

The discriminative approach to learning classifiers does not require estimation of a probability
distribution. It is based on direct optimization of parameters of a classifier in order to minimize a
substitutional risk functional which approximates the desired risk R[ f ] and can be computed from a
finite training set. Let us consider a class of linear classifiers

f (x;w) = argmax
y∈YYY

〈w,Ψ(x,y)〉 . (10)

The classifier is determined by a parameter vector w∈R
d and some fixed mapping Ψ : XXX ×YYY →R

d .
A simple proxy for R[ f (•;w)] is the empirical risk

Remp[ f (•;w)] =
1
m ∑

j∈J
L(y j, f (x j;w)) .
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Let us assume a class of loss functions which satisfy L(y,y′) = 0 if y = y′ and L(y,y′) > 0 if y 6= y′.
Further, we will distinguish two learning scenarios: (i) learning from a consistent training set and (ii)
learning from an inconsistent training set. The training set L is consistent if there exists a parameter
vector w∗ such that the empirical risk of the linear classifier is zero, that is, Remp[ f (•;w∗)] = 0. In
the opposite case, the training set is inconsistent.

In Section 3.1, we review the perceptron algorithm suitable for learning linear classifiers from a
consistent training set. The Support Vector Machine (SVM) approach to learning from an inconsis-
tent training set is described in Section 3.2.

3.1 Learning from a Consistent Training Set Using the Perceptron Algorithm

In the case of a consistent training set L , the learning problem is to find parameters w∗ of the linear
classifier (10) such that the empirical risk Remp[ f (•;w∗)] = 0. This amounts to finding parameters
w∗ which satisfy the set of non-linear equations

y j = argmax
y∈YYY

〈w,Ψ(x,y)〉 , j ∈ J . (11)

In the rest of the article, we will assume that the training set does not contain examples with the same
observations x j = x j′ but different labelings y j 6= y j′ , that is, we will search for a classifier which
returns a unique labeling for each example from the training set. It is convenient to transform (11)
to an equivalent problem of solving a set of linear strict inequalities

〈w,Ψ(x j,y j)〉 > 〈w,Ψ(x j,y)〉 , j ∈ J ,y ∈YYY \{y j} ,

which, using Ψ̂(x j,y j,y) = Ψ(x j,y j)−Ψ(x j,y), can be written in a compact form

〈w,Ψ̂(x j,y j,y)〉 > 0 , j ∈ J ,y ∈YYY \{y j} . (12)

An efficient method to solve the problem (12) is the perceptron algorithm:

Algorithm 1 Perceptron algorithm

1: Set w := 0.

2: Find a violated inequality in (12), that is, find indices j∗ ∈ J , y∗ ∈YYY \{y j∗} such that

〈w,Ψ̂(x j∗ ,y j∗ ,y∗)〉 ≤ 0 .

3: If there is no violated inequality then w solves (12) and the algorithm halts. Otherwise update
the current solution

w := w+ Ψ̂(x j∗ ,y j∗ ,y∗) ,

and go to Step 2.

Provided the training set L is consistent, that is, the inequalities (12) are satisfiable, the percep-
tron terminates after a finite number of iterations (Novikoff, 1962). The number of iterations of the
perceptron algorithm does not depend on the number of inequalities of (12). This property is crucial
for the problems with a very large number of inequalities, which are of interest in our article.
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In Step 2, the perceptron algorithm needs to find a violated inequality in (12). This subtask can
be solved by computing the classifier responses ŷ j = f (x j;w), j ∈ J by evaluating (10). If for some
j ∈ J the response ŷ j 6= y j, that is, the classifier commits an error on the j-th example, then the
indices ( j, ŷ j) identify the violated inequality. As a result, the perceptron algorithm is applicable
for learning of an arbitrary linear classifier for which the classification task (10) can be evaluated
efficiently.

In case of a general max-sum classifier, the classification task is NP-complete so that using the
perceptron algorithm is not feasible. In Section 4 we will show, however, how to use the perceptron
for learning the strictly supermodular max-sum classifiers and the max-sum classifiers with a strictly
trivial equivalent.

3.2 Learning from Inconsistent Training Set Using SVM Approach

In practical applications, the training set is often inconsistent. SVMs (Vapnik, 1998) constitute a
popular approach to learning linear classifiers applicable to both consistent and inconsistent training
sets. The SVM learning is based on minimizing regularized risk which is a sum of the empirical risk
Remp[ f (•;w)] and a regularization term. Minimization of the regularization term corresponds to the
notion of large margin introduced to prevent over-fitting. Since the empirical risk is not convex for
most loss functions used in classification it is replaced by a convex piece-wise linear upper bound
which is more suitable for optimization. Originally, SVMs were designed for a binary case |YYY | = 2
and 0/1-loss function L0/1(y,y′) = [[y 6= y′]] where [[•]] equals 1 if the term inside the brackets
is satisfied and it is 0 otherwise. The multi-class variant of SVMs (|YYY | > 2) were introduced in
Vapnik (1998) and Crammer and Singer (2001) but it still assumes the 0/1-loss only function.

Taskar et al. (2004b) extended SVMs for learning the max-sum classifiers (1) with an acyclic
neighbourhood structure and they proposed using the additive loss function (14) suitable for these
problems. Recently, the approach was generalized by Tsochantaridis et al. (2005) who consider an
arbitrary structured linear classifier (10) and a general loss function. Learning of structured SVMs
classifiers leads to the following convex QP task

(w∗,ξξξ∗) = argmin
w,ξξξ

[

1
2
‖w‖2 +

C
m ∑

j∈J
ξ j

]

, (13a)

subject to

〈w,Ψ(x j,y j)−Ψ(x j,y)〉 ≥ L(y j,y)−ξ j, j ∈ J ,y ∈YYY . (13b)

The objective function of (13) comprises the regularization term 1
2‖w‖2 and the sum 1

m ∑ j∈J ξ j

weighted by the regularization constant C > 0. It can be shown (Tsochantaridis et al., 2005) that
the sum 1

m ∑ j∈J ξ j is an upper bound on the empirical risk Remp[ f (•;w)] of the linear classifier (10).
Thus the learning objective is to minimize an upper bound on the empirical risk and to penalize
parameters with high ‖w‖2. The loss function can be an arbitrary function L : YYY ×YYY → R which
satisfies L(y,y′) = 0 if y = y′ and ∞ > L(y,y′) > 0 if y 6= y′. In cases which are of interest in our
article, the set YYY = Y T and a reasonable choice is the additive loss function, also known as the
Hamming distance, which is defined as

L∆(y,y′) = ∑
t∈T

[[yt 6= y′t ]] , (14)
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that is, it counts the number of misclassified objects. The trade-off between the regularization term
and the upper bound is controlled by the constant C. A suitable setting is usually found by tuning C
on an independent data set or using the cross-validation.

The number of constraints (13b) equals to m|YYY |. In the structured learning |YYY | is huge, for
example, in the case of the max-sum classifiers it grows exponentially because |YYY | = |Y ||T |. As
a result, the QP task (13) is not tractable for general purpose QP solvers. Tsochantaridis et al.
(2005) proposed a specialized cutting plane algorithm to approximate (13) by a reduced QP task
which has the same objective function (13a) but uses only a small subset of the constraints (13b).
The efficiency of the approximation relies on the sparseness of the solution (13) which means that
majority of the linear inequality constraints (13b) are inactive and they can be excluded without
affecting the solution. To select the constraints, the cutting plane algorithm requires solving the
LAC task

y∗ = argmax
y∈YYY

[

L(y j,y)+
〈

w,Ψ(x j,y)
〉

]

. (15)

Similarly to the perceptron algorithm, the cutting plane algorithm is applicable for learning of an
arbitrary linear classifier for which the LAC task (15) can be solved efficiently.

In case of a general max-sum classifier and an additive loss function the LAC task becomes an
instance of a general max-sum problem. Even though a general max-sum problem can be solved
only approximately, we will show that it suffices to solve the learning problem (13) with a good
precision. Moreover, we will be able to determine how the found solution differs from the optimal
one. In case of a supermodular max-sum classifier we will augment the learning problem (13) in
such a way that the obtained quality functions will be supermodular and thus the task (15) becomes
solvable precisely in a polynomial time. Finally, in case of a max-sum problem with a strictly trivial
equivalent, we will give a new formulation of the learning problem which does not require solving
the task (15) at all since the number of constraints will be sufficiently small to use an exhaustive
search.

4. Learning a Max-Sum Classifier from a Consistent Training Set

In this section, we assume that the training set is consistent with respect to a given max-sum classi-
fier. This means that there exists at least one max-sum classifier in a given class which classifies all
training examples correctly. We will introduce variants of the perceptron algorithm which, provided
the assumption holds, find a classifier in a finite number of iterations. In practice, however, there is
no general way to verify whether the assumption holds unless the perceptron halts. Consequently, if
the perceptron algorithm does not halt after a reasonable number of iterations we cannot draw any
conclusion about the solution. In Section 5, we will avoid this drawback using the SVM approach
able to deal with inconsistent training sets.

To use the perceptron algorithm, we will reformulate the learning problem as an equivalent
task of satisfying a set of linear strict inequalities. A keystone of the perceptron algorithm is an
efficient procedure to find a violated inequality in the underlying set which amounts to classifying
the examples from the training set. Therefore, using the perceptron algorithm is not feasible for the
general max-sum problem whose evaluation is NP-complete. Nevertheless, we will formulate the
learning problem even for this case because it will serve as a basis for constructing the algorithm for
an inconsistent training set. Next, we will derive learning algorithms for strictly supermodular max-
sum classifiers and max-sum classifiers with a strictly trivial equivalent. For these two classes, max-
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sum classifiers can be evaluated efficiently by polynomial-time algorithms which makes possible to
use the perceptron. Moreover, in the case of a max-sum classifier with a strictly trivial equivalent,
learning will require finding a violated inequality from only a polynomially-sized set which can be
accomplished exhaustively without any max-sum solver.

4.1 General Max-Sum Classifier

Problem 1 (Learning a general max-sum classifier from a consistent training set). For a given
training set L = {(x j,y j) ∈ X T ×Y T | j ∈ J } find quality functions q and g such that

y j = argmax
y∈Y T

F(x j,y;q,g), j ∈ J . (16)

It can be seen, that the general max-sum classifier (1) can be represented as the linear clas-
sifier (10). In particular, the quality functions q and g are merged to a single parameter vector
w = (q;g) ∈ R

d of dimension d = |T ||Y ||X |+ |E ||Y |2. Further, we have XXX = X T and YYY = Y T .
The mapping Ψ : X T ×Y T → R

d can be constructed of indicator functions in such a way that
F(x,y;q,g) = 〈w,Ψ(x,y)〉.

Following the approach of learning linear classifiers described in Section 3.1, we can reformu-
late Problem 1 to an equivalent problem of solving a huge set of linear inequalities

F(x j,y j;q,g) > F(x j,y;q,g) , j ∈ J ,y ∈ Y T \{y j} . (17)

To find a solution of (17) by the perceptron, we would need an efficient algorithm to compute
a response of a general max-sum classifier. Because solving a max-sum problem is NP-complete
in general, using the perceptron algorithm is not tractable. In Section 5.1, we will use the formu-
lation (17) as a basis for constructing an algorithm for learning from an inconsistent training set.
In this case, it will be possible to use the LP relaxation to approximate the response of a max-sum
classifier.

4.2 Strictly Supermodular Max-Sum Classifier

Problem 2 (Learning strictly supermodular max-sum classifier from a consistent training set). For
a given training set L = {(x j,y j) ∈ X T ×Y T | j ∈ J } find quality functions q and g such that
equations (16) are satisfied and the quality functions g are strictly supermodular, that is, g satisfy
the condition (9).

Similarly to the general case, we reformulate Problem 2 as an equivalent problem of solving a
set of strict linear inequalities

F(x j,y j;q,g) > F(x j,y;q,g) , j ∈ J ,y ∈ Y T \{y j} , (18a)

gtt ′
(

y,y′
)

+gtt ′
(

y+1,y′ +1
)

> gtt ′
(

y,y′ +1
)

+gtt ′
(

y+1,y′
)

,

{t, t ′} ∈ E ,(y,y′) ∈
{

1, . . . , |Y |−1
}2

.

}

(18b)

The system (18) comprises two sets of linear inequalities (18a) and (18b). The inequali-
ties (18a) enforce an error-less response of a max-sum classifier on the training set. The inequal-
ities (18b), if satisfied, guarantee that the quality functions g are strictly supermodular (c.f. Sec-
tion 2.2).
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To apply the perceptron algorithm we need an efficient method to find a violated inequality
in (18). In the case of the inequalities (18b), it can be accomplished by an exhaustive search since
there are only |E |(|Y |− 1)2 inequalities. To find a violated inequality in (18a), where the number
m(|Y ||T | − 1) grows exponentially, we need to compute the response of a max-sum classifier on
the training examples. This can be done efficiently provided the inequalities (18b) are already
satisfied as it guarantees that the qualities g are supermodular. Thus we use the perceptron algorithm
to repeatedly solve the inequalities (18b) and, as soon as (18b) are satisfied, we find a violated
inequality in (18a) by solving a supermodular max-sum problem. The proposed variant of the
perceptron to solve (18) is as follows:

Algorithm 2 Learning strictly supermodular max-sum classifier by perceptron

1: Set q := 0 and g := 0.

2: Find a violated inequality in (18b), that is, find a quadruple {t, t ′} ∈ E , y,y′ ∈ Y such that

gtt ′(y,y
′)+gtt ′(y+1,y′ +1)−gtt ′(y,y

′ +1)−gtt ′(y+1,y′) ≤ 0 .

3: If no such quadruple (t, t ′,y,y′) exists then (g are already supermodular) go to Step 4. Otherwise
use the found (t, t ′,y,y′) to update current g by

gtt ′(y,y′) := gtt ′(y,y′)+1 , gtt ′(y+1,y′ +1) := gtt ′(y+1,y′ +1)+1 ,
gtt ′(y,y′ +1) := gtt ′(y,y′ +1)−1 , gtt ′(y+1,y′) := gtt ′(y+1,y′)−1 ,

and go to Step 2.

4: Find a violated inequality in (18a), that is, find an index j ∈ J and a labeling y such that

y j 6= y := argmax
y′∈Y T

F(x j,y′;q,g) .

5: If no such ( j, y) exist than (q,g) solve the task (18) and the algorithm halts. Otherwise use the
found ( j, y) to update current q and g by

gtt ′(y
j
t ,y

j
t ′) := gtt ′(y

j
t ,y

j
t ′)+1, gtt ′(yt ,yt ′) := gtt ′(yt ,yt ′)−1 , {t, t ′} ∈ E ,

qt(y
j
t ,x

j
t ) := qt(y

j
t ,x

j
t )+1, qt(yt ,x

j
t ) := qt(yt ,x

j
t )−1 , t ∈ T .

and go to Step 2.

Since Algorithm 2 is nothing but the perceptron algorithm applied to the particular set of lin-
ear constraints (18), the Novikoff’s theorem (Novikoff, 1962) readily applies. Thus Algorithm 2
terminates in a finite number of iterations provided (18) is satisfiable, that is, if there exists a super-
modular max-sum classifier f (•;q,g) with zero empirical error risk on the training set L .
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4.3 Max-Sum Classifier with a Strictly Trivial Equivalent

Problem 3 (Learning max-sum classifier with a strictly trivial equivalent from a consistent training
set). For a given training set L = {(x j,y j) ∈ X T ×Y T | j ∈ J } find quality functions q and g such
that equations (16) are satisfied and the max-sum problems P j = (T ,E ,Y ,q,g,x j), j ∈ J have a
strictly trivial equivalent.

In Problem 3, we again search for a max-sum classifier which classifies all training examples
correctly but, in addition, all max-sum problems P j, j ∈ J should have a strictly trivial equivalent.
This means that if we compute a response of a max-sum classifier which solves Problem 3 for each
training example using LP relaxation we get a unique labeling equal to that in the training set.

Because the equivalent transformations (4) cover the whole class of equivalent problems, the
problem P = (T ,E ,Y ,q,g,x) has a strictly trivial equivalent if and only if there exist potentials
ϕϕϕ such that Pϕϕϕ is strictly trivial. Recall that the strictly trivial problem has unique maximal nodes
and edges (cf. Definition 2). Consequently, if the problem P has a strictly trivial equivalent and
its optimal solution is y∗ then there must exist potentials ϕϕϕ such that the following set of linear
inequalities holds

qϕϕϕ
t (y∗t ,xt) > qϕϕϕ

t (y,xt) , t ∈ T ,y ∈ Y \{y∗t } , (19a)

gϕϕϕ
tt ′(y

∗
t ,y

∗
t ′) > gϕϕϕ

tt ′(y,y
′) , {t, t ′} ∈ E ,(y,y′) ∈ Y 2 \{(y∗t ,y

∗
t ′)} . (19b)

Note, that (19) is a set of |T ||Y |+ |E ||Y |2 strict inequalities which are linear in (q, g) and ϕϕϕ
as can be seen after substituting (4) to (19). By replicating (19) for max-sum problems P j =
(T ,E ,Y ,q,g,x j), j ∈ J whose unique solutions are required to be y j, j ∈ J we obtain an equivalent
formulation of Problem 3 which requires satisfaction of a set of strict linear inequalities

qϕϕϕ j

t (y j
t ,x

j
t ) > qϕϕϕ j

t (y,x j
t ) , j ∈ J , t ∈ T ,y ∈ Y \{y j

t } , (20a)

gϕϕϕ j

tt ′ (y
j
t ,y

j
t ′) > gϕϕϕ j

tt ′ (y,y
′) , j ∈ J ,{t, t ′} ∈ E ,(y,y′) ∈ Y 2 \{(y j

t ,y
j
t ′)} . (20b)

The system (20) is to be solved with respect to the quality functions (q, g) and the potentials ϕϕϕ j,
j ∈ J introduced for each P j, j ∈ J . Note that the number of inequalities in the problem (20) is
substantially smaller compared to the learning of a general max-sum classifier. In particular, (20)
contains only m|T |(|Y |−1)+m|E |(|Y |2−1) inequalities compared to m(|Y ||T |−1) for a general
max-sum classifier. Therefore a violated inequality in (20) can be easily selected by an exhaustive
search. The proposed variant of the perceptron to solve (20) is as follows:

Algorithm 3 Learning the max-sum classifier with a strictly equivalent by perceptron

1: Set g := 0, q := 0 ,ϕϕϕ j := 0 , j ∈ J .

2: Find a violated inequality in (20a), that is, find a triplet j ∈ J , t ∈ T , y ∈ Y \{y j
t } such that

qt(y
j
t ,x

j
t )− ∑

t ′∈N (t)

ϕ j
tt ′(y

j
t ) ≤ qt(y,x

j
t )− ∑

t ′∈N (t)

ϕ j
tt ′(y) .

3: If no such triplet ( j, t,y) exists then go to Step 4. Otherwise update q and ϕϕϕ j by

ϕ j
tt ′(y

j
t ) := ϕ j

tt ′(y
j
t )−1 , ϕ j

tt ′(y) := ϕ j
tt ′(y)+1 , t ′ ∈ N (t) ,

qt(y
j
t ,x

j
t ) := qt(y

j
t ,x

j
t )+1 , qt(y,x

j
t ) := qt(y,x

j
t )−1 .
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4: Find a violated inequality in (20b), that is, find a quintuple j ∈ J , {t, t ′} ∈ E , (y,y′) ∈ Y 2 \
{(y j

t ,y
j
t ′)} such that

gtt ′(y
j
t ,y

j
t ′)+ϕ j

tt ′(y
j
t )+ϕ j

t ′t(y
j
t ′) ≤ gtt ′(y,y

′)+ϕ j
tt ′(y)+ϕ j

t ′t(y
′) .

5: If no such quintuple ( j, t, t ′,y,y′) exists and no update was made in Step 3 then the current
(q,g,ϕϕϕ j, j ∈ J ) solves the task (20) and the algorithm halts. Otherwise update g and ϕϕϕ j by

ϕ j
tt ′(y

j
t ) := ϕ j

tt ′(y
j
t )+1 , ϕ j

t ′t(y
j
t ′) := ϕ j

t ′t(y
j
t ′)+1 ,

ϕ j
tt ′(y) := ϕ j

tt ′(y)−1 , ϕ j
t ′t(y

′) := ϕ j
t ′t(y

′)−1 ,

gtt ′(y
j
t ,y

j
t ′) := gtt ′(y

j
t ,y

j
t ′)+1 , gtt ′(y,y′) := gtt ′(y,y′)−1 .

and go to Step 2.

By the Novikoff’s theorem, Algorithm 3 terminates in a finite number of iterations provided
(20) is satisfiable, that is, if there exists a max-sum classifier f (•;q,g) with zero empirical risk on
L and all max-sum problems P j = (T ,E ,Y ,q,g,x j), j ∈ J have a strictly trivial equivalent.

5. Learning a Max-Sum Classifier from an Inconsistent Training Set

In this section, we formulate problems of learning max-sum classifiers from an inconsistent training
set using the SVM framework described in Section 3.2. We will formulate the learning problems
for a general max-sum classifier, a supermodular max-sum classifier, and a max-sum classifier with
a strictly trivial equivalent. In all cases, learning will amount to solving an instance of a convex QP
task. In Section 6, we will propose an extended version of the cutting plane algorithm (Tsochan-
taridis et al., 2005) which can solve these QP tasks efficiently.

In Section 4, we showed that learning of max-sum classifiers can be expressed as satisfying
a set of strict linear inequalities. In the case of an inconsistent training set, however, these linear
inequalities become unsatisfiable. Therefore we augment linear inequalities with non-negative slack
variables, which relaxes the problem and makes it always satisfiable. In analogy to the SVM,
we will minimize the Euclidean norm of an optimized parameters and the sum of slack variables.
The problems are formulated in such a way that the sum of slack variables is a piece-wise linear
upper bound on the empirical risk for a certain loss function. We will consider two different loss
functions. In case of a general max-sum classifier and a supermodular max-sum classifier, we will
use the additive loss function L∆(y,y′) = ∑t∈T Lt(yt ,y′t) where Lt : Y ×Y →R is any function which
satisfies Lt(y,y′) = 0 for y = y′ and Lt(y,y′) > 0 otherwise. The Hamming distance L∆(y,y′) =

∑t∈T [[y 6= y′]] is the particular case of the additive loss which seems to be a reasonable choice
in many (not necessarily all) applications. In case of a max-sum classifier with a strictly trivial
equivalent, we will consider the 0/1-loss function L0/1(y,y′) = [[y 6= y′]]. The 0/1-loss function
penalizes equally all incorrect predictions regardless of how many labels are misclassified. The
additive loss is preferable to the 0/1-loss function in most structured classification problems. On the
other hand, there are applications for which the 0/1-loss function is a natural choice, for example,
problems with small number of objects like the one presented in Section 7.2.
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5.1 General Max-Sum Classifier

Problem 4 (Learning a general max-sum classifier from an inconsistent training set). For a given
training set L =

{

(x j,y j) ∈ X T ×Y T ∣
∣ j ∈ J

}

and a regularization constant C find quality func-
tions q and g solving the following QP task

(g∗,q∗,ξξξ∗) = argmin
g,q,ξξξ

[

1
2

(

‖g‖2 +‖q‖2)+
C
m ∑

j∈J
ξ j

]

, (21a)

subject to
F(x j,y j;q,g)−F(x j,y;q,g) ≥ L∆(y j,y)−ξ j , j ∈ J , y ∈ Y T . (21b)

The QP task (21) fits to the formulation (13) of structured SVM learning with the max-sum clas-
sifier (1) plugged in. The number of optimized parameters (q;g) ∈ R

d equals to d = |X ||Y ||T |+
|Y |2|E |. The main difficulty in solving (21) stems from the huge number n = m|Y ||T | of the linear
inequalities (21b) which define the feasible set.

For a later use, it is convenient to rewrite the QP task (21) using a compact notation

(w∗,ξξξ∗) = argmin
w,ξξξ

QP(w,ξξξ) = argmin
w,ξξξ

[

1
2
‖w‖2 +

C
m ∑

j∈J
ξ j

]

,

s.t. 〈w,zi〉 ≥ bi −ξ j , j ∈ J , i ∈ I j ,

(22)

where I1 ∪ ·· ·∪ Im = I = {1, . . . ,n}, Iu ∩ Iv = { /0}, u 6= v, denote disjoint sets of indices such that
each i ∈ I has assigned an unique pair ( j,y), j ∈ J , y ∈ Y T ; the vector w = (q;g) ∈ R

d comprises
both the optimized quality functions and (zi ∈ R

d ,bi ∈ R), i ∈ I , are constructed correspondingly
to inscribe the inequalities (21b).

In Section 6, we will introduce a variant of the cutting plane algorithm to solve the QP task (21)
(or (22), respectively). The cutting plane algorithm requires a subroutine which solves the LAC
task (15). Using the compact notation, the LAC task reads u j = argmaxi∈I j

(bi −〈w,zi〉). Since this
is NP-complete in general, we will use an LP relaxation which solves the task approximately. We
will show that it is possible to assess the quality of the found solution (w,ξξξ) in terms of the objective
of the learning task, that is, it is possible to bound the difference QP(w,ξξξ)−QP(w∗,ξξξ∗). Further,
we will prove that when the LAC task is solved exactly then the cutting plane algorithm finds an
arbitrary precise solution QP(w,ξξξ)−QP(w∗,ξξξ∗) ≤ ε, ε > 0, after a finite number of iterations. This
guarantee does not apply for learning of the general max-sum classifier when an LP relaxation
providing only an approximate solution is used. Though there is no theoretical guarantee, we will
experimentally show that using an LP relaxation is sufficient to find a practically useful solution.

5.2 Supermodular Max-Sum Classifier

Problem 5 (Learning a supermodular max-sum classifier from an inconsistent training set). For a
given training set L =

{

(x j,y j) ∈ X T ×Y T ∣
∣ j ∈ J

}

and a regularization constant C find quality
functions q and g solving the following QP task

(g∗,q∗,ξξξ∗) = argmin
g,q,ξξξ

[

1
2

(

‖g‖2 +‖q‖2)+
C
m ∑

j∈J
ξ j

]

, (23a)
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subject to

F(x j,y j;q,g)−F(x j,y;q,g) ≥ L∆(y j,y)−ξ j , j ∈ J , y ∈ Y T , (23b)

gtt ′
(

y,y′
)

+gtt ′
(

y+1,y′ +1
)

≥ gtt ′
(

y,y′ +1
)

+gtt ′
(

y+1,y′
)

,

{t, t ′} ∈ E ,(y,y′) ∈
{

1, . . . , |Y |−1
}2

.

}

(23c)

Compared to the task (21) of learning a general max-sum classifier, the task (23) defined for the
supermodular max-sum classifier contains additional linear constraints (23c). The added con-
straints (23c), when satisfied, guarantee that the found quality function g is supermodular. The
total number of constraints increases to n = m|Y ||T | + |E |(|Y | − 1)2. A compact form of the QP
task (23) reads

(w∗,ξξξ∗) = argmin
w,ξξξ

[

1
2
‖w‖2 +

C
m ∑

j∈J
ξ j

]

,

s.t. 〈w,zi〉 ≥ bi , i ∈ I0 ,
〈w,zi〉 ≥ bi −ξ j , j ∈ J , i ∈ I j ,

(24)

where bi = 0, i ∈ I0, and zi, i ∈ I0, account for the added supermodular constraints (23c).
In Section 6, we introduce a variant of the cutting plane algorithm which maintains the con-

straints (23c) satisfied. Thus the quality functions are always supermodular and the LAC task can
be solved precisely by efficient polynomial-time algorithms. As a result, we can guarantee that
the cutting plane algorithm finds a solution with an arbitrary finite precision in a finite number of
iterations.

5.3 Max-sum Classifier with Strictly Trivial Equivalent

Problem 6 (Learning a max-sum classifier with a strictly trivial equivalent from an inconsistent
training set). For a given training set L =

{

(x j,y j) ∈ X T ×Y T ∣
∣ j ∈ J

}

and regularization con-
stant C find quality functions q and g that solve the following QP task

(g∗,q∗,ξξξ∗,ϕϕϕ j∗, j ∈ J ) = argmin
g,q,ξξξ,ϕϕϕ j, j∈J

[

1
2

(

‖g‖2 +‖q‖2 + ∑
j∈J

‖ϕϕϕ j‖2)+
C
m ∑

j∈J
ξ j

]

, (25a)

subject to

qϕϕϕ j

t (y j
t ,x

j
t )−qϕϕϕ j

t (y,x j
t ) ≥ 1−ξ j , j ∈ J , t ∈ T , y ∈ Y \{y j

t } ,

gϕϕϕ j

tt ′ (y
j
t ,y

j
t ′)−gϕϕϕ j

tt ′ (y,y
′) ≥ 1−ξ j , j ∈ J , {t, t ′} ∈ E , (y,y′) ∈ Y 2 \{(y j

t ,y
j
t ′)} ,

ξ j ≥ 0 , j ∈ J .

(25b)

The problem (25) is derived from the problem (20) which was formulated for a consistent training
set. In the consistent case, it is required that each max-sum problem P j has a strictly trivial equiva-
lent whose unique solution equals to the desired labeling y j given in the training set. In the case of
an inconsistent training set, we allow some max-sum problems to violate this requirement. To this
end, each subset of linear inequalities in (25b) which corresponds to the given max-sum problem
P j is relaxed by a single non-negative slack variable ξ j. If a slack variable ξ j ≥ 1 then either the
solution of the max-sum problem P j differs from y j or P j has no trivial equivalent. The number of
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such max-sum problems is upper bounded by ∑m
j∈J ξ j which is included into the objective function

of (25a). Thus it corresponds to minimization of an upper bound on the empirical risk with the 0/1-
loss functions. The objective function also contains the Euclidean norm of the quality functions
(q, g) and the potentials ϕϕϕ j. Including the potentials ϕϕϕ j into the objective function is somewhat
arbitrary since it penalizes the transformation of max-sum problems to their trivial equivalents. An
advantage of including the potentials is the fact that the dual representation of the task (25) has a
simpler form which corresponds to the QP task of an ordinary multi-class SVM. Another variant is
to remove the potentials from the objective function which corresponds to including a set of linear
constraints to the dual task of (25) making the problem more difficult.

Compared to the previous learning problems, the number of variables d = |X ||Y ||T |+|Y |2|E |+
2m|E ||Y | in (25) is increased by 2m|E ||Y |, however, the number of linear constraints n = m|E |(|Y |2−
1)+ m|T |(|Y |− 1)+ m is drastically smaller. In particular, n grows only polynomially compared
to the exponential growth in the previous cases.

The QP task (25) can be rewritten into the compact form (22), that is, the same QP task as
required when learning the general max-sum classifier. Unlike the general case, the optimized
parameters w now comprise w = (q;g;ϕϕϕ1; . . . ;ϕϕϕm) ∈ R

d and the vectors zi, i ∈ I , are constructed
correspondingly. However, as mentioned above, the main difference is much smaller n = |I |. As
a result, the LAC task required by the cutting plane algorithm can be easily accomplished by an
exhaustive search.

6. Algorithm for Quadratic Programming Tasks

In this section, we propose an algorithm to solve the QP tasks (21), (23) and (25) required for learn-
ing the max-sum classifiers from inconsistent training sets. We extend the cutting plane algorithm
by Tsochantaridis et al. (2005) and its approximate version by Finley and Joachims (2005) in two di-
rections. First, we will consider a more general QP task (23) which contains linear inequalities both
with and without slack variables. Moreover, the inequalities without slack variables are required
to be satisfied during the whole course of the algorithm. This extension is necessary for learning
a supermodular max-sum classifier. Second, we propose to use a different stopping conditions to
halt the algorithm. The original algorithm by Tsochantaridis et al. (2005) halts the optimization
as soon as the linear constraints of a QP task are violated by a prescribed constant ε > 0 at most.
We will use a stopping condition which is based on the duality gap. This allows us to control the
precision of the found solution directly in terms of the optimized objective function. Moreover, the
stopping condition can be easily evaluated even when the LAC task is solved only approximately
by an LP relaxation which is useful for learning general max-sum classifiers. Finally, we will prove
that the proposed algorithm converges in a finite number of iterations even in the case of a general
max-sum classifier where the LAC task is NP-complete. We point out that the proof is similar to
that of Tsochantaridis et al. (2005) but is technically simpler and it applies for the extended cutting
plane algorithm proposed here. A general QP task which covers all the QP tasks (21), (23) and (25)
reads

(w∗,ξξξ∗) = argmin
w,ξξξ

QP(w,ξξξ) = argmin
w,ξξξ

[

1
2
‖w‖2 +

C
m ∑

j∈J
ξ j

]

,

s.t. 〈w,zi〉 ≥ bi , i ∈ I0 ,
〈w,zi〉 ≥ bi −ξ j , j ∈ J , i ∈ I j ,

(26)
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where I = I0 ∪ I1 ∪·· ·∪ Im = {1, . . . ,n}, Ii ∩ I j = { /0}, i 6= j are index sets. Note that we obtain the
QP task (21) and (25) by setting I0 = { /0}. The Wolf dual of (26) reads

ααα∗ = argmax
ααα

QD(ααα) = argmax
ααα

[

〈b,ααα〉−
1
2
〈ααα,Hααα〉

]

,

s.t. ∑
i∈I j

αi =
C
m

, j ∈ J ,

αi ≥ 0 , i ∈ I ,

(27)

where H is a positive semi-definite matrix [n× n] which contains the dot products Hi, j = 〈zi,z j〉.
The primal variables (w∗,ξξξ∗) can be computed from the dual variables ααα∗ by

w∗ = ∑
i∈I

α∗
i zi , ξ∗j = max

i∈I j

(bi −〈w∗,zi〉) , j ∈ J .

Note that the vectors zi, i ∈ I appear in (27) only as dot products and thus the kernel functions can
be potentially used.

It is not tractable to solve the QP task directly neither in the primal form nor in the dual form
due to the exponential number of constraints or variables, respectively. The cutting plane algorithm
alleviates the problem by exploiting the sparseness of maximal margin classifiers. Sparseness means
that only a small portion of constraints of the primal task are active in the optimal solution, or
equivalently, a small portion of dual variables are non-zero.

We denote I = I0 ∪ I 1 ∪·· ·∪ I m disjoint subsets of selected indices from I = I0 ∪ I1 ∪·· ·∪ Im,
that is, I j ⊆ I j, j ∈ J , while I0 is always the same. The reduced task is obtained from (27) by
considering only the selected variables {αi | i ∈ I} while the remaining variables {αi | i ∈ I \I} are
fixed to zero, that is, the reduced dual QP task reads

ααα = argmax
ααα

[

∑
i∈I

αibi −
1
2 ∑

i∈I
∑
j∈I

αiα jHi j

]

, (28a)

s.t. ∑
i∈I j

αi =
C
m

, j ∈ J ,

αi ≥ 0 , i ∈ I ,
αi = 0 , i ∈ I \ I .

(28b)

To solve the reduced task (28), it is enough to maintain explicitly just the selected variables and
thus its size scales only with |I |. The cutting plane algorithm tries to select the subsets I =
I0 ∪ I 1 ∪ ·· · ∪ I m such that (i) |I | is sufficiently small to make the reduced task (28) solvable by
standard optimization packages and (ii) the obtained solution well approximates the original task.
The proposed extension of the cutting plane algorithm is as follows:

Algorithm 4 A cutting plane algorithm for QP task (26)

1: Select arbitrarily
(

I j := {u j}, u j ∈ I j
)

, j ∈ J . Set the desired precision ε > 0.

2: For selected indices I = I0 ∪I 1 ∪·· ·∪I m solve the reduced task (28) to obtain ααα and compute
the primal variable w := ∑i∈I αizi.
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3: For all j ∈ J do:

3a: Solve the LAC task
u j := argmax

i∈I j

(bi −〈w,zi〉) , (29)

and set ξ j := bu j −〈w,zu j〉. If (29) is solved only approximately (when using LP relax-

ation) then set ξ j to the smallest available upper bound on bu j −〈w,zu j〉.

3b: Set I j := I j ∪{u j} provided the following condition holds

C
m

(bu j −〈w,zu j〉)− ∑
i∈I j

αi(bi −〈w,zi〉) >
ε
m

. (30)

4: If the current solution (w,ξξξ,ααα) satisfies the stopping condition

QP(w,ξξξ)−QD(ααα) ≤ ε , (31)

or if the condition (30) was violated for all j ∈ J then halt. Otherwise go to Step 2.

Note that Algorithm (4) explicitly maintains only the selected variables {αi | i ∈ I} and the
corresponding pairs {(bi,zi) | i ∈ I}. In Step 3a, the algorithm requires a subroutine to solve the
LAC task (29). We consider two different variants of the algorithm. First, the task (29) can be solved
precisely which applies to learning of supermodular max-sum classifiers and max-sum classifiers
with a strictly trivial equivalent. Second, the task (29) can be solved only approximately, which
applies to the general case when the max-sum problem is solved by an LP relaxation. The key
property of an LP relaxation which we exploit here is that it provides an upper bound on the optimal
solution of a max-sum problem, that is, an upper bound on the quantity bu j −〈w,zu j〉.

In Step 3b, the condition (30) is evaluated to decide whether adding the constraint 〈w,zu j〉 ≥
bu j −ξ j to the reduced QP task (28) brings a sufficient improvement or not. In Lemma 1 introduced
below, we show that adding at least one constraint guarantees a minimal improvement regardless
of whether the LAC problem is solved precisely or approximately. The algorithm halts when no
constraint is added in Step 3b. This situation occurs only if the algorithm has converged to a solution
which satisfies the stopping condition (31) provided the LAC task is solved exactly (cf. Theorem 4
and its proof).

Let us discuss the stopping condition (31). Note that the primal (w,ξξξ) and the dual variables
ααα are feasible during entire progress of the algorithm. This holds even in the case when an LP
relaxation is used to solve (29) since the ξ j, j ∈ J are set to upper bounds on their optimal values.
Having feasible primal and dual variables, we can use the weak duality theorem to write

QP(w,ξξξ)−QP(w∗,ξξξ∗) ≤ QP(w,ξξξ)−QD(ααα) ,

which implies that any solution satisfying the stopping condition (31) differs from the optimal so-
lution by at most ε. Note that the precision parameter ε used in the original stopping condition of
Tsochantaridis et al. (2005) can also be related to the duality gap. Namely, it can be shown that ε
approximate solution satisfies QP(w,ξξξ)−QD(ααα) ≤Cε.

Finally, we show that the algorithm converges in a finite number of iterations. The proof is based
on Lemma 1 which asserts that a minimal improvement ∆min > 0 of the dual objective function is
guaranteed provided at least one new variable was added in Step 3(b) to the reduced task, that is,
the condition (30) was satisfied for at least one j ∈ J .
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Lemma 1 Provided at least one new variable was added in Step 3(b) of Algorithm 4 the improve-
ment in the dual objective function QD(ααα) obtained after solving the reduced task is not less that

∆min = min

{

ε
2m

,
ε2

8C2R2

}

, where R = max
j∈J

max
i∈I j

‖zi‖ .

Proof of Lemma 1 is given in Appendix B.
Using Lemma 1, it is easy to show that Algorithm 4 halts after a finite number of iterations.

Note that the proof applies even for the case when the LAC task (29) is solved only approximately.

Theorem 4 Let us assume that the primal QP task (26) is bounded and feasible. Algorithm 4 halts
for arbitrary ε > 0 after at most T iterations, where

T =
(

QD(ααα∗)−QD(ααα1)
)

max

{

2m
ε

,
8C2R2

ε2

}

, R = max
j∈J

max
i∈I j

‖zi‖ ,

and ααα1 is the solution of the reduced task obtained after the first iteration of Algorithm 4.

Proof Algorithm 4 halts if either the stopping condition (31) holds or no new variable was added
in Step 3(b). Provided the algorithm does not halt in Step 4, the dual objective functions QD(ααα) is
improved by at least ∆min > 0 which is given in Lemma 1. Since the difference QD(ααα∗)−QD(ααα1)
is bounded from above the algorithm cannot pass through the Step 4 infinite number times and we
can write

T ≤
QD(ααα∗)−QD(ααα1)

∆min
=
(

QD(ααα∗)−QD(ααα1)
)

max

{

2m
ε

,
8C2R2

ε2

}

< ∞ .

The bound on a maximal number of iterations (or the bound on ∆min, respectively) given in
Theorem 4 is obtained based on the worst case analysis. As a result, the bound is an over-pessimistic
estimate of the number of iterations usually required in practice. Because the bound is not useful for
computing practical estimates of the number of iterations, we do not derive its particular variants
for the QP tasks (21), (23) and (25).

Finally, we give a theorem which asserts that the stopping condition (31) is always satisfied after
Algorithm 4 halts provided the LAC task (29) is solved exactly, that is, the found solution achieves
the desired precision QP(w,ξξξ)−QP(w∗,ξξξ∗) ≤ ε.

Theorem 5 Let us assume that the LAC task (29) is solved exactly and the assumptions of Theo-
rem 4 hold. In this case the condition (31) holds after Algorithm 4 halts.

Proof We show that the assumption that no new variable was added in Step 3(b) and the condi-
tion (31) is violated leads to a contradiction. If no variable was added then the condition (30) is
violated for all j ∈ J . Summing up the violated conditions (30) yields

∑
j∈J

[

C
m

(

bu j −〈w,zu j〉
)

− ∑
i∈I j

αi (bi −〈w,zi〉)

]

≤ ∑
j∈J

ε
m

. (32)
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The vector ααα is the optimal solution of the reduced task which includes all the variables {αi | i ∈ I0}.
Therefore by the complementary slackness (Karush-Kuhn-Tucker conditions) we have

∑
i∈I0

αi(bi −〈w,zi〉) = 0 . (33)

By adding (33) to (32) and using w = ∑i∈I αizi, ξ j = bu j −〈w,zu j〉 we get

∑
j∈J

[

C
m

(

bu j −〈w,zu j〉
)

− ∑
i∈I j

αi (bi −〈w,zi〉)

]

− ∑
i∈I 0

αi (bi −〈w,zi〉) ≤ ε

C
m ∑

j∈J

(

bu j −〈w,zu j〉
)

−∑
i∈I

αi (bi −〈w,zi〉) ≤ ε

C
m ∑

j∈J
ξ j −∑

i∈I
αibi + 〈w,w〉 ≤ ε .

The last inequality can be equivalently written as QP(w,ξξξ)−QD(ααα) ≤ ε which is in contradiction
to the assumption that (31) is violated.

To summarize, in case when the LAC task (29) is solved exactly Algorithm 4 finds a solution
with an arbitrary finite precision ε > 0 in a finite number of iterations. In case when the task (29) is
solved only approximately by an LP relaxation Algorithm 4 always halts after a finite number of iter-
ations but there is no guarantee that the desired precision was attained. The attained precision, how-
ever, can be determined by evaluating the duality gap QP(w,ξξξ)−QD(ααα) ≥ QP(w,ξξξ)−QP(w∗,ξξξ∗).

In next sections, we will apply Algorithm 4 to the three particular instances of the QP tasks (21), (23)
and (25).

6.1 General Max-Sum Classifier

In this section, we discuss optimization of the QP task (21) (or its compact form (22), respectively)
using Algorithm 4.

In Step 1 of Algorithm 4, we have to select the initial subsets (I j = {u j},u j ∈ I j), j ∈ J . A
simple way is to use u j = ( j,y j), which is equivalent to selecting the primal constraints 〈w,zi〉 ≥
bi−ξ j with zi = 0 and bi = 0. Note that the task (21) does not contain the primal constraints without
slack variables which implies that the subset I0 = { /0}.

The LAC task (29) required in Step 2a of Algorithm 4 amounts to solving an instance of a
general max-sum problem

ŷ j = argmax
y∈Y T

[

L∆(y,y j)−F(x j,y j;q,g)+F(x j,y;q,g)

]

= argmax
y∈Y T

[

∑
t∈T

(

qt(yt ,x
j
t )+ [[y j

t 6= yt ]]
)

+ ∑
{t,t ′}∈E

gtt ′(yt ,yt ′)

]

. (34)

The obtained labeling ŷ j is then used to construct the vector z( j,ŷ j) = Ψ(x j,y j)−Ψ(x j, ŷ j). Because
the task (34) is NP-complete in general, we use an LP relaxation discussed in Section 2.1. This
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means that the found ŷ j is not optimal but it is usually good enough to satisfy the condition (30)
which then leads to a guaranteed improvement of the optimized dual objective (cf. Lemma 1). LP
relaxation algorithms also provides an upper bound UB j on the optimal solution of (34) which is
essential to compute feasible ξ j, j ∈ J in Step 3(a) of Algorithm 4. In particular, ξ j is computed as

ξ j = UB j −F(x j,y j;q,g).

6.2 Supermodular Max-Sum Classifier

In this section, we discuss optimization of the QP task (23) (or its compact form (24), respectively)
using Algorithm 4.

The initialization in Step 1 of Algorithm 4 can be carried out in the same way as described in
Section 6.1. Since the QP task (24) involves the primal constraints 〈w,zi〉 ≥ bi, i ∈ I0, without slack
variables the corresponding zi, i ∈ I0, must be included in the reduced QP task during the entire
progress of Algorithm 4. The size |I0| = |E |(|Y | − 1)2 grows only quadratically which allows to
use standard optimization packages.

The LAC task (29) is of the same form as that for a general max-sum problem, that is, it requires
solving (34). Unlike the general case, the task (34) can be solved exactly by a polynomial-time
algorithms provided the quality functions g obey the supermodularity condition. The requirement of
supermodularity is expressed by the primal conditions 〈w,zi〉 ≥ 0, i ∈ I0 which are always included
in the reduced task (28) and thus they should be always satisfied. There is one numerical issue,
however, concerning a finite precision of QP solvers used to optimize the reduced task. It is possible
that the primal constraints on supermodularity are slightly violated even if the reduced task is solved
with a high precision. This might potentially (even though we have not observed the problem in
practice) cause problems when solving the LAC task which relies on the supermodularity of g.
An easy solution to avoid the problem is to add the primal constraints 〈w,zi〉 ≥ 0, i ∈ I0 with w =

∑i∈I αizi to the dual reduced task (28). In particular, we can solve the reduced task (28) subject to the
constraints (28b) augmented by additional constraints ∑i∈I αiHi j ≥ 0 , j ∈ I0. Note that adding of
the additional constraints changes just the feasible set but it does not change the solution. Solving the
reduced task with the added constraints by using any QP solver which produces a feasible solution
with a finite precision (e.g., interior point methods) guarantees that the supermodularity constraints
are satisfied.

6.3 Max-Sum Classifier with Strictly Trivial Equivalent

Unlike the previous two cases, the QP task (25) (or its compact form (22) respectively) contains
only n = m|E |(|Y |2 − 1) + m|T |(|Y | − 1) + m linear constraints. The form of the QP task (25)
is the same as required for learning of an ordinary multi-class SVM (Crammer and Singer, 2001)
which makes it possible to use existing optimization packages. The problem can be also solved by
the proposed Algorithm 4. In this case, an initialization of the subset (I j = {u j},u j ∈ I j), j ∈ J
performed in Step 1, can simply select the indices which correspond to the constraints ξ j ≥ 0, j ∈ J .
The LAC task (29) required in Step 3a can be solved exhaustively which means that we do not need
any max-sum solver during the learning stage.
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7. Experiments

Even though this article focuses primarily on theory, we present some examples to demonstrate
functionality of the proposed learning algorithms. The examples are not meant to be a comprehen-
sive evaluation.

7.1 Image Segmentation

We consider the problem of learning a classifier for segmentation of color images. We compare a
general max-sum classifier, a supermodular max-sum classifier and a standard multi-class SVMs
classifier (Crammer and Singer, 2001) as a baseline approach. In particular, we used the formula-
tions given in Problem 4 and Problem 5 for learning the general and supermodular classifiers from
the inconsistent training sets. To solve the LAC task required by Algorithm 4, we used an LP re-
laxation solver based on the Augmented Directed Acyclic Graph (ADAG) algorithm (Schlesinger
1976; see also the tutorial by Werner 2007).

We used the following three sets of color images (see Figure 1):

Microsoft Research (MSR) database: The original database 1 contains 240 images of 9 objects
along with their manual segmentation. We selected a subset of 32 images each of which
contains a combination of the following four objects: cow, grass, water and void. All images
are of size 213× 320 pixels. We created 3 random splits of the images into 10 training, 9
validation and 13 testing images. Reported results are averages taken over these three splits.

Shape-Sorter: We collected snapshots of a toy shape-sorter puzzle placed on a carpet. The snap-
shots are taken under varying view-angle and lighting conditions. The images contain 6
objects of different colors which we manually segmented. We split the images into a training
set containing 14 images of size 100×100 pixels, validation and testing sets each containing
4 images of size 200×200 pixels.

Landscape: The data set is created from a single landscape image of size 280× 600 which was
manually segmented into sky, border line and ground areas. We divided the landscape image
into 20 non-overlapping sub-windows of size 70×120 pixels. Finally, we split the 20 images
into 5 training, 4 validation and 11 testing images.

In this experiment we define the max-sum classifier as follows. The set of objects T = {(i, j) |
i ∈ {1, . . . ,H}, j ∈ {1, . . . ,W}} corresponds to the pixels of the input image of size H ×W . We
consider a 4-neighborhood structure of image pixels, that is, E contains undirected edges between
all pixels (i, j) ∈ T and (i′, j′) ∈ T which satisfy |i− i′|+ | j− j′| = 1. Each pixel t ∈ T is char-
acterized by its observable state xt and a label yt . The observable state xt ∈ X = R

3 is a vector
containing RGB color values of t-th pixel. The label yt ∈ Y = {1, . . . ,N} assigns t-th pixel to one
of N segments. We assume that the quality functions q : X ×Y → R and g : Y ×Y → R do not
depend on pixel t ∈ T (so called homogeneous model). The quality function q(x,y) = 〈wy,x〉 is
linear in parameter wy ∈ R

3, y ∈ Y , as well as the function g(y,y′) represented by a vector g ∈ R
N2

.
Hence the learned parameter vector w = (w1; . . . ;wN ;g) ∈ R

d is of dimension d = 3N + N2. For
the baseline approach we used a linear multi-class SVM which is equivalent to a max-sum classifier
with a constant quality function g(y,y′), that is, the interrelation between labels is neglected.

1. Database B1 can be found at https://research.microsoft.com/vision/cambridge/recognition/default.htm.
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Multi-class SVM General max-sum Supermodular max-sum

MSR-database 21.74% 14.16% 14.03%
Shape-Sorter 1.31% 0.91% 0.92%
Landscape 6.22% 0.69% 0.65%

Table 1: Performance of max-sum classifiers compared to an ordinary SVM classifier on three seg-
mentation data sets. The table contains average percentages of misclassified pixels per
image.

We stopped the cutting plane Algorithm 4 when either the precision (QP(w,ξξξ)−QD(ααα))/QP(w,ξξξ)≤
10−2 was attained or no improving constraint was found after solving the LAC task. For the super-
modular max-sum classifier the required precision was always attained since the LAC can be solved
exactly. For the general max-sum classifier the algorithm failed to converge only in a few cases when
the regularization constant C was set too high. The average time required for learning on an ordinary
desktop PC was around 11 hours for the MSR-database, 3 hours for the Shape-Sorter data set and 6
minutes for the Landscape data set. The bottleneck is solving the LAC task by the ADAG max-sum
solver which takes approximately 95% of the training time. Though we have not fully exploited this
possibility, the training time for the supermodular max-sum classifier can be considerably reduced
by using min-cut/max-flow algorithms to solve the LAC task. The min-cut/max-flow algorithms
optimized for a grid neighbourhood structure can achieve near real-time performance (Boykov and
Kolmogorov, 2004). For this reason the supermodular max-sum classifier is favourable when the
training time or the classification time is of importance.

The only free parameter of the learning algorithm is the regularization constant C which we
tuned on the validation images. The classifier with the best performance on the validation set was
then assessed on independent testing images. Due to a different size of images it is convenient to
present errors in terms of the normalized additive loss function L(y,y′) = 100

|T | ∑t∈T [[yt 6= y′t ]] cor-
responding to percentage of misclassified pixels in the image. Obtained results are summarized
in Table 1. It is seen that the max-sum classifiers significantly outperformed the multi-class SVM
on all data sets. Performances of the general and the supermodular max-sum classifiers are al-
most identical. This shows a good potential of the learning algorithm to extend applicability of
the polynomially solvable class of supermodular max-sum problems. Note that selecting a proper
supermodular function by hand is difficult due to an unintuitive form of the supermodularity condi-
tions (7). Figure 1 shows examples of testing images and their labeling estimated by the max-sum
classifier.

7.2 Learning the Rules of Sudoku

In this section, we demonstrate the algorithm for learning the max-sum classifier with a strictly
trivial equivalent. We will consider a problem of learning the game rules of a logic-based number
placement puzzle Sudoku2. Figures 2(a) and 2(b) show an example of the Sudoku puzzle and its
solution, respectively. The aim of the puzzle is to fill in a 9× 9 grid such that each column, each
row and each of 9 non-overlapping 3× 3 boxes contains the numbers from 1 to 9. A player starts

2. For more details and references see http://en.wikipedia.org/wiki/Sudoku .
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MSR-database

Shape-Sorter data set

Landscape data set

Figure 1: A sample from three data sets used in experiments. The figures show testing images
and their labelings estimated by the max-sum classifier. For the Landscape data set the
training and the validation sub-images are marked.
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Figure 2: Example of Sudoku puzzle: (a) input puzzle; (b) solution; (c) handwritten Sudoku grid
created from the USPS database.

from an incompletely filled grid which is constructed such a way that the proper puzzle has a unique
solution.

Our goal is to learn a max-sum classifier (artificial player) able to solve arbitrary Sudoku puzzle.
A part of the rules is a priori known to the system while the rest is learned from examples of
incomplete puzzle and its correct solution. In a standard scenario, the learned classifier is validated
on a testing set. In this particular case, however, it is possible to show that the found max-sum
classifier solves correctly all the Sudoku puzzles (the number of Sudoku solutions is approximately
6.6×1027, that is, the number of puzzles is much larger).

Note, that the Sudoku puzzle can be naturally expressed as solving the constraint satisfaction
problem CSP which is a subclass of a max-sum labeling problem when the quality functions at-
tain only two values {0,−∞}. From this viewpoint, a max-sum classifier is a richer model than
necessarily needed for Sudoku puzzle.

Let us define the learning problem using the notation of this paper. Solving the puzzle is
equivalent to solving the max-sum problem (T ,E ,Y ,q,g,x). The set of objects T = {(i, j) | i ∈
{1, . . . ,9} , j ∈ {1, . . . ,9}} corresponds to the cells of a 9×9 grid. The neighbourhood structure

E = {{(i, j),(i′, j′)} | i = i′∨ j = j′∨ (di/3e = di′/3e∧d j/3e = d j′/3e)} ,

contains pairs of cells whose relation plays a role in the game rules, that is, the cells in rows,
columns, and the 3×3 boxes. The set of observations X = {�,1, . . . ,9} represents the input filling
of cells where the special symbol � means an empty cell. The set of labels Y = {1, . . . ,9} cor-
responds to numbers which a player can fill in. The quality functions q and g are assumed to be
homogeneous, that is, qt(x,y) = q(x,y) and gtt ′(y,y′) = g(y,y′). Moreover, the structure of quality
function q(y,x) is assumed to be q(y,x) = q(y) for y = x and q(y,x) = q� for x = � or x 6= y. The
particular values of quality functions (q;g) ∈ R

9×9+10, which specify the rules of the game, are
unknown to the system.

Using the setting introduced above, it is easy to see that the solution of a max-sum problem
(T ,E ,Y ,q,g,x) is a correct solution of the Sudoku puzzles if for any triplet (y,y′,y′′) ∈ Y 3 such
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q(y,x)
q�

-1870
y 1 2 3 4 5 6 7 8 9

q(y) 867 295 696 234 224 339 228 455 378

g(y,y′)
y/y′ 1 2 3 4 5 6 7 8 9

1 -552 19 47 66 65 73 61 66 73
2 84 -500 67 57 71 56 79 60 65
3 78 30 -437 48 48 47 68 50 54
4 73 -28 63 -266 55 53 76 56 60
5 23 67 57 47 -397 46 68 49 52
6 74 66 58 49 49 -448 69 49 54
7 -26 9 28 49 48 47 -342 48 54
8 36 77 60 49 49 46 67 -441 52
9 79 20 57 48 46 48 65 51 -441

Table 2: The quality functions q and g learned from examples. The learned functions q and g satisfy
the conditions (35) which guarantee the optimal solution.

that y′ 6= y′′ the quality functions satisfy the following conditions

q� < q(y) and g(y,y) < g(y′,y′′) . (35)

The first condition just forces the max-sum classifier to use the numbers from filled in cells as labels.
The second condition, in compliance with to the Sudoku rules, ensures that neighbouring cells will
not be assigned the same label. The conditions (35) allows us to verify whether the found classifier
is an optimal one.

Because a proper Sudoku puzzle have a unique solution it is natural to require that the max-sum
classifier also guarantees this condition. The conditions (35) show that the ground truth quality
function g(y,y′) is not supermodular. For this reasoning, Algorithm 3 for learning of the max-sum
classifier with a strictly trivial solution seems to be a reasonable choice.

We created 18 distinct training sets each containing a single example of an incomplete puzzle
and its correct solution. In all cases, the proposed Algorithm 3 converged to a solution after the
number of iterations ranging 12×103 to 95×103 approximately, which took less than one minute
on an ordinary desktop PC. The conditions (35) were satisfied for all the solutions found by an
algorithm, that is, an optimal max-sum classifier was found just from a single example (using more
general q and g would probably require more examples). Table 2 shows an example of the found
quality functions q and g. In this case, it is even possible to precisely compute the output of the
max-sum classifier by branch-and-bound algorithm since the depth searching tree is limited due the
requirement on a unique solution of the Sudoku and modest complexity tractable for human players.
Note, however, that no max-sum solver was required during the course of the learning algorithm.
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Multi-class SVM Max-Sum classifier

Linear 8.81% 7.20%
Gaussian kernel 5.80% 0.04%

Table 3: Recognition of Sudoku grids created from the USPS database.

7.3 Handwritten Character Recognition with Structured Outputs

In this section, we compare the max-sum classifier with a strictly trivial equivalent learned by the
Perceptron Algorithm 3 against an ordinary multi-class SVM classifier. To this end, we modified
the Sudoku problem from Section 7.2 in two ways. Firstly, the input observations are handwritten
digits taken from the USPS database. In particular, the input observation x ∈ X = R

256 is a vector
containing pixels of a grey-scale image 16× 16 which depicts a digit from 1 to 9. Secondly, the
input of the classifier is a fully solved Sudoku grid, that is, Y = {1, . . . ,9}, as the multi-class SVM
cannot solve an incomplete puzzle unlike the max-sum classifier. The neighbourhood structure
(T ,E) is the same as in the experiment from Section 7.2. Figure 2(c) shows and example of
input observations and Figure2(b) shows a corresponding labeling to be estimated by the max-sum
classifier.

Similarly to the experiment in Section 7.2, we considered a quality function g(y,y′) of a general
form g ∈ R

|Y |2 . However, we used two different forms of the quality functions q(x,y). First, a
linear function q(x,y) = 〈wy,x〉 which lead to learning a parameter vector w = (w1; . . . ;w|Y |;g) ∈

R
d of dimension d = 256|Y |+ |Y |2 = 2385. Second, we applied the Gaussian kernel function

defined as k(x,x′) = exp(−σ‖x−x′‖2) for some σ > 0. In this case, the quality function is q(x,y) =
〈vy,k(x)〉 where k(x) = (k(x,x j

t ) | t ∈ T , j = 1, . . . ,m) denotes a vector of kernel functions centered
in all training observations. The corresponding parameter vector w = (v1; . . . ;v|Y |;g) ∈ R

d was of
dimension d = m|T ||Y |+ |Y |2 = 7371.

We created a set of 30 examples of Sudoku grids x = (xt ∈ X | t ∈ T ) and their solutions
y = (yt ∈ Y | t ∈ T ). Note that a single grid x contains 9×9 = 81 digits from the USPS database.
We generated 3 random splits of the 30 examples into 10 training, 10 validation and 10 testing
examples. The Perceptron Algorithm 3 required a few seconds to converge to a solution with zero
training error when the linear kernel was used and around 3 minutes for the Gaussian kernel. The
optimal kernel width σ was tuned on the validation data. In addition, we also tuned the regularization
constant C for the multi-class SVM. The model with the best performance on the validation set was
then assessed on the testing data. Table 3 shows the average classification performance computed
over the 3 random splits.

It is seen that the max-sum classifier significantly outperforms the multi-class SVM regardless of
the used kernel functions. The classification error 5.80% achieved for the multi-class SVM with the
Gaussian kernel is slightly higher than 4.00% reported in Schölkopf et al. (1995). The reason is that
we trained on a smaller number of examples (namely, 810 compared to 7291). On the other hand,
the smaller training set is sufficient to achieve nearly error-less performance when the structure in
the output space is considered. In particular, the error of the max-sum classifier with the Gaussian
kernel is 0.04%. Note that without considering the structure a human recognition rate is 2.5% and
the best published machine performance is 2.6% (Schölkopf et al., 1995).
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8. Conclusions

In this article we have examined discriminative learning of max-sum classifiers. Learning of a max-
sum classifier leads to satisfying a set of linear inequalities or solving a QP task with linear inequal-
ity constraints. A characteristic feature of these tasks is a huge number of linear constraints which
is proportional to the number of possible responses (labelings) of a max-sum classifier. Efficient
optimization methods for solving these tasks are the perceptron and the cutting plane algorithm,
respectively. These methods manage to solve large problems provided the response of a max-sum
classifier can be evaluated efficiently. Direct application of these methods is not tractable because
computing a response of a general max-sum classifier is NP-complete.

We have proposed variants of the perceptron and the cutting plane algorithm for learning su-
permodular max-sum classifiers whose response can be computed efficiently in polynomial time.
We have augmented the optimization tasks by additional linear constraints which guarantee that a
max-sum classifier is supermodular. The perceptron and the cutting plane algorithm are modified
such that added constraints on supermodularity are maintained satisfied during the course of opti-
mization. This modification allows to compute the response of a max-sum classifier efficiently thus
making the learning problem tractable.

We have defined a class of max-sum classifiers with a strictly trivial equivalent which are solv-
able exactly in polynomial time by an LP relaxation. We have showed that this class covers at least
acyclic and supermodular max-sum classifiers with a unique solution. Another favorable property
of this class is that the learning problems contain only polynomially-sized sets of linear constraints.
As a result, the perceptron and the cutting plane algorithms do not require to call any max-sum
solver during the course of optimization.

We have proposed a variant of the cutting plane algorithm which can approximately solve the
learning problem formulated for the general max-sum classifier. The response of the max-sum
classifier is approximated by an LP relaxation for which specialized optimization algorithms exist.
Using an approximate response prohibits a guarantee that the cutting plane algorithm finds a solution
with an arbitrary precision. This is not an obstacle, however, for using the algorithm in practice as
we demonstrated experimentally.
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Appendix A.

In this appendix we prove Theorem 3 introduced in Section 2.3. Prior to proving the theorem, we
will introduce the concept of local consistency (Schlesinger, 1976) and the theorem asserting that
the problems with a trivial equivalent contain the acyclic and supermodular problems (Schlesinger,
1976; Schlesinger and Flach, 2000).

Definition 3 The maximal node (t,y) is called locally consistent if for each neighboring object
t ′ ∈ N (t) there exists a maximal edge {(t,y),(t ′,y′)}. The maximal edge {(t,y),(t ′,y′)} is called
locally consistent if the nodes (t,y) and (t ′,y′) are maximal.

The maximal nodes and maximal edges which do not satisfy Definition 3 will be called locally
inconsistent.

Theorem 6 Schlesinger (1976); Schlesinger and Flach (2000) Let P = (T ,E ,Y ,q,g,x) be a max-
sum problem. If (T ,E) is an acyclic graph or quality functions g are supermodular then P is
equivalent to a trivial problem.

Recall, that P with the optimal solution y∗ ∈ Y T has a trivial equivalent Pϕϕϕ if there exist potentials
ϕϕϕ such that the following set of linear inequalities holds

qϕϕϕ
t (y∗t ,xt) ≥ qϕϕϕ

t (y,xt) , t ∈ T ,y ∈ Y \{y∗t } ,

gϕϕϕ
tt ′(y

∗
t ,y

∗
t ′) ≥ gϕϕϕ

tt ′(yt ,yt ′) , {t, t ′} ∈ E ,(y,y′) ∈ Y 2 \{(y∗t ,y
∗
t ′)} .

(36)

The system (36) differs from the definition of problems with a strictly trivial equivalent (19) just by
using the non-strict inequalities. Finally, we will prove two auxiliary lemmas:

Lemma 2 Let P be an acyclic problem which has a unique solution y∗ and let Pϕϕϕ be a trivial
equivalent of P. Then only two cases can occur: (i) Pϕϕϕ is strictly trivial or (ii) there is at least one
maximal locally inconsistent node or edge.

Proof We will show that violating both the assertions (i) and (ii) contradicts the assumption that y∗

is unique. Assuming Pϕϕϕ is not strictly trivial implies that there exists a maximal node (t,y0
t ) such

that y0
t 6= y∗t . Let us construct a labeling y0 such that y0

t belongs to y0. The remaining labels are
determined by repeating the following procedure (|T |−1) times:

• Let t ′ ∈ T be an object whose label y0
t ′ has been already determined and let t ′′ ∈ N (t ′) be

an object whose label y0
t ′′ has not been determined yet. Then set up the label y0

t ′′ such that
{(t ′,y0

t ′),(t
′′,y0

t ′′)} is a maximal edge.

The constructed labeling y0 is the optimal solution of P because it is composed of maximal nodes
and edges. Note that this simple construction of the optimal labeling is possible because the graph
(T ,E) is acyclic. Thus we have y0 6= y∗ because y0

t 6= y∗t which implies that y∗ is not unique.

Lemma 3 Let P be a supermodular problem with an unique solution y∗ and let Pϕϕϕ be a trivial
equivalent of P. Then only two cases can occur: (i) Pϕϕϕ is strictly trivial or (ii) there is at least one
maximal locally inconsistent node or edge.

98



DISCRIMINATIVE LEARNING OF MAX-SUM CLASSIFIERS

Proof We will show that violating both the assertions (i) and (ii) contradicts the assumption that
y∗ is unique. Let Y 0

t = {(t,y) | qϕϕϕ
t (y,xt) = maxy′∈Y qϕϕϕ

t (y′,xt)} denote a set of all maximal nodes
corresponding to the object t ∈ T . Let us construct the labeling yh = (yh

t | t ∈ T ) composed of
the highest maximal nodes; (t,yh

t ) is the highest maximal node if (t,yh
t ) ∈ Y 0

t and yh
t > y for all

(t,y) ∈ Y 0
t \{t,y0

t }. Recall, that the labels are fully ordered for the supermodular problems.
Now, we show that the labeling yh is optimal since all its edges {(t,yh

t ),(t
′,yh

t ′)} ∈ EY are also
maximal. Let us assume that there exists an edge {(t,yh

t ),(t
′,yh

t ′)} which is not maximal. Then, by
assumption of local consistency, there exist edges {(t,yh

t ),(t
′,yt ′)} and {(t,yt),(t ′,yh

t ′)} which are
maximal. Note that yt < yh

t and yt ′ < yh
t ′ because (t,yh

t ) and (t ′,yh
t ′) are the highest nodes. From the

condition of supermodularity (7) and (4a) we have

0 ≤ gtt ′(y
h
t ,y

h
t ′)+gtt ′(yt ,yt ′)−gtt ′(y

h
t ,yt ′)−gtt ′(yt ,y

h
t ′)

= gϕϕϕ
tt ′(y

h
t ,y

h
t ′)+gϕϕϕ

tt ′(yt ,yt ′)−gϕϕϕ
tt ′(y

h
t ,yt ′)−gϕϕϕ

tt ′(yt ,y
h
t ′) .

This condition, however, cannot be satisfied if the edge {(t,yh
t ),(t

′,yh
t ′)} is not maximal which is a

contradiction. Similarly, we can show that the labeling yl composed of the lowest maximal nodes
(defined analogically) is also optimal.

Finally, the assumption that Pϕϕϕ is not strictly trivial implies that for some object t ∈ T there
exists a maximal node (t,y0

t ) such that y0
t 6= y∗t . W.l.o.g. we can select (t,y0

t ) which is either the
highest maximal or the lowest maximal node. Thus y0

t∗ belongs either to the labeling yh or yl which
are optimal and differ from y∗. This contradicts the assumption that y∗ is unique.

Proof of Theorem 3: Let P be an acyclic or supermodular max-sum problem with the unique solu-
tion y∗ ∈ Y T . Let ϕϕϕ be the potentials such that the max-sum problem Pϕϕϕ is a trivial equivalent of
P. The existence of such Pϕϕϕ is guaranteed by Theorem 6. Then, by Lemma 2 and Lemma 3, Pϕϕϕ is
either strictly trivial or there exists a maximal node (t,y0

t ) or a maximal edge {(t,y0
t ),(t

′,y0
t ′)} which

are locally inconsistent, that is, (t,y0
t ) and {(t,y0

t ),(t
′,y0

t ′)} do not belong to y∗. We will introduce a
procedure which changes the potentials ϕϕϕ in such a way that the inconsistent maximal node (t,y0

t )
or inconsistent maximal edge {(t,y0

t ),(t
′,y0

t ′)}, respectively, become non-maximal while other max-
imal (non-maximal) nodes or edges remain maximal (non-maximal). Repeating this procedure for
all inconsistent maximal nodes and edges makes the inequalities (36) satisfied strictly, that is, the
problem Pϕϕϕ becomes strictly trivial which is to be proven. The procedures for elimination of incon-
sistent nodes and edges read:
Elimination of the inconsistent maximal node (t,y0

t ): Let t ′ ∈ N (t) be such a neighbor of t that
the set of edges Ett ′(y0

t ) = {{(t,y0
t ),(t

′,yt ′)} | yt ′ ∈ Y } does not contain any maximal edge. Let ε be
a number computed as

ε =
1
2

[

max
(y,y′)∈Y 2

gϕϕϕ
tt ′(y,y

′)−max
y′∈Y

gϕϕϕ
tt ′(y

0
t ,y

′)

]

.

Since Ett ′(y0
t ) does not contain maximal edges this implies ε > 0. Adding ε to the potential

ϕtt ′(y0
t ) := ϕtt ′(y0

t )+ ε decreases the quality qϕϕϕ
t (y0

t ,xt) = qt(y0
t ,xt)−∑t ′′∈N (t) ϕtt ′′(y0

t ) by ε and in-

creases the qualities gϕϕϕ
tt ′(y,y

′) = gtt ′(y,y′) + ϕtt ′(y) + ϕt ′t(y′), {(t,y),(t ′,y′)} ∈ Ett ′(y0
t ) by ε. This

change makes the node (t,y0
t ) non-maximal while the edges Ett ′(y0

t ) remain non-maximal as before.
The qualities of other nodes and edges remain unchanged.
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Elimination of the inconsistent maximal edge {(t,y0
t ),(t

′,y0
t ′)}: W.l.o.g. let (t ′,y0

t ′) be a non-
maximal node. Notice, that all edges from Et ′t(y0

t ′) = {(t,yt),(t ′,y0
t ′)} | yt ∈ Y } are locally incon-

sistent and they cannot be a part of the optimal solution. Let ε be a number computed as

ε =
1
2

[

max
y∈Y

qϕϕϕ
t ′(y,xt ′)−qϕϕϕ

t ′(y
0
t ′ ,xt ′)

]

.

Because (t ′,y0
t ′) is non-maximal ε > 0. Subtracting ε from the potential ϕt ′t(y0

t ′) := ϕt ′t(y0
t ′)− ε

decreases the qualities gϕϕϕ
tt ′(y,y

′) = gtt ′(y,y′)+ ϕtt ′(y)+ ϕt ′t(y′), {(t,y),(t ′,y′)} ∈ Et ′t(y0
t ′) by ε and

increases the quality qϕϕϕ
t ′(y

0
t ′ ,xt ′) = qt ′(y0

t ′ ,xt ′)−∑t ′′∈N (t ′) ϕtt ′′(y0
t ′) by ε. This change makes all edges

from Et ′t(y0
t ′) non-maximal while the node (t ′,y0

t ′) remains non-maximal as before. The qualities of
other nodes and edges remain unchanged.

Appendix B.

In this appendix we prove Lemma 1 given in Section 6.
Proof of Lemma 1: We show that if a new variable was added then we can construct a vector βββ such
that optimizing the dual objective QD(ααα) over a line segment between the current solution ααα and the
vector βββ yields a guaranteed improvement. Since the reduced QP task solved in Step 2 optimizes in
the space of all selected variables which contains the line segment between ααα and βββ, the obtained
improvement cannot be smaller.

Let us assume an optimization of the dual objective QD(ααα) of the QP task (27) w.r.t. a line
segment between the current solution ααα and an arbitrary feasible vector βββ. The problem is equivalent
to searching for the maximum of an univariate quadratic function

QL(τ) = QD

(

(1− τ)ααα+ τβββ
)

= (1− τ)〈b,ααα〉+ τ〈b,βββ〉−
1
2
(1− τ)2〈ααα,Hααα〉− τ(1− τ)〈βββ,Hααα〉−

1
2

τ2〈βββ,Hβββ〉 ,

over the closed interval 0 ≤ τ ≤ 1. The maximum is attained at the vector

αααnew = (1− τ)ααα+ τβββ (37)

where
τ = argmax

0≤τ≤1
QL(τ) . (38)

The derivative of QL(τ) reads

∂QL(τ)
∂τ

= 〈b,βββ−ααα〉+(1− τ)〈ααα,Hααα〉− (1−2τ)〈βββ,Hααα〉− τ〈βββ,Hβββ〉 .

An objective function is improved, that is, QD(αααnew)−QD(ααα) > 0, iff the vector βββ satisfies

∂QL(τ)
∂τ

∣

∣

∣

∣

τ=0
= 〈βββ−ααα,b−Hααα〉 > 0 . (39)
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Provided (39) holds, the maximum of QL(τ) w.r.t. 0 ≤ τ ≤ 1 is attained within the open interval
0 < τ < 1 or on its boundary τ = 1. The maximum of QL(τ) w.r.t. unbounded τ can be found by
solving ∂QL

∂τ = 0 for τ. If the resulting τ exceeds 1 then the optimum of the line segment optimization
is attained at τ = 1. Thus we can write the solution of (38) in a closed form

τ = min

{

1,
〈βββ−ααα,b−Hααα〉
〈ααα−βββ,H(ααα−βββ)〉

}

. (40)

Analytical formulas for improvement can be derived substituting (37) and (40) to ∆ = QD(αααnew)−
QD(ααα). For τ < 1 we get

∆ =
〈βββ−ααα,b−Hααα〉2

2〈ααα−βββ,H(ααα−βββ)〉
, (41)

and for τ = 1 we get

∆ = 〈βββ−ααα,b−Hααα〉−
1
2
〈ααα−βββ,H(ααα−βββ)〉 ≥

1
2
〈βββ−ααα,b−Hααα〉 . (42)

The last inequality in (42) follows from 〈βββ−ααα,b−Hααα〉 ≥ 〈ααα−βββ,H(ααα−βββ)〉 which holds for τ = 1
as seen from (40).

Let us consider that a new variable with index u j was added in Step 3(b), that is, the condi-
tion (30) was satisfied. Using 〈w,zu j〉 = [Hααα]u j we can rewrite the condition (30) as

C
m

[b−Hααα]u j − ∑
i∈I j

αi[b−Hααα]i >
ε
m

. (43)

Let us construct the feasible vector βββ = (β1, . . . ,βn)
T as follows

βi =







C
m if i = u j ,
0 if i ∈ I j \{u j} ,

αi if i ∈ I \ I j .
(44)

As was shown above, optimization over the line segment yields an improvement provided (39)
holds. Substituting βββ constructed by (44) into the formula (39) we get

dQL

dτ

∣

∣

∣

τ=0
= 〈βββ−ααα,b−Hααα〉 =

C
m

[b−Hααα]u j − ∑
i∈I j

αi[b−Hααα]i >
ε
m

, (45)

where the last inequality follows from (43). This implies that optimizing w.r.t. line segment between
ααα and the vector βββ yields positive improvement. Now, we derive a lower bound on this improvement.
Combining (45) with (42) we immediately get

∆ ≥
ε

2m
for τ = 1 . (46)
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Before deriving the bound for τ < 1, we must find an upper bound on the denominator of (41). Let
us define A j =

{

ααα | ∑i∈I j
αi = C

m ,αi ≥ 0 ,∀i ∈ I j
}

. Then we can write

〈ααα−βββ,H(ααα−βββ)〉 ≤ max
j∈J

∥

∥

∥ ∑
i∈I j

αizi − ∑
i∈I j

βizi

∥

∥

∥

2

≤

(

2max
j∈J

max
ααα∈A j

∥

∥

∥ ∑
i∈I j

αizi

∥

∥

∥

)2

=
4C2

m2 max
j∈J

max
i∈I j

‖zi‖
2 .

(47)

Combining (45) and (47) with (41) yields

∆ ≥
ε2

8C2R2 for τ = 1 and R = max
j∈J

max
i∈I j

‖zi‖ . (48)

Taking the minimum of improvements (46) and (48) gives the bound on the minimal improvement.
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Abstract
We introduce a computationally feasible, “constructive” active learning method for binary classi-
fication. The learning algorithm is initially formulated for separable classification problems, for
a hyperspherical data space with constant data density, and for great spheres as classifiers. In or-
der to reduce computational complexity the version space is restricted to spherical simplices and
learning procedes by subdividing the edges of maximal length. We show that this procedure op-
timally reduces a tight upper bound on the generalization error. The method is then extended to
other separable classification problems using products of spheres as data spaces and isometries in-
duced by charts of the sphere. An upper bound is provided for the probability of disagreement
between classifiers (hence the generalization error) for non-constant data densities on the sphere.
The emphasis of this work lies on providing mathematically exact performance estimates for active
learning strategies.

Keywords: active learning, spherical subdivision, error bounds, simplex halving

1. Introduction

Active learning methods seek a solution to inductive learning problems by incorporating the selec-
tion of training data into the learning process. In these schemes, the labeling of a data point occurs
only after the algorithm has explicitly asked for the corresponding label, and the goal of the “active”
data selection is to reach the same accuracy as standard “passive” algorithms—but with less labeled
data points. In many practical tasks, the acquisition of unlabeled data can be automated, while
the actual labeling must often be done by humans and is therefore time consuming and costly. In
these cases, active learning methods—which usually trade labeling costs against the computational
burden required for optimal data selection—can be a valuable alternative.

There are two approaches to active learning. So-called query filtering methods (Freund et al.,
1997; Opper et al., 1992) operate on a given pool of unlabeled data and select—at every learning
step—a “most informative” data point for subsequent labeling. So-called constructive methods lit-
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erally “construct” an unlabeled datum and ask the user to provide a label. There is strong empirical
evidence for many learning scenarios and for different selection procedures, that active learning
methods can reduce the number of labeled training data which are needed to reach a predefined
generalization performance (see Balcan et al., 2006; Fine et al., 2002; Freund et al., 1997; Tong and
Koller, 2001; Warmuth et al., 2002). In addition, theoretical work has shown that active learning
strategies can achieve an exponential reduction of the generalization error with high probability (see
Balcan et al., 2006; Freund et al., 1997). In this contribution, we put the emphasis on a mathe-
matically rigorous derivation of hard upper bounds for the generalization error. This is in contrast
to other studies which give bounds in probability (see Freund et al., 1997) or discuss asymptotic
behavior (see Bach, 2007).

We use a geometrical approach to active learning which is based on the concept of a version
space (see Mitchell, 1982; Tong and Koller, 2001). Loosely speaking, given a set of predictors
and a set of labeled training data, “version space” denotes the set of models whose predictions
are consistent with the training data. If a version space can be defined, active learning strategies
should evaluate data points which allow the learning machine to maximally reduce the “size” of its
version space at every learning step. Some active learning algorithms try to halve the volume of the
version space (see Tong and Koller, 2001). In contrast to this, our approach is to reduce the maximal
distance between pairs of points that belong to the version space. We prefer distance over volume
simply because it is impossible to compute the exact volume of version space in high dimensions.
A detailed discussion of this problem can be found at the end of Section 7. For special types of data
spaces, our method of maximal length reduction coincides with volume reduction. In this case, we
observe a rapid (that is, exponential) progress in learning, as is explicitly shown in Section 4 and
Proposition 9 of Section 6 for data which is arbitrarily distributed on an n-dimensional torus.

In the following we will consider the simple case of a separable, binary classification problem.
Assuming the knowledge of the data density µ on the data space M, the generalization distance
dG(c1,c2) of two classifiers c1,c2 : M → �

2 := {0,1} is given by the integral

dG(c1,c2) :=
1

Vol(M)

Z

D(c1,c2)
ω,

where D(c1,c2) := {x ∈ M | c1(x) 6= c2(x)} is the set of points which are classified differently by
the two classifiers, and ω denotes the volume form of M (see Section 2). If we further assume the
labeling of the data to be generated by an unknown classifier c∗ : M → �

2, the important question is:
Can we give tight upper bounds on the generalization error dG(c,c∗) of some classifier c, and can
we reduce this bound during learning in an optimal way? Inspired by this question, we introduce a
constructive active learning algorithm which reduces such a bound by successive subdivisions of the
version space on a hypersphere. This then allows us to compute exact and tight generalization error
bounds for several classes of data densities. After deriving the bounds for the case of an uniform
distribution on the hypersphere, we use the notion of Riemannian isometries to extend the algorithm
and the error bounds to a set of selected data densities on other data spaces including � n. In a second
step, we extend our results to product manifolds in order to obtain sharp error bounds for a larger
set of data densities. Finally, we provide bounds for arbitrary densities on � n, hyperspheres and
products thereof.

The article is organized as follows: After introducing the geometric setup of active learning
for binary classification (Section 2), we formulate a learning method for data distributed on the
unit sphere Sn ⊂ � n+1 (Section 3). Thereafter, we extend the basic algorithm to a broader class
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of separable, binary classification problems using isometries induced by charts of the sphere and
products of hyperspheres (Sections 4, 5). This will include perceptrons (that is, linear classifiers
with bias on � n) as a special case. Upper bounds are provided for the generalization error for non-
constant data densities for binary classification problems on the sphere (Section 6) and for linear
classifiers without bias in � n (Section 7). Finally, Section 8 provides an empirical evaluation of
the geometric method. As our focus lies on a theoretical analysis of active learning algorithms,
applications of the proposed algorithm to concrete problems have to be of second importance.

2. A Geometric Setup for Active Learning

In the sequel, we will apply some standard constructions from differential geometry. We refer to
Appendix B for a quick introduction to the terminology.

Let M be an n-dimensional compact manifold, the data space, equipped with a Riemannian
metric g. One might object to this type of data space, since the compactness assumption seems to
rule out the most important instance of data space, the Euclidean space � n. However, this is not
the case, because � n, or any submanifold therein, can be embedded into Sn, the n-sphere, by the
inverse of stereographic projection (see Section 4). Recently, spherical data spaces have received
some attention in machine learning (see Lebanon and Lafferty, 2004; Belkin and Niyogi, 2004;
Minh et al., 2006).

We assume the existence of an unknown binary classifier c∗ : M → �
2 := {0,1} and a given set

of labeled data points {(x1,y1), . . . ,(xI,yI))}, (xi,yi) ∈ M× �
2, with correct labels, that is, c∗(xi) =

yi. Now, the binary classification problem asks for an approximation c : M → �
2 which minimizes

the generalization error, that is, the probability of misclassification of data points. This can be
formalized as follows.

The Riemannian volume form ω which belongs to the metric g is given in local coordinates
x : M ⊃U → � n by

ω =
√

det(g)dx1 ∧ . . .∧dxn, (1)

where U is some open chart domain in M. We assume that the Riemannian volume form ω (see
Equation 1) represents up to a scaling factor Vol(M) :=

R

M ω the p.d.f. of the data points x ∈ M.
This allows us to interpret the probability of disagreement between two classifiers c1,c2 as a distance
measure1 on the set of all classifiers:

dG(c1,c2) :=
1

Vol(M)

Z

D(c1,c2)
ω, (2)

where D(c1,c2) := {x ∈ M | c1(x) 6= c2(x)} is called the disagreement area. In these terms, the
generalization error of c is given by dG(c,c∗).

3. Subdivisions of the Sphere

In order to be able to compute upper bounds on dG, we need to impose restrictions on the data space
M as well as on the set of classifiers.

1. Depending on the regularity conditions imposed on the classifiers, it might happen that dG(c1,c2) = 0 while c1 6= c2
on a set of measure zero.
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We start with the following simple setup: Let M = Sn = {x ∈ � n+1 | 〈x,x〉 = 1}, the n-sphere
with its canonical Riemannian metric and denote by C the set of hemisphere classifiers

c : Sn → �
2, c(x) :=

{
1 : 〈x, p〉 ≥ 0
0 : 〈x, p〉 < 0

.

Here, p ∈ Sn is the center of the hemisphere, and 〈., .〉 denotes the Euclidean scalar product in
� n+1. This setup implies that the data are uniformly distributed on the sphere. The use of closed
hemispheres as classifiers is appropriate for spherical data, since hemispheres are the direct analog
to half spaces in Euclidean geometry. A simple, yet crucial, observation is the duality C = Sn.
By a slight abuse of notation, we use the symbol c to denote both, the classifier and the center of
the hemisphere. Concerning the generalization distance of two classifiers we have the following
proposition.

Proposition 1 For hemispheres c1,c2 ∈C

dG(c1,c2) =
1
π

d(c1,c2),

where d(c1,c2) := arccos(〈c1,c2〉) is the geodesic distance on Sn.

Proof The disagreement area D(c1,c2) consists of two congruent lunes on the sphere. The area of
a lune is proportional to its opening angle α = d(c1,c2). Since the total volume of the unit sphere
V :=

R

Sn ω with respect to its canonical Riemannian metric and volume form is not equal to one, we
have to normalize:

dG(c1,c2) =
1
V

Z

D(c1,c2)
ω =

1
V

(α
π

V
)

=
1
π

d(c1,c2).

We assume the true classifier c∗ to be some unknown hemisphere. If (x,1) is a labeled data
point, it follows that c∗ is contained in the closed hemisphere around x. Thus, given a labeled
set {(x1,y1), . . . ,(xI,yI))}, c∗ is contained in the intersection V of the corresponding hemispheres.
The version space of a labeled set (see Mitchell, 1982; Tong and Koller, 2001) is defined as the set
of classifiers which are consistent with the given labeled data. In our case, the version space coin-
cides with the intersection V . Geometrically, V is a convex spherical polytope, a high-dimensional
generalization of a spherical polygon whose edges are segments of great circles and whose (n−1)-
dimensional facets are segments of (n−1)-dimensional great spheres within Sn.

In theory, one can compute the vertices of the version space of any finite labeled set. An iterative
algorithm would reduce this polytope by taking intersections with hemispheres corresponding to
new data points. Unfortunately, during this process, the number of vertices of the polytope grows
exponentially. Thus, the computational costs render its explicit computation impossible even for
low dimensions.

One possibility to reduce the immense computational complexity of polytopes is to work with
spherical simplices. This motivates the following active learning algorithm:
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Definition 2 (Simplex algorithm)

1. Specify some maximal edge length ε > 0 as termination criterion. Choose a random orthog-
onal matrix. Ask for the labels of the n+1 column vectors. This results in a set of admissible
classifiers S ⊂ Sn which is an equilateral simplex on Sn.

2. Select one of the edges of maximal length of the current simplex S. If its length is less than ε,
go to step 7. Otherwise, compute its midpoint m.

3. Compute a unit normal u of the plane in � n+1 spanned by m together with all vertices of S
which do not belong to the edge through m.

4. Ask for the label l of u. If l = 0, replace u by −u.

5. Replace the old simplex S by the part in direction of u, that is, the simplex which has as
vertices m as well as all vertices of S with exception of that end point e of the chosen longest
edge for which 〈u,e〉 < 0.

6. Repeat with step 2.

7. Return the simplex’ center of mass c ∈ S as the learned classifier.

Figure 1 illustrates one iteration of the simplex algorithm on the sphere S2. The “random orthogonal

b

m

a

o

u

c
longest edge

Figure 1: The drawing above shows one iteration of the simplex algorithm for the two-dimensional
case, that is, for spherical triangles on the unit sphere S2. The current version space is
the spherical triangle (a,b,c). The longest edge (b,c) is about to be cut at its midpoint
m. Together with the origin o, the vertex a and the point m define a plane in � 3 one of
whose unit normal vectors is u ∈ S2. Depending on the label of u, the new triangle will
be either (a,b,m) or (a,m,c).

matrix” that occurs in step one of the algorithm is meant to be drawn from the uniform distribution
on the Lie group

O(n) = {A ∈ GL(n) | AAt = I}
of orthogonal real matrices. A practical approach to the problem of generating such matrices can be
found in Stewart (1980). The worst case generalization error after each iteration can be computed
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by evaluating the maximum spherical distance of the chosen classifier to the vertices of the spherical
simplex. To be explicit, the following statement holds:

Proposition 3 If S is the current simplex from the simplex algorithm (see Definition 2) with vertices
v1, . . . ,vn+1 ∈ Sn, and c ∈ S some classifier,

dG(c∗,c) ≤ max
i, j

d(vi,v j) = max
i, j

arccos〈vi,v j〉.

This bound is tight and attainable if we allow any element of the version space to be the learned
classifier. Moreover, if c ∈ S denotes the center of mass, then

dG(c∗,c) ≤ max
i

d(c,vi) = max
i

arccos〈c,vi〉

is a tight and attainable upper bound for the generalization error.

Proof Within a simplex, the maximal distance of two points is realized by pairs of vertices. Now the
first inequality follows from proposition 1. If all elements of the simplex are admissible classifiers,
the bound is tight. The second inequality follows from the convexity of the simplex.

Clearly, the maximal edge length of the simplex S converges to zero. In Appendix A, we derive
O((n+1)3) as a rough complexity estimate for one iteration of the simplex algorithm (see Definition
2).

Another question concerning the convergence of the algorithm is: How many iterations are
needed until the maximum edge length of the initial simplex starts to drop? To this end, we have
the following proposition whose proof is given in Appendix A.

Proposition 4 Let S be the initial equilateral simplex from the simplex algorithm (see Definition 2).
Let k ∈ � be the number of steps needed until the maximum of the edge lengths drops. Then

n ≤ k ≤ n(n+1)

2
,

and these bounds are tight and attainable.

4. Extensions by Isometries

We will now extend our results to other data spaces by applying the concept of isometries. The
easiest method to obtain isometries from the n-sphere to other data spaces is to consider charts of
the sphere together with the induced metric. Being isometries, they preserve the geometry, and
any generalization bounds derived for the sphere can be applied without modifications. Combining
isometries with the product construction of Section 5, we end up with a large family of data densities
on � n to which our results are directly applicable. In Section 6, we will loosen our preconditions
even further and consider the general case of arbitrary data densities.

We begin with the discussion of the stereographic chart of the n-sphere.

Stereographic chart. The stereographic projection

σN : Sn \{N}→ � n,

(x1, . . . ,xn+1) 7→
(x1, . . . ,xn)

1− xn+1
,
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where N = (0, . . . ,0,1) denotes the north pole, is an isometry of Sn \ {N} to ( � n,g), where the
Riemannian metric g is given by

gx(v,w) =
4

(1+‖x‖2)2
〈v,w〉.

See Figure 2 for an illustration of the two-dimensional case. Hence, we can identify Sn \{N} with

north pole N of the sphere

point on the sphere

plane of projection ( � 2)

image under projection

Figure 2: The stereographic projection S2\{N}→ � 2 is a diffeomorphism from the sphere with the
north pole removed to the plane. It distorts lengths but preserves angles. If one considers
a ray from the north pole to some point on the plane, the stereographic projection will
map the intersection point of this ray with the sphere onto its intersection point with the
plane.

( � n,g), and the induced Riemannian volume form is

ωx =
2n

(1+‖x‖2)n
dx1 ∧ . . .∧dxn,

where dx1 ∧ . . .∧ dxn denotes the Euclidean volume on � n (the determinant). If the given data
density on � n is (up to a constant factor) equal to ω, the data can be considered to lie on Sn with
constant density, and our error bounds hold. When viewed under stereographic projection, our
spherical classifiers fall in three categories: If the boundary of the hemisphere, which is a great
(n− 1)-sphere within Sn, contains the north pole, its projection is a hyperplane through the origin
in � n. The equatorial great sphere {x ∈ Sn ⊂ � n+1 | xn+1 = 0} is projected onto Sn−1 ⊂ � n. All
other great spheres become spheres intersecting Sn−1 ⊂ � n orthogonally. Hence, any data which is
separable by these classes of hypersurfaces in � n is separable by great spheres on Sn and vice versa.

Gnomonic chart. The gnomonic projection

ϕ : Sn ⊃ {xn+1 > 0}→ � n,

(x1, . . . ,xn+1) 7→
(x1, . . . ,xn)

xn+1
,

generates on � n the metric

g =
1

(1+ x2
1 + . . .+ x2

n)
2




s1 −xix j
. . .

−xix j sn


 ,
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point on the sphere

image under projection

plane of projection ( � 2)

north pole N of the sphere

Figure 3: Illustration of the gnomonic projection for the case S2 ⊃ {x3 > 0} → � 2. In this case,
we embed � 2 at height one into � 3, such that it touches the sphere at the north pole.
Rays are sent from the center of the sphere. Their intersection points with the sphere are
mapped to the corresponding intersection points with the plane. The gnomonic projection
distorts lengths as well as angles, but maps great circles to straight lines.

where we have used the abbreviation si := 1 + x2
1 + . . .+ x2

n − x2
i . Figure 3 illustrates the gnomonic

projection in two dimensions. As was the case with the stereographic chart, gnomonic projection is
an isometry from the upper half-sphere to ( � n,g). Using Equation 1, we have for x2 = . . . = xn = 0

√
det(g) =

1

(1+ x2
1)

n+1
2

.

Since the scaling function of the volume form ω has to be rotationally symmetric, it follows that

ωx =
1

(1+‖x‖2)
n+1

2

dx1 ∧ . . .∧dxn. (3)

Note that our separating great spheres are projected to affine hyperplanes in � n. Therefore, the
classical approach to the binary classification problem using linear classifiers with bias can be
considered a special case of our spherical setup. More precisely, the strict error bounds derived for
our algorithm apply to linear classifiers with bias on � n if and only if the data density on � n is
given by Equation 3. For an analysis that applies to a greater variety of densities we refer to Section
6.

As a byproduct, formula 3 also clarifies the arguments given in the proof of Theorem 4 of Freund
et al. (1997) which estimates the information gain of queries made by the Query by Committee
algorithm. In the proof, the scaling factor of the volume form of the gnomonic chart is estimated
using infinitesimals. The explicit formula for the volume form given above makes this more lucid.

5. Products of Spheres

We now extend the simplex algorithm (see Definition 2) to other data manifolds and other sets
of classifiers using a simple product construction. The main purpose of this section is to obtain

112



ACTIVE LEARNING BY SPHERICAL SUBDIVISION

building blocks for data manifolds and data densities which later can be combined to produce more
sophisticated examples. We consider product data manifolds of the type

(M,g) = (Sn1 ,g1)× . . .× (Snk ,gk), (4)

where each factor (Sn j ,g j) is a unit sphere of dimension n j with its standard metric g j. For a point
x = (x1, . . . ,xk) ∈ M and tangent vectors X = (X1, . . . ,Xk),Y = (Y1, . . . ,Yk) ∈ TxM we have

gx(X ,Y ) =
k

∑
j=1

g j
x j
(X j,Yj).

The Riemannian volume form of the product is given in local coordinates by

ω =
k

∏
j=1

√
det(g j) =

k̂

j=1

ω j,

where ω j denotes the volume form of the jth factor. On the product manifold M, we consider
classifiers which are products of hemispheres, that is, C = C1 × . . .×Ck, where the C j = Sn j are the
individual sets of hemispheres defined in Section 3 and a classifier c ∈C is given by

c : M → �
2, c(x) :=

{
1 : 〈x,c j〉 ≥ 0∀ j
0 : otherwise

.

Due to the simplicity of the product structure, we arrive at the following formula for the generaliza-
tion metric:

Proposition 5 For products of hemispheres c1,c2 ∈C,

dG(c1,c2) =
1

2k−1

(
1− 1

πk

k

∏
j=1

(π−d j(c
1
j ,c

2
j)),

)

where d j is the geodesic distance on Sn j .

Proof Since each component of a classifier is a hemisphere,

Vol(c1
j ∩ c2

j) = Vol(Sn j)
π−d j(c1

j ,c
2
j)

2π
.

Furthermore, the volume of a product of such hemispheres is given by

Vol(c1) =
k

∏
j=1

Vol(c1
j) =

k

∏
j=1

Vol(Sn j)

2
=

Vol(M)

2k .

Inserting this into
Vol(D(c1,c2)) = Vol(c1)+Vol(c2)−2Vol(c1 ∩ c2)

where D(c1,c2) denotes the disagreement area, yields the proposition.

This leads to the extended spherical simplex algorithm:
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Definition 6 (Extended simplex algorithm)

1. Specify some maximal edge length ε > 0 as termination criterion. For each factor Sn j , create
an initial simplex using a random orthogonal matrix whose columns are interpreted as a basis
for � n j+1. This results in a product S of equilateral simplices.

2. Find one of the edges of maximal length of each factor of the current simplex product S. If
all the respective lengths are less than ε, go to step 7. Otherwise, compute the midpoints
m1, . . . ,mk.

3. Compute the corresponding unit normals u j.

4. Ask for the labels l j of u j. If l j = 0, replace u j by −u j.

5. Replace the old simplex product S by the product of the parts in direction of u j.

6. Repeat with step 2.

7. For each factor, compute its center of mass c j, and return (c1, . . . ,ck) ∈ S as the learned
classifier.

In parallel to the case of a single sphere, the minimization of maximal edge lengths forces
convergence. Note, that if k denotes the number of factors in the product of spheres, then k training
points are needed to carry out one iteration of the algorithm. The worst case generalization error
after each step is bounded as follows.

Proposition 7 If S is the current product simplex from the extended simplex algorithm (see Defini-
tion 6) with maximal edge lengths d1, . . . ,dk of its factors, and c ∈ S some classifier,

dG(c∗,c) ≤ 1
2k−1

(
1− 1

πk

k

∏
j=1

(π−d j)

)
.

This bound is tight and attainable if we allow any element of the version space to be the learned
classifier.

Proof In analogy to the case of a single sphere, this follows from proposition 5.

The complexity estimate for one iteration of the extended simplex algorithm is

O((n1 +1)3 + . . .+(nk +1)3).

Here, n1, . . . ,nk denote the dimensions of the k individual factors of the product data space. This
estimate can be deduced directly from the complexity analysis of the simplex algorithm given in
Appendix A.
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Products combined with isometries. We now apply the isometries discussed in Section 4 to
product manifolds. For each factor in Equation 4, we may choose one of stereographic or gnomonic
projection.

Mn1+...+nk = Sn1 × . . .× Snk ,
f1 ↓ . . . ↓ fk

� n1+...+nk = � n1 × . . .× � nk .

This results in product densities on � n = � n1+...+nk , represented by the volume form

ω =
k

∏
j=1

ω j

with factors ω j given by either

ω j
x =

2n j

(1+‖x‖2)n j
dx1 ∧ . . .∧dxn j

(stereographic projection) or

ω j
x =

1

(1+‖x‖2)
n j+1

2

dx1 ∧ . . .∧dxn j

(gnomonic projection). Similarly, the projected separating hypersurfaces are products of the indi-
vidual projections. One could now go on to produce many more families of compatible densities by
working with different charts, but instead we turn our attention to an important special case.

The n-torus. A particular case is the gnomonic projection of the n-torus

T n = S1 × . . .×S1
︸ ︷︷ ︸

n factors

,

which yields a scaled version of the Cauchy distribution on � n:

ωx =
n

∏
i=1

1

1+ x2
i

dx1 ∧ . . .∧dxn.

Here, we take S1 to be the unit circle which results in T n having total mass (2π)n. Since there is
one circle S1 per axis, the projected classifiers are axis parallel corners in � n. One iteration of the
algorithm consumes n labeled data points, because T n is made up of n individual factors. At each
step of the extended simplex algorithm, the version space is a hypercube of equal edge length l.
Therefore, we do not need to compare edge lengths. One step results in halving all the edges, and
the volume is divided by 2n. Hence, if Vi denotes the volume after i iterations, we have

Vi =
π

2in .

In analogy, the maximal generalization error Gi of the center of mass classifier after i steps is given
by

Gi =

√
nπ

2i .

Thus, we observe an exponential decrease in volume and in the tight upper bound for the general-
ization error.
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6. Aspherical Data Manifolds

Up to now, our methods apply only to such data manifolds which are isometric to products of
subsets of unit spheres. We now loosen this assumption by looking at all oriented Riemannian data
manifolds M which admit an orientation preserving2 diffeomorphism

Φ : M → Sn,

that is, Φ is a smooth bijective map which has a smooth inverse. The Riemannian volume form
belonging to the metric g on M induces a volume form ω̃ on Sn which, in general, is not equal to the
spherical volume ω. More precisely,

ω̃ = f ω

with some smooth positive scaling function f : Sn → � +. Note that all volume forms (or smooth
positive densities) on Sn can be written in this form. This results in the formula

dG(c1,c2) :=
1

Ṽol(Sn)

Z

D(c1,c2)
f ω

for the generalization metric. An illustation of a non-uniform density on the sphere is given in
Figure 4 in Section 8 where the reader also finds empirical results for this case.

Concerning the set of admissible classifiers, let us keep the assumption that the Φ-image of the
data is separable by hemisphere classifiers. If we know that the true classifier c∗ lies in some subset
S ⊂ Sn the worst case generalization error of some classifier c ∈ S is bounded from above by

dG(c,c∗) ≤ sup
c̃∈S

dG(c̃,c∗).

Therefore, the simplex algorithm (see Definition 2) will still converge, as it reduces an upper bound
of the generalization error. Its rate of convergence will depend on the properties of the density.

Nevertheless, we can force a simple upper bound by assuming the deviation of the induced
volume form from spherical volume to be small:

sup
x∈Sn

|1− f (x)| < ε.

This implies

Proposition 8 Let ω be the canonical volume form of Sn. Denote by dG̃ the generalization distance
induced by the scaled volume form ω̃ = f ω where f : Sn → � + is some positive smooth scaling
function. If supx∈Sn |1− f (x)| < ε for some ε > 0 then

dG̃(c1,c2) ≤
(1+ ε)Vol(Sn)

πṼol(Sn)
d(c1,c2),

where d is the canonical geodesic distance of Sn. In this formula, Vol(Sn) :=
R

Sn ω and Ṽol(Sn) :=
R

Sn ω̃ denote the volumina of Sn with respect to ω and ω̃ := f ω.

2. A map between oriented Riemannian manifolds is orientation preserving if its functional determinant is positive.
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Proof Using the definition of the generalization distance in Equation 2 and applying proposition 1,
we compute

dG̃(c1,c2) =
1

Ṽol(Sn)

Z

D(c1,c2)
f ω

≤ 1

Ṽol(Sn)

Z

D(c1,c2)
(1+ ε)ω

=
(1+ ε)Vol(Sn)

Ṽol(Sn)
dG(c1,c2)

=
(1+ ε)Vol(Sn)

πṼol(Sn)
d(c1,c2).

Inserting the above upper bound into proposition 3 we obtain

Proposition 9 Let S be the current simplex from the simplex algorithm (see Definition 2) with ver-
tices v1, . . . ,vn+1 ∈ Sn, and c ∈ S ⊂ Sn an arbitrary classifier, not necessarily the center of mass. If
c∗ ∈ Sn denotes the unknown true classifier, the generalization error of c is bounded by

dG̃(c,c∗) ≤ (1+ ε)Vol(Sn)

πṼol(Sn)
max

i, j
d(vi,v j),

where d(vi,v j) denotes the spherical distance of the vertices.

The usefulness of the above proposition depends on how much the scaled volume form f ω deviates
from the canonical spherical volume ω. In the case of the n-torus, the same arguments as given at
the end of Section 4 yield an exponential decrease of the volume of the version space as well as of
the upper bound for the generalization error—regardless of the data density under consideration.
The only difference is the newly introduced constant ε which may affect the absolute rate but not
the functional form of convergence.

7. Linear Classifiers without Bias

We now return to the case of linear classifiers on the Euclidean space � n which commonly appear
in the machine learning literature. The corresponding separating hypersurfaces are linear subspaces,
that is, hyperplanes through the origin, of � n.

Consider the data space M = � n. Then, the set C of linear classifiers without bias consists of
maps

c : � n → �
2, c(x) :=

{
1 : 〈x, p〉 ≥ 0
0 : 〈x, p〉 < 0

,

where p ∈ Sn is the unit normal vector of an oriented (n−1)-dimensional plane through the origin.
Therefore, we can identify C with the unit n-sphere, C = Sn. In the following, we use c to denote
both, the classifier and its corresponding unit normal.
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Consider some data density f : � n → � . Since the origin is always classified as +1 by all
classifiers we may remove it from the data space, and the remaining data space is given by

M = � n \{0}.

Using polar coordinates (s,r), we can write M as the product3

M = Sn−1 × � +, s =
x
‖x‖ ,r = ‖x‖ .

For a given s ∈ Sn−1, we will call the subset Fs := {(s,r) | r > 0} the fiber over s. Since the data
is assumed to be separable by at least one element of C any two points belonging to the same fiber
have the same label.

The area D(c1,c2) of disagreement between two classifiers c1,c2 is given by

D(c1,c2) = {(s,r) ∈ M | 〈c1,rs〉〈c2,rs〉 < 0} = {(s,r) ∈ M | 〈c1,s〉〈c2,s〉 < 0}.

The generalization distance is given by

dG(c1,c2) =
Z

D(c1,c2)
f dx =

Z

{s∈Sn−1 | Fs⊂D(c1,c2)}

(
Z

Fs

f (s, .)dr

)
ds, (5)

where dx, dr, ds denote the canonical volume forms on � n, Fs, and Sn−1. It may happen that
different fibers Fs have different mass in the sense that

Sn−1 → � , s 7→
Z

Fs

f (s, .)dr

is a non-constant function. If we rule out this case we end up with the following proposition:

Proposition 10 The generalization distance of any two linear classifiers c1,c2 is given by

dG(c1,c2) =
λ
π

d(c1,c2),

where d(c1,c2) = arccos〈c1,c2〉 is the geodesic distance on Sn, if and only if the fiber mass is equal
to a positive constant,

Z

Fs

f (s, .)dr = λ > 0 ∀s ∈ Sn.

Proof This follows by applying proposition 1 to Equation 5.

The precondition of proposition 10 does not assume that the density f is rotationally invariant
on � n+1. Instead, it assumes the accumulated density to be invariant on the sphere. Linear classifi-
cation problems on non-constant densities which fulfill this condition map to classification problems
with hemisphere classifiers for the uniform density on the sphere. Consequently, all results derived
for the spherical simplex algorithm (see Definition 2) apply, including the hard upper bounds on the
generalization error. In particular, we deduce the following result from Proposition 3

3. We use the convention � + := {r ∈ � | r > 0}.
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Proposition 11 If S is the current simplex from the simplex algorithm (see Definition 2) with ver-
tices v1, . . . ,vn+1 ∈ Sn, c∗ denotes the unknown true classifier and c ∈ S an arbitrary classifier,

dG(c∗,c) ≤ λmax
i, j

d(vi,v j) = λmax
i, j

arccos〈vi,v j〉.

As in Proposition 10, λ > 0 denotes the fiber mass. This bound is tight and attainable if we allow
any element of the version space to be the learned classifier. Moreover, if c ∈ S denotes the center
of mass, then

dG(c∗,c) ≤ λmax
i

d(c,vi) = λmax
i

arccos〈c,vi〉.

is a tight and attainable upper bound for the generalization error.

Relation to SVM methods. Proposition 10 also sheds new light on some active learning strategies
that use Support Vector Machines (SVM). A SVM classifier can be interpreted as an approximation
of the center of the largest inscribable hypersphere of the version space on Sn−1 (see Herbrich,
2002). Let us denote this center by p∗ ∈V ⊂ Sn−1, where V ⊂ Sn−1 is the version space (a spherical
polytope, see Section 3) on the hypersphere.

Tong and Koller (2001) argue that, despite its dependence on the particular shape of the version
space, the center of the maximal inscribable hypersphere often lies close to “the center of the version
space”. Motivated by these insights, they propose the following pool-based strategy for selecting
an unlabeled data point x ∈ Sn−1 to be labeled: Choose x such that the (spherical) distance from the
(n−2)-dimensional great sphere

X := {s ∈ Sn−1 | 〈x,s〉 = 0}

to p∗ is minimal. After the data point x is labeled, the version space will be cut into two pieces along
the great sphere X ⊂ Sn−1. The goal of this strategy is to reduce the volume of the spherical polytope
V as quickly as possible. Similar strategies can be found in Warmuth et al. (2002). Up to now, a
closed formula for the volume of a n-spherical simplex is not known, not to speak of polytopes,
hence, there is no way of computing the exact volume of a version space on a hypersphere. We refer
to Milnor (1994) for a detailed discussion of this topic. Nevertheless, Monte-Carlo methods can be
applied to obtain volume estimates.

Proposition 10 can now be applied. The SVM algorithm works with the Euclidean scalar product
on � n, and therefore implicitly assumes the canonical Riemannian metric and volume form on the
unit sphere. Proposition 10 tells us that the SVM approximation is theoretically justified if and only
if the given data density induces (up to a constant factor) the uniform density on the sphere.

8. Experimental Results

The following results were obtained from a C++ implementation of the simplex algorithm (see
Definition 2). The numerically most sensitive operation of the algorithm is the computation of a
normal vector u ∈ Sn to the hyperplane H ⊂ � n+1 whose intersection I = H ∩ Sn with Sn cuts the
current simplex S into two pieces. In higher dimensions, say n > 50,

Z

Sn\{x∈Sn | d(x,I)<δ}
ω
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becomes very small even for small values δ > 0.4 This means, nearly all the mass of Sn is concen-
trated within a thin tube of radius δ around I, which makes it hard to compute normal vectors. We
avoid numerical problems by using the following procedure:

1. Select the basis of H given by the midpoint of the longest edge and all vertices of the simplex
excluding the end points of the longest edge. Construct a corresponding orthonormal basis
using the modified Gram-Schmidt algorithm (see Meyer, 2000).

2. Choose random points x ∈ Sn until the projected length
√

∑i〈x,hi〉, where hi are the orthonor-
mal basis vectors of H, is less than a given constant ε < 1.

3. Use x to construct a unit vector which is orthogonal to all basis vectors hi.

In order to test the performance of the simplex algorithm on spheres of different dimensions a
series of numerical experiments was conducted, where the following quantities were measured.

Maximal edge length: If (v1, . . . ,vn+1) denote the vertices of the current simplex S of the simplex
algorithm, the maximal edge length

max
i, j

d(v1,v j)

is an upper bound on the generalization error, regardless which point of the simplex is chosen
as the learned classifier.

Maximal distance from center of mass: Let c ∈ S denote the center of mass of S. Then the maxi-
mal distance between c and any other classifier from S is given by

max
i

d(c,vi).

This yields a tight upper bound on the generalization error if we choose the center of mass as
the learned classifier.

Approximate generalization error for the center of mass classifier c: We estimated the general-
ization error of c using the empirical average of the individual errors for 50,000 randomly se-
lected “test” data points. Test data were sampled (i) from a uniform density on the sphere and
(ii) from an aspherical density with two distinct “clusters” at opposite poles. The aspherical
density was constructed by mapping the uniform distribution from an open parameter cuboid
onto the sphere using n-spherical coordinates.

Figure 4 illustrates the relation between a sample drawn from this density on the sphere S2

and its stereographic projection onto the plane � 2. Densities of this kind are typical for
binary classification problems. Any density with two peaks at p1, p2 ∈ � n can be identified
with a density on Sn with peaks at opposite poles: Firstly, we apply a translation to move
the midpoint of the line p1 p2 to the origin. Then we use a rotation to place p1, p2 on the x1-
axis. After a scaling, p1 = (−1,0, . . . ,0) and p2 = (+1,0, . . . ,0). Now inverse stereographic
projection will map the peaks onto opposite poles.

4. For a comprehensive discussion of these effects we refer to Gromov (1999).

120



ACTIVE LEARNING BY SPHERICAL SUBDIVISION

Figure 4: A data sample from a density with two peaks on � 2 (left) and S2 (right). The data points
on the plane are the stereographic projections of the points on the sphere. On S2, the two
peaks are located at opposite poles.

The above quantities were computed for each step of the simplex algorithm. Averages and variances
were calculated for 1,000 simulations, and averages were normalized to lie within the interval [0,1].
For every simulation, a true classifier was drawn from the uniform distribution on the sphere. Fig-
ures 5 and 6 show the resulting learning curves for the spheres S9 ⊂ � 10, S29 ⊂ � 30,S49 ⊂ � 50, and
S79 ⊂ � 80. The average maximal edge length as a function of the number of selected training data
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Figure 5: Learning curves on S9 ⊂ � 10 (left) and on S29 ⊂ � 30 (right). The figures show the average
maximal edge length (upper solid line), the average maximal distance from the simplex’s
center of mass (upper dashed line), and the average approximate generalization errors
for the uniform (lower dashed line) and aspherical (lower solid line) data densities as
a function of the number of selected training examples. Error bars indicate variances,
however, only the approximate generalization error for the aspherical data density shows
large fluctuations between simulation runs. Proposition 4 yields the bounds 9 ≤ k9 ≤ 45
and 29 ≤ k29 ≤ 435 for the number k of steps needed before the maximal edge length
starts to drop on S9 and S29.
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Figure 6: Learning curves on S49 ⊂ � 50 (left) and S79 ⊂ � 80 (right). For details see legend of
Figure 5. Proposition 4 yields the bounds 49 ≤ k49 ≤ 1225 and 79 ≤ k79 ≤ 3160 for the
number k of steps needed before the maximal edge length starts to drop on S49 and S79.

shows an initial plateau, until the values begin to decrease in an approximately exponential fashion.
The length of the plateau increases with the dimensionality of the sphere and is a direct result of
Proposition 4. The average maximal distance from the center of mass rises initially (see Figure 7
for a magnified version of the initial segment of the learning curve), until a sudden drop occurs,
again followed by a roughly exponential decrease. This can be explained as follows. The simplex
algorithm is initialized with an equilateral simplex. During the first learning steps, the center of
mass moves towards those vertices whose adjacent edges are cut already. This results in a slight
increase of the maximal distance of the vertices from the center of mass. The simplex becomes a
“thin pyramid” with small base, and the following drop in the plots then corresponds to a cut of a
line connecting the apex to the base. The ratio between the edges connecting the apex to the base
and the edges which are contained within the base is given by 2

n−1 , where n is the dimensionality
of the sphere. Since this number tends to zero for n → ∞ the sudden drop disappears in higher
dimensions.
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Figure 7: Initial learning curves on S9 ⊂ � 10 (see Figure 5, left), now plotted on a linear scale. For
details see legend of Figure 5.
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If the data is drawn from the spherical distribution, the approximate generalization error changes
smoothly with the number of selected training data, and its variance is very small. For data dis-
tributed according to the aspherical (two cluster) density, the average approximate generalization
error is similar, but the variance increases dramatically. Nevertheless, the numerical experiments
show that the spherical simplex algorithm performs well even in the case of non-uniform densities.

Experimental results on product manifolds. So far, we restricted the experiments to single
spheres instead of products, because the simulation of the extended simplex algorithm on

M = Sn1 × . . .×Snk ,

is equivalent to the parallel execution of several copies of the basic algorithm. Nevertheless, it might
be interesting to consider the special case of the n-torus T n (see Section 5):

T n = S1 × . . .×S1
︸ ︷︷ ︸

n factors

.

The product structure of the torus reflects the fact that data is distributed independently on each
factor. For the standard product density on T n, volume and distances can be computed explicitly.
Therefore, we consider only the non-uniform case. We consider a von Mises density (see Devroye,
1986) on the unit circle:

f : S1 = � /2π → � , f (x) =
exp(κcos(x−µ))

2πI0(κ)
.

with center µ ∈ [0,2π] and width κ ≥ 0. The symbol I0 in the equation above denotes the modified
Bessel function of the first kind of order zero. A technique for simulating the von Mises distribution
can be found in Best and Fisher (1979). In order to obtain a density with two peaks on opposite
poles of the circle, we superimpose two copies of f with µ = 0 and µ = π. This construction is
applied to every factor S1 of the torus T n = S1 × . . .×S1.

We implemented the extended simplex algorithm on the n-torus. Due to the product structure,
numerical problems like those described at the beginning of Section 8 do not arise. For the case
n = 2, the torus can be embedded into � 3 using

S1 ×S1 → � 3, (s, t) 7→




(2+ cos t)coss
(2+ cos t)sins

sin t


 .

Using this mapping, we can visualize the iterations of the extended simplex algorithm on von Mises
distributed data. Figure 8 shows a data sample as well as several iterations of the algorithm on
the embedded torus. Figure 9 depicts the stereographic projection of a sample drawn from the von
Mises distribution together with the projected classifier in � 2.

Finally, we conducted experiments on the n-torus in order to obtain learning curves analogous
to those on the n-sphere. As was shown in Section 5 distances and volumina on the n-torus can
be computed explicitly provided the data density is uniform. Therefore, we focus on the approxi-
mal generalization error for data distributed according to the modified von Mises density described
above. The approximation was done by evaluating the performance of the classifier on a data sam-
ple of 50,000 test points after each training step. The resulting values were averaged over 1,000

123



HENRICH AND OBERMAYER

Figure 8: The extended simplex algorithm on the 2-torus. The large dot on the upper part of the
torus represents the true classifier. Small dots depict positively (light gray) and negatively
(dark) classified points drawn from the modified von Mises distribution. The meaning of
the nested regions is the following (light to dark): positively classified area of the true
classifier, version space after initialization (step one of the extended simplex algorithm),
version space after first iteration, version space after second iteration.

Figure 9: The image of a data sample from two superposed von Mises distributions on the two-
dimensional torus under the stereographic projection (defined in Section 4) to � 2. The
black square represents the projected classifier. Light dots are classified positively, dark
dots negatively.
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Figure 10: Learning curves on the 5-dimensional torus (left) and on the 10-dimensional torus
(right). The figures show the average approximate generalization errors for the mod-
ified von Mises density as a function of the number of selected training examples. Since
the variances are almost zero, they are not included in the diagram.

simulations. For every simulation, a true classifier was drawn from the uniform distribution on the
torus. The resulting learning curves for dimensions n = 5 and n = 10 are shown in Figure 10.

Due to the product structure of the torus, volumina of rectangular subsets are given by the prod-
ucts of their side lengths. For higher dimensions, the volume of the initial version space becomes
very small. Therefore, the initialization of the extended simplex algorithm yields a classifier whose
error is by far smaller than the average generalization error of its spherical counterpart. This ef-
fect reflects the statistical independence of the data which makes the learning task a lot easier. For
dimensions n > 15, the initialization of the algorithm alone provides a classifier with almost van-
ishing average generalization error. As the curves depicted in Figure 10 show the error decreases
exponentially.

9. Conclusion

In this contribution we provided exact upper bounds for the generalization performace of binary
classifiers. In order to do so, we used an active learning scheme for model selection, and we de-
signed a constructive method which reduces such a bound by successive subdivisions of a version
space.

The algorithm was first formulated for the generic case of a binary classification problem,
where data lies on a n-dimensional hypersphere and where both classes are separable using (n−1)-
dimensional great spheres as classifiers. We derived tight upper bounds for the case that the density
of data is constant (cf. Proposition 3) as well as for cases, where at least an upper bound of the
deviation from the constant density is known (cf. Proposition 9).

We then showed, using the concept of isometries, that abovementioned results are not restricted
to hyperspherical data spaces. We showed that if a data space can be mapped onto (a subset of) a
hypersphere using an isometry, the constructive active learning method can be applied and Propo-
sitions 3 and 9 remain valid and can be used to calculate the bound. In particular, the constructive
algorithm can be applied to linear classification in the widely used Euclidean data space � n, and
the corresponding bounds hold. A further extension to binary classification on products of spheres
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is straightforward. As a simple example, we considered binary classification on products of circles
and proved the exponential decrease of the upper bound for arbitrary densities. Using isometries we
showed that this problem can be mapped, for example, onto a binary classification problem in � n

with axis-parallel hypercube classifiers for which the same exponential decrease holds.
The theoretical results were illustrated using a number of classification tasks using flat as well

as non-constant densities, and the derived bounds were compared with the classification error on a
test set as a standard method for assessing prediction quality. Since our focus lies on a theoretical
analysis of active learning methods (the constructive methods being a vehicle of this analysis),
an empirical evaluation and applications of the proposed algorithm to real world problems are of
second importance here. Still, a few comments can be made. The computational complexity of
the method is O((n + 1)3) where n is the dimension of the hypersphere, hence the method works
in practice. Empirically, it also provides good results for non-constant densities. The main current
limitation, however, is the restriction of the method to separable classification problems.
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Appendix A.

The purpose of this appendix is to give a more detailed analysis of the complexity of the simplex
algorithm (see Definition 2) as well as a proof of Proposition 4.

Complexity analysis. We first consider step two. The edge lengths

d(vi,v j) := arccos(〈vi,v j〉),

between vertices vi,v j of the simplex must be computed in order to determine which edge is to be
cut next. To reduce the number of scalar products that actually need to be evaluated we keep a
record of all edge lengths of the current simplex. After step 2, the current simplex is cut by a plane
through the midpoint m of some edge (a,b). Assume b gets thrown out. Then all n(n−1)

2 edges of
the facet opposite to b stay untouched. Further, the length of the new edge (a,m) is one half of the
length of (a,b). It is left to compute the lengths of all other edges that contain m. Therefore, we
need to compute

n(n+1)

2
− n(n−1)

2
−1 = n−1

scalar products of vectors in � n+1 which gives us an additive term of order O(n−1). In step three,
one has to apply an orthonormalization procedure. The modified Gram-Schmidt algorithm (see
Meyer, 2000) gives us another summand O((n + 1)3). Since the computational complexity of the
other steps is negligible we obtain O((n + 1)3) as a rough complexity estimate for one iteration
of the simplex algorithm (see Definition 2). Steps one and seven are performed only once. The
initialization by choosing a random orthogonal matrix can be implemented by using an algorithm
of Stewart (1980). The complexity of this algorithm is O(n2) plus the time needed for generating
n pseudo-random vectors according to the standard normal distribution. The computation of the
center of mass in step seven amounts to adding up all vertex vectors of the current simplex and
normalizing their sum to length one. Hence, O((n+1)3) is a complexity estimate for the final step.
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We now restate and prove Proposition 4 from Section 3:

Proposition 12 Let S be the initial equilateral simplex from the simplex algorithm (see Definition
2). Let k ∈ � be the number of steps needed until the maximum of the edge lengths drops. Then

n ≤ k ≤ n(n+1)

2
,

and these bounds are tight and attainable.

Proof The proof consists of four steps:
1. n is a lower bound: Assume k ≤ n−1 and do k iterations of the algorithm. Since the degree

of each vertex is n, each vertex of the initial simplex is end point of an edge of full length. Thus, if
one of these initial vertices is contained in the new subsimplex, the subsimplex contains the adjacent
edge of full length, too. The k ≤ n−1 subdivisions have created at most n−1 new vertices. Thus,
the new subsimplex contains at least two vertices of the initial simplex. Hence, its maximal edge
length is still π

2 .
2. The lower bound is tight: Choose some vertex e. Subdivide all n edges adjacent to e and keep

the subsimplex containing the vertex e. All edges starting from e now have length π
4 . The angle

enclosed by any two edges at e is π
2 . Now the spherical law of cosines tells us that all edges not

adjacent to e have length π
3 . This implies that the constructed subsimplex realizes the lower bound.

3. n(n+1)
2 is an upper bound: This is clear since n(n+1)

2 is the number of edges of the simplex.
4. The upper bound is tight: This is clear for n = 1.

The induction step (n− 1) → n goes as follows: Use n(n−1)
2 steps to subdivide a facet F of the

simplex. Then all edges contained in F are shortened, while the n edges connecting F with the
opposite vertex e still have full length. Now subdivide the connecting edges, and always choose
the subsimplex which contains e. In this case, e is the only common vertex belonging to the newly
subdivided edge and the rest of the edges of full length. Hence, in each of these last n steps, only
one edge length is reduced. An illustration of this case is shown in Figure 11.

Appendix B.

The purpose of this appendix is to introduce some differential geometric notions used in the main
text. For a comprehensive treatise of Riemannian manifolds we refer to Gallot et al. (1990).

A manifold M is a generalization of Euclidean space � n. It is covered by coordinate charts,
that is, bijective maps u : U → � n, where U ⊂ M is an open subset. The inverse of u is called a
parametrization. For our work, the most important example of a manifold is the n-sphere Sn = {p ∈

� n+1 | ‖p‖= 1}. It can be covered by two charts, stereographic projection from the north and south
pole. Another system of charts is given by the gnomonic projections. Both are discussed in detail
in Section 4.

At each point p ∈ M, the manifold is approximated by its tangent space TpM, which generalizes
the tangent of a smooth curve. In the case of Sn, the space TpSn can be identified with the linear
subspace

TpSn = {X ∈ � n+1 | 〈p,X〉 = 0}.
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Figure 11: The figure shows a subdivision of a spherical simplex on S3 ⊂ � 4 under stereographic
projection (see Section 4). The initial simplex, a tetrahedron, is (a,b,c,e). All of its
edges have spherical length π

2 . After three iterations, indicated by their midpoints 1,2,3,
the subsimplex with edges drawn in bold face still contains three edges (those starting
from vertex e) of full length.

A Riemannian metric is a choice of a scalar product gp for each tangent space TpM. The pair
(M,g) is called a Riemannian manifold. The canonical Riemannian metric of Sn is given by the re-
striction of the Euclidean scalar product on � n+1 to the subspace TpSn. Given some parametrization
f : � n →U ⊂ Sn ⊂ � n+1 of a subset U of the sphere, the matrix representation of g is computed by

gi j = 〈 ∂ f
∂xi

,
∂ f
∂x j

〉,

where 〈,〉 denotes the Euclidean scalar product on � n+1. We use this equality in Section 4 to
compute the metric in stereographic and gnomonic coordinates.

Let M,N be manifolds of dimensions dimM = m and dimN = n. Let p ∈ M be some point in M.
A map f : M → N is called smooth at p if there are charts u : M ⊃U → � m, v : N ⊃V → � n with
p ∈ U , f (p) ∈ V such that the composition f̃ = v ◦ f ◦ u−1 : � m → � n is infinitely differentiable
in the usual sense. We denote by d f : TpM → Tf (p)N the total differential of f at p. The map f is
called smooth if it is smooth at all points of M.

A smooth bijective map f : (M,g) → (N,h) with smooth inverse is called a diffeomorphism. If
f additionally preserves the metric,

gp(X ,Y ) = h f (p)(d f (X),d f (Y )),

we call f an isometry.
Given a metric g we can measure the length of a curve γ : [a,b] → M by integrating the norm of

its tangent vector:

L(γ) =
Z b

a
‖γ̇(t)‖dt =

Z b

a

√
gγ(t)(γ̇(t), γ̇(t))dt.

The geodesic distance d(p,q) of two points p,q ∈ M is defined to be the infimum of lengths of all
curves joining p with q. The minimizing curves are called geodesics. In the majority of cases, there
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is no explicit formula for d(p,q). Nevertheless, in the case of Sn with its canonical metric it is given
by d(p,q) = arccos(〈p,q〉). Here, the geodesic distance is realized by segments of great circles.

For each Riemannian metric g, there exists a corresponding Riemannian volume form ω given
in local coordinates u = (u1, . . . ,um) : M ⊃U → � m by

ω =
√

det(g)du1 ∧ . . .∧dun.

This can be viewed as a scaled version of the determinant that depends on the base point. Using a
coordinate chart u, the volume of a subset A of M is given by

Volg(A) =
Z

A
ω =

Z

u(A)

√
det(g)du,

where the integration on the right hand side is performed in � n.
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Abstract

The statistical perspective on boosting algorithms focuses on optimization, drawing parallels with
maximum likelihood estimation for logistic regression. In this paper we present empirical evidence
that raises questions about this view. Although the statistical perspective provides a theoretical
framework within which it is possible to derive theorems and create new algorithms in general con-
texts, we show that there remain many unanswered important questions. Furthermore, we provide
examples that reveal crucial flaws in the many practical suggestions and new methods that are de-
rived from the statistical view. We perform carefully designed experiments using simple simulation
models to illustrate some of these flaws and their practical consequences.

Keywords: boosting algorithms, LogitBoost, AdaBoost

1. Introduction

As the AdaBoost algorithm of Freund and Schapire (1996) gained popularity in the computer sci-
ence community because of its surprising success with classification, the statistics community fo-
cused its efforts on understanding how and why the algorithm worked. Friedman, Hastie and Tib-
shirani in 2000 made great strides toward understanding the AdaBoost algorithm by establishing a
statistical point of view. Among the many ideas in the Friedman, Hastie and Tibshirani Annals of
Statistics paper, the authors identified a stagewise optimization in AdaBoost, and they related it to
the maximization of the likelihood function in logistic regression. Much work has followed from
this paper: extensions of the algorithm to the regression setting (e.g., Buhlmann and Yu, 2003),
modification of the loss function (e.g., Hastie et al., 2001), and work on regularization methods for
the original AdaBoost algorithm and variants (e.g., Lugosi and Vayatis, 2004). This broad statistical
view of boosting is fairly mainstream in the statistics community. In fact, the statistics community
has taken to attaching the boosting label to any classification or regression algorithm that incorpo-
rates a stagewise optimization.

Despite the enormous impact of the Friedman, Hastie and Tibshirani paper, there are still ques-
tions about the success of AdaBoost that are left unanswered by this statistical view of boosting.
Chief among these is the apparent resistance to overfitting observed for the algorithm in countless
examples from both simulated and real data sets. This disconnect was noted in some of the dis-
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cussions published along with the original 2000 Annals of Statistics paper. For instance, Freund
and Schapire (2000) note that, “one of the main properties of boosting that has made it interesting
to statisticians and others is its relative (but not complete) immunity to overfitting,” and write that
the paper by Friedman, Hastie and Tibshirani “does not address this issue.” Also Breiman (2000)
writes, “a crucial property of AdaBoost is that it almost never overfits the data no matter how many
iterations it is run,” and states “unless I am missing something, there is no explanation in the paper.”

Various arguments are given in response to the question of why boosting seems to not overfit.
A view popular in computer science attributes the lack of overfitting to boosting’s ability to achieve
a large margin separating the two classes, as discussed by Schapire et al. (1998). A number of
different opinions exist in the statistics community. Many statisticians simply argue that boosting
does in fact overfit and construct examples to prove it (e.g., Ridgeway, 2000). While single examples
certainly disprove claims that boosting never overfits, they do nothing to help us understand why
boosting resists overfitting and performs very well for the large collection of examples that raised
the question in the first place. Others argue that boosting will eventually overfit in most all cases
if run for enough iterations, but that the number of iterations needed can be quite large since the
overfitting is quite slow. Such a notion is difficult to disprove through real examples since any
finite number of iterations may not be enough. Furthermore, it is difficult to prove limiting results
for an infinite number of iterations without substantially over-simplifying the algorithm. Some
evidence supporting the argument that boosting will eventually overfit can be found in Grove and
Schuurmans (1998) which has examples for which boosting overfits when run for a very large
number of iterations. Another argument often used is that boosting’s success is judged with respect
to 0/1 misclassification loss, which is a loss function that is not very sensitive to overfitting (e.g.,
Friedman et al., 2000b). More detailed explanations attribute the lack of overfitting to the stagewise
nature of the algorithm (e.g., Buja, 2000). Along this same line, it has also been observed that
the repeated iterations of the algorithm give rise to a self-averaging property (e.g., Breiman, 2000).
This self-averaging works to reduce overfitting by reducing variance in ways similar to bagging
(Breiman, 1996) and Random Forests (Breiman, 2001).

Whatever the explanation for boosting’s resistance to overfitting in so many real and important
examples, the statistical view of boosting as an optimization does little to account for this. In fact
the statistical framework as proposed by Friedman, Hastie and Tibshirani does exactly the opposite;
it suggests that overfitting should be a major concern. Still, in the final analysis, we do not imply
that the statistical view is wrong. Indeed, we agree with Buja (2000) who writes, “There is no single
true interpretation of anything; interpretation is a vehicle in the service of human comprehension.
The value of an interpretation is in enabling others to fruitfully think about an idea.” Certainly the
paper of Friedman, Hastie and Tibshirani and other related work is quite valuable in this regard.
However, any view or theoretical understanding generally gives rise to practical suggestions for
implementation. Due to the disconnect between the statistical view and reality, many of these
resulting practical suggestions are misguided and empirical performance suffers accordingly. In
this paper we focus on illustrating this phenomenon through simulation experiments.

It is important to note that although this paper deals with “the statistical view of boosting”, it is
an overgeneralization to imply there is only one single view of boosting in the statistical community.
All statisticians are not of a single mindset, and much literature has been produced subsequent to
the Friedman, Hastie and Tibshirani Annals of Statistics paper. Much of what we categorize as the
statistical view of boosting can be found in that original paper, but other ideas, especially those in
Sections 3.9, 3.10, 4.9 and 4.10, are attributable to other researchers and subsequent publications in
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the statistics community. For this reason, we are careful to provide references and direct quotations
throughout this paper.

The following section describes the general setting for classification and the AdaBoost algo-
rithm. Sections 3 and 4 consider a collection of practical suggestions, commonly held beliefs and
modifications to the AdaBoost algorithm based on the statistical view. For each one, a simulation
providing contradictory evidence is included. Section 5 mentions a slightly different set of simula-
tions to consider, and finally Section 6 offers practical advice in light of the evidence presented in
this paper as well as some concluding remarks.

2. The Classification Problem and Boosting

In this section we will begin by describing the general problem of classification in statistics and
machine learning. Next we will describe the AdaBoost algorithm and give details of our implemen-
tation.

2.1 Classification

The problem of classification is an instance of what is known as supervised learning in machine
learning. We are given training data x1, ...,xn and y1, ...,yn where each xi is a d−dimensional vector
of predictors (x(1)

i , ...,x(d)
i ) and yi ∈ {−1,+1} is the associated observed class label. To justify

generalization, it is usually assumed that the training data are iid samples of random variables
(X ,Y ) having some unknown distribution. The goal is to learn a rule Ĉ(x) that assigns a class label
in {−1,+1} to any new observation x. The performance of this rule is usually measured with respect
to misclassification error, or the rate at which new observations drawn from the same population are
incorrectly labelled. Formally we can define the misclassification error for a classification rule Ĉ(x)
as P(Ĉ(X) 6= Y ).

For any given data set misclassification error can be estimated by reserving a fraction of the
available data for test data and then computing the percent of incorrect classifications resulting from
the classifier trained on the remainder of the data. Various cross-validation techniques improve
upon this scheme by averaging over different sets of test data. In this paper we will consider only
examples of simulated data so that the joint distribution of X and Y is known. This will enable us
to estimate misclassification error as accurately as desired by simply repeatedly simulating training
and test data sets and averaging the misclassification errors from the test sets.

2.2 Boosting

AdaBoost (Freund and Schapire, 1996) is one of the first and the most popular boosting algorithms
for classification. The algorithm is as follows. First let F0(xi) = 0 for all xi and initialize weights
wi = 1/n for i = 1, ...,n. Then repeat the following for m from 1 to M:

• Fit the classifier gm to the training data using weights wi where gm maps each xi to -1 or 1.

• Compute the weighted error rate εm ≡ ∑n
i=1 wiI[yi 6= gm(xi)] and half its log-odds, αm ≡

1
2 log 1−εm

εm
.

• Let Fm = Fm−1 +αmgm.

• Replace the weights wi with wi ≡ wie−αmgm(xi)yi and then renormalize by replacing each wi

by wi/(∑wi).
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The final classifier is 1 if FM > 0 and -1 otherwise. The popularity of this algorithm is due to a
vast amount of empirical evidence demonstrating that the algorithm yields very small misclassifica-
tion error relative to competing methods. Further, the performance is remarkably insensitive to the
choice of the total number of iterations M. Usually any sufficiently large value of M works well.
For the simulations in this paper we will take M = 1000, with the single exception of the simulation
in Section 4.7 where it is instructive to consider M = 5000.

Many variations of the AdaBoost algorithm now exist. We will visit some of these in Sections 3
and 4 and compare their performance to the original AdaBoost algorithm. Further, these variations
as well as AdaBoost itself are very flexible in the sense that the class of classifiers from which each
gm is selected can be quite general. However, the superior performance of AdaBoost is generally in
the context of classification trees. For this reason we will use classification trees in our experiments.
Specifically, the trees will be fit using the “rpart” function in the “R” statistical software package
(http://www.r-project.org/). The R code for all the experiments run in this paper is available on the
web page http://www.davemease.com/contraryevidence.

3. Experiments Which Contradict the Statistical View of Boosting

In this section we describe the results of several experiments based on simulations from the model
introduced below. Each experiment is meant to illustrate particular inconsistencies between that
which is suggested by the statistical view of boosting and what is actually observed in practice.

For the experiments we will consider in this section we will simulate data from the model

P(Y = 1|x) = q+(1−2q) I
[

J

∑
j=1

x( j) > J/2

]

.

We will take X to be distributed iid uniform on the d-dimensional unit cube [0,1]d . The constants
n, d, J and q will be set at different values depending on the experiment. Note that q is the Bayes
error and J ≤ d is the number of effective dimensions. Recall n is the number of observations used
to train the classifier. The unconditional probabilities for each of the two classes are always equal
since P(Y = 1) = P(Y = 0) = 1/2. The only exceptions to this are experiments in which we take
J = 0 for which the sum (and thus the indicator) is taken to be always zero. In these cases the model
reduces to the “pure noise” model P(Y = 1|x) ≡ q for all x.

3.1 Should Stumps Be Used for Additive Bayes Decision Rules?

Additive models are very popular in many situations. Consider the case in which the Bayes decision
rule is additive in the space of the predictors x(1), ...,x(d). By this we mean that the Bayes decision
rule can be written as the sign of ∑d

i=1 hi(x(i)) for some functions h1, ...,hd . This is true, for example,
for our simulation model. The classification rule produced by AdaBoost is itself necessarily addi-
tive in the classifiers gm. Thus when the gm are functions of only single predictors the AdaBoost
classification rule is additive in the predictor space. For this reason it has been suggested that one
should use stumps (2-node trees) if one believes the optimal Bayes rule is approximately additive,
since stumps are trees which only involve single predictors and thus yield an additive model in the
predictor space for AdaBoost. It is believed that using trees of a larger size will lead to overfitting
because it introduces higher-level interactions. This argument is made explicit in Hastie et al. (2001)
on pages 323-324 and in Friedman et al. (2000a) on pages 360-361.
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Figure 1: Comparison of AdaBoost with Stumps (Black, Thick) and 8-Node Trees (Red, Thin) for
an Additive Bayes Rule

Despite the logic of this argument which is based on the idea that one should use an additive
model when fitting an additive function, it can be observed that often, in fact, using larger trees is
more effective than using stumps even when the Bayes rule is additive. The reason has to do with
the fact that boosting with larger trees actually often overfits less than boosting with smaller trees in
practice since the larger trees are more orthogonal and a self-averaging process prevents overfitting.
We do not endeavor to make this argument rigorous here, but we will provide a compelling example.

For our example we will use our model with a Bayes error rate of q = 0.1, a training sample size
of n = 200 and d = 20 dimensions of which J = 5 are active. Figure 1 displays the misclassification
error of AdaBoost based on hold out samples of size 1000 (also drawn iid on [0,1]d) as a function
of the iterations. The results are averaged over 100 repetitions of the simulation. While AdaBoost
with stumps (thick, black curve) leads to overfitting very early on, AdaBoost with 8-node trees
(thin, red curve) does not suffer from overfitting and leads to smaller misclassification error. In
fact, the misclassification error by 1000 iterations was smaller for the 8-node trees in 96 of the 100
simulations. The average (paired) difference in misclassification error was 0.031 with a standard
error of 0.018/

√
100 = 0.0018. Also note that both algorithms here perform considerably worse

than the Bayes error rate of q = 0.1.
The R code for this experiment as well as all others in this paper can be found at

http://www.davemease.com/contraryevidence. We encourage the reader to appreciate the repro-
ducibility of the qualitative result by running the code for various values of the parameters q, n, d
and J.

It is worth further commenting on the fact that in this simulation AdaBoost with stumps leads
to overfitting while AdaBoost with the larger 8-node trees does not, at least by 1000 iterations. This
is of special interest since many of the examples other researchers provide to show AdaBoost can
in fact overfit often use very small trees such as stumps as the base learner. Some such examples
of overfitting can be found in Friedman et al. (2000a), Jiang (2000) and Ridgeway (2000) as well
as Leo Breiman’s 2002 Wald Lectures on Machine Learning.1 The belief is that if stumps overfit
then so will larger trees since the larger trees are more complex. (Clearly the example presented

1. Breiman’s lecture notes can be found at http://www.stat.berkeley.edu/users/breiman/wald2002-1.pdf.
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in this section shows that this is not the case.) To illustrate this viewpoint consider the quote from
Jiang (2001) who writes, “all these base systems, even the ones as simple as the ‘stumps’, will
unavoidably lead to suboptimal predictions when boosted forever.” Additionally, such examples in
which overfitting is observed also often deal with extremely low-dimensional cases such as d = 2
or even d = 1. By experimenting with the simulation code provided along with this paper one
can confirm that in general AdaBoost is much more likely to suffer from overfitting in trivial low-
dimensional examples as opposed to high-dimensional situations where it is more often used.

3.2 Should Smaller Trees Be Used When the Bayes Error is Larger?

Similar arguments to those in the previous section suggest that it is necessary to use smaller trees for
AdaBoost when the Bayes error is larger. The reasoning is that when the Bayes error is larger, the
larger trees lead to a more complex model which is more susceptible to overfitting noise. However,
in practice we can often observe the opposite to be true. The higher Bayes error rate actually can
favor the larger trees. This counterintuitive result may be explained by the self-averaging which
occurs during the boosting iterations as discussed by Krieger et al. (2001). Conversely, the smaller
trees often work well for lower Bayes error rates, provided they are rich enough to capture the
complexity of the signal.

We illustrate this phenomenon by re-running the experiment in the previous section, this time
using q = 0, which implies the Bayes error is zero. The average misclassification error over the 100
hold out samples is displayed in the top panel of Figure 2. It can now be observed that AdaBoost
with stumps performs better than AdaBoost with 8-node trees. In fact, this was the case in 81 out of
the 100 simulations (as opposed to only 4 of the 100 for q = 0.1 from before). The mean difference
in misclassification error after 1000 iterations was 0.009 with a standard error of 0.011/

√
100 =

0.0011. The bottom panel of Figure 2 confirms that AdaBoost with stumps outperforms AdaBoost
with 8-node tress only for very small values of q with this simulation model.

3.3 Should LogitBoost Be Used Instead of AdaBoost for Noisy Data?

The LogitBoost algorithm was introduced by Friedman et al. (2000a). The algorithm is similar
to AdaBoost, with the main difference being that LogitBoost performs stagewise minimization of
the negative binomial log likelihood while AdaBoost performs stagewise minimization of the ex-
ponential loss. By virtue of using the binomial log likelihood instead of the exponential loss, the
LogitBoost algorithm was believed to be more “gentle” and consequently likely to perform bet-
ter than AdaBoost for classification problems in which the Bayes error is substantially larger than
zero. For instance, on page 309 Hastie et al. (2001) write, “it is therefore far more robust in noisy
settings where the Bayes error rate is not close to zero, and especially in situations where there is
misspecification of the class labels in the training data.”

Despite such claims, we often observe the opposite behavior. That is, when the Bayes error
is not zero, LogitBoost often overfits while AdaBoost does not. As an example, we consider the
performance of AdaBoost and LogitBoost on the simulation from Section 3.1 in which the Bayes
error was q = 0.1. The base learners used are 8-node trees. Figure 3 displays the performance
averaged over 100 hold out samples. It is clear that LogitBoost (blue, thick) begins to overfit after
about 200 iterations while AdaBoost (red, thin) continues to improve. After 1000 iterations the mean
difference was 0.031 with a standard error of 0.017/

√
100=0.0017. The misclassification error for

LogitBoost at 1000 iterations was larger than that of AdaBoost in all but 4 of the 100 simulations.
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Figure 2: Comparison of AdaBoost with Stumps (Black, Thick) and 8-Node Trees (Red, Thin) for
an Additive Bayes Rule. Top Panel: Misclassification Error for Zero Bayes Error as a
Function of the Iterations. Bottom Panel: Misclassification Error at 1000 Iterations as a
Function of the Bayes Error Rate q.

Other examples of this phenomenon of LogitBoost overfitting noisy data when AdaBoost does not
can be found in Mease et al. (2007).

The R code used for LogitBoost was written by Marcel Dettling and Peter Buhlmann and can
be found at http://stat.ethz.ch/∼dettling/boosting.html. Two small modifications were made to the
code in order to fit 8-node trees, as the original code was written for stumps.

It should be noted that LogitBoost differs from AdaBoost not only in the loss function which it
minimizes, but also in the Newton style minimization that it employs to carry out the minimization.
For this reason it would be of interest to examine the performance of the algorithm in Collins
et al. (2000) which minimizes the negative binomial log likelihood in a manner more analogous to
AdaBoost. We do not consider that algorithm in this paper since our focus is mainly on the work of
Friedman et al. (2000a) and the implications in the statistical community.
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Figure 3: Comparison of AdaBoost (Red, Thin) and LogitBoost (Blue, Thick) with 8-Node Trees

3.4 Should Early Stopping Be Used to Prevent Overfitting?

In order to prevent overfitting, one popular regularization technique is to stop boosting algorithms
after a very small number of iterations, such as 10 or 100. The statistics community has put a
lot of emphasis on early stopping as evidenced by the large number of papers on this topic. For
example, the paper “Boosting with Early Stopping: Convergence and Consistency” by Zhang and
Yu (2005) tells readers that “boosting forever can overfit the data” and that “therefore in order to
achieve consistency, it is necessary to stop the boosting procedure early.” Standard implementations
of boosting such as the popular gbm package for R by Ridgeway (2005) implement data-derived
early stopping rules.

The reasoning behind early stopping is that after enough iterations have occurred so that the
complexity of the algorithm is equal to the complexity of the underlying true signal, then any addi-
tional iterations will lead to overfitting and consequently larger misclassification error. However, in
practice we can often observe that additional iterations beyond the number necessary to match the
complexity of the underlying true signal actually reduce the overfitting that has already occurred
rather than causing additional overfitting. This is likely due to the self-averaging property of Ad-
aBoost to which we eluded earlier.

To illustrate this we use a somewhat absurd example. We take J = 0 in our simulation model,
so that there is no signal at all, only noise. We have P(Y = 1|x) ≡ q so that Y does not depend on x
in any way. We take a larger sample size of n = 5000 this time, and also use larger 28 = 256-node
trees. The experiment is again averaged over 100 repetitions, each time drawing the n = 5000 x
values from [0,1]d with d = 20. The 100 hold out samples are also drawn from [0,1]20 each time.
The Bayes error rate is q = 0.2.

Since there is no signal to be learned, we can observe directly the effect of AdaBoost’s iterations
on the noise. We see in Figure 4 that early on there is some overfitting, but this quickly goes away
and the misclassification error decreases and appears to asymptote very near the Bayes error rate of
q = 0.2. In fact, the final average after 1000 iterations (to three decimals accuracy) is 0.200 with a
standard error of 0.013/

√
100=0.0013. Even more interesting, the misclassification error after 1000

iterations is actually less than that after the first iteration (i.e., the misclassification error for a single
28-node tree). The mean difference between the misclassification error after one iteration and that
after 1000 iterations was 0.012 with a standard error of 0.005/

√
100=0.0005. The difference was
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Figure 4: AdaBoost on 20% Pure Noise

positive in 99 of the 100 repetitions. Thus we see that not only does AdaBoost resist overfitting the
noise, it actually fits a classification rule that is less overfit than its own 28-node tree base classifier.

3.5 Should Regularization Be Based on the Loss Function?

Since the statistical view of boosting centers on the stagewise minimization of a certain loss function
on the training data, a common suggestion is that regularization should be based on the behavior of
that loss function on a hold out or cross-validation sample. For example, the implementation of the
AdaBoost algorithm in the gbm package (Ridgeway, 2005) uses the exponential loss ∑n

i=1 e−yiFm(xi)

to estimate the optimal stopping time. Indeed, if early stopping is to be used as regularization, the
statistical view would suggest stopping when this exponential loss function begins to increase on
a hold out sample. However, in practice the misclassification error often has little to do with the
behavior of the exponential loss on a hold out sample. To illustrate this, we return to the experiment
in Section 3.1. If we examine the exponential loss on hold out samples for AdaBoost with the 8-node
trees, it can be seen that this loss function is exponentially increasing throughout the 1000 iterations.
This is illustrated in Figure 5 which shows the linear behavior of the log of the exponential loss for
a single repetition from this experiment on a hold out sample of size 1000. Thus, early stopping
regularization based on the loss function would suggest stopping after just one iteration, when in
fact Figure 1 shows we do best to run the 8-node trees for the full 1000 iterations. This behavior has
also been noted for LogitBoost as well (with respect to the negative log likelihood loss) in Mease
et al. (2007) and in Dettling and Buhlmann (2003). In the latter reference the authors estimated a
stopping parameter for the number of iterations using cross-validation but observed that they “could
not exploit significant advantages of estimated stopping parameters” over allowing the algorithm to
run for the full number of iterations (100 in their case).

3.6 Should the Collection of Basis Functions Be Restricted to Prevent Overfitting?

Another popular misconception about boosting is that one needs to restrict the class of trees in
order to prevent overfitting. The idea is that if AdaBoost is allowed to use all 8-node trees for
instance, then the function class becomes too rich giving the algorithm too much flexibility which
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Figure 5: The Log of the Exponential Loss for AdaBoost on a Hold Out Sample
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Figure 6: Comparison of AdaBoost with 8-Node Trees (Red, Thin) to AdaBoost with 8-Node Trees
Restricted to Have at Least 15 Observations in Each Terminal Node (Purple, Thick)

leads to overfitting. This line of thinking gives rise to various methods for restricting or regu-
larizing the individual trees themselves as a method of regularizing the AdaBoost algorithm. For
instance, the implementation of AdaBoost in the gbm code (Ridgeway, 2005) has a parameter called
“n.minobsinnode” which is literally the minimum number of observations in the terminal nodes of
the trees. The default of this value is not 1, but 10.

In spite of this belief, it can be observed that the practice of limiting the number of observa-
tions in the terminal nodes will often degrade the performance of AdaBoost. It is unclear why this
happens; however, we note that related tree ensemble algorithms such as PERT (Cutler and Zhao,
2001) have demonstrated success by growing the trees until only a single observation remains in
each terminal node.

As an example of this performance degradation, we again revisit the simulation in Section 3.1
and compare the (unrestricted) 8-node trees used there to 8-node trees restricted to have at least 15
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Figure 7: Comparison of AdaBoost (Red, Thin) and AdaBoost with Shrinkage (Green, Thick)

observations in each terminal node. (This is done in R by using the option “minbucket=15” in the
“rpart.control” syntax.) Figure 6 shows the results with the unrestricted 8-node trees given by the
red (thin) curve and the restricted 8-node trees given by the purple (thick) curve. The degradation
in performance is evident, although not extremely large. The mean difference in misclassification
error at 1000 iterations was 0.005 with a standard error of 0.010/

√
100=0.001. AdaBoost with

unrestricted 8-node trees gave a lower misclassification error in 67 of the 100 repetitions.

3.7 Should Shrinkage Be Used to Prevent Overfitting?

Shrinkage is yet another form of regularization that is often used for boosting algorithms. In the
context of AdaBoost, shrinkage corresponds to replacing the αm in the update formula Fm = Fm−1 +
αmgm by ναm where ν is any positive constant less than one. The value ν = 0.1 is popular. In the
statistical view of boosting, shrinkage is thought to be extremely important. It is believed to not only
reduce overfitting but also to increase the maximum accuracy (i.e., the minimum misclassification
error) over the iterations. For instance, Friedman et al. (2000b) write, “the evidence so far indicates
that the smaller the value of ν, the higher the overall accuracy, as long as there are enough iterations.”

Despite such claims, it can be observed that shrinkage often does not improve performance
and instead can actually cause AdaBoost to overfit in situations where it otherwise would not. To
understand why this happens one needs to appreciate that it is the suboptimal nature of the stagewise
fitting of AdaBoost that helps it to resist overfitting. Using shrinkage can destroy this resistance.
For an example, we again revisit the simulation in Section 3.1 using the 8-node trees. In Figure 7
the red (thin) curve corresponds to the misclassification error for the 8-node trees just as in Section
3.1 and the green (thick) curve now shows the effect of using a shrinkage value of ν = 0.1. It is
clear that the shrinkage causes overfitting in this simulation. By 1000 iterations shrinkage gave a
larger misclassification error in 95 of the 100 repetitions. The mean difference in misclassification
error at 1000 iterations was 0.021 with a standard error of 0.012/

√
100=0.0012.
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3.8 Is Boosting Estimating Probabilities?

The idea that boosting produces probability estimates follows directly from the statistical view
through the stagewise minimization of the loss function. Specifically, the exponential loss
∑n

i=1 e−yiFm(xi), which is minimized at each stage by AdaBoost, achieves its minimum when the
function Fm(x) relates to the true conditional class probabilities p(x) ≡ P(Y = 1|x) by the formula
Fm(x) = 1

2 log p(x)
1−p(x) . This leads to the estimator of p(x) after m iterations given by

p̂m(x) = 1/(1+ e−2Fm(x)).

This relationship between the score function Fm in AdaBoost and conditional class probabilities
is given explicitly in Friedman et al. (2000a). An analogous formula is also given for obtaining
probability estimates from LogitBoost. Standard implementations of boosting such as Dettling
and Buhlmann’s LogitBoost code at http://stat.ethz.ch/∼dettling/boosting.html as well as the gbm
LogitBoost code by Ridgeway (2005) output conditional class probabilities estimates directly.

Despite the belief that boosting is estimating probabilities, the estimator p̂m(x) given above is
often extremely overfit in many cases in which the classification rule from AdaBoost shows no signs
of overfitting and performs quite well. An example is given by the experiment in Section 3.1. In
Figure 1 we saw that the classification rule using 8-node trees performed well and did not overfit
even by 1000 iterations. Conversely, the probability estimates are severely overfit early on. This is
evidenced by the plot of the exponential loss in Figure 5. In this context the exponential loss can be
thought of as an estimate of a probability scoring rule which quantifies the average disagreement
between a true probability p and an estimate p̂ using only binary data (Buja et al., 2006). For
the exponential loss the scoring rule is p

√

(1− p̂)/p̂ +(1− p)
√

p̂/(1− p̂). The fact that the plot
in Figure 5 is increasing shows that the probabilities become worse with each iteration as judged
by this scoring rule. Similar behavior can be seen using other scoring rules such as the squared
loss (p− p̂)2 and the log loss −p log p̂− (1− p) log(1− p̂) as shown in Mease et al. (2007). This
reference also shows the same behavior for the probability estimates from LogitBoost, despite the
fact that efficient probability estimation is the main motivation for the LogitBoost algorithm.

The reason for the overfitting of these probability estimators is that as more and more iterations
are added to achieve a good classification rule, the value of |Fm| at any point is increasing quickly.
The classification rule only depends on the sign of Fm and thus is not affected by this. However, this
increasing tendency of |Fm| impacts the probability estimates by causing them to quickly diverge
to 0 and 1. Figure 8 shows the probability estimates p̂m(xi) = 1/(1+ e−2Fm(xi)) for AdaBoost from
a single repetition of the experiment in Section 3.1 using 8-node trees on a hold out sample of
size 1000. The top histogram corresponds to m = 10 iterations and the bottom histogram shows
m = 1000 iterations. The histograms each have 100 equal width bins. It can be seen that after only
10 iterations almost all of the probability estimates are greater than 0.99 or less than 0.01, and even
more so by 1000 iterations. This indicates a poor fit since we know all of the true probabilities are
either 0.1 or 0.9.

Other researchers have also noted this type of overfitting with boosting and have used it as an
argument in favor of regularization techniques. For instance, it is possible that using a regulariza-
tion technique such as shrinkage or the restriction to stumps as the base learners in this situation
could produce better probability estimates. However, from what we have seen of some regular-
ization techniques in this paper, we know that regularization techniques often severely degenerate
the classification performance of the algorithm. Furthermore, some are not effective at all in many
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Figure 8: Probability Estimates From AdaBoost at m = 10 Iterations (Top) and m = 1000 Iterations
(Bottom)

situations. For instance, early stopping, one of the most popular regularization techniques, is of
little help when the probabilities overfit from the outset as in Figure 5. For a technique that achieves
conditional probability estimation using AdaBoost without modification or regularization the reader
should see Mease et al. (2007).

3.9 Is Boosting Similar to the One Nearest Neighbor Classifier?

In all the experiments considered in this paper, AdaBoost achieves zero misclassification error on
the training data. This characteristic is quite typical of AdaBoost and has led some researchers to
draw parallels to the (one) nearest neighbor classifier, a classifier which necessarily also yields zero
misclassification error on the training data. This characteristic has also been suggested as a reason
why AdaBoost will overfit when the Bayes error is not zero.

The belief in a similarity between boosting and the nearest neighbor classifier was not expressed
in the original paper of Friedman et al. (2000a), but rather has been expressed more recently in the
statistics literature on boosting by authors such as Wenxin Jiang in papers such as Jiang (2000),
Jiang (2001) and Jiang (2002). In Jiang (2000), the equivalence between AdaBoost and the nearest
neighbor classifier is established only for the case of d = 1 dimension. In the d = 1 case, the
equivalence is merely a consequence of fitting the training data perfectly (and following Jiang’s
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convention of using midpoints of the training data for the classification tree splits). However, as we
will see from the experiment in this section, the behavior of AdaBoost even in d = 2 dimensions is
radically different from the nearest neighbor rule.

Despite this difference, Jiang goes on to suggest that the performance of AdaBoost in higher
dimensions might be similar to the case of d = 1 dimension. For instance in “Is Regularization
Unnecessary for Boosting?” Jiang (2001) writes, “it is, however, plausible to conjecture that even
in the case of higher dimensional data running AdaBoost forever can still lead to a suboptimal
prediction which does not perform much better than the nearest neighbor rule.” Further, Jiang
(2002) writes, “the fit will be perfect for almost all sample realizations and agree with the nearest
neighbor rule at all the data points as well as in some of their neighborhoods” and that “the limiting
prediction presumably cannot perform much better than the nearest neighbor rule.”

To understand why equivalent behavior on the training data (or “data points” using Jiang’s termi-
nology above) does not imply similar performance for classification rules for d > 1, it is important
to remember that in the case of continuous data the training data has measure zero. Thus the be-
havior on the training data says very little about the performance with respect to the population.
This is well illustrated by the pure noise example from Section 3.4. For any point in the training
data for which the observed class differs from the class given by the Bayes rule, both AdaBoost and
nearest neighbor will classify this point as the observed class and thus disagree with the Bayes rule.
However, the volume of the affected neighborhood surrounding that point can be arbitrarily small
with AdaBoost, but will necessarily be close to 1/n of the total volume with nearest neighbor.

To help the reader visualize this, we consider a d = 2-dimensional version of the pure noise
example from Section 3.4. We again use a Bayes error rate of q = 0.2 but now take only n = 200
points spread out evenly according to a Latin hypercube design. The left plot in Figure 9 shows
the resulting classification of AdaBoost using 8-node trees after 1000 iterations and the right plot
shows the rule for nearest neighbor. The training points with Y = −1 are colored black and those
with Y = +1 are colored yellow. Regions classified as −1 are colored purple and those classified as
+1 are colored light blue. Since the Bayes rule is to classify the entire area as −1, we can measure
the overfitting of the rules by the fraction of the total area colored as light blue. The nearest neighbor
classifier has 20% of the region colored as light blue (as expected), while AdaBoost has only 16%.
The two classifiers agree “at all the [training] data points as well as in some of their neighborhoods”
as stated by Jiang, but the “some” here is relatively small.

In higher dimensions this effect is even more pronounced. For the d = 20-dimensional example
from Section 3.4 the area (volume) of the light blue region would be essentially zero for AdaBoost
(as evidenced by its misclassification error rate matching almost exactly that of the Bayes error),
while for nearest neighbor it remains at 20% as expected. Thus we see that the nearest neighbor
classifier differs from the Bayes rule for 20% of the points in both the training data and the pop-
ulation while AdaBoost differs from the Bayes rule for 20% of the points in the training data but
virtually none in the population.

The differences between the nearest neighbor classifier and AdaBoost are obvious in the other
experiments in this paper as well. For instance, for the experiment in Section 3.1 the nearest neigh-
bor classifier had an average misclassification error rate of 0.376 versus 0.246 for AdaBoost with
the 8-node trees.
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Figure 9: Comparison of AdaBoost (Left) and Nearest Neighbor (Right) on 20% Pure Noise

3.10 Is Boosting Consistent?

An important question to ask about any estimator is whether or not it is consistent. A consistent
estimator is defined to be any estimator for which the estimated quantity converges in probability
to the true quantity. In our context, to ask if AdaBoost is a consistent estimator is to ask if its clas-
sification rule converges in probability to the Bayes rule. If it is consistent, then with a sufficiently
large training sample size n its misclassification error will come arbitrarily close to the Bayes error.

The belief in the statistics community is that AdaBoost is not consistent unless regularization is
employed. The main argument given is that if AdaBoost is left unregularized it will eventually fit all
the data thus making consistency impossible as with the nearest neighbor classifier. Consequently,
all work on the consistency of boosting deals with regularized techniques. While we have noted in
Section 3.9 that it is characteristic of AdaBoost to achieve zero misclassification error on the training
data, we have also discussed the fact that this in no way determines its performance in general, as
the training data has measure zero in the case of continuous data. In fact in Section 3.4 we observed
that with a sample size of n = 5000 AdaBoost with 28-node trees achieved the Bayes error rate to
three decimals on a 20% pure noise example despite fitting all the training data.

In this section we consider a simulation with this same sample size and again 28-node trees but
we now include a signal in addition to the noise. We take J = 1 and use d = 5 dimensions and fix the
Bayes error rate at q = 0.1. The resulting misclassification error rate averaged over 100 repetitions
each with a hold out sample of size 1000 is shown in Figure 10. As before, AdaBoost fits all the
training data early on, but the misclassification error after 1000 iterations averages only 0.105 with
a standard error of 0.010/

√
100=0.001. This is quite close to the Bayes error rate q = 0.1 and can

be observed to come even closer by increasing the sample size. It should also be noted that this
error rate is much below the limit of 2q(1−q) = 0.18 that holds for the nearest neighbor classifier
in this case.

The belief that unregularized AdaBoost can not be consistent is promoted by Wenxin Jiang’s
work mentioned in Section 3.9 connecting the performance of AdaBoost and the nearest neighbor
classifier. His result for d = 1 rules out consistency in that case since the nearest neighbor rule is
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Figure 10: Performance of AdaBoost for a Simulation with a Bayes Error of 0.1

not consistent, but nothing is established for d > 1 with regard to AdaBoost. Jiang (2002) admits
this when he writes, “what about boosting forever with a higher dimensional random continuous
predictor x with dim(x) > 1? We do not have theoretical results on this so far.”

4. More Experiments Which Contradict the Statistical View of Boosting

In this section we revisit the experiments from Section 3 using a different simulation model. The
purpose here is to show that the results are reproducible and do not depend on a particular simulation
model. We also encourage readers to experiment with other simulation models by modifying the
code provided on the web page.

The simulations in this section will use the model

P(Y = 1|x) =

{

q x(1) ∈ [0,0.1)∪ [0.2,0.3)∪ [0.4,0.5)∪ [0.6,0.7)∪ [0.8,0.9)

1−q x(1) ∈ [0.1,0.2)∪ [0.3,0.4)∪ [0.5,0.6)∪ [0.7,0.8)∪ [0.9,1].
We will rerun each experiment from Section 3 using this model. Throughout this section we

will use d = 20 dimensions and take X to be distributed iid uniform on the 20-dimensional unit
cube [0,1]20. For each experiment we will use twice the sample size of the analogous experiment in
Section 3 and the same Bayes error q. The single exception will be the experiment in Section 4.9 in
which we use a Bayes error of q = 0.1 and d = 2 dimensions for visualization purposes.

Note that while the experiments in Section 3 had J ≤ d effective dimensions, the experiments
in this section will all have only one effective dimension as a result of this simulation model. The
plots in Figure 19 are useful for visualizing this model in d = 2 dimensions.

4.1 Should Stumps Be Used for Additive Bayes Decision Rules?

As in Section 3.1 we use a Bayes error rate of q = 0.1 and d = 20 dimensions. We use the new
simulation model with a training sample size of n = 400. Figure 11 displays the misclassification
error of AdaBoost based on hold out samples of size 1000 (also drawn iid on [0,1]20) as a function
of the iterations. The results are again averaged over 100 repetitions of the simulation.

As in Section 3.1, Adaboost with 8-node trees (thin, red curve) does not show any signs of
overfitting while AdaBoost with stumps (thick, black curve) leads to overfitting. The overfitting
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Figure 11: Comparison of AdaBoost with Stumps (Black, Thick) and 8-Node Trees (Red, Thin) for
an Additive Bayes Rule

is evident in this experiment after about 400 iterations. Furthermore, AdaBoost with 8-node trees
outperforms AdaBoost with stumps throughout the entire 1000 iterations. The misclassification
error by 1000 iterations was smaller for the 8-node trees in 93 of the 100 simulations. The average
(paired) difference in misclassification error after 1000 iterations was 0.029 with a standard error
of 0.018/

√
100 = 0.0018. As before, since the simulation model used here has an additive Bayes

decision rule, this evidence is directly at odds with the recommendation in Hastie et al. (2001) and
Friedman et al. (2000a) that stumps are preferable for additive Bayes decision rules.

4.2 Should Smaller Trees Be Used When the Bayes Error is Larger?

As in Section 3.2, we observe that when we decrease the Bayes error rate from q = 0.1 to q = 0,
the 8-node trees no longer have an advantage over the stumps. Figure 12 displays the results of the
simulation in Section 4.1 using a Bayes error rate of q = 0. We see that the advantage of the 8-node
trees has completely disappeared, and now the 8-node trees and stumps are indistinguishable. By
1000 iterations the misclassification errors for both are identical in all of the 100 repetitions.

Thus we see that the advantage of the larger trees in Section 4.1 is a result of the non-zero Bayes
error, again suggesting that larger trees are in some way better at handling noisy data. This directly
contradicts the conventional wisdom that boosting with larger trees is more likely to overfit on noisy
data than boosting with smaller trees.

4.3 Should LogitBoost Be Used Instead of AdaBoost for Noisy Data?

We now rerun the experiment in Section 4.1 using AdaBoost and LogitBoost both with 8-node trees.
Figure 13 displays the results with AdaBoost in red (thin) and LogitBoost in blue (thick). While
LogitBoost performs better early on, it eventually suffers from overfitting near 400 iterations while
AdaBoost shows no overfitting. Furthermore, the misclassification error for AdaBoost after 1000
iterations is (slightly) lower than the minimum misclassification error achieved by LogitBoost. After
1000 iterations the mean difference in misclassification error between LogitBoost and AdaBoost
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Figure 12: Comparison of AdaBoost with Stumps (Black, Thick) and 8-Node Trees (Red, Thin) for
an Additive Bayes Rule with Zero Bayes Error
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Figure 13: Comparison of AdaBoost (Red, Thin) and LogitBoost (Blue, Thick) with 8-Node Trees

was 0.069 with a standard error of 0.021/
√

100=0.0021. The misclassification error for LogitBoost
at 1000 iterations was larger than that of AdaBoost in all of the 100 repetitions.

Thus we again see that although LogitBoost was invented to perform better than AdaBoost for
data with non-zero Bayes error, LogitBoost actually overfits the data while AdaBoost does not.

4.4 Should Early Stopping Be Used to Prevent Overfitting?

In this section we repeat the simulation from Section 3.4 using the new simulation model. Just as in
Section 3.4 we use large 28 = 256-node trees, a Bayes error rate of q = 0.2 and d = 20 dimensions.
We now take twice the training sample size of Section 3.4 so that we have n = 10,000 points.

Figure 14 shows the resulting misclassification error averaged over 100 repetitions for hold out
samples of size 1000. Although there is overfitting early on, the best performance is again achieved
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Figure 14: AdaBoost with 20% Bayes Error Using 256-Node Trees

by running the algorithm for the full 1000 iterations. We note that conventional early stopping rules
here would be especially harmful since they would stop the algorithm after only a few iterations
when the overfitting first takes place. Consequently any such early stopping rule would miss the
optimal rule of running for the full 1000 iterations.

It should also be noted that the 28 = 256-node trees used here are much richer than needed
to fit the simple one-dimensional Bayes decision rule for this simulation model. Despite this, the
misclassification error after 1000 iterations was lower than the misclassification error after the first
iteration in all 100 of the reptitions. Thus it is again the self-averaging property of boosting that
improves the performance as more and more iterations are run. Early stopping in this example
would destroy the benefits of this property.

4.5 Should Regularization Be Based on the Loss Function?

As discussed in Section 3.5, regularization techniques for boosting such as early stopping are often
based on minimizing a loss function such as the exponential loss in the case of AdaBoost. However,
the performance of AdaBoost with regard to misclassification loss often has very little to do with
the exponential loss function in practice.

In this section we examine the exponential loss for the experiment in Section 4.1 using 8-node
trees. Figure 15 shows the increasing linear behavior for the log of the exponential loss for a single
repetition of this experiment with a hold out sample of size 1000. Thus, just as in Section 3.5, the
exponential loss increases exponentially as more iterations are run, while the misclassification error
continues to decrease. Choosing regularization to minimize the exponential loss is again not useful
for minimizing the misclassification error.

4.6 Should the Collection of Basis Functions Be Restricted to Prevent Overfitting?

In Section 3.6 we saw that restricting the number of observations in the terminal nodes of the
trees to be at least 15 degraded the performance of AdaBoost, despite the common belief that such
restrictions should be beneficial. In this section we rerun the experiment in Section 4.1 but again
consider this same restriction.
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Figure 15: The Log of the Exponential Loss for AdaBoost on a Hold Out Sample
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Figure 16: Comparison of AdaBoost with 8-Node Trees (Red, Thin) to AdaBoost with 8-Node
Trees Restricted to Have at Least 15 Observations in the Terminal Nodes (Purple, Thick)

Figure 16 shows the results with the unrestricted 8-node trees given by the red (thin) curve and
the 8-node trees restricted to have at least 15 observations in the terminal nodes given by the purple
(thick) curve. As in Section 3.6, degradation in performance is evident. The mean difference in
misclassification error at 1000 iterations was 0.005 with a standard error of 0.010/

√
100=0.001.

AdaBoost with unrestricted 8-node trees gave a lower misclassification error at 1000 iterations in
65 of the 100 repetitions for this simulation model.

4.7 Should Shrinkage Be Used to Prevent Overfitting?

In Section 3.7 we saw that shrinkage actually caused AdaBoost to overfit in a situation where it
otherwise would not have, in spite of the popular belief that shrinkage prevents overfitting. In this
section we rerun the experiment in Section 4.1 with 8-node trees again using a shrinkage value of
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Figure 17: Comparison of AdaBoost (Red, Thin) and AdaBoost with Shrinkage (Green, Thick)

ν = 0.1. Figure 17 shows the results with the red (thin) curve corresponding to no shrinkage and the
green (thick) curve showing the results for shrinkage. The plot shows that again shrinkage causes
overfitting.

It is interesting to note that in this simulation, unlike the simulation in Section 3.7, shrinkage
has the beneficial effect of producing a lower misclassification error very early on in the process,
despite causing the eventual overfitting. This suggests that a stopping rule which could accurately
estimate the optimal number of iterations combined with shrinkage may prove very effective for this
particular simulation. As a result of the good performance early on, the shrinkage actually gives a
lower misclassification error at our chosen stopping point of 1000 iterations than without the shrink-
age. However, if we run for enough iterations (the plot shows 5000 iterations) the overfitting caused
by the shrinkage eventually overwhelms this advantage. By 5000 iterations the shrinkage leads to a
larger misclassification error in 87 of the 100 repetitions. The mean difference in misclassification
error at 5000 iterations was 0.012 with a standard error of 0.012/

√
100=0.0012.

4.8 Is Boosting Estimating Probabilities?

In Section 3.8 we saw that the probability estimates suggested by Friedman et al. (2000a) for Ad-
aBoost diverge quickly to 0 and 1 and consequently perform very poorly even for cases where the
AdaBoost classification rule performs well. In this section we examine the probability estimates for
a single repetition of the experiment in Section 4.1 on a hold out sample of size 1000.

The two histograms in Figure 18 show the resulting probability estimates for m = 10 iterations
and m = 1000 iterations respectively using 8-node trees. Both histograms have 100 equal width
bins. At 10 iterations the estimates have not yet diverged, but by 1000 iterations almost all of the
probability estimates are greater than 0.99 or less than 0.01, just as we saw in Section 3.8. As before,
this indicates a poor fit since with this simulation model all of the true probabilities are either 0.1 or
0.9.
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Figure 18: The Probability Estimates From AdaBoost at m = 10 Iterations (Top) and m = 1000
Iterations (Bottom)

4.9 Is Boosting Similar to the One Nearest Neighbor Classifier?

In Section 3.9 we saw that despite the fact that boosting agrees with the nearest neighbor classifier
on all the training data, its performance elsewhere is quite different for d > 1 dimensions. For
AdaBoost, areas surrounding points in the training data for which the observed class differs from
that of the Bayes rule are classified according to the Bayes rule more often than they would be using
the nearest neighbor rule.

We illustrate this again using d = 2 dimensions for visualization purposes. We use a Bayes error
rate of q = 0.1 and take n = 400 points spread out evenly according to a Latin hypercube design.
The plot on the left in Figure 19 shows the resulting classification rule of AdaBoost with 8-node
trees at 1000 iterations for a single repetition using the new simulation model. The plot on the right
shows the nearest neighbor rule. Both plots use the same color scheme as Figure 9. For the nearest
neighbor rule, 21% of the points in the hold out sample disagree with the Bayes rule. This number
is only 6% for AdaBoost, despite the fact that both classifiers classify every point in the training
data according to the observed class label.

The difference between AdaBoost and the nearest neighbor rule is also well illustrated by other
experiments in Section 4. For instance, in Section 4.1 the misclassification error for the nearest
neighbor classifier was 0.499 but only 0.178 for AdaBoost with the 8-node trees.
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Figure 19: Comparison of AdaBoost (Left) and Nearest Neighbor (Right) with 10% Bayes Error
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Figure 20: Performance of AdaBoost for a Simulation with a Bayes Error of 0.1

4.10 Is Boosting Consistent?

In Section 3.10 we illustrated that with a large sample size n, the misclassification error for Ad-
aBoost can come quite close to the Bayes error rate, despite the fact that AdaBoost fits the training
data perfectly. We illustrate this again in this section. As in Section 3.10, we use 28-node trees and
a Bayes error rate of q = 0.1 but now take n = 10,000 and use the new simulation model.

Figure 20 shows the misclassification error averaged over 100 repetitions using hold out samples
of size 1000. The mean misclassification error after 1000 iterations was 0.102 with a standard error
of 0.009/

√
100=0.0009. As we saw in Section 3.10, this is extremely close to the Bayes error rate

and much less than the nearest neighbor bound of 2q(1−q) = 0.18. We encourage readers to rerun
the simulation with larger n to make the misclassification error even closer to the Bayes error.
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5. Additional Experiments Which Contradict the Statistical View of Boosting

As mentioned at the beginning of Section 4, we encourage the reader to try simulation models other
than those considered in this paper by using the R code provided on the web page
http://www.davemease.com/contraryevidence. The simulation model can be specified by chang-
ing only three lines of this code in most cases. We have only considered two simulation models in
this paper due to space constraints.

One criticism of the two simulation models considered in this paper is that both have a discon-
tinuous (piecewise constant) conditional class probability function p(x)≡ P(Y = 1|x). An argument
can be made that both AdaBoost and LogitBoost can not provide a good fit to these models because
of the discontinuities. To investigate this, we examined additional experiments from the simulation
model specified by

p(x) = 1/(1+ ek(∑J
j=1 x( j)−J/2))

where J is the number of effective dimensions as in Section 3 and k is a constant which determines
the Bayes error rate. We note that this model has the same Bayes decision boundary as the model in
Section 3 but now has a smooth conditional class probability function without any discontinuities.
The results for this model are not included in the paper but are qualitatively extremely similar to
those in Section 3. We encourage the reader to investigate this further.

6. Concluding Remarks and Practical Suggestions

By way of the simulations in Sections 3 and 4 we have seen that there are many problems with the
statistical view of boosting and practical suggestions arising from that view. We do not endeavor
to explain in this paper why these inconsistencies exist, nor do we offer a more complete view of
boosting. Simply put, the goal of this paper has been to call into question this view of boosting that
has come to dominate in the statistics community. The hope is that by doing so we have opened
the door for future research toward a more thorough understanding of this powerful classification
technique.

The statistical view of boosting focuses only on one aspect of the algorithm - the optimization.
A more comprehensive view of boosting should also consider the stagewise nature of the algorithm
as well as the empirical variance reduction that can be observed on hold out samples as with the
experiments in this paper. Much insight on such ideas can be gained from reading work by the
late Leo Breiman (e.g., Breiman, 2000, 2001) who subsequently abandoned interest in boosting
and went on to work on his own classification technique known as Random Forests. The Random
Forests algorithm achieves variance reduction directly through averaging as opposed to AdaBoost
for which the variance reduction seems to happen accidently.

While we do not offer much in the way of an explanation for the behavior of AdaBoost in this
paper, we will conclude with some practical advice in light of the evidence presented. First of all,
AdaBoost remains one of, if not the, most successful boosting algorithms. One should not assume
that newer, regularized and modified versions of boosting are necessarily better. We encourage
readers to try standard AdaBoost along with these newer algorithms. If AdaBoost is not available
as an option in your preferred software package, it is only a few lines of code to write yourself.
Secondly, if classification is your goal, the best way to judge the effectiveness of boosting is by
monitoring the misclassification error on hold out (or cross-validation) samples. We have seen that
other loss functions are not necessarily indicative of the performance of boosting’s classification
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rule. Finally, much of the evidence we have presented is indeed counter-intuitive. For this reason,
a practitioner needs to keep an open mind when experimenting with AdaBoost. For example, if
stumps are causing overfitting, be willing to try larger trees. Intuition may suggest the larger trees
will overfit even more, but we have seen that is not necessarily true.
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1. Introduction

Mease and Wyner (MW) argue experimentally that the statistical view of boosting does not account
for its success and that following the now conventional wisdom arising from this view in Friedman
et al. (2000) does not necessarily lead to choices in the boosting algorithm that improve generaliza-
tion. The authors did an excellent job of defining a set of experiments in which small changes in the
boosting algorithm (such as changing the hypothesis space, loss function, and shrinkage) produce
significant changes in generalization that were unintuitive given the statistical view of AdaBoost
(Freund and Schapire, 1996) expressed in Friedman et al. (2000).

The authors state “The statistical view focuses only on one aspect of the algorithm - the opti-
mization.” But one can argue just the opposite, that some of the problems and surprises come from
not enough of the optimization perspective instead of too much. Analyzing AdaBoost’s performance
as an optimization algorithm in terms of convergence rates and optimality conditions (measured on
the training data) can be quite revealing. First, we observe that the experiments in MW make dra-
matic changes in the convergence rates of AdaBoost and that these convergence rates are closely
associated with the margin of the classifier. AdaBoost may avoid overfitting for two completely
different reasons. Sometimes the algorithm is converging so slowly that stopping at a large number
of iterations is still early stopping. At other times, AdaBoost converges relatively quickly and is
in essence “overtrained” way past reasonable measures of the optimality conditions. In this case
the classifier has converged and is no longer changing much, so the classifier does not overfit. In-
deed, some overtraining appears to help improve the classifier slightly. Second, we observe that
AdaBoost cannot be trained forever. For the separable case, overtraining AdaBoost and LogitBoost
will eventually produce numeric problems that can produce artifacts in the generalization error. In
Experiments 3.3 and 4.3 in MW, LogitBoost was overtrained to the point of failure. The so called
overfitting observed for LogitBoost was really an algorithmic issue that is quite fixable. If Logit-
Boost is stopped appropriately or another stepsize strategy is used, the results for LogitBoost are as
good as or better than those for AdaBoost. More discussion of these results can be found below.
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2. A Mathematical Programmer’s View of AdaBoost

AdaBoost optimizes a linear combination of weak hypotheses with respect to the exponential loss.
AdaBoost is a coordinate descent (CD) algorithm, that iteratively optimizes the problem with respect
to one hypothesis at a time using column generation (Bennett et al., 2000). The weak learner seeks
the hypothesis that maximizes the inner product with the function gradient (Mason et al., 2000).
The convergence properties of such coordinate descent algorithms have been extensively studied
in the mathematical programming community and a full analysis of relevant CD results and their
extension to the boosting case can be found in Rätsch (2001).

Thus from the mathematical programming perspective, we know AdaBoost inherits both the
beneficial and potentially problematic properties of CD. We know from both the CD and original
AdaBoost theoretical results that the AdaBoost objective converges linearly to the optimal objective.
The simplicity of CD and its suitability for column generation make coordinate descent an attractive
algorithm, but in practice coordinate descent is not widely used because it can be very slow and it
has a tendency to cycle. CD guarantees that the objective function converges to the minimum but
there is no guarantee that optimal hypothesis coefficients are attained, and cycling is possible. The
AdaBoost loss function is particularly problematic since the exponential function is not strongly
convex and the Hessian is rank deficient when the size of the hypothesis space exceeds the number
of points. Overall, mathematical programming tells us that we can expect the AdaBoost objective
value to converge linearly and the convergence rate to be slow, especially when cycling occurs. The
paper on the dynamics of AdaBoost (Rudin et al., 2004) investigates this cycling behavior.

The MW experiments focus on the degenerate case in which the optimal objective value of
the underlying exponential optimization problem is zero. LogitBoost and AdaBoost are func-
tions of the form minαJ( f ) s.t. f = Ha where H is the hypothesis space matrix containing all
possible weak learners for that data set. In every case, there exists some linear combination of
weak learners that classifies the points with no error, and therefore the objective can be driven
to zero. The AdaBoost exponential loss function is ∑exp(−yi fi). The function space gradient is
∂J( f )

∂ fi
= −yiexp(−yi fi). Note the 1-norm of the function space gradient is the same as the objec-

tive,
∥

∥

∥

∂J( f )
∂ f

∥

∥

∥

1
= ∑exp(−yi f (xi)) for two-class classification. The optimality condition is that the

gradient with respect to α is zero, ∂J(Ha)
∂α = H ′ ∂J( f )

∂ f = 0. In theory, to check this gradient we need
to know the weak learners for the full hypothesis space, H. But, for cases where the misclassifica-
tion error is driven to 0, it is sufficient to monitor the gradient in function space. Fortunately, the
norm of the function space gradient provides an upper bound on the norm of the true gradient since
∥

∥

∥
H ′ ∂J( f )

∂ f

∥

∥

∥
≤C

∥

∥

∥

∂J( f )
∂ f

∥

∥

∥
for some fixed C > 0.

From a mathematical programming perspective, we are optimizing a degenerate, poorly-scaled
problem for which the optimal objective value of 0 can only be achieved in the limit using a slower
algorithm prone to cycling that may become numerically unstable. Clearly, convergence of the
algorithm should be monitored closely. Yet, in most machine learning boosting papers, the focus is
on generalization for a fixed number of iterations and rarely on optimization performance.

3. Convergence Rate of AdaBoost

Let’s examine the convergence rate and optimality conditions of AdaBoost in the MW experiments.
Figure 1 contains three plots, one each for the log base 10 of the objective (or equivalently the 1-
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Figure 1: 1 trial of Experiment 3.1 (10% Bayes Error) for AdaBoost + stumps (black, dots), Ad-
aBoost + 8-node trees (red, squares), and AdaBoost + 16-node trees (blue, triangles).

norm of the gradient), the testing error, and the training margin ( mini(yi fi)
∑m αm

) for 1500 iterations for the
first trial of the experiment with 10% Bayes error in section 3.1 of MW. The graphs contain results
for AdaBoost with stumps (black, dots), AdaBoost with 8-node trees (red, squares) and AdaBoost
with 16-node trees (blue, triangles). Observe that the loss function and gradient are driven to zero
for all three hypothesis spaces and that the remarkably different convergence rates are inversely
proportional to the size of the trees being boosted. The results for AdaBoost with 16-node trees end
at 1017 iterations because the objective becomes less than 10−322, so a divide-by-zero error occurs.
In general, AdaBoost with bigger trees achieves bigger margins and obtains better generalization.
AdaBoost with stumps converges incredibly slowly and arguably should be run for more than 1500
iterations if early stopping is not desired.

Figure 2 contains the same three graphs for the first trial for the experiment with no Bayes Error
in section 3.2. The objective/gradient and margin graphs are qualitatively similar for experiments
3.1 and 3.2. Note that the 16 node tree Adaboost algorithm underflows at 673 iterations. The testing
error graph for experiment 3.2 is quite different. The performance for AdaBoost with stumps is
much improved and now competitive or better than AdaBoost with 8 or 16 node trees. Here the
margin results do not predict which type of boosted trees will generalize best. MW found at least
one simple example in which margins don’t work well.
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Figure 2: 1 trial of Experiment 3.2 (0 Bayes Error) for AdaBoost + stumps (black, dots), AdaBoost
+ 8-node trees (red, squares), and AdaBoost + 16-node trees (blue, triangles).

Figure 3 shows the results for AdaBoost with 8-node trees and AdaBoost with 8-node trees
restricted to 15 nodes for the first trial of experiment 3.6. Here we see that restricting the trees slows
convergence, decreases margins, and increases error.

Figure 4 shows the results for AdaBoost with 8-node trees with no shrinkage (red, squares), .1
shrinkage (purple, dots), and .5 shrinkage (blue, triangles) for the first trial of experiment 3.3 (10 %
Bayes error). Here we see that shrinkage can speed up or slow down the convergence rates. For .1
shrinkage compared to no shrinkage, the convergence rate was slower, the margin smaller, and the
test error larger. For .5 shrinkage, the convergence rate was faster and the margin was larger than
for the .1 shrinkage case. If the .5 shrinkage algorithm is terminated at using reasonable stopping
criteria, the performance is quite comparable with the no shrinkage case, and improved over the .1
shrinkage case.

We present the following conjectures based on observations of this and other MW experiments
for the separable case and leave fuller investigation to later work.

• The convergence rate of AdaBoost is dependent on the space spanned by the weak learner
and larger hypothesis spaces converge faster. The weak learners produced by stumps are a
subset of those from the 8-node decision tree which are in turn a subset of those produced by
the 16-node decision tree. The bigger the decision tree, the better the weak learner can match
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Figure 3: 1 trial of Experiment 3.6 (10% Bayes Error) for AdaBoost + 8-node trees (red, squares),
and AdaBoost + 8-node trees restricted to at least 15 observations in terminal nodes (pur-
ple, dots).

the gradient at each iteration (as reflected by weighted misclassification error). So AdaBoost
can obtain a better decrease in the objective value. This conjecture is also supported by the
fact that in Figure 3’s run of experiment 3.6, decreasing the hypothesis space by restricting
the terminal node size, also reduced the convergence rate.

• For a fixed separable problem, faster convergence rates of AdaBoost can result in larger mar-
gins. AdaBoost is known to approximately optimize the margin as measured by the 1-norm
(Rosset et al., 2004; Schapire et al., 1998). The objective decreases the numerator of the mar-
gin and the iterations increase the denominator, so getting a smaller objective quicker creates
a better margin. Bigger hypothesis spaces allow bigger steps resulting in larger margins. This
finding is also supported by the fact that when shrinkage is used to change the convergence
rate, the resulting margins changed as well (see Figure 4). For problems with no training
error, we expect larger margins to translate to better generalization rates. But MW’s exper-
iments 3.2 and 4.2 show that this is not always the case. Figure 2 shows the margin for 1
run of Experiment 3.2. So MW are quite right in their conclusion that there is more to the
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Figure 4: 1 trial of Experiment 3.7 (10% Bayes Error) for AdaBoost + 8-node trees (red, squares),
AdaBoost + 8-node trees with .5 shrinkage (blue, triangles) and AdaBoost + 8-node trees
with .1 shrinkage (purple, dots).

generalization of AdaBoost then just optimizing the loss. Adding consideration of the margin
is not enough either.

• For slowly converging problems, AdaBoost will frequently be regularized by early stopping.
In experiments 3.1 and 3.2, AdaBoost with stumps is overfitting and the early stopping in
MW at 1000 iterations helps the generalization error. For this specific experiment, the slow
convergence is a result of cycling. For the first trial in experiments 3.1 and 3.2, AdaBoost
with stumps only generated 158 and 156 distinct weak learners in 1000 iterations respectively.
The weak learners generated by AdaBoost with 8-node trees and 16-node trees were distinct
except for 2. By cycling through relatively few weak learners, AdaBoost with stumps strongly
weights a few trees. This appears to be bad for generalization in experiment 3.1 and good for
generalization for the no noise case in experiment 3.2.

• For more rapidly converging problems, AdaBoost will converge and enter an overtraining
phase. For the larger tree cases, the objective and margins converge rapidly. Typically one
would halt an optimization algorithm when the gradient became near 0. In the MW experi-
ments, AdaBoost with 8-node trees is overtrained past the point where one would normally
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halt an optimization algorithm based on gradient criteria (Gill et al.). AdaBoost doesn’t over-
fit in this overtraining phase because it has converged and only very small changes are being
made. Perhaps the overtraining phase contributes to the robustness of AdaBoost, since Ad-
aBoost is performing the self-averaging discussed in MW and acting more like bagging. In
the MW experiments, AdaBoost achieves better generalization when trained to an extraordi-
narily high degree of accuracy, a fact contrary to the usual loose convergence criteria used in
support vector machines (Bennett and Parrado-Hernández, 2006). But care must be taken to
halt the boosting algorithm before the overtraining produces numeric problems due to finite
precision problems. As shown in Figure 1, AdaBoost with 16-node trees underflows at 1017
iterations for the 10% Bayes error case and at 673 iterations for the 0 error case. AdaBoost
with 8-node trees also underflows eventually as well.

4. LogitBoost versus AdaBoost

Experiments 3.4 and 4.4 compare LogitBoost and AdaBoost and conclude LogitBoost overfits.
Tracking the convergence of LogitBoost shows that this is not quite the case. We show our results
repeating experiment 4.4 exactly as in the paper for AdaBoost and LogitBoost. Recall LogitBoost
differs from AdaBoost in two ways. First, it uses the logistic loss instead of the exponential loss and
second, it uses a Newton step instead of an exact step size. The Newton step for logistic loss works
out to be 1/2 at each iteration. AdaBoost’s stepsize is adaptive. The CD convergence results do not
apply directly to LogitBoost as implemented in the paper because of the Newton step.

Figure 4 shows the average objective and misclassification results for 100 trials with 8-node
trees. Note that at about 375 iterations, LogitBoost fails to obtain a decrease in the objective be-
cause the Newton step is too large when the objective is very small. From that point, the testing error
declines. LogitBoost with shrinkage converges more slowly, so it can go more iterations before the
step size fails. Once the objective becomes too small, the stepsize fails and the generalization perfor-
mance of LogitBoost decreases remarkably. The LogitBoost objective is still small and continues to
decrease slightly, but the self-averaging properties observed in AdaBoost in the overtraining phase
are lost. Note that up until it missteps, LogitBoost is very competitive with AdaBoost. If LogitBoost
and AdaBoost were halted at the same high degree of accuracy (e.g., 10−8), there is no evidence of
overfitting.

5. Conclusion

MW are correct is saying that optimization provides only part of the picture because optimiza-
tion tells us nothing about generalization. Mathematical programming theory tells us that more
well-posed boosting problems with well-conditioned loss functions (like the hinge loss) and ex-
plicit regularization in the objective should produce boosting algorithms with better behavior from
an optimization perspective. But AdaBoost’s ill-conditioning appears to be one of the secrets of
its success. More investigation is needed comparing Adaboost with its regularized counterparts.
Certainly machine learning researchers should mind their optimization theory and track the con-
vergence of their algorithms. Optimality conditions should be used to halt and compare boosting
algorithms instead of fixed iteration limits.
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Figure 5: Average of 100 trials of Experiment 4.3 (10% Bayes Error) for AdaBoost (red, squares),
LogitBoost (blue, triangles), and LogitBoost with .5 shrinkage (purple, circles) for 8-node
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We thank the authors for writing a thought-provoking piece that may ruffle the feathers of re-
cent orthodoxies in boosting. We also thank JMLR for publishing this article! Since the late 1990s,
boosting has undergone the equivalent of a simultaneous X-ray, fMRI and PET exam, and the com-
mon view these days is that boosting is a kind of model fitting. As such, it is subjected to as-
sumptions that are common in non-parametric statistics, such as: limiting the complexity of the
base learner, building up complexity gradually by optimization, and preventing overfitting by early
stopping or by regularizing the criterion with a complexity penalty. The theories backing this up
use VC dimensions and other measures to show that, if the complexity of fits grows sufficiently
slowly, asymptotic guarantees can be given. Into this orthodox scene Mease and Wyner throw one
of the most original mind bogglers we have seen in a long time: “if stumps are causing overfitting,
be willing to try larger trees.” In other words, if boosting a low-complexity base learner leads to
overfit, try a higher-complexity base learner; boosting it might just not overfit. Empirical evidence
backs up the claim.

Is this counterintuitive wisdom so surprising? Yes, if seen from the point of view of orthodoxy,
but less so when reviving some older memories. We may remind ourselves how boosting’s fame
arose in statistics when the late Leo Breiman stated in a discussed 1998 Annals of Statistics article
(based on a 1996 report) that boosting algorithms are “the most accurate ... off-the-shelf classifiers
on a wide variety of data sets.” We should further remind ourselves what this praise was based on:
boosting of the full CART algorithm by Breiman himself, and boosting of the full C4.5 algorithm by
others. In other words, the base learners were anything but ‘weak’ in the sense of today’s orthodoxy,
where ’weak’ means ‘low complexity, low variance, and generally high bias.’ (Few people today
use PAC theory’s untenable notion of weak learner, which was gently demolished by Breiman in
the appendix of this same article.) Breiman’s (1998b, p. 802) 02) major conclusion at the time was:
“The main effect of both bagging and [boosting] is to reduce variance.” It appears, therefore, that
his notion of ‘weak learner’ was one of ‘high complexity, high variance, and low bias’! This was
before the low-variance orthodoxy set in and erased the memories of the early boosting experiences.

Unfortunately, soon thereafter Breiman saw his own assumptions thrown into question when he
learned from Schapire et al.’s (1998) work that excellent results could also be achieved by boosting
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stumps. This experience was later reinforced when Friedman et al. (2000) introduced the interpreta-
tion of boosting as model fitting: the base learner now had to be weak in the sense of low variance.
Ever since, theoretical attempts at ‘explaining boosting’ have relied on low complexity of the base
learner and controlling complexity of the final classifier to assure good generalization properties.
These ‘explanations,’ however, have never been able to explain why boosting is relatively immune
to overfitting, even when not stopped and not regularized and used with a high complexity base
learner.

Mease and Wyner’s achievement is to pull the messy truth out from under the rug of the low-
variance orthodoxy. They do so with the equivalent of boy scout tools, some simple but telling
simulations, which reinforce the idea that our reasonings about early stopping, regularization, low
variance of the base learner, and the specifics of the surrogate loss function, are not or not the only
essence of boosting. To explain why this is so, Mease and Wyner do not give us hard theory, but they
point in a direction, essentially by recovering memories that predate the low-variance orthodoxy:
“self-averaging” for variance reduction, which is the principle behind bagging and random forests.

While variance reduction is an aspect that has been ignored by the low-variance orthodoxy, the
orthodoxy’s implicit dogma, that boosting can reduce bias, is also true. As asserted and documented
empirically a decade ago by Schapire et al. (1998, Section 5.3), boosting can do both. Depending on
the data and the base learner, the effect that dominates may be bias reduction or variance reduction.
In this regard Schapire et al.’s (1998) simulation results as summarized in their Table 1 (p. 1673)
are illuminating, and had we taken them seriously sooner, we would be less surprised by Mease and
Wyner’s messages. Arguing against Breiman (1998b), Schapire et al. used the table to make the now
orthodox point that boosting can reduce bias. An unprejudiced look shows, however, that the winner
in all four scenarios is boosting C4.5, not boosting stumps, and when C4.5 is the base learner the
overwhelming story is indeed variance reduction. With this information, the Mease-Wyner mind
boggler is a touch less mind boggling indeed: From the combined evidence of Breiman (1998b)
and Schapire et al. (1998), we should expect that boosting high-variance base learners generally
outperforms boosting low-variance base learners. For the practitioner the recommendation should
be to boost CART or C4.5. In theoretical terms, one should let most of the bias removal be done by
the base learner and take advantage of boosting’s variance removal; at the same time, boosting may
further reduce the base learner’s bias by another notch if that is possible.

Where does this leave us in terms of theory? The implications of Mease and Wyner’s unortho-
doxies stand: Complexity controlling theories of bias removal are off the mark; they are not incor-
rect but misleading, and they ignore a whole other dimension that matters hugely for the practice of
boosting. What we need is a theory that explains bias and variance reduction in a single framework.
We do not even know of a unified general theory of variance reduction, although some interesting
work has been done in the area of bagging (Bühlmann and Yu, 2002) and random forests (Amit
et al., 2001). The real jackpot, however, would be a theory that explains how and when boosting
reduces bias and variance.

Meanwhile we are left with some tantalizing clues, above all Breiman’s hunch (1999, p. 3):
“AdaBoost has no random elements .... But just as a deterministic random number generator can
give a good imitation of randomness, my belief is that in its later stages AdaBoost is emulating a
random forest.” If born out, this conjecture would have theoretical and practical implications. For
one, it would mean that the initial stages of boosting may remove bias, whereas the later stages re-
move variance. According to Breiman (1998b, p. 803), boosting a high-variance base learner does
not yield convergence but exhibits “back and forth rocking” of the weights, and “This variability
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may be an essential ingredient of successful [boosting] algorithms.” Breiman implies that at some
point boosting iterations turn into a pseudo-random process whose behavior may resemble more
the purely random iterations of bagging than those of a minimization process. This random process
may be able to achieve the self-averaging effect of variance reduction that is so prominent when
boosting high-variance base learners. If this view is correct, one may have to rethink the role of the
surrogate loss function that is minimized by boosting. Its main role is to produce structured weights
in the iterations, but with noisy errors, these weights may for practical purposes be as much random
as they are systematic. This insight jibes with Wyner’s (2002) malicious experiments in which he
doubled the step size of discrete AdaBoost with C4.5, thereby assuring that the exponential loss
never decreased and in fact provably remained at a constant level; his empirical results indicated
that on average this SOR (successively over-relaxed) form of boosting performs as well as regular
AdaBoost. These results may be taken as evidence that the minimization aspect is of little impor-
tance for a high-variance base learner; of greater importance may be a pseudo-random aspect of
the reweighting scheme that achieves variance reduction similar to bagging, just more successfully
due to a sort of adaptivity in the reweighting that improves over the purely random resampling of
bagging.

If the pseudo-random aspect of boosting is critical for high-variance base learners, one may draw
consequences and implement boosting with proper pseudo-random processes. So did Breiman. He
didn’t attempt a theory of boosting for high-variance base learners, and instead he put his intuitions
to use in further proposals such as in his work on “half & half bagging” (Breiman, 1998a), ap-
parently with success. Another example that benefited from Breiman’s inspiration was Friedman’s
(2002) “stochastic gradient boosting” which inhibits convergence of boosting by computing gra-
dient steps from random subsamples drawn without replacement. Friedman (ibid., p. 9) observes
improvements over deterministic boosting in a majority of situations, above all for small samples
and “high capacity” (high variance) base learners. He admits that “the reason why this random-
ization produces improvement is not clear,” but suggests “that variance reduction is an important
ingredient.” Friedman goes on to suggest that stochastic AdaBoost with sampling from the weights
rather than reweighting may have similar variance-reducing effects. In early boosting approaches
such sampling (with replacement) was performed to match the given sample size, but Friedman
suggests that further variance reduction could be gained by choosing smaller resamples.

An implication of Breiman’s hunch is that the real difference between LogitBoost and AdaBoost
is not so much due to the differences in loss functions as to the minimization method, at least when
the base learner has relatively high variance, or generally in the late stages of boosting. AdaBoost
can be interpreted as constrained gradient descent on the exponential loss, whereas LogitBoost is
Newton descent on the logistic loss (Friedman et al., 2000). The two minimization schemes pro-
duce very different reweighting schemes, and they work off different working responses during the
iterations. We are currently ignorant about whether LogitBoost develops pseudo-random behavior
late in the iterations, similar to AdaBoost. If it does, the cause may be traced to the base learner,
and the phenomenon may be robust to the specifics not only of loss functions but of algorithms as
well.

Another implication of Breiman’s hunch is that boosting does both, reduce bias and variance, in
the same problem, but each primarily at different stages of the boosting iterations. If it is true that
variance reduction occurs during later iterations, then this should go a long way to explain boosting’s
relative immunity to overfitting. By comparison, conventional fitting mechanisms only know how
to do one thing: follow the data ever more closely, thereby continually reduce bias and continually
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accumulate variance. According to orthodoxy, therefore, the art is to find the proper balance, and to
this end auxiliary devices such as early stopping, regularization penalties and cross-validation come
into play. Boosting seems to be different, but we do not have the theory yet to prove it.

All that we said so far is based on out-of-sample classification error. A peculiarity of classi-
fication error is that it is not the criterion being minimized in-sample because of its discontinuous
nature. The role of minimizing a smooth surrogate loss function is to trace a path that leads to low
classification error, but the surrogate loss is not of interest in itself. Yet, for the variance reducing
properties of the resulting classifier, the surrogate loss is of interest. First of all, the surrogate loss
should keep decreasing because for example discrete AdaBoost is constrained gradient descent with
line search (Friedman et al., 2000). This explains why in terms of the surrogate loss, the fitted class
probability estimates end up vastly overfitting the data, confirming the orthodox view in terms of
the surrogate loss. Yet, two phenomena are also observed: in terms of out-of-sample classification
error, no overfitting is taking place, and, according to Breiman, no convergence of the weights is tak-
ing place. The bouncing of the weights would indicate that, in spite of a well-behaved convex loss
function, the descent directions chosen by the base learner become erratic. Such behavior would be
plausible if the base learner is of the high-variance type, but the specifics of why the variance com-
ponent of out-of-sample classification error is improved is not explained. It is quite clear, though,
that explaining boosting’s variance reduction would be a greater achievement than explaining its
bias reduction. Bias can be largely taken care of by the base learner, variance can’t.

If the peculiarities we observe in boosting are due to the use of two loss functions, one may
ask whether any lessons learned carry over to other parts of statistics. The “statistical view” has
indeed produced generalizations of boosting to other areas, such as regression: Bühlmann and Yu’s
L2-boosting (2003), Friedman’s gradient boosting in their deterministic and stochastic forms (2001;
2002), and boosting of exponential and survival models by Ridgeway (1999). In these single-loss
function contexts, the paradoxical phenomena should no longer be visible, as they aren’t for boost-
ing if judged in terms of the surrogate loss function. Yet, Friedman’s stochastic gradient boosting
shows that adding an element of variance reduction with randomization may just be what the doc-
tor ordered in most statistical model fitting contexts even with a single loss function. We should
therefore aim for a variance reduction theory for all of statistics, reaching beyond classification.

Another question that may be raised for binary, or categorical response data in general, is
whether classification error is as desirable a loss function as suggested by the attention it has re-
ceived. Classification error is a bottom line number that may be appropriate in industrial contexts
where real large scale engineering problems are solved, for example, in document retrieval. One
might characterize these contexts as “the machine learner’s black box problems.” There do exist
other contexts, though, and one might characterize them as “the problems of the interpreting statis-
tician.” When interpretation is the problem, attaining the last percent of classification accuracy is
not the goal. Instead, one hopes to develop a functional form that reasonably fits the data but also
“speaks,” that is, lends itself to statements about what variables are associated with the categorical
response. Fitting good conditional class probabilities takes on greater importance because associa-
tions and effects can then be measured in terms of differences in the logits of class 1 (for example)
for a unit or percentage difference in the predictor variables. Interpretability is a problem for non-
parametric model fits such as boosted trees. The decomposition of complex fits into interpretable
components, for example with an ANOVA decomposition as suggested by Friedman et al. (2000),
takes on considerable importance. In the end, one may want to produce a few telling plots explain-
ing functional form and a few numbers summarizing the strengths of various associations. When
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fitting models for conditional class probabilities, the surrogate loss becomes the primary loss func-
tion because it can be interpreted as a loss function for fitted class probabilities. It is one of the
achievements of Friedman et al. (2000) to have shown that this is true for exponential loss as much
as for logistic loss, even though there is a misperception, as pointed out by Mease and Wyner, that
LogitBoost was specifically designed to recover class probabilities that AdaBoost couldn’t. Expo-
nential loss does similar things as logistic loss in Friedman et al.’s analysis, and they provide the
appropriate link functions for both. All this is relevant only if minimization of the “surrogate/now-
primary loss” is prevented from overfitting, with cross-validated early stopping, penalization, or
variance-reducing randomization, and it comes at the cost of diminished classification performance,
one of Mease and Wyner’s points.

Diminished classification performance when estimating class probabilities is easily explained;
it is due to a compromise that class probability estimation has to strike. It effectively attempts good
classification simultaneously at all misclassification cost ratios. (Note that this ratio is assumed
to be one in most of the boosting literature.) This statement can be made precise in a technical
sense: unbiased loss functions for class probabilities, so-called “proper scoring rules,” are weighted
mixtures of cost-weighted misclassification losses Buja et al. (2005). After mapping exponential
and logistic losses to probability scales with their associated inverse link functions, they turn into
proper scoring rules and therefore exhibit the mixture structure just described. It follows that both
loss functions attempt compromises across classification problems with non-equal misclassification
costs. Both loss functions give inordinate attention to extreme cost ratios, but exponential loss even
more so than logistic loss. At any rate, the nature of the compromise is such that no cost ratio, in
particular not equal costs, is served optimally if the exponential or logistic losses are tuned to high
out-of-sample performance. By comparison, overfitting these losses in-sample seems to provide
benefits in terms of classification error. However, once we change our priorities from black-box
performance to interpretation, and hence from classification to class probability estimation, we may
prefer tuning surrogate loss and accept the increased classification error.

Anticipating an objection by Mease and Wyner, we should disclose that one of us (Buja) col-
laborated with them on an article that is relevant here (Mease et al., 2007). In this work we traveled
the opposite of the usual direction by composing class probability estimates from layered classifica-
tion regions, estimated at a grid of misclassification cost ratios. Presumably such class probability
estimation inherits superior performance from boosting in classification. When interpretation is the
goal, however, a simple functional form that “speaks” might be more desirable than the increased
performance of the layered estimates we provide in our joint proposal. The problem is that our
proposal inherits the interpretative disadvantages of boosted classification regions, which tend to
be jagged around the edges and pockmarked with holes—not a credible feature when it comes to
interpretation.

We started this discussion joining Mease and Wyner in their argument against today’s boosting
orthodoxy. We ended by questioning the single-minded reliance on classification error as the only
yard stick of performance. Still, Mease and Wyner’s call should be heard because the orthodoxy
misattributes the causes of boosting’s success and makes invalid recommendations.
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For such a simple algorithm, it is fascinating and remarkable what a rich diversity of interpre-
tations, views, perspectives and explanations have emerged of AdaBoost. Originally, AdaBoost
was proposed as a “boosting” algorithm in the technical sense of the word: given access to “weak”
classifiers, just slightly better in performance than random guessing, and given sufficient data, a true
boosting algorithm can provably produce a combined classifier with nearly perfect accuracy (Freund
and Schapire, 1997). AdaBoost has this property, but it also has been shown to be deeply connected
with a surprising range of other topics, such as game theory, on-line learning, linear programming,
logistic regression and maximum entropy (Breiman, 1999; Collins et al., 2002; Demiriz et al., 2002;
Freund and Schapire, 1996, 1997; Kivinen and Warmuth, 1999; Lebanon and Lafferty, 2002). As
we discuss further below, AdaBoost can been seen as a method for maximizing the “margins” or
confidences of the predictions made by its generated classifier (Schapire et al., 1998). The current
paper by Mease and Wyner, of course, focuses on another perspective, the so-called statistical view
of boosting. This interpretation, particularly as expounded by Friedman et al. (2000), focuses on the
algorithm as a stagewise procedure for minimizing the exponential loss function, which is related to
the loss minimized in logistic regression, and whose minimization can be viewed, in a certain sense,
as providing estimates of the conditional probability of the label.

Taken together, these myriad interpretations of AdaBoost form a robust theory of the algorithm
that provides understanding from an extraordinary range of points of view in which each perspec-
tive tells us something unique about the algorithm. The statistical view, for instance, has been of
tremendous value, allowing for the practical conversion of AdaBoost’s predictions into conditional
probabilities, as well as the algorithm’s generalization and extension to many other loss functions
and learning problems.

Still, each perspective has its weaknesses, which are important to identify to keep our theory in
touch with reality. The current paper is superb in exposing empirical phenomena that are apparently
difficult to understand according to the statistical view. From a theoretical perspective, the statistical
interpretation has other weaknesses. As discussed by Mease and Wyner, this interpretation does not
explain AdaBoost’s observed tendency not to overfit, particularly in the absence of regularization
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or early stopping. It also says little about how well AdaBoost will generalize when provided with
a finite data set, nor how its ability to generalize is dependent on the complexity or simplicity of
the base classifiers, an issue that arises in the experiments comparing decision stumps and decision
trees in this role.

Much of the difficulty arises from the fact that AdaBoost is a classification algorithm (at least
as it is used and studied in the current paper). This means that AdaBoost’s purpose is to find a rule
h that, given X , predicts one of the labels h(X), and that attempts to achieve minimal probability
of an incorrect classification (in which h(X) disagrees with the true label Y ). This is quite different
from the problem of estimating the conditional probability P(Y |X). An accurate estimate of this
conditional probability is a sufficient, but certainly not a necessary, condition for minimizing the
classification error. A weaker requirement that is still sufficient is to estimate the set of inputs for
which P(Y = +1|X) > 1/2. In most cases, this requirement is much weaker than the requirement of
getting good estimates of conditional probabilities. For example, if P(Y = +1|X) = 0.49 then our
estimate of the conditional probability need be accurate to within 1%, while if P(Y = +1|X) = 0.2
the accuracy we need is only 30%.

This simple observation demonstrates a crucial shortcoming in the statistical interpretation of
Adaboost, and undermines many of its apparent consequences, including the following:

• Adaboost can be interpreted as a method for maximizing conditional likelihood. If the goal is
not to estimate the conditional probability, there is no reason to maximize likelihood.

• A question of central importance is whether Adaboost is asymptotically consistent. When
evaluating probability estimators, it is standard procedure to start by verifying that the esti-
mator is unbiased. Once the estimator is confirmed to be unbiased, the next question is the
rate at which its variance decreases with the size of the sample. Again, as the learning prob-
lem in the case of classification is a weaker one, it is not clear that this is the relevant sequence
of questions that a theoretician should ask.

• Decision stumps should be used as base classifiers when the input variables are independent
This argument is based on the assumption that the goal is to estimate probabilities.

The view of AdaBoost as a method for minimizing exponential loss, though in some ways quite
useful, can also lead us very much astray, as pointed out to some degree by Mease and Wyner. Taken
to an extreme, this view suggests that any method for minimizing exponential loss will be equally
effective, and is likely to be much better if designed with speed and this explicit goal in mind. How-
ever, this is quite false. Indeed, any real-valued classifier F which classifies the training examples
perfectly, so that yiF(xi) > 0 for each training example (xi,yi), can be modified to minimize the
exponential loss ∑i e−yiF(xi) simply by multiplying F by an arbitrarily large positive constant. This
scaling of F of course has no impact on the classifications that it makes. Thus, in the common case
in which an exponential loss of zero is possible, minimization of this loss means nothing more than
that the computed classifier F has a classification error of zero on the training set. The minimization
of this particular loss tells us nothing more, and leaves us as open to overfitting as any other method
whose only purpose is minimization of the training error.

This means that, in order to understand AdaBoost, which does indeed minimize exponential
loss, we need to go well beyond this narrow view. In particular, we need to consider the dynamics
of AdaBoost—not just what it is minimizing, but how it goes about doing it.
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Like other interpretations of AdaBoost, although the statistical view has its weaknesses, it also
has its strengths, as noted above. Still, to fully understand AdaBoost, particularly in the face of
such deficiencies, it seems unavoidable that we consider a range of explanations and modes of
understanding. Where the statistical view may be lacking, the margins explanation in particular can
often shed considerable light.

Briefly, the margin of a labeled example with respect to a classifier is a real number that in-
tuitively measures the confidence of the classifier in its prediction on that example. More pre-
cisely, in the notation of Mease and Wyner, the margin on labeled example (x,y) is defined to
be yFM(x)/∑m αm. Equivalently, viewing the prediction of AdaBoost’s combined classifier as a
weighted majority vote of the base classifiers, the margin is the weighted fraction of base classifiers
voting for the correct label minus the weighted fraction voting for the incorrect label.

The margins theory (Schapire et al., 1998) provides a complete analysis of AdaBoost in two
parts: First, AdaBoost’s generalization error can be bounded in terms of the distribution of margins
of training examples, as well as the number of training examples and the complexity of the base
classifiers. And second, it can be proved that AdaBoost’s dynamics have a strong tendency to
increase the margins of the training examples in a manner that depends on the accuracy of the base
classifiers on the distributions on which they are trained.

This theory is quite useful for understanding AdaBoost in many ways (despite a few shortcom-
ings of its own—see, for instance, Breiman (1999) as well as the recent work of Reyzin and Schapire
(2006)). For starters, the theory, in which performance depends on margins rather than the number
of rounds of boosting, predicts the same lack of overfitting commonly observed in practice. The
theory provides non-asymptotic bounds which, although usually too loose for practical purposes,
nevertheless illuminate qualitatively how the generalization error depends on the number of training
examples, the margins, and the accuracy and complexity of the base classifiers. Finally, the the-
ory is concerned directly with classification accuracy, rather than the algorithm’s ability to estimate
conditional probabilities, which is in fact entirely irrelevant to the theory.

Moreover, some of the phenomena observed by Mease and Wyner do not appear so mysterious
when viewed in terms of the margins theory. For instance, the experiments in Section 3.1 show
AdaBoost overfitting with stumps but not decision trees. In terms of margins, decision trees have
higher complexity, which tends to hurt generalization, but also tend to produce much larger margins,
which tend to improve generalization, an effect that can easily be strong enough to compensate for
the increased complexity. Moreover, according to the theory, these larger margins tend to provide
immunity against overfitting, and indeed, overfitting is expected exactly in the case that we are using
base classifiers producing small margins, such as decision stumps. This is just what is observed in
Figure 1.

In sum, the various theories of boosting, including the margins theory and the statistical view,
are all imperfect but are largely complementary, each with its strengths and weaknesses, and each
providing another piece of the AdaBoost puzzle. It is when they are taken together that we have
the most complete picture of the algorithm, and the best chances of understanding, generalizing and
improving it.
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1. Introduction

This is an interesting and thought-provoking paper. We especially appreciate the fact that the authors
have supplied R code for their examples, as this allows the reader to understand and assess their
ideas. The paper inspired us to re-visit many of these issues underlying boosting methods. However
in the end we do not believe that the examples provided in the paper contradict our statistical view,
although other views may well prove informative.

2. Our Statistical View of Boosting

Friedman et al. (2000) and our book (Hastie et al., 2001) argue that boosting methods have three
important properties that contribute to their success:

1. they fit an additive model in a flexible set of basis functions

2. they use a suitable loss function for the fitting process

3. they regularize by forward stagewise fitting; with shrinkage this mimics an L1 (lasso) penalty
on the weights.

In many cases the paper ascribes consequences of this statistical view that are not the case. For
example, it does not follow that smaller trees are necessarily better than larger ones for noisier prob-
lems (Sections 3.2 and 4.2), that the basis should necessarily be restricted as described in Sections
3.6 and 4.6, or that regularization should be based on the loss function used for fitting (Sections
3.5 and 4.5). To the extent possible model selection should be based on the ultimate loss associ-
ated with the application. Also, there is no requirement that test error have a unique minimum as a
function of the number of included terms (Sections 3.4 and 4.4). However, to the extent that these
are commonly held beliefs, the paper provides a valuable service by pointing out that they need not
hold in all applications.

There is no direct relation between the application of shrinkage and overfitting (Sections 3.7
and 4.7). Heavy shrinkage emulates L1 regularization, whereas its absence corresponds to stagewise
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fitting approximating L0 regularization. There is nothing in the statistical view that requires L1 to be
superior to L0 in every application, although this is often the case. The best regularizer depends on
the problem: namely the nature of the true target function, the particular basis used, signal-to-noise
ratio, and sample size.

Finally, there is nothing in our statistical interpretation suggesting that boosting is similar to one
nearest neighbor classification (Sections 3.9 and 4.9).

None-the-less, the paper does provide some interesting examples that appear to contradict the
statistical interpretation. However these examples may have been carefully chosen, and the effects
seems to vanish under various perturbations of the problem.

3. Can the “Wrong” Basis Work Better than the Right One?
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Figure 1: Average test misclassification error for 20 replications of Mease and Wyner’s example
used in their Figure 1. We used the package GBM in R, with the “adaboost” option. The
left panel shows that 8-node trees outperform stumps. The right panel shows that stumps
with shrinkage win handily.

The left panel of Figure 1 shows a version of the paper’s Figure 1. We see that boosting with
8 node trees seems to outperform stumps, despite the fact that the generative model is additive in
the predictor variables. However the right panel shows what happens to both stumps and 8 nodes
trees when shrinkage is applied. Here shrinkage helps in both cases, and we see that stumps with
shrinkage work the best of all.
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Figure 2: Left panel: average absolute deviations of the fitted probabilities from the true probabil-
ities for the same simulations as in Figure 1. Right panel: average test misclassification
error for the same simulations as in Figure 1, except using 2000 rather than 200 training
examples.

We are not sure why unshrunken 8 node trees outperform unshrunken stumps in this example.
As in the paper, we speculate that the extra splits in the 8 node tree might act as a type of regularizer,
and hence they help avoid the overfitting displayed by unshrunken stumps in this example. All but
the first split will tend to be noisy attempts at the other variables, which when averaged will have a
“bagging” effect.

However this explanation becomes less convincing and indeed the effect itself seems to fade
when we look more deeply. Figure 2 [left panel] shows the average absolute error in the estimated
probabilities, while Figure 2[right panel] shows what happens when we increase the sample size to
2000. In Figure 3[left panel] we use the Bernoulli loss rather than exponential of Adaboost, and
Figure 3[right panel] shows results for the regression version of this problem. In every case, the
effect noted by the authors goes away and both the correct bases and shrinkage help performance.
We repeated these runs on the second simulation example of Section 4, and the results were similar.
Thus the effect illustrated by the authors is hard to explain, and seems to hold only for misclassifi-
cation error. It depends on a very carefully chosen set of circumstances. Most importantly, we have
to remember the big picture. Looking at the right panel of Figure 1, which method would anyone
choose? Clearly, shrunken stumps work best here, just as might be expected from the statistical
view.
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Figure 3: Left panel: test misclassification error when boosting with Bernoulli loss for the same
simulations as in Figure 1. Right panel: root mean-squared test error when boosting with
squared-error loss for the same simulations as in Figure 1 (legend as in left panel).

Figure 4 shows the fitted probabilities over the 20 runs, separately for each class, when using
250 shrunken stumps. Here 250 was chosen since it corresponds to the minimum in Figure 2[left
panel]. This is an appropriate tradeoff curve if we are interested in probabilities; test deviance would
also be fine. We see that the estimates are biased toward 0.5, which is expected when regularization
is used. Hence they are underfit, rather than overfit.

A similar argument can be made concerning the paper’s Figure 3. Yes, AdaBoost works better
than Logitboost in this example. But using the statistical view of boosting, we have moved on and
developed better methods like gradient boosting (Friedman, 2001) that typically outperform both of
these methods.

Hastie et al. (2007) add further support to (3) of the statistical interpretation of boosting: they
show that the incremental forward stagewise procedure used in boosting (with shrinkage) optimizes
a criterion similar to but smoother than the L1 penalized loss.

4. Conclusion

No theory, at least initially, can fully explain every observed phenomenon. Everything about regu-
larized regression is not yet fully understood. There is still considerable ongoing research in the lit-
erature concerning the interplay between the target function, basis used, and regularization method.
Hopefully, some of the apparent anomalies illustrated in this paper will eventually be explained with
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Figure 4: Fitted probabilities shown for the two classes, at 250 shrunken stumps. The vertical black
bars are the target probabilities for this problem, and the green bars are the median of the
estimates in each class.

a more thorough understanding of these issues. The paper provides a service in reminding us that
there is still work remaining.

Although we would not begin to suggest that our statistical view of boosting has anywhere near
the substance or importance of the Darwin’s theory of evolution, the latter provides a useful analogy.
The proponents of Intelligent Design point out that the theory of evolution does not seem to explain
certain observed biological phenomena. And therefore they argue that evolution must be wrong
despite the fact that it does explain an overwhelming majority of observed phenomena, and without
offering an alternative testable theory.

We are sure that the authors will mount counter-arguments to our remarks, and due to the (stan-
dard format) of this discussion, they will have the last word. We look forward to constructive
counter-arguments and alternative explanations for the success of boosting methods that can be
used to extend their application and produce methods that perform better in practice (as in the right
panel of Figure 1).
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Galileo: God help us, I’m not half as sharp as those gentlemen in the philosophy department.
I’m stupid, I understand absolutely nothing, so I’m compelled to fill the gaps in my knowledge. . . Sir,
my branch of knowledge is still avid to know. The greatest problems still find us with nothing but
hypotheses to go on. Yet we keep asking ourselves for proofs. Brecht (1980)

This is a “sock it to them” paper—though much less so than the previous versions one of us
have seen.

The authors argue in the paper that AdaBoost (without early stopping) is one of, if not the,
most successful boosting algorithms, and they present this paper as a disproof of what the , rather
amorphous community of statistical practitioners, represented by Friedman, Hastie and Tibshirani
have:

(i) Pointed out as remediable flaws of the original Freund-Schapire boosting algorithm;

(ii) Given as remedies.

Evidently, that community should be able to respond on its own. We in fact, agree with some
of the hypotheses Mease and Wyner’s limited simulations lead them to, whether these are or are not
embraced by statistical practitioners. But others we find dubious and unproven. Let us stress the
positive first.

1. They argue that boosting does not behave like nearest neighbor for d > 1. Not only do we
agree with this but would conjecture even further without any proof:

2. That, for reasonable sequences of d dimensional distributions, the random classification rules
induced by the stationary measures corresponding to boosting forever, should in a suitable
sense as n,d → ∞ concentrate near the Bayes rule. However, an example below shows that
the improvement from d = 1 to d = 2 can be slight.

3. We don’t believe that boosting is consistent, in the sense of section 3.10, for any d, but indeed
there is no disproof for d > 1.

c©2008 Peter J. Bickel and Ya’acov Ritov.
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4. We agree that a sharp explanation why, for classification, boosting may not overfit—that is,
continues to reduce the probability of misclassification long past the point where all training
sample observations are correctly classified has not been provided in the statistical (or the
machine learning) literature.

5. We agree that using more complex basis functions may actually improve performance. This
was analyzed theoretically for L2 boosting by Bühlmann and Yu (2003).

6. We agree that there is a need for a convincing argument for basing an early-stopping algorithm
of a classifier on a loss function that is not the classification loss. A-priori we do not expect
that stopping on any criterion, other than minimum classification error will work in general,
even if the classifier itself is based on minimizing this indirectly relevant criterion. However,
it certainly can be that a good early stopping algorithm will be based on estimate of the loss
with respect to something other than from the classification error. It was proven to be so, for
example, with L2-boost.

Since we have never been persuaded on theoretical grounds of the superiority of other “boosts”,
logit or L2, over AdaBoost , we leave this battle to others.

Where we really part company with the authors of this ”against the heretics” paper is on the
issue of the desirability of early stopping.

Galileo tries to explain his young student, Andrea, the structure of the Copernican system, to
make it so simple that Andrea will be able to explain it to his mother. He rotates him on a chair, and
tells him that an apple in the center is the earth. However, Andrea is smart enough to understand
that so far and not more can be deduced from examples.
Andrea: Examples always work if you’re clever. Only I can’t lug my mother round in a chair like you
did me. So you see it’s a rotten example really. And suppose your apple is the earth like you say?
Nothing follows. Brecht (1980)

Everybody can produce examples. The authors gave two examples. Other commentators will
bring their own. Here are ours. We consider X ∈ R

2 uniform on 5 concentric circles. The classes
were randomly assigned according to P(Y = 1|x) = logit(4sgn (ξ)

√

(ξ)) where ξ = ‖x‖−2|x1| and
logit(ζ) = eζ/(1+eζ). The training sample includes 500 i.i.d. observations. 200 more observations
were used for early stopping. I.e., stopping when the mean empirical classification error on these
200 observations was minimal. Finally another set of 1500 observations was used to evaluate the
mean classification error of the AdaBoost procedure as a function of the number of observations.
See Figure 1 for a plot of typical set of Xs and P(Y = 1|X)). The weak classifier we used was a
standard classification tree with 8-terminal nodes. The simulations were run with slightly different
set-ups a few tens of times. There was no case that contradicted the results of the single experiment
we will present next (but see later). Our example is small. Since the goal of the discussed paper is
to suggest policy on the basis of two examples, even one (we believe) reasonable counterexample
should give some pause.

In Figure 2(a) we show the classification error as a function of the number of iterations. The
horizontal lines are, from the top down: The risk of the closest neighbor, the risk of AdaBoost with
early stopping, and the Bayes Risk. It is clear in this example that AdaBoost starts quite nicely. The
primitive early stopping technique we employed is enough to give a decent performance. However,
the performance of AdaBoost starts to degenerate after some tens of iterations. After 800 hundred
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Figure 1: P(Y = 1|X) as function of location.

iterations it is only slightly better than the nearest neighbor classifier. Within the context of this
example the “does not over-fit” property, can be understood at best as “it is simply a slow algorithm”.

Figure 2(b) shows the root mean square error of AdaBoost implicit estimate of the probability
as function of the number of iterations. It is clear that it degenerate much faster than AdaBoost
performance. However, the implicit probability estimate is fair, as long as the classifier is in its
prime. So, the authors’ doubt whether boosting estimate probabilities cannot be based on this
example.

However, we should mention that the apparent failure of the boosting algorithm to estimate
probabilities is somewhat misleading. In Figure 2(c) we plot Fm −F0, where F0 is the ideal value,
as a function of P(Y = 1|x) after m = 200 iterations. P(Y = 1|x) is used here as proxy for the
distance of the point from the P(Y = 1|x) = 0.5 boundary. What can be seen is that most of the
error in the estimation of the P(Y = 1|x) comes from the easy to classify points. So, the boosting
algorithm fails to estimate the probability where it does not really matter.

There are facts in life. One cannot invoke the church teaching or Aristotle’s books in face of empirical

facts. Galileo get annoyed by the insistence of the philosopher and the mathematician on using irrelevant

arguments.

Galileo: My reasons! When a single glance at the stars themselves and my own notes make the phenomenon

evident? Sir, your disputation becoming absurd. Brecht (1980)

The authors used a smart device to present the discrepancy between the one nearest neighbor
classifier and AdaBoost. Namely, they compare their performance under a null hypothesis, where
P(Y = 1|x) does not depend on x (this is true for Section 3.9 but not for 4.9, where for some unknown
reasons something else was done). We did the same. The distribution of X and the sample sizes are
as above, while P(Y = 1|x) ≡ 0.2. The results are presented in Figure 3. The graphs are similar to
Figure 2(a-b), in description and in essence. Boosting without early stopping is not like 1-NN, but
it is not much better, at least for this tiny example.

We did observe a further interesting phenomenon when we added irrelevant explanatory vari-
ables. That is, 8 independent variables X3, . . . ,X10 were added, while the distribution of (X1,X2,Y )
remains as above. The result was surprising. Adding these irrelevant variables improved the perfor-
mance of “boosting-for-ever” to the level of the early stopping algorithm. This gives some credence
to our conjecture 2.
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Figure 2: AdaBoost, with and without early stopping.

184



RESPONSE TO MEASE AND WYNER, EVIDENCE CONTRARY TO THE STATISTICAL VIEW OF BOOSTING

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.2

0.25

0.3

0.35

Iterations

C
la

ss
ifi

ca
tio

n 
er

ro
r

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

Iterations

R
M

S
(p

r.
 E

rr
.)

(b)

Figure 3: AdaBoost under the null hypothesis.

But, this is not the end of the story. We changed the the distribution a little. We left P(Y |X1, . . . ,
X10) = P(Y |X1,X2) as above. X3, . . . ,X10 are still independent of each other and independent of
(X1,X2). However the distribution of (X1,X2) was changed to be discrete with 24 well isolated
atoms. One can conceive the distribution as that of 24 columns with 500/24 on the average obser-
vations. The Y s are i.i.d. given the column. AdaBoost with early stopping handled this situation
very well and stopped after very few (e.g., 2) iterations. It essentially isolated the columns and left
them intake. Boosting-for-ever stabilized nicely after very few iterations. However, as could be
expected, it did break the columns. The result was that the misclassification error of boosting-for-
ever was almost in the middle between the early stopping algorithm, and the strictly inferior 1-NN
estimator.
A further point. The phenomenon of not overfitting for a long time is certainly interesting to investi-
gate, but why this should be a virtue of a procedure is unclear, since it merely increases computation
time at an often (perhaps usually) negligible improvement over stopping early.

AdaBoost is a mystery, but we, the weak, can solve only one toy problem at a time.

Galileo: Why try to be so clever now, that we at last have a chance of being less stupid? Brecht (1980)

AdaBoost was crowned by Leo Breiman as the best off-the-shelf classifier. It has some myste-
rious properties, particularly, sometimes continuing to improve off-sample performance even after
completely collapsing on the data. It behaves better, sometimes, with 8-nodes trees, some other
times with 256-node trees, and other times, mainly when examined by some statisticians, stumps
are superior. It presents some mathematical challenges, which should be carefully investigated.
However, many examples appearing in the literature are either very artificial, or the investigators
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don’t have a gold standard like the Bayes risk. We hope that this technique will grow out of its
status of something like an art, to a scientifically justified method. But this is only a hope.
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We would like to thank the authors for their provocative view on boosting. Their view is built
upon some “contrary” evidence based on a particular simulation model. In our discussion, we argue
that the structure of the simulation model explains many aspects of the “contrary” evidence. We
touch upon the issue of shrinkage or small step-sizes, and we conclude that the “statistical view”
provides constructive insights for applying boosting in a highly successful way.

The gradient and “statistical” point of view The gradient point of view of AdaBoost is, in our
opinion, a great leap forward for understanding AdaBoost and deriving new variants of boosting now
meaning much more than just AdaBoost. This view, which seems to be called the “statistical view”
by Mease and Wyner (MW), has been pioneered by Breiman (1998, 1999), Friedman et al. (2000),
Mason et al. (2000) Rätsch et al. (2001) and is not just a product of the statistics community. The
gradient view of boosting allows transferring of the boosting methodology to many other contexts
than just classification, see for example Meir and Rätsch (2003) or Bühlmann and Hothorn (2007)
for an overview. We should also emphasize that the gradient view has never promised to explain
everything about AdaBoost. Hence we are puzzled by the negative picture of this view painted in
the paper under discussion: it differs greatly for most part from our experience and understanding
of the statistical research on boosting. In particular, the MW paper seems to ignore simulation, real
data and theoretical evidence about overfitting and early stopping (cf. Bartlett and Traskin 2007
regarding asymptotic theory for AdaBoost). We will discuss these issues in more details below.

The relevance of MW’s counter-examples The evidences in MW are simulated “counter-
examples”. It is questionable that they are representative of situations encountered in practice.
More importantly, with one exception, evidence of differences shown contradicting the so-called
“statistical view” are 1 or 2 % in error rate. One wonders how important or meaningful these differ-
ences are in practice, even though they might be statistically significant. In any real world situation,
the model used is for sure wrong and the approximation error of the model to the real situation could
easily swallow these small differences in performance.

c©2008 Peter Bühlmann and Bin Yu.
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Furthermore, all the evaluation metrics in the MW paper are on statistical performance without
any consideration of the computation involved or the meaning of the model derived. For large data
problems, computation is an indispensable player and needs to be in the picture.

Additive decision boundary but non-additive logit-probabilities MW’s model (in Section 3) is
additive for the decision boundary. In terms of conditional probabilities p(x) = P[Y = 1|X = x] on
the logit-scale, logit(p(x)) is not an additive function in the (feature) components of x.

Since the population minimizer of (gradient) AdaBoost or also of LogitBoost equals

Fpop(x) = 0.5 · logit(p(x)) = 0.5 · log

(

p(x)
1− p(x)

)

,

a (boosting) estimate will be good if it involves an effective parameterization. We believe that this
is a central insight, which has been pioneered by Breiman (1998, 1999), Friedman et al. (2000) and
which has been further developed by more recent asymptotic results on boosting. In the MW model,
Fpop(x) is non-additive in x while boosting with stumps yields an estimate f̂ (x) which is additive in
x. We think that this is the main reason why some of the figures in MW lead to “contrary” evidence:
with our model, as illustrated below, the comparison of stumps versus larger trees for weak learners
is always in favor of stumps, that is, stumps yield better performance and larger trees are more
heavily overfitting which is the opposite finding to Figures 1, 2, and 11 in MW. MW’s model in
Section 4 involves only a single component of x and hence it is additive also on the logit-scale for
the probabilities. But our own model described below does not confirm MW’s statement that their
findings “do not depend on a particular simulation model”.

Other issues in MW concerning “contrary” evidence cannot be easily explained by the nature of
the model.

Figure 3 intends to show that LogitBoost is worse than AdaBoost. The MW finding might seem
relevant at 1000 iterations. But one doesn’t need to go that far for both methods by early stopping.
100 or so iterations seems enough for stumps and 400 for 8-node trees. The performance difference
is then less than 1%. Thus, having some computation savings in mind, early stopped LogitBoost is
preferable.

Figure 4 tries to make the point that early stopping could hurt to lose about 1% performance
when the total Bayes error is 20% and there is no structure to be learned. However, the 1000
iteration model undoubt-fully gives the wrong impression that something is there, while the early
stopped model gives the correct impression that not much is to be learned. Hence we think early
stopping is not hurting here. In addition, the starting value of boosting matters but this issue is
ignored in standard AdaBoost. A (gradient) boosting algorithm should be started with Finit = F0 ≡
0.5log(p̂/(1− p̂)) where p̂ is the empirical frequency of Y = 1, cf. Bühlmann and Hothorn (2007).
That is, boosting would (try to) improve upon the MLE from the “pure noise” model. Then, it is
expected - and we checked this using gradient LogitBoost on the unbalanced example corresponding
to Figure 4 in MW - that boosting will overfit from the beginning because the underlying structure
is pure noise. The same idea could be applied to AdaBoost as well: in contrast, standard AdaBoost
and MW start with the naive value Finit = F0 ≡ 0.

Shrinkage and small step-sizes: another dimension for regularization MW makes some claims
about additional shrinking using small step-sizes. As we understand Friedman (2001), he never in-
tended to say that a shrinkage factor would avoid overfitting. Instead, he argued that introducing
a shrinkage factor may improve the performance. Later, Efron et al. (2004) made the connection,
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in the setting of linear models, that boosting with an infinitesimally small shrinkage step is equiv-
alent to the Lasso under some conditions, and for general situations, Zhao and Yu (2007) showed
that appropriate backward steps need to be added to boosting to get Lasso. This intriguing con-
nection shows again that the shrinkage factor cannot eliminate overfitting. All what it achieves is
a different, usually more powerful solution path (with a new regularization dimension through the
step-size) than without shrinkage.

Our own findings with an additive model for logit-probabilities Now we devise our own sim-
ulation model to clarify some issues regarding overfitting, choice of weak learner and the estima-
tion of probabilities via boosting. Arguably, as emphasized above, examples should not be over-
interpreted. However, in view of many reported findings similar to what we show here, we feel that
our examples are rather “representative” and we are reporting major instead of slight differences.

Our model is in the spirit of MW but on the logit-scale:

logit(p(x)) = 8
5

∑
j=1

(x j −0.5)

Y ∼ Bernoulli(p(x)),

where p(x) = P[Y |X = x]. This model has Bayes error rate approximately equal to 0.1 (as in the MW
paper). We use this model as it is additive on the logit-scale for the probabilities since the population
minimizer of (gradient) AdaBoost and (gradient) LogitBoost is 0.5logit(p(x)). We use n = 100,
d = 20 (i.e., 15 ineffective features), x as in MW and we show the results for one representative
example with test set of size 2000. We skipped the repetition step over many realizations from
the model: again, we think that one realization is representative and it mimics somewhat better the
situation of analyzing one real data set.

We consider the misclassification test error, the surrogate loss test error (e.g., the test set average
of exp(−y f̂ ) for AdaBoost) and the absolute error for probabilities

1
2000

2000

∑
i=1

|p̂(Xi)− p(Xi)|,

where averaging is over the test set.
All our computations have been done with MW’s code for AdaBoost and the R-package mboost

from Bühlmann and Hothorn (2007): we used stumps and larger trees as weak learners. By the way,
MW’s code is not implementing 8 node trees but trees which have on average about 6-8 terminal
nodes (during the boosting iterations for this model). The results are displayed in Figures 1- 3. A
comparison is also made to the naive estimator with p̂(x) ≡ 0.5.

From this very limited experiment we find all facts that we view as important and typical for
boosting:

1. Overfitting can be a severe issue when considering the test surrogate loss or for estimating
conditional probabilities. In fact, overfitting is seen clearly for all three methods, that is gradi-
ent AdaBoost, LogitBoost and AdaBoost. In addition, the misclassification loss is much more
insensitive with respect to overfitting. This has been pointed out very clearly in Bühlmann
and Yu (2000) and in the rejoinder of Friedman et al. (2000).
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Figure 1: Gradient boosting with exponential loss (gradient AdaBoost). Left panel: Test set mis-
classification error; Middle panel: test set surrogate loss; Right panel: test set absolute
error for probabilities. Black: stumps; Red: larger tree; Blue dashed line: naive estimator.

0 200 400 600 800 1000

0.
15

0.
25

0.
35

0.
45

misclassification test error

iterations

0 200 400 600 800 1000

0.
6

0.
7

0.
8

0.
9

1.
0

surrogate test error

iterations

0 200 400 600 800 1000

0.
10

0.
20

0.
30

0.
40

absolute error for probabilities

iterations

Figure 2: Gradient boosting with Binomial log-likelihood (gradient LogitBoost). Left panel: Test
set misclassification error; Middle panel: test set surrogate loss; Right panel: test set
absolute error for probabilities. Black: stumps; Red: larger tree; Blue dashed line: naive
estimator.
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Figure 3: AdaBoost (as in MW). Left panel: Test set misclassification error; Middle panel: test set
surrogate loss; Right panel: test set absolute error for probabilities. Black: stumps; Red:
larger tree; Blue dashed line: naive estimator. More details are described in point 4 of our
summary of findings.

2. Estimating conditional probabilities is quite reasonable when stopping early: as in point 1
above, we see very clearly that early stopping is absolutely crucial for all three methods.
And LogitBoost with early stopping gives the best misclassification error and best probability
estimate among the three.

3. Regarding the weak learner, larger trees are worse than stumps for our model where the
conditional probability function is additive on the logit scale. The “statistical view” reveals the
model behind AdaBoost and LogitBoost: we have to consider the logit-scale (the MW model
is not additive in terms of the logit of conditional probabilities; note that for the decision
boundary the scale doesn’t matter while it does play a role for conditional probabilities).

Larger trees do overfit more heavily for probability estimation or with respect to surrogate
test loss. For non-additive models (for probabilities on the logit-scale), the overfitting will
kick in later for large trees as the the underlying model requires a more complex fit to balance
approximation (“bias”) and stochastic error (“variance”).

4. Somewhat more in line with the MW paper, the original AdaBoost has less a tendency to
overfit than the gradient boosting version. The reason why AdaBoost with the larger tree in
Figure 3 is staying constant after a while is due to the fact that the algorithm gets “stuck”:
it alternates back and forth and hence, the amount of overfitting is limited. At this stage of
alternating behavior the estimated conditional class probabilities are very much concentrated
around either zero or one (not shown but similar to Fig. 18 in MW), that is, overfitting has
kicked in severely. We are not convinced that this “getting stuck” property of the algorithm is
desirable, despite the consequence that a bound on overfitting is then obviously in action. The
surrogate loss function in AdaBoost explodes much earlier (w.r.t. boosting iterations) and one
needs to implement an upper bound in the program in order to avoid NA values (MW’s code
needs some small modification here!).
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Our general understanding about Boosting and it’s success Instead of going through all issues
in MW, we choose instead to repeat several general understandings about boosting which were
incorrectly questioned by the paper under discussion:

A. Overfitting does matter, and it is a function of the both the “bias” and “variance”. Large trees
do not overfit heavily in terms of classification error because:
(i) the misclassification loss is very insensitive to overfitting (see Bühlmann and Yu 2000 and
the rejoinder of Friedman et al. 2000);
(ii) larger trees are not as “complex” as the number of nodes in them indicates since they are
fitted in a greedy fashion (e.g., 8-node trees fitted by boosting are not 4 times as complex as
stumps with two nodes).

Most probably, the difference between plain vanilla AdaBoost and a gradient version of Ad-
aBoost (as in MW) will not play a crucial role in terms of overfitting behavior; but gradient-
based boosting seems somewhat more exposed to overfitting while AdaBoost can get stuck
which naturally limits the amount of overfitting (on a single data-set).

B. Early stopping, particularly for probability estimation, is very important (because of overfit-
ting) and brings computational savings. The supporting theory is given in, for example, Zhang
and Yu (2005), Bühlmann (2006), Bartlett and Traskin (2007) and Bissantz et al. (2007).

C. Estimating probability via boosting is often quite reasonable. It is essential though to tune the
boosting algorithm appropriately: a good choice is to do early stopping with respect to the
log-likelihood test score (see next point regarding surrogate and evaluating loss).

D. It is important to distinguish between surrogate loss (implementing loss) and loss (evaluating
loss) function. For example, there is no surprise that it can happen with AdaBoost that the
training misclassification error is zero while the test set misclassification still decreases.

The usage of boosting as we have advocated in our works, and this is very much in line with
Friedman et al. (2000) and their subsequent works, has proven to be very competitive and success-
ful in applications. Gao et al. (2006) describe a successful application of boosting to a language
transliteration problem. Lutz (2006) has won the performance prediction challenge of the world
congress in computational intelligence in 2006 (WCCI 2006): he was using early-stopped Logit-
Boost with stumps. Part of his success is probably due to careful choice of choosing the stopping
iteration: according to personal communication (he has been a former PhD student of the first au-
thor of this discussion), he stopped before reaching the minimal value of a cross-validation scheme.
In summary, he did not take any of the findings from MW into account (he didn’t know the paper
at that time, of course). Maybe his success is more convincing evidence that LogitBoost with (i) its
“natural” loss function for a binary classification problem, and using (ii) early stopping, (iii) simple
weak learners and (iv) a small step size (i.e., shrinkage factor) often works surprisingly well. Other
references about successful applications of gradient-based boosting can be found in Bühlmann and
Hothorn (2007) which includes the R package mboost (standing for model-based boosting) for nu-
merous application areas ranging from classification, regression, generalized regression to survival
analysis.
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1. Introduction

We thank the discussants for their comments on our paper. We also thank the editors for arranging
the discussions. Many interesting points have been raised by the discussants. We can not respond
to everything, but we do include a section addressing the main points of each discussant. Following
these, we provide a final section in which we give some general concluding remarks.

Many of the discussants comment on the overfitting of boosting. Different authors will have
different ideas of what the term overfitting means in the context of boosting, but for clarification
throughout this rejoinder we will define overfitting as a positive slope for a specified loss metric
as a function of the iterations. Specifically, the loss metric we focus on is misclassification error,
although we understand that some of the discussants are concerned about other loss functions which
quantify probability estimation accuracy rather than classification accuracy. The importance of
focusing on misclassification error is underscored in the discussion by Freund and Schapire who
remind us that AdaBoost is an algorithm for carrying out classification, not probability estimation.

2. Rejoinder for Kristin P. Bennett

Bennett provides a useful perspective on the situation by studying the convergence of boosting
algorithms from the optimization point of view. We agree that this aspect of the problem is too
often overlooked by researchers.

In studying the convergence of the algorithms, Bennett touches on a number of important con-
siderations. For example, she mentions cycling in the context of stumps and notes that the cycling
results in boosting using only a small number of unique trees. The number of unique trees is
rarely noted by researchers in empirical investigations. Bennett’s studies also lead her to concur
that boosting algorithms sometimes benefit from a bagging type of self-averaging during what she
calls the “overtraining” stage. (“Overtraining” as defined by Bennett should not be confused with
“overfitting” as we have defined it). Another point on which we strongly agree with Bennett is that
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boosting’s resistance to overfitting can occur for different reasons in different contexts. We believe
that this is one reason why researchers have difficulty in coming to agreement regarding various
explanations for boosting.

In addition to studying convergence, Bennett also looks at the margin of the classification rules.
We mentioned margin theory in our paper only briefly since our focus was on the statistical view
of boosting, and margin theory is generally separate from this view. It is our hope, however, that
by finding holes in the accepted statistical view we are encouraging researchers to approach the
problem from different perspectives to help explain the phenomena left unexplained by the statistical
view. Unfortunately, in this case Bennett points out that examination of the margin still fails to
explain the results of the experiment in Section 3.2.

We believe that studying boosting as an algorithm (rather than as a statistical model) in the way
Bennett has done can be quite helpful in understanding some of its remaining mysteries. We are
glad that our examples have inspired this type of investigation.

3. Rejoinder for Andreas Buja and Werner Stuetzle

One of the main points argued by Buja and Stuetzle is that most of the current literature on boosting
does not explain its variance reduction. They argue that a complete view of boosting should explain
both its ability to reduce bias and variance. We certainly agree with this point. In fact, some of the
examples in our paper such as those in Sections 3.4 and 4.4 illustrate this quite well. It is interesting
that Buja and Stuetzle site references from the early research on boosting which argue in this same
direction. It is a shame that more attention has not been given to boosting’s ability to reduce variance
in addition to bias in more recent research. We hope that our paper helps to rejuvenate research on
this aspect of boosting.

Buja and Stuetzle go on to argue that there is often a need for more than a black box classifier
which produces small misclassification error. Some applications call for interpretable and diagnos-
tic models and/or conditional class probability estimates. This is certainly true, and we agree that
research that extends boosting in these directions is quite welcome. However, in carrying out this
research it is important to be honest about situations in which the theory does not explain the per-
formance of traditional boosting algorithms for classification. One of our purposes in writing this
paper was to promote this honesty.

4. Rejoinder for Yoav Freund and Robert E. Schapire

Freund and Schapire focus their discussion on margin theory. It is quite interesting that margin the-
ory has not been embraced much at all by the statistical community. In fact, Freund and Schapire’s
paper “Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods” appeared
less than two years before the Friedman, Hastie and Tibshirani paper “Additive Logistic Regression:
A Statistical View Of Boosting” in the same journal (Annals of Statistics). Despite this, the statistics
community has largely ignored it in favor of the more familiar theory in the latter paper.

Freund and Schapire make a case for margin theory by arguing that this theory explains the
results of the experiment in Section 3.1 while obviously the statistical theory does not. However,
it should be noted that Bennett believes margin theory still does not explain the results for Section
3.2. Despite this, we still believe that margin theory is worth pursuing, especially given the large
number of inconsistencies between the statistical view and the reality of the simulations presented
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in our paper. As we have mentioned, we wrote the paper with the goal of promoting alternative
explanations for boosting other than the statistical view, which leaves much unexplained. Margin
theory is one such alternative explanation.

Additionally, Freund and Schapire make a number of other points on which we agree and wish to
underscore. They argue that in the statistics research on boosting too much importance is placed on
class probability estimation over class estimation, the use of stumps over larger trees and theoretical
questions of consistency and asymptotic variance over more relevant theoretical questions.

5. Rejoinder for Jerome Friedman, Trevor Hastie and Robert Tibshirani

Friedman, Hastie and Tibshirani argue that many of the ten statements made in our paper should not
be ascribed to the statistical view as laid out in Friedman et al. (2000). This is understandable, and
in the case of the similarity with nearest neighbor algorithms, for example, we have even noted this
in our original paper. However, other statements could be argued to follow fairly directly, whether
that is the intent of the authors or the fault of the reader. At the very least, we believe it is fair to
say the statistical view offers very little to help explain the non-intuitive nature of the results in our
paper.

Of all ten statements, the most direct relationship to the work of Friedman, Hastie and Tibshirani
is the idea in Sections 3.1 and 4.1 that stumps should be used for additive Bayes rules. We believe the
authors would agree that this is the strongest connection to their work, which is why they focused
the majority of their discussion on the experiment in Section 3.1. We also think it is refreshing
that they admit that they “are not sure why” the results of this experiment are such, but they do
produce some graphs to try to understand this better. Some of their graphs show the performance
of the probability estimates. It is argued in the discussion by Freund and Schapire that probability
estimation for boosting has very little to do with boosting’s classification performance. We agree
and for this reason we will not comment on the graphs for probability estimation. However, the
graphs showing misclassification error are of interest and we discuss these below.

Friedman, Hastie and Tibshirani’s Figure 1 shows that using shrinkage in our original experi-
ment causes stumps to “win handily”. We note, however, that the shrinkage causes overfitting, so it
also becomes necessary to stop the boosting process before 600 iterations to realize any advantage
over the 8-node trees. In practice the optimal stopping time is not known, and a fair comparison
would require incorporating the uncertainty in the estimation of this value.

The right panel of their Figure 2 shows that with a larger training sample size of n = 2000 the
overfitting caused by shrinkage is not as severe and the stumps maintain their advantage over the full
1000 iterations. However, by 1000 iterations the overfitting for the stumps has caused the gap with
the 8-node trees to close considerably and extrapolation would suggest that additional iterations
would result in this gap becoming even smaller or disappearing altogether. Meanwhile, the 8-node
trees again show no signs of overfitting.

We believe the more interesting research question with regard to Friedman, Hastie and Tibshi-
rani’s Figures 1 and 2 is not which algorithm performs best for a certain stopping time and sample
size, but rather why all algorithms display overfitting with regard to misclassification error except
the 8-node trees without shrinkage. The authors state that the larger trees can have a bagging effect,
and we certainly agree with this. We feel that understanding this effect better (as well as under-
standing why shrinkage can destroy this effect) is essential to gaining a better understanding of
boosting.
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The left panel of Friedman, Hastie and Tibshirani’s Figure 3 shows the effect of using Bernoulli
loss rather than exponential loss. With Bernoulli loss all algorithms show overfitting. This is another
curiosity not explained by the statistical view of boosting. In fact, the paper by Friedman et al.
(2000) seems to suggest the opposite should be expected.

In their final paragraph Friedman, Hastie and Tibshirani welcome “constructive counter-
arguments and alternative explanations for the success of boosting methods.” We will make a couple
of comments here in response to this. First, we believe that explanations such as the variance reduc-
ing bagging effect of boosting fall into this category. Our paper is certainly not the first to suggest
this notion, nor do we offer a theoretical explanation for the phenomenon, but our paper does stress
the importance of not overlooking this effect and thus we hope promotes constructive research on
this topic. Secondly, we feel that researchers currently embrace the statistical view too strongly,
and for this reason it is difficult for researchers to offer any alternative explanations without first
tearing down the current beliefs to some degree. We base this statement on our own experience. For
instance, an early version of Mease et al. (2007) was rejected for publication by a different outlet.
That paper offers a method for estimating probabilities using AdaBoost. Two of the three referees
rejected the paper arguing that in order to estimate probabilities using boosting it would be sufficient
to use LogitBoost in place of AdaBoost.

6. Rejoinder for P. J. Bickel and Ya’acov Ritov

Bickel and Ritov begin by identifying some points we made in our paper with which they agree.
The amount of agreement is substantial. The disagreement is focused largely on what is generally
regarded to be the most mysterious property of the AdaBoost algorithm: its ability to reduce the
(test) error rate long after the training data has been fit without error. Other classifiers such as CART,
neural nets, LDA and logistic regression perform optimally only with some sort of appropriate early
stopping to prevent over parameterization and overfitting of the data. It is understandable that Bickel
and Ritov’s negative remarks focus on this particular issue, as it is the feature of AdaBoost most at
odds with the statistical view.

The example provided by Bickel and Ritov is a model for which early stopping is essential to
achieve optimal classification performance. If AdaBoost is not stopped after 10 or 20 iterations
in their example, it will overfit the data and the generalization error will increase steadily. Their
example is not the first of its kind, but rather is typical of the simulations used to provide empirical
support for the statistical view. We addressed this point directly in our paper:

Such examples in which overtting is observed often deal with extremely low-dimensional
cases such as d = 2 or even d = 1. By experimenting with the simulation code pro-
vided along with this paper, one can confirm that in general AdaBoost is much more
likely to suffer from overtting in trivial low-dimensional examples as opposed to high-
dimensional situations where it is more often used.

The example provided by Bickel and Ritov is of this same spirit. It is a d = 2 dimensional
model that lives on d = 1 dimensional circular manifolds. Since it is well known that AdaBoost
will converge to the nearest neighbor classifier in one dimension, the results for this simulation are
not unexpected. Along these same lines, Bickel and Ritov provide further evidence for our claim
that overfitting is largely a symptom of trivial low dimensional examples by observing that when
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they add 8 additional dimensions with no signal the overfitting disappears. The authors refer to this
phenomenon as “surprising”, but we would argue that this should also be expected.

Bickel and Ritov note interesting changes when they discretize some of the predictors. We did
not discuss this in our paper, but the difference in behavior for discrete data and continuous data is
tremendous. We learned first hand about this in Mease et al. (2007) when we artificially introduced
discreteness by adding replicates. Because of this difference, we focused our current paper on the
case of continuous data. The case of discrete data relates more to what Friedman et al. (2000)
called the population version of boosting. The statistical view of boosting is largely based on this
population version of boosting, and thus the statistical view becomes more relevant for discrete data.

Bickel and Ritov also bring up probability estimation in their discussion. Probability estimation
is a popular topic among statisticians with regard to boosting, but again we will not go into any
detail here because we agree with Freund and Schapire that probability estimation is not the central
topic, but rather classification. It is curious, however, that Bickel and Ritov state that “most of the
error in the estimation” of the probabilities “comes from the easy to classify points”. The truth of
this statement depends on how one measures the error in probability estimates. For example, if one
computes the RMSE between the true probabilities and the estimated probabilities for the data in
Bickel and Ritov’s Figure 2(c), it can be observed that the RMSE is actually highest near the points
with a true probability of 1/2.

In conclusion, Bickel and Ritov have presented a couple of low dimensional examples in which
overfitting occurs unless early stopping is applied, while our paper presents higher dimensional ex-
amples where this is not the case. Since “everybody can produce examples” as Bickel and Ritov
state, one may wonder which set of examples is more useful to study for the purpose of understand-
ing boosting. We make the argument for our examples based on the fact that higher dimensional
examples are more common of a use case for boosting, and that our examples are more similar to
the many examples in which overfitting does not occur that first led practitioners to be attracted
to boosting originally. We feel that understanding such examples is most useful for understanding
boosting.

7. Rejoinder for Peter Buhlmann and Bin Yu

Of the six discussions, Buhlmann and Yu seem to be the least accepting of the empirical findings in
our paper. They state that the “main reason” why we obtain contrary evidence in many cases is the
functional form of the simulation model, and they propose considering a model that is additive on
the logit scale. The model they propose turns out to be a special case of our model in Section 5 with
k = 8. As stated in the paper, we had already considered the results for this specific model carefully
using various values of k, and those results were consistent qualitatively with the other simulations
in the paper. Thus, we were surprised to read that Buhlmann and Yu based any disagreement on
results from this model. On closer inspection, we learned that the discrepancy is most likely due
to sampling error. Buhlmann and Yu considered only a single repetition. The plot in the first
panel of their Figure 3 shows that for that single repetition, the 8-node trees begin to overfit near
400 iterations and the stumps have a lower misclassification error throughout the 1000 iterations.
However, if the results are averaged over many repetitions, one can learn that this behavior is not
true in aggregate. The first plot in Figure 1 in this rejoinder shows the misclassification error for
the Buhlmann and Yu model averaged over 100 repetitions. The stumps overfit while the 8-node
trees do not, and the 8-node trees achieve a lower misclassification error than the stumps at 1000
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iterations. Thus, the results for the Buhlmann and Yu model are consistent with the results for the
other simulations in our paper.

It should be noted that with the small sample size of n = 100 chosen by Buhlmann and Yu,
there is indeed often a problem with floating point overflow errors in R as they mention. They
dealt with this issue by making a modification to our code (which is an alternative explanation
for the discrepancies in the results). We avoided this issue when making the first plot in Figure
1 in this rejoinder by considering 100 randomly chosen repetitions for which the floating point
overflow error did not occur. For readers who are uncomfortable with this, there are a couple
of other ways of handling the problem. First, if a larger sample size is chosen then the problem
goes away completely. For example, the second plot in Figure 1 in this rejoinder considers our
original sample size of n = 200. For this sample size there were no problems with overflow errors
in 100 repetitions. Again, one can see that the 8-node trees lead to a lower misclassification error
at 1000 iterations and do not overfit, while the stumps do overfit. A second way of dealing with the
overflow errors for the sample size of n = 100 is to consider only the first 500 iterations. When we
ran only 500 iterations we did not observe any overflow errors in 100 repetitions, and the results
were consistent with those in the first plot in Figure 1 in this rejoinder.
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Figure 1: Comparison of AdaBoost with Stumps (Black, Thick) and 8-Node Trees (Red, Thin) for
the Buhlmann and Yu Model Using 100 Repetitions and Sample Sizes of n = 100 and
n = 200

Thus, concerning this simulation model proposed by Buhlmann and Yu, we conclude that the
results are largely consistent with the other results in our paper. However, Buhlmann and Yu also
discuss our Figures 3 and 4 independently of their simulation model. We address this below.

With regard to LogitBoost in our Figure 3, Buhlmann and Yu mention that with early stopping
LogitBoost does almost as well as AdaBoost. This assumes one can estimate the optimal stopping
time well, when in practice the stopping time estimation using LogitBoost can be difficult. In fact,
we mentioned in our paper that the authors of the particular LogitBoost code we used reported that
the stopping estimation was not effective for their purposes. Conversely AdaBoost performs fine in
our Figure 3 without early stopping. Also, considering that the creators of LogitBoost (Friedman,
Hastie and Tibshirani) mentioned in their discussion that they “have moved on” from LogitBoost,
there seems to be little left to be said in its defense.
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With regard to our Figure 4, Buhlmann and Yu seem unimpressed by this example which shows
how AdaBoost can reduce variance. In fact, despite its excellent performance they lament that the
classifier “gives the wrong impression.” This is an interesting statement and illustrates the desire on
the part of the statistical community to view AdaBoost as an interpretable model rather than a black
box classifier. Certainly a model can give one the wrong impression but a classifier arguably only
classifies well or does not classify well.

In conclusion, Buhlmann and Yu are considerably opposed to our most important claims: 1) that
large trees generally work better than stumps and 2) that overfitting is usually not a problem and
3) that early stopping initiatives are often not only unnecessary but also counterproductive. With
regard to classification we have shown that their simulation does not provide strong evidence to
support their case. However, when the goal is the more difficult problem of conditional probability
estimation, we will not offer any disagreement. We have not focused our analysis on this problem,
and we do not feel that boosting algorithms should be regarded as “state-of-the-art” probability
estimators, since they are usually outperformed by competitors like Random Forests or even logistic
regression. Rather, it is the statistical view that asserts that AdaBoost works, erroneously in our
opinion, because it estimates probabilities. Indeed, the efforts of Buhlmann and Yu to understand
and improve the performance of boosting for probability estimation is productive and worthwhile.
Where we part company is in name only. We question whether it is logical to continue to call the
algorithms boosting algorithms since there is a considerable disconnect from the original AdaBoost
algorithm for classification.

8. Conclusion

We believe the discussions provided by the six sets of authors have been extremely valuable. We
are encouraged by the amount of discussion of two main ideas which we feel will lead to a better
understanding of boosting.

First, the discussions have helped to clarify that (out of sample) minimization of the surrogate
loss function (and equivalently probability estimation) is often a very different problem from (out
of sample) minimization of misclassification error. The original AdaBoost algorithm was intended
for the latter but much research in the statistical community has focused on the former.

Secondly, with regard to minimization of misclassification error, the idea that boosting is re-
ducing variance has been acknowledged in the discussions. The extent to which this phenomenon
is essential for boosting’s success and of interest as a research topic can be debated, but we are
encouraged to see it acknowledged by such a prominent group of researchers.
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Abstract
Due to its wide applicability, the problem of semi-supervised classification is attracting increas-
ing attention in machine learning. Semi-Supervised Support Vector Machines (S3VMs) are based
on applying the margin maximization principle to both labeled and unlabeled examples. Unlike
SVMs, their formulation leads to a non-convex optimization problem. A suite of algorithms have
recently been proposed for solving S3VMs. This paper reviews key ideas in this literature. The
performance and behavior of various S3VM algorithms is studied together, under a common exper-
imental setting.
Keywords: semi-supervised learning, support vector machines, non-convex optimization, trans-
ductive learning

1. Introduction

In many applications of machine learning, abundant amounts of data can be cheaply and automati-
cally collected. However, manual labeling for the purposes of training learning algorithms is often
a slow, expensive, and error-prone process. The goal of semi-supervised learning is to employ the
large collection of unlabeled data jointly with a few labeled examples for improving generalization
performance.

The design of Support Vector Machines (SVMs) that can handle partially labeled data sets has
naturally been a vigorously active subject. A major body of work is based on the following idea:
solve the standard SVM problem while treating the unknown labels as additional optimization vari-
ables. By maximizing the margin in the presence of unlabeled data, one learns a decision bound-
ary that traverses through low data-density regions while respecting labels in the input space. In
other words, this approach implements the cluster assumption for semi-supervised learning—that is,

∗. Most of the work was done while at MPI for Biological Cybernetics,Tübingen, Germany.

c©2008 Olivier Chapelle, Vikas Sindhwani and Sathiya S. Keerthi.



CHAPELLE, SINDHWANI AND KEERTHI

Figure 1: Two moons. There are 2 labeled points (the triangle and the cross) and 100 unlabeled
points. The global optimum of S3VM correctly identifies the decision boundary (black
line).

points in a data cluster have similar labels (Seeger, 2006; Chapelle and Zien, 2005). Figure 1 illus-
trates a low-density decision surface implementing the cluster assumption on a toy two-dimensional
data set. This idea was first introduced by Vapnik and Sterin (1977) under the name Transduc-
tive SVM, but since it learns an inductive rule defined over the entire input space, we refer to this
approach as Semi-Supervised SVM (S3VM).

Since its first implementation by Joachims (1999), a wide spectrum of techniques have been
applied to solve the non-convex optimization problem associated with S3VMs, for example, local
combinatorial search (Joachims, 1999), gradient descent (Chapelle and Zien, 2005), continuation
techniques (Chapelle et al., 2006a), convex-concave procedures (Fung and Mangasarian, 2001;
Collobert et al., 2006), semi-definite programming (Bie and Cristianini, 2006; Xu et al., 2004),
non-differentiable methods (Astorino and Fuduli, 2007), deterministic annealing (Sindhwani et al.,
2006), and branch-and-bound algorithms (Bennett and Demiriz, 1998; Chapelle et al., 2006c).

While non-convexity is partly responsible for this diversity of methods, it is also a departure
from one of the nicest aspects of SVMs. Table 1 benchmarks the empirical performance of various
S3VM implementations against the globally optimal solution obtained by a Branch-and-Bound al-
gorithm. These empirical observations strengthen the conjecture that the performance variability of
S3VM implementations is closely tied to their susceptibility to sub-optimal local minima. Together
with several subtle implementation differences, this makes it challenging to cross-compare different
S3VM algorithms.

The aim of this paper is to provide a review of optimization techniques for semi-supervised
SVMs and to bring different implementations, and various aspects of their empirical performance,
under a common experimental setting.

In Section 2 we discuss the general formulation of S3VMs. In Sections 3 and 4 we provide
an overview of various methods. We present a detailed empirical study in Section 5 and present a
discussion on complexity in Section 6.
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∇S3VM cS3VM CCCP S3VMlight ∇DA Newton BB
Coil3 61.6 61 56.6 56.7 61.6 61.5 0
2moons 61 37.7 63.1 68.8 22.5 11 0

Table 1: Generalization performance (error rates) of different S3VM algorithms on two (small) data
sets Coil3 and 2moons. Branch and Bound (BB) yields the globally optimal solution
which gives perfect separation. BB can only be applied to small data sets due to its high
computational costs. See Section 5 for experimental details.

2. Semi-Supervised Support Vector Machines

We consider the problem of binary classification. The training set consists of l labeled examples
{(xi,yi)}

l
i=1, yi =±1, and u unlabeled examples {xi}

n
i=l+1, with n = l +u. In the linear S3VM clas-

sification setting, the following minimization problem is solved over both the hyperplane parameters
(w,b) and the label vector yu := [yl+1 . . .yn]

>,

min
(w,b), yu

I (w,b,yu) =
1
2
‖w‖2 +C

l

∑
i=1

V (yi,oi)+C?
n

∑
i=l+1

V (yi,oi) (1)

where oi = w>xi +b and V is a loss function. The Hinge loss is a popular choice for V ,

V (yi,oi) = max(0,1− yioi)
p . (2)

It is common to penalize the Hinge loss either linearly (p = 1) or quadratically (p = 2). In the rest
of the paper, we will consider p = 2. Non-linear decision boundaries can be constructed using the
kernel trick (Vapnik, 1998).

The first two terms in the objective function I in (1) define a standard SVM. The third term
incorporates unlabeled data. The loss over labeled and unlabeled examples is weighted by two
hyperparameters, C and C?, which reflect confidence in labels and in the cluster assumption respec-
tively. In general, C and C? need to be set at different values for optimal generalization performance.

The minimization problem (1) is solved under the following class balancing constraint,

1
u

n

∑
i=l+1

max(yi,0) = r or equivalently
1
u

n

∑
i=l+1

yi = 2r−1. (3)

This constraint helps in avoiding unbalanced solutions by enforcing that a certain user-specified
fraction, r, of the unlabeled data should be assigned to the positive class. It was introduced with
the first S3VM implementation (Joachims, 1999). Since the true class ratio is unknown for the
unlabeled data, r is estimated from the class ratio on the labeled set, or from prior knowledge about
the classification problem.

There are two broad strategies for minimizing I :

1. Combinatorial Optimization: For a given fixed yu, the optimization over (w,b) is a standard
SVM training.1 Let us define:

J (yu) = min
w,b

I (w,b,yu). (4)

1. The SVM training is slightly modified to take into account different values for C and C?.
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The goal now is to minimize J over a set of binary variables. This combinatorial view of the
optimization problem is adopted by Joachims (1999), Bie and Cristianini (2006), Xu et al.
(2004), Sindhwani et al. (2006), Bennett and Demiriz (1998), and Chapelle et al. (2006c).
There is no known algorithm that finds the global optimum efficiently. In Section 3 we review
this class of techniques.

2. Continuous Optimization: For a fixed (w,b), argminyV (y,o) = sign(o). Therefore, the
optimal yu is simply given by the signs of oi = w>xi +b. Eliminating yu in this manner gives
a continuous objective function over (w,b):

1
2
‖w‖2 +C

l

∑
i=1

max(0,1− yioi)
2 +C?

n

∑
i=l+1

max(0,1−|oi|)
2 . (5)

This form of the optimization problem illustrates how S3VMs implement the cluster assump-
tion. The first two terms in (5) correspond to a standard SVM. The last term (see Figure 2)
drives the decision boundary, that is, the zero output contour, away from unlabeled points.
From Figure 2, it is clear that the objective function is non-convex.

−1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Signed output
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ss

Figure 2: The effective loss max(0,1−|o|)2 is shown above as a function of o = (w>x + b), the
real-valued output at an unlabeled point x.

Note that in this form, the balance constraint becomes 1
u ∑n

i=l+1 sign(w>xi +b) = 2r−1 which
is non-linear in (w,b) and not straightforward to enforce. In Section 4 we review this class
of methods (Chapelle and Zien, 2005; Chapelle et al., 2006a; Fung and Mangasarian, 2001;
Collobert et al., 2006).

3. Combinatorial Optimization

We now discuss combinatorial techniques in which the labels yu of the unlabeled points are explicit
optimization variables. Many of the techniques discussed in this section call a standard (or slightly
modified) supervised SVM as a subroutine to perform the minimization over (w,b) for a fixed yu

(see 4).
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3.1 Branch-and-Bound (BB) for Global Optimization

The objective function (4) can be globally optimized using Branch-and-Bound techniques. This was
noted in the context of S3VM by Wapnik and Tscherwonenkis (1979) but no details were presented
there. In general, global optimization can be computationally very demanding. The technique
described in this section is impractical for large data sets. However, with effective heuristics it
can produce globally optimal solutions for small-sized problems. This is useful for benchmarking
practical S3VM implementations. Indeed, as Table 1 suggests, the exact solution can return excellent
generalization performance in situations where other implementations fail completely. Branch-and-
Bound was first applied by Bennett and Demiriz (1998) in association with integer programming for
solving linear S3VMs. More recently Chapelle et al. (2006c) presented a Branch-and-Bound (BB)
algorithm which we outline in this section. The main ideas are illustrated in Figure 3.

objective function

Initial labeled set

y =0

y =15

Increasing

Do not explore

Best solution so far

3

y =07 7y =05

3 y =1

y =1

Objective function on
currently labeled points

12.7

15.6

17.8

14.3

23.3

Figure 3: Branch-and-Bound Tree

Branch-and-Bound effectively performs an exhaustive search over yu, pruning large parts of
the solution space based on the following simple observation: suppose that a lower bound on
minyu∈A J (yu), for some subset A of candidate solutions, is greater than J (ỹu) for some ỹu, then
A can be safely discarded from exhaustive search. BB organizes subsets of solutions into a binary
tree (Figure 3) where nodes are associated with a fixed partial labeling of the unlabeled data set and
the two children correspond to the labeling of some new unlabeled point. Thus, the root corresponds
to the initial set of labeled examples and the leaves correspond to a complete labeling of the data.
Any node is then associated with the subset of candidate solutions that appear at the leaves of the
subtree rooted at that node (all possible ways of completing the labeling, given the partial labeling
at that node). This subset can potentially be pruned from the search by the Branch-and-Bound pro-
cedure if a lower bound over corresponding objective values turns out to be worse than an available
solution.

The effectiveness of BB depends on the following design issues: (1) the lower bound at a node
and (2) the sequence of unlabeled examples to branch on. For the lower bound, Chapelle et al.
(2006c) use the objective value of a standard SVM trained on the associated (extended) labeled
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set.2 As one goes down the tree, this objective value increases as additional loss terms are added,
and eventually equals J at the leaves. Note that once a node violates the balance constraint, it can
be immediately pruned by resetting its lower bound to ∞. Chapelle et al. (2006c) use a labeling-
confidence criterion to choose an unlabeled example and a label on which to branch. The tree is
explored on the fly by depth-first search. This confidence-based tree exploration is also intuitively
linked to Label Propagation methods (Zhu and Ghahramani, 2002) for graph-transduction. On many
small data sets (e.g., Table 1 data sets have up to 200 examples) BB is able to return the globally
optimal solution in reasonable amount of time. We point the reader to Chapelle et al. (2006c) for
pseudocode.

3.2 S3VMlight

S3VMlight (Joachims, 1999) refers to the first S3VM algorithm implemented in the popular SVMlight

software.3 It is based on local combinatorial search guided by a label switching procedure. The
vector yu is initialized as the labeling given by an SVM trained on the labeled set, thresholding
outputs so that u× r unlabeled examples are positive. Subsequent steps in the algorithm comprise
of switching labels of two examples in opposite classes, thus always maintaining the balance con-
straint. Consider an iteration of the algorithm where yu is the temporary labeling of the unlabeled
data and let (w̃, b̃) = argminw,b I (w,b,yu) and J (yu) = I (w̃, b̃,yu). Suppose a pair of unlabeled
examples indexed by (i, j) satisfies the following condition,4

yi = 1,y j =−1,V (1,oi)+V (−1,o j) > V (−1,oi)+V (1,o j) (6)

where oi,o j are outputs of (w̃, b̃) on the examples xi,x j. Then after switching labels for this
pair of examples and retraining, the objective function J can be easily shown to strictly decrease.
S3VMlight alternates between label-switching and retraining. Since the number of possible yu is
finite, the procedure is guaranteed to terminate in a finite number of steps at a local minima of (4),
that is, no further improvements are possible by interchanging two labels.

In an outer loop, S3VMlight gradually increases the value of C? from a small value to the final
value. Since C? controls the non-convex part of the objective function (4), this annealing loop can
be interpreted as implementing a “smoothing” heuristic as a means to protect the algorithm from
sub-optimal local minima. The pseudocode is provided in Algorithm 1.

3.3 Deterministic Annealing S3VM

Deterministic annealing (DA) is a global optimization heuristic that has been used to approach hard
combinatorial or non-convex problems. In the context of S3VMs (Sindhwani et al., 2006), it consists
of relaxing the discrete label variables yu to real-valued variables pu = (pl+1, . . . , pl+u) where pi is
interpreted as the probability that yi = 1. The following objective function is now considered:

I ′(w,b,pu) = E [I (w,b,yu)] (7)

=
1
2
‖w‖2 +C

l

∑
i=1

V (yi,oi)+C?
n

∑
i=l+1

piV (1,oi)+(1− pi)V (−1,oi)

2. Note that in this SVM training, the loss terms associated with (originally) labeled and (currently labeled) unlabeled
examples are weighted by C and C? respectively.

3. Note that in the S3VM literature, this particular implementation is often referred as “TSVM” or “Transductive SVM”.
4. This switching condition is slightly weaker than that proposed by Joachims (1999).
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Algorithm 1 S3VMlight

Train an SVM with the labeled points. oi← w ·xi +b.
Assign yi← 1 to the ur largest oi, -1 to the others.
C̃← 10−5C?

while C̃ < C? do
repeat

Minimize (1) with {yi} fixed and C? replaced by C̃.
if ∃(i, j) satisfying (6) then

Swap the labels yi and y j

end if
until No labels have been swapped
C̃←min(1.5C,C?)

end while

where E denotes expectation under the probabilities pu. Note that at optimality with respect to pu,
pi must concentrate all its mass on yi = sign(w>xi +b) which leads to the smaller of the two losses
V (1,oi) and V (−1,oi). Hence, this relaxation step does not lead to loss of optimality and is simply
a reformulation of the original objective in terms of continuous variables. In DA, an additional
entropy term −H(pu) is added to the objective,

I ′′(w,b,pu;T ) = I ′(w,b,pu)−T H(pu)

where H(pu) =−∑
i

pi log pi +(1− pi) log (1− pi),

and T ≥ 0 is usually referred to as ‘temperature’. Instead of (3), the following class balance con-
straint is used,

1
u

n

∑
i=l+1

pi = r.

Note that when T = 0, I ′′ reduces to (7) and the optimal pu identifies the optimal yu. When T = ∞,
I ′′ is dominated by the entropy term resulting in the maximum entropy solution (pi = r for all i). T
parameterizes a family of objective functions with increasing degrees of non-convexity (see Figure 4
and further discussion below).

At any T , let (wT ,bT ,puT ) = argmin(w,b),pu
I′′(w,b,pu;T ). This minimization can be performed

in different ways:

1. Alternating Minimization: We sketch here the procedure proposed by Sindhwani et al. (2006).
Keeping pu fixed, the minimization over (w,b) is standard SVM training—each unlabeled
example contributes two loss terms weighted by C?pi and C?(1− pi). Keeping (w,b) fixed,
I′′ is minimized subject to the balance constraint 1

u ∑n
i=l+1 pi = r using standard Lagrangian

techniques. This leads to:

pi =
1

1+ e(gi−ν)/T
(8)

where gi =C?[V (1,oi)−V (−1,oi)] and ν, the Lagrange multiplier associated with the balance
constraint, is obtained by solving the root finding problem that arises by plugging (8) back
in the balance constraint. The alternating optimization proceeds until pu stabilizes in a KL-
divergence sense. This method will be referred to as DA in the rest of the paper.
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2. Gradient Methods: An alternative possibility5 is to substitute the optimal pu (8) as a function
of (w,b) and obtain an objective function over (w,b) for which gradient techniques can be
used:

S(w,b) := min
pu

I ′′(w,b,pu;T ). (9)

S(w,b) can be minimized by conjugate gradient descent. The gradient of S is easy to com-
pute. Indeed, let us denote by p∗u(w,b) the argmin of (9). Then,

∂S
∂wi

=
∂I ′′

∂wi
+

n

∑
j=l+1

∂I ′′

∂p j

∣
∣
∣
∣
pu=p∗u(w,b)

︸ ︷︷ ︸

0

∂p∗j(w)

∂wi
=

∂I ′(w,b,p?
u(w))

∂wi
.

The partial derivative of I ′′ with respect to p j is 0 by the definition of p∗u(w,b). The argument
goes through even in the presence of the constraint 1

u ∑ pi = r; see Chapelle et al. (2002,
Lemma 2) for a formal proof. In other words, we can compute the gradient of (7) with respect
to w and consider pu fixed. The same holds for b. This method will be referred to as ∇DA in
the rest of the paper.

Figure 4 shows the effective loss terms in S associated with an unlabeled example for various
values of T . In an outer loop, starting from a high value, T is decreased geometrically by a con-
stant factor. The vector pu is then tightened back close to discrete values (its entropy falls below
some threshold), thus identifying a solution to the original problem. The pseudocode is provided in
Algorithm 2.

Table 2 compares the DA and ∇DA solutions as T → 0 at two different hyperparameter set-
tings.6 Because DA does alternate minimization and ∇DA does direct minimization, the solutions
returned by them can be quite different. Since ∇DA is faster than DA, we only report ∇DA results
in the Section 5.

Algorithm 2 DA/∇DA
Initialize pi = r i = l +1, . . . ,n
Set T = 10C?, R = 1.5, ε = 10−6.
while H(puT ) > ε do

Solve (wT ,bT ,puT ) = argmin(w,b),pu
I ′′(w,b,pu;T ) subject to: 1

u ∑n
i=l+1 pi = r

(find local minima starting from previous solution—alternating optimization or gradient meth-
ods can be used.)
T = T/R

end while
Return wT ,bT

3.4 Convex Relaxation

We follow Bie and Cristianini (2006) in this section, but outline the details for the squared Hinge
loss (see also Xu et al., 2004, for a similar derivation). Rewriting (1) as the familiar constrained

5. Strictly speaking, this approach is more along the lines of methods discussed in Section 4.
6. In Sindhwani et al. (2006), the best solution in the optimization path is returned.
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Figure 4: DA parameterizes a family of loss functions (over unlabeled examples) where the degree
of non-convexity is controlled by T . As T → 0, the original loss function (Figure 2) is
recovered.

DA ∇DA DA ∇DA
g50c 6.5 7 8.3 6.7
Text 13.6 5.7 6.2 6.5
Uspst 22.5 27.2 11 11
Isolet 38.3 39.8 28.6 26.9
Coil20 3 12.3 19.2 18.9
Coil3 49.1 61.6 60.3 60.6
2moons 36.8 22.5 62.1 30

Table 2: Generalization performance (error rates) of the two DA algorithms. DA is the original
algorithm (alternate optimization on pu and w). ∇DA is a direct gradient optimization on
(w,b), where pu should be considered as a function of (w,b). The first two columns report
results when C? = C and the last columns report results when C? = C/100. See Section 5
for more experimental details.

optimization problem of SVMs:

min
(w,b),yu

1
2
‖w‖2 +C

l

∑
i=1

ξ2
i +C?

n

∑
i=l+1

ξ2
i subject to: yioi ≥ 1−ξi i = 1, . . . ,n.

Consider the associated dual problem:

min
{yi}

max
α

n

∑
i=1

αi−
1
2

n

∑
i, j=1

αiα jyiy jKi j subject to:
n

∑
i=1

αiyi = 0, αi ≥ 0

where Ki j = x>i x j +Di j and D is a diagonal matrix given by Dii =
1

2C , i = 1, . . . , l and Dii =
1

2C? , i =
l +1, . . . ,n.
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Introducing an n×n matrix Γ, the optimization problem can be reformulated as:

min
Γ

max
α

n

∑
i=1

αi−
1
2

n

∑
i, j=1

αiα jΓi jKi j (10)

under constraints ∑αiyi = 0, αi ≥ 0, Γ = yy>. (11)

The objective function (10) is now convex since it is the pointwise supremum of linear functions.
However the constraint (11) is not. The idea of the relaxation is to replace the constraint Γ = yy>

by the following set of convex constraints:

Γ� 0,

Γi j = yiy j, 1≤ i, j ≤ l,

Γii = 1, l +1≤ i≤ n.

Though the original method of Bie and Cristianini (2006) does not incorporate the class bal-
ancing constraint (3), one can additionally enforce it as 1

u2 ∑n
i, j=l+1 Γi j = (2r− 1)2. Such a soft

constraint is also used in the continuous S3VM optimization methods of Section 4.
The convex problem above can be solved through Semi-Definite Programming. The labels of

the unlabeled points are estimated from Γ (through one of its columns or its largest eigenvector).
This method is very expensive and scales as O((l + u2)2(l + u)2.5). It is possible to try to

optimize a low rank version of Γ, but the training remains slow even in that case. We therefore do
not conduct empirical studies with this method.

4. Continuous Optimization

In this section we consider methods which do not include yu, the labels of unlabeled examples, as
optimization variables, but instead solve suitably modified versions of (5) by continuous optimiza-
tion techniques. We begin by discussing two issues that are common to these methods.

Balancing Constraint The balancing constraint (3) is relatively easy to enforce for all algorithms
presented in Section 3. It is more difficult for algorithms covered in this section. The proposed
workaround, first introduced by Chapelle and Zien (2005), is to instead enforce a linear constraint:

1
u

n

∑
i=l+1

w>xi +b = 2r̃−1, (12)

where r̃ = r. The above constraint may be viewed as a “relaxation” of (3). For a given r̃, an easy way
of enforcing (12) is to translate all the points such that the mean of the unlabeled points is the origin,
that is, ∑n

i=l+1 xi = 0. Then, by fixing b = 2r̃− 1, we have an unconstrained optimization problem
on w. We will assume that the xi are translated and b is fixed in this manner; so the discussion will
focus on unconstrained optimization procedures for the rest of this section. In addition to being easy
to implement, this linear constraint may also add some robustness against uncertainty about the true
unknown class ratio in the unlabeled set (see also Chen et al., 2003, for related discussion).

However, since (12) relaxes (3),7 the solutions found by algorithms in this section cannot strictly
be compared with those in Section 3. In order to admit comparisons (this is particularly important
for the empirical study in Section 5), we vary r̃ in an outer loop and do a dichotomic search on this
value such that (3) is satisfied.

7. Note that simply setting r̃ = r in (12) will not enforce (3) exactly.
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Primal Optimization For linear classification, the variables in w can be directly optimized. Non-
linear decision boundaries require the use of the “kernel trick” (Boser et al., 1992) using a kernel
function k(x,x′). While most of the methods of Section 3 can use a standard SVM solver as a sub-
routine, the methods of this section need to solve (5) with a non-convex loss function over unlabeled
examples. Therefore, they cannot directly use off-the-shelf dual-based SVM software. We use one
of the following primal methods to implement the techniques in this section.

Method 1 We find zi such that zi · z j = k(xi,x j). If B is a matrix having columns zi, this can
be written in matrix form as B>B = K. The Cholesky factor of K provides one such B. This
decomposition was used for ∇S3VM (Chapelle and Zien, 2005). Another possibility is to perform
the eigendecomposition of K as K =UΛU> and set B = Λ1/2U>. This latter case corresponds to the
kernel PCA map introduced by Schölkopf and Smola (2002, Section 14.2). Once the zi are found,
we can simply replace xi in (5) by zi and solve a linear classification problem. For more details, see
Chapelle et al. (2006a).

Method 2 We set w = ∑n
i=1 βiφ(xi) where φ denotes a higher dimensional feature map associated

with the nonlinear kernel. By the Representer theorem (Schölkopf and Smola, 2002), we indeed
know that the optimal solution has this form. Substituting this form in (5) and using the kernel
function yields an optimization problem with β as the variables.

Note that the centering mentioned above to implement (12) corresponds to using the modified
kernel Schölkopf and Smola (2002, page 431) defined by:

k(x,x′) := k(x,x′)−
1
u

n

∑
i=l+1

k(x,xi)−
1
u

n

∑
i=l+1

k(x′,xi)+
1
u2

n

∑
i, j=l+1

k(xi,x j). (13)

All the shifted kernel elements can be computed in O(n2) operations.
Finally, note that these methods are very general and can also be applied to algorithms of Sec-

tion 3.

4.1 Concave Convex Procedure (CCCP)

The CCCP method (Yuille and Rangarajan, 2003) has been applied to S3VMs by Fung and Man-
gasarian (2001), Collobert et al. (2006), and Wang et al. (2007). The description given here is close
to that in Collobert et al. (2006).

CCCP essentially decomposes a non-convex function f into a convex component fvex and a con-
cave component fcave. At each iteration, the concave part is replaced by a linear function (namely,
the tangential approximation at the current point) and the sum of this linear function and the convex
part is minimized to get the next iterate. The pseudocode is shown in Algorithm 3.

Algorithm 3 CCCP for minimizing f = fvex + fcave

Require: Starting point x0

t← 0
while ∇ f (xt) 6= 0 do

xt+1← argminx fvex(x)+∇ fcave(xt) ·x
t← t +1

end while
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In the case of S3VM, the first two terms in (5) are convex. Splitting the last non-convex term
corresponding to the unlabeled part as the sum of a convex and a concave function, we have:

max(0,1−|t|)2 = max(0,1−|t|)2 +2|t|
︸ ︷︷ ︸

convex

−2|t|
︸ ︷︷ ︸

concave

.

If an unlabeled point is currently classified positive, then at the next iteration, the effective (convex)
loss on this point will be

L̃(t) =







0 if t ≥ 1,
(1− t)2 if |t|< 1,
−4t if t ≤−1.

A corresponding L̃ can be defined for the case of an unlabeled point being classified negative. The
CCCP algorithm specialized to S3VMs is given in Algorithm 4. For optimization variables we
employ method 1 given at the beginning of this section.

Algorithm 4 CCCP for S3VMs
Starting point: Use the w obtained from the supervised SVM solution.
repeat

yi← sign(w ·xi +b), l +1≤ i≤ n.
(w,b) = argmin 1

2‖w‖
2 +C ∑l

i=1 max(0,1− yi(w ·xi +b))2 +C? ∑n
i=l+1 L̃(yi(w ·xi +b)).

until convergence of yi, l +1≤ i≤ n.

The CCCP method given in Collobert et al. (2006) does not use annealing, that is, increasing
C? slowly in steps as in S3VMlight to help reduce local minima problems. We have however found
performance improvements with annealing (see Table 12).

4.2 ∇S3VM

This method is proposed by Chapelle and Zien (2005) to minimize directly the objective function
(5) by gradient descent. For optimization variables, method 1 given at the beginning of this section
is used. Since the function t 7→max(0,1−|t|)2 is not differentiable, it is replaced by t 7→ exp(−st2),
with s = 5 (see Figure 5), to get the following smooth optimization problem:8

min
w,b

1
2
‖w‖2 +C

l

∑
i=1

max(0,1− yi(w ·xi +b))2 +C?
n

∑
i=l+1

exp(−s(w ·xi +b)2). (14)

As for S3VMlight , ∇S3VM performs annealing in an outer loop on C?. In the experiments we
followed the same annealing schedule as in Chapelle and Zien (2005): C? is increased in 10 steps
to its final value. More precisely, at the ith step, C? is set to 2i−10C?

f inal .

4.3 Continuation S3VM (cS3VM)

Closely related to ∇S3VM, Chapelle et al. (2006a) proposes a continuation method for minimizing
(14). Gradient descent is performed on the same objective function (with the same loss for the

8. Chapelle and Zien (2005) used s = 3 with hinge loss, p = 1 in (2), but s = 5 seems to be a better choice for quadratic
hinge loss (p = 2).
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Figure 5: The loss function on the unlabeled points t 7→ max(0,1−|t|)2 is replaced by a differen-
tiable approximation t 7→ exp(−5t2).

unlabeled points as shown in Figure 5), but the method used for annealing is different. Instead of
slowly increasing C?, it is kept fixed, and a continuation technique is used to transform the objective
function.

This kind of method belongs to the field of global optimization techniques (Wu, 1996). The idea
is similar to deterministic annealing (see Figure 6). A smoothed version of the objective function is
first minimized. With enough smoothing the global minimum can hopefully be easily found. Then
the smoothing is decreased in steps and the minimum is tracked—the solution found in one step
serves as the starting point for the next step. The method is continued until there is no smoothing
and so we get back to the solution of (14). Algorithm 5 gives an instantiation of the method in which
smoothing is achieved by convolution with a Gaussian, but other smoothing functions can also be
used.

Algorithm 5 Continuation method for solving minx f (x)

Require: Function f : R
d 7→ R, initial point x0 ∈ R

d

Require: Sequence γ0 > γ1 > .. .γp−1 > γp = 0.
Let fγ(x) = (πγ)−d/2 R

f (x− t)exp(−‖t‖2/γ)dt.
for i = 0 to p do

Starting from xi, find local minimizer xi+1 of fγi .
end for

It is not clear if one should only smooth the last non-convex term of (14) (the first two terms
are convex) or the whole objective as in Chapelle et al. (2006a). It is noteworthy that since the loss
for the unlabeled points is bounded, its convolution with a Gaussian of infinite width tends to the
zero function. In other words, with enough smoothing, the unlabeled part of the objective function
vanishes and the optimization is identical to a standard SVM.
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large γ

γ=0

smaller γ

Figure 6: Illustration of the continuation method: the original objective function in blue has two
local minima. By smoothing it, we find one global minimum (the red star on the green
curve). By reducing the smoothing, the minimum moves toward the global minimum of
the original function.

4.4 Newton S3VM

One difficulty with the methods described in sections 4.2 and 4.3 is that their complexity scales as
O(n3) because they employ an unlabeled loss function that does not have a linear part, for example,
see (14). Compared to a method like S3VMlight (see Section 3.2), which typically scales as O(n3

sv
+

n2), this can make a large difference in efficiency when nsv (the number of support vectors) is small.
In this subsection we propose a new loss function for unlabeled points and an associated Newton
method (along the lines of Chapelle, 2007) which brings down the O(n3) complexity of the ∇S3VM
method.

To make efficiency gains we employ method 2 described at the beginning of this section (note
that method 1 requires an O(n3) preprocessing step) and perform the minimization on β, where
w = ∑n

i=1 βiφ(xi). Note that the βi are expansion coefficients and not the Lagrange multipliers αi

in standard SVMs. Let us consider general loss functions, `L for the labeled points, `U for the
unlabeled points, replace w by β as the variables in (5), and get the following optimization problem,

min
β

1
2

β>Kβ+C
l

∑
i=1

`L(yi(K
>
i β+b))+C?

n

∑
i=l+1

`U(K>i β+b), (15)

where K is the kernel matrix with Ki j = k(xi,x j) and Ki is the ith column of K.9

As we will see in detail below, computational time is dictated by nsv, the number of points that
lie in the domain of the loss function where curvature is non-zero. With this motivation we choose
the differentiable loss function plotted in Figure 7 having several linear and flat parts which are
smoothly connected by small quadratic components.10

9. Note that, the kernel elements used here correspond to the modified kernel elements in (13).
10. The CCCP method of Collobert et al. (2006) also considers a loss function with a flat middle part, but it was not

motivated by computational gains.
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Figure 7: The piecewise quadratic loss function `U and its derivative (divided by 4; dashed line).

Consider the solution of (15) with this choice of loss function. The gradient of (15) is

Kg with gi =

{
βi +C`′L(yi(K>i β+b))yi 1≤ i≤ l
βi +C?`′U(K>i β+b) l +1≤ i≤ n

. (16)

Using a gradient based method like nonlinear conjugate gradient would sill be costly because each
evaluation of the gradient requires O(n2) effort. To improve the complexity when nsv is small, one
can use Newton’s method instead. Let us now go into these details.

The Hessian of (15) is

K +KDK, with D diagonal, Dii =

{
C`′′L(yi(K>i β+b)) 1≤ i≤ l
C?`′′U(K>i β+b) l +1≤ i≤ n

. (17)

The corresponding Newton update is β← β− (K + KDK)−1Kg. The advantage of Newton opti-
mization on this problem is that the step can be computed in O(n3

sv
+n2) time11 as we will see below

(see also Chapelle, 2007, for a similar derivation). The number of Newton steps required is usually
a small finite constant.

A problem in performing a Newton optimization with a non-convex optimization function is that
the step might not be a descent direction because the Hessian is not necessarily positive definite. To
avoid this problem, we use the Levenberg-Marquardt algorithm (Fletcher, 1987, Algorithm 5.2.7).
Roughly speaking, this algorithm is the same as Newton minimization, but a large enough ridge is
added to the Hessian such that it becomes positive definite. For computational reasons, instead of
adding a ridge to the Hessian, we will add a constant times K.

The goal is to choose a λ≥ 1 such that λK+KDK is positive definite and solve (λK+KDK)−1Kg
efficiently. For this purpose, we reorder the points such that Dii 6= 0, i ≤ nsv and Dii = 0, i > nsv.
Let A be the Cholesky decomposition of K:12 A is the upper triangular matrix satisfying A>A = K.
We suppose that K (and thus A) is invertible. Let us write

λK +KDK = A>(λIn +ADA>)A.

11. Consistent with the way we defined earlier, note here that nsv is the number of “support vectors” where a support
vector is defined as a point xi such that Dii 6= 0.

12. As we will see below, we will not need the Cholesky decomposition of K but only that of of Ksv.
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The structure of K and D implies that

λK +KDK � 0⇔ B := λInsv
+AsvDsvA>

sv
� 0,

where Asv is the Cholesky decomposition of Ksv and Ksv is the matrix formed using the first nsv

rows and columns of K. After some block matrix algebra, we can also get the step as

−(λK +KDK)−1Kg =

(
A−1

sv
B−1Asv(gsv−

1
λ DsvKsv,nsvgnsv)

1
λ gnsv

)

, (18)

where nsv refers to the indices of the ”non support vectors”, that is, {i, Dii = 0}. Computing this
direction takes O(n3

sv
+ n2) operations. The checking of the positive definiteness of B can be done

by doing Cholesky decomposition of Ksv. This decomposition can then be reused to solve the linear
system involving B. Full details, following the ideas in Fletcher (1987, Algorithm 5.2.7), are given
in Algorithm 6.

Algorithm 6 Levenberg-Marquardt method
β← 0.
λ← 1.
repeat

Compute g and D using (16) and (17)
sv←{i, Dii 6= 0} and nsv←{i, Dii = 0}.
Asv← Cholesky decomposition of Ksv.
Do the Cholesky decomposition of λInsv

+AsvDsvA>
sv

. If it fails, λ← 4λ and try again.
Compute the step s as given by (18).
ρ← Ω(β+s)−Ω(β)

1
2 s>(K+KDK)s+s>Kg

. % If the obj fun Ω were quadratic, ρ would be 1.

If ρ > 0, β← β+ s.
If ρ < 0.25, λ← 4λ.
If ρ > 0.75, λ←min(1, λ

2 ).
until Norm(g)≤ ε

As discussed above, the flat part in the loss (cf. Figure 7) provides computational value by
reducing nsv. But we feel it may also possibly help in leading to better local minimum. Take
for instance a Gaussian kernel and consider an unlabeled point far from the labeled points. At
the beginning of the optimization, the output on that point will be 0.13 This unlabeled point does
not contribute to pushing the decision boundary one way or the other. This seems like a satisfactory
behavior: it is better to wait to have more information before taking a decision on an unlabeled point
for which we are unsure. In Table 3 we compare the performance of the flat loss in Figure 7 and the
original quadratic loss used in (5). The flat loss yields a huge gain in performance on 2moons. On
the other data sets the two losses perform somewhat similarly. From a computational point of view,
the flat part in the loss can sometimes reduce the training time by a factor 10 as shown in Table 3.

5. Experiments

This section is organized around a set of empirical issues:

13. This is true only for balanced problems; otherwise, the output is b.
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Error rate Training time
Flat Quadratic Flat Quadratic

g50c 6.1 5.3 15 39
Text 5.4 7.7 2180 2165
Uspst 18.6 15.9 233 2152
Isolet 32.2 27.1 168 1253
Coil20 24.1 24.7 152 1244
Coil3 61.5 58.4 6 8
2moons 11 66.4 1.7 1.2

Table 3: Comparison of the Newton-S3VM method with two different losses: the one with a flat
part in the middle (see Figure 7) and the standard quadratic loss (Figure 2). Left: error rates
on the unlabeled set; right: average training time in seconds for one split and one binary
classifier training (with annealing and dichotomic search on the threshold as explained in
the experimental section). The implementations have not been optimized, so the training
times only constitute an estimate of the relative speeds.

1. While S3VMs have been very successful for text classification (Joachims, 1999), there are
many data sets where they do not return state-of-the-art empirical performance (Chapelle and
Zien, 2005). This performance variability is conjectured to be due to local minima problems.
In Section 5.3, we discuss the suitability of the S3VM objective function for semi-supervised
learning. In particular, we benchmark current S3VM implementations against the exact, glob-
ally optimal solution and we discuss whether one can expect significant improvements in
generalization performance by better approaching the global solution.

2. Several factors influence the performance and behavior of S3VM algorithms. In Section 5.4
we study their quality of optimization, generalization performance, sensitivity to hyperpa-
rameters, effect of annealing and the robustness to uncertainty in class ratio estimates.

3. S3VMs were originally motivated by Transductive learning, the problem of estimating labels
of unlabeled examples without necessarily producing a decision function over the entire input
space. However, S3VMs are also semi-supervised learners as they are able to handle unseen
test instances. In Section 5.5, we run S3VM algorithms in an inductive mode and analyze
performance differences between unlabeled and test examples.

4. There is empirical evidence that S3VMs exhibit poor performances on “manifold” type data
(where graph-based methods typically excel) or when the data has many distinct sub-clusters
(Chapelle and Zien, 2005). We explore the issue of data geometry and S3VM performance in
Section 5.6.

At the outset, we point out that this section does not provide an exhaustive cross-comparison
between algorithms. Such a comparison would require, say, cross-validation over multiple hyperpa-
rameters, randomization over choices of labels, dichotomic search to neutralize balance constraint
differences and handling different choices of annealing sequences. This is computationally quite
demanding and, more seriously, statistically brittle due to the lack of labeled validation data in
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semi-supervised tasks. Our goal, therefore, is not so much to establish a ranking of algorithms
reviewed in this paper, but rather to observe their behavior under a neutral experimental protocol.

We next describe the data sets used in our experiments. Note that our choice of data sets is
biased towards multi-class manifold-like problems which are particularly challenging for S3VMs.
Because of this choice, the experimental results do not show the typically large improvements one
might expect over standard SVMs. We caution the reader not to draw the conclusion that S3VM is a
weak algorithm in general, but that it often does not return state-of-the-art performance on problems
of this nature.

5.1 Data Sets

Most data sets come from Chapelle and Zien (2005). They are summarized in Table 4.

data set classes dims points labeled
g50c 2 50 550 50
Text 2 7511 1946 50
Uspst 10 256 2007 50
Isolet 9 617 1620 50
Coil20 20 1024 1440 40
Coil3 3 1024 216 6
2moons 2 102 200 2

Table 4: Basic properties of benchmark data sets.

The artificial data set g50c is inspired by Bengio and Grandvalet (2004): examples are generated
from two standard normal multi-variate Gaussians, the labels correspond to the Gaussians, and
the means are located in 50-dimensional space such that the Bayes error is 5%. The real world
data sets consist of two-class and multi-class problems. The Text data set is defined using the
classes mac and mswindows of the Newsgroup20 data set preprocessed as in Szummer and Jaakkola
(2001). The Uspst set contains the test data part of the well-known USPS data on handwritten
digit recognition. The Isolet is a subset of the ISOLET spoken letter database (Cole et al., 1990)
containing the speaker sets 1, 2 and 3 and 9 confusing letters {B,C,D,E,G,P,T,V,Z}. In Coil20
(respectively Coil3), the data are gray-scale images of 20 (respectively 3) different objects taken
from different angles, in steps of 5 degrees (Nene et al., 1996). The Coil3 data set has been used
first by Chapelle et al. (2006c) and is particularly difficult since the 3 classes are 3 cars which look
alike (see Figure 8).

Figure 8: The 3 cars from the COIL data set, subsampled to 32×32
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Finally, 2moons has been used extensively in the semi-supervised learning literature (see for
instance Zhu and Ghahramani, 2002, and Figure 1). For this data set, the labeled points are fixed
and new unlabeled points are randomly generated for each repetition of the experiment.

5.2 Experimental Setup

To minimize the influence of external factors, unless stated otherwise, the experiments were run in
the following normalized way:

Hyperparameters The Gaussian kernel k(x,y) = exp(−‖x− y‖2/2σ2) was used. For simplicity
the constant C? in (1) was set to C.14 The same hyperparameters C and σ have been used
for all the methods. They are found with cross-validation by training an inductive SVM on
the entire data set (the unlabeled points being assigned their real label). These values are
reported in Table 5. Even though it seems fair to compare the algorithms with the same
hyperparameters, there is a possibility that some regime of hyperparameter settings is more
suitable for a particular algorithm than for another. We discuss this issue in section 5.4.3.

Multi-class Data sets with more than two classes are learned with a one-versus-the-rest approach.
The reported objective value is the mean of the objective values of the different classifiers.
We also conducted experiments on pair-wise binary classification problems (cf. Section 5.6.1)
constructed from the multi-class data sets.

Objective value Even though the objective function that we want to minimize is (5), some algo-
rithms like ∇S3VM use another (differentiable) objective function. In order to compare the
objective values of the different algorithms, we do the following: after training, we predict the
labels of the unlabeled points and train a standard SVM on this augmented labeled set (with
p = 2 in (2) and C, C? weightings on originally labeled and unlabeled terms respectively).
The objective value reported is the one of this SVM.

Balancing constraint For the sake of simplicity, we set r in the balancing constraint (3) to the true
ratio of the positive points in the unlabeled set. This constraint is relatively easy to enforce
for all algorithms presented in Section 3. It is more difficult for algorithms in Section 4 and,
for them we used the dichotomic search described at the beginning of Section 4.

For a given data set, we randomly split the data into a labeled set and an unlabeled set. We refer
to the error rate on the unlabeled set as the unlabeled error to differentiate it from the test error
which would be computed on an unseen test set. Results are averaged over 10 random splits. The
difference between unlabeled and test performance is discussed in Section 5.5.

5.3 Suitability of the S3VM Objective Function

Table 1 shows unlabeled error rates for common S3VM implementations on two small data sets
Coil3 and 2moons. On these data sets, we are able to also run Branch-and-Bound and get the true
globally optimal solution. We see that the global optimum corresponds to a perfect solution, while
the local minima found by approximate implementations yield very poor accuracies. From these
results, it appears that the minimization of the S3VM objective function makes good sense, even

14. Alternatively, one could set C? = C l
u to have equal contribution from labeled and unlabeled points.
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σ C
g50c 38 19
Text 3.5 31
Uspst 7.4 38
Isolet 15 43
Coil20 2900 37
Coil3 3000 100
2moons 0.5 10

Table 5: Values of the hyperparameters used in the experiments.

though the performance of practical S3VM may not consistently reflect this due to local minima
problems.

Table 6 records the rank correlation between unlabeled error and objective function. The rank
correlation has been computed in the following way. For each split, we take 10 different solutions
and compute the associated unlabeled error and objective value. Ideally, we would like to sam-
ple these solutions at random around local minima. But since it is not obvious how to do such a
sampling, we simply took the solution given by the different S3VM algorithms as well as 4 “inter-
mediate” solutions obtained as follows. A standard SVM is trained on the original labeled set and
a fraction of the unlabeled set (with their true labels). The fraction was either 0, 10, 20 or 30%.
The labels of the remaining unlabeled points are assigned through a thresholding of the real value
outputs of the SVM. This threshold is such that the balancing constraint (3) is satisfied. Finally, an
SVM is retrained using the entire training set. By doing so, we “sample” solutions varying from an
inductive SVM trained on only the labeled set to the optimal solution. Table 6 provides evidence
that the unlabeled error is correlated with the objective values.

Coefficient
g50c 0.2
Text 0.67
Uspst 0.24
Isolet 0.23
Coil20 0.4
Coil3 0.17
2moons 0.45

Table 6: Kendall’s rank correlation (Abdi, 2006) between the unlabeled error and the objective
function averaged over the 10 splits (see text for details).

5.4 Behavior of S3VM Algorithms

Several factors influence the performance and behavior of S3VM algorithms. We study their quality
of optimization, generalization performance, sensitivity to hyperparameters, effect of annealing and
the robustness to uncertainty in class ratio estimates.
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5.4.1 QUALITY OF MINIMIZATION

In Table 7 we compare different algorithms in terms of minimization of the objective function.
∇S3VM and cS3VM appear clearly to be the methods achieving the lowest objective values. How-
ever, as we will see in the next section, this does not necessarily translate into lower unlabeled
errors.

∇S3VM cS3VM CCCP S3VMlight ∇DA Newton
1.7 1.9 4.5 4.9 4.3 3.7

Table 7: For each data set and each split, the algorithms were ranked according to the objective
function value they attained. This table shows the average ranks. These ranks are only
about objective function values; error rates are discussed below.

5.4.2 QUALITY OF GENERALIZATION

Table 8 reports the unlabeled errors of the different algorithms on our benchmark data sets. A first
observation is that most algorithms perform quite well on g50c and Text. However, the unlabeled
errors on the other data sets, Uspst, Isolet, Coil20, Coil3, 2moons (see also Table 1) are poor and
sometimes even worse than a standard SVM. As pointed out earlier, these data sets are particularly
challenging for S3VMs. Moreover, the honors are divided and no algorithm clearly outperforms the
others. We therefore cannot give a recommendation on which one to use.

∇S3VM cS3VM CCCP S3VMlight ∇DA Newton SVM SVM-5cv

g50c 6.7 6.4 6.3 6.2 7 6.1 8.2 4.9
Text 5.1 5.3 8.3 8.1 5.7 5.4 14.8 2.8
Uspst 15.6 36.2 16.4 15.5 27.2 18.6 20.7 3.9
Isolet 25.8 59.8 26.7 30 39.8 32.2 32.7 6.4
Coil20 25.6 30.7 26.6 25.3 12.3 24.1 24.1 0

Table 8: Unlabeled errors of the different S3VMs implementations. The next to the last column is an
SVM trained only on the labeled data, while the last column reports 5 fold cross-validation
results of an SVM trained on the whole data set using the labels of the unlabeled points.
The values in these two columns can be taken as upper and lower bounds on the best
achievable error rates. See Table 1 for results on Coil3 and 2moons.

Note that these results may differ from the ones previously reported by Chapelle and Zien
(2005), Collobert et al. (2006), Sindhwani et al. (2006), and Chapelle et al. (2006a) on the same
data sets. Most of this difference comes from the choice of the hyperparameters. Indeed, as ex-
plained below, several algorithms are rather sensitive to the choice of hyperparameters. The exact
experimental setting is also different. In results reported elsewhere, r is often estimated from the la-
beled set and the constraint is often a “soft” one. In Table 8, the hard balance constraint is enforced
for all methods assuming r to be known exactly. Finally, in Chapelle et al. (2006a), only pair-wise
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binary problems were considered for the cS3VM algorithm, while results in Table 8 for multiclass
data sets are obtained under a one-versus-the-rest setup.

5.4.3 SENSITIVITY TO HYPERPARAMETERS

As mentioned before, it is possible that different algorithms excel in different hyperparameter
regimes. This is more likely to happen due to better local minima at different hyperparameters
as opposed to a better global solution (in terms of error rates).

Due to computational constraints, instead of setting the three hyperparameters (C,C? and the
Gaussian kernel width, σ) by cross-validation for each of the methods, we explored the influence
of these hyperparameters on one split of the data. More specifically, Table 9 shows the relative
improvement (in %) that one can gain by selecting other hyperparameters. These numbers may
be seen as a measure of the robustness of a method. Note that these results have to be interpreted
carefully because they are only on one split: for instance, it is possible that“by chance” the method
did not get stuck in a bad local minimum for one of the hyperparameter settings, leading to a larger
number in Table 9.

∇S3VM cS3VM CCCP S3VMlight ∇DA Newton
g50c 31.2 31.2 27.8 13.3 35 7.7
Text 22 7.1 29.2 19.9 34.4 1.1
Uspst 12 70.2 19.2 0 41 15.6
Isolet 7.6 57.6 8 0 4.9 2.6
Coil20 46.4 42.7 27.9 5.8 5.7 16.9
Coil3 32.6 39.2 15.3 20.2 5.8 24.6
2moons 45.6 50 54.1 13.5 23.5 0
Mean 28.2 42.6 25.9 10.4 21.5 9.8

Table 9: On the 1st split of each data set, 27 set of hyperparameters (σ′,C′,C?′) have been tested
from σ′ ∈ { 1

2 σ,σ,2σ},C′ ∈ { 1
10C,C,10C},C?′ ∈ { 1

100C′, 1
10C′,C′}. The table shows the

relative improvement (in %) by taking the best hyperparameters over default ones.

By measuring the variation of the unlabeled errors with respect to the choice of the hyperpa-
rameters, Table 10 records an indication of the sensitivity of the method with respect to that choice.
From this point of view S3VMlight appears to be the most stable algorithm.

∇S3VM cS3VM CCCP S3VMlight ∇DA Newton
6.8 8.5 6.5 2.7 8.4 8.7

Table 10: The variance of the unlabeled errors have been averaged over the 27 possible hyperpa-
rameters (cf. Table 9). The table shows those variance averaged over the data sets. A
small number shows that a given method is not too sensitive to the choice of the hyper-
parameters.
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Finally, from the experiments in Table 9, we observed that in some cases a smaller value of C?

is helpful. We have thus rerun the algorithms on all the splits with C? divided by 100: see Table 11.
The overall performance does not necessarily improve, but the very poor results become better (see
for instance Uspst,Isolet,Coil20 for cS3VM).

∇S3VM cS3VM CCCP S3VMlight ∇DA Newton
g50c 8.3 8.3 8.5 8.4 6.7 7.5
Text 5.7 5.8 8.5 8.1 6.5 14.5
Uspst 14.1 15.6 14.9 14.5 11 19.2
Isolet 27.8 28.5 25.3 29.1 26.9 32.1
Coil20 23.9 23.6 23.6 21.8 18.9 24.6
Coil3 60.8 55.0 56.3 59.2 60.6 60.5
2moons 65.0 49.8 66.3 68.7 30 33.5

Table 11: Same as Table 8, but with C? divided by 100.

5.4.4 EFFECT OF ANNEALING SCHEDULE

All the algorithms described in this paper use some sort of annealing (e.g., gradually decreasing
T in DA or increasing C? in S3VMlight in an outer loop) where the role of the unlabeled points is
progressively increased. The three ingredients to fix are:

1. The starting point which is usually chosen in such a way that the unlabeled points have very
little influence and the problem is thus almost convex.

2. The stopping criterion which should be such that the annealed objective function and the
original objective function are very close.

3. The number of steps. Ideally, one would like to have as many steps as possible, but for
computational reasons the number of steps is limited.

In the experimental results presented in Figure 9, we only varied the number of steps. The start-
ing and final values are as indicated in the description of the algorithms. The original CCCP paper
did not have annealing and we used the same scheme as for ∇S3VM: C? is increased exponentially
from 10−3C to C. For DA and ∇DA, the final temperature is fixed at a small constant and the de-
crease rate R is such that we have the desired number of steps. For all algorithms, one step means
that there is no annealing.

One has to be cautious when drawing conclusion from this plot. Indeed, the results are only for
one data set, one split and fixed hyperparameters. The goal is to get an idea of whether the annealing
for a given method is useful; and if so, how many steps should be taken. From this plot, it seems
that:

• All methods, except Newton, seem to benefit from annealing. However, on some other data
sets, annealing improved the performances of Newton’s method (results not shown).

• Most methods do not require a lot of steps. More precisely, we have noticed that the number
of steps does not matter as much as the minimization around a “critical” value of the annealing
parameter; if that point is missed, then the results can be bad.
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Figure 9: Influence of the number of annealing steps on the first split of Text.

No annealing Annealing
g50c 7.9 6.3
Text 14.7 8.3
Uspst 21.3 16.4
Isolet 32.4 26.7
Coil20 26.1 26.6
Coil3 49.3 56.6
2moons 67.1 63.1

Table 12: Performance of CCCP with and without annealing. The annealing schedule is the same
as the one used for ∇S3VM and Newton: C? is increased in 10 steps from its final value
divided by 1000.

• DA seems the method which relies the most on a relatively slow annealing schedule, while
∇DA can have a faster annealing schedule.

• CCCP was originally proposed without annealing, but it seems that its performance can be
improved by annealing. To confirm this fact, Table 12 compares the results of CCCP with
and without annealing on the 10 splits of all the data sets.

The results provided in Table 8 are with annealing for all methods.

5.4.5 ROBUSTNESS TO CLASS RATIO ESTIMATE

Several results reported in the previous tables are better than, for instance, the results in Chapelle
and Zien (2005); Chapelle et al. (2006a). This is because (a) we took into account the knowledge
of the true class ratio among the unlabeled examples, and (b) we enforced the constraint (3) exactly
(with the dichotomic search described at the beginning of Section 4).
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Of course, in practice the true number of positive points is unknown. One can estimate it from
the labeled points as:

r =
1
2

(

1
l

l

∑
i=1

yi +1

)

.

Table 13 presents the generalization performances in this more realistic context where class ratios
are estimated as above and original soft balance constraint is used where applicable (recall the
discussion in Section 4).

∇S3VM cS3VM CCCP S3VMlight ∇DA Newton SVM
g50c 7.2 6.6 6.7 7.5 8.4 5.8 9.1
Text 6.8 5 12.8 9.2 8.1 6.1 23.1
Uspst 24.1 41.5 24.3 24.4 29.8 25 24.2
Isolet 48.4 58.3 43.8 36 46 45.5 38.4
Coil20 35.4 51.5 34.5 25.3 12.3 25.4 26.2
Coil3 64.4 59.7 59.4 56.7 61.7 62.9 51.8
2moons 62.2 33.7 55.6 68.8 22.5 8.9 44.4

Table 13: Constant r estimated from the labeled set. For methods of Section 4, the original con-
straint (12) is used; there is no dichotomic search (see beginning of Section 4).

5.5 Transductive Versus Semi-supervised Learning

S3VMs were introduced as Transductive SVMs, originally designed for the task of directly estimat-
ing labels of unlabeled points. However S3VMs provide a decision boundary in the entire input
space, and so they can provide labels of unseen test points as well. For this reason, we believe
that S3VMs are inductive semi-supervised methods and not strictly transductive. A discussion on
the differences between semi-supervised learning and transduction can be found in Chapelle et al.
(2006b, Chapter 25).15

We expect S3VMs to perform equally well on the unlabeled set and on an unseen test set. To
test this hypothesis, we took out 25% of the unlabeled set that we used as a unseen test set. We
performed 420 experiments (6 algorithms, 7 data sets and 10 splits). Based on these 420 pairs of
error rates, we did not observe a significant difference at the 5% confidence level. Also, for each of
the 7 data sets (resp 6 algorithms), there was no statistical significant differences in the 60 (resp 70)
pairs of error rates.

Similar experiments were performed by Collobert et al. (2006, Section 6.2). Based on 10 splits,
the error rate was found to be better on the unlabeled set than on the test set. The authors made
the hypothesis that when the test and training data are not identically distributed, transduction can
be helpful. Indeed, because of small sample effect, the unlabeled and test set could appear as not
coming from the same distribution (this is even more likely in high dimension).

We considered the g50c data set and biased the split between unlabeled and test set such that
there is an angle between the principal directions of the two sets. Figure 10 shows a correlation

15. Paper is available at http://www.kyb.tuebingen.mpg.de/ssl-book/discussion.pdf.
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Figure 10: The test set of g50c has been chosen with a bias such that there is an angle between
the principal directions of the unlabeled and test sets. The figure shows the difference
in error rates (negative means better error rate on the unlabeled set) as a function of the
angle for different random (biased) splits.

between the difference in error rates and this angle: the error on the test set deteriorates as the angle
increases. This confirms the hypothesis stated above.

5.6 Role of Data Geometry

There is empirical evidence that S3VMs exhibit poor performances on “manifold” type data or when
the data has many distinct sub-clusters (Chapelle and Zien, 2005). We now explore this issue and
propose an hybrid method combining the S3VM and LapSVM (Sindhwani et al., 2005).

5.6.1 EFFECT OF MULTIPLE CLUSTERS

In Chapelle et al. (2006a), cS3VM exhibited poor performance in multiclass problems with one-
versus-the-rest training, but worked well on pairwise binary problems that were constructed (using
all the labels) from the same multiclass data sets. Note that in practice it is not possible to do
semi-supervised one-vs-one multiclass training because the labels of the unlabeled points are truly
unknown.

We compared different algorithms on pairwise binary classification tasks for all the multiclass
problems. Results are shown in the first 4 rows of Table 14. Except on Coil3, most S3VM algo-
rithms show improved performances. There are two candidate explanations for this behavior:

1. The binary classification problems in one-versus-the-rest are unbalanced and this creates dif-
ficulties for S3VMs.
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∇S3VM cS3VM CCCP S3VMlight ∇DA Newton SVM SVM-5cv
Uspst 1.9 2 2.8 2.9 4 1.9 5.3 0.9
Isolet 4.8 11.8 5.5 5.7 5 6.3 7.3 1.2
Coil20 2.8 3.9 2.9 3.1 2.7 2.4 3.3 0
Coil3 45.8 48.7 40.3 41.3 44.5 47.2 36.7 0
Uspst2 15.6 25.7 16.6 16.1 20 16 17.7 3

Table 14: Experiments in a pairwise binary setting. Uspst2 is the same set as Uspst but where the
task is to classify digits 0 to 4 versus 5 to 9.

2. In a one-versus-the-rest approach, the negative class is the concatenation of several classes
and is thus made up of several clusters. This might accentuate the local minimum problem of
S3VMs.

To test these hypothesis, we created a binary version of Uspst by classifying digits 0 to 4 versus 5
to 9: this data set (Uspst2 in Table 14) is balanced but each class is made of several clusters. The
fact that the S3VMs algorithms were not able to perform significantly better than the SVM baseline
tends to accredit the second hypothesis: S3VM results deteriorate when there are several clusters
per class.

5.6.2 HYBRID S3VM-GRAPH METHODS

Recall that the results in Table 8 boost the empirical evidence that S3VMs do not return state-
of-the-art performance on “manifold”-like data sets. On these data sets the cluster assumption
is presumably satisfied under an intrinsic “geodesic” distance rather than the original euclidean
distance between data points. It is reasonable, therefore, to attempt to combine S3VMs with choices
of kernels that conform to the particular geometry of the data.

LapSVM (Sindhwani et al., 2005) is a popular semi-supervised algorithm in which a kernel
function is constructed from the Laplacian of an adjacency graph that models the data geometry;
this kernel is then used with a standard SVM. This procedure was shown to be very effective on data
sets with a manifold structure. In Table 15 we report results with a hybrid S3VM-graph method: the
kernel is constructed as in LapSVM,16 but then it is plugged into S3VMlight . Such a hybrid was first
described in Chapelle et al. (2006a) where cS3VM was combined with LapSVM.

The results of this hybrid method is very satisfactory, often outperforming both LapSVM and
S3VMlight .

Such a method complements the strengths of both S3VM and Graph-based approaches: the
S3VM adds robustness to the construction of the graph, while the graph enforces the right cluster
structure to alleviate local minima problems in S3VMs. We believe that this kind of technique is
probably one of the most robust and powerful way for a semi-supervised learning problem.

16. Hyperparameters were chosen based on experiments in Sindhwani et al. (2005) without any extensive tuning.
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Exact r (Table 8 setting) Estimated r (Table 13 setting)
LapSVM S3VMlight LapSVM-S3VMlight S3VMlight LapSVM-S3VMlight

g50c 6.4 6.2 4.6 7.5 6.1
Text 11 8.1 8.3 9.2 9.0
Uspst 11.4 15.5 8.8 24.4 19.6
Isolet 41.2 30.0 46.5 36.0 49.0
Coil20 11.9 25.3 12.5 25.3 12.5
Coil3 20.6 56.7 17.9 56.7 17.9
2moons 7.8 68.8 5.1 68.8 5.1

Table 15: Comparison of a Graph-based method, LapSVM (Sindhwani et al., 2005), with
S3VMlightand hybrid LapSVM-S3VMlight results under the settings of Table 8 and 13.

6. A Note on Computational Complexity

Even though a detailed comparison of the computational complexity of the different algorithms is
out of the scope of this paper, we can still give the following rough picture.

First, all methods use annealing and so the complexity depends on the number of annealing
steps. This dependency is probably sublinear because when the number of steps is large, retraining
after each (small) step is less costly. We can divide the methods in two categories:

1. Methods whose complexity is of the same order as that of a standard SVM trained with
the predicted labels of the unlabeled points, which is O(n3

sv
+n2) where nsv is the number of

points which are in a non-linear part of the loss function. This is clearly the case for S3VMlight

since it relies on an SVM optimization. Note that the training time of this algorithm can be
sped up by swapping labels in “batch” rather than one by one (Sindhwani and Keerthi, 2006).
CCCP is also in this category as the optimization problem it has to solve at each step is
very close to an SVM. Finally, even if the Newton method is not directly solved via SVM, its
complexity is also O(n3

sv
+n2) and we include it in this category. For both CCCP and Newton,

the possibility of having a flat part in the middle of the loss function can reduce nsv and thus
the complexity. We have indeed observed with the Newton method that the convergence can
be an order of magnitude faster when the loss includes this flat part in the middle (see Table 3).

2. Gradient based methods, namely ∇S3VM, cS3VM and ∇DA do not have any linear part in
the objective function and so they scale as O(n3). Note that it is possible to devise a gradient
based method and a loss function that contains some linear parts. The complexity of such an
algorithm would be O(nn2

sv
+n2).

The original DA algorithm alternates between optimization of w and pu and can be understood
as block coordinate optimization. We found that it was significantly slower than the other algo-
rithms; its direct gradient-based optimization counterpart, ∇DA, is usually much faster.

Finally, note that even if the algorithms of the second category have a complexity of O(n3), one
can find an approximate solution by reducing the dimensionality of the problem from n to m and
get a complexity of O(nm2). For instance, Chapelle et al. (2006a) reports a speed-up of 100 times
without loss in accuracy for cS3VM.
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Ultimately a semi-supervised learning algorithm should be able to handle data sets with millions
of unlabeled points. The best way of scaling up S3VMs is still an open question and should be the
topic of future research.

7. Conclusion

When practical S3VM implementations fail to give good results on a problem, one might suspect
that either: (a) the cluster assumption does not hold; or, (b) the cluster assumption holds but lo-
cal minima problems are severe; or, (c) the S3VM objective function is unable to implement the
cluster assumption. We began our empirical study by benchmarking current S3VM implementa-
tions against a global optimizer. Our results (see Section 5.3) narrowed the cause for performance
loss down to suboptimal local minima, and established a correlation between generalization perfor-
mance and the S3VM objective function. For problems where the cluster assumption is true, we
expect the S3VM objective to indeed be an appropriate quantity to minimize. Due to non-convexity
however, this minimization is not completely straightforward—an assortment of optimization tech-
niques have been brought to bear on this problem with varying degrees of success. In this paper,
we have reviewed these techniques and studied them empirically, taking several subtle differences
into account. In a neutral experimental protocol, we were unable to identify any single technique
as being consistently superior to another in terms of generalization performance. We believe better
methods are still needed to optimize the S3VM objective function.

While S3VMs return good performance on textual data sets, they are currently not competitive
with graph-methods on domains such as image classification often characterized by multiple, highly
non-Gaussian clusters. A particularly promising class of techniques (see Section 5.6.2) is based on
combining S3VMs with graph methods.

S3VMs have been sparingly explored in domains other than text and image classification. New
application domains may provide additional insight into the behavior of S3VM methods while en-
hancing their general appeal for semi-supervised learning. Another major theme is the extension of
S3VMs for structured output problems, possibly building on one of several recent lines of work for
handling complex supervised learning tasks. A first step towards such an extension would require a
clear statement of the cluster assumption applicable to the semi-supervised structured output setting.
These are fertile areas for future research.
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Abstract

When monitoring spatial phenomena, which can often be modeled as Gaussian processes (GPs),
choosing sensor locations is a fundamental task. There are several common strategies to address this
task, for example, geometry or disk models, placing sensors at the points of highest entropy (vari-
ance) in the GP model, and A-, D-, or E-optimal design. In this paper, we tackle the combinatorial
optimization problem of maximizing the mutual information between the chosen locations and the
locations which are not selected. We prove that the problem of finding the configuration that max-
imizes mutual information is NP-complete. To address this issue, we describe a polynomial-time
approximation that is within (1− 1/e) of the optimum by exploiting the submodularity of mutual
information. We also show how submodularity can be used to obtain online bounds, and design
branch and bound search procedures. We then extend our algorithm to exploit lazy evaluations
and local structure in the GP, yielding significant speedups. We also extend our approach to find
placements which are robust against node failures and uncertainties in the model. These extensions
are again associated with rigorous theoretical approximation guarantees, exploiting the submodu-
larity of the objective function. We demonstrate the advantages of our approach towards optimizing
mutual information in a very extensive empirical study on two real-world data sets.

Keywords: Gaussian processes, experimental design, active learning, spatial learning; sensor
networks

1. Introduction

When monitoring spatial phenomena, such as temperatures in an indoor environment as shown
in Figure 1(a), using a limited number of sensing devices, deciding where to place the sensors is
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a fundamental task. One approach is to assume that sensors have a fixed sensing radius and to
solve the task as an instance of the art-gallery problem (cf. Hochbaum and Maas, 1985; Gonzalez-
Banos and Latombe, 2001). In practice, however, this geometric assumption is too strong; sensors
make noisy measurements about the nearby environment, and this “sensing area” is not usually
characterized by a regular disk, as illustrated by the temperature correlations in Figure 1(b). In
addition, note that correlations can be both positive and negative, as shown in Figure 1(c), which
again is not well-characterized by a disk model. Fundamentally, the notion that a single sensor needs
to predict values in a nearby region is too strong. Often, correlations may be too weak to enable
prediction from a single sensor. In other settings, a location may be “too far” from existing sensors to
enable good prediction if we only consider one of them, but combining data from multiple sensors
we can obtain accurate predictions. This notion of combination of data from multiple sensors in
complex spaces is not easily characterized by existing geometric models.

An alternative approach from spatial statistics (Cressie, 1991; Caselton and Zidek, 1984), making
weaker assumptions than the geometric approach, is to use a pilot deployment or expert knowledge
to learn a Gaussian process (GP) model for the phenomena, a non-parametric generalization of
linear regression that allows for the representation of uncertainty about predictions made over the
sensed field. We can use data from a pilot study or expert knowledge to learn the (hyper-)parameters
of this GP. The learned GP model can then be used to predict the effect of placing sensors at partic-
ular locations, and thus optimize their positions.1

Given a GP model, many criteria have been proposed for characterizing the quality of placements,
including placing sensors at the points of highest entropy (variance) in the GP model, and A-, D-, or
E-optimal design, and mutual information (cf. Shewry and Wynn, 1987; Caselton and Zidek, 1984;
Cressie, 1991; Zhu and Stein, 2006; Zimmerman, 2006). A typical sensor placement technique is to
greedily add sensors where uncertainty about the phenomena is highest, that is, the highest entropy
location of the GP (Cressie, 1991; Shewry and Wynn, 1987). Unfortunately, this criterion suffers
from a significant flaw: entropy is an indirect criterion, not considering the prediction quality of
the selected placements. The highest entropy set, that is, the sensors that are most uncertain about
each other’s measurements, is usually characterized by sensor locations that are as far as possible
from each other. Thus, the entropy criterion tends to place sensors along the borders of the area
of interest (Ramakrishnan et al., 2005), for example, Figure 4. Since a sensor usually provides
information about the area around it, a sensor on the boundary “wastes” sensed information.

An alternative criterion, proposed by Caselton and Zidek (1984), mutual information, seeks to find
sensor placements that are most informative about unsensed locations. This optimization criterion
directly measures the effect of sensor placements on the posterior uncertainty of the GP. In this paper,
we consider the combinatorial optimization problem of selecting placements which maximize this
criterion. We first prove that maximizing mutual information is an NP-complete problem. Then, by
exploiting the fact that mutual information is a submodular function (cf. Nemhauser et al., 1978), we
design the first approximation algorithm that guarantees a constant-factor approximation of the best
set of sensor locations in polynomial time. To the best of our knowledge, no such guarantee exists
for any other GP-based sensor placement approach, and for any other criterion. This guarantee

1. This initial GP is, of course, a rough model, and a sensor placement strategy can be viewed as an inner-loop step for an
active learning algorithm (MacKay, 2003). Alternatively, if we can characterize the uncertainty about the parameters
of the model, we can explicitly optimize the placements over possible models (Zidek et al., 2000; Zimmerman, 2006;
Zhu and Stein, 2006).
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holds both for placing a fixed number of sensors, and in the case where each sensor location can
have a different cost.

Though polynomial, the complexity of our basic algorithm is relatively high—O(kn4) to select k
out of n possible sensor locations. We address this problem in two ways: First, we develop a
lazy evaluation technique that exploits submodularity to reduce significantly the number of sensor
locations that need to be checked, thus speeding up computation. Second, we show that if we
exploit locality in sensing areas by trimming low covariance entries, we reduce the complexity to
O(kn).

We furthermore show, how the submodularity of mutual information can be used to derive tight
online bounds on the solutions obtained by any algorithm. Thus, if an algorithm performs better
than our simple proposed approach, our analysis can be used to bound how far the solution ob-
tained by this alternative approach is from the optimal solution. Submodularity and these online
bounds also allow us to formulate a mixed integer programming approach to compute the optimal
solution using Branch and Bound. Finally, we show how mutual information can be made robust
against node failures and model uncertainty, and how submodularity can again be exploited in these
settings.

We provide a very extensive experimental evaluation, showing that data-driven placements outper-
form placements based on geometric considerations only. We also show that the mutual informa-
tion criterion leads to improved prediction accuracies with a reduced number of sensors compared to
several more commonly considered experimental design criteria, such as an entropy-based criterion,
and A-optimal, D-optimal and E-optimal design criteria.

In summary, our main contributions are:

• We tackle the problem of maximizing the information-theoretic mutual information criterion
of Caselton and Zidek (1984) for optimizing sensor placements, empirically demonstrating
its advantages over more commonly used criteria.

• Even though we prove NP-hardness of the optimization problem, we present a polynomial
time approximation algorithm with constant factor approximation guarantee, by exploiting
submodularity. To the best of our knowledge, no such guarantee exists for any other GP-
based sensor placement approach, and for any other criterion.

• We also show that submodularity provides online bounds for the quality of our solution, which
can be used in the development of efficient branch-and-bound search techniques, or to bound
the quality of the solutions obtained by other algorithms.

• We provide two practical techniques that significantly speed up the algorithm, and prove that
they have no or minimal effect on the quality of the answer.

• We extend our analysis of mutual information to provide theoretical guarantees for place-
ments that are robust against failures of nodes and uncertainties in the model.

• Extensive empirical evaluation of our methods on several real-world sensor placement prob-
lems and comparisons with several classical design criteria.
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(a) 54 node sensor network deployment

0.5

0.5

0.55

0.55

0.55

0.6

0.6

0.6

0.6

0.65

0.
65

0.65

0.65
0.65

0.7

0.7

0.
7 0.7

0.7

0.7

0.75

0.7
5

0.
75

0.75

0.75

0.75

0
.75

0.8

0.8 0.8

0.
8

0.
8

0.8

0.
8

0.
8

0.85

0.85
0.85

0.85

0.85

0.85

0.85

0
.8

5
0.

85

0.9

0.9

0.9

0.9 0.
9

0.
9 0.9

0.
9

0.
9

0.95

0.9
5

0.95

0.950.950.95

0.95

0.95

0
.95

0.
95

0.
95

0.95

1

1

1

1

5 10 15 20 25 30 35 40

0

5

10

15

20

25

(b) Temperature correlations

-0.15
-0.15

-0.15

-0
.1

5

-0.1

-0
.1

-0
.1-0.1

-0.05
-0.05

-0.05
-0.05

-0.05

-0.05 -0.05

-0.05

0

0

0

0

0
0

0

0

0

0.
05

0.05

0.05 0.05

0.05

0.05

0.05
0.1

0.1

0.1
0.1

0.1

0.1

0.1

0.1

0.
15

0.
15

0.
15

0.15

0.15

0.
2

0.2
0.2

0.2

0.2

0.
250.
25

0.
3

0.3

0.35

0.4

43 44 45 46 47 48

-124

-123

-122

-121

-120

-119

-118

-117

(c) Precipitation correlations

Figure 1: (a) A deployment of a sensor network with 54 nodes at the Intel Berkeley Lab. Cor-
relations are often nonstationary as illustrated by (b) temperature data from the sensor
network deployment in Figure 1(a), showing the correlation between a sensor placed on
the blue square and other possible locations; (c) precipitation data from measurements
made across the Pacific Northwest, Figure 11(b).

The paper is organized as follows. In Section 2, we introduce Gaussian Processes. We review mutual
information criterion in Section 3, and describe our approximation algorithm to optimize mutual
information in Section 4. Section 5 presents several approaches towards making the optimization
more computationally efficient. In Section 6, we discuss how we can extend mutual information
to be robust against node failures and uncertainty in the model. Section 8 relates our approach to
other possible optimization criteria, and Section 7 describes related work. Section 9 presents our
experiments.

2. Gaussian Processes

In this section, we review Gaussian Processes, the probabilistic model for spatial phenomena that
forms the basis of our sensor placement algorithms.
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Figure 2: Posterior mean and variance of the temperature GP estimated using all sensors: (a) Pre-
dicted temperature; (b) predicted variance.

2.1 Modeling Sensor Data Using the Multivariate Normal Distribution

Consider, for example, the sensor network we deployed as shown in Figure 1(a) that measures
a temperature field at 54 discrete locations. In order to predict the temperature at one of these
locations from the other sensor readings, we need the joint distribution over temperatures at the 54
locations. A simple, yet often effective (cf. Deshpande et al., 2004), approach is to assume that the
temperatures have a (multivariate) Gaussian joint distribution. Denoting the set of locations as V ,
in our sensor network example |V |= 54, we have a set of n = |V | corresponding random variables
XV with joint distribution:

P(XV = xV ) =
1

(2π)n/2|ΣV V |
e−

1
2 (xV−µV )T Σ−1

V V (xV−µV ),

where µV is the mean vector and ΣV V is the covariance matrix. Interestingly, if we consider a subset,
A ⊆V , of our random variables, denoted by XA , then their joint distribution is also Gaussian.

2.2 Modeling Sensor Data Using Gaussian Processes

In our sensor network example, we are not just interested in temperatures at sensed locations, but
also at locations where no sensors were placed. In such cases, we can use regression techniques
to perform prediction (Golub and Van Loan, 1989; Hastie et al., 2003). Although linear regression
often gives excellent predictions, there is usually no notion of uncertainty about these predictions,
for example, for Figure 1(a), we are likely to have better temperature estimates at points near ex-
isting sensors, than in the two central areas that were not instrumented. A Gaussian process (GP)
is a natural generalization of linear regression that allows us to consider uncertainty about predic-
tions.

Intuitively, a GP generalizes multivariate Gaussians to an infinite number of random variables. In
analogy to the multivariate Gaussian above where the index set V was finite, we now have a (possi-
bly uncountably) infinite index set V . In our temperature example, V would be a subset of R

2, and
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Figure 3: Example kernel function learned from the Berkeley Lab temperature data: (a) learned
covariance function K (x, ·), where x is the location of sensor 41; (b) “ground truth”,
interpolated empirical covariance values for the same sensors. Observe the close match
between predicted and measured covariances.

each index would correspond to a position in the lab. GPs have been widely studied (cf. MacKay,
2003; Paciorek, 2003; Seeger, 2004; O’Hagan, 1978; Shewry and Wynn, 1987; Lindley and Smith,
1972), and generalize Kriging estimators commonly used in geostatistics (Cressie, 1991).

An important property of GPs is that for every finite subset A of the indices V , which we can think
about as locations in the plane, the joint distribution over the corresponding random variables XA is
Gaussian, for example, the joint distribution over temperatures at a finite number of sensor locations
is Gaussian. In order to specify this distribution, a GP is associated with a mean function M (·), and
a symmetric positive-definite kernel function K (·, ·), often called the covariance function. For each
random variable with index u ∈ V , its mean µu is given by M (u). Analogously, for each pair of
indices u,v ∈ V , their covariance σuv is given by K (u,v). For simplicity of notation, we denote
the mean vector of some set of variables XA by µA , where the entry for element u of µA is M (u).
Similarly, we denote their covariance matrix by ΣAA , where the entry for u,v is K (u,v).

The GP representation is extremely powerful. For example, if we observe a set of sensor measure-
ments XA = xA corresponding to the finite subset A ⊂V , we can predict the value at any point y∈V
conditioned on these measurements, P(Xy | xA). The distribution of Xy given these observations is
a Gaussian whose conditional mean µy|A and variance σ2

y|A are given by:

µy|A = µy +ΣyA Σ−1
AA(xA −µA), (1)

σ2
y|A = K (y,y)−ΣyAΣ−1

AA ΣAy, (2)

where ΣyA is a covariance vector with one entry for each u ∈ A with value K (y,u), and ΣAy = ΣT
yA .

Figure 2(a) and Figure 2(b) show the posterior mean and variance derived using these equations on
54 sensors at Intel Labs Berkeley. Note that two areas in the center of the lab were not instrumented.
These areas have higher posterior variance, as expected. An important property of GPs is that the
posterior variance (2) does not depend on the actual observed values xA . Thus, for a given kernel
function, the variances in Figure 2(b) will not depend on the observed temperatures.
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2.3 Nonstationarity

In order to compute predictive distributions using (1) and (2), the mean and kernel functions have
to be known. The mean function can usually be estimated using regression techniques. Estimating
kernel functions is difficult, and usually, strongly limiting assumptions are made. For example, it is
commonly assumed that the kernel K (u,v) is stationary, which means that the kernel depends only
on the difference between the locations, considered as vectors v, u, that is, K (u,v) = K θ(u− v).
Hereby, θ is a set of parameters. Very often, the kernel is even assumed to be isotropic, which means
that the covariance only depends on the distance between locations, that is, K (u,v) = K θ(||u−
v||2). Common choices for isotropic kernels are the exponential kernel, K θ(δ) = exp(− |δ|θ ), and

the Gaussian kernel, K θ(δ) = exp(− δ2

θ2 ). These assumptions are frequently strongly violated in
practice, as illustrated in the real sensor data shown in Figures 1(b) and 1(c). In Section 8.1, we
discuss how placements optimized from models with isotropic kernels reduce to geometric covering
and packing problems.

In this paper, we do not assume that K (·, ·) is stationary or isotropic. Our approach is general, and
can use any kernel function. In our experiments, we use the approach of Nott and Dunsmuir (2002)
to estimate nonstationary kernels from data collected by an initial deployment. More specifically,
their assumption is that an estimate of the empirical covariance ΣAA at a set of observed locations is
available, and that the process can be locally described by a collection of isotropic processes, asso-
ciated with a set of reference points. An example of a kernel function estimated using this method
is presented in Figure 3(a). In Section 9.2, we show that placements based on such nonstationary
GPs lead to far better prediction accuracies than those obtained from isotropic kernels.

3. Optimizing Sensor Placements

Usually, we are limited to deploying a small number of sensors, and thus must carefully choose
where to place them. In spatial statistics this optimization is called sampling or experimental design:
finding the k best sensor locations out of a finite subset V of possible locations, for example, out of
a grid discretization of R

2.

3.1 The Entropy Criterion

We first have to define what a good design is. Intuitively, we want to place sensors which are most
informative with respect to the entire design space. A natural notion of uncertainty is the conditional
entropy of the unobserved locations V \A after placing sensors at locations A ,

H(XV \A | XA) =−
Z

p(xV \A ,xA) log p(xV \A | xA)dxV \A dxA , (3)

where we use XA and XV \A to refer to sets of random variables at the locations A and V \A .
Intuitively, minimizing this quantity aims at finding the placement which results in the lowest un-
certainty about all uninstrumented locations V \A after observing the placed sensors A . A good
placement would therefore minimize this conditional entropy, that is, we want to find

A∗ = argminA⊂V :|A |=k H(XV \A | XA).
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Using the identity H(XV \A | XA) = H(XV )−H(XA), we can see that

A∗ = argminA⊂V :|A |=k H(XV \A | XA) = argmaxA⊂V :|A |=k H(XA).

So we can see that we need to find a set of sensors A which is most uncertain about each other. Un-
fortunately, this optimization problem, often also referred to as D-optimal design in the experiment
design literature (cf. Currin et al., 1991), has been shown to be NP-hard (Ko et al., 1995):

Theorem 1 (Ko et al., 1995) Given rational M and rational covariance matrix ΣV V over Gaus-
sian random variables V , deciding whether there exists a subset A ⊆ V of cardinality k such that
H(XA)≥M is NP-complete.

Therefore, the following greedy heuristic has found common use (McKay et al., 1979; Cressie,
1991): One starts from an empty set of locations, A0 = /0, and greedily adds placements until |A |= k.
At each iteration, starting with set Ai, the greedy rule used is to add the location y∗H ∈ V \A that
has highest conditional entropy,

y∗H = argmaxy H(Xy | XAi), (4)

that is, the location we are most uncertain about given the sensors placed thus far. If the set of
selected locations at iteration i is Ai = {y1, . . . ,yi}, using the chain-rule of entropies, we have
that:

H(XAi) = H(Xyi | XAi−1)+ ...+H(Xy2 | XA1)+H(Xy1 | XA0).

Note that the (differential) entropy of a Gaussian random variable Xy conditioned on some set of
variables XA is a monotonic function of its variance:

H(Xy | XA) =
1
2

log(2πeσ2
Xy|XA

) =
1
2

logσ2
Xy|XA

+
1
2
(log(2π)+1), (5)

which can be computed in closed form using Equation (2). Since for a fixed kernel function, the
variance does not depend on the observed values, this optimization can be done before deploying the
sensors, that is, a sequential, closed-loop design taking into account previous measurements bears
no advantages over an open-loop design, performed before any measurements are made.

3.2 An Improved Design Criterion: Mutual Information

The entropy criterion described above is intuitive for finding sensor placements, since the sensors
that are most uncertain about each other should cover the space well. Unfortunately, this entropy
criterion suffers from the problem shown in Figure 4, where sensors are placed far apart along the
boundary of the space. Since we expect predictions made from a sensor measurement to be most
precise in a region around it, such placements on the boundary are likely to “waste” information.
This phenomenon has been noticed previously by Ramakrishnan et al. (2005), who proposed a
weighting heuristic. Intuitively, this problem arises because the entropy criterion is indirect: the cri-
terion only considers the entropy of the selected sensor locations, rather than considering prediction
quality over the space of interest. This indirect quality of the entropy criterion is surprising, since
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Figure 4: An example of placements chosen using entropy and mutual information criteria on a
subset of the temperature data from the Intel deployment. Diamonds indicate the positions
chosen using entropy; squares the positions chosen using MI.

the criterion was derived from the “predictive” formulation H(V \A | A) in Equation (3), which is
equivalent to maximizing H(A).

Caselton and Zidek (1984) proposed a different optimization criterion, which searches for the subset
of sensor locations that most significantly reduces the uncertainty about the estimates in the rest of
the space. More formally, we consider our space as a discrete set of locations V = S ∪U composed
of two parts: a set S of possible positions where we can place sensors, and another set U of positions
of interest, where no sensor placements are possible. The goal is to place a set of k sensors that will
give us good predictions at all uninstrumented locations V \A . Specifically, we want to find

A∗ = argmaxA⊆S :|A |=k H(XV \A)−H(XV \A | XA),

that is, the set A∗ that maximally reduces the entropy over the rest of the space V \A ∗. Note that
this criterion H(XV \A)−H(XV \A | XA) is equivalent to finding the set that maximizes the mutual
information I(XA ;XV \A) between the locations A and the rest of the space V \A . In their follow-up
work, Caselton et al. (1992) and Zidek et al. (2000), argue against the use of mutual information
in a setting where the entropy H(XA) in the observed locations constitutes a significant part of the
total uncertainty H(XV ). Caselton et al. (1992) also argue that, in order to compute MI(A), one
needs an accurate model of P(XV ). Since then, the entropy criterion has been dominantly used
as a placement criterion. Nowadays however, the estimation of complex nonstationary models for
P(XV ), as well as computational aspects, are very well understood and handled. Furthermore, we
show empirically, that even in the sensor selection case, mutual information outperforms entropy on
several practical placement problems.

On the same simple example in Figure 4, this mutual information criterion leads to intuitively
appropriate central sensor placements that do not have the “wasted information” property of the
entropy criterion. Our experimental results in Section 9 further demonstrate the advantages in
performance of the mutual information criterion. For simplicity of notation, we will often use
MI(A) = I(XA ;XV \A) to denote the mutual information objective function. Notice that in this no-
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Figure 5: Comparison of the greedy algorithm with the optimal solutions on a small problem. We
select from 1 to 5 sensor locations out of 16, on the Intel Berkeley temperature data set as
discussed in Section 9. The greedy algorithm is always within 95 percent of the optimal
solution.

tation the process X and the set of locations V is implicit. We will also write H(A) instead of
H(XA).

The mutual information is also hard to optimize:

Theorem 2 Given rational M and a rational covariance matrix ΣV V over Gaussian random vari-
ables V = S∪U, deciding whether there exists a subset A ⊆ S of cardinality k such that MI(A)≥M
is NP-complete.

Proofs of all results are given in Appendix A. Due to the problem complexity, we cannot expect
to find optimal solutions in polynomial time. However, if we implement the simple greedy algo-
rithm for the mutual information criterion (details given below), and optimize designs on real-world
placement problems, we see that the greedy algorithm gives almost optimal solutions, as presented
in Figure 5. In this small example, where we could compute the optimal solution, the performance
of the greedy algorithm was at most five percent worse than the optimal solution. In the follow-
ing sections, we will give theoretical bounds and empirical evidence justifying this near-optimal
behavior.

4. Approximation Algorithm

Optimizing the mutual information criterion is an NP-complete problem. We now describe a poly-
nomial time algorithm with a constant-factor approximation guarantee.

4.1 The Algorithm

Our algorithm is greedy, simply adding sensors in sequence, choosing the next sensor which pro-
vides the maximum increase in mutual information. More formally, using MI(A) = I(XA ;XV \A),
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Input: Covariance matrix ΣV V , k, V = S ∪U
Output: Sensor selection A ⊆ S
begin

A ← /0;
for j = 1 to k do

for y ∈ S \A do δy←
σ2

y−ΣyA Σ−1
AA ΣAy

σ2
y−ΣyĀ Σ−1

ĀĀ ΣĀy

;
1

y∗← argmaxy∈S\A δy;2

A ← A ∪ y∗;
end

Algorithm 1: Approximation algorithm for maximizing mutual information.

our goal is to greedily select the next sensor y that maximizes:

MI(A ∪ y)−MI(A) = H(A ∪ y)−H(A ∪ y | Ā)−
[
H(A)−H(A | Ā ∪ y)

]

= H(A ∪ y)−H(V )+H(Ā)−
[
H(A)−H(V )+H(Ā ∪ y)

]

= H(y | A)−H(y | Ā), (6)

where, to simplify notation, we write A∪y to denote the set A∪{y}, and use Ā to mean V \(A∪y).
Note that the greedy rule for entropy in Equation (4) only considers the H(y |A) part of Equation (6),
measuring the uncertainty of location y with respect to the placements A . In contrast, the greedy
mutual information trades off this uncertainty with −H(y | Ā), which forces us to pick a y that is
“central” with respect to the unselected locations Ā , since those “central” locations will result in
the least conditional entropy H(y | Ā). Using the definition of conditional entropy in Equation (5),
Algorithm 1 shows our greedy sensor placement algorithm.

4.2 An Approximation Bound

We now prove that, if the discretization V of locations of interest in the Gaussian process is fine
enough, our greedy algorithm gives a (1−1/e) approximation, approximately 63% of the optimal
sensor placement: If the algorithm returns set Â, then

MI(Â)≥ (1−1/e) max
A⊂S ,|A |=k

MI(A)− kε,

for some small ε > 0. To prove this result, we use submodularity (cf. Nemhauser et al., 1978).
Formally, a set function F is called submodular, if for all A ,B ⊆ V it holds that F(A ∪B) +
F(A ∩B)≤ F(A)+F(B). Equivalently, using an induction argument as done by Nemhauser et al.
(1978), a set function is submodular if for all A ⊆ A ′ ⊆ V and y ∈ V \A ′ it holds that F(A ∪
y)−F(A) ≥ F(A ′ ∪ y)−F(A ′). This second characterization intuitively represents “diminishing
returns”: adding a sensor y when we only have a small set of sensors A gives us more advantage than
adding y to a larger set of sensors A ′. Using the “information never hurts” bound, H(y | A)≥ H(y |
A∪B) (Cover and Thomas, 1991), note that our greedy update rule maximizing H(y |A)−H(y | Ā)
implies

MI(A ′∪ y)−MI(A ′)≤MI(A ∪ y)−MI(A),
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Figure 6: Mutual information of greedy sets of increasing size. It can be seen that clearly mutual
information is not monotonic. MI is monotonic, however, in the initial part of the curve
corresponding to small placements. This allows us to prove approximate monotonicity.

whenever A ⊆A ′, and any y∈V \A ′, that is, adding y to A helps more than adding y to A ′. In fact,
this inequality holds for arbitrary sets A ⊆ A ′ ⊆ V and y ∈ V \A ′, not just for the sets considered
by the greedy algorithm. Hence we have shown:

Lemma 3 The set function A 7→MI(A) is submodular.

A submodular set function F is called monotonic if F(A∪y)≥ F(A) for y∈V . For such functions,
Nemhauser et al. (1978) prove the following fundamental result:

Theorem 4 (Nemhauser et al., 1978) Let F be a monotone submodular set function over a finite
ground set V with F( /0) = 0. Let AG be the set of the first k elements chosen by the greedy algorithm,
and let OPT = maxA⊂V ,|A |=k F(A). Then

F(AG)≥
(

1−
(

k−1
k

)k
)

OPT≥ (1−1/e)OPT .

Hence the greedy algorithm guarantees a performance guarantee of (1− 1/e)OPT, where OPT is
the value of the optimal subset of size k. This greedy algorithm is defined by selecting in each
step the element y∗ = argmaxy F(A ∪ y)−F(A). This is exactly the algorithm we proposed in the
previous section for optimizing sensor placements (Algorithm 1).

Clearly, MI( /0) = I( /0;V ) = 0, as required by Theorem 4. However, the monotonicity of mutual
information is not apparent. Since MI(V ) = I(V , /0) = 0, the objective function will increase and
then decrease, and, thus, is not monotonic, as shown in Figures 6(a) and 6(b). Fortunately, the proof
of Nemhauser et al. (1978) does not use monotonicity for all possible sets, it is sufficient to prove
that MI is monotonic for all sets of size up to 2k. Intuitively, mutual information is not monotonic
when the set of sensor locations approaches V . If the discretization level is significantly larger than
2k points, then mutual information should meet the conditions of the proof of Theorem 4.

Thus the heart of our analysis of Algorithm 1 will be to prove that if the discretization of the
Gaussian process is fine enough, then mutual information is approximately monotonic for sets of
size up to 2k. More precisely, we prove the following result:
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Lemma 5 Let X be a Gaussian process on a compact subset C of R
m with a positive-definite,

continuous covariance kernel K : C ×C →R
+
0 . Assume the sensors have a measurement error with

variance at least σ2. Then, for any ε > 0, and any finite maximum number k of sensors to place there
exists a discretization V = S ∪U, S and U having mesh width δ such that ∀y∈V \A ,MI(A∪y)≥
MI(A)− ε for all A ⊆ S , |A | ≤ 2k.

If the covariance function is Lipschitz-continuous, such as the Gaussian Radial Basis Function
(RBF) kernel, the following corollary gives a bound on the required discretization level with respect
to the Lipschitz constant:

Corollary 6 If K is Lipschitz-continuous with constant L, then the required discretization is

δ≤ εσ6

4kLM (σ2 +2k2M +6k2σ2)
,

where M = maxx∈C K (x,x), for ε < min(M,1).

Corollary 6 guarantees that for any ε > 0, a polynomial discretization level is sufficient to guarantee
that mutual information is ε−approximately monotonic. These bounds on the discretization are,
of course, worst case bounds. The worst-case setting occurs when the sensor placements A are
arbitrarily close to each other, since the entropy part H(y | A) in Equation (6) can become negative.
Since most GPs are used for modeling physical phenomena, both the optimal sensor placement and
the sensor placement produced by the greedy algorithm can be expected to be spread out, and not
condensed to a small region of the sensing area. Hence we expect the bounds to be very loose in the
situations that arise during normal operation of the greedy algorithm.

Combining our Lemmas 3 and 5 with Theorem 4, we obtain our constant-factor approximation
bound on the quality of the sensor placements obtained by our algorithm:

Theorem 7 Under the assumptions of Lemma 5, Algorithm 1 is guaranteed to select a set A of k
sensors for which

MI(A)≥ (1−1/e)(OPT−kε),

where OPT is the value of the mutual information for the optimal placement.

Note that our bound has two implications: First, it shows that our greedy algorithm has a guaran-
teed minimum performance level of 1− 1/e when compared to the optimal solution. Second, our
approach also provides an upper-bound on the value of the optimal placement, which can be used
to bound the quality of the placements by other heuristic approaches, such as local search, that may
perform better than our greedy algorithm on specific problems.

4.3 Sensor Placement with Non-constant Cost Functions

In many real-world settings, the cost of placing a sensor depends on the specific location. Such
cases can often be formalized by specifying a total budget L, and the task is to select placements
A whose total cost c(A) is within our budget. Recently, the submodular function maximization
approach of Nemhauser et al. (1978) has been extended to address this budgeted case (Sviridenko,
2004; Krause and Guestrin, 2005), in the case of modular cost functions, that is, c(A) = ∑k

i=1 c(Xi),
where A = {X1, . . . ,Xk} and c(Xi) is the cost for selecting element Xi. The combination of the
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analysis in this paper with these new results also yields a constant-factor (1− 1/e) approximation
guarantee for the sensor placement problem with non-uniform costs.

The algorithm for this budgeted case first enumerates all subsets of cardinality at most three. For
each of these candidate subsets, we run a greedy algorithm, which adds elements until the budget is
exhausted. The greedy rule optimizes a benefit cost ratio, picking the element for which the increase
of mutual information divided by the cost of placing the sensor is maximized: More formally, at
each step, the greedy algorithm adds the element y∗ such that

y∗ = argmaxy∈S\A
H(y | A)−H(y | Ā)

c(y)
.

Krause and Guestrin (2005) show that this algorithm achieves an approximation guarantee of

(1−1/e)OPT− 2Lε
cmin

,

where L is the available budget, and cmin is the minimum cost of all locations. A requirement for
this result to hold is that mutual information is ε-monotonic up to sets of size 2L

cmin
. The necessary

discretization level can be established similarly as in Corollary 6, with k replaced by L
cmin

.

4.4 Online Bounds

Since mutual information is approximately monotonic and submodular, Theorem 7 proves an a
priori approximation guarantee of (1− 1/e). For most practical problems however, this bound is
very loose. The following observation allows to compute online bounds on the optimal value:

Proposition 8 Assume that the discretization is fine enough to guarantee ε-monotonicity for mutual
information, and that the greedy algorithm returns an approximate solution Ak, |Ak| = k. For all
y ∈ S , let δy = MI(A ∪ y)−MI(A). Sort the δy in decreasing order, and consider the sequence
δ(1), . . . ,δ(k) of the first k elements. Then OPT≤MI(Ak)+∑k

i=1 δ(i) + kε.

The proof of this proposition follows directly from submodularity and ε-monotonicity. In many
applications, especially for large placements, this bound can be much tighter than the bound guar-
anteed by Theorem 7. Figures 7(a) and 7(b) compare the a priori and online bounds for the data sets
discussed in Section 9.1.

4.5 Exact Optimization and Tighter Bounds Using Mixed Integer Programming

There is another way to get even tighter bounds, or even compute the optimal solution. This ap-
proach is based on branch & bound algorithm for solving a mixed integer program for monotonic
submodular functions (Nemhauser and Wolsey, 1981). We used this algorithm to bound the value
of the optimal solution in Figure 5.
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Figure 7: Online bounds: mutual information achieved by the greedy algorithm, the (1−1/e) and
1− (1−1/k)k a priori bounds and the online bound described in Section 4.4.

The mixed integer program is given by:

maxη;

η ≤ MI(B)+ ∑
yi∈S\B

αi[MI(B ∪ yi)−MI(B)], ∀B ⊆ S ; (7)

∑
i

αi ≤ k, ∀i; (8)

αi ∈ {0,1}, ∀i;

where αi = 1 means that location yi should be selected. Note that this MIP can be easily extended
to handle the case in which each location can have a different cost, by replacing the constraint (8)
by ∑i αici ≤ L, where L is the budget and ci = c(yi).

Unfortunately, this MIP has exponentially many constraints. Nemhauser and Wolsey (1981) pro-
posed the following constraint generation algorithm: Let αA denote an assignment to α1, . . . ,αn

such that αi = 1 iff yi ∈ A . Starting with no constraints of type (7), the MIP is solved, and one
checks whether the current solution (η,αB) satisfies η≤MI(B). If it does not, a violated constraint
has been found. Since solving individual instances (even with only polynomially many constraints)
is NP-hard, we need to resort to search heuristics such as Branch and Bound and Cut during the
constraint generation process.

The analysis of this MIP, as presented by Nemhauser and Wolsey (1981), assumes monotonicity.
In the case of mutual information, the objective is only approximately monotonic. In particular,
consider a a placement defined by αA . Then, by submodularity, for all B , we have that:

MI(B)+ ∑
yi∈S\B

αA
i [MI(B ∪ yi)−MI(B)] = MI(B)+ ∑

yi∈A\B
[MI(B ∪ yi)−MI(B)],

≥MI(A ∪B).

By approximate monotonicity:
MI(A ∪B)≥MI(A)− kε.
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Thus, (η̂,αA), for η̂ ≤MI(A)− kε is a feasible solution for the mixed integer program. Since we
are maximizing η, for the optimal solution (η∗,αA∗) of the MIP it holds that

MI(A∗)≥ OPT−kε.

There is another MIP formulation for maximizing general submodular functions without the ε-
monotonicity requirement. The details can be found in Nemhauser and Wolsey (1981). We however
found this formulation to produce much looser bounds, and to take much longer to converge.

5. Scaling Up

Greedy updates for both entropy and mutual information require the computation of conditional
entropies using Equation (5), which involves solving a system of |A | linear equations. For entropy
maximization, where we consider H(y | A) alone, the complexity of this operation is O(k3). To
maximize the mutual information, we also need H(y | Ā) requiring O(n3), for n = |V |. Since
we need to recompute the score of all possible locations at every iteration of Algorithm 1, the
complexity of our greedy approach for selecting k sensors is O(kn4), which is not computationally
feasible for very fine discretizations (large n). In Section 5.1 we propose a lazy strategy which
often allows to reduce the number of evaluations of the greedy rule, thereby often reducing the
complexity to O(kn3). In Section 5.2 we present a way of exploiting the problem structure by using
local kernels, which often reduces the complexity to O(kn). Both approaches can be combined for
even more efficient computation.

5.1 Lazy Evaluation Using Priority Queues

It is possible to improve the performance of Algorithm 1 directly under certain conditions by lazy
evaluation of the incremental improvements in Line 1. A similar algorithm has been proposed by
Robertazzi and Schwartz (1989) in the context of D-optimal design. At the start of the algorithm,
all δy will be initialized to +∞. The algorithm will maintain information about which δy are current,
that is, have been computed for the current locations A . Now, the greedy rule in Line 2 will find
the node y largest δy. If this δy has not been updated for the current A , the value is updated and
reintroduced into the queue. This process is iterated until the location with maximum δy is has an
updated value. The algorithm is presented in Algorithm 2. The correctness of this lazy procedure
directly follows from submodularity: For a fixed location y, the sequence δy must be monotonically
decreasing during course of the algorithm.

To understand the efficacy of this procedure, consider the following intuition: If a location y∗ is
selected, nearby locations will become significantly less desirable and their marginal increases δy

will decrease significantly. When this happens, these location will not be considered as possible
maxima for the greedy step for several iterations. This approach can save significant computation
time—we have noticed a decrease of mutual information computations by a factor of six in our
experiments described in Section 9.6.

This approach can be efficiently implemented by using a priority queue to maintain the advantages
δy. Line 2 calls deletemax with complexity O(logn) and Line 3 uses the insert operation with com-
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Input: Covariance matrix ΣV V , k, V = S ∪U
Output: Sensor selection A ⊆ S
begin

A ← /0;
foreach y ∈ S do δy←+∞;
for j = 1 to k do

foreach y ∈ S \A do currenty← false;1

while true do
y∗← argmaxy∈S\A δy;2

if currenty∗ then break;
δy∗ ← H(y | A)−H(y | Ā) ;3

currenty∗ ← true
A ← A ∪ y∗;

end
Algorithm 2: Approximation algorithm for maximizing mutual information effi-
ciently using lazy evaluation.

plexity O(1). Also, as stated Line 1 has an O(n) complexity, and was introduced for simplicity of
exposition. In reality, we annotate the δy’s with the last iteration that they were updated, completely
eliminating this step.

5.2 Local Kernels

In this section, we exploit locality in the kernel function to speed up the algorithm significantly:
First, we note that, for many GPs, correlation decreases exponentially with the distance between
points. Often, variables which are far apart are actually independent. These weak dependencies can
be modeled using a covariance function K for which K (x, ·) has compact support, that is, that has
non-zero value only for a small portion of the space. For example, consider the following isotropic
covariance function proposed by Storkey (1999):

K (x,y) =

{
(2π−∆)(1+(cos∆)/2)+ 3

2 sin∆
3π , for ∆<2π,

0, otherwise,
(9)

where ∆=β‖x− y‖2, for β>0. This covariance function resembles the Gaussian kernel K (x,y) =
exp(−β‖x− y‖2

2/(2π)) as shown in Figure 8, but is zero for distances larger than 2π/β.

Even if the covariance function does not have compact support, it can be appropriate to compute
H(y | B̃)≈ H(y | B) where B̃ results from removing all elements x from B for which |K (x,y)| ≤ ε
for some small value of ε. This truncation is motivated by noting that:

σ2
y|B\x−σ2

y|B ≤
K (y,x)2

σ2
x
≤ ε2

σ2
x
.

This implies that the decrease in entropy H(y |B \x)−H(y |B) is at most ε2/(σ2σ2
x) (using a similar

argument as the one in the proof of Lemma 5), assuming that each sensor has independent Gaussian
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Figure 8: Comparison of local and Gaussian kernels.

Input: Covariance ΣV V , k, V = S ∪U,ε > 0
Output: Sensor selection A ⊆ S
begin

A ← /0;
foreach y ∈ S do

δy← H(y)− H̃ε(y | V \ y);1

for j = 1 to k do
y∗← argmaxy δy;2

A ← A ∪ y∗;
foreach y ∈ N(y∗;ε) do

δy← H̃ε(y | A)− H̃ε(y | Ā);3

end
Algorithm 3: Approximation algorithm for maximizing mutual information using
local kernels.

measurement error of at least σ2. The total decrease of entropy H(y | B̃)−H(y | B) is bounded
by nε2/σ4. This truncation allows to compute H(y | Ā) much more efficiently, at the expense of
this small absolute error. In the special case of isotropic kernels, the number d of variables x with
K (x,y) > ε can be computed as a function of the discretization and the covariance kernel. This
reduces the complexity of computing H(y | Ā) from O(n3) to O(d3), which is a constant.

Our truncation approach leads to the more efficient optimization algorithm shown in Algorithm 3.
Here, H̃ε refers to the truncated computation of entropy as described above, and N(y∗;ε)≤ d refers
to the set of elements x ∈ S for which |K (y∗,x)| > ε. Using this approximation, our algorithm
is significantly faster: Initialization (Line 1) requires O(nd3) operations. For each one of the k
iterations, finding the next sensor (Line 2) requires O(n) comparisons, and adding the new sensor y∗

can only change the score of its neighbors (N(y∗;ε)≤ d), thus Line 3 requires O(d ·d3) operations.
The total running time of Algorithm 3 is O(nd3 + kn + kd4), which can be significantly lower than
the O(kn4) operations required by Algorithm 1. Theorem 9 summarizes our analysis:

Theorem 9 Under the assumptions of Lemma 5, guaranteeing ε1-approximate monotonicity and
truncation parameter ε2, Algorithm 3 selects A ⊆ S such that

MI(A)≥ (1−1/e)(OPT−kε1−2knε2/σ4),
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in time O(nd3 +nk + kd4).

This approach can be efficiently implemented by using a priority queue to maintain the advan-
tages δy. Using for example a Relaxed Heaps data structure, the running time can be decreased
to O(nd3 + kd logn + kd4): Line 1 uses the insert operation with complexity O(1), Line 2 calls
deletemax with complexity O(logn), and Line 3 uses delete and insert, again with complexity
O(logn). This complexity improves on Algorithm 3 if d logn� n. This assumption is frequently
met in practice, since d can be considered a constant as the size n of the sensing area grows. Of
course, this procedure can also be combined with the lazy evaluations described in the previous
section for further improvement in running time.

6. Robust Sensor Placements

In this section, we show how the mutual information criterion can be extended to optimize for
placements which are robust against failures of sensor nodes, and against uncertainty in the model
parameters. The submodularity of mutual information will allow us to derive approximation guar-
antees in both cases.

6.1 Robustness Against Failures of Nodes

As with any physical device, sensor nodes are susceptible to failures. For example, the battery of a
wireless sensor can run out, stopping it from making further measurements. Networking messages
containing sensor values can be lost due to wireless interference. In the following, we discuss how
the presented approach can handle such failures. We associate with each location yi ∈ S a discrete
random variable Zi such that Zi = 0 indicates that a sensor placed at location yi has failed and will
not produce any measurements, and Zi = 1 indicates that the sensor is working correctly. For a
placement A ⊂ S , denote by Az the subset of locations yi ∈ A such that zi = 1, that is, the subset of
functional sensors. Then, the robust mutual information

MIR(A) = EZ[Az] = ∑
z

P(z)MI(Az),

is an expectation of the mutual information for placement A where all possible failure scenarios are
considered.

Proposition 10 MIR(A) is submodular and, under the assumptions of Lemma 5, approximately
monotonic.

Proof This is a straightforward consequence of the fact that the class of submodular functions are
closed under taking expectations. The approximate monotonicity can be verified directly from the
approximate monotonicity of mutual information.

Unfortunately, the number of possible failure scenarios grows exponentially in |S |. However, if
the Zi are i.i.d., and the failure probability P(Zi = 0) = θ is low enough, MIR can be approximated
well, for example, by only taking into account scenarios were none or at most one sensor fails. This
simplification often works in practice (Lerner and Parr, 2001). These |S |+ 1 scenarios can easily
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be enumerated. For more complex distributions over Z, or higher failure probabilities θ, one might
have to resort to sampling in order to compute MIR.

The discussion above presents a means for explicitly optimizing placements for robustness. How-
ever, we can show that even if we do not specifically optimize for robustness, our sensor placements
will be inherently robust:

Proposition 11 (Krause et al., 2006) Consider a submodular function F(·) on a ground set S , a
set B ⊆ S , and a probability distribution over subsets A of B with the property that, for some
constant ρ, we have Pr [v ∈ A ]≥ ρ for all v ∈ B . Then E[F(A)]≥ ρF(B).

When applying this proposition, the set B will correspond to the selected sensor placement. The
(randomly chosen) set A denotes the set of fully functioning nodes. If each node fails independently
with probability 1−ρ, that implies that Pr [c ∈ A ]≥ ρ, and hence the expected mutual information
of the functioning nodes, E[MI(A)], is at least ρ times the mutual information MI(B), that is, when
no nodes fail. Proposition 11 even applies if the node failures are not independent, but for example
are spatially correlated, as can be expected in practical sensor placement scenarios.

6.2 Robustness Against Uncertainty in the Model Parameters

Often, the parameters θ of the GP prior, such as the amount of variance and spatial correlation
in different areas of the space, are not known. Consequently, several researcher (Caselton et al.,
1992; Zimmerman, 2006; Zhu and Stein, 2006) have proposed approaches to explicitly address the
uncertainty in the model parameters, which are discussed in Section 7.

We want to exploit submodularity in order to get performance guarantees on the placements. We
take a Bayesian approach, and equip θ with a prior. In this case, the objective function becomes

MIM(A) = Eθ[I(A ;V \A | θ)] =
Z

p(θ)I(A ;V \A | θ)dθ.

Since the class of submodular functions is closed under expectations, MIM is still a submodular
function. However, the approximate monotonicity requires further assumptions. For example, if the
discretization meshwidth is fine enough to guarantee approximate monotonicity for all values of θ
for which p(θ) > 0, then approximate monotonicity still holds, since

MIM(A ∪ y)−MIM(A) =
Z

p(θ)[I(A ∪ y;V \ (A ∪ y) | θ)− I(A ;V \A | θ)]dθ

≥
Z

p(θ)[−ε]dθ =−ε.

A weaker assumption also suffices: If there exists a (nonnegative) function η(θ) such that I(A ∪
y;V \ (A ∪ y) | θ)− I(A ;V \A | θ) ≥ −η(θ), and

R

p(θ)[−η(θ)]dθ ≥ −ε, then MIM is still ε-
approximately monotonic. Such a function would allow the level ε of ε-approximately monotonicity
to vary for different values of θ.

Note that in this setting however, the predictive distributions (1) and (2) cannot be computed in
closed form anymore, and one has to resort to approximate inference techniques (cf. Rasmussen
and Williams, 2006).
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The advantage of exploiting submodularity for handling uncertainty in the model parameters is that
the offline and online bounds discussed in Section 4.4 still apply. Hence, contrary to existing work,
our approach provides strong theoretical guarantees on the achieved solutions.

7. Related Work

There is a large body of work related to sensor placement, and to the selection of observations
for the purpose of coverage and prediction. Variations of this problem appear in spatial statistics,
active learning, and experimental design. Generally, the methods define an objective function (Sec-
tion 7.1), such as area coverage or predictive accuracy, and then apply a computational procedure
(Section 7.2) to optimize this objective function. We also review related work on extensions to this
basic scheme (Section 7.3), the related work in Machine Learning in particular (Section 7.4), and
our previous work in this area (Section 7.5).

7.1 Objective Functions

We distinguish geometric and model-based approaches, which differ according to their assumptions
made about the phenomenon to be monitored.

7.1.1 GEOMETRIC APPROACHES

Geometric approaches do not build a probabilistic model of the underlying process, but instead
use geometric properties of the space in which the process occurs. The goal is typically a sensor
placement that covers the space. The most common approaches for optimizing sensor placements
using geometric criteria assume that sensors have a fixed region (cf. Hochbaum and Maas, 1985;
Gonzalez-Banos and Latombe, 2001; Bai et al., 2006). These regions are usually convex or even
circular. Furthermore, it is assumed that everything within this region can be perfectly observed,
and everything outside cannot be measured by the sensors. In Section 8.1, we relate these geometric
approaches to our GP-based formulation.

In the case where the sensing area is a disk (the disk model), Kershner (1939) has shown that an
arrangement of the sensors in the centers of regular hexagons is asymptotically optimal, in the sense
that a given set is fully covered by uniform disks. In Section 9.3, we experimentally show that
when we apply the disk model to nonstationary placement problems, as considered in this paper, the
geometric disk model approach leads to worse placements in terms of prediction accuracy, when
compared to model-based approaches.

If many sensors are available then one can optimize the deployment density instead of the placement
of individual sensors (Toumpis and Gupta, 2005). The locations of placed sensors are then assumed
to be randomly sampled from this distribution. In the applications we consider, sensors are quite
expensive, and optimal placement of a small set of them is desired.

255



KRAUSE, SINGH AND GUESTRIN

7.1.2 MODEL-BASED APPROACHES

This paper is an example of a model-based method, one which takes a model of the world (here, a
GP) and places sensors to optimize a function of that model (here, mutual information).

Many different objective functions have been proposed for model-based sensor placement. In the
statistics community, classical and Bayesian experimental design focused on the question of se-
lecting observations to maximize the quality of parameter estimates in linear models (cf. Atkinson,
1988; Lindley, 1956). In spatial statistics, information-theoretic measures, notably entropy, have
been frequently used (Caselton and Hussain, 1980; Caselton and Zidek, 1984; Caselton et al., 1992;
Shewry and Wynn, 1987; Federov and Mueller, 1989; Wu and Zidek, 1992; Guttorp et al., 1992).
These objectives minimize the uncertainty in the prediction, after the observations are made.

Classical Experimental Design Criteria. In the statistics literature, the problem of optimal ex-
perimental design has been extensively studied (cf. Atkinson, 1988, 1996; Pukelsheim, 1987; Boyd
and Vandenberghe, 2004). The problem commonly addressed there is to estimate the parameters θ
of a function,

y = fθ(x)+w,

where w is normally distributed measurement noise with zero mean and variance σ2, y a scalar
output and x a vectorial input. The assumption is, that the input x can be selected from a menu
of design options, {x1, . . . ,xn}. Each input corresponds to a possible experiment which can be
performed. In our sensor placement case, one x would be associated with each location, y would
be the measurement at the location, and θ would correspond to the values of the phenomenon at the
unobserved locations. Usually, the assumption is that fθ is linear, that is, y = θT x+w.

For the linear model y = θT x+w, if all n observations were available, then

Var(θ̂) = σ2(XT X)−1

Var(ŷi) = σ2xT
i (XT X)−1xi, (10)

where X is the design matrix, which consists of the inputs x1, . . . ,xn as its rows. We can see that
the variance of both the parameter estimate θ̂ and the predictions ŷi depends on the matrix M =
(XT X)−1, which is called the inverse moment matrix. If this matrix is “small”, then the parameter
estimates and predictions will be accurate. A design consists of a selection A of the inputs (with
repetitions allowed). We write XA to denote the selected experiments, and MA for the corresponding
inverse moment matrix. Classical experimental design considers different notions of “smallness”
for this inverse moment matrix MA ; D-optimality refers to the determinant, A-optimality to the
trace and E-optimality to the spectral radius (the maximum eigenvalue). There are several more
scalarizations of the inverse moment matrix, and they are commonly referred to as “alphabetical”
optimality criteria.

An example of the relationship between this formalism and sensor placements in GPs, as well as
experimental comparisons, are presented in Section 9.5.

Equation (10) shows that the distribution of the test data is not taken into account, when attempting
to minimizing the inverse moment matrix MA . Yu et al. (2006) extend classical experimental design
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to the transductive setting, which takes the distribution of test data into account. The information-
theoretic approaches, which we use in this paper, also directly take into account the unobserved
locations, as they minimize the uncertainty in the posterior P(XV \A | XA).

Bayesian Design Criteria. Classical experimental design is a Frequentist approach, which at-
tempts to minimize the estimation error of the maximum likelihood parameter estimate. If one
places a prior on the model parameters, one can formalize a Bayesian notion of experimental de-
sign. In its general form, Bayesian experimental design was pioneered by Lindley (1956). The users
encode their preferences in a utility function U(P(Θ),θ?), where the first argument, P(Θ), is a dis-
tribution over states of the world (i.e., the parameters) and the second argument, θ?, is the true state
of the world. Observations xA are collected, and the change in expected utility under the prior P(Θ)
and posterior P(Θ | XA = xA) can be used as a design criterion. By using different utility functions,
Bayesian versions of A-, D-, and E- optimality can be developed (Chaloner and Verdinelli, 1995).
If we have the posterior covariance matrix Σθ|A, whose maximum eigenvalue is λmax, then Bayesian
A-, D-, and E- optimality minimizes tr

(
Σθ|A

)
, det

(
Σθ|A

)
, and λmax

(
Σθ|A

)
, respectively.

Usually, Bayesian experimental design considers the task of parameter estimation (Sebastiani and
Wynn, 2000; Paninski, 2005; Ylvisaker, 1975). Lindley (1956) suggested using negative Shannon
information, which is equivalent to maximizing the expected Kullback-Leibler divergence between
the posterior and prior over the parameters:

Z

P(xA)
Z

P(θ | xA) log
P(θ | xA)

P(θ)
dθdxA . (11)

If we consider distributions P(XV \A) over the unobserved locations XV \A instead of distributions
over parameters P(Θ), (11) leads to the following criterion:

Z

P(xA)
Z

P(xV \A | xA) log
P(xV \A | xA)

P(xV \A)
dxV \A dxA . (12)

Note that Equation (12) is exactly the mutual information between the observed and unobserved
sensors, I(A ;V \A). For a linear-Gaussian model, where the mean and covariance are known, we
get the mutual information criterion of Caselton and Zidek (1984), which we use in this paper.

Information-Theoretic Criteria. The special case of Bayesian experimental design, where an
information-theoretic functional (such as entropy or mutual information) is used as a utility function,
and where the predictive uncertainty in the unobserved variables is concerned (as in Equation 12) is
of special importance for spatial monitoring.

Such information-theoretic criteria have been used as design criteria in a variety of fields and ap-
plications. Maximizing the entropy H(A) of a set of observations, as discussed in Section 3, has
been used in the design of computer experiments (Sacks et al., 1989; Currin et al., 1991), function
interpolation (O’Hagan, 1978) and spatial statistics (Shewry and Wynn, 1987). This criterion is
sometimes also referred to as D-optimality, since the scalarization of the posterior variance in the
spatial literature and the scalarization of the parameter variance in classical experimental design
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both involve a determinant. In the context of parameter estimation in linear models and indepen-
dent, homoscedastic noise, maximizing the entropy H(A) is equivalent to Bayesian D-optimal de-
sign (which maximizes the information gain H(Θ)−H(Θ | A) about the parameters), as discussed
by Sebastiani and Wynn (2000) (see also Section 8.4).

Maximizing mutual information between sets of random variables has a long history of use in statis-
tics (Lindley, 1956; Bernardo, 1979), machine learning (Luttrell, 1985; MacKay, 1992). The spe-
cific form addressed in this paper, I(A ;V \A), has been used in spatial statistics (Caselton and
Zidek, 1984; Caselton et al., 1992). Mutual information requires an accurate estimate of the joint
model P(XV ), while entropy only requires an accurate estimate at the selected locations, P(XA).
Caselton et al. (1992) argue that latter is easier to estimate from a small amount of data, thus arguing
against mutual information. We however contend that nowadays effective techniques for learning
complex nonstationary spatial models are available, such as the ones used in our experiments, thus
mitigating these concerns and enabling the optimization of mutual information.

7.2 Optimization Techniques

All of the criteria discussed thus far yield challenging combinatorial optimization problems. Several
approaches are used to solve them in the literature, which can be roughly categorized into those that
respect the integrality constraint and those which use a continuous relaxation.

7.2.1 COMBINATORIAL SEARCH

For both geometric and model-based approaches, one must search for the best design or set of sensor
locations among a very (usually exponentially) large number of candidate solutions. In a classical
design, for example, the inverse moment matrix on a set of selected experiments XA can be written
as

MA =

(
n

∑
i=1

kixixT
i

)−1

,

where ki is the number of times experiment xi is performed in design A . Since ki must be an
integer, a combinatorial number of potential experimental designs has to be searched. Similarly,
when placing a set A of k sensors out of a set V of possible locations, as we do in this paper,
all sets of size k have to be searched. For both entropy (Ko et al., 1995) and mutual information
(this paper), this search has been shown to be NP-hard, hence efficient exact solutions are likely not
possible.

Since exhaustive search is usually infeasible, local, heuristic searches without theoretical guaran-
tees have commonly been applied. Approaches to the difficult combinatorial optimization include
simulated annealing (Meyer and Nachtsheim, 1988), pairwise exchange (Fedorov, 1972; Mitchell,
1974a,b; Cook and Nachtsheim, 1980; Nguyen and Miller, 1992), forward and backward greedy
heuristics (MacKay, 1992; Caselton and Zidek, 1984). All these approaches provide no guarantees
about the quality of the solution. Since optimal solutions are highly desirable, branch-and-bound
approaches to speed up the exhaustive search have been developed (Welch, 1982; Ko et al., 1995).
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Although they enable exhaustive search for slightly larger problem instances, the computational
complexity of the problems puts strong limits on their effectiveness.

By exploiting submodularity of mutual information, in this paper, we provide the first approach to
information-theoretic sensor placement which has guarantees both on the runtime and on the quality
of the achieved solutions.

7.2.2 CONTINUOUS RELAXATION

In some formulations, the integrality constraint is relaxed. For example, in classical experimental
design, the number of experiments to be selected is often large compared to the number of design
choices. In these cases, one can find a fractional design (i.e., a non-integral solution defining the
proportions by which experiments should be performed), and round the fractional solutions. In the
fractional formulation, A-, D-, and E-optimality criteria can be solved exactly using a semi-definite
program (Boyd and Vandenberghe, 2004). There are however no known bounds on the integrality
gap, that is, the loss incurred by this rounding process.

In other approaches (Seo et al., 2000; Snelson and Ghahramani, 2005), a set of locations is chosen
not from a discrete, but a continuous space. If the objective function is differentiable with respect to
these locations, gradient-based optimization can be used instead of requiring combinatorial search
techniques. Nevertheless, optimality of the solution is not guaranteed since there is no known bound
on the discrepancy between local and global optima.

Another method that yields a continuous optimization, in the case of geometric objective functions,
is the potential field approach (Heo and Varshney, 2005; Howard et al., 2002). An energy criterion
similar to a spring model is used. This optimization results in uniformly distributed (in terms of
inter-sensor distances), homogeneous placements. The advantage of these approaches is that they
can adapt to irregular spaces (such as hallways or corridors), where a simple grid-based deployment
is not possible. Since the approach uses coordinate ascent, it can be performed using a distributed
computation, making it useful for robotics applications where sensors can move.

7.3 Related Work on Extensions

In this section, we discuss prior work related to our extensions on sensor placement under model
uncertainty (Section 6) and on the use of non-constant cost functions (Section 4.3).

7.3.1 PLACEMENT WITH MODEL UNCERTAINTY

The discussion thus far has focused on the case where the joint model P(XV ) is completely spec-
ified, that is, the mean and covariance of the GP are known.2 With model uncertainty, one has to
distinguish between observation selection for predictive accuracy in a fixed model and observation
selection for learning parameters. Model uncertainty also introduces computational issues. If the
mean and covariance are fixed in a Gaussian process then the posterior is Gaussian. This makes it

2. Or one assumes the uncertainty on these parameters is small enough that their contribution to the predictive uncer-
tainty is negligible.
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easy to compute quantities such as entropy and mutual information. If the mean and covariance are
unknown, and we have to learn hyperparameters (e.g., kernel bandwidth of an isotropic process),
then the predictive distributions and information-theoretic quantities often lack a closed form.

Caselton et al. (1992) extend their earlier work on maximum entropy sampling to the case where
the mean and covariance are unknown by using a conjugate Bayesian analysis. The limitations of
this approach are that the conjugate Bayesian analysis makes spatial independence assumptions in
the prior and that complete data with repeated observations are required at every potential sensing
site. This leads to a determinant maximization problem, much like D-optimality, that precludes the
use of submodularity.

Another approach is the development of hybrid criteria, which balance parameter estimation and
prediction. For example, Zimmerman (2006) proposes local EK-optimality, a linear combination of
the maximum predictive variance and a scalarization of the covariance of the maximum likelihood
parameter estimate. While this criterion selects observations which reduce parameter uncertainty
and predictive uncertainty given the current parameter, it does not take into account the effect of
parameter uncertainty on prediction error. To address this issue, Zhu and Stein (2006) derive an
iterative algorithm which alternates between optimizing the design for covariance estimation and
spatial prediction. This procedure does not provide guarantees on the quality of designs.

An alternative approach to addressing model uncertainty, in the context of classical experimental
design, is presented by Flaherty et al. (2006). There, instead of committing to a single value, the
parameters of a linear model are constrained to lie in a bounded interval. Their robust design objec-
tive, which is based on E-optimality, is then defined with respect to the worst-case parameter value.
Flaherty et al. (2006) demonstrate how a continuous relaxation of this problem can be formulated
as a SDP, which can be solved exactly. No guarantees are given however on the integrality gap on
this relaxation.

In our approach, as discussed in Section 6, we show how submodularity can be exploited even in
the presence of parameter uncertainty. We do not address the computational issues, which depend
on the particular parameterization of the GP used. However, in special cases (e.g., uncertainty about
the kernel bandwidth), one can apply sampling or numerical integration, and still get guarantees
about the achieved solution.

7.3.2 NON-CONSTANT COST FUNCTIONS

In Section 4.3, we discuss the case where every sensor can have a different cost, and one has a
budget which one can spend. An alternate approach to sensor costs is presented by Zidek et al.
(2000). They propose a criterion that makes a trade off between achieved reduction in entropy using
an entropy-to-cost conversion factor, that is, they optimize the sum of the entropy with a factor
times the cost of the placements. This criterion yields an unconstrained optimization problem. Our
approach to sensor costs (Section 4.3) yields a constrained optimization, maximizing our criteria
given a fixed budget that can be spent when placing sensors. Such a budget-based approach seems
more natural in real problems (where one often has a fixed number of sensors or amount of money
to spend). Moreover, our approach provides strong a priori theoretical guarantees and tighter online
bounds, which are not available for the approach of Zidek et al. (2000).
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7.4 Related Work in Machine Learning

In Machine Learning, several related techniques have been developed for selecting informative fea-
tures, for active learning and for speeding up GP inference.

7.4.1 FEATURE SELECTION AND DIMENSION REDUCTION

Given that the joint distribution of XA and XV \A is Gaussian, their mutual information is also

MI(A) =−1
2 ∑

i

log(1−ρ2
i ) (13)

where ρ2
1≥ ·· · ≥ ρ2

|V | are the canonical correlation coefficients between XA and XV \A (Caselton and
Zidek, 1984). McCabe (1984) show that maximizing the canonical correlations between observed
and unobserved variables can be interpreted as a form of principal components analysis, where one
realizes that selecting subsets of variables is a special kind of linear projection. A similar analysis is
presented for entropy and other common design criteria. Using Equation (13), a similar relationship
can be made to canonical correlation analysis (CCA; Hotelling, 1936), which finds linear projections
for V \A and A that maximize the correlations in the lower dimensional space. By considering these
lower-dimensional projections, one can determine how much variance is shared (jointly explained)
by V \A and A .

While dimension reduction techniques such as Principal Component Analysis (PCA) or CCA can
be used to find a lower dimensional representation of a high dimensional problem, these techniques
usually find projections which are non-sparse, that is, which are linear combinations of (almost)
all input variables. However, for interpretation purposes (and considering data acquisition cost),
one often desires sparse projections, which are linear combinations of only a small subset of input
variables. Moghaddam et al. (2005) and Moghaddam et al. (2006) consider the problem of selecting
such sparse linear projections (subject to a constraint on the number of nonzero entries) of mini-
mum reconstruction error (for PCA) and class separation (for LDA). In order to find these sparse
projections, they propose two approaches: A mixed integer program, which can solve the problem
optimally—albeit generally not in polynomial time, and a heuristic approach, using a greedy for-
ward search followed by a greedy backward elimination. They provide several theoretical bounds,
including a guarantee that this backward greedy algorithm achieves a solution of at least k

n λmax

where n = |V |, and k is the number of chosen observations (Moghaddam, 2007).

7.4.2 ACTIVE LEARNING

In the machine learning community, information-theoretic criteria have been used for active learn-
ing, techniques which allow the learning algorithm to influence the choice of training samples. For
example, information-theoretic criteria have been used in the analysis of query-by-committee to se-
lect samples (Sollich, 1996; Freund et al., 1997; Axelrod et al., 2001). Following Lindley (1956),
MacKay (1992) proposes selecting observations that maximize expected information gain, either
in terms of entropy or cross entropy, using Federov exchange. As opposed to this paper, which
addresses the optimization problem, MacKay (1992) focuses on comparing the different objective
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criteria. Cohn (1994) proposes scoring each potential observation by measuring the average reduc-
tion in predicted variance at a set of reference points. There is some evidence which suggests that
this approach can improve prediction in Gaussian process regression (Seo et al., 2000). Common
to all these active learning approaches, as well as to this paper, is the problem of selecting a set of
most informative observation. Unlike this paper, we are not aware of any prior work in this area
which provides rigorous approximation guarantees for this problem.

7.4.3 FAST GAUSSIAN PROCESS METHODS

Information-theoretic criteria are also used in sparse GP modeling, which attempts to reduce the
cost of inference by selecting a representative subset of the training data. Sample selection criteria
have included KL-divergence (Seeger et al., 2003) and entropy (Lawrence et al., 2003). In contrast
to sensor placement, where locations are chosen to minimize predictive uncertainty, in sparse GP
methods, the samples are chosen such that the approximate posterior matches the true posterior
(which uses the entire training set) as accurately as possible. Instead of choosing a subset of the
training data, Snelson and Ghahramani (2005) propose to optimize the location of a set of “hal-
lucinated” inputs. This approach results in a continuous optimization problem, which appears to
be easier to solve (albeit with no performance guarantees) than the discrete subset selection prob-
lem.

7.5 Relationship to Previous Work of the Authors

An earlier version of this paper appeared as (Guestrin et al., 2005). The present version is substan-
tially extended by new experiments on nonstationarity (Section 9.3, Section 9.2) and comparisons
to classical experimental design (Section 9.5). New are also the discussion of robust placements in
Section 6 and several extensions in Section 4 and Section 5.

Additionally, Krause et al. (2006) presented an approximation algorithm for optimizing node place-
ments for sensor networks using GPs that takes into account both the informativeness of placements
(analogously to the discussion in this paper) and the communication cost required to retrieve these
measurements. Their approach uses GPs both for modeling the monitored phenomenon as well as
the link qualities of the sensor network. Singh et al. (2007) consider the case of planning informa-
tive paths for multiple robots. Here, the goal is to select observations which are both informative,
but also lie on a collection of paths, one for each robot, of bounded length. They develop an approx-
imation algorithm with theoretical guarantees on the quality of the solution. In the setting of Krause
et al. (2006) and Singh et al. (2007)—unlike the case considered in this paper, where there are no
constraints on the location of the sensors—the greedy algorithm performs arbitrarily badly, and the
papers describe more elaborate optimization algorithms. In these algorithms, the submodularity of
mutual information is again the crucial property which allows the authors to obtain approximation
guarantees for their approach.

8. Notes on Optimizing Other Objective Functions

In this section, we discuss some properties of alternative optimality criteria for sensor placement.
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8.1 A Note on the Relationship with the Disk Model

The disk model for sensor placement (cf. Hochbaum and Maas, 1985; Bai et al., 2006) assumes that
each sensor can perfectly observe everything within a radius of r and nothing else. Hence we can
associate with every location y ∈ V a sensing region Dy, which, for a discretization of the space,
corresponds to the locations contained within radius r of location y. For a set of locations A , we
can define the coverage FD(A) =

S

y∈A Dy. It can be easily seen that this criterion is monotonic,
submodular and F( /0) = 0. Hence optimizing placements for the disk model criterion is a submodu-
lar maximization problem, and the greedy algorithm can guarantee a constant factor (1−1/e)OPT
approximation guarantee for finding the placement of k sensors with maximum coverage.

There is a sense, in which the approach of sensor placements in GPs can be considered a generaliza-
tion of the disk model. If we assume an isotropic GP with local kernel function as the one presented
in Figure 8, then a sensor measurement is correlated exactly with the locations within a disk around
its location. If the process has constant variance, then the greedy algorithm will, for the first few
sensors placed, only try to achieve a disjoint placement of the disks, and as such behave just like the
greedy algorithm for disk covering.

However, once enough sensors have been placed so that these “disks” start to overlap, the behavior
of the two approaches begins to differ: in a disk model there is no advantage in placing sensors
that lead to overlapping disks. In a GP model, even an isotropic one, “overlapping disks” lead to
better predictions in the overlapping area, a very natural consequence of the representation of the
uncertainty in the process.

8.2 A Note on Maximizing the Entropy

As noted by Ko et al. (1995), entropy is also a submodular set function, suggesting a possible
application of the result of Nemhauser et al. (1978) to the entropy criterion. The corresponding
greedy algorithm adds the sensor y maximizing H(A ∪ y)−H(A) = H(y | A). Unfortunately, our
analysis of approximate monotonicity does not extend to the entropy case: Consider H(y | A) for
A = {z}, for sufficiently small measurement noise σ2, we show that H(y |A) can become arbitrarily
negative as the mesh width of the discretization decreases. Thus, (even approximate) monotonicity
does not hold for entropy, suggesting that the direct application of the result of Nemhauser et al.
(1978) is not possible. More precisely, our negative result about the entropy criterion is:

Remark 12 Under the same assumptions as in Lemma 5, for any ε > 0, there exists a mesh dis-
cretization width δ > 0 such that for any discretization level δ′, where 0 < δ′ ≤ δ, entropy violates
the monotonicity criterion by at least ε, if σ2 < 1

4πe .

8.3 A Note on Maximizing the Information Gain

Another objective function of interest is the information gain of a sensor placement with respect to
some distinguished variables of interest U, that is, IG(A) = I(A ;U) = H(U)−H(U | A). Unfor-
tunately, this objective function is not submodular, even in the case of multivariate normal distribu-
tions: Let X = (X1,X2,X3) be distributed according to a multivariate Gaussian with zero mean and
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covariance

Σ =




2 1 1
1 1 0
1 0 2


 .

Let U = {X3}. Here, X2 and X3 are marginally independent. Thus, alone, X2 provides no gain in
information. However, X2 does provide information about X1. Thus, if we first place a sensor at
position 1, placing a sensor at position 2 does help. More formally, IG({X2})− IG( /0) = H(X3)−
H(X3 | X2) < H(X3 | X1)−H(X3 | X1,X2) = IG({X1,X2})− IG({X1}). Hence adding X2 to the
empty set achieves strictly less increase in information gain than adding X2 to the singleton set
containing X1, contradicting the submodularity assumption.

Remark 13 The information gain, IG(A) = I(A ;U) is not submodular in A .

8.4 A Note on Using Experimental Design for Sensor Placement

As discussed in Section 7.1, the goal of classical experimental design is to find a set A of experi-
mental stimuli {x1, . . . ,xk} such that the parameter estimation error covariance MA = (XT

A XA)−1 is
as small as possible, where XA is a matrix containing the xi as rows. The different optimality criteria
vary in the criteria used for measuring the smallness of MA . Consider the case where the number p
of parameters θ is greater than 1, as in the sensor placement setting, where θ are the uninstrumented
locations. If we select less than p observations, that is, |A | ≤ p, then (X T

A XA) is not full rank, and
MA is infinite. Hence, for |A | < p, all alphabetical optimality criteria are infinite. Consequently,
the A-, D- and E-optimality criteria are infinite as well for all discrete designs A of size less than
p, and hence two such designs are incomparable under these criteria. This incomparability implies
that the greedy algorithm will have no notion of improvement, and cannot be used for optimizing
discrete classical experimental designs. Hence, discrete classical design cannot be addressed using
the concept of submodularity.3

In the case of Bayesian experimental design, the parameters are equipped with a prior, and hence
the posterior error covariance will not be infinite. In this case however, none of Bayesian A-, D- and
E-optimality can be optimized using the result by Nemhauser et al. (1978) in general:

• Bayesian A-optimality. Let y = θT X + w where X =

[
1 1 2
1 2 1

]
. Also let θ = (θ1,θ2) as

well as the noise w = (w1,w2,w3) have independent normal priors with mean 0 and variance
1. Then the joint distribution of (y,θ) is multivariate normal with mean 0 and covariance

Σ =




3 3 3 1 1
3 6 4 1 2
3 4 6 2 1
1 1 2 1 0
1 2 1 0 1




.

3. Note that generally, GPs are infinite-dimensional objects, so using classical experimental design for finite linear
models only makes limited sense for sensor placement, for example, if an appropriate discretization is chosen.
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The goal of A-optimality is to maximally reduce the variance in the posterior distribution
over θ, that is, we want to select A ⊆V = {y1,y2,y3} in order to maximize F(A) = tr(Σθ)−
tr(Σθ|A). Now, we can verify that F({y1,y2,y3})−F({y1,y2})≥ F({y1,y3})−F({y1}), con-
tradicting submodularity.

• Bayesian D-optimality. As shown, for example, by Sebastiani and Wynn (2000), in the case
of Bayesian experimental design for linear regression with independent, homoscedastic noise,
D-optimality is actually equivalent to the entropy criterion, that is, argmax|A |≤k I(Θ,A) =
argmax|A |≤k H(A). Hence, the same counterexample as in Section 8.2 shows, that, while
Bayesian D-optimality is submodular in this case, it is arbitrarily non-monotonic, and hence
the result of Nemhauser et al. (1978) does not apply. In the more general case of dependent,
heteroscedastic noise, D-optimality is equivalent to the information gain criterion with U =
{θ} and the counterexample of Section 8.3 applies, contradicting submodularity.

• Bayesian E-optimality. Consider the case where θ = (θ1,θ2) equipped with a normal prior
with zero mean and covariance diag([1,1]). Let yi = θT xi + w where w is Gaussian noise
with mean zero and variance ε. Let x1 = (1,0)T and x2 = (0,1)T . In this setting, the goal
of E-optimality is to maximize F(A) = λmax(Σθ)−λmax(Σθ|A). If we perform no experiment
(A = /0), then the posterior error covariance, Σθ|A = Σθ, and hence the maximum eigenvalue
is 1. If we observe either y1 or y2, the largest eigenvalue is still λmax(Σθ|XA ) = 1, and hence
F( /0) = F({y1}) = F({y2}) = 0. But if we observe both y1 and y2, then λmax(Σθ|A) = ε

1+ε ,
and F({y1,y2}) > 0. Hence F({y2,y1})−F({y1}) > F({y2})−F( /0), that is, adding y2 helps
more if we add it to y1 than if we add it to the empty set, contradicting submodularity.

Remark 14 The analysis of Nemhauser et al. (1978) applies to neither of Bayesian A-, D-, and
E-optimality in general.

However, Das and Kempe (2008) show that in certain cases, under a condition of conditional
suppressor-freeness, the variance reduction F (and hence Bayesian A-optimality) can indeed be
shown to be submodular.

9. Experiments

We performed experiments on two real-world data sets, which are described in Section 9.1. In
Section 9.2 we compare placements on stationary and nonstationary GP models. In Sections 9.3, 9.4
and 9.5 we compare mutual information with the disk model, with entropy and with other classical
experimental design criteria, in terms of prediction accuracy. In 9.6 we compare the performance
of the greedy algorithm with other heuristics, and in Section 9.7 we analyze the effect of exploiting
local kernels.

9.1 Data Sets

We first introduce the data sets we consider in our experiments. In our first data set, we analyze
temperature measurements from the network of 46 sensors shown in Figure 1(a). Our training data
consisted of samples collected at 30 sec. intervals on 3 consecutive days (starting Feb. 28th 2004),
the testing data consisted of the corresponding samples on the two following days.
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Our second data set consists of precipitation data collected during the years 1949 - 1994 in the
states of Washington and Oregon (Widmann and Bretherton, 1999). Overall 167 regions of equal
area, approximately 50 km apart, reported the daily precipitation. To ensure the data could be
reasonably modeled using a Gaussian process we applied a log-transformation, removed the daily
mean, and only considered days during which rain was reported. After this preprocessing, we
selected the initial two thirds of the data as training instances, and the remaining samples for testing
purposes. From the training data, we estimated the mean and empirical covariance, and regularized
it by adding independent measurement noise4 of σ2 = 0.1.

We computed error bars for the prediction accuracies in all of our experiments, but due to the vio-
lated independence of the collected samples (which are temporally correlated), these error bars are
overconfident and hence not reported here. The estimated standard errors under the independence
assumption are too small to be visible on the plots.

9.2 Comparison of Stationary and Non-stationary Models

To see how well both the stationary and nonstationary models capture the phenomenon, we per-
formed the following experiment: We learned both stationary and non-stationary GP models from
an increasing number of sensors. The model with stationary correlation function used an isotropic
Exponential kernel with bandwidth fitted using least-squares fit of the empirical variogram (Cressie,
1991). We also learned a nonstationary GP using the technique from Nott and Dunsmuir (2002).
Both GP models were estimated from an initial deployment of an increasing number of sensors.
We used non-stationary the same variance process for both stationary and nonstationary models
(i.e., giving more information to the stationary model than commonly done). Since with increasing
amount of data, the empirical covariance matrix will exactly capture the underlying process, we
consider the empirical covariance as the ground truth both for placements and prediction. Hence we
also selected placements using the entire estimated covariance matrix.

We optimized the designs using mutual information on all the models. We evaluate the prediction
accuracy for an increasing number of near-optimally placed sensors, using the estimated model and
the measured values for the selected sensors. Figure 9(a) presents the results for the temperature
data set. We can see that the nonstationary model learned from 10 sensors performs comparably to
the stationary model with 40 sensors, even with non-stationary variance process. As we increase
the number of sensors in the initial deployment, the Root Mean Squared error (RMS) prediction
accuracies we get for placements of increasing size converge to those obtained for optimizing the
placements based on the empirical covariance matrix.

Figure 9(b) presents the results of the same experiment for the precipitation data. Here we can see
that the nonstationary model estimated using 20 sensors leads to better RMS accuracies than the
stationary model, even if latter is estimated using 160 sensors.

4. The measurement noise σ2 was chosen by cross-validation.
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Figure 9: RMS curves for placements of increasing size, optimized using stationary and nonsta-
tionary GPs. Prediction is done using estimated models. (a) Stationary GP estimated for
the temperature data from 40 sensors (S40), nonstationary GPs estimated from 10, 30 and
40 sensors (N10, N30, N40). (b) Stationary GP estimated for the precipitation data from
160 sensors (S160), nonstationary GPs estimated from 20, 40, 80 and 160 sensors (N20,
N40, N80, N160).

9.3 Comparison of Data-driven Placements with Geometric Design Criteria

We now compare placements based on our data-driven GP models with those based on the traditional
disk model. This model assumes that every sensor can perfectly measure the phenomenon within a
radius of r, and have no information outside this radius. Since choosing an appropriate radius for
the disk model is very difficult in practice, we decided to choose r = 5m since for this radius 20
sensors could just spatially cover the entire space. We also learned stationary and non-stationary
GP models as discussed in Section 9.2.

For the disk model, we used the greedy set covering algorithm. The design on both GP models
was done using our greedy algorithm to maximize mutual information. For an increasing number
of sensors, we compute the Root Mean Squares (RMS) prediction error on the test data. In order to
separate the placement from the prediction task, we used the empirical covariance matrix estimated
from the training data on all 46 locations for prediction, for all three placements.

Figure 10(a) presents the results of this experiment. We can see that the geometrical criterion
performs poorly compared to the model based approaches. We can see that the placements based
on the empirical covariance matrix perform best, quite closely followed by the accuracies obtained
by the designs based on the nonstationary process. Figure 10(b) shows the results for the same
experiment on the precipitation data set.

9.4 Comparison of the Mutual Information and Entropy Criteria

We also compared the mutual information criterion to other design criteria. We first compare it
against the entropy (variance) criterion. Using the empirical covariance matrix as our process, we
use the greedy algorithm to select placements of increasing size, both for mutual information and
for entropy. Figure 12(a) and Figure 12(b) show the results of this comparison on models estimated
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Figure 10: RMS curves for placements of increasing size, optimized using the disk model, station-
ary and nonstationary GPs. Prediction for all placements is done using the empirical
covariance. Stationary GPs and nonstationary GPs estimated from 30 sensors (N30,
S30, for temperature data) or 40 sensors (N40, S40, for precipitation data).

(a) Placements of temperature sensors (b) Placements of rain sensors

Figure 11: Example sensor placements for temperature and precipitation data. Squares indicate
locations selected by mutual information, diamonds indicate those selected by entropy.
Notice how entropy places sensors closer to the border of the sensing field.

for the morning (between 8 am and 9 am) and noon (between 12 pm and 1 pm) in the Intel lab data.
Figure 12(a) and Figure 12(b) plot the log-likelihood of the test set observations with increasing
number of sensors for both models. Figure 12(e) presents the RMS error for a model estimated
for the entire day. We can see that mutual information in almost all cases outperforms entropy,
achieving better prediction accuracies with a smaller number of sensors.

Figure 12(f) presents the same results for the precipitation data set. Mutual information signifi-
cantly outperforms entropy as a selection criterion—often several sensors would have to be addi-
tionally placed for entropy to reach the same level of prediction accuracy as mutual information.
Figure 11(b) shows where both objective values would place sensors to measure precipitation. It
can be seen that entropy is again much more likely to place sensors around the border of the sensing
area than mutual information.
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(c) Morning log-likelihood
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Figure 12: Prediction error and log-likelihood on test data for temperatures (a-e) and precipitation
(f) in sensor network deployment, for an increasing number of sensors.

To gain further insight into the qualitative behavior of the selection criteria we learned a GP model
using all sensors over one hour starting at noon. The model was fit with a isotropic Gaussian kernel
and quadratic trend for the mean, using the geoR Toolkit (Ribeiro Jr. and Diggle, 2001). Fig-
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ures 13(a) and 13(b) show the posterior mean and variance for the model. Using our algorithms,
22 sensors were chosen using the entropy and mutual information criteria. For each set of selected
sensors, additional models were trained using only the measurements of the selected sensors. Pre-
dicted temperature surfaces for the entropy and mutual information configurations are presented in
Figures 13(c) and 13(d). Entropy tends to favor placing sensors near the boundary as observed in
Section 3, while mutual information tends to place the sensors on the top and bottom sides, which
exhibited the most complexity and should have a higher sensor density. The predicted variances for
each model are shown in figures 13(e) and 13(f). The mutual information version has significantly
lower variance than the entropy version almost everywhere, displaying, as expected, higher variance
in the unsensed areas in the center of the lab.

9.5 Comparison of Mutual Information with Classical Experimental Design Criteria

In order to compare the mutual information placements with the classical optimality criteria, we
performed the following experiment. We uniformly selected 12 target locations U in the lab as
locations of interest. We then set up the linear model

xS = ΣSUΣ−1
UU xU +w.

Hereby, xS denotes measurements at the locations S , among which we choose our placement, xU
are the values at the locations of interest (no sensors can be placed there), and w models independent
normal measurement noise with constant variance. After subtraction of the training set mean, this
model uses the Best Linear Unbiased (Kriging) estimator for predicting xS from xU .

The problem becomes to select the sensor locations A ⊂ S which allow most precise prediction
of the variables of interest, in the sense of minimizing the error covariance 1

σ2 (AT A)−1, where A =

ΣSUΣ−1
UU . The different classical design criteria vary in how the scalarization of the error covariance

is done. D-optimal design minimizes the log-determinant, A-optimal design minimizes the trace,
and E-optimal design minimizes the spectral radius (the magnitude of the largest eigenvalue) of the
error covariance. Note that this problem formulation favors the classical design criteria, which are
tailored to minimize the error of predicting the values at the target locations U, whereas mutual
information and entropy just try to decrease the uncertainty in the entire space.

In order to solve the classical experimental design problems, we use the formulations as a semidef-
inite program (SDP) as discussed by Boyd and Vandenberghe (2004). We use SeDuMi (Sturm,
1999) for solving these SDPs. Since the integral optimization is hard, we solve the SDP relaxation
to achieve a fractional design. This fractional solution defines the best way to distribute an infinite
(or very large) budget of experiments to the different choices on the design menu (the variables in
S ). In the sensor selection problem however, we have to solve the integral problem, since we face
the binary decision of whether a sensor should be placed at a particular location or not. This is a
hard combinatorial optimization problem. Since no near-optimal solution is known, we select the
locations corresponding to the top k coefficients of the design menu, as is common practice. We
compare the placements using the classical design criteria to those using the mutual information
and entropy criteria, and evaluate each of them on the RMS prediction accuracy on the hold-out
locations U.
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Figure 13: Comparison of predictive quality of subsets selected using MI and entropy.

Figure 14(a) presents the results of this experiment on the temperature data. We can see that even
though mutual information optimizes for prediction accuracy in the entire space and not specifically
for the target locations U, it incurs the least RMS prediction error, apart from the placements con-
sisting only of a single sensor. E-optimal design performs comparably with the entropy criterion,
and D- and A-optimality perform worse.
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(b) Comparison with A-, D- and E-optimality on precip-
itation data, 111 node subsample
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Figure 14: Comparison with classical experimental design. We plot RMS prediction error on 25%
hold out target locations U.

When we performed the same experiment with the precipitation data, SeDuMi ran out of memory (1
GB) for the SDP required to solve the A-optimality criterion. The largest subsample we could solve
for all A-, D- and E-optimality on this data set was limited to 111 locations. Figure 14(b) presents the
results. For the entire data set of 167 locations, we could still solve the D- and E-optimality SDPs.
The results are presented in Figure 14(c). We can observe that for the 111 locations, D-optimality
slightly outperforms mutual information. We have to consider, however, that the classical criteria
are optimized to minimize the error covariance with respect to the locations U of interest, whereas
mutual information merely tries to achieve uniformly low uncertainty over the entire space. For the
full set of 167 locations, mutual information outperforms the other design criteria.

Figure 14(d) presents the running time for optimizing A-, D-, E-optimality, and mutual information,
mutual information with truncation parameter ε = 1 and entropy on the 111 node subsample of the
precipitation data on a Pentium M 1.7 GHz processor. We can see that optimizing entropy is fastest,
closely followed by the truncated mutual information criterion described in Section 5.2 that is fur-
ther evaluated in Section 9.7. Even without truncation, optimizing mutual information is three times
faster than (fractionally) optimizing D-optimality and 24 times faster than A-optimality.
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Figure 15: Comparison of the greedy algorithm with several heuristics.

9.6 Empirical Analysis of the Greedy Algorithm

To study the effectiveness of the greedy algorithm, we compared the mutual information of the sets
selected by our greedy algorithm to random selections, to a hill climbing method that uses a pairwise
exchange heuristic, and—for small subsamples—to the bounds proved by the MIP as discussed in
Section 4.5.

In this experiment, we used the empirical covariance matrix as the input to the algorithms. Fig-
ure 15(b) shows that the greedy algorithm provided significantly better results than the random
selections, and even the maximum of a hundred random placements did not reach the quality of the
greedy placements. Furthermore, we enhanced the random and greedy selections with the pairwise
exchange (PE) heuristic, which iteratively finds exchanges of elements y ∈ A and y′ ∈ S \A such
that exchanging y and y′ improves the mutual information score. Figure 15(a) presents objective
values of these enhanced selection methods for a subset size of 12, for which the maximum over
100 random selections enhanced with PE actually exceeded the greedy score (unlike with most
other subset sizes, where random + PE did about as well as the greedy algorithm). Typically, the
objective values of random + PE, greedy + PE and greedy did not differ much. Note that as men-
tioned in Section 4, the performance guarantee for the greedy algorithm always provides an online
approximation guarantee for the other heuristics.

For a 16 node subsample of the temperature data set, we used the MIP from Section 4.5 to compute
bounds on the optimal mutual information. Figure 5 presents the results. It can be seen, that for this
small subsample, the greedy solution is never more than 5 percent away from the optimal solution,
which is a much tighter bound than the a priori approximation factor of (1−1/e).

We also experimented with the lazy evaluation strategy discussed in Section 5.1. For example
when picking placements of size 50 for the precipitation data set, the number of mutual informa-
tion computations decreased from 7125 to 1172, and the computation time on a Pentium M 1.7
GHz processor decreased from 41.3 seconds to 8.7 seconds. The results for both temperature and
precipitation data sets are presented in Figures 16(a) and 16(b).
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Figure 16: Performance improvements by using lazy evaluations of mutual information.
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Figure 17: Analysis of the experiments with local kernels. (a) running times for increasing level of
truncation. (b) increase of average RMS error with increasing level of truncation. Note
that for a truncation between 0.5 and 1.2, a good tradeoff between running time and
error is achieved.

9.7 Results on Local Kernels

We also performed experiments to assess the running time versus quality trade-off incurred by using
approximate local kernels. To provide intuition about the covariance structure, note that the 25, 50
and 75 percentiles of the absolute covariance entries were 0.122, 0.263 and 0.442, the maximum
was 3.51, the minimum was 8.78E−6. For the variance (the diagonal entries), the median was
1.70, and the minimum was 0.990. Figure 17(a) shows that the computation time can be drastically
decreased as we increase the truncation parameter ε from 0 to the maximum variance. Figure 17(b)
shows the RMS prediction accuracy for the 20 element subsets selected by Algorithm 3. According
to the graphs, the range ε ∈ [0.5,1] seems to provide the appropriate trade-off between computation
time and prediction accuracy.

In order to study the effect of local kernels on the placements, we performed the following ex-
periment. We created a regular 7 by 7 grid with unit distance between neighboring grid points,
and generated covariance matrices using two different GPs, one using the Gaussian (squared ex-
ponential) kernel, and the other using the local kernel (Equation 9). We exponentially increased
the bandwidth in eight steps from 0.1 to 12.8. Figures 18 and 19 show the corresponding place-
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ments using mutual information to select the locations. From this experiment, we can see that the
placements obtained using the non-local Gaussian kernel tend to be spread out slightly more, as one
might expect. Overall, however, the placements appear to be very similar. In light of the compu-
tational advantages provided by local kernels, these results provide further evidence in the spirit of
Section 9.7, namely that local kernels can be a valuable tool for developing efficient model-based
sensor placement algorithms.
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Figure 18: Placements under Gaussian kernel, mutual information criterion, increasing bandwidth

10. Future Work

There are several interesting possible extensions to the present work. Since the predictive variance in
(2) does not depend on the actual observations, any closed-loop strategy which sequentially decides
on the next location to measure, surprisingly, is equivalent to an open loop placement strategy which
selects locations to make observations independently of the measured values. If there is uncertainty
about the model parameters however, such as about the kernel bandwidths, then this is no longer
true. In this case, we expect a sequential, closed-loop strategy to be more effective for predicting
spatial phenomena. Krause and Guestrin (2007) present bounds comparing the performance of the
optimal sequential strategy with the optimal fixed placement. This bound essentially depends on the
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Figure 19: Placements under local kernel, mutual information criterion, increasing bandwidth

parameter entropy. We consider several exploration strategies for effectively reducing this parameter
entropy and present sample complexity bounds. However, more work is needed in this area.

Another interesting open question is whether an approximation algorithm can be found for optimiz-
ing sensor placements subject to submodular cost functions—usually, the more sensors we have to
buy, the cheaper they become per unit. To address this problem, Narasimhan and Bilmes (2006)
present a submodular-supermodular procedure for bicriteria-optimization of a submodular function
of which a submodular cost is subtracted. This procedure, while elegant, unfortunately can not
provide approximation guarantees for this problem.

Of further interest are also constrained sensor placement problems, in which, for example, the placed
sensors have to be connected in a routing tree, or have to lie on a collection of paths. Krause et al.
(2006) provide evidence that submodularity can be leveraged to derive approximation algorithms
for sensor placement even in these combinatorially even more challenging constrained optimization
problems. However, there are still many open issues subject to further research.
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11. Conclusions

In this paper, we tackle the problem of maximizing mutual information in order to optimize sen-
sor placements. We prove that the exact optimization of mutual information is NP-complete, and
provide an approximation algorithm that is within (1− 1/e) of the maximum mutual information
configuration by exploiting the submodularity in the criterion. We also illustrate that submodularity
can be used to obtain online bounds, which are useful for bounding the quality of the solutions ob-
tained by any optimization method, and for designing branch and bound algorithms for the mutual
information criterion. In order to scale up the application of our approach, show how to exploit
lazy evaluations and local structure in GPs to provide significant speed-ups. We also extend our
submodularity-based analysis of mutual information to incorporate robustness to sensor failures
and model uncertainty.

Our very extensive empirical results indicate that data-driven placements can significantly improve
the prediction accuracy over geometric models. We find, in contrast to previous work (Caselton
et al., 1992; Zidek et al., 2000), that the mutual information criterion is often better than entropy
and other classical experimental design criteria, both qualitatively and in prediction accuracy. In
addition, the results show that a simple greedy algorithm for optimizing mutual information provides
performance that is very close to the optimal solution in problems that are small enough to be solved
exactly, and comparable to more complex heuristics in large problems.

We believe this work can be used to increase the efficacy of monitoring systems, and is a step
towards well-founded active learning algorithms for spatial and structured data.
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Appendix A. Proofs

Proof [Theorem 2] Our reduction builds on the proof by Ko et al. (1995), who show that for any
graph G, there exists a polynomially related, symmetric positive-definite matrix Σ such that Σ has
a subdeterminant (of a submatrix resulting from the selection of k rows and columns i1, . . . , ik)
greater than some M if G has a clique of size at least k, and Σ does not have a subdeterminant
greater than M− ε for some (polynomially-large) ε > 0 if G does not have such a clique. Let
G be a graph, and let Σ be the matrix constructed in Ko et al. (1995). We will consider Σ as
the covariance matrix of a multivariate Gaussian distribution with variables XU = {X1, . . . ,Xn}.
Introduce additional variables XS = {y1, . . . ,yn} such that yi|Xi = x ∼N (x,σ2). Note that a subset
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A ⊆ S , |A | = k, has maximum entropy of all such subsets if and only if the parents ΓA ⊂ U
of A have maximum entropy among all such subsets of U. Now note that I(A ;(U ∪ S) \A) =
H(A)−H(A | (U ∪S)\A) = H(A)−H(A |U), because yi and y j are conditionally independent
given U. Furthermore, again because of independence, H(A |U) is a constant only depending on
the cardinality of A . Assume we could decide efficiently whether there is a subset A ⊂ S such that
I(A ;V \A)≥M′. If we choose σ2 small enough, then this would allow us to decide whether G has
a clique of size k, utilizing the gap ε.

Proof [Lemma 5] Define K̂ (x,y) = K (x,y) for x 6= y and K̂ (x,x) = K (x,x) + σ2 to include the
sensor noise σ2. Since C is compact and K continuous, K is uniformly continuous over C . Hence,
for any ε1, there exists a δ1 such that for all x,x′,y,y′,‖x− x′‖2 ≤ δ1,‖y− y′‖2 ≤ δ1 it holds that
|K (x,y)−K (x′,y′)| ≤ ε1. Assume C1 ⊂ C is a finite mesh grid with mesh width 2δ1. We allow
sensor placement only on grid C1. Let C2 ⊂ C be a mesh grid of mesh width 2δ1, which is derived
by translating C1 by δ1 in Euclidean norm, and let G1,G2 denote the restriction of the GP G to
C1,C2. We assume C1,C2 cover C in the sense of compactness. We use the notation ·̃ to refer to the
translated version in G2 of the random variable · in G1. K̂ is a symmetric strictly positive definite
covariance function and |K̂ (X ,y)− K̂ (X̃ , ỹ)| ≤ ε1 for all X ,y ∈ G1. Moreover, since K is positive
semidefinite, the smallest eigenvalue of any covariance matrix derived from K̂ is at least σ2.

Let A be a subset of C1 and X ∈ C1 \A . Using (5), we first consider the conditional variance σ2
X |A .

By definition, ‖y− ỹ‖2 ≤ δ1, and hence |K̂ (X ,y)− K̂ (X , ỹ)| ≤ ε1 for all y ∈ A . Hence we know
that ‖ΣAA −ΣÃÃ‖2 ≤ ‖ΣAA −ΣÃÃ‖F ≤ k2ε1. We furthermore note that ‖Σ−1

AA‖2 = λmax(Σ−1
AA) =

λmin(ΣAA)−1 ≤ σ−2, and hence

‖Σ−1
AA −Σ−1

ÃÃ‖2 = ‖Σ−1
AA(ΣÃÃ −ΣAA)Σ−1

ÃÃ‖2

≤ ‖Σ−1
AA‖2‖ΣÃÃ −ΣAA‖2‖Σ−1

ÃÃ‖2 ≤ σ−4k2ε1.

We derive ‖ΣXÃ −ΣXA‖2 ≤ ‖ε11T‖2 = ε1
√

k, hence

|σ2
X |A−σ2

X |Ã |= |ΣXA Σ−1
AA ΣAX −ΣXÃΣ−1

ÃÃ ΣÃX |
≤ 2‖ΣXA −ΣXÃ‖2‖Σ−1

AA‖2‖ΣXA‖2 +‖Σ−1
AA −Σ−1

ÃÃ‖2‖ΣXA‖2
2 +O(ε2

1)

≤ 2ε1

√
kσ−2M

√
k +σ−4k2ε1M2k +O(ε2

1)

≤ ε1kσ−2M
(
2+σ−2k2M

)
+O(ε2

1),

where M = maxx∈C K (x,x). We choose δ such that the above difference is bounded by σ2ε. We
note that (assuming w.l.o.g. H(X | A)≥ H(X | Ã))

H(X | A)−H(X | Ã)=
1
2

log
σ2

X |A
σ2

X |Ã
≤ log(1+ε)

2
≤ ε

2
.

which concludes the argument.

Proof [Corollary 6] The higher order terms O(ε2
1) can be worked out as kσ−2ε2(1 + Mk2σ−2 +

εk2σ−2). Assuming that ε < min(M,1), this is bounded by 3k3Mσ−4ε. Using the Lipschitz as-
sumption, we can directly compute δ1 from ε1 in the above proof, by letting δ = ε1/L. Let R =
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kσ−2M
(
2+σ−2k2M

)
+ 3k3Mσ−4. We want to choose δ such that ε1R ≤ σ2ε. Hence if we choose

δ ≤ σ2ε
LR , then |H(X | A)−H(X | Ã)| ≤ ε uniformly as required. Note that in order to apply the

result from Nemhauser et al. (1978), the approximate monotonicity has to be guaranteed for subsets
of size 2k, which results in the stated bound.

Proof [Theorem 7] The following proof is an extension of the proof by Nemhauser et al. (1978),
using some simplifications by Jon Kleinberg.

Let s1, . . . ,sk be the locations selected by the greedy algorithm. Let Ai = {s1, . . . ,si}, A∗ be the
optimal solution, and δi = MI(Ai)−MI(Ai−1). By Lemma 5, we have, for all 1≤ i≤ k,

MI(Ai∪A∗)≥MI(A∗)− kε.

We also have, for 0≤ i < k,

MI(Ai∪A∗)≤MI(Ai)+ kδi+1 =
i

∑
j=1

δ j + kδi+1.

Hence we have the following sequence of inequalities:

MI(A∗)− kε≤ kδ1

MI(A∗)− kε≤ δ1 + kδ2

...

MI(A∗)− kε≤
k−1

∑
j=1

δ j + kδk.

Now we multiply both sides of the i-th inequality by
(
1− 1

k

)k−1
, and add all inequalities up. After

cancellation, we get
(

k−1

∑
i=0

(1−1/k)i

)
(MI(A∗)− kε)≤ k

k

∑
i=1

δi = k MI(Ak).

Hence, as claimed, with AG = Ak (i.e., AG is the k-element greedy solution)

MI(AG)≥
(

1− (1−1/k)k
)

(MI(A∗)− kε)≥ (1−1/e)(MI(A∗)− kε).

Proof [Remark 12] We have that H(y | Z) < 0⇔ K (y,y)+ σ2− K (Z,y)2

K (Z,Z)+σ2 < 1
2πe . Using a similar

argument as the proof of Lemma 5, for very fine discretizations, there exists a y arbitrarily close to
Z, such that for any α > 0, |K (Z,Z)−K (y,y)| ≤ α and |K (Z,Z)−K (Z,y)| ≤ α. Plugging these
bounds into the definition of H(y | Z) and some algebraic manipulation proves the claim.
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Abstract

Ensemble learning algorithms such as boosting can achieve better performance by averaging over
the predictions of some base hypotheses. Nevertheless, most existing algorithms are limited to
combining only a finite number of hypotheses, and the generated ensemble is usually sparse. Thus,
it is not clear whether we should construct an ensemble classifier with a larger or even an infinite
number of hypotheses. In addition, constructing an infinite ensemble itself is a challenging task.
In this paper, we formulate an infinite ensemble learning framework based on the support vector
machine (SVM). The framework can output an infinite and nonsparse ensemble through embed-
ding infinitely many hypotheses into an SVM kernel. We use the framework to derive two novel
kernels, the stump kernel and the perceptron kernel. The stump kernel embodies infinitely many
decision stumps, and the perceptron kernel embodies infinitely many perceptrons. We also show
that the Laplacian radial basis function kernel embodies infinitely many decision trees, and can thus
be explained through infinite ensemble learning. Experimental results show that SVM with these
kernels is superior to boosting with the same base hypothesis set. In addition, SVM with the stump
kernel or the perceptron kernel performs similarly to SVM with the Gaussian radial basis function
kernel, but enjoys the benefit of faster parameter selection. These properties make the novel kernels
favorable choices in practice.

Keywords: ensemble learning, boosting, support vector machine, kernel

1. Introduction

Ensemble learning algorithms, such as boosting (Freund and Schapire, 1996), are successful in prac-
tice (Meir and Rätsch, 2003). They construct a classifier that averages over some base hypotheses in
a set H . While the size of H can be infinite, most existing algorithms use only a finite subset of H ,
and the classifier is effectively a finite ensemble of hypotheses. Some theories show that the finite-
ness places a restriction on the capacity of the ensemble (Freund and Schapire, 1997), and some
theories suggest that the performance of boosting can be linked to its asymptotic behavior when the
ensemble is allowed to be of an infinite size (Rätsch et al., 2001). Thus, it is possible that an infinite
ensemble is superior for learning. Nevertheless, the possibility has not been fully explored because
constructing such an ensemble is a challenging task (Vapnik, 1998).

In this paper, we conquer the task of infinite ensemble learning, and demonstrate that better
performance can be achieved by going from finite ensembles to infinite ones. We formulate a
framework for infinite ensemble learning based on the support vector machine (SVM) (Vapnik,
1998). The key of the framework is to embed an infinite number of hypotheses into an SVM kernel.

c©2008 Hsuan-Tien Lin and Ling Li.
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Such a framework can be applied both to construct new kernels for SVM, and to interpret some
existing ones (Lin, 2005). Furthermore, the framework allows us to compare SVM and ensemble
learning algorithms in a fair manner using the same base hypothesis set.

Based on the framework, we derive two novel SVM kernels, the stump kernel and the percep-
tron kernel, from an ensemble learning perspective (Lin and Li, 2005a). The stump kernel embodies
infinitely many decision stumps, and as a consequence measures the similarity between examples
by the `1-norm distance. The perceptron kernel embodies infinitely many perceptrons, and works
with the `2-norm distance. While there exist similar kernels in literature, our derivation from an
ensemble learning perspective is nevertheless original. Our work not only provides a feature-space
view of their theoretical properties, but also broadens their use in practice. Experimental results
show that SVM with these kernels is superior to successful ensemble learning algorithms with
the same base hypothesis set. These results reveal some weakness in traditional ensemble learn-
ing algorithms, and help understand both SVM and ensemble learning better. In addition, SVM
with these kernels shares similar performance to SVM with the popular Gaussian radial basis func-
tion (Gaussian-RBF) kernel, but enjoys the benefit of faster parameter selection. These properties
make the two kernels favorable choices in practice.

We also show that the Laplacian-RBF kernel embodies infinitely many decision trees, and hence
can be viewed as an instance of the framework. Experimentally, SVM with the Laplacian-RBF ker-
nel performs better than ensemble learning algorithms with decision trees. In addition, our deriva-
tion from an ensemble learning perspective helps to explain the success of the kernel on some
specific applications (Chapelle et al., 1999).

The paper is organized as follows. In Section 2, we review the connections between SVM and
ensemble learning. Next in Section 3, we propose the framework for embedding an infinite number
of hypotheses into a kernel. We then derive the stump kernel in Section 4, the perceptron kernel
in Section 5, and the Laplacian-RBF kernel in Section 6. Finally, we show the experimental results
in Section 7, and conclude in Section 8.

2. Support Vector Machine and Ensemble Learning

In this section, we first introduce the basics of SVM and ensemble learning. Then, we review some
established connections between the two in literature.

2.1 Support Vector Machine

Given a training set {(xi,yi)}N
i=1, which contains input vectors xi ∈ X ⊆ R

D and their corresponding
labels yi ∈ {−1,+1}, the soft-margin SVM (Vapnik, 1998) constructs a classifier

g(x) = sign
(

〈w,φx〉+b
)

from the optimal solution to the following problem:1

(P1) min
w∈F ,b∈R,ξ∈RN

1
2
〈w,w〉+C

N

∑
i=1

ξi

s.t. yi
(

〈w,φxi〉+b
)

≥ 1−ξi, for i = 1,2, . . . ,N,

ξi ≥ 0, for i = 1,2, . . . ,N.

1. When η is nonzero, sign(η) ≡ η
|η| . We shall let sign(0) ≡ 0 to make some mathematical setup cleaner.
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Here C > 0 is the regularization parameter, and φx = Φ(x) is obtained from the feature map-
ping Φ : X → F . We assume the feature space F to be a Hilbert space equipped with the inner
product 〈·, ·〉 (Schölkopf and Smola, 2002). Because F can be of an infinite number of dimen-
sions, SVM solvers usually work on the dual problem:

(P2) min
λ∈RN

1
2

N

∑
i=1

N

∑
j=1

λiλ jyiy jK (xi,x j)−
N

∑
i=1

λi

s.t. 0 ≤ λi ≤C, for i = 1,2, . . . ,N,

N

∑
i=1

yiλi = 0.

Here K is the kernel function defined as K (x,x′) = 〈φx,φx′〉. Then, the optimal classifier becomes

g(x) = sign

(

N

∑
i=1

yiλiK (xi,x)+b

)

, (1)

where b can be computed through the primal-dual relationship (Vapnik, 1998; Schölkopf and Smola,
2002).

The use of a kernel function K instead of computing the inner product directly in F is called the
kernel trick, which works when K (·, ·) can be computed efficiently (Schölkopf and Smola, 2002).
Alternatively, we can begin with an arbitrary K , and check whether there exists a space-mapping
pair (F ,Φ) such that K (·, ·) is a valid inner product in F . A key tool here is the Mercer’s condition,
which states that a symmetric K (·, ·) is a valid inner product if and only if its Gram matrix K,
defined by Ki, j = K (xi,x j), is always positive semi-definite (PSD) (Vapnik, 1998; Schölkopf and
Smola, 2002).

The soft-margin SVM originates from the hard-margin SVM, which forces the margin viola-
tions ξi to be zero. When such a solution is feasible for (P1), the corresponding dual solution can be
obtained by setting C to ∞ in (P2).

2.2 Adaptive Boosting and Linear Programming Boosting

The adaptive boosting (AdaBoost) algorithm (Freund and Schapire, 1996) is perhaps the most pop-
ular and successful approach for ensemble learning. For a given integer T and a hypothesis set H ,
AdaBoost iteratively selects T hypotheses ht ∈ H and weights wt ≥ 0 to construct an ensemble
classifier

gT (x) = sign

(

T

∑
t=1

wtht(x)

)

.

The underlying algorithm for selecting ht ∈ H is called a base learner. Under some assump-
tions (Rätsch et al., 2001), it is shown that when T → ∞, AdaBoost asymptotically approximates an
infinite ensemble classifier

g∞(x) = sign

(

∞

∑
t=1

wtht(x)

)

, (2)
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such that (w,h) is an optimal solution to

(P3) min
wt∈R,ht∈H

∞

∑
t=1

wt

s.t. yi

(

∞

∑
t=1

wtht(xi)

)

≥ 1, for i = 1,2, . . . ,N,

wt ≥ 0, for t = 1,2, . . . ,∞.

Note that there are infinitely many variables in (P3). In order to approximate the optimal solution
well with a fixed and finite T , AdaBoost resorts to two related properties of some of the optimal
solutions for (P3): finiteness and sparsity.

• Finiteness: When two hypotheses have the same prediction patterns on the training input
vectors, they can be used interchangeably during the training time, and are thus ambiguous.
Since there are at most 2N prediction patterns on N training input vectors, we can partition H
into at most 2N groups, each of which contains mutually ambiguous hypotheses. Some opti-
mal solutions of (P3) only assign one or a few nonzero weights within each group (Demiriz
et al., 2002). Thus, it is possible to work on a finite data-dependent subset of H instead of H
itself without losing optimality.

• Sparsity: Minimizing the `1-norm ‖w‖1 = ∑∞
t=1 |wt | often leads to sparse solutions (Meir

and Rätsch, 2003; Rosset et al., 2007). That is, for hypotheses in the finite (but possibly
still large) subset of H , only a small number of weights needs to be nonzero. AdaBoost can
be viewed as a stepwise greedy search algorithm that approximates such a finite and sparse
ensemble (Rosset et al., 2004).

Another boosting approach, called the linear programming boosting (LPBoost), can solve (P3)
exactly. We will introduce the soft-margin LPBoost, which constructs an ensemble classifier like (2)
with the optimal solution to

(P4) min
wt∈R,ht∈H

∞

∑
t=1

wt +C
N

∑
i=1

ξi

s.t. yi

(

∞

∑
t=1

wtht(xi)

)

≥ 1−ξi, for i = 1,2, . . . ,N,

ξi ≥ 0, for i = 1,2, . . . ,N,

wt ≥ 0, for t = 1,2, . . . ,∞.

Demiriz et al. (2002) proposed to solve (P4) with the column generating technique.2 The algorithm
works by adding one unambiguous ht to the ensemble in each iteration. Because of the finiteness
property, the algorithm is guaranteed to terminate within T ≤ 2N iterations. The sparsity property
can sometimes help speed up the convergence of the algorithm.

Rätsch et al. (2002) worked on a variant of (P4) for regression problems, and discussed optimal-
ity conditions when H is of infinite size. Their results can be applied to (P4) as well. In particular,

2. Demiriz et al. (2002) actually worked on an equivalent but slightly different formulation.
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they showed that even without the finiteness property (e.g., when ht outputs real values rather than
binary values), (P4) can still be solved using a finite subset of H that is associated with nonzero
weights. The results justify the use of the column generating technique above, as well as a barrier,
AdaBoost-like, approach that they proposed.

Recently, Rosset et al. (2007) studied the existence of a sparse solution when solving a gen-
eralized form of (P4) with some H of infinite and possibly uncountable size. They showed that
under some assumptions, there exists an optimal solution of (P4) such that at most N + 1 weights
are nonzero. Thus, iterative algorithms that keep adding necessary hypotheses ht to the ensem-
ble, such as the proposed path-following approach (Rosset et al., 2007) or the column generating
technique (Demiriz et al., 2002; Rätsch et al., 2002), could work by aiming towards such a sparse
solution.

Note that even though the findings above indicate that it is possible to design good algorithms to
return an optimal solution when H is infinitely large, the resulting ensemble relies on the sparsity
property, and is effectively of only finite size. Nevertheless, it is not clear whether the performance
could be improved if either or both the finiteness and the sparsity restrictions are removed.

2.3 Connecting Support Vector Machine to Ensemble Learning

The connection between AdaBoost, LPBoost, and SVM is well-known in literature (Freund and
Schapire, 1999; Rätsch et al., 2001; Rätsch et al., 2002; Demiriz et al., 2002). Consider the feature
transform

Φ(x) =
(

h1(x),h2(x), . . .
)

. (3)

We can see that the problem (P1) with this feature transform is similar to (P4). The elements
of φx in SVM are similar to the hypotheses ht(x) in AdaBoost and LPBoost. They all work on
linear combinations of these elements, though SVM deals with an additional intercept term b. SVM
minimizes the `2-norm of the weights while AdaBoost and LPBoost work on the `1-norm. SVM and
LPBoost introduce slack variables ξi and use the parameter C for regularization, while AdaBoost
relies on the choice of the parameter T (Rosset et al., 2004). Note that AdaBoost and LPBoost
require wt ≥ 0 for ensemble learning.

Several researchers developed interesting results based on the connection. For example, Rätsch
et al. (2001) proposed to select the hypotheses ht by AdaBoost and to obtain the weights wt by
solving an optimization problem similar to (P1) in order to improve the robustness of AdaBoost.
Another work by Rätsch et al. (2002) introduced a new density estimation algorithm based on the
connection. Rosset et al. (2004) applied the similarity to compare SVM with boosting algorithms.
Nevertheless, as limited as AdaBoost and LPBoost, their results could use only a finite subset of H
when constructing the feature mapping (3). One reason is that the infinite number of variables wt

and constraints wt ≥ 0 are difficult to handle. We will show the remedies for these difficulties in the
next section.

3. SVM-Based Framework for Infinite Ensemble Learning

Vapnik (1998) proposed a challenging task of designing an algorithm that actually generates an infi-
nite ensemble classifier, that is, an ensemble classifier with infinitely many nonzero wt . Traditional
algorithms like AdaBoost or LPBoost cannot be directly generalized to solve the task, because they
select the hypotheses in an iterative manner, and only run for a finite number of iterations.
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We solved the challenge via another route: the connection between SVM and ensemble learning.
The connection allows us to formulate a kernel that embodies all the hypotheses in H . Then, the
classifier (1) obtained from SVM with the kernel is a linear combination over H (with an intercept
term). Nevertheless, there are still two main obstacles. One is to actually derive the kernel, and
the other is to handle the constraints wt ≥ 0 to make (1) an ensemble classifier. In this section, we
combine several ideas to deal with these obstacles, and conquer Vapnik’s task with a novel SVM-
based framework for infinite ensemble learning.

3.1 Embedding Hypotheses into the Kernel

We start by embedding the infinite number of hypotheses in H into an SVM kernel. We have shown
in (3) that we could construct a feature mapping from H . The idea is extended to a more general
form for deriving a kernel in Definition 1.

Definition 1 Assume that H = {hα : α ∈ C}, where C is a measure space. The kernel that embod-
ies H is defined as

KH ,r(x,x
′) =

Z

C
φx(α)φx′(α)dα, (4)

where φx(α) = r(α)hα(x), and r : C → R
+ is chosen such that the integral exists for all x,x′ ∈ X .

Here α is the parameter of the hypothesis hα. Although two hypotheses with different α values may
have the same input-output relation, we would treat them as different objects in our framework.
We shall denote KH ,r by KH when r is clear from the context. The validity of the definition is
formalized in the following theorem.

Theorem 2 Consider the kernel KH in Definition 1.

1. The kernel is an inner product for φx and φx′ in the Hilbert space F = L2(C ), which contains
functions ϕ(·) : C → R that are square integrable.

2. For a set of input vectors {xi}N
i=1 ∈ X N , the Gram matrix of KH is PSD.

Proof The first part is known in mathematical analysis (Reed and Simon, 1980), and the second
part follows Mercer’s condition.

Constructing kernels from an integral inner product is a known technique in literature (Schölkopf
and Smola, 2002). The framework adopts this technique for embedding the hypotheses, and thus
could handle the situation even when H is uncountable. Note that when r2(α)dα is a “prior” on hα,
the kernel KH ,r(x,x

′) can be interpreted as a covariance function commonly used in Gaussian pro-
cess (GP) models (Williams, 1998; Rasmussen and Williams, 2006). Some Bayesian explanations
can then be derived from the connection between SVM and GP, but are beyond the scope of this
paper.
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3.2 Negation Completeness and Constant Hypotheses

When we use KH in (P2), the primal problem (P1) becomes

(P5) min
w∈L2(C ),b∈R,ξ∈RN

1
2

Z

C
w2(α)dα+C

N

∑
i=1

ξi

s.t. yi

(

Z

C
w(α)r(α)hα(xi)dα+b

)

≥ 1−ξi, for i = 1,2, . . . ,N,

ξi ≥ 0, for i = 1,2, . . . ,N.

In particular, the classifier obtained after solving (P2) with KH is the same as the classifier obtained
after solving (P5):

g(x) = sign

(

Z

C
w(α)r(α)hα(x)dα+b

)

. (5)

When C is uncountable, it is possible that each hypothesis hα only takes an infinitesimal weight
(

w(α)r(α)dα
)

in the ensemble. Thus, the classifier (5) is very different from those obtained with
traditional ensemble learning, and will be discussed further in Subsection 4.2.

Note that the classifier (5) is not an ensemble classifier yet, because we do not have the con-
straints w(α) ≥ 0, and we have an additional term b. Next, we would explain that such a classifier
is equivalent to an ensemble classifier under some reasonable assumptions.

We start from the constraints w(α) ≥ 0, which cannot be directly considered in (P1). Vapnik
(1998) showed that even if we add a countably infinite number of constraints to (P1), infinitely
many variables and constraints would be introduced to (P2). Then, the latter problem would still be
difficult to solve.

One remedy is to assume that H is negation complete, that is,3

h ∈ H ⇔ (−h) ∈ H .

Then, every linear combination over H has an equivalent linear combination with only nonnegative
weights. Negation completeness is usually a mild assumption for a reasonable H (Rätsch et al.,
2002). Following this assumption, the classifier (5) can be interpreted as an ensemble classifier
over H with an intercept term b. Somehow b can be viewed as the weight on a constant hypothesis c,
which always predicts c(x) = 1 for all x∈X . We shall further add a mild assumption that H contains
both c and (−c). Then, the classifier (5) or (1) is indeed equivalent to an ensemble classifier.

We summarize our framework in Algorithm 1. The framework shall generally inherit the pro-
found performance of SVM. Most of the steps in the framework can be done by existing SVM
implementations, and the hard part is mostly in obtaining the kernel KH . In the next sections, we
derive some concrete instances using different base hypothesis sets.

4. Stump Kernel

In this section, we present the stump kernel, which embodies infinitely many decision stumps.
The decision stump sq,d,α(x) = q · sign

(

(x)d −α
)

works on the d-th element of x, and classifies x
according to q∈{−1,+1} and the threshold α (Holte, 1993). It is widely used for ensemble learning
because of its simplicity (Freund and Schapire, 1996).

3. We use (−h) to denote the function (−h)(·) = −(h(·)).
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1. Consider a training set {(xi,yi)}N
i=1 and the hypothesis set H , which is assumed to be negation

complete and to contain a constant hypothesis.

2. Construct a kernel KH according to Definition 1 with a proper embedding function r.

3. Choose proper parameters, such as the soft-margin parameter C.

4. Solve (P2) with KH and obtain Lagrange multipliers λi and the intercept term b.

5. Output the classifier

g(x) = sign

(

N

∑
i=1

yiλiKH (xi,x)+b

)

,

which is equivalent to some ensemble classifier over H .

Algorithm 1: SVM-based framework for infinite ensemble learning

4.1 Formulation and Properties

To construct the stump kernel, we consider the following set of decision stumps

S =
{

sq,d,αd : q ∈ {−1,+1} ,d ∈ {1, . . . ,D} ,αd ∈ [Ld,Rd]
}

.

We also assume X ⊆ (L1,R1)× (L2,R2)×·· ·× (LD,RD). Thus, the set S is negation complete and
contains s+1,1,L1 as a constant hypothesis. The stump kernel KS defined below can then be used in
Algorithm 1 to obtain an infinite ensemble of decision stumps.

Definition 3 The stump kernel is KS with r(q,d,αd) = rS = 1
2 ,

KS (x,x′) = ∆S −
D

∑
d=1

∣

∣(x)d − (x′)d
∣

∣= ∆S −
∥

∥x− x′
∥

∥

1 ,

where ∆S = 1
2 ∑D

d=1(Rd −Ld) is a constant.

Definition 3 is a concrete instance that follows Definition 1. The details of the derivation are shown
in Appendix A. As we shall see further in Section 5, scaling rS is equivalent to scaling the param-
eter C in SVM. Thus, without loss of generality, we use rS = 1

2 to obtain a cosmetically cleaner
kernel function.

The validity of the stump kernel follows directly from Theorem 2 of the general framework.
That is, the stump kernel is an inner product in a Hilbert space of some square integrable func-
tions ϕ(q,d,αd), and it produces a PSD Gram matrix for any set of input vectors {xi}N

i=1 ∈ X N .
Given the ranges (Ld,Rd), the stump kernel is very simple to compute. Furthermore, the ranges
are not even necessary in general, because dropping the constant ∆S does not affect the classifier
obtained from SVM.

Theorem 4 Solving (P2) with the stump kernel KS is the same as solving (P2) with the simplified
stump kernel K̃S (x,x′) = −‖x− x′‖1. That is, equivalent classifiers can be obtained from (1).
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Proof We extend from the results of Berg et al. (1984) to show that K̃S (x,x′) is conditionally PSD
(CPSD). In addition, because of the constraint ∑N

i=1 yiλi = 0, a CPSD kernel K̃ (x,x′) works exactly
the same for (P2) as any PSD kernel of the form K̃ (x,x′)+∆, where ∆ is a constant (Schölkopf and
Smola, 2002). The proof follows with ∆ = ∆S .

In fact, a kernel K̂ (x,x′) = K̃ (x,x′)+ f (x)+ f (x′) with any mapping f is equivalent to K̃ (x,x′)
for (P2) because of the constraint ∑N

i=1 yiλi = 0. Now consider another kernel

K̂S (x,x′) = K̃S (x,x′)+
D

∑
d=1

(x)d +
D

∑
d=1

(x′)d = 2
D

∑
d=1

min((x)d,(x
′)d).

We see that K̂S , K̃S , and KS are equivalent for (P2). The former is called the histogram intersection
kernel (up to a scale of 2) when the elements (x)d represent generalized histogram counts, and has
been successfully used in image recognition applications (Barla et al., 2003; Boughorbel et al., 2005;
Grauman and Darrell, 2005). The equivalence demonstrates the usefulness of the stump kernel on
histogram-based features, which would be further discussed in Subsection 6.4. A remark here is
that our proof for the PSD-ness of KS comes directly from the framework, and hence is simpler and
more straightforward than the proof of Boughorbel et al. (2005) for the PSD-ness of K̂S .

The simplified stump kernel is simple to compute, yet useful in the sense of dichotomizing the
training set, which comes from the following positive definite (PD) property.

Theorem 5 (Lin, 2005) Consider training input vectors {xi}N
i=1 ∈ X N . If there exists a dimension d

such that (xi)d 6= (x j)d for all i 6= j, the Gram matrix of KS is PD.

The PD-ness of the Gram matrix is directly connected to the classification capacity of the SVM
classifiers. Chang and Lin (2001b) showed that when the Gram matrix of the kernel is PD, a hard-
margin SVM with such a kernel can always dichotomize the training set perfectly. Keerthi and Lin
(2003) then applied the result to show that SVM with the popular Gaussian-RBF kernel K (x,x′) =

exp
(

−γ‖x− x′‖2
2

)

can always dichotomize the training set when C → ∞. We obtain a similar

theorem for the stump kernel.

Theorem 6 Under the assumption of Theorem 5, there exists some C∗ > 0 such that for all C ≥C∗,
SVM with KS can always dichotomize the training set {(xi,yi)}N

i=1.

We make two remarks here. First, although the assumption of Theorem 6 is mild in practice,
there are still some data sets that do not have this property. An example is the famous XOR data
set (Figure 1). We can see that every possible decision stump makes 50% of errors on the training
input vectors. Thus, AdaBoost and LPBoost would terminate with one bad decision stump in the
ensemble. Similarly, SVM with the stump kernel cannot dichotomize this training set perfectly,
regardless of the choice of C. Such a problem is inherent in any ensemble model that combines
decision stumps, because the model belongs to the family of generalized additive models (Hastie and
Tibshirani, 1990; Hastie et al., 2001), and hence cannot approximate non-additive target functions
well.

Second, although Theorem 6 indicates how the stump kernel can be used to dichotomize the
training set perfectly, the classifier obtained usually overfits to noise (Keerthi and Lin, 2003). For
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6

d

dt

t

Figure 1: The XOR data set

the Gaussian-RBF kernel, it has been known that SVM with reasonable parameter selection pro-
vides suitable regularization and achieves good generalization performance even in the presence of
noise (Keerthi and Lin, 2003; Hsu et al., 2003). We observe similar experimental results for the
stump kernel (see Section 7).

4.2 Averaging Ambiguous Stumps

We have discussed in Subsection 2.2 that the set of hypotheses can be partitioned into groups and
traditional ensemble learning algorithms can only pick a few representatives within each group.
Our framework acts in a different way: the `2-norm objective function of SVM leads to an optimal
solution that combines all the predictions within each group. This property is formalized in the
following theorem.

Theorem 7 Consider two ambiguous hα,hβ ∈ H . If the kernel KH is used in Algorithm 1, the

optimal w of (P5) satisfies w(α)
r(α) = w(β)

r(β) .

Proof The optimality condition between (P1) and (P2) leads to

w(α)

r(α)
=

N

∑
i=1

λihα(xi) =
N

∑
i=1

λihβ(xi) =
w(β)

r(β)
.

If w(α) is nonzero, w(β) would also be nonzero, which means both hα and hβ are included in the
ensemble. As a consequence, for each group of mutually ambiguous hypotheses, our framework
considers the average prediction of all hypotheses as the consensus output.

The averaging process constructs a smooth representative for each group. In the following
theorem, we demonstrate this behavior with the stump kernel, and show how the decision stumps
group together in the final ensemble classifier.

Theorem 8 Define (x̃)d,a as the a-th smallest value in {(xi)d}N
i=1, and Ad as the number of differ-

ent (x̃)d,a. Let (x̃)d,0 = Ld , (x̃)d,(Ad+1) = Rd , and

ŝq,d,a(x) = q ·











+1, when (x)d ≥ (x̃)d,a+1;

−1, when (x)d ≤ (x̃)d,a;
2(x)d−(x̃)d,a−(x̃)d,a+1

(x̃)d,a+1−(x̃)d,a
, otherwise.

Then, for r̂(q,d,a) = 1
2

√

(x̃)d,a+1 − (x̃)d,a,

KS (xi,x) = ∑
q∈{−1,+1}

D

∑
d=1

Ad

∑
a=0

r̂2(q,d,a)ŝq,d,a(xi)ŝq,d,a(x).
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Proof First, for any fixed q and d, a simple integration shows that

Z (x̃)d,a+1

(x̃)d,a

sq,d,α(x)dα =
(

(x̃)d,a+1 − (x̃)d,a

)

ŝq,d,a(x).

In addition, note that for all α ∈
(

(x̃)d,a,(x̃)d,a+1

)

, ŝq,d,a(xi) = sq,d,α(xi). Thus,

Z Rd

Ld

(

r(q,d,α)sq,d,α(xi)
)(

r(q,d,α)sq,d,α(x)
)

dα

=
Ad

∑
a=0

Z (x̃)d,a+1

(x̃)d,a

(

1
2

sq,d,α(xi)

)(

1
2

sq,d,α(x)

)

dα

=
Ad

∑
a=0

1
4

ŝq,d,a(xi)
Z (x̃)d,a+1

(x̃)d,a

sq,d,α(x)dα

=
Ad

∑
a=0

1
4

(

(x̃)d,a+1 − (x̃)d,a

)

ŝq,d,a(xi)ŝq,d,a(x).

The theorem can be proved by summing over all q and d.

As shown in Figure 2, the function ŝq,d,a is a smoother variant of the decision stump. Theorem 8
indicates that the infinite ensemble of decision stumps produced by our framework is equivalent
to a finite ensemble of data-dependent and smoother variants. Another view of ŝq,d,a is that they
are continuous piecewise linear functions (order-2 splines) with knots defined on the training fea-
tures (Hastie et al., 2001). Then, Theorem 8 indicates that an infinite ensemble of decision stumps
can be obtained by fitting an additive model of finite size using these special splines as the bases.
Note that although the fitting problem is of finite size, the number of possible splines can grow
as large as O(ND), which can sometimes be too large for iterative algorithms such as backfit-
ting (Hastie et al., 2001). On the other hand, our SVM-based framework with the stump kernel
can be thought as a route to solve this special spline fitting problem efficiently via the kernel trick.

As shown in the proof of Theorem 8, the averaged stump ŝq,d,a represents the group of ambigu-

ous decision stumps with αd ∈
(

(x̃)d,a,(x̃)d,a+1

)

. When the group is larger, ŝq,d,a becomes smoother.

Traditional ensemble learning algorithms like AdaBoost or LPBoost rely on a base learner to choose
one decision stump as the only representative within each group, and the base learner usually returns
the middle stump mq,d,a. As shown in Figure 2, the threshold of the middle stump is at the mean
of (x̃)d,a and (x̃)d,a+1. Our framework, on the other hand, enjoys a smoother decision by averaging
over more decision stumps. Even though each decision stump only has an infinitesimal hypothesis
weight, the averaged stump ŝq,d,a has a concrete weight in the ensemble.

5. Perceptron Kernel

In this section, we extend the stump kernel to the perceptron kernel, which embodies infinitely many
perceptrons. A perceptron is a linear threshold classifier of the form

pθ,α(x) = sign
(

θT x−α
)

.
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-
x̃d,a x̃d,a+1

sq,d,αd (x)

(a) a group of ambiguous decision stumps sq,d,αd with αd ∈
(

(x̃)d,a,(x̃)d,a+1
)

-
x̃d,a x̃d,a+1
�

�
�

�
�

�
ŝq,d,a(x)

(b) SVM-based infinite ensemble learning uses the consensus: the averaged stump ŝq,d,a

-
x̃d,a x̃d,a+1

mq,d,a(x)

(c) Base learners for AdaBoost and LPBoost usually only consider the middle stump mq,d,a

Figure 2: The averaged stump and the middle stump

It is a basic theoretical model for a neuron, and is very important for building neural networks
(Haykin, 1999).

To construct the perceptron kernel, we consider the following set of perceptrons

P =
{

pθ,α : θ ∈ R
D,‖θ‖2 = 1,α ∈ [−R,R]

}

.

We assume that X is within the interior of B(R), where B(R) is a ball of radius R centered at
the origin in R

D. Then, the set P is negation complete, and contains a constant hypothesis pe1,−R

where e1 = (1,0, . . . ,0)T . Thus, the perceptron kernel KP defined below can be used in Algorithm 1
to obtain an infinite ensemble of perceptrons.

Definition 9 Let

ΘD =
Z

‖θ‖2=1
dθ, ΞD =

Z

‖θ‖2=1

∣

∣cos(angle〈θ,e1〉)
∣

∣dθ,

where the operator angle〈·, ·〉 is the angle between two vectors, and the integrals are calculated with
uniform measure on the surface ‖θ‖2 = 1. The perceptron kernel is KP with r(θ,α) = rP ,

KP (x,x′) = ∆P −
∥

∥x− x′
∥

∥

2 ,

where the constants rP = (2ΞD)−
1
2 and ∆P = ΘDΞ−1

D R.

The details are shown in Appendix A. With the perceptron kernel, we can construct an infinite en-
semble of perceptrons. Such an ensemble is equivalent to a neural network with one hidden layer,
infinitely many hidden neurons, and the hard-threshold activation functions. Williams (1998) built
an infinite neural network with either the sigmoidal or the Gaussian activation function through com-
puting the corresponding covariance function for GP models. Analogously, our approach returns an
infinite neural network with hard-threshold activation functions (ensemble of perceptrons) through
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computing the perceptron kernel for SVM. Williams (1998) mentioned that “Paradoxically, it may
be easier to carry out Bayesian prediction with infinite networks rather than finite ones.” Similar
claims can be made with ensemble learning.

The perceptron kernel shares many similar properties to the stump kernel. First, the constant ∆P
can also be dropped, as formalized below.

Theorem 10 Solving (P2) with the simplified perceptron kernel K̃P (x,x′) = −‖x− x′‖2 is the same
as solving (P2) with KP (x,x′).

Second, SVM with the perceptron kernel can also dichotomize the training set perfectly, which
comes from the usefulness of the simplified perceptron kernel K̃P in interpolation.

Theorem 11 (Micchelli, 1986) Consider input vectors {xi}N
i=1 ∈ X N , and the perceptron kernel KP

in Definition 9. If xi 6= x j for all i 6= j, then the Gram matrix of KP is PD.

Then, similar to Theorem 6, we get the following result.

Theorem 12 If xi 6= x j for all i 6= j, there exists some C∗ > 0 such that for all C ≥C∗, SVM with KP
can always dichotomize the training set {(xi,yi)}N

i=1.

Another important property, called scale-invariance, accompanies the simplified perceptron ker-
nel, which was also named the triangular kernel by Fleuret and Sahbi (2003). They proved that
when the kernel is used in the hard-margin SVM, scaling all training input vectors xi by some
positive γ does not change the optimal solution.

In fact, in the soft-margin SVM, a well-known result is that scaling the Gram matrix K by
some γ > 0 is equivalent to scaling C by γ in (P2). Because the simplified perceptron kernel K̃P
satisfies γK̃P (x,x′) = K̃P (γx,γx′), the effect of scaling training examples can be equivalently per-
formed with the parameter selection step on C. That is, when C is selected reasonably, there is no
need to explicitly have a scaling parameter γ.

Recall that we construct the perceptron kernel (and the stump kernel) with an embedding con-
stant rP (and rS ), and from Definition 1, multiplying the constant by

√γ > 0 is equivalent to scaling
the Gram matrix K by γ. Thus, when C is selected reasonably, there is also no need to explicitly
try different rP or rS for these two kernels. We will further discuss the benefits of this property in
Subsection 6.4.

6. Laplacian-RBF Kernel

In the previous sections, we applied Definition 1 on some simple base hypothesis sets. Next, we
show how complex hypothesis sets can also be embedded in a kernel by suitably combining the
kernels that embody simpler sets. We will introduce two useful tools: summation and multipli-
cation. The tools would eventually allow us to embed infinitely many decision trees in a kernel.
Interestingly, the kernel obtained is equivalent to the well-known Laplacian-RBF kernel in some
parameters.
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6.1 Summation: Embedding Multiple Sets of Hypotheses

Summation can be used to embed multiple sets of hypotheses altogether. For example, given ker-
nels KH1

and KH2
, their summation

K (x,x′) = KH1
(x,x′)+KH2

(x,x′)

embodies both H1 and H2. In other words, if we use K (x,x′) in Algorithm 1, we could obtain
an ensemble classifier over H1 ∪H2 when the union is negation complete and contains a constant
hypothesis.

In traditional ensemble learning, when multiple sets of hypotheses are considered altogether,
it is usually necessary to call a base learner for each set. On the other hand, our framework only
requires a simple summation on the kernel evaluations. In fact, as shown in the next theorem, our
framework can be applied to work with any countable sets of hypotheses, which may not be an easy
task for traditional ensemble learning algorithms.

Theorem 13 Assume that the kernels KH1
, . . . , KHJ

are defined for some J ∈ N
S{∞} with sets of

hypotheses H1, . . . , HJ , respectively. Then, let

K (x,x′) =
J

∑
j=1

KH j
(x,x′).

If K (x,x′) exists for all x,x′ ∈ X , and H =
SJ

j=1 H j is negation complete and contains a constant
hypothesis, Algorithm 1 using K (x,x′) outputs an ensemble classifier over H .

Proof The theorem comes from the following result in mathematical analysis: any countable direct
sum over Hilbert spaces is a Hilbert space (Reed and Simon, 1980, Example 5). Lin (2005, Theo-
rem 6) showed the details of the proof.

A remark on Theorem 13 is that we do not intend to define a kernel with H directly. Otherwise
we need to choose suitable C and r first, which may not be an easy task for such a complex hy-
pothesis set. Using the summation of the kernels, on the other hand, allow us to obtain an ensemble
classifier over the full union with less efforts.

6.2 Multiplication: Performing Logical Combination of Hypotheses

It is known that we can combine two kernels by point-wise multiplication to form a new ker-
nel (Schölkopf and Smola, 2002). When the two kernels are associated with base hypothesis sets, a
natural question is: what hypothesis set is embedded in the new kernel?

Next, let output +1 represent logic TRUE and −1 represent logic FALSE. We show that multi-
plication can be used to perform common logical combinations on the hypotheses.

Theorem 14 For two sets of hypotheses H1 = {hα : α ∈ C1} and H2 =
{

hβ : β ∈ C2
}

, define

H =
{

hα,β : hα,β(x) = −hα(x) ·hβ(x),α ∈ C1,β ∈ C2
}

.

In addition, let r(α,β) = r1(α)r2(β). Then,

KH ,r(x,x
′) = KH1,r1

(x,x′) ·KH2,r2
(x,x′)

for all x,x′ ∈ X .
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The proof simply follows from Definition 1. Note that when representing logic, the combined
hypothesis hα,β is the XOR operation on hα and hβ. More complicated results about other operations
can be introduced under a mild assumption called neutrality.

Definition 15 A set of hypothesis H = {hα : α ∈ C} is neutral to X with a given r if and only if for
all x ∈ X ,

R

α∈C hα(x)r2(α)dα = 0.

Note that for a negation complete set H , neutrality is usually a mild assumption (e.g., by assign-
ing the same r for hα and −hα). We can easily verify that the set of decision stumps in Definition 3
and the set of perceptrons in Definition 9 are both neutral.

Theorem 16 For two sets of hypotheses H1 = {hα : α ∈ C1} and H2 =
{

hβ : β ∈ C2
}

, define

H =
{

hq,α,β : hq,α,β(x) = q ·min
(

hα(x),hβ(x)
)

,α ∈ C1,β ∈ C2,q ∈ {−1,+1}
}

.

Assume that H1 and H2 are neutral with r1 and r2, respectively, and both integrals

∆1 =
Z

α∈C1

r2
1(α)dα, ∆2 =

Z

β∈C2

r2
2(β)dβ

are finite. In addition, let r(q,α,β) =
√

2r1(α)r2(β). Then,

KH ,r(x,x
′) =

(

KH1,r1
(x,x′)+∆1

)

·
(

KH2,r2
(x,x′)+∆2

)

for all x,x′ ∈ X . Furthermore, H is neutral to X with r.

Proof Because hα(x),hβ(x) ∈ {−1,+1},

h+1,α,β(x) =
1
2

(

hα(x)hβ(x)+hα(x)+hβ(x)−1
)

.

Then,

KH ,r(x,x
′)

= 2
Z

h+1,α,β(x)h+1,α,β(x
′)r2(α,β)dβdα

=
1
2

Z

(

hα(x)hβ(x)+hα(x)+hβ(x)−1
)(

hα(x′)hβ(x
′)+hα(x′)+hβ(x

′)−1
)

r2(α,β)dβdα

=
Z

(

hα(x)hβ(x)hα(x′)hβ(x
′)+hα(x)hα(x′)+hβ(x)hβ(x

′)+1
)

r2
1(α)r2

2(β)dβdα (6)

=
(

KH1,r1
(x,x′)+∆1

)

·
(

KH2,r2
(x,x′)+∆2

)

.

Note that (6) comes from the neutrality assumption, which implies that during integration, the cross-
terms like

Z

hα(x)hβ(x
′)r2

1(α)r2
2(β)dαdβ

are all 0. Neutrality of H follows from the symmetry in q.

The arithmetic operation (+1 ·min) is equivalent to the AND operation when the outputs rep-
resent logic, and hence (−1 ·min) represents the NAND operation. If H1 and H2 are negation
complete, the NOT operation is implicit in the original sets, and hence OR can be equivalently
performed through OR(a,b) = NAND(NOT(a),NOT(b)).
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6.3 Stump Region Kernel, Decision Tree Kernel, and Laplacian-RBF Kernel

Next, we use the stump kernel to demonstrate the usefulness of summation and multiplication.
When H1 = H2 = S , the resulting KH from Theorem 16 embodies AND/OR combinations of two
decision stumps in S . Extending this concept, we get the following new kernels.

Definition 17 The L-level stump region kernel KTL
is recursively defined by

KT1(x,x
′) = KS (x,x′)+∆S , ∆1 = 2∆S ,

KTL+1(x,x
′) =

(

KTL
(x,x′)+∆L

)(

KS (x,x′)+∆S
)

, ∆L+1 = 2∆L∆S for L ∈ N.

If we construct a kernel from {c,−c} with r =
√

1
2 ∆S on each hypothesis, we can see that the

constant ∆S is also a neutral kernel. Since neutrality is preserved by summation, the kernel KT1 is
neutral as well. By repeatedly applying Theorem 16 and maintaining ∆L as the constant associated
with TL, we see that KTL

embodies all possible AND/OR combinations of L decision stumps in S .
We call these hypotheses the L-level stump regions.

Note that we can solve the recurrence and get

KTL
(x,x′) = 2L∆L

S

L

∑̀
=1

(

KS (x,x′)+∆S
2∆S

)`

, for L ∈ N.

Then, by applying Theorem 13, we obtain an ensemble classifier over stump regions of any level.

Theorem 18 For 0 < γ < 1
∆S

, the infinite stump region (decision tree) kernel

KT (x,x′) = exp
(

γ ·
(

KS (x,x′)+∆S
))

−1

can be applied to Algorithm 1 to obtain an ensemble classifier over T =
S∞

L=1 TL.

Proof By Taylor’s series expansion of exp(ε) near ε = 0, we get

KT (x,x′) =
∞

∑
L=1

γL

L!

(

KS (x,x′)+∆S
)L

= γKT1(x,x
′)+

∞

∑
L=2

γL

L!

(

KTL
(x,x′)−2∆S KTL−1(x,x

′)
)

=
∞

∑
L=1

γL

L!
KTL

(x,x′)−
∞

∑
L=1

γL+1

(L+1)!
2∆S KTL

(x,x′)

=
∞

∑
L=1

(

γL

L!
− γL+12∆S

(L+1)!

)

KTL
(x,x′).

Note that τL = γL

L! −
γL+12∆S
(L+1)! > 0 for all L ≥ 1 if and only if 0 < γ < 1

∆S
. The desired result simply

follows Theorem 13 by scaling the r functions of each KTL
by

√
τL.

The set of stump regions of any level contains all AND/OR combinations of decision stumps.
It is not hard to see that every stump region can be represented by recursive axis-parallel partitions
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that output {−1,+1}, that is, a decision tree (Quinlan, 1986; Hastie et al., 2001). In addition, we
can view the nodes of a decision tree as logic operations:

tree

= OR(AND(root node condition, left),AND(NOT(root node condition), right)).

By recursively replacing each root node condition with a decision stump, we see that every decision
tree can be represented as a stump region hypothesis. Thus, the set T that contains stump regions
of any level is the same as the set of all possible decision trees, which leads to the name decision
tree kernel.4

Decision trees are popular for ensemble learning, but traditional algorithms can only deal with
trees of finite levels (Breiman, 1999; Dietterich, 2000). On the other hand, when the decision tree
kernel KT is plugged into our framework, it allows us to actually build an infinite ensemble over
decision trees of arbitrary levels.

Note that the decision tree kernel KT (x,x′) is of the form

κ1 exp
(

−κ2
∥

∥x− x′
∥

∥

1

)

+κ3

where κ1,κ2,κ3 are constants and κ1,κ2 are positive. We mentioned in Section 4 that scaling the
kernel with κ1 is equivalent to scaling the soft-margin parameter C in SVM, and in Theorem 4 that
dropping κ3 does not affect the solution obtained from SVM. Then, the kernel KT (x,x′) is similar
to the Laplacian-RBF kernel KL(x,x′) = exp(−γ‖x− x′‖1). This result is a novel interpretation of
the Laplacian-RBF kernel: under suitable parameters, SVM with the Laplacian-RBF kernel allows
us to obtain an infinite ensemble classifier over decision trees of any level.5

Not surprisingly, when all training input vectors xi are distinct (Micchelli, 1986; Baxter, 1991),
the Gram matrix of KL (and hence KT ) is PD. Then, the Laplacian-RBF kernel and the decision
tree kernel could be used to dichotomize the training set perfectly.

6.4 Discussion on Radial Basis Function Kernels

Note that the stump kernel, the perceptron kernel, the Laplacian-RBF kernel, and the Gaussian-RBF
kernel are all radial basis functions. They can all be used to dichotomize the training set perfectly
under mild conditions, while the first three connect to explanations from an ensemble perspective.
Next, we compare two properties of these kernels, and discuss their use in SVM applications.

First, we can group these kernels by the distance metrics they use. The stump kernel and the
Laplacian-RBF kernel deal with the `1-norm distance between input vectors, while the others work
on the `2-norm distance. An interesting property of using the `2-norm distance is the invariance to
rotations. From the construction of the perceptron kernel, we can see how the rotation invariance
is obtained from an ensemble point-of-view. The transformation vectors θ in perceptrons represent
the rotation, and rotation invariance comes from embedding all possible θ uniformly in the kernel.

4. We use the name decision tree kernel for KT in Theorem 18 because the kernel embodies an infinite number of
decision tree “hypotheses” and can be used in our framework to construct an infinite ensemble of decision trees. As
pointed out by a reviewer, however, the kernel is derived in a particular way, which makes the metric of the underlying
feature space different from the metrics associated with common decision tree “algorithms.”

5. Note that the techniques in Theorem 18 can be coupled with Theorem 14 to show that Laplacian-RBF kernel with
any γ > 0 embodies XOR stump regions (a special type of decision tree) of any level. We emphasize on the AND-OR
stump regions here to connect better to general decision trees.
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Some applications, however, may not desire rotation invariance. For example, when represent-
ing an image with color histograms, rotation could mix up the information in each color component.
Chapelle et al. (1999) showed some successful results with the Laplacian-RBF kernel on this ap-
plication. In Subsection 4.1, we have also discussed some image recognition applications using the
histogram intersection kernel, which is equivalent to the stump kernel, on histogram-based features.
Gene expression analysis, as demonstrated by Lin and Li (2005b), is another area that the stump
kernel could be helpful.

Second, we can group kernels by whether they are scale-invariant (see also Section 5). The sim-
plified stump kernel and the simplified perceptron kernel are scale-invariant, which means that C is
the only parameter that needs to be determined. On the other hand, different combinations of (γ,C)
need to be considered for the Gaussian-RBF kernel or the Laplacian-RBF kernel during parameter
selection (Keerthi and Lin, 2003). Thus, SVM with the simplified stump kernel or the simpli-
fied perceptron kernel enjoys an advantage on speed during parameter selection. As we will see
in Section 7.2, experimentally they perform similarly to the Gaussian-RBF kernel on many data
sets. Thus, SVM applications that consider speed as an important factor may benefit from using the
simplified stump kernel or the simplified perceptron kernel.

7. Experiments

We first compare our SVM-based infinite ensemble learning framework with AdaBoost and LP-
Boost using decision stumps, perceptrons, or decision trees as the base hypothesis set. The simpli-
fied stump kernel (SVM-Stump), the simplified perceptron kernel (SVM-Perc), and the Laplacian-
RBF kernel (SVM-Dec) are plugged into Algorithm 1 respectively. We also compare SVM-Stump,
SVM-Perc, and SVM-Dec with SVM-Gauss, which is SVM with the Gaussian-RBF kernel.

The deterministic decision stump algorithm (Holte, 1993), the random coordinate descent per-
ceptron algorithm (Li and Lin, 2007), and the C4.5 decision tree algorithm (Quinlan, 1986) are
taken as base learners in AdaBoost and LPBoost for the corresponding base hypothesis set. For
perceptrons, we use the RCD-bias setting with 200 epochs of training; for decision trees, we take
the pruned tree with the default settings of C4.5. All base learners above have been shown to work
reasonably well with boosting in literature (Freund and Schapire, 1996; Li and Lin, 2007).

We discussed in Subsection 4.2 that a common implementation of AdaBoost-Stump and LPBoost-
Stump only chooses the middle stumps. For further comparison, we include all the middle stumps
in a set M , and construct a kernel KM with r = 1

2 according to Definition 1. Because M is a finite
set, the integral in (4) becomes a summation when computed with the counting measure. We test
our framework with this kernel, and call it SVM-Mid.

LIBSVM 2.8 (Chang and Lin, 2001a) is adopted as the soft-margin SVM solver, with a sug-
gested procedure that selects a suitable parameter with a five-fold cross validation on the training
set (Hsu et al., 2003). For SVM-Stump, SVM-Mid, and SVM-Perc, the parameter log2C is searched
within {−17,−15, . . . ,3}, and for SVM-Dec and SVM-Gauss, the parameters (log2 γ, log2C) are
searched within {−15,−13, . . . ,3}×{−5,−3, . . . ,15}. We use different search ranges for log2C
because the numerical ranges of the kernels could be quite different. After the parameter selection
procedure, a new model is trained using the whole training set, and the generalization ability is
evaluated on an unseen test set.

For boosting algorithms, we conduct the parameter selection procedure similarly. The param-
eter log2C of LPBoost is also searched within {−17,−15, . . . ,3}. For AdaBoost, the parameter T
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data set
number of number of number of

training examples test examples features

twonorm 300 3000 20
twonorm-n 300 3000 20
threenorm 300 3000 20
threenorm-n 300 3000 20
ringnnorm 300 3000 20
ringnorm-n 300 3000 20
australian 414 276 14
breast 409 274 10
german 600 400 24
heart 162 108 13
ionosphere 210 141 34
pima 460 308 8
sonar 124 84 60
votes84 261 174 16
a1a 1605 30956 123
splice 1000 2175 60
svmguide1 3089 4000 4
w1a 2477 47272 300

Table 1: Summarized information of the data sets used

is searched within {10,20, . . . ,1500}. Note that because LPBoost can be slow when the ensem-
ble size is too large (Demiriz et al., 2002), we set a stopping criterion to generate at most 1000
columns (hypotheses) in order to obtain an ensemble within a reasonable amount of time.

The three artificial data sets from Breiman (1999) (twonorm, threenorm, and ringnorm) are gen-
erated with training set size 300 and test set size 3000. We create three more data sets (twonorm-n,
threenorm-n, ringnorm-n), which contain mislabeling noise on 10% of the training examples, to test
the performance of the algorithms on noisy data. We also use eight real-world data sets from the
UCI repository (Hettich et al., 1998): australian, breast, german, heart, ionosphere, pima, sonar, and
votes84. Their feature elements are scaled to [−1, 1]. We randomly pick 60% of the examples for
training, and the rest for testing. For the data sets above, we compute the means and the standard
errors of the results over 100 runs. In addition, four larger real-world data sets are used to test the
validity of the framework for large-scale learning. They are a1a (Hettich et al., 1998; Platt, 1999),
splice (Hettich et al., 1998), svmguide1 (Hsu et al., 2003), and w1a (Platt, 1999).6 Each of them
comes with a benchmark test set, on which we report the results. Some information of the data sets
used is summarized in Table 1.

6. These data sets are downloadable on tools page of LIBSVM (Chang and Lin, 2001a).
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data set SVM-Stump SVM-Mid AdaBoost-Stump LPBoost-Stump

twonorm 2.86±0.04 3.10±0.04 5.02±0.06 5.58±0.07
twonorm-n 3.08±0.06 3.29±0.05 12.7±0.17 17.9±0.19
threenorm 17.7±0.10 18.6±0.12 22.1±0.12 24.1±0.15
threenorm-n 19.0±0.14 19.6±0.13 26.1±0.17 30.3±0.16
ringnorm 3.97±0.07 5.30±0.07 10.1±0.14 10.3±0.14
ringnorm-n 5.56±0.11 7.03±0.14 19.6±0.20 22.4±0.21
australian 14.4±0.21 15.9±0.18 14.2±0.18 19.8±0.24
breast 3.11±0.08 2.77±0.08 4.41±0.10 4.79±0.12
german 24.7±0.18 24.9±0.17 25.4±0.19 31.6±0.20
heart 16.4±0.27 19.1±0.35 19.2±0.35 24.4±0.39
ionosphere 8.13±0.17 8.37±0.20 11.3±0.25 11.5±0.24
pima 24.1±0.23 24.4±0.23 24.8±0.23 31.0±0.24
sonar 16.6±0.42 18.0±0.37 19.4±0.38 19.8±0.37
votes84 4.76±0.14 4.76±0.14 4.27±0.15 5.87±0.16
a1a 16.2 16.3 16.0 16.3
splice 6.21 6.71 5.75 8.78
svmguide1 2.92 3.20 3.35 4.50
w1a 2.09 2.26 2.18 2.79

Table 2: Test error (%) of several ensemble learning algorithms using decision stumps

data set SVM-Perc AdaBoost-Perc LPBoost-Perc

twonorm 2.55±0.03 3.11±0.04 3.52±0.05
twonorm-n 2.75±0.05 4.53±0.10 6.89±0.11
threenorm 14.6±0.08 17.3±0.11 18.2±0.11
threenorm-n 16.3±0.10 20.0±0.18 22.1±0.13
ringnorm 2.46±0.04 36.3±0.14 37.4±0.13
ringnorm-n 3.50±0.09 37.8±0.20 39.1±0.15
australian 14.5±0.17 15.7±0.16 16.4±0.17
breast 3.23±0.08 3.49±0.10 3.80±0.10
german 24.6±0.20 25.0±0.18 26.4±0.21
heart 17.6±0.31 18.2±0.32 19.8±0.32
ionosphere 6.40±0.20 11.4±0.23 12.1±0.25
pima 23.5±0.21 24.8±0.20 26.4±0.19
sonar 15.6±0.40 19.8±0.43 22.5±0.47
votes84 4.43±0.14 4.37±0.16 4.92±0.16
a1a 15.7 20.0 18.6
splice 10.4 13.7 14.7
svmguide1 3.10 3.28 3.62
w1a 1.91 2.35 2.13

Table 3: Test error (%) of several ensemble learning algorithms using perceptrons
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data set SVM-Dec AdaBoost-Dec LPBoost-Dec

twonorm 2.87±0.04 3.74±0.05 4.80±0.06
twonorm-n 3.10±0.05 6.46±0.09 7.89±0.10
threenorm 15.0±0.11 16.8±0.09 18.3±0.10
threenorm-n 16.8±0.15 20.2±0.16 22.0±0.12
ringnorm 2.25±0.05 4.33±0.06 6.00±0.10
ringnorm-n 2.67±0.06 7.32±0.12 8.76±0.12
australian 14.3±0.18 13.7±0.16 13.8±0.17
breast 3.18±0.08 2.92±0.09 3.94±0.16
german 24.9±0.20 24.5±0.17 24.9±0.19
heart 16.8±0.31 19.5±0.33 20.4±0.35
ionosphere 6.48±0.19 6.59±0.19 6.81±0.22
pima 24.0±0.24 26.1±0.21 26.4±0.20
sonar 14.7±0.42 19.6±0.45 21.3±0.42
votes84 4.59±0.15 5.04±0.14 5.95±0.17
a1a 15.7 18.8 20.3
splice 3.77 2.94 3.77
svmguide1 3.28 3.22 3.17
w1a 2.37 2.53 3.01

Table 4: Test error (%) of several ensemble learning algorithms using decision trees

7.1 Comparison of Ensemble Learning Algorithms

Tables 2, 3, and 4 show the test performance of several ensemble learning algorithms on different
base hypothesis sets.7 We can see that SVM-Stump, SVM-Perc, and SVM-Dec are usually better
than AdaBoost and LPBoost with the same base hypothesis set, especially for the cases of decision
stumps and perceptrons. In noisy data sets, SVM-based infinite ensemble learning always signifi-
cantly outperforms AdaBoost and LPBoost. These results demonstrate that it is beneficial to go from
a finite ensemble to an infinite one with suitable regularization. When comparing the two boosting
approaches, LPBoost is at best comparable to AdaBoost on a small number of the data sets, which
suggests that the success of AdaBoost may not be fully attributed to its connection to (P3) or (P4).

Note that SVM-Stump, SVM-Mid, AdaBoost-Stump, and LPBoost-Stump usually generate dif-
ferent kinds of ensembles: SVM-Stump produces infinite and nonsparse ones; SVM-Mid produces
finite and nonsparse ones; AdaBoost-Stump produces finite and sparse ones; LPBoost-Stump pro-
duces finite and even sparser ones (since some of the selected ht may end up having wt = 0). In Ta-
ble 2, we see that SVM-Stump often outperforms SVM-Mid, which is another evidence that an
infinite ensemble could help. Interestingly, SVM-Mid often performs better than AdaBoost-Stump,
which means that a nonsparse ensemble introduced by minimizing the `2-norm of w is better than a
sparse one.

In Figure 3, we further illustrate the difference between the finite and infinite ensemble learning
algorithms by a simplified experiment. We show the decision boundaries generated by the four
algorithms on 300 training examples from the 2-D version of the twonorm data set. The Bayes-

7. For the first 14 rows of Tables 2, 3, 4, and 5, results that are as significant as the best ones are marked in bold; for the
last 4 rows, the best results are marked in bold.
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Figure 3: Decision boundaries of ensemble learning algorithms on a 2-D twonorm data set

optimal decision boundary is the line (x)1 + (x)2 = 0. We can see that SVM-Stump produces a
decision boundary close to the optimal, SVM-Mid is slightly worse, while AdaBoost-Stump and
LPBoost-Stump fail to generate a decent boundary. SVM-Stump obtains the smooth boundary by
averaging over infinitely many decision stumps; SVM-Mid can also generate a smooth boundary
by constructing a nonsparse ensemble over a finite number of decision stumps. Nevertheless, both
LPBoost-Stump and AdaBoost-Stump, for which sparsity could be observed from the axis-parallel
decision boundaries, do not have the ability to approximate the Bayes optimal boundary well. In
addition, as can be seen near the origin point of Figure 3(c), AdaBoost-Stump could suffer from
overfitting the noise.

Note that traditional ensemble learning and our SVM-based framework differ in the concept
of sparsity. As illustrated in Subsection 2.2, traditional ensemble learning prefers sparse ensemble
classifiers, that is, ensembles that include a small number of hypotheses. Our framework works with
an infinite number of hypotheses, but results in a sparse classifier in the support vector domain. Both
concepts can be justified with various generalization bounds (Freund and Schapire, 1997; Graepel
et al., 2005). Nevertheless, our experimental results indicate that sparse ensemble classifiers are
sometimes not sophisticated enough in practice, especially when the base hypothesis set is simple.
For example, when using the decision stumps, a general data set may require many of them to
describe a suitable decision boundary. Thus, AdaBoost-Stump and LPBoost-Stump could be limited
by the finiteness and sparsity restrictions. The comparison between AdaBoost-Stump and SVM-Mid
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data set SVM-Stump SVM-Perc SVM-Dec SVM-Gauss

twonorm 2.86±0.04 2.55±0.03 2.87±0.04 2.64±0.05
twonorm-n 3.08±0.06 2.75±0.05 3.10±0.05 2.86±0.07
threenorm 17.7±0.10 14.6±0.08 15.0±0.11 14.6±0.11
threenorm-n 19.0±0.14 16.3±0.10 16.8±0.15 15.6±0.15
ringnorm 3.97±0.07 2.46±0.04 2.25±0.05 1.77±0.04
ringnorm-n 5.56±0.11 3.50±0.09 2.67±0.06 2.05±0.07
australian 14.4±0.21 14.5±0.17 14.3±0.18 14.7±0.18
breast 3.11±0.08 3.23±0.08 3.18±0.08 3.53±0.10
german 24.7±0.18 24.6±0.20 24.9±0.20 24.5±0.21
heart 16.4±0.27 17.6±0.31 16.8±0.31 17.5±0.31
ionosphere 8.13±0.17 6.40±0.20 6.48±0.19 6.54±0.19
pima 24.1±0.23 23.5±0.21 24.0±0.24 23.5±0.20
sonar 16.6±0.42 15.6±0.40 14.7±0.42 15.5±0.50
votes84 4.76±0.14 4.43±0.14 4.59±0.15 4.62±0.14
a1a 16.2 15.7 15.7 16.2
splice 6.21 10.4 3.77 9.56
svmguide1 2.92 3.10 3.28 3.12
w1a 2.09 1.92 2.37 2.03

Table 5: Test error (%) of SVM with radial basis function kernels

indicates that the second restriction could be crucial. On the other hand, our framework (SVM-
Stump), which suffers from neither restrictions, can perform better by averaging over an infinite
number of hypotheses.

7.2 Comparison to Gaussian Kernel

In Table 5, we compare all the radial basis function kernels. We can see that SVM-Gauss, being
the state-of-the-art setting (Hsu et al., 2003), usually performs well. Its superior performance on
the artificial data sets is because they are generated from certain Gaussian distributions. Neverthe-
less, all SVM-Stump, SVM-Perc, and SVM-Dec outperform SVM-Gauss on some data sets, which
demonstrates that they could achieve decent test performances as well.

Furthermore, SVM-Perc and SVM-Gauss share almost indistinguishable performance on the
real-world data sets, which is possibly because they both use the `2-norm distance for measuring
similarity. In addition, as discussed in Subsection 6.4, SVM-Perc enjoys the benefit of faster pa-
rameter selection. For example, in our experiments, SVM-Gauss involves solving 550 optimization
problems, but SVM-Perc deals with only 55 problems. Table 6 shows the speed comparison.8 We
can qualitatively see that SVM-Stump and SVM-Perc are much faster than SVM-Dec and SVM-
Gauss.

8. Solving each SVM optimization problem heavily depends on the condition number of the Gram matrix (which de-
pends on the kernel) and the soft-margin parameter C. Thus, it is not easy to compare the training time between
different kernels and the numbers here are meant to be interpreted qualitatively. Similar results are observed when
using real-world data sets as well (Lin, 2005).
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data set SVM-Stump SVM-Perc SVM-Dec SVM-Gauss

twonorm 1.34 1.44 19.5 23.1
threenorm 1.69 1.69 23.1 31.1
ringnorm 1.50 1.60 23.7 27.9

Table 6: Parameter selection time (sec.) on a dual 1.7 GHz Intel Xeon CPU machine

Since SVM-Perc and SVM-Gauss perform similarly on real-world data sets, the benefit of faster
parameter selection makes SVM-Perc a favorable choice in practice. Furthermore, SVM-Stump,
albeit slightly worse than SVM-Perc or SVM-Gauss, could still be a useful alternative in some
applications where decision stump ensemble models are preferred, such as those described in Sub-
section 6.4.

8. Conclusion

We derived two novel kernels based on the infinite ensemble learning framework. The stump kernel
embodies infinitely many decision stumps, and the perceptron kernel embodies infinitely many per-
ceptrons. These kernels can be simply evaluated by the `1- or `2-norm distance between examples.
We also explained that the Laplacian-RBF kernel embodies infinitely many decision trees. SVM
equipped with the kernels can generate infinite and nonsparse ensembles, which are usually more
robust than finite and sparse ones.

Experimental comparisons with AdaBoost and LPBoost showed that SVM with the kernels usu-
ally performs much better than boosting approaches with the same base hypothesis set, especially
in the cases of decision stumps or perceptrons. Therefore, existing applications that use boosting
with decision stumps, perceptrons, or decision trees may be improved by switching to SVM with
the corresponding kernel.

In addition, we showed that the perceptron kernel shares similar performance to the Gaussian-
RBF kernel, while the former benefits from faster parameter selection. This property makes the
perceptron kernel favorable to the Gaussian-RBF kernel in practice.
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Appendix A. Derivation of Kernels

KS (x,x′) = ∑
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∥

2

∣

∣cos
(

angle
〈

θ,x− x′
〉)∣

∣

)

dθ

= 2r2
P ΘDR−2r2

P ΞD
∥

∥x− x′
∥

∥

2 .

The last equality comes from the symmetry when integrating over every possible θ.
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Abstract

Classifiers favoring sparse solutions, such as support vector machines, relevance vector machines,
LASSO-regression based classifiers, etc., provide competitive methods for classification problems
in high dimensions. However, current algorithms for training sparse classifiers typically scale quite
unfavorably with respect to the number of training examples. This paper proposes online and multi-
pass algorithms for training sparse linear classifiers for high dimensional data. These algorithms
have computational complexity and memory requirements that make learning on massive data sets
feasible. The central idea that makes this possible is a straightforward quadratic approximation to
the likelihood function.

Keywords: Laplace approximation, expectation propagation, LASSO

1. Introduction

We consider the problem of learning high-dimensional sparse linear classifiers from large numbers
of training examples. A number of different applications from finance, text mining, and bioinfor-
matics motivate this work. We concern ourselves specifically with binary classification and consider
L1-regularized logistic and probit regression models. Such models have provided excellent predic-
tive accuracy in many applications (see, for example, Genkin et al., 2007; Figueiredo and Jain,
2001; Shevade and Keerthi, 2003) and attack overfitting and variable selection in a unified manner.
L1-regularization and a maximum a posteriori (MAP) Bayesian analysis with so-called Laplacian
priors yield identical results (Tibshirani, 1996) and in order to streamline our presentation, we adopt
the Bayesian approach. Many training algorithms now exist for L1-logistic regression that can han-
dle high-dimensional input vectors (Hastie et al., 2004; Shevade and Keerthi, 2003; Koh et al.,
2007). However, these algorithms generally begin with a “load data into memory” step that pre-
cludes applications with large numbers of training examples. More precisely, consider a training
data set that comprises t examples each of dimension d. Due to matrix multiplications on t× t or
d×d matrices, typical computational time requirements are O(t3 +d3), with memory requirements
that are O(td + d2). In our target applications, both t and d can exceed 106 so standard algorithms
become impractical.

c©2008 Suhrid Balakrishnan and David Madigan.
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This paper presents two basic algorithms for learning L1-logistic and/or probit regression mod-
els. Both operate in the data streaming model, by which we mean that they scan the data sequen-
tially, and never require storing processed observations. The first algorithm we present is an online
algorithm which sequentially processes each observation only once. This algorithm is provably non-
divergent and uses in the worst case O(d2) time and O(d2) space to assimilate each new training
example (note that both costs are constant with respect to the number of observations, t). Further, if
the input data are sparse, the practical computational cost can be significantly lower.

For massive data sets where t is constant, that is, when given a fixed training data set, we present
a second algorithm that allows practitioners to trade-off computational time for improved accuracy.
This multi-pass algorithm (the MP algorithm) also processes data sequentially but makes a small
constant number of extra passes over the data set. Hence, this sequential algorithm provides results
similar to those of batch algorithms for this problem. The MP algorithm’s computational cost is a
constant factor higher and memory costs are essentially the same as those of the online algorithm.
Finally, we propose the RMMP (Reduced Memory MP) algorithm that has significantly lower worst
case memory costs, O(d +k2) (where k� d) and the same computational costs as the MP algorithm
(thus both computational and memory costs are essentially linear in t and d). We will comment on
the similarities and differences of our technique to other learning algorithms, in particular other
online algorithms, in the following sections.

2. Background and Notation

Throughout this manuscript, we concern ourselves with the task of binary classification, with class
labels y ∈ {0,1}. The training data comprise t labeled training examples, that is, Dt = {(xi,yi)}t

i=1,
with input vectors xi = [xi1, . . . ,xid]

T in R
d and corresponding labels yi, i = 1, . . . , t. We consider

probabilistic classifiers of the form:

p(y = 1|x) = Φ(βT x)

where β ∈ R
d is a vector of regression parameters and Φ(·) is a link function. We restrict our

analytical results to the two most commonly used link functions, the probit Φ(z) =
R z
−∞

1√
2π e−x2/2dx

and logistic Φ(z) = ez

1+ez link functions.
The machine learning problem is thus to estimate the parameters β, in the light of the training

data Dt . We tailor our results towards high input dimension, that is, large d, and large numbers of
training vectors, large t. Viewing the learning problem as one of Bayesian inference, we work with
the posterior distribution of the parameters β conditioned on a labeled training data set Dt , given a
prior distribution on the parameters β:

p(β|Dt) ∝

(

t

∏
i=1

p(yi|β)

)

p(β). (1)

The quantity on the left hand side of (1) is the required posterior distribution of β given the data set
Dt , while the second term on the right hand side is the prior distribution on β, which we will specify
momentarily. The first term on the right hand side is the likelihood:

t

∏
i=1

p(yi|β) =
t

∏
i=1

(

yiΦ(βT xi)+(1− yi)(1−Φ(βT xi)
)

.
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Finding the MAP β leads to the optimization problem we wish to solve (now on the log scale):

max
β

(log p(β|Dt))

≡ max
β

(

t

∑
i=1

log
(

yiΦ(βT xi)+(1− yi)(1−Φ(βT xi)
)

− log p(β)

)

. (2)

The prior distribution p(β) we pick for the parameters is the LASSO prior (Tibshirani, 1996), a
product of independent Laplacian or double-exponential prior distributions on each component β j

(with mean 0):

p(β j|γ) =
γ
2

e−γ|β j|,γ > 0, j = 1, . . . ,d.

A prior of this form places high probability mass near zero and along individual component axes.
It also has heavier tails than a Gaussian distribution—see Figure 1 for plots of the 2-dimensional
distributions. It thus favors locations in parameter space with component magnitudes either exactly

(a) (b)

Figure 1: (a) A standard Laplacian distribution, γ = 1 (b) A superposition of standard (zero mean,
unit variance) Gaussian distribution, and the Laplacian distribution showing both the
higher probability mass the Laplacian assigns along the axes and at zero as well as its
heavier tails.

zero, and hence pruned from our predictive model, or shrunk towards zero. With this prior distri-
bution, (2) presents a convex optimization problem and yields the same solutions as the LASSO
(Tibshirani, 1996) and Basis Pursuit (Chen et al., 1999):

max
β

(log p(β|Dt))

≡ max
β

(

t

∑
i=1

log
(

yiΦ(βT xi)+(1− yi)(1−Φ(βT xi)
)

− γ‖β‖1

)

. (3)

The parameter γ in the above problem controls the amount of regularization. Figure 2 shows
a 2-dimensional visualization of how the objective function of the optimization problem changes
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as γ is varied. The choice of the regularization parameter is an important but separate question in
itself (Efron et al., 2004; Hastie et al., 2004). Methods such as cross validation can be used to pick
its value and algorithms also exist to find solutions for all values of the regularization parameter
(commonly called regularization path algorithms). However, we do not address such issues in this
manuscript, and we simply assume γ is some fixed, user-specified constant.

Figure 2: L1-regularization in two dimensions (i.e., d = 2). The axes are the solid lines, the horizon-
tal axis representing β1 and the vertical axis representing β2. The diamond represents the
origin and the open circle represents the (non-regularized) maximum likelihood solution.
The figure shows contours of the function in (3), the objective function, for increasing
amounts of regularization (right to left and then top to bottom). The star shows the MAP
location. The top row, left figure, shows negligible regularization; the MAP and maxi-
mum likelihood estimates coincide and the contours show no L1-induced discontinuities.
The top row, right figure, shows noticeable L1 effects and the MAP and maximum likeli-
hood solutions differ. The bottom row, middle panel shows enough L1-regularization to
set β2 to zero (i.e., variable selection has occurred). The bottom row, right panel, shows
extreme regularization, where both β1 and β2 are zero.

To the best of our knowledge, all existing algorithms solve the above convex optimization prob-
lem in the batch setting, that is, by storing the data set Dt in memory and iterating over it (Fu, 1998;
Osborne et al., 2000; Zhang, 2002; Shevade and Keerthi, 2003; Genkin et al., 2007; Koh et al.,
2007). Consequently, these algorithms cannot be used in the massive data/online scenario, where
memory costs dependent on t represent a significant practical impediment. The approach we present
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now attempts to overcome this limitation and thereby provide algorithms for training sparse linear
classifiers without loading the entire data set into memory.

3. Approximating the Likelihood for Online Learning

The Bayesian paradigm supports online learning in a natural fashion; starting from the prior, the first
training example produces a posterior distribution incorporating the evidence from the first example.
This then becomes the prior distribution awaiting the arrival of the second example, and so on. In
practice, however, except in those cases where the posterior distribution has the same mathematical
form as the prior distribution, some form of approximation is required to carry out the sequential
updating.

We want to avoid algorithms that begin with a “load data into memory” step and also avoid
memory costs that increase with increasing amounts of data. In other words, we want memory costs
independent of t. This requirement in turn, necessitates that we “forget” examples after processing
them. We achieve this by maintaining the sufficient statistics of a quadratic approximation in β to
the log-likelihood of the parameters after incorporating each observation.

We approximate the log-likelihood as:

t

∑
i=1

log(p(yi|β)) =
t

∑
i=1

log
(

yiΦ(βT xi)+(1− yi)(1−Φ(βT xi)
)

≈
t

∑
i=1

(

ai(βT xi)
2 +bi(βT xi)+ ci

)

,

where ai(βT xi)
2 + bi(βT xi)+ ci approximates logΦ(βT xi) when yi = 1 and approximates log(1−

Φ(βT xi)) when yi = 0, i = 1, . . . , t. In either case the approximation uses a simple Taylor expan-
sion around βT

i−1xi, where βi−1 estimates the posterior mode given the first i− 1 examples, Di−1

(Appendix A provides expressions for ai,bi for the probit and logistic link functions). We then
have:

t

∑
i=1

log(p(yi|β)) ≈
t

∑
i=1

(

ai(βT xi)
2 +bi(βT xi)+ ci

)

=
t

∑
i=1

ai(βT xi)(xT
i β)+

t

∑
i=1

bi(βT xi)+
t

∑
i=1

ci

= βT Ψtβ+βT θt +
t

∑
i=1

ci

where:

Ψt =
t

∑
i=1

aixixT
i , and θt =

t

∑
i=1

bixi.

We now substitute this approximation of the log-likelihood function into Equation (3) to obtain the
modified (approximate) optimization problem:

max
β

(log p(β|Dt))≈max
β

(

βT Ψtβ+βT θt − γ‖β‖1

)

. (4)
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Note that we can ignore the term involving the ci’s, as it is not a function of β. Further, the fixed
size d×d matrix Ψ and the d×1 vector θ can be updated in an online fashion as data accumulate:

Ψt+1 = Ψt +at+1xt+1xT
t+1, and θt+1 = θt +bt+1xt+1. (5)

The size of the optimization problem in (4) doesn’t depend on t, the size of the data set seen so
far. Thus, solving a fixed (with respect to t) size optimization problem allows one to sequentially
process labeled data items and march through the data set. In data streaming terminology, the matrix
Ψ and the vector θ provide a constant size sketch or summary of the labeled observations seen so
far.

A number of questions now present themselves: how good is this approximation? How do we
solve the approximate optimization problem efficiently? How does this approach differ from other
likelihood approximation schemes (some of which are also quadratic)? Also, the scheme as set
up requires O(d2) memory in the worst case. Since we would like to use this approach for high
dimensional data sets, can we reduce the memory requirements?

The remainder of this manuscript addresses these and other questions. First, we consider how
to efficiently obtain the MAP solution of (4), the approximate optimization problem.

3.1 The Modified Shooting Algorithm

Recall that we need to find β that solves:

max
β

(

βT Ψβ+βT θ− γ‖β‖1

)

. (6)

In the above equation and following discussion, we drop the subscript t from Ψ,θ for notational
convenience. This is a convex optimization problem and a number of efficient techniques exist
to solve it. Newton’s method and other Hessian-based algorithms may be prohibitively expensive
as they need O(d3) computational time in order to construct the Hessian/invert d × d matrices.
Other authors have described good results on the arguably tougher (non-approximate) optimization
problem for logistic regression (essentially the terms in Equation 3, but with L2 regularization of β)
with techniques such as fixed memory BFGS (Minka, 2000), modified conjugate gradient (Komarek
and Moore, 2005) and cyclic coordinate descent (Zhang and Oles, 2001; Genkin et al., 2007).

In this paper, we employ instead a slight modification of the Shooting algorithm (Fu, 1998), see
Algorithm 1. Shooting is essentially a coordinate-wise gradient ascent algorithm, explicitly tailored
for convex L1-constrained regression problems (squared loss). Since our approximate optimization
problem is also quadratic, the resulting modifications required are straightforward. The vector Ω
in the algorithm is defined as Ω = 2Ψ′β + θ, where Ψ′ is the matrix Ψ with its diagonal entries set
to zero (see Appendix B for details). This vector is related to the gradient of the differentiable part
of the objective function and consequently can be used for optimality checking. Minor variants of
this algorithm have been independently proposed by Shevade and Keerthi (2003) and Krishnapuram
et al. (2005). Although Fu originally derived the algorithm by taking the limit of a modified Newton-
Raphson method, it can also be obtained by a subgradient analysis of the system (subgradients are
necessary due to the non-differentiability that the L1 constraints on β result in, see Appendix B for
the derivation).

While one can think of numerous stopping criteria for the algorithm, in this paper we stop
when successive iterates are sufficiently close to each other (relatively, and with respect to the L2
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Algorithm 1: The modified Shooting algorithm.

Data: Ψ,θ,β0,γ.
β0 is initial β vector.
Ω j refers to the j’th component of Ω.
Ψ j j refers to the ( j, j)’th element of matrix Ψ.
Result: β satisfying (6).
while not converged do

for j← 1 to d do

β j =











0, if |Ω j| ≤ γ
γ−Ω j

2Ψ j j
, if Ω j > γ

−γ−Ω j

2Ψ j j
, if Ω j <−γ

Update Ω.
end

end

norm). More precisely, we declare convergence whenever ‖βi−βi−1‖2/‖βi−1‖2 is less than some
user specified tolerance. Note that βi is the parameter vector at iteration i, which is obtained after
cycling through and updating all d components once.

In the worst case, each iteration of Shooting requires O(d2) computational time. However, for
reasonable amounts of regularization, where the final set of non-zero β values is small, the time
requirements are much smaller. Indeed, the practical computational cost is perhaps better reflected
by bounds in terms of the sparsity of MAP β. Let m denote the maximum number of non-zero
components of β along the solution path to MAP β (hence m≤ d). Implemented carefully, Shooting
requires O(md) time per iteration (see Appendix B for details). Shooting can be initialized with
β0 = 0 if no information about the optimal β is known or to an appropriate “warm” starting point.

While coordinate-wise approaches are commonly regarded as slow in the literature (for example,
Minka, 2001a), for sparse classifiers, they are much faster (see for example, Shevade and Keerthi,
2003). In our experiments, the Shooting algorithm has proven to be practical even for d in the
hundreds of thousands.

4. An Online Algorithm

The quadratic approximation and the Shooting algorithm lead straightforwardly to an online algo-
rithm. After initializing the sketch parameters Ψ0,θ0 and the initial parameter vector β0, process
the data set one observation at a time. Calculate the quadratic Taylor series approximation to each
observation’s log-likelihood at the current estimate of the posterior mode, βi−1, thus finding param-
eters ai,bi. Use these parameters and the observation to update the sketches, Ψ,θ. Now run the
modified Shooting algorithm to update the posterior mode, producing βi and repeat for the next
labelled observation—see Algorithm 2.

We show the performance of the online algorithm on a low dimensional simulated data set
in Figure 3 (the data generating mechanism is a logistic regression model with d = 11, and t =
100,000. For details see the Experiments section of the manuscript). As we process greater num-
bers of observations, the online estimates (the solid lines) improve, that is, get closer to the batch
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Algorithm 2: The Online algorithm.
Data: Dt ,γ.
Result: For each i, produces βi, an approximation to the MAP estimate of β for observations

(x1,y1) . . .(xi,yi).
Initialize β0 = θ0 = 0, Ψ0 = 0, i = 1.
while i < t do

Get i’th observation (xi,yi).
Obtain quadratic approximation to term likelihood at βi−1, that is, obtain ai,bi.
Ψi←Ψi−1 +aixixT

i .
θi← θi−1 +bixi.
βi← modified Shooting(Ψi,θi,βi−1,γ)
i← i+1.

end

estimates (the dashed lines which we obtain using BBR, Genkin et al. 2007, publicly available
software for batch L1 penalized logistic regression). See Figure 3, where different colors represent
different components of MAP βi. Figure 4 shows individual plots of the online and batch estimates
for four representative components of MAP βi in blue. We also plot the absolute difference between
the batch and online estimates in green (dotted line) on the same plot on the right (green) axis. As
we expect, after the parameter estimates stabilize, this difference steadily tapers off with increasing
amounts of data.

t = 2x104 t = 6x104 t = 105

βtrue Batch Online Batch Online Batch Online
0.259 0.244 0.242 0.248 0.247 0.254 0.253
0.761 0.700 0.690 0.743 0.739 0.740 0.737
-0.360 -0.360 -0.356 -0.401 -0.399 -0.394 -0.393
0.876 0.980 0.966 0.918 0.913 0.922 0.919
0.913 0.920 0.907 0.920 0.916 0.931 0.929
-0.302 -0.275 -0.270 -0.327 -0.324 -0.317 -0.315
-0.820 -0.826 -0.814 -0.806 -0.802 -0.819 -0.816

0 0 0 -0.010 -0.010 -0.005 -0.005
0 0.050 0.049 0 0 0.013 0.013
0 0.038 0.037 0.014 0.014 0.013 0.013

-0.319 -0.298 -0.294 -0.318 -0.316 -0.320 -0.319
L1 Norm 0.066 0.025 0.016

Table 1: Table with columns showing values of βtrue, and the MAP estimates of β obtained by the
batch algorithm and the online algorithm, for increasing amounts of data on the simulated
data set. To aid assessing convergence of the online to the batch estimates, we show the
value of the L1 norm of the adjacent vectors (batch vs. online estimates) in the last row.
For this example, γ = 10 (logistic link function).

In the worst case, the online algorithm requires O(d2) space and O(d2) computational time to
compute the MAP β for each new observation. Note however, that if the input data has sparsity,
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Figure 3: Performance of the online algorithm on a simulated data set, with regularization parame-
ter γ = 100 (see text for details). The y-axis is the parameter value, the x-axis the number
of observations processed, t.

which is true of text data for instance, the algorithm leverages this. Let the maximum number of
non-zero components in any x be f and assume a constant number of iterations of the modified
Shooting algorithm. In such case, the practical computational time requirement of the algorithm is
O( f 2 +md) per observation (we remind the reader that the md term, is for the cost of the Shooting
algorithm—see 3.1). Although the practical memory costs of the algorithm will likely be less than
O(d2), exactly how much less depends heavily on the data, since Ψ (the part of the sketch domi-
nating the memory requirements) is a weighted sum of outer products of the xi’s. It is possible that
even very sparse data may result in the full O(d2) memory requirement.

Here, we highlight the fact that the online algorithm is accurate and practical if the problem is
of low to medium input dimension, but massive in terms of the number of observations. Appendix
C proves non-divergence of the algorithm in the infinite data limit.

4.1 Heuristics for Improvement/Issues

While one can also obtain parameter estimates for fixed t ( batch problems) using the online algo-
rithm, multiple passes typically provide better estimates, albeit with increased computational cost.
Denote by β∗ the solution to the exact optimization problem (3) for some fixed t. Since the online
algorithm typically initializes itself far from β∗, it is only after processing a sufficient number of
examples that the online algorithm’s term approximations will start being taken closer to β∗. The
update formulae, (5), reveal that for values of i < t, both Ψi and θi are (comparatively) smaller in
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Figure 4: Slightly more detailed version of Figure 3. The panels show four representative parame-
ters from that figure, also showing tapering L1 loss (dotted green line) between the online
and batch algorithm estimates on the right axis (in green). Simulated data set, γ = 100.
Once again, the (left) y-axis is the parameter value and the x-axis the number of observa-
tions processed, t.

magnitude than their respective final values, Ψt ,θt . However, the amount of regularization remains
relatively fixed at γ‖β‖1. Hence, if the online algorithm is initialized at β0 = 0, for any i < t, the
output MAP estimate βi will be more shrunk towards zero than β∗. Figure 3 illustrates this for
smaller values of t where the solid lines (approximate MAP estimates) are closer to zero than the
dashed lines (exact batch estimates).

This suggests the following two heuristics to improve the quality of estimates from the online
algorithm. The first is to increase the amount of regularization gradually as the algorithm processes
observations sequentially (via a schedule, linearly say, ∝ t from zero initially to the specified value
γ at the end of the data set1). Less regularization of the first few observations somewhat mitigates
the effect of taking term approximations at shrunken parameter estimates.

The second heuristic is for the online algorithm to keep a block of observations in memory
temporarily instead of immediately discarding each observation after processing it. The algorithm

1. While the choice of this regularization schedule in this setting is understudied in the literature, asymptotic consistency
results for a slightly modified form of the problem may be of theoretical interest. We refer readers to Zou (2006), and
the references therein.
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then uses the value of the parameter estimates after having seen/processed all the observations in
a block to update the sketches for the whole block. Note that this will involve keeping track of
the corresponding updates to the sketches for the block (the block’s contributions to Ψ and θ). In
experiments not reported here, both of these heuristics improve the final online estimates somewhat.

One possibility for improving upon the O(d2) worst case computational requirement of the
online algorithm is as follows. In the infinite data case, in order to obtain sparsity in parameter
estimates, the amount of regularization must be allowed to increase as observations accumulate—
an increasingly weighty likelihood term will inundate any fixed amount of regularization. In this
setting (where we have the freedom to choose the amount of regularization), we can use exactly
the same quadratic approximation machinery to pick the value of γ that maximizes the approximate
one-step look ahead likelihood (although the expressions for this approximation would be slightly
different). The resulting scheme has the flavor of predictive automatic relevance determination as
presented in Qi et al. (2004).

The worst case O(d2) memory requirement of the online algorithm, however, presents a greater
challenge. In the next section we outline a multi-pass algorithm based on the same sequential
quadratic approximation that improves the accuracy of estimates when applied to finite data sets
and also uses less memory than the online algorithm.

5. A Multi-pass Algorithm

The block heuristic of the previous section implies that taking all term approximations at the final
online algorithm MAP βt value would certainly produce better estimates of Ψt ,θt . This in turn
would lead to a better estimate of β∗.

Therefore, for fixed data sets where computational time restrictions still permit a few passes
over the data set, this suggests the following algorithm, which we will refer to as the MP (Multi-
Pass) algorithm: Initialize β0 = θ0 = 0, Ψ0 = 0, z = 1. The quantity z will count the number of
passes through the data set. Compute Ψt ,θt by the steps in Online Algorithm (Algorithm 2), except
take all term approximations at the fixed value βz. Note that consequently there is no need for the
shooting algorithm during the pass through the data set. Once a pass through the data set is com-
plete, compute a revised estimate of β∗ by running modified Shooting, that is, set βz+1 =modified
Shooting(Ψt ,θt ,βz,γ). Iteratively loop over the data set, appropriately incrementing z.

For a constant number of passes, the MP algorithm has the worst case computational time re-
quirement of O(td2) to do an equivalent batch MAP β estimation. Once again, if the data set
is sparse, this cost is closer in practice to O(t f 2 + md) (the first term is the cost of updating the
sketches and the second md term is the cost of the Shooting algorithm).

The worst case memory requirement of the MP algorithm is O(d2), which is just a constant with
respect to t. Expectation Propagation (Minka, 2001b) by contrast requires explicitly storing term ap-
proximations and thus has memory costs that scale linearly with t, that is, O(t). The next subsection
presents a modification of the MP algorithm that reduces this worst case memory requirement.

5.1 A Reduced Memory Multi-pass Algorithm

The key to reducing the memory requirements of the algorithm in the previous subsection is ex-
ploiting the sparsity of β∗. Towards this end, consider the modified Shooting algorithm upon con-
vergence; say βMAP is the sparse converged solution Shooting obtains with inputs Ψ,θ and γ. Now
consider the smaller system obtained by only retaining those rows of the vectors, and also corre-
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sponding columns for matrices, for which the components of βMAP are nonzero (denoted with a )̃.
The important observation is that the solution to the reduced size system β̃MAP, obtained using Ψ̃, θ̃
and Ω̃, has exactly the same nonzero components as βMAP obtained for the full system.

We use this fact to derive the RMMP (Reduced Memory Multi-Pass) algorithm, Algorithm
3. The central idea is to use the optimality criteria for the Shooting algorithm to determine which
components of β to keep track of. Call this set S, the active set, which is fixed during every iteration.
Specifically, we set S = { j : |Ω j| ≥ γ}. That is, the active set is the set of variables that are either
nonzero and optimal or variables that violate optimality at the start of a pass (the corresponding
nonzero elements of the vectors/matrices are denoted by their previous symbols but with a ˜ above
them). Now, during the pass we keep track of the much smaller matrix Ψ̃, while also keeping
track of the unmodified/original full length vectors θ and Ω. The update for θ is unchanged and
Appendix B shows how to perform the update for the full length vector Ω in small space. The
algorithm continues by using Ψ̃,Ω, and θ from the latest pass to re-estimate the active set, S and so
on.

A desirable consequence of the setup is that no new approximation is introduced. The search
for the optimal parameter values is slightly more involved though, now proceeding iteratively by
first identifying candidate nonzero components of βMAP, and then refining the estimates for these
components. We can employ the same stopping criteria as for modified Shooting algorithm.

Algorithm 3: The RMMP algorithm.
Data: fixed data set Dt , γ.
Result: βz, the MAP estimate of β that solves (3).
Initialize β0 = 0, S = {},z = 1.
while not converged do

Set θ = 0, Ψ̃ = 0, i = 1.
for i = 1,2, . . . , t do

Get i’th observation (xi,yi).
Obtain quadratic approximation to term likelihood at βz−1, that is, obtain ai,bi.
Ψ̃← Ψ̃+ai(x̃ix̃i

T ).
θ← θ+bixi.
Update Ω.

end
βz← modified Shooting(Ψ̃, θ̃, β̃z−1,γ).
Obtain new active set S = { j : |Ω j| ≥ γ}.
z← z+1.

end

Note that memory requirements are now O(d + k2), where k is the number of variables in the
largest active set. However, we can be even more stringent and set k to be a user specified constant
provided k is bigger than the final number of nonzero components of β∗. Typically, setting k very
close to this limit results in some loss of accuracy and the cost of a few more passes over the data
for convergence. The worst case computational time requirements for a constant number of passes,
are still O(td2) to do an equivalent batch MAP β estimation. Under the same sparsity assumptions
as in previous sections, in practice this cost is better quantified as O(t(k2 + f 2)+kd) (again, the first
term is the cost associated with updating the sketches and the second term is the cost of Shooting).
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We now draw attention to a few practical considerations about the RMMP algorithm. The first
is that although we consider initializing the parameter vector to zero, β0 = 0, better guesses of
β0 (guesses closer to the MAP β) would likely result in fewer passes for convergence. Further,
given we do initialize at zero, the first pass is completed very rapidly. This is because no outer
products are computed, since the active set is initialized as the empty set; the first pass is used
simply to determine the size and components of the active set and the parameter estimates for the
next iteration are still zero, β1 = 0. Typically, setting the reduced memory parameter k to be larger
than this first active set size results in further RMMP iterations mimicking iterations of the MP
algorithm. This is seen by observing two facts. One, for both algorithms, the only components that
change in successive iterations are those in the active set (components that are either non-zero and
optimal or not optimal). Two, in a typical search path for the MAP β, the size of the active set
decreases (and finally stabilizes) as the MAP β is honed in on. Both of these observations together
imply that if we start the RMMP algorithm with enough memory allotted to look at all possibly
relevant β components, we will follow the MP search path (as a motivating example, consider that
setting k = d results in the MP algorithm exactly).

Another consideration is a very useful practical advantage of the proposed algorithm: knowl-
edge of Ω implies the practitioner can confirm when convergence to β∗ has/has not occurred. In
practice, for numerical stability, slightly expanding the active set seems to be a good heuristic. In
our experiments that follow, we do so only if we have extra space (if k is bigger than the number of
variables in the current active set, for any iteration) in two ways: 1. We retain in the active set vari-
ables that were in the active set in the previous iteration and, 2. we add to the active set components
that are close to violating optimality (close in terms of a threshold, τ < 1. This amounts to replacing
the rule in Algorithm 3 with S = { j : |Ω j| ≥ τγ}).

In the next section, we place our work in the context of existing literature on similar problems.

6. Related Work

Although the Bayesian paradigm facilitates sequential updating of the posterior distribution (online
learning) in a natural way, some form of approximation is almost always necessary for practical
applications. Approximating the posterior distribution at every stage by a multivariate Gaussian
distribution (which implies a quadratic approximation of the log posterior distribution) seems a
natural first step backed by asymptotic Bayesian central limit results that imply this approximation
will get better and better with the addition of data (Bernardo and Smith, 1994).

Indeed, approximating the log-likelihood function by a quadratic polynomial is a standard
technique in Bayesian learning applications; see for example Laplace approximation (Kass and
Raftery, 1995; MacKay, 1995), Assumed Density Filtering (ADF)/Expectation Propagation (EP)
(Minka, 2001b), some variational approximation methods such as Jaakkola and Jordan (2000) and
in Bayesian online learning (Opper, 1998). We would like to stress here that many of the above
schemes are for the harder task of approximate inference—we are concerned only with the easier
problem of approximate convex optimization. The similarities in the approaches are confined to the
nature of the approximate (Gaussian) posterior.

The next sections describes results we obtained on some simulated as well as real examples
using the proposed algorithms.
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7. Experiments

We now present examples illustrating the application of the Online, MP and RMMP algorithms to
simulated data sets, where we control the data generating mechanism, and some real data sets. We
make logistic regression comparisons to results obtained using BBR (Genkin et al., 2007). BBR is
publicly available software for Bayesian binary logistic regression that handles the Laplacian prior.
We make probit regression comparisons to results obtained using a batch EM algorithm for Lapla-
cian prior based probit regression (we implemented a slightly modified version of the algorithm in
Figueiredo and Jain, 2001). We generally do not present prediction accuracy results here as our goal
is to obtain accurate, that is, close to batch, parameter values. What we wish to accomplish with
the experiments is demonstrate practical efficiency and applicability of the algorithms. In so doing
and by obtaining essentially identical parameter estimates to batch algorithms, our predictive per-
formance will mirror those of the batch algorithms. Several papers provide representative predictive
performance results for L1-regularized classifiers, for example, Genkin et al. (2007); Figueiredo and
Jain (2001).

We carried out all the experiments on a standard Windows OS based 2Ghz processor machine
with 1GB RAM. For all experiments we set the modified Shooting convergence tolerance to be
10−6, and τ = 0.8 (for experiments involving the RMMP algorithm).

We use the following data sets:
• Simulated data sets: d=11, t=10,000. The data generating mechanism is either a probit or lo-
gistic regression model with one intercept term and 10 model coefficients, for a total of 11 fixed
parameters. Of the ten model variables, three are intentionally set as redundant variables (set with
zero coefficients in the model). The data vectors x, are draws from i.i.d. Gaussian distributions with
mean zero and unit variance. For the experiments with the online algorithm (Figure 3, Table 1),
we used the same model parameters as above, but with t = 100,000 and only a logistic regression
model.
• ModApte training data set: d = 21,989, t = 9,603. This is a text data set, the ModApte split of
Reuters-21578 (Lewis, 2004). We examine one particular category, “earn”, to which we fit a logistic
regression model.
• BIG-RCV data set: d = 288,062, t = 421,816, a data set constructed from the RCV1-v2 data set
(Lewis et al., 2004). It consists of the training portion of the LYRL2004 split plus 2 parts of the test
data (the test data is made publicly available in 4 ≈ 350 MB parts)—see Figure 5. We also use just
the training portion of RCV1-v2 in some experiments. RCV1-v2 training data set : d = 47,236,
t = 23,149 (the features in this data set are a particular subset of the features in BIG-RCV). Our
results are for a single topic “ECAT”, whether or not a document is related to economics.

7.1 Results

The low dimensional simulated data set highlights typical results we obtain with the Online algo-
rithm and the MP algorithm (the RMMP algorithm is not of practical significance in this case). See
Table 2. Each column in the table is an 11-dimensional vector which is the MAP β estimate of the
parameter values (as a reminder, the true parameter values used to generate the data can be seen
in Table 1). The parameter estimates from the Online algorithm are quite close to batch estimates,
likely due to the relatively large data set size (t being large relative to d). Also, with very few passes
over the data set, denoted as before by the variable z, we obtain parameter estimates practically
identical to those obtained by the batch algorithm. The results in the table are typical for both link
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Figure 5: Schematic showing the construction of the various RCV1-v2 based data sets used in the
experiments. The solid line bordered rectangles show the data as publicly available, the
dashed-line bordered rectangles show the data sets we assembled. The shaded portion of
the data is used only during testing.

functions and over a wide range of settings for the regularization parameter, γ. To show this, the
tables report results for both too little regularization (γ = 10, probit link) and too much regulariza-
tion (γ = 100, logistic link) for this particular data set. As a guide to assessing convergence in this
and other tables that follow, we show the L1 norm of the difference between the batch algorithm
estimates (EM or BBR as appropriate) and the Online, MP or RMMP algorithm iterates (also as
appropriate).

We next examine the first real data set, the training data for the ModApte split of Reuters-
21578 (Lewis et al., 2004). This is a moderate dimensional (d = 21989 features) data set with
t = 9603 labelled observations (we use the feature vectors that can be downloaded from the paper’s
appendix.). The features of this data set are weighted term occurrences and it is quite sparse, as is
typical for text data. The batch EM algorithm for probit regression is prohibitively expensive on
this data set as it involves inverting a high dimensional matrix, but we can run BBR to obtain batch
logistic regression results. Hence we focus our results on logistic regression for this data set. We
examine two reasonable settings for the regularization parameter, γ = 10 and γ = 100. For γ = 10,
BBR returns 150 nonzero components and for γ = 100, the MAP β BBR returns has 31 non-zero
components. Since the data set is sparse, and presents no memory limitations, we are able to apply
the Online and MP algorithms in addition to the RMMP algorithm—see Tables 3 and 4.

For both amounts of regularization the Online parameter estimates aren’t particularly good (al-
though between the two settings, the parameter estimates with the higher amount of regularization
are better). As discussed in Section 5, this is likely due to the relatively high dimensionality com-
pared to the number of examples in the data set. The MP algorithm improves parameter estimates
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Probit link function, γ = 10 Logistic link function, γ = 100
EM Online MP BBR Online MP

z = 1 z = 2 z = 3 z = 1 z = 2 z = 3
0.252 0.250 0.207 0.250 0.252 0.178 0.174 0.168 0.178 0.178
0.764 0.764 0.614 0.755 0.764 0.450 0.435 0.422 0.450 0.450
-0.318 -0.314 -0.263 -0.314 -0.318 -0.124 -0.120 -0.1161 -0.124 -0.124
0.834 0.821 0.667 0.824 0.834 0.713 0.689 0.666 0.712 0.713
0.894 0.880 0.719 0.884 0.894 0.656 0.634 0.613 0.655 0.656
-0.304 -0.297 -0.243 -0.301 -0.304 0 0 0 0 0
-0.782 -0.770 -0.627 -0.773 -0.782 -0.511 -0.493 -0.477 -0.510 -0.511
-0.039 -0.039 -0.037 -0.039 -0.039 0 0 0 0 0
-0.036 -0.036 -0.029 -0.036 -0.036 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
-0.327 -0.322 -0.266 -0.324 -0.327 -0.030 -0.029 -0.028 -0.030 -0.030

L1 Norm 0.074 0.878 0.050 0 0.0872 0.172 0.003 0

Table 2: Table with columns showing values of the MAP estimates of β obtained by the batch
algorithms (EM on the left half, for probit regression and BBR on the right half for logistic
regression), the Online algorithm and three successive iterates of the MP algorithm applied
to the simulated data set. The final row displays the L1 norm of the difference between
the batch algorithm estimates (EM or BBR as appropriate) and the Online/MP algorithm
estimates. The results shown here are representative of those obtained for other values of
γ as well.

as expected. For γ = 100, the MP algorithm converges in about z = 6 iterations to parameter values
indistinguishable from BBR—see the left three columns in Table 3. We next applied the RMMP
algorithm to this data set. Examining the size of the first active set reveals setting k ≈ 3000, would
give exactly the same results as the MP algorithm—see typical effects of changing k in Table 4 for
γ = 10. We point out that this is a huge reduction in the worst case memory required, an approx-
imately 98% reduction (k = 3000 vs. d = 21989 originally). Note also that the size of k should
be compared relative to the nonzero components for MAP β (150 and 31 for γ = 10 and γ = 100
respectively).

We further test the limits of the algorithm, by running it with k = 300 for γ = 100. The RMMP
algorithm performs very well, requiring about z = 7 passes (only two more than the MP algorithm)
to converge to correct parameter values. For γ = 10, where k = 300 is small (only twice the number
of non-zero components in the MAP β), once again the same kind of results hold, with the MP
algorithm needing about 7 passes over the data set and the RMMP algorithm needing about 15
passes to converge to the batch β.

Finally, we present results of application of the algorithms to the RCV1-v2 data sets. For the
RCV1-v2 training data (d = 47,236, t = 23,149), sparsity again enables application of BBR to
obtain the batch MAP β parameter values, as well as the Online and MP algorithms, although this is
quite cumbersome. See Table 5. Again, as expected (examining d vs. t for this data set), the Online
estimates are not very good. The multi-pass algorithms have improved parameter estimates. For
γ = 10 (a fairly high amount of regularization), we find essentially the same qualitative results as
the ModApte data set—it takes about z = 6 passes through the data set to obtain indistinguishable
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j BBR Online MP RMMP, k = 300
z = 3 z = 5 z = 3 z = 5 z = 7

Intercept -1.588 -1.404 -1.527 -1.586 -1.451 -1.573 -1.588
9 (bank) 1.188 0.697 0.957 1.185 0.688 1.143 1.188

13 (share) 0.847 0.609 0.793 0.846 0.678 0.839 0.847
147 (acquisit) 0.813 0.562 0.795 0.813 0.696 0.812 0.813

31 (offer) 0.801 0.337 0.618 0.800 0.356 0.772 0.801
...

...
...

...
...

...
...

...
3 (pct) -2.264e-2 -2.259e-2 -2.127e-2 -2.240e-2 -3.247e-2 -2.062e-2 -2.264e-2

62 (plan) -1.757e-2 -1.430e-2 -2.840e-2 -1.779e-2 -3.346e-2 -2.045e-2 -1.757e-2
2 (dlr) 1.552e-2 6.932e-3 1.542e-2 1.548e-2 1.610e-2 1.525e-2 1.552e-2

12 (net) -1.467e-2 -6.671e-3 -1.956e-2 -1.480e-2 -1.415e-2 -1.643e-2 -1.467e-2
8 (ct) 1.277e-2 3.587e-2 2.870e-2 1.320e-2 2.915e-2 1.776e-2 1.278e-2

L1 Norm 4.029 1.691 0.034 3.496 0.4027 3e-4

Table 3: Results obtained on the ModApte data set. The 5 highest and 5 lowest magnitude non-zero
coefficients of MAP β for γ = 100 are shown. In table are the indices of β (and word stem
features they correspond to in brackets), coefficients from BBR, and the Online algorithm,
those obtained after a particular number of passes over the data using the MP algorithm
(full memory) and parameters from the RMMP algorithm with k = 300.

j BBR Online RMMP, z = 8
k = 3120∗ k = 2000 k = 1000 k = 600 k = 300

292 (banker) 2.695 1.523 2.695 2.695 2.695 2.695 2.699
20 (4) 2.268 0.617 2.268 2.260 2.260 2.259 2.273

Intercept -2.010 -1.615 -2.010 -2.009 -2.009 -2.009 -2.005
341 (charg) 1.755 0.832 1.755 1.754 1.754 1.754 1.742

147 (acquisit) 1.572 0.862 1.572 1.572 1.572 1.572 1.568
...

...
...

...
...

...
...

...
66 (loan) 4.943e-3 9.106e-2 4.944e-3 4.849e-3 4.821e-3 4.849e-3 3.224e-3
134 (agre) 4.488e-3 4.836e-2 4.479e-3 4.720e-3 4.756e-3 4.712e-3 1.677e-2

267 (commerci) -2.057e-3 0 -2.068e-3 -1.863e-3 -1.897e-3 -1.852e-3 -3.427e-3
28 (stock) -1.652e-3 -3.879e-2 -1.644e-3 -1.542e-3 -1.560e-3 -1.537e-3 -1.991e-3

56 (interest) -1.518e-4 -7.623e-2 -1.540e-4 -3.059e-4 -2.983e-4 -3.121e-4 -8.640e-4
L1 Norm 28.290 1.4e-3 0.047 0.044 0.048 1.269

Table 4: Results for the ModApte data set: Illustrating the effect of changing k. The 5 highest
and 5 lowest magnitude non-zero coefficients of MAP β for γ = 10 are shown. In table
are the indices of β (and word stem features they correspond to in brackets), coefficients
from BBR, the Online algorithm, and those obtained after 8 passes over the data using the
RMMP algorithm. * For k = 3120, RMMP behaves the same as the MP algorithm.
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γ = 10 γ = 100, k = 2500
β BBR Online RMMP, k = 1500 β RMMP

index z = 2 z = 5 z = 10 index z = 10
12220 (econom) 18.065 16.145 0 18.084 18.065 12220 (econom) 17.234
27407 (moody) 9.909 9.982 7.988 9.904 9.909 37665 (shar) -11.901

37665 (shar) -8.201 -3.918 -2.255 -8.118 -8.201 43626 (union) 8.654
46160 (work) 7.144 6.339 4.061 7.133 7.144 27407 (moody) 8.308
5946 (budget) 6.453 6.327 5.142 6.436 6.453 5946 (budget) 8.215
33192 (profit) -6.211 -3.840 -2.066 -6.159 -6.211 19647 (inflat) 6.326
43626 (union) 6.164 5.789 4.430 6.157 6.164 39539 (statist) 5.782
21160 (july) 5.661 5.093 3.498 5.644 5.661 29641 (obligat) 4.728

19647 (inflat) 5.573 5.437 6.587 5.539 5.573 37471 (sery) 4.621
29641 (obligat) 5.472 6.250 4.810 5.473 5.472 41148 (tax) 4.507

L1 Norm 24.798 87.940 0.480 0.001

Table 5: RCV1-v2 results. Left portion RCV1-v2 training data set, right BIG-RCV data set.

parameter values as BBR (not shown in the table). The RMMP algorithm also gives excellent results
in about 10 passes, see the left portion of Table 5 with k = 1500.

For the BIG-RCV data set (d = 288,062, t = 421,816) however, computational and memory
limitations made it impossible to run the batch algorithms on this data set (also the Online and MP
algorithm). It is precisely for cases like this that the RMMP algorithm is useful, and we were able
to obtain parameter estimates for reasonable settings of regularization—see for example, the right
portion of Table 5.

Does training on the entire BIG-RCV data set actually result in improved predictive perfor-
mance? To address this, we conducted the following experiment. We obtained the best possible
predictive parameters using 10-fold cross-validation on the RCV1-v2 training data set with a batch
algorithm. This is an expensive computation, involving many repeated BBR runs for different val-
ues of the regularization parameter (we searched over γ = 0.01,0.1,1,10,100). The final cross-
validation chosen β has 1010 non-zero parameters.

We then trained a separate sparse logistic classifier on the BIG-RCV data set using the RMMP
algorithm with k = 3000 and γ = 40. Setting γ = 40 results in 1015 non-zero MAP β coefficients
which is approximately the same number of non-zero coefficients as the cross-validation chosen
β. Finally, we compare the predictive accuracy of both classifiers on the unused RCV test set
(comprising the unused two portions of the original RCV1-v2 test data).

The results, shown in Table 6, demonstrate that using the information in extra examples, the “un-
sophisticated” classifier trained on the much larger data set outperforms the “optimized” classifier
trained on a smaller data set.

8. Conclusions

In this paper we presented an asymptotically convergent online algorithm that builds sparse gener-
alized linear models for massive data sets. We also presented efficient multi-pass algorithms that
examine observations sequentially and thus enable learning on massive data sets. Both algorithms
exploit sparsity of input data. We applied the algorithms to large, sparse data sets, for which state-

330



SPARSE CLASSIFIERS FOR MASSIVE DATA

“Optimized” β trained “Naive” β trained
on RCV1-v2 training data on BIG-RCV
Relevant Not Relevant Relevant Not Relevant

Retrieved 38,821 7,415 (83.96%) 40,655 6,017 (87.11%)
Not Retrieved 16,368 (70.34%) 319,994 14,534 (73.67%) 321,392

Table 6: This table shows confusion matrices for prediction results on the RCV Test data set. The
CV β (trained on the RCV1-v2 training data set) results are on the left and the MAP β
(trained on the BIG-RCV data set, with γ = 30, k = 3000) results are on the right. Also
shown are recall and precision percentages in bold and brackets. There are approximately
383,000 examples in the test data set.

of-the-art batch algorithms are impractical/cumbersome, and our results show that examining such
data sets in their entirety can lead to better classifier performance.

Some areas of further research that this work opens up are: extension of the algorithms for a hi-
erarchical prior model so that the choice of regularization is less important, the possible application
of our methods to kernel classifiers, and applications to multi-class classification problems.
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Appendix A.

Here we show the Taylor expansions for the quadratic approximations to the log-likelihood function.
To simplify notation, let c(β) = βT xi and ĉ = βT

i−1xi. The link function (we will restrict analytical
results to the logistic and probit link functions) is Φ(z) as before and we denote its first and second
derivative, with respect to z, by Φ′(z) and Φ′′(z) respectively.

Consider the case where yi = 1:

logΦ(c) ≈ logΦ(ĉ)+(c− ĉ)
Φ′(ĉ)
Φ(ĉ)

+
(c− ĉ)2

2

(

Φ′′(ĉ)
Φ(ĉ)

−
(

Φ′(ĉ)
Φ(ĉ)

)2
)

∝
Φ′(ĉ)
Φ(ĉ)

c+
1
2

(

Φ′′(ĉ)
Φ(ĉ)

−
(

Φ′(ĉ)
Φ(ĉ)

)2
)

c2− ĉ

(

Φ′′(ĉ)
Φ(ĉ)

−
(

Φ′(ĉ)
Φ(ĉ)

)2
)

c

so that:

ai =
1
2

(

Φ′′(ĉ)
Φ(ĉ)

−
(

Φ′(ĉ)
Φ(ĉ)

)2
)
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and

bi =
Φ′(ĉ)
Φ(ĉ)

− ĉ

(

Φ′′(ĉ)
Φ(ĉ)

−
(

Φ′(ĉ)
Φ(ĉ)

)2
)

.

Analogously, when yi = 0:

log(1−Φ(c))≈ log(1−Φ(ĉ))− (c− ĉ)
Φ′(ĉ)

1−Φ(ĉ)
− (c− ĉ)2

2

(

Φ′′(ĉ)
1−Φ(ĉ)

+

(

Φ′(ĉ)
1−Φ(ĉ)

)2
)

so that:

ai =−1
2

(

Φ′′(ĉ)
1−Φ(ĉ)

+

(

Φ′(ĉ)
1−Φ(ĉ)

)2
)

and

bi =− Φ′(ĉ)
1−Φ(ĉ)

+ ĉ

(

Φ′′(ĉ)
1−Φ(ĉ)

+

(

Φ′(ĉ)
1−Φ(ĉ)

)2
)

.

For the probit link function:

Φ(z) =
Z z

−∞

1√
2π

e−x2/2dx

Φ′(z) =
1√
2π

e−z2/2

Φ′′(z) =
−z√
2π

e−z2/2,

whereas for the logistic link function:

Φ(z) =
ez

1+ ez

Φ′(z) =
ez

(1+ ez)2

Φ′′(z) =
(ez)(1− ez)

(1+ ez)3 .

These expressions then allow us to compute the ai,bi in the cases needed.

Appendix B.

In this appendix we derive the modified Shooting algorithm, Algorithm 1 and discuss its efficient
implementation. We derive Shooting by analyzing the subdifferential of the system (Rockafel-
lar, 1970). We need convex non-smooth analysis results because the regularization term is non-
differentiable at zero. Reviewing concepts very briefly, the subgradient ξ ∈ R

|x|, of a convex func-
tion f at x0 is defined to be any vector satisfying:

f (x)≥ f (x0)+ξT (x− x0).

In words, any vector ξ, such that a plane through (x, f (x)) with slope ξ contains f in its upper
half-space qualifies as a subgradient (equivalently, a tangent plane supporting the convex function
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f ). The subdifferential, ∂ f , is just the set of all subgradients, ξ, at a particular point. This is a
generalization of the gradient which collapses to the gradient, whenever f is differentiable. As
a simple example, the subdifferential of f (β) = |β|, the absolute value function (which is non-
differentiable at β = 0) is:

∂ f =







{−1}, β < 0
[−1,1], β = 0
{1}, β > 0.

As one expects, analogous to optimality conditions resulting from setting the gradient of a differen-
tiable function to zero, optimality conditions for non-differentiable functions result from restrictions
on the subdifferential. In particular we appeal to the following result from non-smooth analysis
(Rockafellar, 1970):
Theorem β̂ is a global minimizer of a convex function f (β) if and only if 0 ∈ ∂ f (β̂).

Now to our particular problem. We need to find β that is a solution to:

max
β

(

βT Ψβ+βT θ− γ‖β‖1

)

.

The convexity of the problem allows us to make incremental progress towards the maxima coordinate-
wise. Starting from some parameter vector, we compute the jth component of the subdifferential of
the function (keeping all other components fixed):

∂
∂β j

(βT Ψβ)+ ∂
∂β j

(βT θ)− γ∂(∑d
j=1(|β j|)

= 2(Ψβ) j +θ j− γ∂(|β j|)
= 2Ψ j jβ j +2(Ψ′β) j +θ j− γ∂(|β j|)

where (Ψ′β) j is the j’th component of the vector Ψ′β and Ψ j j refers to the ( j, j)’th element of
the matrix Ψ (Recall that Ψ′ is defined to be the matrix Ψ with diagonal entries set to zero). The
second equation follows from the first as the subdifferential of a univariate differentiable function
is just its derivative and since matrix Ψ is symmetric (it is just a weighted sum of outer products).
Now if we plug in the subdifferential of the non-differentiable absolute value function, and set
Ω j = 2(Ψ′β) j + θ j (and thus define the vector Ω to be the gradient of the purely differentiable
part of the objective function), we obtain the subdifferential of the objective function, whose j’th
component we denote by ∂β j

as:

∂β j
=







{2Ψ j jβ j +Ω j + γ}, β j < 0
[Ω j − γ,Ω j + γ], β j = 0
{2Ψ j jβ j +Ω j − γ}, β j > 0.

This is a piecewise linear function with fixed negative slope 2Ψ j j and a constant jump of fixed size
2γ at β j = 0 (Ψ j j can be proven to always be negative by looking at the update formula for Ψ and
using the fact that ∀i,ai < 0). Using the optimality criteria (now for maximization since −|β j| is a
concave function) naturally leads to the modified Shooting algorithm, illustrated in Figure 6.

Now to questions regarding the efficient implementation of the Shooting algorithm, used by
the online, MP and RMMP algorithms. In the modified Shooting algorithm, after each component
update (change in β j) we need to modify Ω (the update Ω step in the algorithm). This can be
implemented efficiently using the following result (similar to the trick detailed in Minka, 2001):

Ωnew = Ωold +2Ψ′(. j)(∆β j)
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0

0
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j
 + γ

Ω
j
 − γ

β
j

∂β
j

(a)

0

0
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Ω
j
 + γ <0

Ω
j
 − γ
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j

∂β
j

(b)

0

0

β
j
>0

Ω
j
 + γ

Ω
j
 − γ >0

β
j

∂β
j

(c)

Figure 6: Illustration of cases occurring in the Shooting algorithm (a) If |Ω j| ≤ γ the constant por-
tion of the subdifferential contains zero. In this case, set β j = 0 (b) If instead, Ω j < −γ,

the optimality conditions will be satisfied by setting β j =
−γ−Ω j

2Ψ j j
(c) The case analogous

to (b) but when Ω j > γ. Here the subdifferential is set equal to zero when β j =
γ−Ω j

2Ψ j j
.
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where ∆β j is the change in β j and Ψ′(. j) is the j’th column of Ψ′. Thus each component update
of Shooting can be done in O(d) computational time. Now, if as before the maximum number of
non-zero components of β along the solution path to MAP β is m, only m such updates will need to
be made, giving a total time requirement per iteration of O(md).

Finally we detail how to carry out the Ω updates efficiently for the RMMP algorithm, Algo-
rithm 3. Recall that since we are discussing a multi-pass algorithm, the location where we take the
quadratic approximation, βi−1, is constant throughout the pass through the fixed data set, Dt . We
exploit this fact to show that in this case, you don’t explicitly need the matrix Ψ (or Ψ̃) to determine
Ω. Indeed, after going through all the observations in the data set (pass z, say):

Ω = 2Ψ′βz−1 +θ = 2

(

t

∑
i=1

ai
(

xixT
i −diag(x2

i )
)

)

βz−1 +
t

∑
i=1

bixi,

which follows from the definitions of Ω,θ and Ψ′. In the above equation, diag(x2
i ) is a d×d matrix

zero everywhere except the diagonal entries, which consists of the elements of the vector xi squared
component-wise. This leads to the following equation for Ω:

Ω = 2
t

∑
i=1

ai(βT
z−1xi)xi−2

t

∑
i=1

ai(x2
i βz−1)+

t

∑
i=1

bixi,

where (x2
i βz−1) is a vector whose entries are x2

i multiplied by βz−1 component-wise. Note the first
sum is just a weighted combination of the input data (βT

z−1xi is a scalar). Thus, our final update
formula results:

Ωnew = Ωold +(2aiβT
z−1xi +bi)xi−2ai(x2

i βz−1).

As can be seen, computing this update per observation takes time and space O(d), and having
restricted the number of non-zero components of β to k, a total computational cost per iteration of
Shooting to O(kd).

Appendix C.

We present a proof sketch for the convergence behavior of the online algorithm in the infinite data
limit. The intuition for is as follows: as t → ∞, the Bayesian central limit theorems dictate that
the posterior distribution tends (in distribution) to a multivariate Gaussian with ever shrinking co-
variance, (Bernardo and Smith, 1994). Thus, less and less information is required to encode the
posterior distribution as more and more data is added—to a point. Indeed, in the limit, only the
vector of the maximum likelihood value of the parameters, βMLE , is required to completely describe
the posterior distribution.

Suppose now that the online algorithm converges to a particular fixed point. In the infinite data
limit, an infinite number of term approximations are taken at this fixed point. Now, our Taylor
polynomial based approximation preserves both the function value and its gradient, and an infinite
number of approximations are jointly maximum at this fixed point. This implies the fixed point is
an optima of the posterior distribution.

Thus, if the approximation converges to a fixed point, it is the correct optima location. The above
is a modification of the fixed point Lemma in the paper on Laplace Propagation (Eskin et al., 2003).
One can also prove unbiasedness which follows from our update rules and a minor modification of
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a theorem in Opper (1998). Even though Opper derives his results based on a Gaussian prior on
the parameters β (corresponding to L2 regularization), the general format of Opper’s theorem is still
applicable in our case because, in the infinite data limit, the prior is inconsequential.
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Abstract

We argue that when objects are characterized by many attributes, clustering them on the basis of
a random subset of these attributes can capture information on the unobserved attributes as well.
Moreover, we show that under mild technical conditions, clustering the objects on the basis of such
a random subset performs almost as well as clustering with the full attribute set. We prove finite
sample generalization theorems for this novel learning scheme that extends analogous results from
the supervised learning setting. We use our framework to analyze generalization to unobserved fea-
tures of two well-known clustering algorithms: k-means and the maximum likelihood multinomial
mixture model. The scheme is demonstrated for collaborative filtering of users with movie ratings
as attributes and document clustering with words as attributes.

Keywords: clustering, unobserved features, learning theory, generalization in clustering, informa-
tion bottleneck

1. Introduction

Data clustering can be defined as unsupervised classification of objects into groups based on their
similarity (see, for example, Jain et al., 1999). Often, it is desirable to have the clusters match some
labels that are unknown to the clustering algorithm. In this context, good data clustering is expected
to have homogeneous labels in each cluster, under some constraints on the number or complexity
of the clusters. This can be quantified by mutual information (see, for example, Cover and Thomas,
1991) between the objects’ cluster identity and their (unknown) labels, for a given complexity of
clusters. However, since the clustering algorithm has no access to the labels, it is unclear how it can
optimize the quality of the clustering. Even worse, the clustering quality depends on the specific
choice of the unobserved labels. For example, good document clustering with respect to topics is
very different from clustering with respect to authors.

In our setting, instead of attempting to cluster by some arbitrary labels, we try to predict un-
observed features from observed ones. In this sense our target labels are simply other features that
happened to be unobserved. For example, when clustering fruits based on their observed features
such as shape, color and size, the target of clustering is to match unobserved features such as nutri-
tional value or toxicity. When clustering users based on their movie ratings, the target of clustering
is to match ratings of movies that were not rated, or not even created as yet.

In order to theoretically analyze and quantify this new learning scheme, we make the following
assumptions. Consider a very large set of features, and assume that we observe only a random
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Figure 1: The learning scheme. The clustering algorithm has access to a random subset of features
(Xq1 , ...,Xqn) of m instances. The goal of the clustering algorithm is to assign a class label
ti to each instance, such that the expected mutual information between the class labels
and a randomly selected unobserved feature is maximized.

subset of n features, called observed features. The other features are called unobserved features.
We assume that the random selection of observed features is made from some unknown distribution
D and each feature is selected independently.1

The clustering algorithm has access only to the observed features of m instances. After cluster-
ing, one of the unobserved features is randomly selected to be the target label. This selection is done
using the same distribution, D , of the observed feature selection. Clustering performance is mea-
sured with respect to this feature. Obviously, the clustering algorithm cannot be directly optimized
for this specific feature.

The question is whether we can optimize the expected performance on the unobserved features,
based only on the observed features. The expectation is over the random selection of the unobserved
target features. In other words, can we find the clustering that is most likely to match a randomly
selected unobserved feature? Perhaps surprisingly, for a large enough number of observed features,
the answer is yes. We show that for any clustering algorithm, the average performance of the
clustering with respect to the observed and unobserved features is similar. Hence we can indirectly
optimize clustering performance with respect to unobserved features by analogy with generalization
in supervised learning. These results are universal and do not require any additional assumptions
such as an underlying model or a distribution that created the instances.

In order to quantify these results, we define two terms: the average observed information and
the expected unobserved information. Let T be the variable which represents the cluster for each
instance, and {X1, ...,XL} (L → ∞) the set of discrete random variables which denotes the features.
The average observed information, denoted by Iob, is the average mutual information between T
and each of the observed features. In other words, if the observed features are {X1, ...,Xn} then
Iob = 1

n ∑n
j=1 I(T ;X j). The expected unobserved information, denoted by Iun, is the expected value

of the mutual information between T and a new randomly selected feature, that is, Eq∼D
{

I(T ;Xq)
}

.
We are interested in cases where this new selected feature is most likely to be one of the unobserved
features, and therefore we use the term unobserved information. Note that whereas Iob can be
measured directly, this paper deals with the question of how to infer and maximize Iun.

1. For simplicity, we also assume that the probability of selecting the same feature more than once is near zero.
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Our main results consist of two theorems. The first is a generalization theorem. It gives an
upper bound on the probability of a large difference between Iob and Iun for all possible partitions.
It also states a uniform convergence in probability of |Iob − Iun| as the number of observed features
increases. Conceptually, the average observed information, Iob, is analogous to the training error in
standard supervised learning (Vapnik, 1998), whereas the unobserved information, Iun, is similar to
the generalization error.

The second theorem states that under constraints on the number of clusters, and a large enough
number of observed features, one can achieve nearly the best possible performance, in terms of
Iun. Analogous to the principle of Empirical Risk Minimization (ERM) in statistical learning theory
(Vapnik, 1998), this is done by maximizing Iob.

We use our framework to analyze clustering by the maximum likelihood of multinomial mixture
model (also called Naive Bayes Mixture Model, see Figure 2 and Section 2.2). This clustering as-
sumes a generative model of the data, where the instances are assumed to be sampled independently
from a mixture of distributions, and for each such distribution all features are independent. These
assumptions are quite different from our assumptions of fixed instances and randomly observed fea-
tures.2 Nevertheless, in Section 2.2 we show that this clustering achieves nearly the best possible
clustering in terms of information on unobserved features.

In Section 3 we extend our framework to distance-based clustering. In this case the measure
of the quality of clustering is based on some distance function instead of mutual information. We
show that the k-means clustering algorithm (Lloyd, 1957; MacQueen, 1967) not only minimizes the
observed intra-cluster variance, but also minimizes the unobserved intra-cluster variance, that is, the
variance of unobserved features within each cluster.

Table 1 summarizes the similarities and differences of our setting to that of supervised learning.
The key difference is that in supervised learning, the set of features is fixed and the training instances
are assumed to be randomly drawn from some distribution. Hence, the generalization is to new
instances. In our setting, the set of instances is fixed, but the set of observed features is assumed to
be randomly selected. Hence, the generalization is to new features.

Our new theorems are evaluated empirically in Section 4, on two different data sets. The first
is a movie ratings data set, where we cluster users based on their movie ratings. The second is
a document data set, with words as features. Our main point in this paper, however, is the new
conceptual framework and not a specific algorithm or experimental performance.

Section 5 discusses related work and Section 6 presents conclusions and ideas for future re-
search. A notation table is available in Appendix B.

2. Feature Generalization of Information

In this section we analyze feature generalization in terms of mutual information between the clusters
and the features. Consider a fixed set of m instances denoted by {x[1], . . . ,x[m]}. Each instance is
represented by a vector of L features {x1, . . . ,xL}. The value of the qth feature of the jth instance
is denoted by xq[ j]. Out of this set of features, n features are randomly and independently selected
according to some distribution D . The n randomly selected features are the observed features (vari-
ables) and their indices are denoted by q̃ = (q1, ...,qn), where qi ∼ D . The ith observed feature of
the jth instance is denoted by xqi [ j]. After selecting the observed features, we also select unobserved

2. Note that in our framework, random independence refers to the selection of observed features, not to the feature
values.
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Prediction of unobserved features
Supervised learning Information Distance-based

Training set Randomly selected
instances

n randomly selected features (ob-
served features)

Test set Randomly selected
unlabeled instances

Randomly selected unobserved
features

Hypothesis class Class of functions from
instances to labels

All possible partitions of m in-
stances into k clusters

Output of learning
algorithm

Select hypothesis
function

Cluster the instances into k clus-
ters

Goal Minimize expected error
on test set

Maximize
expected
information on
unobserved
features

Minimize
expected
intra-cluster
variance of
unobserved
features

Assumption Training and test
instances are randomly
and independently
drawn from the same
distribution

Observed and unobserved fea-
tures are randomly and indepen-
dently selected using the same
distribution

Strategy Empirical Risk
Minimization (ERM)

Observed
Information
Maximization
(OIM)

Minimize
observed
intra-cluster
variance

Related clustering
algorithm

Maximum
likelihood
multinomial
mixture model
(Figure 2)

k-means

Good
generalization

The training and test
errors are similar

The observed and
unobserved
information are
similar

The observed and
unobserved
intra-cluster
variance are
similar

Table 1: Analogy with supervised learning
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features according to the same distribution D . For simplicity, we assume that the total number of
features, L, is large and the probability of selecting the same feature more than once is near zero
(as in the case where L � n2, where D is uniform distribution). This means that we can assume
that a randomly selected unobserved feature is not one of the n observed features. It is important to
emphasize that we have a fixed and finite set of instances; that is, we do not need to assume that the
m instances were drawn from any distribution. Only the features are randomly selected.

We further assume that each of the features is a discrete variable with no more than s different
values.3 The clustering algorithm clusters the instances into k clusters. The clustering is denoted
by the function t : [m] → [k] that maps each of the m instances to one of the k clusters. The cluster
label of the jth instance is denoted by t( j). Our measures for the quality of clustering are based
on Shannon’s mutual information. Let random variable Z denote a number chosen uniformly at
random from {1, . . . ,m}. We define the quality of clustering with respect to a single feature, q, as
I (t(Z);xq[Z]), that is, the empirical mutual information between the cluster labels and the feature.

Our measure of performance assumes that the number of clusters is predetermined. There is
an obvious tradeoff between the preserved mutual information and the number of clusters. For
example, one could put each instance in a different cluster, and thus get the maximum possible
mutual information for all features. Obviously all clusters will be homogeneous with respect to all
features but this clustering is pointless. Therefore, we need to have some constraints on the number
of clusters.

Definition 1 The average observed information of a clustering t and the observed features is de-
noted by Iob(t, q̃) and defined by

Iob (t, q̃) =
1
n

n

∑
i=1

I (t(Z);xqi [Z]) .

The expected unobserved information of a clustering is denoted by Iun(t) and defined by

Iun(t) = Eq∼D
{

I (t(Z);xq[Z])
}

.

In general, Iob is higher when clusters are more coherent; that is, elements within each cluster
have many identical observed features. Iun is high if there is a high probability that the clusters are
informative on a randomly selected feature q (where q ∼ D). In the special case where the distri-
bution D is uniform and L � n2, Iun can also be written as the average mutual information between
the cluster label and the unobserved features set; that is, Iun ≈ 1

L−n ∑q/∈{q1,...,qn} I (t(Z);xq[Z]). Recall
that L is the total number of features, both observed and unobserved.

The goal of the clustering algorithm is to cluster the instances into k clusters that maximize the
unobserved information, Iun. Before discussing how to maximize Iun, we first consider the problem
of estimating it. Similar to the generalization error in supervised learning, Iun cannot be calculated
directly in the learning algorithm, but we may be able to bound the difference between the observed
information Iob—our “training error”—and the unobserved information Iun—our “generalization
error”. To obtain generalization, this bound should be uniform over all possible clusterings with
a high probability over the randomly selected features. The following lemma argues that uniform
convergence in probability of Iob to Iun always occurs.

3. Since we are exploring an empirical distribution of a finite set of instances, dealing with continuous features is not
meaningful.
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Lemma 2 With the definitions above,

Pr
q̃=(q1,...,qn)

{

sup
t:[m]→[k]

|Iob (t, q̃)− Iun (t)| > ε

}

≤ 2e−2nε2/(logk)2+m logk, ∀ε > 0.

Proof For any q,
0 ≤ I (t(Z);xq[Z]) ≤ H (t(Z)) ≤ logk.

Using Hoeffding’s inequality, for any specific (predetermined) clustering

Pr
q̃=(q1,...,qn)

{|Iob (t, q̃)− Iun (t)| > ε} ≤ 2e−2nε2/(logk)2
.

Since there are at most km possible partitions, the union bound is sufficient to prove Lemma 2.

Note that for any ε > 0, the probability that |Iob − Iun| > ε goes to zero, as n → ∞. The conver-
gence rate of Iob to Iun is bounded by O((logk)/

√
n). As expected, this upper bound decreases as

the number of clusters, k, decreases.
Unlike the standard bounds in supervised learning, this bound increases with the number of

instances (m), and decreases with increasing numbers of observed features (n). This is because
in our scheme the training size is not the number of instances, but rather the number of observed
features (see Table 1). However, in the next theorem we obtain an upper bound that is independent
of m, and hence is tighter for large m.

Consider the case where n is fixed, and m increases infinitely. We can select a random subset of
instances of size m′. For large enough m′, the empirical distribution of this subset is similar to the
distribution over all instances. By fixing m′, we can get a bound which is independent of m. Using
this observation, the next theorem gives a bound that is independent of m.

Theorem 3 (Information Generalization) With the definitions above,

Pr
q̃=(q1,...,qn)

{

sup
t:[m]→[k]

|Iob(t, q̃)− Iun(t)| > ε

}

≤ 8(logk)e−nε2/(8(logk)2)+4sk logk/ε−logε, ∀ε > 0.

The proof of this theorem is given in appendix A.1. In this theorem, the bound does not depend
on the number of instances, but rather on s which is the maximum alphabet size of the features. The
convergence rate here is bounded by O((logk)/ 3

√
n). However, for relatively large n one can use

the bound in Lemma 2, which converges faster.
As shown in Table 1, Theorem 3 is clearly analogous to the standard uniform convergence

results in supervised learning theory (see, for example, Vapnik, 1998), where the random sample is
replaced by our randomly selected features, the hypotheses are replaced by the clustering, and Iob

and Iun replace the empirical and expected risks, respectively. The complexity of the clustering (our
hypothesis class) is controlled by the number of clusters, k.

We can now return to the problem of specifying a clustering that maximizes Iun, using only the
observed features. For reference, we will first define Iun of the best possible clustering.
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Definition 4 Maximally achievable unobserved information: Let I∗un,k be the maximum value of
Iun that can be achieved by any partition into k clusters,

I∗un,k = sup
t:[m]→[k]

Iun (t) .

The clustering that achieves this value is called the best clustering. The average observed
information of this clustering is denoted by I∗ob,k.

Definition 5 Observed information maximization algorithm: Let IobMax be any clustering algo-
rithm that, based on the values of the observed features, selects a clustering topt,ob : [m]→ [k] having
the maximum possible value of Iob, that is,

topt,ob = arg max
t:[m]→[k]

Iob(t, q̃).

Let Ĩob,k be the average observed information of this clustering and Ĩun,k be the expected unobserved
information of this clustering, that is,

Ĩob,k (q̃) = Iob

(

topt,ob, q̃
)

,

Ĩun,k (q̃) = Iun

(

topt,ob
)

.

The next theorem states that IobMax not only maximizes Iob, but also maximizes Iun.

Theorem 6 (Achievability) With the definitions above,

Pr
q̃=(q1,...,qn)

{

Ĩun,k (q̃) ≤ I∗un,k − ε
}

≤ 8(logk)e−nε2/(32(logk)2)+8sk logk/ε−log(ε/2), ∀ε > 0. (1)

Proof We now define a bad clustering as a clustering whose expected unobserved information satis-
fies Iun ≤ I∗un,k − ε. Using Theorem 3, the probability that |Iob − Iun| > ε/2 for any of the clusterings
is upper bounded by the right term of Equation 1. If for all clusterings |Iob − Iun| ≤ ε/2, then surely
I∗ob,k ≥ I∗un,k − ε/2 (see Definition 4) and Iob of all bad clusterings satisfies Iob ≤ I∗un,k − ε/2. Hence
the probability that a bad clustering has a higher average observed information than the best clus-
tering is upper bounded as in Theorem 6.

For small m, a tighter bound, similar to that of Lemma 2 can easily be formulated.
As a result of this theorem, when n is large enough, even an algorithm that knows the value of

all features (observed and unobserved) cannot find a clustering which is significantly better than the
clustering found by the IobMax algorithm. This is demonstrated empirically in Section 4.

Informally, this theorem means that for a large number of features we can find a clustering that
is informative on unobserved features. For example, clustering users based on similar ratings of
current movies are likely to match future movies as well (see Section 4).

In the generalization and achievability theorems (Theorems 3, 6) we assumed that we are deal-
ing only with hard clustering. In Appendix A.2 we show that the generalization theorem is also
applicable to soft clustering; that is, assigning a probability distribution among the clusters to each
instance. Moreover, we show that soft clustering is not required to maximize Iob, since its maximum
value can be achieved by hard clustering.
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2.1 Toy Examples

In the first two examples below, we assume that the instances are drawn from a given distribution
(although this assumption is not necessary for the theorems above). We also assume that the number
of instances is large, so the empirical and the actual distributions of the instances are about the same.

Example 1 Let X1, ...,X∞ be Bernoulli( 1
2 ) random variables, such that all variables with an even

index are equal to each other (x2 = x4 = x6 = ...), and all variables with an odd index are indepen-
dent of each other and of all other variables. If the number of randomly observed features is large
enough we can find a clustering rule with two clusters such that Iob

∼= 1
2 . This is done by assigning

the cluster labels based on the set of features that are correlated, for example, t(i) = x2[i]+1 ∀i,
assuming that x2 is one of the observed features. I (t(Z);xi(Z)) is one for even i, and zero for odd i.
For large n, the number of randomly selected features with odd indices and even indices4 is about
the same (with high probability), and hence Iob

∼= 1
2 . For this clustering rule Iun

∼= 1
2 , since half of

the unobserved features match this clustering (all features with an even index).

Example 2 When X1, ...,X∞ are i.i.d. (independent and identically distributed) Bernoulli( 1
2 ) ran-

dom variables, Iun = 0 for any clustering rule, regardless of the number of observed features. For
a finite number of clusters, Iob will necessarily approach zero as the number of observed features
increases. More specifically, if we use two clusters, where the clustering is determined by one of
the observed features (i.e., t(i) = x j(i), where x j is an observed feature), then Iob = 1

n (because
I (t(Z);x j(Z)) = 1 and I (t(Z);xl(Z)) = 0 for l 6= j).

Example 3 Clustering fruits based on the observed features (color, size, shape etc.) also matches
many unobserved features. Indeed, people clustered fruits into oranges, bananas and others (by
giving names in the language) long before vitamin C was discovered. Nevertheless, this clustering
was very informative about the amount of vitamin C in fruits, that is, most oranges have similar
amounts of vitamin C, which is different from the amount in bananas.

Based on the generalization theorem, we now suggest a qualitative explanation of why cluster-
ing into bananas and oranges provides relatively high information on unobserved features, while
clustering based on position (e.g., right/left in the field of view) does not. Clustering into bananas
and oranges contains information on many observed features (size, shape, color, texture), and thus
has relatively large Iob. By the generalization theorem, this implies that it also has high Iun. By
contrast, a clustering rule which puts all items that appeared in our right visual field in one cluster,
and the others in a second cluster, has much smaller Iob (since it does not match many observed
features), and indeed it is not predictive about unobserved features.

Example 4 As a negative example, if the type of observed features and the target unobserved fea-
tures are very different, our assumptions do not hold. For example, when the observations are pixels
of an image, and the target variable is the label of the image, we cannot generalize from information
about the pixels to information about the label.

2.2 Feature Generalization of Maximum Likelihood Multinomial Mixture Models

In the framework of Bayesian graphical models, the multinomial mixture model is commonly used.
The assumption of this model is that all features are conditionally independent, given the value of

4. Note that the indices are arbitrary. The learning algorithm does not use the indices of the features.
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Figure 2: The Bayesian network (Pearl, 1988) of the multinomial mixture model. The observed ran-
dom variables

{

Xq1 , . . . ,Xqn

}

are statistically independent given the parent hidden random
variable, T . This parent variable represents the cluster label. Although the basic assump-
tions of the multinomial mixture model are very different from ours, Theorem 7 tells us
that this method of clustering generalizes well to unobserved features.

some hidden variable, that is,

Pr(T = t,xq1 , . . . ,xqn) = Pr(T = t)
n

∏
r=1

Pr(xqr |T = t ) ,

where T denotes the hidden variable. The Bayesian network (Pearl, 1988) of this model is given
in Figure 2. This standard model does not assume the existence of unobserved features, so we use
the notation xq1 , . . . ,xqn to denote the observed features which are used by the model. The set of
instances are assumed to be drawn from such a distribution, with unknown parameters. Given the
set of instances, the goal is to learn the distributions Pr(T = t) and Pr(xqr |T = t ) that maximizes the
probability of the observation, that is, values of the instances. This maximum-likelihood problem
is typically solved using an EM algorithm (Dempster et al., 1977) with a fixed number of clusters
(values of T ). The output of this algorithm includes a soft clustering of all instances; that is, P(T |Y ),
where Y denotes the index of the instance.

In the following theorem we analyze the feature generalization properties of soft clustering by
the multinomial mixture model. We show that under some technical conditions, it pursues nearly
the same goal as IobMax algorithm (Definition 5), that is, maximizing ∑ j I

(

t(Z);Xq j(Z)
)

.

Theorem 7 Let Iob,ML,k be the observed information of clustering achieved by the maximum likeli-
hood solution of a multinomial mixture model for k clusters. Then

Iob,ML,k ≥ Ĩob,k −
2H(T )

n
,

where Ĩob,k is the observed information achieved by the IobMax clustering algorithm (Definition 5).

Proof
Elidan and Friedman (2003) showed that learning a hidden variable can be formulated as the

multivariate information bottleneck (Friedman et al., 2001). Based on their work, in Appendix
A.3 we show that maximizing the likelihood of observed variables is equivalent to maximizing
∑n

j=1 I(T ;Xq j)− I(T ;Y ). Using our notations, this is equivalent to maximizing Iob− 1
n I(T ;Y ). Since

I(T ;Y ) ≤ H(T ), the difference between maximizing Iob and Iob − 1
n I(T ;Y ) is at most 2H(T )/n.
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The meaning of Theorem 7 is that for large n, finding the maximum likelihood of mixture
models is similar to finding the maximum unobserved information. Thus the standard EM-algorithm
for maximum likelihood of mixture models can be viewed as a form of the IobMax algorithm.5

The standard mixture model assumes a generative model for generating the instances from some
distribution, and finds the maximum likelihood of this model. This model does not assume anything
about the selection of features or the existence of unobserved features. Our setup assumes that
the instances are fixed and the observed features are randomly selected and we try to maximize
information on unobserved features. Interestingly, while the initial assumptions are quite different,
the results are nearly equivalent. We show that finding the maximum likelihood of the mixture
model indirectly predicts unobserved features as well.

The maximum likelihood mixture model was used by Breese et al. (1998) to cluster users by
their voting on movies. This clustering is used to predict the rating of new movies. Our analysis
shows that for a large number of rated (observed) movies, it is nearly the best clustering method in
terms of information on new movies.

The multinomial mixture model is also used for learning with labeled and unlabeled instances,
and is considered a baseline method (see Section 2.3 in Seeger, 2002). The idea is to cluster the in-
stances based on their features. Then, the prediction of a label for an unlabeled instance is estimated
from the labels of other instances in the same cluster. From our analysis, this is nearly the best clus-
tering method for preserving information on the label, assuming that the label is yet another feature
that happened to be unobserved in some instances. This provides another interpretation regrading
the hidden assumption of this clustering scheme for labeled and unlabeled data.

3. Distance-Based Clustering

In this section we extend the framework and include analysis of feature generalization bounds for
distance-based clustering. We apply this to analyze feature generalization of the k-means clustering
algorithm (See Table 1). The setup in this section is the same as the setup defined in Section 2 except
as described below. We assume that we have a distance function, denoted by f , that measures the
distance for every two values of any of the features. We assume that f has the following properties:

0 ≤ f (xq[ j],xq[l]) ≤ c ∀q, j, l, (2)

f (a,a) = 0 ∀a, (3)

f (a,b) = f (b,a) ∀a,b, (4)

where c is some positive constant. An example of such a function is the square error, that is,
f (a,b) = (a− b)2, where we assume that the value of all features is bounded as follows

∣

∣xq[ j]
∣

∣ ≤√
c/2 (∀q, j), for some constant c. The features themselves can be discrete or continuous. Although

we do not directly use the function f in the definitions of the theorems in the following section, it is
required for their proofs (Appendix A.4).

5. Ignoring the fact that achieving a global maximum is not guaranteed.
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3.1 Generalization of Distance-Based Clustering

As in Section 2, we have a set of m fixed instances {x[1], ...,x[m]}, and the clustering algorithm
clusters these instances into k clusters. For better readability, in this section the partition is denoted
by {C1, ...,Ck}. |Cr| denotes the size of the rth cluster.

The standard objective of the k-means algorithm is to achieve minimum intra-cluster variance,
that is, minimize the function

k

∑
r=1

∑
j∈Cr

|x[ j]−µr|2 ,

where µr is the mean point of all instances in the rth cluster.
In our setup, however, we assume that the clustering algorithm has access only to the observed

features over the m instances. The goal of clustering is to achieve minimum intra-cluster variance of
the unobserved features. To do so, we need to generalize from the observed to the unobserved intra-
class variance. To formalize this type of generalization, let’s first define these variances formally.

Definition 8 The observed intra-cluster variance Dob {C1, ...,Ck} of a clustering {C1, ...,Ck} is de-
fined by

Dob {C1, ...,Ck} =
1

nm

k

∑
r=1

∑
j∈Cr

n

∑
i=1

(xqi [ j]−µqi [r])
2 ,

where µq[r] is the mean of feature q over all instances in cluster r, that is,

µq[r] =
1
|Cr| ∑

l∈Cr

xq[l].

In other words, Dob is the average square distance of each observed feature from the mean of
the value of the feature in its cluster. The average is over all observed features and instances. The
k-means algorithm minimizes the observed intra-cluster variance.

Definition 9 The expected unobserved intra-cluster variance Dun {C1, ...,Ck} is defined by

Dun {C1, ...,Ck} =
1
m

k

∑
r=1

∑
j∈Cr

Eq∼D (xq[ j]−µq[r])
2 .

Dob and Dun are the distance-based variables analogous to Iob and Iun defined in Section 2. In
our setup, the goal of the clustering algorithm is to create clusters with minimal unobserved intra-
class variance (Dun). As in the case of information-based clustering, we first consider the problem
of estimating Dun. Before presenting the generalization theorem for distance-based clustering, we
need the following definition.

Definition 10 Let α be the ratio between the size of smallest cluster and the average cluster size,
that is,

α({C1, ...,Ck}) =
minr |Cr|

m/k
.

Now we are ready for the generalization theorem for distance-based clustering.
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Theorem 11 With the above definitions, if
∣

∣xq[ j]
∣

∣≤ R for every q, j then for every αc > 0 , ε > 0,

Pr
{q1,...,qn}

{

sup
α({C1,...,Ck})≥αc

|Dob {C1, ...,Ck}−Dun {C1, ...,Ck}| ≤ ε

}

≥ 1−δ,

where

δ =
8k
αc

e−nε2/8R4+log(R2/ε).

The proof of this theorem is given in Appendix A.4. Theorem 11 is a special case of a more
general theorem (Theorem 14) that we present in the appendix. Theorem 14 can be applied to other
distance-based metrics, beyond the intra-cluster variance defined in Definition 9.

Note that for any ε > 0, the probability that |Dob − Dun| ≤ ε goes to one, as n → ∞. The
convergence rate of Dob to Dun is bounded by O(1/

√
n). As expected, for a fixed value of δ the

upper bound on |Dob −Dun| decreases as the number of clusters, k, decreases.
Theorem 11 bounds the difference between observed and unobserved variances. We now use

it to find a clustering that minimizes the expected unobserved intra-cluster variance, using only the
observed features.

Theorem 12 Let
{

Copt
1 , ...,Copt

k

}

be the clustering that achieves the minimum unobserved intra-
cluster variance under the constraint α({C1, ...,Ck}) ≥ αc for some constant 0 < αc ≤ 1, that is,

{

Copt
1 , ...,Copt

k

}

= arg min
{C1,...,Ck}:α≥αc

Dun {C1, ...,Ck} ,

and let Dopt
un the best unobserved intra-cluster variance, be defined by Dopt

un = Dun
{

Copt
1 , ...,Copt

k

}

.
Let
{

Ĉopt
1 , ...,Ĉopt

k

}

be the clustering with the minimum observed intra-cluster variance, under
the same constraint on α({C1, ...,Ck}), that is,

{

Ĉopt
1 , ...,Ĉopt

k

}

= arg min
α({C1,...,Ck})≥αc

Dob {C1, ...,Ck} ,

and let D̂opt
un be the unobserved intra-cluster variance of this clustering, that is, D̂opt

un = Dun
{

Ĉopt
1 , ...,

Ĉopt
k

}

.
For any ε > 0,

Pr
{q1,...,qn}

{

D̂opt
un ≤ Dopt

un + ε
}

≥ 1−δ,

where

δ =
16k
αc

e−nε2/32R4+log(R2/ε). (5)

Proof We now define a bad clustering as a clustering whose expected unobserved intra-cluster vari-
ance satisfies Dun > Dopt

un + ε. Using Theorem 11, the probability that |Dob −Dun| ≤ ε/2 for all
possible clusterings (under the constraint on α) is at least 1− δ, where δ defined in Equation 5. If
for all clusterings |Dob −Dun| ≤ ε/2, then surely Dob

{

Copt
1 , ...,Copt

k

}

≤ Dopt
un + ε/2 and Dob of all

bad clusterings satisfies Dob > Dopt
un +ε/2. Hence the probability that any of the bad clusterings has

a lower observed intra-cluster variance than the best clustering is upper bounded by δ. Therefore,
with a probability of at least 1−δ none of the bad clusterings is selected by an algorithm that selects
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the clustering with the minimum Dob.

We cannot directly calculate the unobserved intra-cluster variance. However, Theorem 12 means
that an algorithm that selects the clustering with the minimum observed intra-cluster variance indi-
rectly finds the clustering with nearly minimum unobserved intra-cluster variance.

In general, minimizing observed intra-cluster variance is the optimization objective of k-means.
Hence, k-means indirectly minimizes the unobserved intra-cluster variance. This means that in
our context, k-means can be viewed as an analog to the empirical risk minimization (ERM) in the
standard supervised learning context. We minimize the observed variance (training error) in order
to indirectly minimize the expected unobserved variance (test error).

k-means is used in collaborative filtering such as movie rating predictions for grouping users
based on similar ratings (see, for example, Marlin, 2004). After clustering, we can predict ratings
of a new movie based on the ratings of a few users for this movie. If the intra-cluster variance of
a new, previously unobserved movie is small, then we can estimate the rating of one user from the
average ratings of other users in the same cluster.

An experimental illustration of the behavior of the observed and unobserved intra-cluster vari-
ances for k-means is available in Section 4.1.

4. Empirical Evaluation

In this section we test experimentally the generalization properties of IobMax and the k-means
clustering algorithm for a finite number of features. For IobMax we examine the difference between
Iob and Iun as a function of the number of observed features, and number of clusters used. We
also compare the value of Iun achieved by the IobMax algorithm to I∗un, which is the maximum
achievable Iun (see Definition 4). Similarly, for distance-based clustering we use k-means to examine
the behavior of the observed and unobserved intra-cluster variances (see Definitions 8, 9).

The purpose of this section is not to suggest new algorithms for collaborative filtering or com-
pare it to other methods, but simply to illustrate our new theorems on empirical data.

4.1 Collaborative Filtering

In this section, our evaluation uses a data set typically employed for collaborative filtering. Collab-
orative filtering refers to methods of making predictions about a user’s preferences, by collecting
the preferences of many users. For example, collaborative filtering for movie ratings can make pre-
dictions about the rating of movies by a user given a partial list of ratings from this user and many
other users. Clustering methods are used for collaborative filtering by clustering users based on the
similarity of their ratings (see, for example, Marlin, 2004; Ungar and Foster, 1998).

In our setting, each user is described as a vector of movie ratings. The rating of each movie is
regarded as a feature. We cluster users based on the set of observed features, that is, rated movies.
In our context, the goal of the clustering is to maximize the information between the clusters and
unobserved features, that is, movies that have not yet been rated by any of the users. These can be
movies that have not yet been made. By Theorem 6, given a large enough number of rated movies,
we can achieve the best possible clustering of users with respect to unseen movies. In this region, no
additional information (such as user age, taste, rating of more movies) beyond the observed features
can improve the unobserved information, Iun, by more than some small ε.
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For distance-based clustering, we cluster the users by the k-means algorithm based on a subset
of features (movies). As we show in Section 3.1 the goal of k-means is to minimize the observed
intra-cluster variance. From Theorem 12, this indirectly minimizes the unobserved intra-cluster
variance as well. Here we empirically evaluate this type of generalization.

Data set. We use MovieLens (www.movielens.umn.edu), which is a movie rating data set. It
was collected and distributed by GroupLens Research at the University of Minnesota. It contains
approximately 1 million ratings of 3900 movies by 6040 users. Ratings are on a scale of 1 to 5. We
use only a subset consisting of 2400 movies rated by 4000 users (or 2000 by 2000 for distance-based
clustering). In our setting, each instance is a vector of ratings (x1, ...,x2400) by a specific user. Each
movie is viewed as a feature, where the rating is the value of the feature.

Experimental Setup. We randomly split the 2400 movies into two groups, denoted by “A” and
“B”, of 1200 movies (features) each. We use a subset of the movies from group “A” as observed
features and all movies from group “B” as the unobserved features. The experiment was repeated
with 20 random splits and the results averaged. We estimate Iun by the mean information between
the clusters and ratings of movies from group “B”. We use a uniform distribution of feature selection
(D), and hence Iun can be estimated as the average information on the unobserved features, that is,
Iun = 1

1200 ∑ j∈B I (T ;X j). A similar setup is used for the distance-based clustering (with two groups
of 1000 movies).

Handling Missing Values. In this data set, most of the values are missing (not rated). For in-
formation based-clustering, we handle this by defining the feature variable as 1,2,...,5 for the ratings
and 0 for a missing value. We maximize the mutual information based on the empirical distribu-
tion of values that are present, and weight it by the probability of presence for this feature. Hence,
Iob = ∑n

j=1 P(X j 6= 0)I(T ;X j|X j 6= 0) and Iun = E j
{

P(X j 6= 0)I(T ;X j|X j 6= 0)
}

. The weighting pre-
vents overfitting to movies with few ratings. Since the observed features are selected at random, the
statistics of missing values of the observed and unobserved features are the same. Hence, all our
theorems are applicable to these definitions of Iob and Iun as well.

In order to verify that the estimated mutual information is not just an artifact of the finite sample
size, we tested the mutual information after random permutation of ratings of each movie among
users. Indeed, the resulting mutual information was significantly lower in the case of random per-
mutation.

For the distance based clustering, we handle missing data by defining a default square distance
between a feature and the cluster center where one (or two) of the values is missing. We select this
default square distance to be the average variance of movie ratings (which is about 0.9).

4.2 Greedy IobMax Algorithm

For information-based clustering, we cluster the users using a simple greedy clustering algorithm
(see Algorithm 1). The input to the algorithm is all users, represented solely by the observed fea-
tures. Since this algorithm can only find a local maximum of Iob, we ran the algorithm 10 times
(each used a different random initialization) and selected the results that had a maximum value of
Iob.

In our experiment, the number of observed features is large. Therefore, based on Theorem 7, the
greedy IobMax can be replaced by the standard EM-algorithm which finds the maximum likelihood
for multinomial mixture models. Although, in general, this algorithm finds soft clustering, in our
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(d) 6 Clusters
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(e) Fixed number of features (n=1200)
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Figure 3: Feature generalization as a function of the number of training features (movies) and the
number of clusters. (a) (b) and (e) show the observed and unobserved information for
various numbers of features and clusters (high is good). The overall mean information is
low, since the rating matrix is sparse. (c) (d) and (f) shows the observed and unobserved
intra-cluster variance (low is good). In these figures, the variance is only calculated on
values which are not missing. Figures (e) and (f) show the effect of the number of clusters
when the number of features is fixed.
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case the empirical result clusterings are not soft, that is, one cluster is assigned to each instance (see
Appendix A.2). As expected, the results of both algorithms are nearly the same.

Algorithm 1 A simple greedy IobMax algorithm

1. Assign a random cluster to each of the instances.

2. For r = 1 to R (where R is the upper limit on the number of iterations)

(a) For each instance,

i. Calculate Iob for all possible clustering assignments of the current instance.

ii. Choose the clustering that maximizes Iob.

(b) Exit if the clusters of all documents do not change.

In order to estimate I∗un,D (see Definition 4), we also ran the same algorithm when all the features
were available to the algorithm (i.e., also features from group “B”). In this case the algorithm tries
directly to find the clustering that maximizes the mean mutual information on features from group
”B”.

4.3 Results

The results are shown in Figure 3. It is clear that as the number of observed features increases, Iob

decreases while Iun increases (see Figure 3(a,b)). When there is only one feature, two clusters can
contain all the available information on this feature (e.g., by assigning t( j) = xq1 [ j]), so Iob reaches
its maximum value (which is H (Xq1 [Z])). As the number of observed features increases, we cannot
preserve all the information on all the features in a few clusters, so the observed mutual informa-
tion (Iob) decreases. On the other hand, as the number of observed features increases, the cluster
variable, T = t(Z), captures the structure of the distribution (users’ tastes), and hence contains more
information on unobserved features. The generalization theorem (Theorem 3) tells us that the dif-
ference between Iun and Iob will approach zero as the number of observed features increases. This is
similar to the behavior of training and test errors in supervised learning. Informally, the achievabil-
ity theorem (Theorem 6) tells as that for a large enough number of observed features, even though
our clustering algorithm is based only on observed features, it can achieve nearly the best possible
clustering, in terms of Iun. This can be seen in Figures 3 (a,b), where Iun approaches I∗un, which is the
unobserved information of the best clustering (Definition 4). As the number of clusters increases,
both Iob, Iun increase (Figure 3e), but the difference between them also increases.

Similar results were obtained for distance based clustering. The goal here is to minimize the
unobserved intra-cluster variance (Dun), and this is done by minimizing the observed intra-cluster
variance (Dob). As discussed in Section 3.1, this can be achieved by k-means.6 Again, for a small
numbers of features (n) the clustering overfits the observed features, that is, the Dob is relatively
low but Dun is large. However, for large n, Dun and Dob approach each other and both of them
approach the unobserved intra-cluster variance of the best possible clustering (Dopt

un ) as expected

6. Since k-means does not necessarily find the global optimum, we ran it 20 times with different initialization points,
and chose the results with minimal observed intra-cluster variance. This does not guarantee a global optimum, but no
other tractable algorithm is available today to achieve global optima.
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Figure 4: Iob, Iun and I∗un per number of training words and clusters. In (a) and (b) the number of
words is variable, and the number of clusters is fixed. In (c) the number of observed words
is fixed (1200), and the number of clusters is variable. The overall mean information is
low, since a relatively small number of words contributes to the information (see Table 2)

from Theorem 12. When the number of clusters increases, both Dob and Dun decrease, but the
difference between them increases.

4.4 Words and Documents

In this section we repeat the information-based clustering experiment, but this time for document
clustering with words as features. We show how clustering which is based on a subset of words
(observed words) is also informative about the unobserved words. The obtained curves of informa-
tion vs. number of features are similar to those in the previous section. However, in this section we
also examine the resulting clustering (Table 2) to get a better intuition as to how this generalization
occurs.

Data set. We use the 20-newsgroups (20NG) corpus, collected by Lang (1995). This collection
contains about 20,000 messages from 20 Usenet discussion groups, some of which have similar
topics.

Preprocessing. In order to prevent effects caused by different document lengths, we truncate
each document to 100 words (by randomly selecting 100 words), and ignore documents which
consist of fewer than 100 words. We use the “bag of words” representation: namely we convert each
document into a binary vector (x1,x2, ...), where each element in the vector represents a word, and
equals one if the word appears in the document and zero otherwise. We select the 2400 words whose
corresponding Xi has maximum entropy,7 and remove all other words. After this preprocessing each
document is represented by a vector (x1, ...,x2400).

Experimental setup. We randomly split the 2400 words into two groups of 1200 words (fea-
tures) each. The groups were called “A” and “B”. We use a variable number of words (1 to 1200)
from group “A” as observed features. All the features from group “B” are used as the unobserved
features. We repeat the test with 10 random splits and present the mean results.

7. In other words, the probability of the word appearing in a document is not near zero or near one.
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Word t=1 t=2 t=3

he 0.47 0.04 0.25
game 0.23 0.01 0
team 0.20 0 0
x 0.01 0.15 0.01
hockey 0.11 0 0
jesus 0.01 0 0.09
christian 0 0 0.08
use 0.04 0.21 0.09
file 0 0.08 0.01
god 0.02 0.01 0.15
players 0.13 0 0
baseball 0.10 0 0
window 0 0.10 0
server 0 0.06 0

O
bs

er
ve

d 
w

or
ds

U
no

bs
er

ve
d 

w
or

ds

Table 2: Probability of a word appearing in a document from each cluster. Each column in the
table represents a cluster (total of three clusters), and the numbers are the probabilities
that a document from a cluster will contain the word (e.g., The word “he” appears in 47%
of the documents from cluster 1). The results presented here are for learning from 1200
observed words, but only a few of the most informative words appear in the table.

4.5 Results

The results are shown in Figure 4 and Table 2. The qualitative explanation of the figure is the same
as for collaborative filtering (see Section 4.1 and Figure 3). Table 2 presents a list of the most in-
formative words, and their appearance in each cluster. This helps understand the way clustering
learned from observed words matches unobserved words. We can see, for example, that although
the word “player” is not part of the inputs to the clustering algorithm, it appears much more in the
first cluster than in other clusters. Intuitively this can be explained as follows. The algorithm finds
clusters that are informative on many observed words together, and thus matches the co-occurrence
of words. This clustering reveals the hidden topics of the documents (sports, computers and reli-
gious), and these topics contain information on the unobserved words. We see that generalization
to unobserved features can be explained from a standpoint of a generative model (a hidden vari-
able which represents the topics of the documents) or from a statistical point of view (relationship
between observed and unobserved information). In Section 6 we further discuss this dual view.

5. Related Work

In the framework of learning with labeled and unlabeled data (see, for example, Seeger, 2002),
a fundamental issue is the link between the marginal distribution P(x) over instances x and the
conditional P(y|x) for the label y (Szummer and Jaakkola, 2003). From this point of view our
approach assumes that the label, y, is a feature in itself.
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In the context of supervised learning, Ando and Zhang (2005) proposed an approach that re-
gards features in the input data as labels in order to improve prediction in the target supervised
problem. Their idea is to create many auxiliary problems that are related to the target supervised
problem. They do this by masking some features in the input data, that is, making them unobserved
features, and training classifiers to predict these unobserved features from the observed features.
Then they transfer the knowledge acquired from these related classification tasks to the target su-
pervised problem. A similar idea was used by Caruana and de Sa (1997) in supervised training of a
neural net. The authors used some features as extra outputs of the neural net, rather than inputs, and
show empirically that this can improve the classifier performance. In our framework, this could be
interpreted as follows. We regard the label as a feature, and hence we can learn from prediction of
these features to the prediction of the label. Loosely speaking, if we successfully predict many such
features by the classifier, we expect to generalize better to the target feature (label).

The idea of an information tradeoff between complexity and information on target variables is
similar to the idea of the information bottleneck (Tishby et al., 1999). But unlike the bottleneck
method, here we are trying to maximize information on unobserved variables, using a finite sample.

In a recent paper, von Luxburg and Ben-David (2005) discuss the goal of clustering in two very
different cases. The first is when we have complete knowledge about our data generating process,
and the second is how to approximate an optimal clustering when we have incomplete knowledge
about our data. In most current analyses of clustering methods, incomplete knowledge refers to
getting a finite sample of instances rather than the distribution itself. Then, we can define the desired
properties of a good clustering. An example of such a property is the stability of the clustering
with respect to the sampling process, for example, the clusters do not change significantly if we
add some data points to our sample. In our framework, even if the distribution of the instances is
completely known, we assume that there are other features that we might not be aware of at the time
of clustering. Another way to view this is that in our framework, incomplete knowledge refers to the
existence of unobserved features rather than to an unknown distribution of the observed features.
From this point of view, further research could concentrate on analyzing the feature stability of a
clustering algorithm, for example, stability with respect to the adding of new features.

Another interesting work which addresses the difficulty of defining good clustering was pre-
sented by Kleinberg (2002). In this work the author states the desired properties a clustering algo-
rithm should satisfy, such as scale invariances and richness of possible clusterings. Then he proves
that it is impossible to construct a clustering that satisfies all the required properties. In his work the
clustering depends on pairwise distances between data points. In our work, however, the analysis
is feature oriented. We are interested in the information (or distance) per feature. Hence, our basic
assumptions and analysis are very different.

The idea of generalization to unobserved features by clustering was first presented in a short
version of this paper (Krupka and Tishby, 2005).

6. Discussion

We introduce a new learning paradigm: clustering based on observed features that generalizes to
unobserved features. Our main results include two theorems that tell us how, without knowing the
value of the unobserved features, one can estimate and maximize information between the clus-
ters and the unobserved features. Using this framework we analyze feature generalization of the
Maximum Likelihood Multinomial Mixture Model (Figure 2). The multinomial mixture model is a
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generative probabilistic model which approximates the probability distribution of the observed data
(x), from a finite sample of instances. Our model does not assume any distribution that generated the
instances, but instead assumes that the set of observed features is simply a random subset of features.
Then, using statistical arguments we show that we can cluster by the unobserved features. Despite
the very different assumptions of these models, we show that clustering by multinomial mixture
models is nearly optimal in terms of maximizing information on unobserved features. However, to
analyze and quantify this generalization our framework is required.

This dual view on the multinomial mixture model can also be applied to two different ap-
proaches that may explain our “natural clustering” of objects in the world (e.g., assigning object
names in language). Let’s return to our clustering of bananas and oranges (Example 3). From the
generative point of view, we find a model with the cluster labels bananas and oranges as values of a
hidden variable that created the distribution. This means that we have a mixture of two distributions,
each related to one object type that is assigned to a different cluster. Since we have two types of
objects (distributions), we expect that their unobserved features will correspond to these two types
as well. However, the generative model does not quantify this expectation. In our framework, we
view fruits in the world, and cluster them based on some kind of IobMax algorithm; that is, we
find a representation (clustering) that contains significant information on as many observed features
as possible, while still remaining simple. From our generalization theorem (Theorem 3), such a
representation is expected to contain information on other rarely viewed salient features as well.
Moreover, we expect this unobserved information to be similar to the information we have on the
clustering on the observed features.

In addition to information-based clustering, we present similar generalization theorems for
distance-based clustering, and use these to analyze generalization properties of k-means. Under
some assumptions, k-means is also known as a solution for the maximum likelihood Gaussian mix-
ture model. Analogous to what we show for information based clustering and multinomial mixture
models, we show that this optimization goal of k-means is also optimal in terms of generalization to
unobserved features.

The key assumption that enables us to prove these theorems is the random independent selection
of the observed features. Note that a contrary assumption to random selection would be that given
two instances {x[1],x[2]}, there is a correlation between the distance of a feature

∣

∣xq[1]− xq[2]
∣

∣ and
the probability of observing this feature; for example, the probability of observing features that
are similar is higher. If no such correlation exists, then the selection can be considered random
in our context. Hence, we believe that in practice the random selection assumption is reasonable.
However, in many cases, the assumption of complete independence in the selection of features is
less natural. Therefore, we believe that further research on the effects of dependence in selection is
required.

Another interpretation of the generalization theorem, without using the random independence
assumption, might be combinatorial. The difference between the observed and unobserved informa-
tion is large only for a small portion of all possible partitions into observed and unobserved features.
This means that almost any arbitrary partition generalizes well.

The value of clustering which preserves information on unobserved features is that it enables us
to learn new—previously unobserved—attributes from a small number of examples. Suppose that
after clustering fruits based on their observed features (Example 3), we eat a chinaberry8 and thus,

8. Chinaberries are the fruits of the Melia azedarach tree, and are poisonous.
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we “observe” (by getting sick), the previously unobserved attribute of toxicity. Assuming that in
each cluster, all fruits have similar unobserved attributes, we can conclude that all the fruits in the
same cluster, that is, all chinaberries are likely to be poisonous.

Clustering is often used in scientific research, when collecting measurements on objects such
as stars or neurons. In general, the quality of a theory in science is measured by its predictive
power. Therefore, a reasonable measure of the quality of clustering, as used in scientific research,
is its ability to predict unobserved features, or measurements. This is different from clustering that
merely describes the observed measurements, and supports the rationale for defining the quality of
clustering by its predictivity on unobserved features.

6.1 Further Research

Our clustering maximizes expected information on randomly selected features. Although on aver-
age this information may be high, there might be features the clustering has no information about.
To address this problem, we could create more than one clustering, in such a way that each cluster-
ing contains information on other features. To achieve this, we want each new clustering to discover
new information, that is, not to be redundant with previously created clusterings. This can be done
based on the works of Gondek and Hofmann (2004) and Chechik and Tishby (2002) in the context of
the Information Bottleneck. Another alternative is to represent each instance by a low dimensional
vector, and then use this vector to predict unobserved features. Blitzer et al. (2005) represented
words in a model called Distributed Binary Latent Variables, and used this representation to predict
another word. Adopting this idea in our context, we can replace cluster labels by a vector of binary
variables assigned to each instance, where each such variable encodes an independent aspect of the
instance. Generalization in this case refers to the ability to predict unobserved features from these
latent variables.

Our framework can also be extended beyond clustering by formulating a general question. Given
the (empirical) marginal distribution of a random subset of features P(Xq1 , . . . ,Xqn), what can we say
about the distribution of the full set P(X1, . . . ,XL)? In this paper we proposed a clustering based on
a subset of features, and analyzed the information that the clustering yielded on features outside this
subset. It would be useful to find more sophisticated representations than clustering, and analyze
other theoretical aspects of the relationship between the distribution of the subset to that of the
full set. This type of theoretical analysis can help in deriving prediction algorithms, where there
are many instances for some of the variables (features), but other variables are rarely viewed, as in
collaborative filtering. By relating the distribution of some variables to the distribution of others, we
can also analyze and improve the estimation of p(x) from a finite sample, even without assuming
the existence of unobserved features. In a different context, Han (1978) analyzed the relationship
between the average (per variable) entropy of random subsets of variables. He showed that the
average entropy of a random subset of variables monotonically decreases with the size of the subset
(see also Cover and Thomas, 1991). These results were developed in the context of information
theory and compression, but may be applicable to learning theory as well.

In this paper, we assumed that we do not have additional prior information on the features.
In practice, we often do have such information. For instance, in the movie ratings data set, we
have some knowledge about each of the movies (genre, actors, year, etc.). This knowledge about
the features can be regarded as meta-features. A possible extension of our framework is to use
this knowledge to improve and analyze generalization as a function of the meta-features of the
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unobserved features. The idea of learning along the features axis by using meta-features was im-
plemented by Krupka et al. (submitted) for feature selection. They propose a method for learning
to select features based on the meta-features. Using the meta-features we can learn what types of
features are good, and predict the quality of unobserved features. They show that this is useful for
feature selection out of a huge set of potentially extracted features; that is, features that are functions
of the input variables. In this case all features can be observed, but in order to measure their quality
we must calculate them for all instances, which might be computationally intractable. By predicting
feature quality without calculating it, we can focus the search for good features on a small subset
of the features. In a recent paper (Krupka and Tishby, 2007), we propose a method for learning the
weights of a linear classifier based on meta-features. The idea is to learn weights as a function of the
meta-features just as we learn labels as a function of features. Then, we can learn from feature to
feature and not only from instance to instance. As shown empirically, this can significantly improve
classification performance in the standard supervised learning setting.

In this work we focused on a new feature generalization analysis. Another research direction is
to combine standard instance generalization with feature generalization. In problems like collabora-
tive filtering or gene expression, there is an inherent symmetry between features and instances that
have been used before in various ways (see, for example, Ungar and Foster, 1998). In the context
of supervised learning, a recent work by Globerson and Roweis (2006) addresses the issue of han-
dling differences in the set of observed features between training and test time. However, a general
framework for generalization to both unobserved features and unobserved instances is still lacking.

Acknowledgments

We thank Aharon Bar-Hillel, Amir Globerson, Ran Bachrach, Amir Navot and Ohad Shamir for
helpful discussions. We also thank the GroupLens Research Group at the University of Minnesota
for use of the MovieLens data set. Our work is partly supported by the Center of Excellence grant
from the Israeli Academy of Science and by the NATO SfP 982480 project.

Appendix A. Proofs

This appendix contains the proofs of Theorem 3 and Theorem 11. It also contains additional tech-
nical details that were used in the proof of Theorem 7.

A.1 Proof of Theorem 3

We start by introducing the following lemma, which is required for the proof of Theorem 3.

Lemma 13 Consider a function g of two independent discrete random variables (U,V ). We assume
that g(u,v) ≤ c, ∀u,v, where c is some constant. If Pr{g(U,V ) > ε̃} ≤ δ, then

Pr
V
{Eu (g(u,V )) ≥ ε} ≤ c− ε̃

ε− ε̃
δ, ∀ε > ε̃.

Proof of lemma 13: Let VL be the set of values of V , such that for every v′ ∈ VL, Eu (g(y,v′))≥
ε. For every such v′ we get,

ε ≤ Eu
(

g(u,v′)
)

≤ cPr
{

g(U,V ) > ε̃|V = v′
}

+ ε̃Pr
{

g(U,V ) ≤ ε̃|V = v′
}

.
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Hence, Pr{g(U,V ) > ε̃|V = v′} ≥ ε−ε̃
c−ε̃ . From the complete probability formula,

δ ≥ Pr{g(U,V ) > ε̃} = ∑z Pr{g(U,V ) > ε̃|V = v}P(v)
≥ ε−ε̃

c−ε̃ ∑V :V∈VL
P(v)

= ε−ε̃
c−ε̃ PrV {Eu (g(u,V )) ≥ ε} .

Lemma 13 follows directly from the last inequality.
We first provide an outline of the proof of Theorem 3 and then provide a detailed proof.
Theorem 3—Proof outline: For the given m instances and any clustering t, draw uniformly and

independently m′ instances (repeats allowed). For any feature index q, we can estimate I (t(Z);xq[Z])
from the empirical distribution of (t,xq) over the m′ instances. This empirical distribution is
p(t(Z′),xq[Z′]) where Z′ is a random variable denoting the index of instance chosen uniformly
from the m′ instances (defined formally below). The proof is built up from the following up-
per bounds, which are independent of m, but depend on the choice of m′. The first bound is on
E
{∣

∣I (t(Z) ;xq [Z])− I (t(Z′) ;xq [Z′])
∣

∣

}

, where q is fixed and the expectation is over random se-
lection of the m′ instances. From this bound we derive an upper bound on |Iob − E(Îob)| and
|Iun − E(Îun)|, where Îob, Îun are the estimated values of Iob, Iun based on the subset of m′ in-
stances, that is, the empirical distribution. The last required bound is on the probability that
supt:[m]→[k]

∣

∣E
(

Îob
)

−E
(

Îun
)∣

∣ > ε1, for any ε1 > 0. This bound is obtained from Lemmas 2 and

13. The choice of m′ is independent of m. Its value should be large enough for the estimations Îob,
Îun to be accurate, but not too large, so as to limit the number of possible clusterings over the m′

instances.
Note that we do not assume the m instances are drawn from a distribution. The m′ instances are

drawn from the empirical distribution over the m instances.
Theorem 3—Detailed proof: Let l̃ = (l1, . . . , lm′) be indices of m′ instances, where each index

is selected randomly, uniformly and independently from {1, . . . ,m}. Let random variable Z ′ denote
a number chosen uniformly at random from {1, . . . ,m′}. For any feature index q, we can estimate
I (t(Z);xq[Z]) from I (t(lZ′);xq[lZ′ ]) as follows. The maximum likelihood estimation of entropy given
a discrete empirical distribution (p̂1, ..., p̂N), is defined as ĤMLE = −∑N

i=1 p̂i log p̂i. Note that N is
the alphabet size of our discrete distribution. From Paninski (2003) (Proposition 1) the bias between
the empirical and actual entropy H(p) is bounded as follows:

− log

(

1+
N −1

m′

)

≤ E
(

ĤMLE(p̂)
)

−H(p) ≤ 0.

where the empirical estimation ĤMLE is based on m′ instances drawn from the distribution p.
The expectation is over random sampling of these m′ instances. Since I (t(Z) ;xq[Z]) =
−H (t(Z),xq[Z])+ H (t(Z))+ H (xq (Z)), we can upper bound the bias between the actual and the
empirical estimation of the mutual information as follows:

El̃=(l1,...,lm′ )

{∣

∣I (t(Z) ;xq[Z])− I (t(lZ′) ;xq[lZ′ ])
∣

∣

}

≤ log

(

1+
ks−1

m′

)

≤ ks
m′ . (6)

Recall that s is the upper bound on the alphabet size of xq.
Let Îob(t, q̃, l̃) and Îun

(

t, l̃
)

be the estimated values of Iob(t, q̃), Iun(t) based on (l1, . . . , lm′), that
is,

Îob
(

t, q̃, l̃
)

=
1
n

n

∑
i=1

I (t(lz′);xqi [lz′ ]) ,

361



KRUPKA AND TISHBY

Îun(t, l̃) = Eq∼D
{

I (t(lz′);xq[lz′ ])
}

.

From Equation 6 we obtain,

|Iob (t, q̃)−El̃

(

Îob
(

t, q̃, l̃
))

|, |Iun (t)−El̃

(

Îun
(

t, l̃
))

| ≤ ks/m′,

and hence,

|Iob (t, q̃)− Iun (t) | ≤
∣

∣El̃

(

Îob
(

t, q̃, l̃
))

−El̃

(

Îun
(

t, l̃
))∣

∣+2ks/m′ (7)

≤ El̃

(∣

∣Îob
(

t, q̃, l̃
)

− Îun
(

t, l̃
)∣

∣

)

+2ks/m′.

Using Lemma 2 we have an upper bound on the probability that

sup
t:[m]→[k]

∣

∣Îob
(

t, q̃, l̃
)

− Îun
(

t, l̃
)∣

∣> ε

over the random selection of features, as a function of m′. However, the upper bound we need is on
the probability that

sup
t:[m]→[l]

{

El̃

(

Îob
(

t, q̃, l̃
))

−El̃

(

Îun
(

t, l̃
))}

> ε1.

Note that the expectations El(Îob), El(Îun) are done over a random selection of the subset of m′

instances, for a set of features that is randomly selected once. In order to link these two probabilities,
we use Lemma 13.

From Lemmas 2 and 13 it is easy to show that

Pr
q̃

{

El̃

(

sup
t:[m]→[k]

∣

∣Îob
(

t, q̃, l̃
)

− Îun
(

t, l̃
)∣

∣

)

> ε1

}

≤ 4logk
ε1

e−nε2
1/(2(logk)2)+m′ logk. (8)

Lemma 13 is used, where V represents the random selection of features, U represents the random
selection of m′ instances, g(u,v) = supt:[m]→[k] |Îob − Îun|, c = logk, and ε̃ = ε1/2. Since

El̃

(

sup
t:[m]→[k]

∣

∣Îob
(

t, q̃, l̃
)

− Îun
(

t, l̃
)∣

∣

)

≥ sup
t:[m]→[k]

El̃

(∣

∣Îob
(

t, q̃, l̃
)

− Îun
(

t, l̃
)∣

∣

)

,

and from Equations 7 and 8 we obtain

Pr
q̃

{

sup
t:[m]→[k]

|Iob (t, q̃)− Iun (t)| > ε1 +
2ks
m′

}

≤ 4logk
ε1

e−nε2
1/(2(logk)2)+m′ logk.

By selecting ε1 = ε/2, m′ = 4ks/ε, we obtain Theorem 3.
Note that the selection of m′ depends on s (maximum alphabet size of the features). This reflects

the fact that in order to accurately estimate I (t(Z) ;xq [Z]), we need a number of instances, m′, which
is much larger than the product of k and the alphabet size of xq.
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A.2 Information Generalization for Soft Clustering

In Section 2 we assumed that we are dealing with hard clustering. Here we show that the general-
ization theorem (Theorem 3) is also applicable to soft clustering. Nevertheless, we also show that
soft clustering is not required, since the maximum value of Iob can be achieved by hard clustering.
Hence, although IobMax, as appears in Definition 5, is a hard clustering algorithm, it also achieves
maximum Iob (and nearly maximum Iun) of all possible soft clusterings.

Theorem 3 is applicable to soft clustering from the following arguments. In terms of the distri-
butions P(t(Z),xq (Z)), assigning a soft clustering to an instance can be approximated by a second
empirical distribution, P̂, achieved by duplicating each of the instances, and then using hard clus-
tering. Consider, for example, a case where we create a new set of instances by duplicating each
of the original instances by 100 identical instances. Using hard clustering on the ×100 larger set
of instances, can approximate any soft clustering of the original set with quantization of P(T |X) in
steps of 1/100. Obviously, for any ε > 0 we can create P̂ that satisfies max

∣

∣P− P̂
∣

∣< ε.
Now we show that for any soft clustering of an instance, we can find a hard clustering of the

same instance that has the same or a higher value of Iob (without changing the cluster identity of
other instances). This is enough to show that soft clustering is not required to achieve the maximum
value of Iob, since any soft clustering can be replaced by hard clustering instance by instance. Let
Pλ (T |Xq1 , . . . ,Xqn) define the distribution of any soft clustering. It can be written as the weighted
sum of k distributions as follows

Pλ (T |Xq1 , . . . ,Xqn) =
k

∑
i=1

λiP̃
j

i (T |Xq1 , . . . ,Xqn) , 0 ≤ λi ≤ 1,
k

∑
i=1

λi = 1.

where P̃ j
i is created by keeping the same soft clustering of instances {1, . . . , j−1, j +1, ...,m},

and replacing the soft clustering of the jth instance by a hard clustering t( j) = i. Since I(T ;Xq) is a
convex function of P(T |Xq) for a fixed P(Xq) for any q (Cover and Thomas, 1991), we get

IPλ (T ;Xq) ≤
k

∑
i=1

λiIP̃ j
i
(T ;Xq) .

Taking the sum over all observed features (q1, . . .qn), we get

∑
q

IPλ (T ;Xq) ≤
k

∑
i=1

λi ∑
q

IP̃ j
i
(T ;Xq) ,

and hence at least one of the distributions P̃ j
1 , . . . , P̃ j

k has the same or higher Iob then Pλ. In other
words, we can replace the soft clustering of any instance j by a hard clustering without decreasing
Iob.

A.3 Maximum Likelihood Mixture Model and IobMax

In the proof of Theorem 7 we claimed that maximizing the likelihood of observed variables is equiv-
alent to maximizing ∑n

j=1 I(T ;X j)− I (T ;Y ). In this section we show this based on the work of Eli-
dan and Friedman (2003). For the purpose of better readability in the context of their paper, we use
the same notations as in their paper, and review them briefly here. Let Y be a variable that denotes
the instance identity, that is, Y [i] = i where i ∈ {1, . . . ,m}. Let Q(Y,X) be the empirical distribution
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of the features X in the instances, augmented by the distribution of Y . Let P(X,T ) be the maximum
likelihood mixture model of the joint distribution Q(X), that is, P(X,T ) = P(T ) ∏ j Pr(x j |T ).

From Propositions 4.1, 4.3 in Elidan and Friedman (2003), finding local maxima of the likeli-
hood function is equivalent to minimizing the following Lagrangian

LEM = IQ (T ;Y )− (EQ [logP(X,T )]−EQ [logQ(T )]) ,

as a function of Q(T |Y ) and P(X,T ). In the stationary point of the EM-algorithm (see Propositions
4.4 and 4.5 in Elidan and Friedman, 2003), Q(x j,T ) = P(x j,T ). Minimizing LEM is equivalent to
minimizing I (T ;Y )−∑ I (T ;X j) as shown below:

LEM = IQ (T ;Y )− (EQ [logP(X,T )]−EQ [logQ(T )])

= IQ (T ;Y )− ∑
X ,T

Q(X,T ) log

[

P(T )∏
j

P(x j|T )

]

−H(T )

= IQ (T ;Y )+H(T )−∑
j

∑
T,x j

Q(x j,T ) log
P(x j,T )

P(T )
−H(T )

= IQ (T ;Y )−∑
j

∑
T,x j

Q(x j,T ) log
P(x j,T )

P(x j)P(T )
+∑

j
∑
T,x j

Q(xi,T ) logP(x j)

= IQ (T ;Y )−∑
j

I (T ;X j)+∑
j

H (X j) .

Since ∑ j H (X j) is independent of Q(T |Y ), and P(T,Y ) = Q(T,Y ) minimizing LEM is equivalent
to maximizing

∑
j

I (T ;X j)− I (T ;Y ) .

A.4 Proof of Theorem 11

Before proving Theorem 11, we write generalized definitions of Dob,Dun and prove a generalization
bound for these generalized definitions (Theorem 14). Then we show that Theorem 11 is a special
case of Theorem 14.

The quality of the clustering with respect to a single variable, Xq, is defined by a (weighted) av-
erage distance of all pairs of instances within the same cluster (large distance means lower quality).
This measure is denoted by Dq which is defined by

Dq {C1, ...,Ck} =
1
m

k

∑
r=1

1
|Cr| ∑

j,l∈Cr

f (xq[ j],xq[l]) .

Using these definitions, we define a generalized observed intra-cluster variable, denoted by D̃ob, as
the average of Dq over the observed features within the cluster, that is,

D̃ob {C1, ...,Ck} =
1
n

n

∑
i=1

Dqi {C1, ...,Ck} .
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When f (a,b) = 1
2 (a−b)2, we get

Dob {C1, ...,Ck} =
1

nm

k

∑
r=1

∑
j∈Cr

n

∑
i=1

(

xqi [ j]− 1
|Cr| ∑

l∈Cr

xqi [l]

)2

=
1

nm

n

∑
i=1

k

∑
r=1

1
2 |Cr| ∑

j∈Cr

∑
l∈Cr

(xqi [ j]− xqi [l])
2

=
1

nm

n

∑
i=1

k

∑
r=1

1
|Cr| ∑

j∈Cr

∑
l∈Cr

f (xqi [ j],xqi [l])

=
1
n

n

∑
i=1

Dqi {C1, ...,Ck}

= D̃ob {C1, ...,Ck} , (9)

which means that Dob is a special case of D̃ob.
Similarly we define the generalized unobserved intra-cluster variance, denoted by D̃un, as fol-

lows:
D̃un {C1, ...,Ck} = Eq∼D

{

Dq {C1, ...,Ck}
}

.

Again, when f (a,b) = 1
2 (a−b)2, we get

Dun {C1, ...,Ck} = D̃un {C1, ...,Ck} . (10)

Theorem 14 With the above definitions, for every function, f satisfies Equations 2, 3 and 4 (see
Section 3) and for every ε > 0,

Pr
{q1,...,qn}

{

sup
α({C1,...,Ck})≥αc

∣

∣D̃ob {C1, ...,Ck}− D̃un {C1, ...,Ck}
∣

∣> ε

}

≤ 2k
αc

e−nε2/2c2+log c
ε ,

where α is defined in Definition 10.

Before proving Theorem 14, we introduce the following lemma that is required for the proof.

Lemma 15 Let {Z1, ...,ZS} be a set of jointly S distributed random binary variables, where zi ∈
{0,1}. If Pr(zi = 1) ≤ δ for every i then for any Nb ≥ 1

Pr

{

S

∑
i=1

zi ≥ Nb

}

≤ S
Nb

δ.

Lemma 15 follows directly from Markov’s inequality.
The proof of Theorem 14 (given below) is based on the observation that D̃ob and D̃un are the

weighted average of distance functions over a subset of the pairs of instances. This subset includes
only pairs that are within the same cluster. In other words, the calculated inter-cluster variances of
a clustering is based on the weighted average of 1

2 ∑k
r=1 |Cr|(|Cr| − 1) pairs out of the 1

2 m(m− 1)
pairs of instances. We define “bad pairs” as pairs of instances with a large difference between the
observed and unobserved distances. We use Hoeffding’s inequality and Lemma 15 to bound the
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probability that we have a large number of “bad pairs”. Then we show that if the number of “bad
pairs” is small, all clusterings are “good”, that is,

∣

∣D̃ob − D̃un
∣

∣≤ ε.
Proof of Theorem 14

For each pair of instances j, l (l > j) we define a random variable d jl as the difference between
the average observed distance and the expected distance,

d jl =

∣

∣

∣

∣

∣

1
n

n

∑
i=1

f (xqi [ j],xqi [l])−Eq
{

f (xq[ j],xq[l])
}

∣

∣

∣

∣

∣

.

We also define a binary random variable Z jl (l > j) by

z jl =

{

1 if d jl > ε̃
0 otherwise

where ε̃ is a positive constant. In other words, z jl is one for “bad” pairs, that is, pairs that
have a large difference between the average observed distance and the expected distance. From
Hoeffding’s inequality,

Pr
{q1,...,qn}

(

z jl = 1
)

≤ δ̃, (11)

where
δ̃ = 2e−2nε̃2/c2

. (12)

We have 1
2 m(m−1) of these random binary variables. Let Nbad be the number of “bad” pairs, that

is, Nbad = ∑ j,l:l> j z jl . First we calculate an upper bound on
∣

∣D̃ob − D̃un
∣

∣ as a function of Nbad , and
later we prove an upper bound on the probability of large Nbad .

By definition of D̃ob, D̃un,d jl and the properties of f (Equations 3 and 4) we can bound the
difference between D̃ob and D̃un (for any clustering) as follows

∣

∣D̃ob {C1, ...,Ck}− D̃un {C1, ...,Ck}
∣

∣

=

∣

∣

∣

∣

∣

1
mn

n

∑
i=1

k

∑
r=1

1
|Cr| ∑

j,l∈r

f (xqi [ j],xqi [l])−
1
m

k

∑
i=1

1
|Cr| ∑

j,l∈Cr

Eq
{

f (xq[ j],xq[l])
}

∣

∣

∣

∣

∣

≤ 2
m

k

∑
r=1

1
|Cr| ∑

j,l∈Ck:l> j

d jl .

By defining εd as the following function of the clustering

εd ({C1, ...,Ck}) =
2
m

k

∑
r=1

1
|Cr| ∑

j,l∈Ck:l> j

d jl ,

we have
∣

∣D̃ob {C1, ...,Ck}− D̃un {C1, ...,Ck}
∣

∣≤ εd . (13)

Recall that rt is the number of instances in cluster t. Now we calculate an upper bound on εd as a
function of ε̃ and Nbad . The total number of pairs in the rth cluster is 1

2 |Cr|(|Cr|−1). We have Nbad
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pairs with a difference above ε̃ (but not more than c, since f is bounded). The error of each of the
other pairs is upper bounded by ε̃. Hence we get

εd ≤ 2
m

k

∑
r=1

1
|Cr| ∑

j,l∈Cr:l> j

(

ε̃+ z jl (c− ε̃)
)

≤ 2
m

(

1
2

k

∑
r=1

1
|Cr|

|Cr|(|Cr|−1) ε̃+
Nbad (c− ε̃)

minr |Cr|

)

≤ 2
m

(

1
2

k

∑
r=1

|Cr| ε̃+
Nbadc

minr |Cr|

)

.

Note that ∑r |Cr| = m (the sum of the size of all clusters is m). Hence,

εd ≤ ε̃+
2Nbad

mminr |Cr|
c. (14)

Let Nb be defined as follows

Nb =
mminr |Cr| ε̃

2c
. (15)

If Nbad ≤ Nb then εd ≤ 2ε̃ (from Equations 14 and 15). Hence,

Pr
{q1,...,qn}

{εd > 2ε̃} = Pr
{q1,...,qn}

{Nbad > Nb} . (16)

From Lemma 15 and Equation 11 for any Nb ≥ 1

Pr
{q1,...,qn}

{Nbad ≥ Nb} ≤
m(m−1)

2Nb
δ̃ ≤ m2

2Nb
δ̃. (17)

Combining Equations 15, 16, 17 and the definition of δ̃ (Equation 12) we get

Pr
{q1,...,qn}

{εd > 2ε̃} ≤ mc
minr |Cr| ε̃

δ̃ =
2mc

minr |Cr| ε̃
e−2nε̃2/c2

. (18)

By selecting ε = ε̃/2 and using Equation 13 and 18 we get

Pr
{q1,...,qn}

{

sup
α({C1,...,Ck})≥αc

∣

∣D̃ob {C1, ...,Ck}− D̃un {C1, ...,Ck}
∣

∣> ε

}

≤ 4
m

minr |Cr|
e−nε2/2c2+log c

ε .

(19)
Using the definition of α we have m/minr |Cr| ≤ k/αc. Together with Equation 19 we get Theorem
14.

Now we are ready to prove Theorem 11 by showing it is a special case of Theorem 14.
Proof of Theorem 11

Let f (a,b) = 1
2 (a−b)2. In this case f satisfies Equation 2, 3 and 4 where c = 2R2 (since

0 ≤ f (xq[ j],xq[l]) ≤ 2R2 for all q, j, l). In addition, D̃ob = Dob and D̃un = Dun (Equations 9 and 10).
Therefore, Theorem 11 is a special case of Theorem 14.
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Appendix B. Notation Table

The following table summaries the notation and definitions used in the paper for quick reference.

Notation Short Description

m Number of instances
L Number of features (both observed and unobserved)

{X1, . . . ,XL} Random variables (features)
n Number of observed features

q̃ = (q1, . . . ,qn) Indices of observed features
D Probability distribution of selecting features

{x[1], . . . ,x[m]} Instances (each instance is a vector of L elements,
where n are observed)

xq[ j] The qth feature of the jth instance
xqi [ j] The ith observed feature of the jth instance

k Number of clusters
t : [m] → [k] Function that maps instances to clusters
{C1, . . . ,Ck} Clusters (Cr is the set of instances in the rth cluster)

|Cr| Size of rth cluster
T A variable that represents the cluster label
Z A random variable taking values uniformly from {1,2, . . . ,m}

(Random selection of instance index)
s Upper bound on the number of values a discrete feature can have

Iob Average observed information (Definition 1)
Iun Expected unobserved information (Definition 1)

I∗un,k Maximum possible value of Iun for k clusters (Definition 4)
I∗ob,k Value of Iob for clustering with maximum Iun (Definition 4)
Ĩun,k Value of Iun for clustering that achieves Ĩob,k (Definition 5)
Ĩob,k Maximum possible value of Iob for k clusters (Definition 5)
f (�, �) Distance function between two feature values

c Constant - upper bound on the distance function
Dob {C1, . . . ,Ck} Observed intra-cluster variance (Definition 8)
Dun {C1, . . . ,Ck} Expected unobserved intra-cluster variance (Definition 9)

Dopt
un Minimum possible intra-cluster variance (Theorem 12)

α({C1, . . . ,Ck}) Ratio between smallest to average cluster size (Definition 10)
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Abstract
Conformal prediction uses past experience to determine precise levels of confidence in new pre-
dictions. Given an error probability ε, together with a method that makes a prediction ŷ of a label
y, it produces a set of labels, typically containing ŷ, that also contains y with probability 1− ε.
Conformal prediction can be applied to any method for producing ŷ: a nearest-neighbor method, a
support-vector machine, ridge regression, etc.

Conformal prediction is designed for an on-line setting in which labels are predicted succes-
sively, each one being revealed before the next is predicted. The most novel and valuable feature of
conformal prediction is that if the successive examples are sampled independently from the same
distribution, then the successive predictions will be right 1− ε of the time, even though they are
based on an accumulating data set rather than on independent data sets.

In addition to the model under which successive examples are sampled independently, other
on-line compression models can also use conformal prediction. The widely used Gaussian linear
model is one of these.

This tutorial presents a self-contained account of the theory of conformal prediction and works
through several numerical examples. A more comprehensive treatment of the topic is provided in
Algorithmic Learning in a Random World, by Vladimir Vovk, Alex Gammerman, and Glenn Shafer
(Springer, 2005).
Keywords: confidence, on-line compression modeling, on-line learning, prediction regions

1. Introduction

How good is your prediction ŷ? If you are predicting the label y of a new object, how confident are
you that y = ŷ? If the label y is a number, how close do you think it is to ŷ? In machine learning,
these questions are usually answered in a fairly rough way from past experience. We expect new
predictions to fare about as well as past predictions.

Conformal prediction uses past experience to determine precise levels of confidence in predic-
tions. Given a method for making a prediction ŷ, conformal prediction produces a 95% prediction
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c©2008 Glenn Shafer and Vladimir Vovk.
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region—a set Γ0.05 that contains y with probability at least 95%. Typically Γ0.05 also contains the
prediction ŷ. We call ŷ the point prediction, and we call Γ0.05 the region prediction. In the case of
regression, where y is a number, Γ0.05 is typically an interval around ŷ. In the case of classification,
where y has a limited number of possible values, Γ0.05 may consist of a few of these values or, in
the ideal case, just one.

Conformal prediction can be used with any method of point prediction for classification or re-
gression, including support-vector machines, decision trees, boosting, neural networks, and Bayesian
prediction. Starting from the method for point prediction, we construct a nonconformity measure,
which measures how unusual an example looks relative to previous examples, and the conformal
algorithm turns this nonconformity measure into prediction regions.

Given a nonconformity measure, the conformal algorithm produces a prediction region Γε for
every probability of error ε. The region Γε is a (1−ε)-prediction region; it contains y with probabil-
ity at least 1− ε. The regions for different ε are nested: when ε1 ≥ ε2, so that 1− ε1 is a lower level
of confidence than 1− ε2, we have Γε1 ⊆ Γε2 . If Γε contains only a single label (the ideal outcome
in the case of classification), we may ask how small ε can be made before we must enlarge Γε by
adding a second label; the corresponding value of 1− ε is the confidence we assert in the predicted
label.

As we explain in §4, the conformal algorithm is designed for an on-line setting, in which we
predict the labels of objects successively, seeing each label after we have predicted it and before
we predict the next one. Our prediction ŷn of the nth label yn may use observed features xn of the
nth object and the preceding examples (x1,y1), . . . ,(xn−1,yn−1). The size of the prediction region Γε

may also depend on these details. Readers most interested in implementing the conformal algorithm
may wish to look first at the elementary examples in §4.2.1 and §4.3.1 and then turn back to the
earlier more general material as needed.

As we explain in §2, the on-line picture leads to a new concept of validity for prediction with
confidence. Classically, a method for finding 95% prediction regions was considered valid if it had
a 95% probability of containing the label predicted, because by the law of large numbers it would
then be correct 95% of the time when repeatedly applied to independent data sets. But in the on-line
picture, we repeatedly apply a method not to independent data sets but to an accumulating data set.
After using (x1,y1), . . . ,(xn−1,yn−1) and xn to predict yn, we use (x1,y1), . . . ,(xn−1,yn−1),(xn,yn)
and xn+1 to predict yn+1, and so on. For a 95% on-line method to be valid, 95% of these predictions
must be correct. Under minimal assumptions, conformal prediction is valid in this new and powerful
sense.

One setting where conformal prediction is valid in the new on-line sense is the one in which the
examples (xi,yi) are sampled independently from a constant population—that is, from a fixed but
unknown probability distribution Q. It is also valid under the slightly weaker assumption that the
examples are probabilistically exchangeable (see §3) and under other on-line compression models,
including the widely used Gaussian linear model (see §5). The validity of conformal prediction
under these models is demonstrated in Appendix A.

In addition to the validity of a method for producing 95% prediction regions, we are also inter-
ested in its efficiency. It is efficient if the prediction region is usually relatively small and therefore
informative. In classification, we would like to see a 95% prediction region so small that it contains
only the single predicted label ŷn. In regression, we would like to see a very narrow interval around
the predicted number ŷn.

372



TUTORIAL ON CONFORMAL PREDICTION

The claim of 95% confidence for a 95% conformal prediction region is valid under exchange-
ability, no matter what the probability distribution the examples follow and no matter what non-
conformity measure is used to construct the conformal prediction region. But the efficiency of
conformal prediction will depend on the probability distribution and the nonconformity measure. If
we think we know the probability distribution, we may choose a nonconformity measure that will
be efficient if we are right. If we have prior probabilities for Q, we may use these prior probabilities
to construct a point predictor ŷn and a nonconformity measure. In the regression case, we might
use as ŷn the mean of the posterior distribution for yn given the first n− 1 examples and xn; in the
classification case, we might use the label with the greatest posterior probability. This strategy of
first guaranteeing validity under a relatively weak assumption and then seeking efficiency under
stronger assumptions conforms to advice long given by John Tukey and others (Tukey, 1986; Small
et al., 2006).

Conformal prediction is studied in detail in Algorithmic Learning in a Random World, by Vovk,
Gammerman, and Shafer (2005). A recent exposition by Gammerman and Vovk (2007) emphasizes
connections with the theory of randomness, Bayesian methods, and induction. In this article we
emphasize the on-line concept of validity, the meaning of exchangeability, and the generalization
to other on-line compression models. We leave aside many important topics that are treated in
Algorithmic Learning in a Random World, including extensions beyond the on-line picture.

2. Valid Prediction Regions

Our concept of validity is consistent with a tradition that can be traced back to Jerzy Neyman’s
introduction of confidence intervals for parameters (Neyman, 1937) and even to work by Laplace
and others in the late 18th century. But the shift of emphasis to prediction (from estimation of
parameters) and to the on-line setting (where our prediction rule is repeatedly updated) involves
some rearrangement of the furniture.

The most important novelty in conformal prediction is that its successive errors are probabilis-
tically independent. This allows us to interpret “being right 95% of the time” in an unusually direct
way. In §2.1, we illustrate this point with a well-worn example, normally distributed random vari-
ables.

In §2.2, we contrast confidence with full-fledged conditional probability. This contrast has
been the topic of endless debate between those who find confidence methods informative (classical
statisticians) and those who insist that full-fledged probabilities based on all one’s information are
always preferable, even if the only available probabilities are very subjective (Bayesians). Because
the debate usually focuses on estimating parameters rather than predicting future observations, and
because some readers may be unaware of the debate, we take the time to explain that we find the
concept of confidence useful for prediction in spite of its limitations.

2.1 An Example of Valid On-Line Prediction

A 95% prediction region is valid if it contains the truth 95% of the time. To make this more
precise, we must specify the set of repetitions envisioned. In the on-line picture, these are successive
predictions based on accumulating information. We make one prediction after another, always
knowing the outcome of the preceding predictions.

To make clear what validity means and how it can be obtained in this on-line picture, we consider
prediction under an assumption often made in a first course in statistics:
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Random variables z1,z2, . . . are independently drawn from a normal distribution
with unknown mean and variance.

Prediction under this assumption was discussed in 1935 by R. A. Fisher, who explained how to give
a 95% prediction interval for zn based on z1, . . . ,zn−1 that is valid in our sense. We will state Fisher’s
prediction rule, illustrate its application to data, and explain why it is valid in the on-line setting.

As we will see, the predictions given by Fisher’s rule are too weak to be interesting from a
modern machine-learning perspective. This is not surprising, because we are predicting zn based
on old examples z1, . . . ,zn−1 alone. In general, more precise prediction is possible only in the more
favorable but more complicated set-up where we know some features xn of the new example and can
use both xn and the old examples to predict some other feature yn. But the simplicity of the set-up
where we predict zn from z1, . . . ,zn−1 alone will help us make the logic of valid prediction clear.

2.1.1 FISHER’S PREDICTION INTERVAL

Suppose we observe the zi in sequence. After observing z1 and z2, we start predicting; for n =
3,4, . . . , we predict zn after having seen z1, . . . ,zn−1. The natural point predictor for zn is the average
so far:

zn−1 :=
1

n−1

n−1

∑
i=1

zi,

but we want to give an interval that will contain zn 95% of the time. How can we do this? Here is
Fisher’s answer (1935):

1. In addition to calculating the average zn−1, calculate

s2
n−1 :=

1
n−2

n−1

∑
i=1

(zi − zn−1)
2,

which is sometimes called the sample variance. We can usually assume that it is non-zero.

2. In a table of percentiles for t-distributions, find t0.025
n−2 , the point that the t-distribution with

n−2 degrees of freedom exceeds exactly 2.5% of the time.

3. Predict that zn will be in the interval

zn−1 ± t0.025
n−2 sn−1

√

n
n−1

. (1)

Fisher based this procedure on the fact that

zn − zn−1

sn−1

√

n−1
n

has the t-distribution with n− 2 degrees of freedom, which is symmetric about 0. This implies
that (1) will contain zn with probability 95% regardless of the values of the mean and variance.
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2.1.2 A NUMERICAL EXAMPLE

We can illustrate (1) using some numbers generated in 1900 by the students of Emanuel Czuber
(1851–1925). These numbers are integers, but they theoretically have a binomial distribution and
are therefore approximately normally distributed.1

Here are Czuber’s first 19 numbers, z1, . . . ,z19:

17,20,10,17,12,15,19,22,17,19,14,22,18,17,13,12,18,15,17.

From them, we calculate
z19 = 16.53, s19 = 3.31.

The upper 2.5% point for the t-distribution with 18 degrees of freedom, t0.025
18 , is 2.101. So the

prediction interval (1) for z20 comes out to [9.40,24.13].
Taking into account our knowledge that z20 will be an integer, we can say that the 95% prediction

is that z20 will be an integer between 10 and 24, inclusive. This prediction is correct; z20 is 16.

2.1.3 ON-LINE VALIDITY

Fisher did not have the on-line picture in mind. He probably had in mind a picture where the for-
mula (1) is used repeatedly but in entirely separate problems. For example, we might conduct many
separate experiments that each consists of drawing 100 random numbers from a normal distribution
and then predicting a 101st draw using (1). Each experiment might involve a different normal dis-
tribution (a different mean and variance), but provided the experiments are independent from each
other, the law of large numbers will apply. Each time the probability is 95% that z101 will be in the
interval, and so this event will happen approximately 95% of the time.

The on-line story may seem more complicated, because the experiment involved in predicting
z101 from z1, . . . ,z100 is not entirely independent of the experiment involved in predicting, say, z105

from z1, . . . ,z104. The 101 random numbers involved in the first experiment are all also involved
in the second. But as a master of the analytical geometry of the normal distribution (Fisher, 1925;
Efron, 1969), Fisher would have noticed, had he thought about it, that this overlap does not actually
matter. As we show in Appendix A.3, the events

zn−1 − t0.025
n−2 sn−1

√

n
n−1

≤ zn ≤ zn−1 + t0.025
n−2 sn−1

√

n
n−1

(2)

for successive n are probabilistically independent in spite of the overlap. Because of this indepen-
dence, the law of large numbers again applies. Knowing each event has probability 95%, we can
conclude that approximately 95% of them will happen. We call the events (2) hits.

The prediction interval (1) generalizes to linear regression with normally distributed errors, and
on-line hits remain independent in this general setting. Even though formulas for these linear-
regression prediction intervals appear in textbooks, the independence of their on-line hits was not
noted prior to our work on conformal prediction. Like Fisher, the textbook authors did not have the

1. Czuber’s students randomly drew balls from an urn containing six balls, numbered 1 to 6. Each time they drew a
ball, they noted its label and put it back in the urn. After each 100 draws, they recorded the number of times that
the ball labeled with a 1 was drawn (Czuber, 1914, pp. 329–335). This should have a binomial distribution with
parameters 100 and 1/6, and it is therefore approximately normal with mean 100/6 = 16.67 and standard deviation
√

500/36 = 3.73.
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on-line setting in mind. They imagined just one prediction being made in each case where data is
accumulated.

We will return to the generalization to linear regression in §5.3.2. There we will derive the
textbook intervals as conformal prediction regions within the on-line Gaussian linear model, an
on-line compression model that uses slightly weaker assumptions than the classical assumption of
independent and normally distributed errors.

2.2 Confidence Says Less than Probability.

Neyman’s notion of confidence looks at a procedure before observations are made. Before any of
the zi are observed, the event (2) involves multiple uncertainties: zn−1, sn−1, and zn are all uncertain.
The probability that these three quantities will turn out so that (2) holds is 95%.

We might ask for more than this. It is after we observe the first n−1 examples that we calculate
zn−1 and sn−1 and then calculate the interval (1), and we would like to be able to say at this point that
there is still a 95% probability that zn will be in (1). But this, it seems, is asking for too much. The
assumptions we have made are insufficient to enable us to find a numerical probability for (2) that
will be valid at this late date. In theory there is a conditional probability for (2) given z1, . . . ,zn−1,
but it involves the unknown mean and variance of the normal distribution.

Perhaps the matter is best understood from the game-theoretic point of view. A probability can
be thought of as an offer to bet. A 95% probability, for example, is an offer to take either side of
a bet at 19 to 1 odds. The probability is valid if the offer does not put the person making it at a
disadvantage, inasmuch as a long sequence of equally reasonable offers will not allow an opponent
to multiply the capital he or she risks by a large factor (Shafer and Vovk, 2001). When we assume
a probability model (such as the normal model we just used or the on-line compression models we
will study later), we are assuming that the model’s probabilities are valid in this sense before any
examples are observed. Matters may be different afterwards.

In general, a 95% conformal predictor is a rule for using the preceding examples (x1,y1), . . . ,
(xn−1,yn−1) and a new object xn to give a set, say

Γ0.05((x1,y1), . . . ,(xn−1,yn−1),xn), (3)

that we predict will contain yn. If the predictor is valid, the prediction

yn ∈ Γ0.05((x1,y1), . . . ,(xn−1,yn−1),xn)

will have a 95% probability before any of the examples are observed, and it will be safe, at that
point, to offer 19 to 1 odds on it. But after we observe (x1,y1), . . . ,(xn−1,yn−1) and xn and calculate
the set (3), we may want to withdraw the offer.

Particularly striking instances of this phenomenon can arise in the case of classification, where
there are only finitely many possible labels. We will see one such instance in §4.3.1, where we
consider a classification problem in which there are only two possible labels, s and v. In this case,
there are only four possibilities for the prediction region:

1. Γ0.05((x1,y1), . . . ,(xn−1,yn−1),xn) contains only s.

2. Γ0.05((x1,y1), . . . ,(xn−1,yn−1),xn) contains only v.

3. Γ0.05((x1,y1), . . . ,(xn−1,yn−1),xn) contains both s and v.
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William S. Gossett
1876–1937

Ronald A. Fisher
1890–1962

Jerzy Neyman
1894–1981

Figure 1: Three influential statisticians. Gossett, who worked as a statistician for the Guinness
brewery in Dublin, introduced the t-distribution to English-speaking statisticians (Stu-
dent, 1908). Fisher, whose applied and theoretical work invigorated mathematical statis-
tics in the 1920s and 1930s, refined, promoted, and extended Gossett’s work. Neyman
was one of the most influential leaders in the subsequent movement to use advanced prob-
ability theory to give statistics a firmer foundation and further extend its applications.

4. Γ0.05((x1,y1), . . . ,(xn−1,yn−1),xn) is empty.

The third and fourth cases can occur even though Γ0.05 is valid. When the third case happens,
the prediction, though uninformative, is certain to be correct. When the fourth case happens, the
prediction is clearly wrong. These cases are consistent with the prediction being right 95% of the
time. But when we see them arise, we know whether the particular value of n is one of the 95%
where we are right or the one of the 5% where we are wrong, and so the 95% will not remain valid
as a probability defining betting odds.

In the case of normally distributed examples, Fisher called the 95% probability for zn being in
the interval (1) a “fiducial probability,” and he seems to have believed that it would not be susceptible
to a gambling opponent who knows the first n−1 examples (see Fisher, 1973, pp. 119–125). But this
turned out not to be the case (Robinson, 1975). For this and related reasons, most scientists who use
Fisher’s methods have adopted the interpretation offered by Neyman, who wrote about “confidence”
rather than fiducial probability and emphasized that a confidence level is a full-fledged probability
only before we acquire data. It is the procedure or method, not the interval or region it produces
when applied to particular data, that has a 95% probability of being correct.

Neyman’s concept of confidence has endured in spite of its shortcomings. It is widely taught
and used in almost every branch of science. Perhaps it is especially useful in the on-line setting. It
is useful to know that 95% of our predictions are correct even if we cannot assert a full-fledged 95%
probability for each prediction when we make it.

3. Exchangeability

Consider variables z1, . . . ,zN . Suppose that for any collection of N values, the N! different orderings
are equally likely. Then we say that z1, . . . ,zN are exchangeable. The assumption that z1, . . . ,zN

are exchangeable is slightly weaker than the more familiar assumption that they are drawn indepen-
dently from a probability distribution.
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In our book (Vovk et al., 2005), conformal prediction is first explained under the assumption
that z1, . . . ,zN are independently drawn from a probability distribution (or that they are “random,”
as we say there), and then it is pointed out that this assumption can be relaxed to the assumption
that z1, . . . ,zN are exchangeable. When we introduce conformal prediction in this article, in §4, we
assume only exchangeability from the outset, hoping that this will make the logic of the method as
clear as possible. Once this logic is clear, it is easy to see that it works not only for the exchange-
ability model but also for other on-line compression models (§5).

In this section we look at the relationship between exchangeability and independence and then
give a backward-looking definition of exchangeability that can be understood game-theoretically.
We conclude with a law of large numbers for exchangeable sequences, which will provide the basis
for our confidence that our 95% prediction regions are right 95% of the time.

3.1 Exchangeability and Independence

Although the definition of exchangeability we just gave may be clear enough at an intuitive level, it
has two technical problems that make it inadequate as a formal mathematical definition: (1) in the
case of continuous distributions, any specific values for z1, . . . ,zN will have probability zero, and (2)
in the case of discrete distributions, two or more of the zi might take the same value, and so a list of
possible values a1, . . . ,aN might contain fewer than n distinct values.

One way of avoiding these technicalities is to use the concept of a permutation, as follows:

Definition of exchangeability using permutations. The variables z1, . . . ,zN are ex-
changeable if for every permutation τ of the integers 1, . . . ,N, the variables w1, . . . ,wN ,
where wi = zτ(i), have the same joint probability distribution as z1, . . . ,zN .

We can extend this to a definition of exchangeability for an infinite sequence of variables: z1,z2, . . .
are exchangeable if z1, . . . ,zN are exchangeable for every N.

This definition makes it easy to see that independent and identically distributed random variables
are exchangeable. Suppose z1, . . . ,zN all take values from the same example space Z, all have the
same probability distribution Q, and are independent. Then their joint distribution satisfies

Pr(z1 ∈ A1 & . . . & zN ∈ AN) = Q(A1) · · ·Q(AN)

for any2 subsets A1, . . . ,AN of Z, where Q(A) is the probability Q assigns to an example being
in A. Because permuting the factors Q(An) does not change their product, and because a joint
probability distribution for z1, . . . ,zN is determined by the probabilities it assigns to events of the
form {z1 ∈ A1 & . . . & zN ∈ AN}, this makes it clear that z1, . . . ,zN are exchangeable.

Exchangeability implies that variables have the same distribution. On the other hand, exchange-
able variables need not be independent. Indeed, when we average two or more distinct joint proba-
bility distributions under which variables are independent, we usually get a joint probability distribu-
tion under which they are exchangeable (averaging preserves exchangeability) but not independent
(averaging usually does not preserve independence). According to a famous theorem by de Finetti,
an exchangeable joint distribution for an infinite sequence of distinct variables is exchangeable only
if it is a mixture of joint distributions under which the variables are independent (Hewitt and Savage,
1955). As Table 1 shows, the picture is more complicated in the finite case.

2. We leave aside technicalities involving measurability.
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Pr(z1 = H & z2 = H) Pr(z1 = H & z2 = T)

Pr(z1 = T & z2 = H) Pr(z1 = T & z2 = T)

0.81 0.09

0.09 0.01

0.41 0.09

0.09 0.41

0.10 0.40

0.40 0.10

Table 1: Examples of exchangeability. We consider variables z1 and z2, each of which comes out H
or T. Exchangeability requires only that Pr(z1 = H & z2 = T) = Pr(z1 = T & z2 = H). Three
examples of distributions for z1 and z2 with this property are shown. On the left, z1 and
z2 are independent and identically distributed; both come out H with probability 0.9. The
middle example is obtained by averaging this distribution with the distribution in which
the two variables are again independent and identically distributed but T’s probability is
0.9. The distribution on the right, in contrast, cannot be obtained by averaging distributions
under which the variables are independent and identically distributed. Examples of this last
type disappear as we ask for a larger and larger number of variables to be exchangeable.

3

4

4 4 7 737

7

4

Figure 2: Ordering the tiles. Joe gives Bill a bag containing five tiles, and Bill arranges them
to form the list 43477. Bill can calculate conditional probabilities for which zi had
which of the five values. His conditional probability for z5 = 4, for example, is 2/5.
There are (5!)/(2!)(2!) = 30 ways of assigning the five values to the five variables;
(z1,z2,z3,z4,z5) = (4,3,4,7,7) is one of these, and they all have the same probability,
1/30.

3.2 Backward-Looking Definitions of Exchangeability

Another way of defining exchangeability looks backwards from a situation where we know the
unordered values of z1, . . . ,zN .

Suppose Joe has observed z1, . . . ,zN . He writes each value on a tile resembling those used in
Scrabble c©, puts the N tiles in a bag, shakes the bag, and gives it to Bill to inspect. Bill sees the N
values (some possibly equal to each other) without knowing their original order. Bill also knows the
joint probability distribution for z1, . . . ,zN . So he obtains probabilities for the ordering of the tiles by
conditioning this joint distribution on his knowledge of the bag. The joint distribution is exchange-
able if and only if these conditional probabilities are the same as the probabilities for the result of
ordering the tiles by successively drawing them at random from the bag without replacement.
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To make this into a definition of exchangeability, we formalize the notion of a bag. A bag (or
multiset, as it is sometimes called) is a collection of elements in which repetition is allowed. It is
like a set inasmuch as its elements are unordered but like a list inasmuch as an element can occur
more than once. We write *a1, . . . ,aN+ for the bag obtained from the list a1, . . . ,aN by removing
information about the ordering.

Here are three equivalent conditions on the joint distribution of a sequence of random variables
z1, . . . ,zN , any of which can be taken as the definition of exchangeability.

1. For any bag B of size N, and for any examples a1, . . . ,aN ,

Pr(z1 = a1 & . . . & zN = aN | *z1, . . . ,zN+ = B)

is equal to the probability that successive random drawings from the bag B without replace-
ment produces first aN , then aN−1, and so on, until the last element remaining in the bag is
a1.

2. For any n, 1 ≤ n ≤ N, zn is independent of zn+1, . . . ,zN given the bag *z1, . . . ,zn+ and for any
bag B of size n,

Pr(zn = a | *z1, . . . ,zn+ = B) =
k
n
, (4)

where k is the number of times a occurs in B.

3. For any bag B of size N, and for any examples a1, . . . ,aN ,

Pr(z1 = a1 & . . . & zN = aN | *z1, . . . ,zN+ = B) =

{

n1!···nk!
N! if B = *a1, . . . ,aN+

0 if B 6= *a1, . . . ,aN+,
(5)

where k is the number of distinct values among the ai, and n1, . . . ,nk are the respective num-
bers of times they occur. (If the ai are all distinct, the expression n1! · · ·nk!/(N!) reduces to
1/(N!).)

We leave it to the reader to verify that these three conditions are equivalent to each other. The second
condition, which we will emphasize, is represented pictorially in Figure 3.

The backward-looking conditions are also equivalent to the definition of exchangeability using
permutations given on p. 378. This equivalence is elementary in the case where every possible
sequence of values a1, . . . ,an has positive probability. But complications arise when this probability
is zero, because the conditional probability on the left-hand side of (5) is then defined only with
probability one by the joint distribution. We do not explore these complications here.

3.3 The Betting Interpretation of Exchangeability

The framework for probability developed in Shafer and Vovk (2001) formalizes classical results
of probability theory, such as the law of large numbers, as theorems of game theory: a bettor can
multiply the capital he risks by a large factor if these results do not hold. This allows us to express
the empirical interpretation of given probabilities in terms of betting, using what we call Cournot’s
principle: the odds determined by the probabilities will not allow a bettor to multiply the capital he
or she risks by a large factor (Shafer, 2007).
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2 *z1+ *z1,z2+ · · · *z1, . . . ,zN−1+ *z1, . . . ,zN+

z1 z2 zN−1 zN

� � � � �

6 6 6 6

Figure 3: Backward probabilities, step by step. The two arrows backwards from each bag
*z1, . . . ,zn+ symbolize drawing an example zn out at random, leaving the smaller bag
*z1, . . . ,zn−1+. The probabilities for the result of the drawing are given by (4). Readers
familiar with Bayes nets (Cowell et al., 1999) will recognize this diagram as an exam-
ple; conditional on each variable, a joint probability distribution is given for its children
(the variables to which arrows from it point), and given the variable, its descendants are
independent of its ancestors.

By applying this idea to the sequence of probabilities (4), we obtain a betting interpretation of
exchangeability. Think of Joe and Bill as two players in a game that moves backwards from point
N in Figure 3. At each step, Joe provides new information and Bill bets. Designate by KN the total
capital Bill risks. He begins with this capital at N, and at each step n he bets on what zn will turn
out to be. When he bets at step n, he cannot risk losing more than he has at that point (because he is
not risking more than KN in the whole game), but otherwise he can bet as much as he wants for or
against each possible value a for zn at the odds (k/n) : (1−k/n), where k is the number of elements
in the current bag equal to a.

For brevity, we write Bn for the bag *z1, . . . ,zn+, and for simplicity, we set the initial capital KN

equal to $1. This gives the following protocol:

THE BACKWARD-LOOKING BETTING PROTOCOL

Players: Joe, Bill

KN := 1.
Joe announces a bag BN of size N.
FOR n = N,N −1, . . . ,2,1

Bill bets on zn at odds set by (4).
Joe announces zn ∈ Bn.
Kn−1 := Kn +Bill’s net gain.
Bn−1 := Bn \ *zn+.

Constraint: Bill must move so that his capital Kn will be nonnegative for all n no matter how Joe
moves.

Our betting interpretation of exchangeability is that Bill will not multiply his initial capital KN by a
large factor in this game.

The permutation definition of exchangeability does not lead to an equally simple betting inter-
pretation, because the probabilities for z1, . . . ,zN to which the permutation definition refers are not
determined by the mere assumption of exchangeability.
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3.4 A Law of Large Numbers for Exchangeable Sequences

As we noted when we studied Fisher’s prediction interval in §2.1.3, the validity of on-line prediction
requires more than having a high probability of a hit for each individual prediction. We also need
a law of large numbers, so that we can conclude that a high proportion of the high-probability
predictions will be correct. As we show in §A.3, the successive hits in the case of Fisher’s region
predictor are independent, so that the usual law of large numbers applies. What can we say in the
case of conformal prediction under exchangeability?

Suppose z1, . . . ,zN are exchangeable, drawn from an example space Z. In this context, we adopt
the following definitions.

• An event E is an n-event, where 1 ≤ n ≤ N, if its happening or failing is determined by the
value of zn and the value of the bag *z1, . . . ,zn−1+.

• An n-event E is ε-rare if
Pr(E | *z1, . . . ,zn+) ≤ ε. (6)

The left-hand side of the inequality (6) is a random variable, because the bag *z1, . . . ,zn+ is random.
The inequality says that this random variable never exceeds ε.

As we will see in the next section, the successive errors for a conformal predictor are ε-rare
n-events. So the validity of conformal prediction follows from the following informal proposition.

Informal Proposition 1 Suppose N is large, and the variables z1, . . . ,zN are exchangeable. Sup-
pose En is an ε-rare n-event for n = 1, . . . ,N. Then the law of large numbers applies; with very high
probability, no more than approximately the fraction ε of the events E1, . . . ,EN will happen.

In Appendix A, we formalize this proposition in two ways: classically and game-theoretically.
The classical approach appeals to the classical weak law of large numbers, which tells us that if

E1, . . . ,EN are mutually independent and each have probability exactly ε, and N is sufficiently large,
then there is a very high probability that the fraction of the events that happen will be close to ε. We
show in §A.1 that if (6) holds with equality, then En are mutually independent and each of them has
unconditional probability ε. Having the inequality instead of equality means that the En are even
less likely to happen, and this will not reverse the conclusion that few of them will happen.

The game-theoretic approach is more straightforward, because the game-theoretic version law
of large numbers does not require independence or exact levels of probability. In the game-theoretic
framework, the only question is whether the probabilities specified for successive events are rates
at which a bettor can place successive bets. The Backward-Looking Betting Protocol says that this
is the case for ε-rare n-events. As Bill moves through the protocol from N to 1, he is allowed
to bet against each error En at a rate corresponding to its having probability ε or less. So the
game-theoretic weak law of large numbers (Shafer and Vovk, 2001, pp. 124–126) applies directly.
Because the game-theoretic framework is not well known, we state and prove this law of large
numbers, specialized to the Backward-Looking Betting Protocol, in §A.2.

4. Conformal Prediction under Exchangeability

We are now in a position to state the conformal algorithm under exchangeability and explain why it
produces valid nested prediction regions.
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We distinguish two cases of on-line prediction. In both cases, we observe examples z1, . . . ,zN

one after the other and repeatedly predict what we will observe next. But in the second case we
have more to go on when we make each prediction.

1. Prediction from old examples alone. Just before observing zn, we predict it based on the
previous examples, z1, . . . ,zn−1.

2. Prediction using features of the new object. Each example zi consists of an object xi and a
label yi. In symbols: zi = (xi,yi). We observe in sequence x1,y1, . . . ,xN ,yN . Just before ob-
serving yn, we predict it based on what we have observed so far, xn and the previous examples
z1, . . . ,zn−1.

Prediction from old examples may seem relatively uninteresting. It can be considered a special case
of prediction using features xn of new examples—the case in which the xn provide no information,
and this special case we may have too little information to make useful predictions. But its simplicity
makes prediction with old examples alone advantageous as a setting for explaining the conformal
algorithm, and as we will see, it is then straightforward to take account of the new information xn.

Conformal prediction requires that we first choose a nonconformity measure, which measures
how different a new example is from old examples. In §4.1, we explain how nonconformity mea-
sures can be obtained from methods of point prediction. In §4.2, we state and illustrate the con-
formal algorithm for predicting new examples from old examples alone. In §4.3, we generalize to
prediction with the help of features of a new example. In §4.4, we explain why conformal prediction
produces the best possible valid nested prediction regions under exchangeability. Finally, in §4.5
we discuss the implications of the failure of the assumption of exchangeability.

For some readers, the simplicity of the conformal algorithm may be obscured by its generality
and the scope of our preliminary discussion of nonconformity measures. We encourage such readers
to look first at §4.2.1, §4.3.1, and §4.3.2, which provide largely self-contained accounts of the
algorithm as it applies to some small data sets.

4.1 Nonconformity Measures

The starting point for conformal prediction is what we call a nonconformity measure, a real-valued
function A(B,z) that measures how different an example z is from the examples in a bag B. The
conformal algorithm assumes that a nonconformity measure has been chosen. The algorithm will
produce valid nested prediction regions using any real-valued function A(B,z) as the nonconformity
measure. But the prediction regions will be efficient (small) only if A(B,z) measures well how
different z is from the examples in B.

A method ẑ(B) for obtaining a point prediction ẑ for a new example from a bag B of old examples
usually leads naturally to a nonconformity measure A. In many cases, we only need to add a way of
measuring the distance d(z,z′) between two examples. Then we define A by

A(B,z) := d(ẑ(B),z). (7)

The prediction regions produced by the conformal algorithm do not change when the nonconformity
measure A is transformed monotonically. If A is nonnegative, for example, replacing A with A2

will make no difference. Consequently, the choice of the distance measure d(z,z′) is relatively
unimportant. The important step in determining the nonconformity measure A is choosing the point
predictor ẑ(B).
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To be more concrete, suppose the examples are real numbers, and write zB for the average of
the numbers in B. If we take this average as our point predictor ẑ(B), and we measure the distance
between two real numbers by the absolute value of their difference, then (7) becomes

A(B,z) := |zB − z|. (8)

If we use the median of the numbers in B instead of their average as ẑ(B), we get a different non-
conformity measure, which will produce different prediction regions when we use the conformal
algorithm. On the other hand, as we have already said, it will make no difference if we replace the
absolute difference d(z,z′) = |z− z′| with the squared difference d(z,z′) = (z− z′)2, thus squaring
A.

We can also vary (8) by including the new example in the average:

A(B,z) := |(average of z and all the examples in B)− z| . (9)

This results in the same prediction regions as (8), because if B has n elements, then

|(average of z and all the examples in B)− z| =

∣

∣

∣

∣

nzB + z
n+1

− z

∣

∣

∣

∣

=
n

n+1
|zB − z|,

and as we have said, conformal prediction regions are not changed by a monotonic transformation
of the nonconformity measure. In the numerical example that we give in §4.2.1 below, we use (9)
as our nonconformity measure.

When we turn to the case where features of a new object help us predict a new label, we will
consider, among others, the following two nonconformity measures:

Distance to the nearest neighbors for classification. Suppose B = *z1, . . . ,zn−1+, where each
zi consists of a number xi and a nonnumerical label yi. Again we observe x but not y for a new
example z = (x,y). The nearest-neighbor method finds the xi closest to x and uses its label yi as our
prediction of y. If there are only two labels, or if there is no natural way to measure the distance
between labels, we cannot measure how wrong the prediction is; it is simply right or wrong. But
it is natural to measure the nonconformity of the new example (x,y) to the old examples (xi,yi)
by comparing x’s distance to old objects with the same label to its distance to old objects with a
different label. For example, we can set

A(B,z) : =
min{|xi − x| : 1 ≤ i ≤ n−1,yi = y}
min{|xi − x| : 1 ≤ i ≤ n−1,yi 6= y}

=
distance to z’s nearest neighbor in B with the same label

distance to z’s nearest neighbor in B with a different label
.

(10)

Distance to a regression line. Suppose B = *(x1,y1), . . . ,(xl,yl)+, where the xi and yi are numbers.
The most common way of fitting a line to such pairs of numbers is to calculate the averages

xl :=
l

∑
j=1

x j and yl :=
l

∑
j=1

y j,

and then the coefficients

bl =
∑l

j=1(x j − xl)y j

∑l
j=1(x j − xl)2

and al = yl −blxl .
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This gives the least-squares line y = al +blx. The coefficients al and bl are not affected if we change
the order of the zi; they depend only on the bag B.

If we observe a bag B = *z1, . . . ,zn−1+ of examples of the form zi = (xi,yi) and also x but not y
for a new example z = (x,y), then the least-squares prediction of y is

ŷ = an−1 +bn−1x. (11)

We can use the error in this prediction as a nonconformity measure:

A(B,z) := |y− ŷ| = |y− (an−1 +bn−1x)|.

We can obtain other nonconformity measures by using other methods to estimate a line.
Alternatively, we can include the new example as one of the examples used to estimate the least

squares line or some other regression line. In this case, it is natural to write (xn,yn) for the new
example. Then an and bn designate the coefficients calculated from all n examples, and we can use

|yi − (an +bnxi)| (12)

to measure the nonconformity of each of the (xi,yi) with the others. In general, the inclusion of the
new example simplifies the implementation or at least the explanation of the conformal algorithm.
In the case of least squares, it does not change the prediction regions.

4.2 Conformal Prediction from Old Examples Alone

Suppose we have chosen a nonconformity measure A for our problem. Given A, and given the
assumption that the zi are exchangeable, we now define a valid prediction region

γε(z1, . . . ,zn−1) ⊆ Z,

where Z is the example space. We do this by giving an algorithm for deciding, for each z ∈ Z,
whether z should be included in the region. For simplicity in stating this algorithm, we provisionally
use the symbol zn for z, as if we were assuming that zn is in fact equal to z.

The Conformal Algorithm Using Old Examples Alone

Input: Nonconformity measure A, significance level ε, examples z1, . . . ,zn−1, example z,

Task: Decide whether to include z in γε(z1, . . . ,zn−1).

Algorithm:

1. Provisionally set zn := z.

2. For i = 1, . . . ,n, set αi := A(*z1, . . . ,zn +\ * zi+,zi).

3. Set pz :=
number of i such that 1 ≤ i ≤ n and αi ≥ αn

n
.

4. Include z in γε(z1, . . . ,zn−1) if and only if pz > ε.

If Z has only a few elements, this algorithm can be implemented in a brute-force way: calculate
pz for every z ∈ Z. If Z has many elements, we will need some other way of identifying the z
satisfying pz > ε.
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The number pz is the fraction of the examples in *z1, . . . ,zn−1,z+ that are at least as different
from the others as z is, in the sense measured by A. So the algorithm tells us to form a prediction
region consisting of the z that are not among the fraction ε most out of place when they are added
to the bag of old examples.

The definition of γε(z1, . . . ,zn−1) can be framed as an application of the widely accepted Neyman-
Pearson theory for hypothesis testing and confidence intervals (Lehmann, 1986). In the Neyman-
Pearson theory, we test a hypothesis H using a random variable T that is likely to be large only if H
is false. Once we observe T = t, we calculate pH := Pr(T ≥ t |H). We reject H at level ε if pH ≤ ε.
Because this happens under H with probability no more than ε, we can declare 1−ε confidence that
the true hypothesis H is among those not rejected. Our procedure makes these choices of H and T :

• The hypothesis H says the bag of the first n examples is *z1, . . . ,zn−1,z+.

• The test statistic T is the random value of αn.

Under H—that is, conditional on the bag *z1, . . . ,zn−1,z+, T is equally likely to come out equal to
any of the αi. Its observed value is αn. So

pH = Pr(T ≥ αn | *z1, . . . ,zn−1,z+) = pz.

Since z1, . . . ,zn−1 are known, rejecting the bag *z1, . . . ,zn−1,z+ means rejecting zn = z. So our 1− ε
confidence is in the set of z for which pz > ε.

The regions γε(z1, . . . ,zn−1) for successive n are based on overlapping sequences of examples
rather than independent samples. But the successive errors are ε-rare n-events. The event that our
nth prediction is an error, zn /∈ γε(z1, . . . ,zn−1), is the event pzn ≤ ε. This is an n-event, because the
value of pzn is determined by zn and the bag *z1, . . . ,zn−1+. It is ε-rare because it is the event that
αn is among a fraction ε or fewer of the αi that are strictly larger than all the other αi, and this can
have probability at most ε when the αi are exchangeable. So it follows from Informal Proposition 1
(§3.4) that we can expect at least 1− ε of the γε(z1, . . . ,zn−1), n = 1, . . . ,N, to be correct.

4.2.1 EXAMPLE: PREDICTING A NUMBER WITH AN AVERAGE

In §2.1, we discussed Fisher’s 95% prediction interval for zn based on z1, . . . ,zn−1, which is valid
under the assumption that the zi are independent and normally distributed. We used it to predict z20

when the first 19 zi are

17,20,10,17,12,15,19,22,17,19,14,22,18,17,13,12,18,15,17.

Taking into account our knowledge that the zi are all integers, we arrived at the 95% prediction that
z20 is an integer between 10 to 24, inclusive.

What can we predict about z20 at the 95% level if we drop the assumption of normality and
assume only exchangeability? To produce a 95% prediction interval valid under the exchangeability
assumption alone, we reason as follows. To decide whether to include a particular value z in the
interval, we consider twenty numbers that depend on z:

• First, the deviation of z from the average of it and the other 19 numbers. Because the sum of
the 19 is 314, this is

∣

∣

∣

∣

314+ z
20

− z

∣

∣

∣

∣

=
1
20

|314−19z| . (13)
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• Then, for i = 1, . . . ,19, the deviation of zi from this same average. This is
∣

∣

∣

∣

314+ z
20

− zi

∣

∣

∣

∣

=
1
20

|314+ z−20zi| . (14)

Under the hypothesis that z is the actual value of zn, these 20 numbers are exchangeable. Each of
them is as likely as the other to be the largest. So there is at least a 95% (19 in 20) chance that (13)
will not exceed the largest of the 19 numbers in (14). The largest of the 19 zis being 22 and the
smallest 10, we can write this condition as

|314−19z| ≤ max{|314+ z− (20×22)| , |314+ z− (20×10)|} ,

which reduces to

10 ≤ z ≤
214
9

≈ 23.8.

Taking into account that z20 is an integer, our 95% prediction is that it will be an integer between
10 and 23, inclusive. This is nearly the same prediction we obtained by Fisher’s method. We have
lost nothing by weakening the assumption that the zi are independent and normally distributed to
the assumption that they are exchangeable. But we are still basing our prediction region on the
average of old examples, which is an optimal estimator in various respects under the assumption of
normality.

4.2.2 ARE WE COMPLICATING THE STORY UNNECESSARILY?

The reader may feel that we are vacillating about whether to include the new example in the bag
with which we are comparing it. In our statement of the conformal algorithm, we define the non-
conformity scores by

αi := A(*z1, . . . ,zn +\ * zi+,zi), (15)

apparently signaling that we do not want to include zi in the bag to which it is compared. But then
we use the nonconformity measure

A(B,z) := |(average of z and all the examples in B)− z| ,

which seems to put z back in the bag, reducing (15) to

αi =

∣

∣

∣

∣

∑n
j=1 z j

n
− zi

∣

∣

∣

∣

.

We could have reached this point more easily by writing

αi := A(*z1, . . . ,zn+,zi) (16)

in the conformal algorithm and using A(B,z) := |zB − z| .
The two ways of defining nonconformity scores, (15) and (16), are equivalent, inasmuch as

whatever we can get with one of them we can get from the other by changing the nonconformity
measure. In this case, (16) might be more convenient. But we will see other cases where (15) is
more convenient. We also have another reason for using (15). It is the form that generalizes, as we
will see in §5, to on-line compression models.
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4.3 Conformal Prediction Using a New Object

Now we turn to the case where our example space Z is of the form Z = X×Y. We call X the object
space, Y the label space. We observe in sequence examples z1, . . . ,zN , where zi = (xi,yi). At the
point where we have observed

(z1, . . . ,zn−1,xn) = ((x1,y1), . . . ,(xn−1,yn−1),xn),

we want to predict yn by giving a prediction region

Γε(z1, . . . ,zn−1,xn) ⊆ Y

that is valid at the (1− ε) level. As in the special case where the xi are absent, we start with a
nonconformity measure A(B,z).

We define the prediction region by giving an algorithm for deciding, for each y ∈ Y, whether y
should be included in the region. For simplicity in stating this algorithm, we provisionally use the
symbol zn for (xn,y), as if we were assuming that yn is in fact equal to y.

The Conformal Algorithm

Input: Nonconformity measure A, significance level ε, examples z1, . . . ,zn−1, object xn, label y

Task: Decide whether to include y in Γε(z1, . . . ,zn−1,xn).

Algorithm:

1. Provisionally set zn := (xn,y).

2. For i = 1, . . . ,n, set αi := A(*z1, . . . ,zn +\ * zi+,zi).

3. Set py :=
#{i = 1, . . . ,n |αi ≥ αn}

n
.

4. Include y in Γε(z1, . . . ,zn−1,xn) if and only if py > ε.

This differs only slightly from the conformal algorithm using old examples alone (p. 385). Now
we write py instead of pz, and we say that we are including y in Γε(z1, . . . ,zn−1,xn) instead of saying
that we are including z in γε(z1, . . . ,zn−1).

To see that this algorithm produces valid prediction regions, it suffices to see that it consists of
the algorithm for old examples alone together with a further step that does not change the frequency
of hits. We know that the region the old algorithm produces,

γε(z1, . . . ,zn−1) ⊆ Z, (17)

contains the new example zn = (xn,yn) at least 95% of the time. Once we know xn, we can rule out
all z = (x,y) in (17) with x 6= xn. The y not ruled out, those such that (xn,y) is in (17), are precisely
those in the set

Γε(z1, . . . ,zn−1,xn) ⊆ Y (18)

produced by our new algorithm. Having (xn,yn) in (17) 1− ε of the time is equivalent to having yn

in (18) 1− ε of the time.
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4.3.1 EXAMPLE: CLASSIFYING IRIS FLOWERS

In 1936, R. A. Fisher used discriminant analysis to distinguish different species of iris on the basis
of measurements of their flowers. The data he used included measurements by Edgar Anderson of
flowers from 50 plants each of two species, iris setosa and iris versicolor. Two of the measurements,
sepal length and petal width, are plotted in Figure 4.

To illustrate how the conformal algorithm can be used for classification, we have randomly
chosen 25 of the 100 plants. The sepal lengths and species for the first 24 of them are listed in
Table 2 and plotted in Figure 5. The 25th plant in the sample has sepal length 6.8. On the basis
of this information, would you classify it as setosa or versicolor, and how confident would you be
in the classification? Because 6.8 is the longest sepal in the sample, nearly any reasonable method
will classify the plant as versicolor, and this is in fact the correct answer. But the appropriate level
of confidence is not so obvious.

We calculate conformal prediction regions using three different nonconformity measures: one
based on distance to the nearest neighbors, one based on distance to the species average, and one
based on a support-vector machine. Because our evidence is relatively weak, we do not achieve the
high precision with high confidence that can be achieved in many applications of machine learn-
ing (see, for example, §4.5). But we get a clear view of the details of the calculations and the
interpretation of the results.

Distance to the nearest neighbor belonging to each species. Here we use the nonconformity
measure (10). The fourth and fifth columns of Table 2 (labeled NN for nearest neighbor) give
nonconformity scores αi obtained with y25 = s and y25 = v, respectively. In both cases, these scores
are given by

αi = A(*z1, . . . ,z25 +\ * zi+,zi)

=
min{|x j − xi| : 1 ≤ j ≤ 25 & j 6= i & y j = yi}

min{|x j − xi| : 1 ≤ j ≤ 25 & j 6= i & y j 6= yi}
,

(19)

but for the fourth column z25 = (6.8,s), while for the fifth column z25 = (6.8,v).
If both the numerator and the denominator in (19) are equal to zero, we take the ratio also to be

zero. This happens in the case of the first plant, for example. It has the same sepal length, 5.0, as
the 7th and 13th plants, which are setosa, and the 15th plant, which is versicolor.

Step 3 of the conformal algorithm yields ps = 0.08 and pv = 0.32. Step 4 tells us that

• s is in the 1− ε prediction region when 1− ε > 0.92, and

• v is in the 1− ε prediction region when 1− ε > 0.68.

Here are prediction regions for a few levels of ε.

• Γ0.08 = {v}. With 92% confidence, we predict that y25 = v.

• Γ0.05 = {s,v}. If we raise the confidence with which we want to predict y25 to 95%, the
prediction is completely uninformative.

• Γ1/3 = /0. If we lower the confidence to 2/3, we get a prediction we know is false: y25 will be
in the empty set.
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Data Nonconformity scores
NN Species Average SVM

sepal species αi for αi for αi for αi for αi for αi for
length y25 = s y25 = v y25 = s y25 = v y25 = s y25 = v

z1 5.0 s 0 0 0.06 0.06 0 0
z2 4.4 s 0 0 0.66 0.54 0 0
z3 4.9 s 1 1 0.16 0.04 0 0
z4 4.4 s 0 0 0.66 0.54 0 0
z5 5.1 s 0 0 0.04 0.16 0 0
z6 5.9 v 0.25 0.25 0.12 0.20 0 0
z7 5.0 s 0 0 0.06 0.06 0 0
z8 6.4 v 0.50 0.22 0.38 0.30 0 0
z9 6.7 v 0 0 0.68 0.60 0 0
z10 6.2 v 0.33 0.29 0.18 0.10 0 0
z11 5.1 s 0 0 0.04 0.16 0 0
z12 4.6 s 0 0 0.46 0.34 0 0
z13 5.0 s 0 0 0.06 0.06 0 0
z14 5.4 s 0 0 0.34 0.46 0 0
z15 5.0 v ∞ ∞ 1.02 1.10 ∞ ∞
z16 6.7 v 0 0 0.68 0.60 0 0
z17 5.8 v 0 0 0.22 0.30 0 0
z18 5.5 s 0.50 0.50 0.44 0.56 0 0
z19 5.8 v 0 0 0.22 0.30 0 0
z20 5.4 s 0 0 0.34 0.46 0 0
z21 5.1 s 0 0 0.04 0.16 0 0
z22 5.7 v 0.50 0.50 0.32 0.40 0 0
z23 4.6 s 0 0 0.46 0.34 0 0
z24 4.6 s 0 0 0.46 0.34 0 0
z25 6.8 s 13 1.74 ∞
z25 6.8 v 0.077 0.7 0
ps 0.08 0.04 0.08
pv 0.32 0.08 1

Table 2: Conformal prediction of iris species from sepal length, using three different noncon-
formity measures. The data used are sepal length and species for a random sample of
25 of the 100 plants measured by Edgar Anderson. The second column gives xi, the sepal
length. The third column gives yi, the species. The 25th plant has sepal length x25 = 6.8,
and our task is to predict its species y25. For each nonconformity measure, we calculate
nonconformity scores under each hypothesis, y25 = s and y25 = v. The p-value in each
column is computed from the 25 nonconformity scores in that column; it is the fraction of
them equal to or larger than the 25th. The results from the three nonconformity measures
are consistent, inasmuch as the p-value for v is always larger than the p-value for s.
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Figure 4: Sepal length, petal width, and species for Edgar Anderson’s 100 flowers. The 50 iris
setosa are clustered at the lower left, while the 50 iris versicolor are clustered at the upper
right. The numbers indicate how many plants have exactly the same measurement; for
example, there are 5 plants that have sepals 5 inches long and petals 0.2 inches wide.
Petal width separates the two species perfectly; all 50 versicolor petals are 1 inch wide or
wider, while all setosa petals are narrower than 1 inch. But there is substantial overlap in
sepal length.

In fact, y25 = v. Our 92% prediction is correct.

The fact that we are making a known-to-be-false prediction with 2/3 confidence is a signal that
the 25th sepal length, 6.8, is unusual for either species. A close look at the nonconformity scores
reveals that it is being perceived as unusual simply because 2/3 of the plants have other plants in
the sample with exactly the same sepal length, whereas there is no other plant with the sepal length
6.8.

In classification problems, it is natural to report the greatest 1− ε for which Γε is a single label.
In our example, this produces the statement that we are 92% confident that y25 is v. But in order
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Figure 5: Sepal length and species for the first 24 plants in our random sample of size 25. Ex-
cept for one versicolor with sepal length 5.0, the versicolor in this sample all have longer
sepals than the setosa. This high degree of separation is an accident of the sampling.

to avoid overconfidence when the object xn is unusual, it is wise to report also the largest ε for
which Γε is empty. We call this the credibility of the prediction (Vovk et al., 2005, p. 96).3 In our
example, the prediction that y25 will be v has credibility of only 32%, indicating that the example
is somewhat unusual for the method that produces the prediction—so unusual that the method has
68% confidence in a prediction of y25 that we know is false before we observe y25 (Γ0.68 = /0).
Distance to the average of each species. The nearest-neighbor nonconformity measure, because
it considers only nearby sepal lengths, does not take full advantage of the fact that a versicolor
flower typically has longer sepals than a setosa flower. We can expect to obtain a more efficient
conformal predictor (one that produces smaller regions for a given level of confidence) if we use a
nonconformity measure that takes account of average sepal length for the two species.

We use the nonconformity measure A defined by

A(B,(x,y)) = |xB∪*(x,y)+,y − x|, (20)

where xB,y denotes the average sepal length of all plants of species y in the bag B, and B∪ *z+
denotes the bag obtained by adding z to B. To test y25 = s, we consider the bag consisting of the 24
old examples together with (6.8,s), and we calculate the average sepal lengths for the two species in
this bag: 5.06 for setosa and 6.02 for versicolor. Then we use (20) to calculate the nonconformity
scores shown in the sixth column of Table 2:

αi =

{

|5.06− xi| if yi = s

|6.02− xi| if yi = v

for i = 1, . . . ,25, where we take y25 to be s. To test y25 = v, we consider the bag consisting of the 24
old examples together with (6.8,v), and we calculate the average sepal lengths for the two species
in this bag: 4.94 for setosa and 6.1 for versicolor. Then we use (20) to calculate the nonconformity
scores shown in the seventh column of Table 2:

αi =

{

|4.94− xi| if yi = s

|6.1− xi| if yi = v

for i = 1, . . . ,25, where we take y25 to be v.
We obtain ps = 0.04 and pv = 0.08, so that

3. This notion of credibility is one of the novelties of the theory of conformal prediction. It is not found in the prior
literature on confidence and prediction regions.
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• s is in the 1− ε prediction region when 1− ε > 0.96, and

• v is in the 1− ε prediction region when 1− ε > 0.92.

Here are the prediction regions for some different levels of ε.

• Γ0.04 = {v}. With 96% confidence, we predict that y25 = v.

• Γ0.03 = {s,v}. If we raise the confidence with which we want to predict y25 to 97%, the
prediction is completely uninformative.

• Γ0.08 = /0. If we lower the confidence to 92%, we get a prediction we know is false: y25 will
be in the empty set.

In this case, we predict y25 = v with confidence 96% but credibility only 8%. The credibility is
lower with this nonconformity measure because it perceives 6.8 as being even more unusual than
the nearest-neighbor measure did. It is unusually far from the average sepal lengths for both species.

A support-vector machine. As Vladimir Vapnik explains on pp. 408–410 of his Statistical Learn-
ing Theory (1998), support-vector machines grew out of the idea of separating two groups of ex-
amples with a hyperplane in a way that makes as few mistakes as possible—that is, puts as few
examples as possible on the wrong side. This idea springs to mind when we look at Figure 5. In
this one-dimensional picture, a hyperplane is a point. We are tempted to separate the setosa from
the versicolor with a point between 5.5 and 5.7.

Vapnik proposed to separate two groups not with a single hyperplane but with a band: two
hyperplanes with few or no examples between them that separate the two groups as well as possible.
Examples on the wrong side of both hyperplanes would be considered very strange; those between
the hyperplanes would also be considered strange but less so. In our one-dimensional example, the
obvious separating band is the interval from 5.5 to 5.7. The only strange example is the versicolor
with sepal length 5.0.

Here is one way of making Vapnik’s idea into an algorithm for calculating nonconformity scores
for all the examples in a bag *(x1,y1), . . .(xn,yn)+. First plot all the examples as in Figure 5. Then
find numbers a and b such that a ≤ b and the interval [a,b] separates the two groups with the fewest
mistakes—that is, minimizes4

#{i |1 ≤ i ≤ n,xi < b, and yi = v}+#{i |1 ≤ i ≤ n,xi > a, and yi = s}.

There may be many intervals that minimize this count; choose one that is widest. Then give the ith
example the score

αi =







∞ if yi = v and xi < a or yi = s and b < xi

1 if yi = v and a ≤ xi < b or yi = s and a < xi ≤ b
0 if yi = v and b ≤ xi or yi = s and xi ≤ a.

When applied to the bags in Figure 6, this algorithm gives the circled examples the score ∞ and all
the others the score 0. These scores are listed in the last two columns of Table 2.

4. Here we are implicitly assuming that the setosa flowers will be on the left, with shorter sepal lengths. A general
algorithm should also check the possibility of a separation with the versicolor flowers on the left.
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The bag containing the 24 old examples

The bag of 25 examples, assuming the new example is setosa

The bag of 25 examples, assuming the new example is versicolor

Figure 6: Separation for three bags. In each case, the separating band is the interval [5.5,5.7].
Examples on the wrong side of the interval are considered strange and are circled.

As we see from the table, the resulting p-values are ps = 0.08 and pv = 1. So this time we
obtain 92% confidence in y25 = v, with 100% credibility.

The algorithm just described is too complex to implement when there are thousands of exam-
ples. For this reason, Vapnik and his collaborators proposed instead a quadratic minimization that
balances the width of the separating band against the number and size of the mistakes it makes.
Support-vector machines of this type have been widely used. They usually solve the dual opti-
mization problem, and the Lagrange multipliers they calculate can serve as nonconformity scores.
Implementations sometimes fail to treat the old examples symmetrically because they make var-
ious uses of the order in which examples are presented, but this difficulty can be overcome by a
preliminary randomization (Vovk et al., 2005, p. 58).

A systematic comparison. The random sample of 25 plants we have considered is odd in two
ways: (1) except for the one versicolor with sepal length of only 5.0, the two species do not overlap
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NN Species average SVM
singleton hits 164 441 195
uncertain 795 477 762
total hits 959 918 957
empty 9 49 1
singleton errors 32 33 42
total errors 41 82 43
total examples 1000 1000 1000
% hits 96% 92% 96%
total singletons 196 474 237
% hits 84% 93% 82%
total errors 41 82 43
% empty 22% 60% 2%

Table 3: Performance of 92% prediction regions based on three nonconformity measures. For
each nonconformity measure, we have found 1,000 prediction regions at the 92% level,
using each time a different random sample of 25 from Anderson’s 100 flowers. The “un-
certain” regions are those equal to the whole label space, Y = {s,v}.

in sepal length, and (2) the flower whose species we are trying to predict has a sepal that is unusually
long for either species.

In order to get a fuller picture of how the three nonconformity measures perform in general on
the iris data, we have applied each of them to 1,000 different samples of size 25 selected from the
population of Anderson’s 100 plants. The results are shown in Table 3.

The 92% regions based on the species average were correct about 92% of the time (918 times
out of 1000), as advertised. The regions based on the other two measures were correct more often,
about 96% of the time. The reason for this difference is visible in Table 2; the nonconformity scores
based on the species average take a greater variety of values and therefore produce ties less often.
The regions based on the species averages are also more efficient (smaller); 441 of its hits were
informative, as opposed to fewer than 200 for each of the other two nonconformity measures. This
efficiency also shows up in more empty regions among the errors. The species average produced an
empty 92% prediction region for the random sample used in Table 2, and Table 3 shows that this
happens 5% of the time.

As a practical matter, the uncertain prediction regions (Γ0.08 = {s,v}) and the empty ones
(Γ0.08 = /0) are equally uninformative. The only errors that mislead are the singletons that are wrong,
and the three methods all produce these at about the same rate—3 or 4%.

4.3.2 EXAMPLE: PREDICTING PETAL WIDTH FROM SEPAL LENGTH

We now turn to the use of the conformal algorithm to predict a number. We use the same 25 plants,
but now we use the data in the second and third columns of Table 4: the sepal length and petal width
for the first 24 plants, and the sepal length for the 25th. Our task is to predict the petal width for the
25th.
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sepal length petal width Nearest neighbor Linear regression
z1 5.0 0.3 0.3 |0.003y25 −0.149|
z2 4.4 0.2 0 |0.069y25 +0.050|
z3 4.9 0.2 0.25 |0.014y25 −0.199|
z4 4.4 0.2 0 |0.069y25 +0.050|
z5 5.1 0.4 0.15 |0.008y25 +0.099|
z6 5.9 1.5 0.3 |0.096y25 −0.603|
z7 5.0 0.2 0.4 |0.003y25 −0.249|
z8 6.4 1.3 0.2 |0.151y25 −0.154|
z9 6.7 1.4 0.3 |0.184y25 −0.104|
z10 6.2 1.5 0.2 |0.129y25 −0.453|
z11 5.1 0.2 0.15 |0.008y25 +0.299|
z12 4.6 0.2 0.05 |0.047y25 −0.050|
z13 5.0 0.6 0.3 |0.003y25 +0.151|
z14 5.4 0.4 0 |0.041y25 +0.248|
z15 5.0 1.0 0.75 |0.003y25 +0.551|
z16 6.7 1.7 0.3 |0.184y25 −0.404|
z17 5.8 1.2 0.2 |0.085y25 −0.353|
z18 5.5 0.2 0.2 |0.052y25 +0.498|
z19 5.8 1.0 0.2 |0.085y25 −0.153|
z20 5.4 0.4 0 |0.041y25 +0.248|
z21 5.1 0.3 0 |0.008y25 +0.199|
z22 5.7 1.3 0.2 |0.074y25 −0.502|
z23 4.6 0.3 0.1 |0.047y25 +0.050|
z24 4.6 0.2 0.05 |0.047y25 −0.050|
z25 6.8 y25 |y25 −1.55| |0.805y25 −1.345|

Table 4: Conformal prediction of petal width from sepal length. We use the same random 25
plants that we used for predicting the species. The actual value of y25 is 1.4.

The most conventional way of analyzing this data is to calculate the least-squares line (11):

ŷ = a24 +b24x = −2.96+0.68x.

The sepal length for the 25th plant being x25 = 6.8, the line predicts that y25 should be near −2.96+
0.68× 6.8 = 1.66. Under the textbook assumption that the yi are all independent and normally
distributed with means on the line and a common variance, we estimate the common variance by

s2
24 =

∑24
i=1(yi − (a24 +b24xi))

2

22
= 0.0780.

The textbook 1− ε interval for y25 based on *(x1,y1), . . . ,(x24,y24)+ and x25 is

1.66± tε/2
22 s24

√

1+
1
24

+
(x25 − x24)2

∑24
j=1(x j − x24)2

= 1.66±0.311tε/2
22 (21)
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(Draper and Smith 1998, p. 82; Ryan 1997, pp. 21–22; Seber and Lee 2003, p. 145). Taking into
account the fact y25 is measured to only one decimal place, we obtain [1.0,2.3] for the 96% interval
and [1.1,2.2] for the 92% interval.

The prediction interval (21) is analogous to Fisher’s interval for a new example from the same
normally distributed population as a bag of old examples (§2.1.1). In §5.3.2 we will review the
general model of which both are special cases.

As we will now see, the conformal algorithm under exchangeability gives confidence intervals
comparable to (21), without the assumption that the errors are normal. We use two different non-
conformity measures: one based on the nearest neighbor, and one based on the least-squares line.

Conformal prediction using the nearest neighbor. Suppose B is a bag of old examples and (x,y)
is a new example, for which we know the sepal length x but not the petal width y. We can predict
y using the nearest neighbor in an obvious way: We find the z′ ∈ B for which the sepal length x′ is
closest to x, and we predict that y will be the same as the petal width y′. If there are several examples
in the bag with sepal length equally close to x, then we take the median of their petal widths as our
predictor ŷ. The associated nonconformity measure is |y− ŷ|.

The fourth column of Table 4 gives the nonconformity scores for our sample using this noncon-
formity measure. We see that α25 = |y25 − 1.55|. The other nonconformity scores do not involve
y25; the largest is 0.75, and the second largest is 0.40. So we obtain these prediction regions y25:

• The 96% prediction region consists of all the y for which py > 0.04, which requires that at
least one of the other αi be as large as α25, or that 0.75 ≥ |y− 1.55|. This is the interval
[0.8,2.3].

• The 92% prediction region consists of all the y for which py > 0.08, which requires that at
least two of the other αi be as large as α25, or that 0.40 ≥ |y− 1.55|. This is the interval
[1.2,1.9].

Conformal prediction using least-squares. Now we use the least-squares nonconformity mea-
sure with inclusion, given by (12). In our case, n = 25, so our nonconformity scores are

αi = |yi − (a25 +b25xi)|

=

∣

∣

∣

∣

∣

yi −
∑25

j=1 y j

25
−

∑25
j=1(x j − x25)y j

∑25
j=1(x j − x25)2

(

xi −
∑25

j=1 x j

25

)∣

∣

∣

∣

∣

.

When we substitute values of ∑24
j=1 y j, ∑24

j=1(x j − x25)y j, ∑25
j=1(x j − x25)

2, and ∑25
j=1 x j calculated

from Table 4, this becomes

αi = |yi +(0.553−0.110xi)y25 −0.498xi +2.04| .

For i = 1, . . . ,24, we can further evaluate this by substituting the values of xi and yi. For i = 25, we
can substitute 6.8 for x25. These substitutions produce the expressions of the form |ciy25 +di| listed
in the last column of Table 4. We have made sure that ci is always positive by multiplying by −1
within the absolute value when need be.

Table 5 shows calculations required to find the conformal prediction region. The task is to
identify, for i = 1, . . . ,24, the y for which |ciy+di| ≥ |0.805y−1.345|. We first find the solutions of

397



SHAFER AND VOVK

the equation |ciy+di| = |0.805y−1.345|, which are

−
di +1.345
ci −0.805

and −
di −1.345
ci +0.805

.

As it happens, ci < 0.805 for i = 1, . . . ,24, and in this case the y satisfying |ciy+di| ≥ |0.805−1.345|
form the interval between these two points. This interval is shown in the last column of the table.

In order to be in the 96% interval, y must be in at least one of the 24 intervals in the table; in
order to be in the 92% interval, it must be in at least two of them. So the 96% interval is [1.0,2.4],
and the 92% interval is [1.0,2.3].

An algorithm for finding conformal prediction intervals using a least-squares or ridge-regression
nonconformity measure with an object space of any finite dimension is spelled out on pp. 32–33 of
our book (Vovk et al., 2005).

4.4 Optimality

The predictions produced by the conformal algorithm are invariant with respect to the old examples,
correct with the advertised probability, and nested. As we now show, they are optimal among all
region predictors with these properties.

Here is a more precise statement of the three properties:

1. The predictions are invariant with respect to the ordering of the old examples. Formally, this
means that the predictor γ is a function of two variables, the significance level ε and the bag B
of old examples. We write γε(B) for the prediction, which is a subset of the example space Z.

2. The probability of a hit is always at least the advertised confidence level. For every positive
integer n and every probability distribution under which z1, . . . ,zn are exchangeable,

Pr{zn ∈ γε(*z1, . . . ,zn−1+)} ≥ 1− ε.

3. The prediction regions are nested. If ε1 ≥ ε2, then γε1(B) ⊆ γε2(B).

Conformal predictors satisfy these three conditions. Other region predictors can also satisfy them.
But as we now demonstrate, any γ satisfying them can be improved on by a conformal predictor:
there always exists a nonconformity measure A such that the predictor γA constructed from A by the
conformal algorithm satisfies γε

A(B) ⊆ γε(B) for all B and ε.
The key to the demonstration is the following lemma:

Lemma 1 Suppose γ is a region predictor satisfying the three conditions, *a1, . . . ,an+ is a bag of
examples, and 0 < ε ≤ 1. Then nε or fewer of the n elements of the bag satisfy

ai /∈ γε(*a1, . . . ,an +\ *ai+). (22)

Proof Consider the unique exchangeable probability distribution for z1, . . . ,zn that gives probability
1 to *z1, . . . ,zn+ = *a1, . . . ,an+. Under this distribution, each element of *a1, . . . ,an+ has an equal
probability of being zn, and in this case, (22) is a mistake. By the second condition, the probability
of a mistake is ε or less. So the fraction of the bag’s elements for which (22) holds is ε or less.
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αi = |ciy25 +di| −
di +1.345
ci −0.805

−
di −1.345
ci +0.805

y satisfying
|ciy+di| ≥

|0.805−1.345|
z1 |0.003y25 −0.149| 1.49 1.85 [1.49,1.85]
z2 |0.069y25 +0.050| 1.90 1.48 [1.48,1.90]
z3 |0.014y25 −0.199| 1.45 1.89 [1.45,1.89]
z4 |0.069y25 +0.050| 1.90 1.48 [1.48,1.90]
z5 |0.008y25 +0.099| 1.81 1.53 [1.53,1.81]
z6 |0.096y25 −0.603| 1.05 2.16 [1.05,2.16]
z7 |0.003y25 −0.249| 1.37 1.97 [1.37,1.97]
z8 |0.151y25 −0.154| 1.82 1.57 [1.57,1.82]
z9 |0.184y25 −0.104| 2.00 1.47 [1.47,2.00]
z10 |0.129y25 −0.453| 1.32 1.93 [1.32,1.93]
z11 |0.008y25 +0.299| 2.06 1.29 [1.29,2.06]
z12 |0.047y25 −0.050| 1.71 1.64 [1.64,1.71]
z13 |0.003y25 +0.151| 1.87 1.48 [1.48,1.87]
z14 |0.041y25 +0.248| 2.09 1.30 [1.30,2.09]
z15 |0.003y25 +0.551| 2.36 0.98 [0.98,2.36]
z16 |0.184y25 −0.404| 1.52 1.77 [1.52,1.77]
z17 |0.085y25 −0.353| 1.38 1.91 [1.38,1.91]
z18 |0.052y25 +0.498| 2.45 0.99 [0.99,2.45]
z19 |0.085y25 −0.153| 1.66 1.68 [1.66,1.68]
z20 |0.041y25 +0.248| 2.09 1.30 [1.30,2.09]
z21 |0.008y25 +0.199| 1.94 1.41 [1.41,1.94]
z22 |0.074y25 −0.502| 1.15 2.10 [1.15,2.10]
z23 |0.047y25 +0.050| 1.84 1.52 [1.52,1.84]
z24 |0.047y25 −0.050| 1.71 1.64 [1.64,1.71]
z25 |0.805y25 −1.345|

Table 5: Calculations with least-squares nonconformity scores. The column on the right gives
the values of y for which the example’s nonconformity score will exceed that of the 25th
example.

Given the region predictor γ, what nonconformity measure will give us a conformal predictor
that improves on it? If

z /∈ γδ(B), (23)

then γ is asserting confidence 1− δ that z should not appear next because it is so different from B.
So the largest 1−δ for which (23) holds is a natural nonconformity measure:

A(B,z) = sup{1−δ |z /∈ γδ(B)}.
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Least-squares Conformal prediction with two
prediction with different nonconformity measures
normal errors NN Least squares

96% [1.0,2.3] [0.8,2.3] [1.0,2.4]
92% [1.1,2.2] [1.2,1.9] [1.0,2.3]

Table 6: Prediction intervals for the 25th plant’s petal width, calculated by three different
methods. The conformal prediction intervals using the least-squares nonconformity mea-
sure are quite close to the standard intervals based on least-squares with normal errors. All
the intervals contain the actual value, 1.4.

The conformal predictor γA obtained from this nonconformity measure, though it agrees with γ on
how to rank different z with respect to their nonconformity with B, may produce tighter prediction
regions if γ is too conservative in the levels of confidence it asserts.

To show that γε
A(B) ⊆ γε(B) for every ε and every B, we assume that

z ∈ γε
A(*z1, . . . ,zn−1+) (24)

and show that z ∈ γε(*z1, . . . ,zn−1+). According to the conformal algorithm, (24) means that when
we provisionally set zn equal to z and calculate the nonconformity scores

αi = sup{1−δ |zi /∈ γδ(*z1, . . . ,zn +\ * zi+)}

for i = 1, . . . ,n, we find that strictly more than nε of these scores are greater than or equal to αn.
Because γ’s prediction regions are nested (condition 3), it follows that if zn /∈ γε(*z1, . . . ,zn−1+), then
zi /∈ γε(*z1, . . . ,zn +\ * zi+) for strictly more than nε of the zi. But by Lemma 1, nε or fewer of the zi

can satisfy this condition. So zn ∈ γε(*z1, . . . ,zn−1+).
There are sensible reasons to use region predictors that are not invariant. We may want to exploit

possible departures from exchangeability even while insisting on validity under exchangeability. Or
it may simply be more practical to use a predictor that is not invariant. But invariance is a natural
condition when we want to rely only on exchangeability, and in this case our optimality result is
persuasive. For further discussion, see §2.4 of our book (Vovk et al., 2005).

4.5 Examples Are Seldom Exactly Exchangeable

Although the assumption of exchangeability is weak compared to the assumptions embodied in most
statistical models, it is still an idealization, seldom matched exactly by what we see in the world. So
we should not expect conclusions derived from this assumption to be exactly true. In particular, we
should not be surprised if a 95% conformal predictor is wrong more than 5% of the time.

We can make this point with the USPS data set so often used to illustrate machine learning
methods. This data set consists of 9298 examples of the form (x,y), where x is a 16× 16 gray-
scale matrix and y is one of the ten digits 0,1, . . . ,9. It has been used in hundreds of books and
articles. In our book (Vovk et al., 2005), it is used to illustrate conformal prediction with a number
of different nonconformity measures. It is well known that the examples in this data set are not
perfectly exchangeable. In particular, the first 7291 examples, which are often treated as a training
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Figure 7: Errors in 95% nearest-neighbor conformal prediction on the classical USPS data
set. When the 9298 examples are predicted in a randomly chosen order, so that the
exchangeability assumption is satisfied for sure, the error rate is approximately 5% as
advertised. When they are taken in their original order, first the 7291 in the training set,
and then the 2007 in the test set, the error rate is higher, especially in the test set.

set, are systematically different in some respects from the remaining 2007 examples, which are
usually treated as a test set.

Figure 7 illustrates how the non-exchangeability of the USPS data affects conformal prediction.
The figure records the performance of the 95% conformal predictor using the nearest-neighbor
nonconformity measure (10), applied to the USPS data in two ways. First we use the 9298 examples
in the order in which they are given in the data set. (We ignore the distinction between training
and test examples, but since the training examples are given first we do go through them first.)
Working through the examples in this order, we predict each yn using the previous examples and xn.
Second, we randomly permute all 9298 examples, thus producing an order with respect to which the
examples are necessarily exchangeable. The law of large numbers works when we go through the
examples in the permuted order: we make mistakes at a steady rate, about equal to the expected 5%.
But when we go through the examples in the original order, the fraction of mistakes is less stable,
and it worsens as we move into the test set. As Table 7 shows, the fraction of mistakes is 5%, as
desired, in the first 7291 examples (the training set) but jumps to 8% in the last 2007 examples.

Non-exchangeability can be tested statistically, using conventional or game-theoretic methods
(Vovk et al., 2005, §7.1). In the case of this data, any reasonable test will reject exchangeability
decisively. Whether the deviation from exchangeability is of practical importance for prediction
depends, of course, on circumstances. An error rate of 8% when 5% has been promised may or may
not be acceptable.
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Original data Permuted data
Training Test Total Training Test Total

singleton hits 6798 1838 8636 6800 1905 8705
uncertain hits 111 0 111 123 0 123
total hits 6909 1838 8747 6923 1905 8828
empty 265 142 407 205 81 286
singleton errors 102 27 129 160 21 181
uncertain errors 15 0 15 3 0 3
total errors 382 169 551 368 102 470
total examples 7291 2007 9298 7291 2007 9298
% hits 95% 92% 94% 95% 95% 95%
total singletons 6900 1865 8765 6960 1926 8880
% hits 99% 99% 99% 98% 99% 98%
total uncertain 126 0 126 126 0 126
% hits 82% 82% 98% 98%
total errors 382 169 551 368 102 470
% empty 69% 85% 74% 57% 79% 61%

Table 7: Details of the performance of 95% nearest-neighbor conformal prediction on the clas-
sical USPS data set. Because there are 10 labels, the uncertain predictions, those contain-
ing more than one label, can be hits or errors.

5. On-Line Compression Models

In this section, we generalize conformal prediction from the exchangeability model to a whole class
of models, which we call on-line compression models.

In the exchangeability model, we compress or summarize examples by omitting information
about their order. We then look backwards from the summary (the bag of unordered examples)
and give probabilities for the different orderings that could have produced it. The compression can
be done on-line: each time we see a new example, we add it to the bag. The backward-looking
probabilities can also be given step by step. Other on-line compression models compress more or
less drastically but have a similar structure.

On-line compression models were studied in the 1970s and 1980s, under various names, by Per
Martin-Löf (1974), Steffen Lauritzen (1988), and Eugene Asarin (1987; 1988). Different authors
had different motivations. Lauritzen and Martin-Löf started from statistical mechanics, whereas
Asarin started from Kolmogorov’s thinking about the meaning of randomness. But the models
they studied all summarize past examples using statistics that contain all the information useful for
predicting future examples. The summary is updated each time one observes a new example, and
the probabilistic content of the structure is expressed by Markov kernels that give probabilities for
summarized examples conditional on the summaries.

In general, a Markov kernel is a mapping that specifies, as a function of one variable, a proba-
bility distribution for some other variable or variables. A Markov kernel for w given u, for example,
gives a probability distribution for w for each value of u. It is conventional to write P(w |u) for this
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distribution. We are interested in Markov kernels of the form P(z1, . . . ,zn |σn), where σn summa-
rizes the examples z1, . . . ,zn. Such a kernel gives probabilities for the different z1, . . . ,zn that could
have produced σn.

Martin-Löf, Lauritzen, and Asarin were interested in justifying widely used statistical models
from principles that seem less arbitrary than the models themselves. On-line compression models
offer an opportunity to do this, because they typically limit their use of probability to representing
ignorance with a uniform distribution but lead to statistical models that seem to say something more.
Suppose, for example, that Joe summarizes numbers z1, . . . ,zn by

z =
1
n

n

∑
i=1

zi and r2 =
n

∑
i=1

(zi − z)2

and gives these summaries to Bill, who does not know z1, . . . ,zn. Bill might adopt a probability
distribution for z1, . . . ,zn that is uniform over the possibilities, which form the (n−1)-dimensional
sphere of radius r centered around (z, . . . ,z). As we will see in §5.3.2, this is an on-line compression
model. It was shown, by Freedman and Smith (see Vovk et al., 2005, p. 217) and then by Lauritzen
(1988, pp. 238–247), that if we assume this model is valid for all n, then the distribution of z1,z2, . . .
must be a mixture of distributions under which z1,z2, . . . are independent and normal with a common
mean and variance. This is analogous to de Finetti’s theorem, which says that if z1, . . . ,zn are
exchangeable for all n, then the distribution of z1,z2, . . . must be a mixture of distributions under
which z1,z2, . . . are independent and identically distributed.

For our own part, we are interested in using an on-line compression model directly for prediction
rather than as a step towards a model that specifies probabilities for examples more fully. We have
already seen how the exchangeability model can be used directly for prediction: we establish a
law of large numbers for backward-looking probabilities (§3.4), and we use it to justify confidence
in conformal prediction regions (§4.2). The argument extends to on-line compression models in
general.

For the exchangeability model, conformal prediction is optimal for obtaining prediction regions
(§4.4). No such statement can be made for on-line compression models in general. In fact, there
are other on-line compression models in which conformal prediction is very inefficient (Vovk et al.,
2005, p. 220).

After developing the general theory of conformal prediction for on-line compression models
(§5.1 and §5.2), we consider two examples: the exchangeability-within-label model (§5.3.1) and
on-line Gaussian linear model (§5.3.2).

5.1 Definitions

A more formal look at the exchangeability model will suffice to bring the general notion of an
on-line compression model into focus.

In the exchangeability model, we summarize examples simply by omitting information about
their ordering; the ordered examples are summarized by a bag containing them. The backward-
looking probabilities are equally simple; given the bag, the different possible orderings all have
equal probability, as if the ordering resulted from drawing the examples successively at random
from the bag without replacement. Although this picture is very simple, we can distinguish four
distinct mathematical operations within it:
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1. Summarizing. The examples z1, . . . ,zn are summarized by the bag *z1, . . . ,zn+. We can say
that the summarization is accomplished by a summarizing function Σn that maps an n-tuple
of examples (z1, . . . ,zn) to the bag containing these examples:

Σn(z1, . . . ,zn) := *z1, . . . ,zn + .

We write σn for the summary—that is, the bag *z1, . . . ,zn+.

2. Updating. The summary can be formed step by step as the examples are observed. Once
you have the bag containing the first n− 1 examples, you just add the nth. This defines an
updating function Un(σ,z) that satisfies

Σn(z1, . . . ,zn) = Un(Σn−1(z1, . . . ,zn−1),zn).

The top panel in Figure 8 depicts how the summary σn is built up step by step from z1, . . . ,zn

using the updating functions U1, . . . ,Un. First σ1 =U1(2,z1), where 2 is the empty bag. Then
σ2 = U2(σ1,z2), and so on.

3. Looking back all the way. Given the bag σn, the n! different orderings of the elements of the
bag are equally likely, just as they would be if we ordered the contents of the bag randomly.
As we learned in §3.2, we can say this with a formula that takes explicit account of the
possibility of repetitions in the bag: the probability of the event {z1 = a1, . . . ,zn = an} is

Pn(a1, . . . ,an |σn) =

{

n1!···nk!
n! if *a1, . . . ,an+ = σn

0 if *a1, . . . ,an+ 6= σn,

where k is the number of distinct elements in σn, and n1, . . . ,nk are the numbers of times these
distinct elements occur. We call P1,P2, . . . the full kernels.

4. Looking back one step. We can also look back one step. Given the bag σn, what are the
probabilities for zn and σn−1? They are the same as if we drew zn out of σn at random. In other
words, for each z that appears in σn, there is a probability k/n, where k is the number of times
z appears in σn, that (1) zn = z and (2) σn−1 is the bag obtained by removing one instance of z
from σn. The kernel defined in this way is represented by the two arrows backward from σn

in the bottom panel of Figure 8. Let us designate it by Rn. We similarly obtain a kernel Rn−1

backward from σn−1 and so on. These are the one-step kernels for the model. We can obtain
the full kernel Pn by combining the one-step kernels Rn,Rn−1, . . . ,R1. This is most readily
understood not in terms of formulas but in terms of a sequence of drawings whose outcomes
have the probability distributions given by the kernels. The drawing from σn (which goes by
the probabilities given by Rn(· |σn)) gives us zn and σn−1, the drawing from σn−1 (which goes
by the probabilities given by Rn−1(· |σn−1)) gives us zn−1 and σn−2, and so on; we finally
obtain the whole random sequence z1, . . . ,zn, which has the distribution Pn(· |σn). This is the
meaning of the bottom panel in Figure 8.

All four operations are important. The second and fourth, updating and looking back one step, can
be thought of as the most fundamental, because we can derive the other two from them. Sum-
marization can be carried out by composing updates, and looking back all the way can be carried
out by composing one-step look-backs. Moreover, the conformal algorithm uses the one-step back
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2 σ1 σ2 · · · σn−1 σn

z1 z2 zn−1 zn

- - - - -
? ? ? ?

Updating. We speak of “on-line” compression models because the summary can be updated with
each new example. In the case of the exchangeability model, we obtain the bag σi by adding the
new example zi to the old bag σi−1.

2 σ1 σ2 · · · σn−1 σn

z1 z2 zn−1 zn

� � � � �

6 6 6 6

Backward probabilities. The two arrows backwards from σi symbolize our probabilities, condi-
tional on σi, for what example zi and what previous summary σi−1 were combined to produce
σi. Like the diagram in Figure 3 that it generalizes, this diagram is a Bayes net.

Figure 8: Elements of an on-line compression model. The top diagram represents the updating
functions U1, . . . ,Un. The bottom diagram represents the one-step kernels R1, . . . ,Rn.

probabilities. But when we turn to particular on-line compression models, we will find it initially
most convenient to describe them in terms of their summarizing functions and full kernels.

In general, an on-line compression model for an example space Z consists of a space S, whose
elements we call summaries, and two sequences of mappings:

• Updating functions U1,U2, . . . . The function Un maps a summary s and an example z to a new
summary Un(s,z).

• One-step kernels R1,R2, . . . . For each summary s, the kernel Rn gives a joint probability
distribution Rn(s′,z | s) for an unknown summary s′ and unknown example z. We require that
Rn(· | s) give probability one to the set of pairs (s′,z) such that Un(s′,z) = s.

We also require that the summary space S include the empty summary 2.
The recipes for constructing the summarizing functions Σ1,Σ2, . . . and the full kernels P1,P2, . . .

are the same in general as in the exchangeability model:

• The summary σn = Σn(z1, . . . ,zn) is built up step by step from z1, . . . ,zn using the updating
functions. First σ1 = U1(2,z1), then σ2 = U2(σ1,z2), and so on.
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• We obtain the full kernel Pn by combining, backwards from σn, the random experiments
represented by the one-step kernels Rn,Rn−1, . . . ,R1. First we draw zn and σn−1 from Rn(· |
σn), then we draw zn−1 and σn−2 from Rn−1(· |σn−1), and so on. The sequence z1, . . . ,zn

obtained in this way has the distribution Pn(· |σn).

On-line compression models are usually initially specified in terms of their summarizing func-
tions Σn and their full kernels Pn, because these are usually easy to describe. One must then verify
that these easily described objects do define an on-line compression model. This requires verifying
two points:

1. Σ1,Σ2, . . . can be defined successively by means of updating functions:

Σn(z1, . . . ,zn) = Un(Σn−1(z1, . . . ,zn−1),zn).

In words: σn depends on z1, . . . ,zn−1 only through the earlier summary σn−1.

2. Each Pn can be obtained as required using one-step kernels. One way to verify this is to exhibit
the one-step kernels R1, . . . ,Rn and then to check that drawing zn and σn−1 from Rn(· |σn),
then drawing zn−1 and σn−2 from Rn−1(· |σn−1), and so on produces a sequence z1, . . . ,zn

with the distribution Pn(· |σn). Another way to verify it, without necessarily exhibiting the
one-step kernels, is to verify the conditional independence relations represented by Figure 8:
zn (and hence also σn) is probabilistically independent of z1, . . . ,zn−1 given σn−1.

5.2 Conformal Prediction

In the context of an on-line compression model, a nonconformity measure is an arbitrary real-valued
function A(σ,z), where σ is a summary and z is an example. We choose A so that A(σ,z) is large
when z seems very different from the examples that might be summarized by σ.

In order to state the conformal algorithm, we write σ̃n−1 and z̃n for random variables with a joint
probability distribution given by the one-step kernel R(· |σn). The algorithm using old examples
alone can then be stated as follows:

The Conformal Algorithm Using Old Examples Alone

Input: Nonconformity measure A, significance level ε, examples z1, . . . ,zn−1, example z

Task: Decide whether to include z in γε(z1, . . . ,zn−1).

Algorithm:

1. Provisionally set zn := z.

2. Set pz := Rn(A(σ̃n−1, z̃n) ≥ A(σn−1,zn) |σn).

3. Include z in γε(z1, . . . ,zn−1) if and only if pz > ε.

To see that this reduces to the algorithm we gave for the exchangeability model on p. 385, recall
that σn = *z, . . . ,zn+ and σ̃n−1 = *z1, . . . ,zn +\ * z̃n+ in that model, so that

A(σ̃n−1, z̃n) = A(*z1, . . . ,zn +\ * z̃n+, z̃n) (25)

and
A(σn−1,zn) = A(*z1, . . . ,zn−1+,zn). (26)
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Under Rn(· |*z1, . . . ,zn+), the random variable z̃n has equal chances of being any of the zi, so that the
probability of (25) being greater than or equal to (26) is simply the fraction of the zi for which

A(*z1, . . . ,zn +\ * zi+,zi) ≥ A(*z1, . . . ,zn−1+,zn),

and this is how pz is defined on p. 385.
Our arguments for the validity of the regions γε(z1, . . . ,zn−1) in the exchangeability model gen-

eralize readily. The definitions of n-event and ε-rare generalize in an obvious way:

• An event E is an n-event if its happening or failing is determined by the value of zn and the
value of the summary σn−1.

• An n-event E is ε-rare if Rn(E |σn) ≤ ε.

The event zn /∈ γε(z1, . . . ,zn−1) is an n-event, and it is ε-rare (the probability is ε or less that a
random variable will take a value that it equals or exceeds with a probability of ε or less). So
working backwards from the summary σN for a large value of N, Bill can still bet against the errors
successively at rates corresponding to their probabilities under σn, which are always ε or less. This
produces an exact analog to Informal Proposition 1:

Informal Proposition 2 Suppose N is large, and the variables z1, . . . ,zN obey an on-line compres-
sion model. Suppose En is an ε-rare n-event for n = 1, . . . ,N. Then the law of large numbers applies;
with very high probability, no more than approximately the fraction ε of the events E1, . . . ,EN will
happen.

The conformal algorithm using features of the new example generalizes similarly:

The Conformal Algorithm

Input: Nonconformity measure A, significance level ε, examples z1, . . . ,zn−1, object xn, label y

Task: Decide whether to include y in Γε(z1, . . . ,zn−1,xn).

Algorithm:

1. Provisionally set zn := (xn,y).

2. Set py := Rn(A(σ̃n−1, z̃n) ≥ A(σn−1,zn) |σn).

3. Include y in Γε(z1, . . . ,zn−1,xn) if and only if py > ε.

The validity of this algorithm follows from the validity of the algorithm using old examples
alone by the same argument as in the case of exchangeability.

5.3 Examples

We now look at two on-line compression models: the exchangeability-within-label model and the
on-line Gaussian linear model.

The exchangeability-within-label model was first introduced in work leading up to our book
(Vovk et al., 2005). It weakens the assumption of exchangeability.

The on-line Gaussian linear model, as we have already mentioned, has been widely studied. It
overlaps the exchangeability model, in the sense that the assumptions for both of the models can
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hold at the same time, but the assumptions for one of them can hold without the assumptions for the
other holding. It is closely related to the classical Gaussian linear model. Conformal prediction in
the on-line model leads to the same prediction regions that are usually used for the classical model.
But the conformal prediction theory adds the new information that these intervals are valid in the
sense of this article: they are right 1− ε of the time when used on accumulating data.

5.3.1 THE EXCHANGEABILITY-WITHIN-LABEL MODEL

The assumption of exchangeability can be weakened in many ways. In the case of classification,
one interesting possibility is to assume only that the examples for each label are exchangeable with
each other. For each label, the objects with that label are as likely to appear in one order as in
another. This assumption leaves open the possibility that the appearance of one label might change
the probabilities for the next label.

Suppose the label space has k elements, say Y = {1, . . . ,k}. Then we define the exchangeability-
within-label model as follows:

Summarizing Functions The nth summarizing function is

Σn(z1, . . . ,zn) := (y1, . . . ,yn,B
n
1, . . . ,B

n
k) ,

where Bn
j is the bag consisting of the objects in the list x1, . . . ,xn that have the label j.

Full Kernels The full kernel Pn(z1, . . . ,zn | y1, . . . ,yn,Bn
1, . . . ,B

n
k) is most easily described in terms

the random action for which it gives the probabilities: independently for each label j, dis-
tribute the objects in Bn

j randomly among the positions i for which yi is equal to j.

To check that this is an on-line compression model, we exhibit the updating function and the
one-step kernels:

Updating When (xn,yn) is observed, the summary

(y1, . . . ,yn−1,B
n−1
1 , . . . ,Bn−1

k )

is updated by inserting yn after yn−1 and adding xn to Bn−1
yn

.

One step back The one-step kernel Rn is given by

Rn(summary,(x,y) | y1, . . . ,yn,B
n
1, . . . ,B

n
k) =

{

k
|Bn

yn |
if y = yn

0 otherwise,

where k is the number of xs in Bn
yn

. This is the same as the probability the one-step kernel for
the exchangeability model would give for x on the basis of a bag of size |Bn

yn
| that includes k

xs.

Because the true labels are part of the summary, our imaginary bettor Bill can choose to bet
just on those rounds of his game with Joe where the label has a particular value, and this implies
that a 95% conformal predictor under the exchangeability-within-label model will make errors at no
more than a 5% rate for examples with that label. This is not necessarily true for a 95% conformal
predictor under the exchangeability model; although it can make errors no more than about 5% of
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the time overall, its error rate may be higher for some labels and lower for others. As Figure 9
shows, this happens in the case of the USPS data set. The graph in the top panel of the figure shows
the cumulative errors for examples with the label 5, which is particularly easy to confuse with other
digits, when the nearest-neighbor conformal predictor is applied to that data in permuted form. The
error rate for 5 is over 11%. The graph in the bottom panel shows the results of the exchangeability-
within-label conformal predictor using the same nearest-neighbor nonconformity measure; here the
error rate stays close to 5%. As this graph makes clear, the predictor holds the error rate down to
5% in this case by producing many prediction regions containing more than one label (“uncertain
predictions”).

As we explain in §4.5 and §8.4 of our book (Vovk et al., 2005), the exchangeability-within-label
model is a Mondrian model. In general, a Mondrian model decomposes the space Z×N, where N

is set of the natural numbers, into non-overlapping rectangles, and it asks for exchangeability only
within these rectangles. For each example zi, it then records, as part of the summary, the rectangle
into which (zi, i) falls. Mondrian models can be useful when we need to weaken the assumption of
exchangeability. They can also be attractive even if we are willing to assume exchangeability across
the categories, because the conformal predictions they produce will be calibrated within categories.

5.3.2 THE ON-LINE GAUSSIAN LINEAR MODEL

Consider examples z1, . . . ,zN , of the form zn = (xn,yn), where yn is a number and xn is a row vector
consisting of p numbers. For each n between 1 and N, set

Xn :=







x1
...

xn






and Yn :=







y1
...

yn






.

Thus Xn is an n× p matrix, and Yn is a column vector of length n.
In this context, the on-line Gaussian linear model is the on-line compression model defined by

the following summarizing functions and full kernels:

Summarizing Functions The nth summarizing function is

Σn(z1, . . . ,zn) : =

(

x1, . . . ,xn,
n

∑
i=1

yixi,
n

∑
i=1

y2
i

)

=
(

Xn,X
′
nYn,Y

′
nYn
)

.

Full Kernels The full kernel Pn(z1, . . . ,zn | σn) distributes its probability uniformly over the set
of vectors (y1, . . . ,yn) consistent with the summary σn. (We consider probabilities only for
y1, . . . ,yn, because x1, . . . ,xn are fixed by σn.)

We can write σn = (Xn,C,r2), where C is a column vector of length p, and r is a nonnegative
number. A vector (y1, . . . ,yn) is consistent with σn if

n

∑
j=1

y jx j = C and
n

∑
j=1

y2
j = r2.

This is the intersection of a hyperplane with a sphere. Not being empty, the intersection is either a
point (in the exceptional case where the hyperplane is tangent to the sphere) or a lower-dimensional
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Figure 9: Errors for 95% conformal prediction using nearest neighbors in the permuted USPS
data when the true label is 5. In both figures, the dotted line represents the overall
expected error rate of 5%. The actual error rate for 5s with the exchangeability-within-
label model tracks this line, but with the exchangeability model it is much higher. The
exchangeability-within-label predictor keeps its error rate down by issuing more predic-
tion regions containing more than one digit (“uncertain predictions”).
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sphere. (Imagine intersecting a plane and a 2-dimensional sphere; the result is a circle.) The ker-
nel Pn(· | σn) puts all its probability on the point or distributes it uniformly over the the lower-
dimensional sphere.

To see that the summarizing functions and full kernels define an on-line compression model, we
must check that the summaries can be updated and that the full kernels have the required conditional
independence property: conditioning Pn(· |σn) on zi+1, . . . ,zn gives Pi(· |σi). (We do not condition
on σi since it can be computed from zi+1, . . . ,zn and σn.) Updating is straightforward; when we
observe (xn,yn), we update the summary

(

x1, . . . ,xn−1,
n−1

∑
i=1

yixi,
n−1

∑
i=1

y2
i

)

by inserting xn after xn−1 and adding a term to each of the sums. To see that conditioning Pn(· |σn) on
zi+1, . . . ,zn gives Pi(· |σi), we note that conditioning the uniform distribution on a sphere on values
yi+1 = ai+1, . . . ,yn = an involves intersecting the sphere with the hyperplanes defined by these n− i
equations. This produces the uniform distribution on the possibly lower-dimensional sphere defined
by

i

∑
j=1

y2
j = r2 −

n

∑
j=i+1

y2
j and

i

∑
j=1

y jx j = C−
n

∑
j=i+1

y jx j;

this is indeed Pi(y1, . . . ,yi |σi).
The on-line Gaussian linear model is closely related to the classical Gaussian linear model. In

the classical model,5

yi = xiβ+ ei, (27)

where the xi are row vectors of known numbers, β is a column vector of unknown numbers (the
regression coefficients), and the ei are independent of each other and normally distributed with mean
zero and a common variance. When n−1 > p and Rank(Xn−1) = p, the theory of the classical model
tells us the following:

• After observing examples (x1,y1, . . . ,xn−1,yn−1), estimate the vector of coefficients β by

β̂n−1 := (X ′
n−1Xn−1)

−1X ′
n−1Yn−1

and after further observing xn, predict yn by

ŷn := xnβ̂n−1 = xn(X
′
n−1Xn−1)

−1X ′
n−1Yn−1.

• Estimate the variance of the ei by

s2
n−1 :=

Y ′
n−1Yn−1 −β′

n−1X ′
n−1Yn−1

n− p−1
.

5. There are many names for the classical model. The name “classical Gaussian linear model” is used by Bickel and
Doksum (2001, p. 366).
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• The random variable

tn :=
yn − ŷn

sn−1

√

1+ x′n(X
′
n−1Xn−1)−1xn

(28)

has a t-distribution with n− p−1 degrees of freedom, and so

ŷn ± tε/2
n−p−1sn−1

√

1+ x′n(X
′
n−1Xn−1)−1xn (29)

has probability 1− ε of containing yn (Ryan 1997, p. 127; Seber and Lee 2003, p. 132).

The assumption Rank(Xn−1) = p can be relaxed, at the price of complicating the formulas involving
(X ′

n−1Xn−1)
−1. But the assumption n−1 > Rank(Xn−1) is essential to finding a prediction interval

of the type (29); when it fails there are values for the coefficients β such that yn−1 = Xn−1β, and
consequently there is no residual variance with which to estimate the variance of the ei.

We have already used two special cases of (29) in this article. Formula (1) in §2.1.1 is the special
case with p = 1 and each xi equal to 1, and formula (21) at the beginning of §4.3.2 is the special
case with p = 2 and the first entry of each xi equal to 1.

The relation between the classical and on-line models, fully understood in the theoretical litera-
ture since the 1980s, can be summarized as follows:

• If z1, . . . ,zN satisfy the assumptions of the classical Gaussian linear model, then they satisfy
the assumptions of the on-line Gaussian linear model. In other words, the assumption that the
errors ei in (27) are independent and normal with mean zero and a common variance implies
that conditional on X ′

nYn = C and Y ′
nYn = r2, the vector Yn is distributed uniformly over the

sphere defined by C and r2. This was already noted by R. A. Fisher in 1925.

• The assumption of the on-line Gaussian linear model, that conditional on X ′
nYn =C and Y ′

nYn =
r2, the vector Yn is distributed uniformly over the sphere defined by C and r2, is sufficient to
guarantee that (28) has the t-distribution with n− p−1 degrees of freedom (Dempster, 1969;
Efron, 1969).

• Suppose z1,z2, . . . is an infinite sequence of random variables. Then z1, . . . ,zN satisfy the
assumptions of the on-line Gaussian linear model for every integer N if and only if the joint
distribution of z1,z2, . . . is a mixture of distributions given by the classical Gaussian linear
model, each model in the mixture possibly having a different β and a different variance for
the ei (Lauritzen, 1988).

A natural nonconformity measure A for the on-line Gaussian linear model is given, for σ =
(X ,X ′Y,Y ′Y ) and z = (x,y), by

A(σ,z) := |y− ŷ|, (30)

where ŷ = x(X ′X)−1X ′Y .

Proposition 2 When (30) is used as the nonconformity measure, the 1− ε conformal prediction
region for yn is (29), the interval given by the t-distribution in the classical theory.

Proof When (30) is used as the nonconformity measure, the test statistic A(σn−1,zn) used in the
conformal algorithm becomes |yn − ŷn|. The conformal algorithm considers the distribution of this
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statistic under Rn(· |σn). But when σn is fixed and tn is given by (28), |tn| is a monotonically in-
creasing function of |yn − ŷn| (see Vovk et al., 2005, pp. 202–203, for details). So the conformal
prediction region is the interval of values of yn for which |tn| does not take its most extreme values.
Since tn has the t-distribution with n− p− 1 degrees of freedom under Rn(· |σn), this is the inter-
val (29).

Together with Informal Proposition 2, Proposition 2 implies that when we use (29) for a large
number of successive values of n, yn will be in the interval 1− ε of the time. In fact, because the
probability of error each time is exactly ε, we can say simply that the errors are independent and for
this reason the classical law of large numbers applies.

In our example involving the prediction of petal width from sepal length, the exchangeability
and Gaussian linear models gave roughly comparable results (see Table 6 in §4.3.2). This will
often be the case. Each model makes an assumption, however, that the other does not make. The
exchangeability model assumes that the xs, as well as the ys, are exchangeable. The Gaussian linear
model assumes that given the xs, the ys are normally distributed.
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Appendix A. Validity

The main purpose of this appendix is to formalize and prove the following informal proposition:

Informal Proposition 1 Suppose N is large, and the variables z1, . . . ,zN are exchangeable. Sup-
pose En is an ε-rare n-event for n = 1, . . . ,N. Then the law of large numbers applies; with very high
probability, no more than approximately the fraction ε of the events E1, . . . ,EN will happen.

We used this informal proposition in §3.4 to establish the validity of conformal prediction in the ex-
changeability model. As we promised then, we will discuss two different approaches to formalizing
it: a classical approach and a game-theoretical approach. The classical approach shows that the En

are mutually independent in the case where they are exactly ε-rare and then appeals to the classical
weak law of large numbers for independent events. The game-theoretic approach appeals directly
to the more flexible game-theoretic weak law of large numbers.

Our proofs will also establish the analogous Informal Proposition 2, which we used to establish
the validity of conformal prediction in on-line compression models in general.

In §A.3, we return to R. A. Fisher’s prediction interval for a normal random variable, which we
discussed in §2.1.1. We show that this prediction interval’s successive hits are independent, so that
validity follows from the usual law of large numbers. Fisher’s prediction interval is a special case
of conformal prediction for the Gaussian linear model, and so it is covered by the general result
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for on-line compression models. But the proof in §A.3, being self-contained and elementary and
making no reference to conformal prediction, may be especially informative for many readers.

A.1 A Classical Argument for Independence

Recall the definitions we gave in §3.4 in the case where z1, . . . ,zN are exchangeable: An event E
is an n-event if its happening or failing is determined by the value of zn and the value of the bag
*z1, . . . ,zn−1+, and an n-event E is ε-rare if Pr(E |*z1, . . . ,zn+) ≤ ε. Let us further say that n-event E
is exactly ε-rare if

Pr(E | *z1, . . . ,zn+) = ε. (31)

The conditional probability in this equation is a random variable, depending on the random bag
*z1, . . . ,zn+, but the equation says that it is not really random, for it is always equal to ε. Its expected
value, the unconditional probability of E, is therefore also equal to ε.

Proposition 3 Suppose En is an exactly ε-rare n-event for n = 1, . . . ,N. Then E1, . . . ,EN are mutu-
ally independent.

Proof Consider (31) for n = N −1:

Pr(EN−1 | *z1, . . . ,zN−1+) = ε. (32)

Given *z1, . . . ,zN−1+, knowledge of zN does not change the probabilities for zN−1 and *z1, . . . ,zN−2+,
and zN−1 and *z1, . . . ,zN−2+ determine the (N −1)-event EN−1. So adding knowledge of zN will not
change the probability in (32):

Pr(EN−1 | *z1, . . . ,zN−1 + & zN) = ε.

Because EN is determined by zN once *z1, . . . ,zN−1+ is given, it follows that

Pr(EN−1 | *z1, . . . ,zN−1 + & EN) = ε,

and from this it follows that Pr(EN−1 |EN) = ε. The unconditional probability of EN−1 is also ε. So
EN and EN−1 are independent. Continuing the reasoning backwards to E1, we find that the En are
all mutually independent.

This proof generalizes immediately to the general case of on-line compression models (see p. 407);
we simply replace *z1, . . . ,zn+ with σn.

If N is sufficiently large, and En is an exactly ε-rare n-event for n = 1, . . . ,N, then the law of
large numbers applies; with very high probability, no more than approximately the fraction ε of
the N events will happen. It is intuitively clear that this conclusion will also hold if we have an
inequality instead of an equality in (31), because making the En even less likely to happen cannot
reverse the conclusion that few of them will happen.

The preceding argument is less than rigorous on two counts. First, the proof of Proposition 3
does not consider the existence of the conditional probabilities it uses. Second, the argument from
the case where (31) is an equality to that where it is merely an inequality, though entirely convincing,
is only intuitive. A fully rigorous proof, which uses Doob’s measure-theoretic framework to deal
with the conditional probabilities and uses a randomization to bring the inequality up to an equality,
is provided on pp. 211–213 of our book (Vovk et al., 2005).
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A.2 A Game-theoretic Law of Large Numbers

As we explained in §3.3, the game-theoretic interpretation of exchangeability involves a backward-
looking protocol, in which Bill observes first the bag *z1, . . . ,zN+ and then successively zN , zN−1,
and so on, finally observing z1. Just before he observes zn, he knows the bag *z1, . . . ,zn+ and can bet
on the value of zn at odds corresponding to the probabilities the bag determines:

Pr(zn = a | *z1, . . . ,zn+ = B) =
k
n
, (33)

where k is the number of times a occurs in B.

THE BACKWARD-LOOKING BETTING PROTOCOL

Players: Joe, Bill
KN := 1.
Joe announces a bag BN of size N.
FOR n = N,N −1, . . . ,2,1

Bill bets on zn at odds set by (33).
Joe announces zn ∈ Bn.
Kn−1 := Kn +Bill’s net gain.
Bn−1 := Bn \ *zn+.

Bill’s initial capital KN is 1. His final capital is K0.
Given an event E, set

e :=

{

1 if E happens

0 if E fails.

Given events E1, . . . ,EN , set

FreqN :=
1
N

N

∑
j=1

e j.

This is the fraction of the events that happen—the frequency with which they happen. Our game-
theoretic law of large numbers will say that if each En is an ε-rare n-event, then it is very unlikely
that FreqN will substantially exceed ε.

In game-theoretic probability, what do we mean when we say an event E is “very unlikely”? We
mean that the bettor, Bill in this protocol, has a betting strategy that guarantees

K0 ≥

{

C if E happens

0 if E fails,
(34)

where C is a large positive number. Cournot’s principle, which says that Bill will not multiply his
initial unit capital by a large factor without risking bankruptcy, justifies our thinking E unlikely. The
larger C, the more unlikely E. We call the quantity

PE := inf

{

1
C

∣

∣

∣

∣

Bill can guarantee (34)

}

(35)

E’s upper probability. An unlikely event is one with small upper probability.
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Proposition 4 (Game-theoretic weak law of large numbers) Suppose En is an ε-rare n-event, for
n = 1, . . . ,N. Suppose ε < 1/2, δ1 > 0, δ2 > 0, and N ≥ 1/δ1δ2

2. Then

P(FreqN ≥ ε+δ2) ≤ δ1.

In words: If N is sufficiently large, there is a small (less than δ1) upper probability that the frequency
will exceed ε substantially (by more than δ2).

Readers familiar with game-theoretic probability will recognize Proposition 4 as a form of the
game-theoretic weak law of large numbers (Shafer and Vovk, 2001, pp. 124–126). The bound it
gives for the upper probability of the event FreqN ≥ ε+δ2 is the same as the bound that Chebyshev’s
inequality gives for the probability of this event in classical probability theory when the En are
independent and all have probability ε.

For the benefit of those not familiar with the concepts of game-theoretic probability used in the
proof just cited, we now give an elementary and self-contained proof of Proposition 4.

Lemma 5 Suppose, for n = 1, . . . ,N, that En is an ε-rare n-event. Then Bill has a strategy that
guarantees that his capital Kn will satisfy

Kn ≥
n
N

+
1
N

((

N

∑
j=n+1

(e j − ε)

)+)2

(36)

for n = 1, . . . ,N, where t+ := max(t,0).

Proof When n = N, (36) reduces to KN ≥ 1, and this certainly holds; Bill’s initial capital KN is
equal to 1. So it suffices to show that if (36) hold for n, then Bill can bet on En in such a way that
the corresponding inequality for n−1,

Kn−1 ≥
n−1

N
+

1
N

((

N

∑
j=n

(e j − ε)

)+)2

, (37)

also holds. Here is how Bill bets.

• If ∑N
j=n+1(e j − ε) ≥ ε, then Bill buys (2/N)∑N

j=n+1(e j − ε) units of en. By assumption, he
pays no more than ε for each unit. So we have a lower bound on his net gain, Kn−1 −Kn:

Kn−1 −Kn ≥
2
N

(

N

∑
j=n+1

(e j − ε)

)

(en − ε)

≥
1
N

(

N

∑
j=n

(e j − ε)

)2

−
1
N

(

N

∑
j=n+1

(e j − ε)

)2

−
1
N

(38)

≥
1
N

((

N

∑
j=n

(e j − ε)

)+)2

−
1
N

((

N

∑
j=n+1

(e j − ε)

)+)2

−
1
N

.

Adding (38) and (36), we obtain (37).
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• If ∑N
j=n+1(e j − ε) < ε, then Bill does not bet at all, and Kn−1 = Kn. Because

((

N

∑
j=n

(e j − ε)

)+)2

−

((

N

∑
j=n+1

(e j − ε)

)+)2

≤ (ε+(en − ε))2 ≤ 1,

we again obtain (37) from (36).

Proof of Proposition 4 The inequality FreqN ≥ ε+δ2 is equivalent to

1
N

((

N

∑
j=1

(e j − ε)

)+)2

≥ Nδ2
2. (39)

Bill’s strategy in Lemma 5 does not risk bankruptcy (it is obvious that Kn ≥ 0 for all n), and (36)
says

K0 ≥
1
N

((

N

∑
j=1

(e j − ε)

)+)2

. (40)

Combining (39) and (40) with the assumption that N ≥ 1/δ1δ2
2, we see that when the event

FreqN ≥ ε+δ2 happens, K0 ≥ 1/δ1. So by (34) and (35), P(FreqN ≥ ε+δ2) ≤ δ1.

A.3 The Independence of Hits for Fisher’s Interval

Recall that if z1, . . . ,zn,zn+1 are independent normal random variables with mean 0 and standard
deviation 1, the distribution of the ratio

zn+1
√

∑n
i=1 z2

i /n
(41)

is called the t-distribution with n degrees of freedom. The upper percentile points for this distribu-
tion, the points tε

n exceeded by (41) with probability exactly ε, are readily available from textbooks
and standard computer programs.

Given a sequence of numbers z1, . . . ,zl , where l ≥ 2, we set

zl :=
1
l

l

∑
i=1

zi and s2
l :=

1
l −1

l

∑
i=1

(zi − zl)
2.

As we recalled in §2.1.1, R. A. Fisher proved that if n ≥ 3 and z1, . . . ,zn are independent and normal
with a common mean and standard deviation, then the ratio tn given by

tn :=
zn − zn−1

sn−1

√

n−1
n

(42)
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has the t-distribution with n−2 degrees of freedom (Fisher, 1935). It follows that the event

zn−1 − tε/2
n−2 sn−1

√

n
n−1

≤ zn ≤ zn−1 + tε/2
n−2 sn−1

√

n
n−1

(43)

has probability 1− ε. We will now prove that the tn for successive n are independent. This implies
that the events (43) for successive values of n are independent, so that the law of large numbers
applies: with very high probability approximately 1− ε of these events will happen. This indepen-
dence was overlooked by Fisher and subsequent authors.

We begin with two purely arithmetic lemmas, which do not rely on any assumption about the
probability distribution of z1, . . . ,zn.

Lemma 6 The ratio tn given by (42) depends on z1, . . . ,zn only through the ratios among themselves
of the differences

z1 − zn, . . . ,zn − zn.

Proof It is straightforward to verify that

zn − zn−1 =
n

n−1
(zn − zn) (44)

and

s2
n−1 =

(n−1)s2
n

n−2
−

n(zn − zn)
2

(n−1)(n−2)
. (45)

Substituting (44) and (45) in (42) produces

tn =

√

n(n−2)(zn − zn)
√

(n−1)2s2
n −n(zn − zn)2

(46)

or

tn =

√

n(n−2)(zn − zn)
√

(n−1)∑n
i=1(zi − zn)2 −n(zn − zn)2

. (47)

The value of (47) is unaffected if all the zi − zn are multiplied by a nonzero constant.

Lemma 7 Suppose zn and sn are known. Then the following three additional items of information
are equivalent, inasmuch as the other two can be calculated from any of the three:

1. zn

2. zn−1 and sn−1

3. tn

Proof Given zn, we can calculate zn−1 and sn−1 from (44) and (45) and then calculate tn from (42).
Given zn−1 and sn−1, we can calculate zn from (44) or (45) and then tn from (42). Given tn, we
can invert (46) to find zn (when zn and sn are fixed, this equation expresses tn as a monotonically
increasing function of zn) and then calculate zn−1 and sn−1 from (44) and (45).

Now we consider probability distributions for z1, . . . ,zn.
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Lemma 8 If z1, . . . ,zn are independent and normal with a common mean and standard deviation,
then conditional on zn = w and ∑n

i=1(zi − zn)
2 = r2, the vector (z1, . . . ,zn) is distributed uniformly

over the (n− 2)-dimensional sphere of vectors satisfying these conditions (the intersection of the
hyperplane zn = w with the (n−1)-dimensional sphere of radius r centered on the point (w, . . . ,w)
in R

n).

Proof The logarithm of the joint density of z1, . . . ,zn is

−
n
2

log(2πσ2)−
1

2σ2

n

∑
i=1

(zi −µ)2 = −
n
2

log(2πσ2)−
1

2σ2

(

n

∑
i=1

(zi − zn)
2 +n(zn −µ)2

)

, (48)

where µ and σ are the mean and standard deviation, respectively. Because this depends on (z1, . . . ,zn)
only through zn and ∑n

i=1(zi−zn)
2, the distribution of (z1, . . . ,zn) conditional on zn = w and ∑n

i=1(zi−
zn)

2 = r2 is uniform over the set of vectors satisfying these conditions.

Lemma 9 If the vector (z1, . . . ,zn) is distributed uniformly over the (n− 2)-dimensional sphere
defined by the conditions zn = w and ∑n

i=1(zi − zn)
2 = r2, then tn has the t-distribution with n− 2

degrees of freedom.

Proof The distribution of tn does not depend on w or r. This is because we can transform the
uniform distribution over one (n− 2)-dimensional sphere in R

n into a uniform distribution over
another by adding a constant to all the zi and then multiplying the differences zi − zn by a constant,
and by Lemma 6, this will not change tn.

Now suppose z1, . . . ,zn are independent and normal with a common mean and standard devia-
tion. Lemma 8 says that conditional on zn = w and (n−1)s2

n = r2, the vector (z1, . . . ,zn) is distributed
uniformly over the sphere of radius r centered on w, . . . ,w. Since the resulting distribution for tn does
not depend on w or r, it must be the same as the unconditional distribution.

Lemma 10 Suppose (z1, . . . ,zN) is distributed uniformly over the N−2-dimensional sphere defined
by the conditions zn = w and ∑n

i=1(zi − zn)
2 = r2. Then t3, . . . , tN are mutually independent.

Proof It suffices to show that tn still has the t-distribution with n−2 degrees of freedom conditional
on tn+1, . . . , tN . This will imply that tn is independent of tn+1, . . . , tN and hence that all the tn are
mutually independent.

We start knowing zN = r and sN = w. So by Lemma 7, learning tn+1, . . . , tN is the same as learn-
ing zn+1, . . . ,zN . Geometrically, when we learn zN we intersect our (N − 1)-dimensional sphere in
R

N with a hyperplane, reducing it to an (N − 2)-dimensional sphere in R
N−1. (Imagine, for ex-

ample, intersecting a sphere in R
3 with a plane: the result is a circle.) When we learn zN−1, we

reduce the dimension again, and so on. In each case, we obtain a uniform distribution on the lower-
dimensional sphere for the remaining zi. In the end, we find that (z1, . . . ,zn) is distributed uniformly
over an (n− 1)-dimensional sphere in R

n, and so tn has the t-distribution with n− 2 degrees of
freedom by Lemma 9.
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Proposition 11 Suppose z1, . . . ,zN are independent and normal with a common mean and standard
deviation. Then t3, . . . , tN are mutually independent.

Proof By Lemma 10, t3, . . . , tN are mutually independent conditional on zN = w and sN = r, each tn
having the t-distribution with n−2 degrees of freedom. Because this joint distribution for t3, . . . , tN
does not depend on w or r, it is also their unconditional joint distribution.
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Abstract

This paper presents the dynamics of multiple learning agents from an evolutionary game theoretic
perspective. We provide replicator dynamics models for cooperative coevolutionary algorithms
and for traditional multiagent Q-learning, and we extend these differential equations to account
for lenient learners: agents that forgive possible mismatched teammate actions that resulted in low
rewards. We use these extended formal models to study the convergence guarantees for these al-
gorithms, and also to visualize the basins of attraction to optimal and suboptimal solutions in two
benchmark coordination problems. The paper demonstrates that lenience provides learners with
more accurate information about the benefits of performing their actions, resulting in higher like-
lihood of convergence to the globally optimal solution. In addition, the analysis indicates that the
choice of learning algorithm has an insignificant impact on the overall performance of multiagent
learning algorithms; rather, the performance of these algorithms depends primarily on the level of
lenience that the agents exhibit to one another. Finally, the research herein supports the strength
and generality of evolutionary game theory as a backbone for multiagent learning.

Keywords: multiagent learning, reinforcement learning, cooperative coevolution, evolutionary
game theory, formal models, visualization, basins of attraction

1. Introduction

Multiagent learning is a relatively new research area that has witnessed a significant research effort
in the past decade. Work in this area is motivated by the wide-applicability of multiagent systems
to a large set of complex real-world problem domains, as well as by the difficulty of hard-coding
solutions for such distributed approaches (Panait and Luke, 2005a). Multiagent learning techniques
have been successfully applied to domains such as multi-rover coordination (Tumer and Agogino,
2007; Knudson and Tumer, 2007), congestive games (Agogino and Tumer, 2006), air traffic control
(Agogino and Tumer, 2007), and spacecraft power management (Airiau et al., 2006), to name but
a few. Moreover, the formal analysis in Jansen and Wiegand (2003, 2004) demonstrated that these
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techniques’ strengths rely on the decomposition of the problem into simpler subproblems that can be
explored separately, resulting at times in significant speedups over traditional learning algorithms.
It is no surprise, then, that such techniques have also been successfully applied to problems outside
of the multiagent systems realm, such as the discovery of cascade neural networks for classification
tasks (Potter and Jong, 2000), the optimization of inventory control (Eriksson and Olsson, 1997),
and the coevolution of neural networks for pole balancing (Gomez et al., 2006).

Multiagent learning is, however, a very challenging problem. Agents typically have limited
knowledge of even which actions their teammates are currently performing, and must act not only
in a constantly changing environment but one which may be actively co-adapting to the agents’
actions, often in ways they cannot fully perceive (Panait and Luke, 2005a). Even when agents
are notionally cooperating with one another, their limited perception capabilities can give rise to
phenomena that hinder the agents’ ability to coordinate effectively. Such dynamics are still not well
understood formally.

Recent research has highlighted a tendency for multiagent learning algorithms to converge to
suboptimal solutions, which is in marked contrast to the well-established convergence guarantees
of their single-agent counterparts. For example, straightforward extensions of Q-learning to multi-
agent systems fail to reach the optimal policy in fairly simple domains (Claus and Boutilier, 1998;
Kapetanakis and Kudenko, 2002), despite Q-learning’s convergence guarantees in single-agent do-
mains (Sutton and Barto, 1998; Watkins and Dayan, 1992). Similarly, cooperative coevolutionary
algorithms Potter and Jong (1994); Potter (1997) can not only converge but also be attracted to
joint suboptima in the search space (Wiegand, 2004), despite traditional evolutionary algorithms
being guaranteed to converge to the global optimum when given enough time and sufficient random
exploration (Vose, 1999). Different reasons account for this: other agents are learning as well; the
reinforcement an agent receives depends on the actions taken by the other agents; and not all infor-
mation is observable. Such features make it very difficult to engineer learning algorithms capable
of finding optimal solutions under these conditions.

This paper presents a theoretical foundation for multiagent learning in coordination games with
no internal state; we only consider symmetric games where all agents receive equal reward. This
foundation may be directly applied to two popular algorithms: cooperative coevolutionary algo-
rithms (CCEAs) and multiagent Q-learning. These two techniques are representative of the two
families (evolutionary algorithms and multiagent reinforcement learning) which form the bulk of
the cooperative multiagent learning field (Panait and Luke, 2005a). In both of these algorithms it is
common for an agent to base its assessment of a particular action on the expected reward received
for that action. For example, a reinforcement learning agent usually updates its estimate for an
action’s utility every time1 that action is performed in the environment, despite the dependence of
the reward on the actions performed by the other agents. The formal analysis in this paper demon-
strates that the reinforcement provided by the expected reward might be the primary cause for many
observed problems with multiagent learning.

The paper applies a new theoretical framework to argue for a different approach to these prob-
lems, in which each agent tends to ignore lower rewards garnered by a particular action. We call
this approach lenience: each agent shows lenience to its teammates by ignoring low rewards due to
actions chosen by teammates that are poor matches to the agent’s current action. For example, con-
sider a simple scenario where agents A1 and A2 learn to play soccer together. Let’s assume that they

1. This mechanism is essentially equivalent (over time) to using the expected reward.
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do not have any a priori information about each other’s skills. At some point, A1 attempts a pass that
should allow A2 to receive the ball in a very favorable position (for example, alone with the goalie).
However, A2 is not able to receive the ball properly because he was not expecting the pass, or simply
because A2 has not learned the ball reception skill. Given the failure of their collaboration in this
particular instance, should A1 assume that the pass was bad in general and that it should be avoided
in the future (due to the low reward the agents just received)? This is the approach usually taken
by straightforward extensions of single-agent learning algorithms to multiagent domains. Alterna-
tively, we argue that A1 might benefit from showing lenience towards his teammate by completely
ignoring the low reward observed following A2’s mistake, and only hope that A2 will perform better
once it learns to play better. In other words, A1 might assume that the pass was good, and that the
low reward is primarily due to A2 not having learned the skill yet. With time, A1 will be able to
distinguish between good and bad passes based on A2’s future performance.

Lenience is particularly important early in the game, when the agents have not yet identified
high-performing actions and so the average reward of a given action can be misleadingly low due
to partnering with poor-performing joint actions. In previous work, we have demonstrated the effi-
cacy of algorithms based on this notion: specifically, the Lenient Multiagent Q-learning algorithm
(Panait et al., 2006) and the iCCEA algorithm (Panait and Luke, 2006). Here, we will establish a
more formal justification for the effectiveness of lenience in multiagent learning, accompanied by
an intuitive visualization of the impact that lenience has onto the tendency of these algorithms to
converge to suboptimal solutions.

The remainder of this paper is structured as follows. Section 2 introduces basic formal models
and background material, and describe the pathologies. In Section 3 we argue that lenience will
benefit agents in overcoming such problems. Sections 4 and 5 present enhanced theoretical models
of the multiagent learning paradigms. Finally, Section 6 concludes the paper and suggests directions
for future research.

2. Background

This paper presents a formal analysis of two multiagent learning algorithms: cooperative coevo-
lutionary algorithms and multiagent Q-learning. Sections 2.1.1 and 2.1.2 briefly describe each of
them. Following, Sections 2.2.1 and 2.2.2 introduce the basics of the replicator equations both in
discrete and continuous time. Sections 2.3.1 and 2.3.2 present two evolutionary game theory models
that capture the dynamics of the two learning algorithms, that is, CCEA and multiagent Q-learning.
These replicator dynamics (RD) models represent the foundation for our work and will be extended
in Section 3 to account for lenience. More details on both models can be found in Wiegand (2004),
Tuyls et al. (2006) and Tuyls et al. (2003).

2.1 Multiagent Learning Methods

This section provides a brief overview of two multiagent learning algorithms.

2.1.1 COOPERATIVE COEVOLUTIONARY ALGORITHMS

Evolutionary algorithms are beam search methods that employ and refine sets of candidate solutions
to a given problem. The terminology in the field is borrowed from biology to reflect the main
source of inspiration (Darwin’s models for evolution) for these techniques; for example, candidate
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solutions are termed individuals, sets of individuals are known as populations, and the creation of
new solutions from previous ones is usually referred to as breeding.

An evolutionary algorithm begins with an initial population of random individuals. Each mem-
ber of this population is then evaluated and assigned a fitness (a quality assessment). The algorithm
then selects a set of fitter-than-average parents and alters them via crossover and mutation operations
to produce a set of children, which are added to the population, replacing older, less fit individuals.
One evaluation, selection, and breeding cycle is known as a generation. Successive generations
continue to refine the population until time is exhausted, or until a sufficiently fit individual is dis-
covered. For additional information, interested readers are referred to Jong (2006).

Coevolution is an intuitive extension of evolutionary algorithms for domains with multiple learn-
ing agents. Cooperative coevolutionary algorithms (CCEAs) are a popular approach for domains
where agents succeed or fail together (Husbands and Mill, 1991; Potter and Jong, 1994). Here,
each agent is given its own population2 of individuals, each such individual representing a possible
behavior for that agent. CCEAs usually assume that only the performance of the entire team can
be assessed; as a consequence, one individual (behavior) for each of the team members is required
for evaluation. Fitness assessment works as follows: for each individual i in an agent’s population,
one or more tuples are formed using i and individuals (termed collaborators) from the other agents’
populations (either from the current generation, or from the previous one). These collaborators can
be sampled randomly or selected based on performance (if the collaborators were evaluated in the
previous generation, the better ones might be used preferentially). The fitness of i is then computed
based on the performance obtained from evaluating the teams with the behaviors indicated by these
tuples. As a consequence, the fitness assessment is context-sensitive and subjective. Aside from
evaluation, the learning processes are independent of one another. The populations evolve concur-
rently (this is closer to the asynchronous nature of multiagent systems). Potter (1997), Potter and
Jong (2000) and Wiegand (2004) provide comprehensive overviews of cooperative coevolutionary
algorithms.

2.1.2 MULTIAGENT Q-LEARNING

Q-learning (Watkins, 1989; Sutton and Barto, 1998) is particularly useful in domains where re-
inforcement information (expressed as penalties or rewards) is stochastic and is observed after a
sequence of actions has been performed. The algorithm associates a utility (or Quality) Q with
each (s,a) pair, where s is a state of the environment, and a is an action that the agent can perform
when in state s. The agent updates the Q-values at each time step based on the reinforcement it has
received. The update formula is

Q(st ,at)← Q(st ,at)+α
(

rt+1 + γmax
a

Q(st+1,a)−Q(st ,at)
)

where the agent has just been in state st , has performed action at , has observed reward rt , and has
transitioned to the new (current) state st+1; α is the learning rate, and γ is a discount factor (bounded
between 0 and 1) for incorporating future rewards into the utility estimate. Note that Q(st ,at) does
not only depend on the immediate reward rt+1 observed by the agent, but also on future rewards
(via the maxa Q(st+1,a) term). The discount factor γ controls the impact of future versus immediate

2. Given this assumption that each agent has its own population, we sometimes use the term population instead of agent
when the context deems it more appropriate.
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rewards onto the Quality terms: lower values of γ reduce the impact of future rewards onto the
quality estimate for a state-action pair.

Action selection in Q-learning is usually based on a stochastic process; popular choices include
ε-greedy exploration (select the best action with probability 1− ε, or a random action otherwise)
and Boltzmann exploration (the selection process further depends on a “temperature” parameter).
As previously mentioned, Q-learning has certain guarantees of convergence under theoretical con-
ditions, which include performing each action an infinite number of times in each state, as well as
proper settings for the learning rate (Singh et al., 2000; Watkins and Dayan, 1992).

Multiagent Q-learning is a straightforward extension of Q-learning to domains involving multi-
ple agents (Claus and Boutilier, 1998). Here, each agent is given its own Q-value function for (s,a)
pairs. All agents choose their actions independently and concurrently, perform them in parallel, and
observe the same reward associated with the joint action. In contrast to single-agent Q-learning, the
information an agent observes depends on the actions chosen by other agents. The reward informa-
tion is then used by each agent to update its Q-values. Agents usually cannot perceive which actions
their teammates have chosen.

To simplify the theoretical analysis, we assume that agents choose actions by using the Boltz-
mann selection: an action ak is chosen with probability

P(ak) =
e

Q(s,ak)
τ

∑i e
Q(s,ai)

τ

(1)

where τ is a temperature parameter used to balance exploration and exploitation (the agent tends to
select actions associated with higher utilities when τ is low).

2.2 The Replicator Dynamics

John Maynard Smith introduced Evolutionary Game Theory (EGT) by applying traditional game
theory to Biology (Smith, 1982; Maynard Smith and Price, 1973). EGT is particularly well-suited
as a model of cooperative learning agents. In EGT, each agent holds a vector of proportions over
possible actions, indicating the proportion of “individuals” or “replicators” in an infinite “popula-
tion” (the agent) which have adopted a given action. EGT also commonly presumes one or more
matrixes that represent the performance of actions in the context of actions of the other agents. Each
timestep, the proportions of actions for each agent are changed based on the rewards in the matrix
as well as on the current probabilities of other agents’ choosing their actions.

Replicator dynamics (RD) is a key concept in EGT to express the adaptation of each population
over time. RD can be represented either in discrete or continuous time. We elaborate on both forms
of RD, starting with the discrete time version. In essence the replicator equations describe how
a population of different actions evolves through time. An abstraction of an evolutionary process
usually combines two basic elements: selection and mutation. Selection favors some population
actions over others, while mutation provides variety in the population. The most basic form of RD
only highlights the role of selection, that is, how the most fit actions in a population are selected.

2.2.1 DISCRETE TIME REPLICATOR DYNAMICS

Suppose there is a single population of actions (or replicators) and consider a discrete time process
t = 1,2, .... Let A = (ai j)n

i, j=1 be the reward matrix (ai j ≥ 0 is the reward for the joint action (i, j),
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and n is the total number of possible actions). Let us assume that the individuals in the population
(considered infinite) represent different actions that the agent can perform. The state of the popu-
lation can be described by a vector x(t) = (x1(t), ...,xn(t)), where xi(t) denotes the proportion of
individual i in the population (it is also directly related to the probability that the agent will select
action i).

At each time step t, the state x(t) of the population changes according to the fitness values of the
different individuals. More precisely, the expected number of offsprings for a single individual rep-
resenting action i equals the ratio between the expected payoff for such an individual, ∑n

j=1 ai jx j(t),
and the average payoff ∑n

k=1 xk(t)
(
∑n

j=1 ak jx j(t)
)

for all individuals in the population. Therefore,
the ratio xi(t +1) of individuals representing action i at the next time step equals:

xi(t +1) = xi(t)
∑n

j=1 ai jx j(t)

∑n
k=1 xk(t)

(
∑n

j=1 ak jx j(t)
) .

Dividing both sides by xi(t) leads to:

xi(t +1)
xi(t)

=
∑n

j=1 ai jx j(t)

∑n
k=1 xk(t)

(
∑n

j=1 ak jx j(t)
) .

A minor manipulation of the fractions leads to the general discrete time replicator dynamics:

Δxi(t)
xi(t)

=
∑n

j=1 ai jxi(t)− x(t)Ax(t)
x(t)Ax(t)

.

This system of equations expresses Darwinian selection as follows: the rate of change Δxi of a
particular action i is the difference between its average payoff, ∑n

j=1 ai jxi(t), and the average payoffs
for all actions, x(t)Ax(t).

2.2.2 CONTINUOUS TIME REPLICATOR DYNAMICS

From a mathematical viewpoint, it is usually more convenient to work in continuous time. Therefore
we now derive the continuous version of the above replicator equations. To do this we make time
infinitesimal. More precisely, suppose that the amount of time that passes between two periods is
given by δ with δ ∈ [0,1]. We also assume that during a time period δ, only a fraction δ of the
individuals die and generate offspring. Then the above equation can be rewritten as follows:

Δxi(t)
xi(t)

=
xi(t +δ)− xi(t)

xi(t)
=

∑n
j=1 δai jxi(t)− x(t)δAx(t)
x(t)δAx(t)+(1−δ)

.

Now, at the limit when δ approaches 0, the continuous replicator equations are:

dxi

dt
=

[
n

∑
j=1

ai jxi− x ·Ax

]
xi

which can be rewritten as:

dxi

dt
= [(Ax)i− x ·Ax]xi. (2)
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In Equation 2, xi represents the density of action i in the population, and A is the payoff matrix
that describes the different payoff values that each individual replicator receives when interacting
with other replicators in the population. The state x of the population can be described as a prob-
ability vector x = (x1,x2, ...,xn) which expresses the different densities of all the different types of
replicators in the population. Hence (Ax)i is the payoff that replicator i receives in a population

with state x and x ·Ax describes the average payoff in the population. The growth rate
dxi
dt
xi

of the
proportion of action i in the population equals the difference between the action’s current payoff
and the average payoff in the population. Gintis (2001), Hofbauer and Sigmund (1998) and Weibull
(1996) detail further information on this issues.

2.3 EGT Models for Multiagent Learning Algorithms

This paper is concerned with formal models of multiple agents that learn concurrently. For sim-
plicity, the discussion focuses on only two such learning agents in a symmetric game (both agents
receive the same payoff). As a result, we need two systems of differential equations, one for each
agent. This setup corresponds to an RD for asymmetric games, where the available actions or strate-
gies of the agents to belong to two different population. For example, consider the case of extending
the continuous RD model to a multiagent learning scenario involving a two-player symmetric game
with two agents, and consider that AT is the payoff matrix that describes the reinforcements re-
ceived by the second agent. Then, another equation similar to Equation 2 would emerge again to
characterize the dynamics of the second learner.

This translates into the following replicator equations for the two populations:

dpi

dt
= [(Aq)i− p ·Aq]pi, (3)

dqi

dt
= [(AT p)i−q ·AT p]qi. (4)

Equations 3 and 4 indicate that the growth rate of the types in each population is additionally
determined by the composition of the other population, in contrast to the single population (learner)
case described by Equation 2.

Next, we present two EGT models for multiagent learning. First, Section 2.3.1 presents a model
for cooperative coevolutionary algorithms, which is based on the discrete time RD model in Sec-
tion 2.2.1. Then, Section 2.3.2 presents a model for multiagent Q-learning, which is based on the
continuous time RD model in Section 2.2.2.

2.3.1 EGT MODEL FOR COOPERATIVE COEVOLUTIONARY ALGORITHMS

Wiegand (2004) describes an evolutionary game theoretic model for cooperative coevolutionary
algorithms. The model applies to stateless domains involving only two agents, and where each agent
has a finite set of actions to choose from. The two populations (one per agent) contain individuals,
each of them representing an action that the agent might perform. The model further assumes that
the two populations are infinite, and it computes the proportions of individuals in the populations
at each generation. If the first agent has a finite number n of distinct actions to choose from, its
population at each generation is an element of the set Δn = {x ∈ [0,1]n | ∑n

i=1 xi = 1}. A higher
proportion xi indicates that the agent is more likely to choose action i. Given that the second agent
might have a different set (of size m) of actions to choose from, its population is an element of the
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set Δm =
{

y ∈ [0,1]m | ∑m
j=1 y j = 1

}
. The fitness computation in the EGT model involves the game

payoff matrix A, where the ai j element represents the reward for the joint action (i, j). Assuming
both agents are equally rewarded, A is used to compute the fitnesses in one population, and the
transpose of A is used for the other population (as in Section 2.3). Equations 5 – 8 describe the EGT
model for CCEAs, as expressed in Wiegand (2004):

u(t)
i =

m

∑
j=1

ai jy
(t)
j , (5)

w(t)
j =

n

∑
i=1

ai jx
(t)
i , (6)

x(t+1)
i =

(
u(t)

i

∑n
k=1 x(t)

k u(t)
k

)
x(t)

i , (7)

y(t+1)
j =

(
w(t)

j

∑m
k=1 y(t)

k w(t)
k

)
y(t)

j (8)

where x(t) and y(t) represent the proportions of genotypes (actions) in the two populations at genera-
tion t, and x(t+1) and y(t+1) represent the new proportions at the next generation t +1. For simplicity,
the equations only model the dynamics of cooperative coevolutionary systems under the pressure of
selection.

The EGT model can be separated into two phases. First, the fitness of each action is computed
for the two populations (Equations 5 and 6). The fitness of action i is estimated as the mean payoff
over pairwise collaborations with every action in the other population. Note that this computation
uses the proportions of each action in the (infinite) populations. Second, the distributions of the
two populations at the next generation are computed (Equations 7 and 8 model the effects of fitness
proportional selection).

2.3.2 EGT MODEL FOR MULTIAGENT Q-LEARNING

This section introduces the RD model of Multiagent Q-learning. For a complete mathematical
derivation of it, please refer to Tuyls et al. (2006, 2003). Basically, the derivation boils down to
constructing a continuous time limit of the Q-learning model (in the same manner as when going
from the discrete replicator equations to the continuous version), where Q-values are interpreted as
Boltzmann probabilities for the action selection. For simplicity, we only consider games between
two agents, and assume that the game is stateless: the reward that the agents receive depends solely
on the actions they have currently performed in the environment. We admit up front that such sce-
narios are unrealistic for practical purposes, but they are complex enough to emphasize specific
challenges for multiagent reinforcement learning algorithms. For this reason, several previous em-
pirical investigations of these techniques have employed such domains (for example, by Claus and
Boutilier 1998, Kapetanakis and Kudenko 2002 and Lauer and Riedmiller 2000).

Each agent has a probability vector over its action set, more precisely x1, ...,xn over action set
a1, ...,an for the first agent and y1, ...,ym over b1, ...,bm for the second agent. Equation 1 can also be
rewritten as follows:

xi(k) =
e

Qai (k)
τ

∑n
j=1 e

Qa j (k)

τ
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where xi(k) is the probability of playing action i at time step k and τ is the temperature. Now we
can find an expression for, xi(k +1):

xi(k +1)
xi(k)

=
e

Qai (k+1)
τ ∑ j e

Qa j (k)

τ

e
Qai (k)

τ ∑ j e
Qa j (k+1)

τ

=
e

ΔQai (k)
τ

∑ j x j(k)e
ΔQa j (k)

τ

from which follows that

xi(k +1) = xi(k)
e

ΔQai (k)
τ

∑ j x j(k)e
ΔQa j (k)

τ

.

Considering the difference equation for xi, we have that

xi(k +1)− xi(k) =
xi(k)e

ΔQai (k)
τ

∑ j x j(k)e
ΔQa j (k)

τ

− xi(k)

= xi(k)

⎛
⎝e

ΔQai (k)
τ −∑ j x j(k)e

ΔQa j (k)

τ

∑ j x j(k)e
ΔQa j (k)

τ

⎞
⎠ .

For the continuous time version, suppose that the amount of time that passes between two repetitions
of the game is given by δ with 0 < δ≤ 1. The variable xi(kδ) describes the x-values at time kδ = t.
Under these assumptions, it follows that

xi(kδ+δ)− xi(kδ)
δ

=
xi(kδ)

δ∑ j x j(kδ)e
ΔQa j (kδ)

τ

×
(

e
ΔQai (kδ)

τ −∑
j

x j(kδ)e
ΔQa j (kδ)

τ

)
.

We are interested in the limit with δ→ 0. At a given time t ≥ 0, the state of the limit process is
computed by taking the limit of xi(kδ) with δ→ 0 and kδ→ t.

lim
δ→0

Δxi(kδ)
δ

= lim
δ→0

xi(kδ)

∑ j x j(kδ)e
ΔQa j (kδ)

τ

×

lim
δ→0

⎛
⎝e

ΔQai (kδ)
τ

δ
− ∑ j x j(kδ)e

ΔQa j (kδ)

τ

δ

⎞
⎠ . (9)

The first limit equals xi(t) (or xi for a shorter notation):

lim
δ→0

xi(kδ)

∑ j x j(kδ)e
ΔQa j (kδ)

τ

= xi(t) (10)
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because the exponent term becomes 1 (ΔQaj(kδ) becomes 0) and ∑ j x j(kδ) equals 1(sum of all
probabilities equals 1). Therefore,

lim
δ→0

Δxi(kδ)
δ

= xi× lim
δ→0

⎛
⎝e

ΔQai (kδ)
τ

δ
− ∑ j x j(kδ)e

ΔQa j (kδ)

τ

δ

⎞
⎠ .

The second limit is undefined (this is a 0
0 situation), which allows us to use L’Hôpital’s rule. The

second term now equals

lim
δ→0

⎛
⎝e

ΔQai (kδ)
τ

δ
− ∑ j x j(kδ)e

ΔQa j (kδ)

τ

δ

⎞
⎠ =

dQai(t)
τdt

−∑
j

x j(t)
dQaj(t)

τdt
. (11)

The total limit now becomes (by combining Equations 9 – 11),

dxi
dt

xi
=

1
τ

(
dQai

dt
−∑

j

dQaj

dt
x j

)
. (12)

This completes the derivation of the continuous time model for the Q-learning process. As

can be seen in Equation 12, we need an expression for
dQai (t)

dt . This can be derived the differential
equation for the Q-function by performing the following steps.

The Q-learning update rule for the first agent can be written as follows:

Qai(k +1) = Qai(k)+α(rai(k +1)+ γmax
ai

Q−Qai(k))

which implies,
ΔQai(k) = α(rai(k +1)+ γmax

ai
Q−Qai(k)).

This expression is the difference equation for the Q-function. To make this equation infinites-
imal, going from discrete steps to a continuous version, we suppose that the amount of time that
passes between two repetitions of updates of the Q-values is given by δ with 0 < δ≤ 1. The variable
Qai(kδ) describes the Q-values at time kδ. It follows that

ΔQai(kδ) = α(rai((k +1)δ)+ γmax
ai

Q−Qai(kδ))((k +1)δ− kδ)

which is the same as writing

ΔQai(kδ) = α(rai((k +1)δ)+ γmax
ai

Q−Qai(kδ))δ.

We are interested in the limit δ→ 0. The state of the limit process at some time t ≥ 0 (which we
keep fixed) can be computed by taking the limit of Qai(kδ) with δ→ 0 and kδ→ t. Bringing δ to
the left side, and taking the limit for δ→ 0, it follows that

dQai

dt
= α(rai + γmax

ai
Q−Qai). (13)
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Now, substituting Equation 13 in Equation 12 yields

dxi
dt

xi
=

1
τ

α

(
rai−∑

j

x jra j −Qai +∑
j

Qajx j

)

because ∑ j x j = 1, this expression becomes

dxi
dt

xi
=

α
τ

(
rai−∑

j

x jra j +∑
j

x j(Qaj −Qai)

)
.

Given that x j

xi
equals e

Qa j
τ

e
Qai

τ
, it follows that

α∑
j

x jln
x j

xi
=

α
τ ∑

j

x j(Qaj −Qai)

which gives us

dxi
dt

xi
=

α
τ

(
rai−∑

j

x jra j

)
+α∑

j

x jln

(
x j

xi

)
.

Let us put this equation in the context of the two concurrent learning agents. For clarity, we use
ui (instead of rai) to indicate the expected reward that the first agent expects for performing action
i, and wj to indicate the expected reward that the second agent expects for performing action j.
Remember that the payoff matrix for the second agent is simply the transposed payoff matrix used
by the first agent.

Thus ui = ∑k aikyk is the expected reward that would be observed by the first agent, given the
other agent’s current probabilities of selecting among its actions (and similarly wj = ∑k ak jxk). The
RD model above therefore has the simpler form,

ui = ∑
k

aikyk, (14)

wj = ∑
k

ak jxk, (15)

dxi
dt

xi
=

α
τ

(
ui−∑

k

xkuk

)
+α∑

k

xk ln
xk

xi
, (16)

dy j

dt

y j
=

α
τ

(
wj−∑

k

ykwk

)
+α∑

k

yk ln
yk

y j
. (17)

2.4 The Relative Overgeneralization Pathology

Wiegand et al. (2002) used the EGT model in Equations 5 – 8 to provide a formal analysis for the
properties of cooperative coevolutionary algorithms. Note that the model described is deterministic:
given the composition of the two populations, the model can be used to compute the precise distri-
butions of genotypes in the populations at the next generation (the stochastic nature of evolutionary
algorithms is compensated for by the use of infinite populations). Using this model, Wiegand et al.
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Figure 1: The relative generalization pathology in multiagent cooperative learning. The axes i and
j are the various actions afforded to two different agents, and the axis reward(i, j) is the
reward received from a given joint action (higher is better).

(2002) showed that pure Nash equilibria are stable, attracting fixed points. This implies that starting
from certain initial configurations and iterating the model until convergence may result in conver-
gence to suboptimal Nash equilibria. A suboptimal Nash equilibrium is one that is Pareto-dominated
by at least one other Nash equilibrium. This pathology, termed relative overgeneralization in Wie-
gand (2004), indicates that CCEAs have a tendency to move not to points of optimum reward, but
rather to points which are “jacks of all trades but masters of none.” This argument is taken fur-
ther in Wiegand and Potter (2006) to suggest that cooperative coevolutionary algorithms might not
necessarily search for solutions of high quality, but rather for robust solutions.

To illustrate how this can occur, consider a trivial scenario involving two agents, each with a set
of actions. Both agents receive the same reward based on the joint action selected, and the objective
of the two agents is to arrive on the joint action that optimizes their joint reward. Let i and j be the
spaces of actions for the two agents. Figure 1 shows one possible joint space of actions 〈i, j〉 and
their resulting reward. The optimum is at the top of the small peak; but it has been shown that a
dynamical system such as in Equations 5 – 8 will tend to converge to the top of the broad suboptimal
peak (Wiegand, 2004). The reason is as follows. Line A represents the possible rewards for the first
population following action iA when paired with various actions j from the other population. Some
of these rewards are near the optimum; but most of them are below the suboptimal rewards that
action iB (line B) receives. If the utility of an action is based on average reward, the utility for iB
is higher that that of iA, even though iA has the potential to form better solutions (the circle on the
higher peak in Figure 1). As a result, the system moves towards solutions more in line with iB. This
is the relative overgeneralization pathology.

Similar issues were reported in the multiagent Q-learning literature as well. For example, Fulda
and Ventura (2007) attribute the convergence to suboptimal solutions to what they term action shad-
owing. Action i shadows action j if both of the following conditions apply. First, the rewards ob-
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served by the agent upon performing action i over a period of time are higher than the ones observed
for action j during the same period of time. This results in an expected higher utility for performing
action i, as opposed to performing action j. Second, the reward obtained for j when the teammate
selects a specific action k is higher than the reward obtain for i with any action selected by the team-
mate. For example, the domain illustrated in Figure 1 presents a scenario where action iB shadows
action iA. This occurs because of low rewards received for iA with poorly-matched actions (such
as jC) selected by the teammate. The circles represent how good actions iA and iB could be (when
matched by specific actions of the teammate), while the triangle illustrates the low rewards due to
action jC that contribute to action shadowing (action shadowing is the result of many such actions).

Note informally that both relative overgeneralization and action shadowing might be solved by
using the same approach: basing an action’s utility on the maximum reward over some large number
N of interactions with actions chosen by the other player. As N grows, the utility of an action
approaches the joint reward it would produce were it paired with its optimum collaborating action;
and thus each population could select from its actions knowing the true optimum potential of each.

This general notion of using the maximum is at the center of what we call lenient learning.
The remainder of the paper demonstrates the advantages of being lenient in a multiagent learning
system.

3. Lenient Learners

Lenient learning attempts to address the primary pathologies described in Section 2.4 by allowing
agents to ignore the lower rewards received for a given action, notionally due to poorly-matched
actions from the teammate, and instead concentrate on the higher rewards seen so far for that action.

Consider the Climb and Penalty domains introduced in Claus and Boutilier (1998) and used
in previous investigations of multiagent Q-learning (Kapetanakis and Kudenko, 2002; Lauer and
Riedmiller, 2000) and cooperative coevolution (Panait et al., 2003). The joint payoff matrices for
these coordination games are defined as:

Climb :

⎡
⎣ 11 −30 0
−30 7 6

0 0 5

⎤
⎦ , Penalty :

⎡
⎣ 10 0 −10

0 2 0
−10 0 10

⎤
⎦ .

Observe that Climb has two Nash equilibria, the optimum (1,1) (both agents play their first
strategy: the indices of the matrix) and the suboptimum (2,2) (both agents play their second strat-
egy), and that it is strongly deceptive. Suboptimal meaning that (2,2) is Pareto-dominated by (1,1).
Penalty has three Nash equilibria: (1,1), (2,2), and (3,3). Of them, (2,2) is suboptimal (Pareto-
dominated), but is more forgiving if one or the other population deviates from the Nash equilibrium.
This means that (2,2) risk dominates (1,1) and (3,3), because playing action 2 will provide a higher
expected payoff when an agent is uncertain about the other agent’s action,.

Now consider two agents learning the Climb coordination game. Given that the agents have just
started to learn and have no knowledge about the structure of the payoff matrix, we may assume
that the agents choose their actions randomly. The expected reward for each action an agent might
perform is:
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ExpectedReward(a1) = 11∗ 1
3 −30∗ 1

3 +0∗ 1
3 =−6.33

ExpectedReward(a2) = −30∗ 1
3 +7∗ 1

3 +6∗ 1
3 =−5.67

ExpectedReward(a3) = 0∗ 1
3 +0∗ 1

3 +5∗ 1
3 = 1.67

Observe that action a1 has the lowest expected reward. The agent might thus become less
likely to choose action a1 due to the lower rewards it receives at early stages of learning. This is
problematic, however, as a1 corresponds to the optimal Nash equilibrium. The same applies to the
Penalty coordination problem:

ExpectedReward(a1) = 10∗ 1
3 +0∗ 1

3 −10∗ 1
3 = 0

ExpectedReward(a2) = 0∗ 1
3 +2∗ 1

3 +0∗ 1
3 = 0.67

ExpectedReward(a3) = −10∗ 1
3 +0∗ 1

3 +10∗ 1
3 = 0

One solution to remedy this problem is to allow agents to show lenience towards their team-
mates: the agents can ignore lower rewards observed upon performing their actions, and only update
the utilities of actions based on the higher rewards. This can be achieved if the learners compare
the observed reward with the estimated utility for an action, and update the utility only if it is lower
than the reward. In some sense, such an approach changes the learning focus from performing as
well as possible in the context of the current (likely mediocre) teammate, to performing as well as
possible in the context of improved behaviors for its teammate (as the teammate learns, it likely will
not choose those actions that resulted in lower rewards!).

Panait et al. (2006) presents evidence on the advantages of such an approach. The paper intro-
duced a time-dependent degree of lenience: the agents start by ignoring most of the low rewards
that they observe, but as learning progresses, agents tend to explore certain “better” actions and
also ignore fewer low rewards. The paper also presented empirical evidence that several multiagent
learning paradigms can significantly benefit from agents being lenient to one another. Similarly,
cooperative coevolutionary algorithms often use agents that ignore lower rewards (for example, in
Wiegand et al., 2001), and we previously demonstrated the advantages of a time-dependent degree
of lenience for cooperative coevolution (Panait and Luke, 2005b). Although such algorithms have
shown their strengths in empirical analysis, formal models of multiagent learning have always been
one step behind.

This paper focuses on the mathematical foundations of a simpler approach to lenient learners:
each agent collects the rewards it receives for performing actions. Upon observing N rewards for an
action, only the maximum of these N rewards is used to update the utility associated with that action.
The set of observed rewards for that action is cleared, and the learning process continues. In other
words, the agents employ a fixed degree of lenience (which is determined by N) to their teammates.
The more low rewards the agents ignore (the higher N is), the more lenient the agents can be said to
be. Although this approach does not model any existing multiagent learning algorithm, its formal
analysis has two major contributions. First, it provides a valuable addition to our set of tools to study
such multiagent learning algorithms, and also strengthens evolutionary game theory as a primary
framework for such analysis. Second, it adds to our understanding of the causes for multiagent
learning algorithms drifting away from globally optimal solutions.
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Next, we extend the EGT models from Section 2.3 such that each learner uses only the maximum
of N rewards (it ignores the lower N − 1 rewards) to improve its utility estimate. The following
theorem establishes a key result for the formal model of lenient learners.

Theorem 1 Let (ai j)
n
i, j=1 be the payoff matrix (ai j is the payoff received by the agents when one

performs action i and the other performs action j), and let (p j) j∈1..n be the probability that the
teammate selects action j. The expected maximum payoff for i over N pairwise combinations with
actions j1... jN chosen with replacement according to (p j) j∈1..n is

n

∑
j=1

ai j
p j

∑k:aik=ai j
pk

⎛
⎝( ∑

k:aik≤ai j

pk

)N

−
(

∑
k:aik<ai j

pk

)N
⎞
⎠.

Proof
The expected maximum reward of action i over N pairwise combinations can be expressed

as a weighted sum of all possible rewards ai j that action i can receive with different actions j for
the teammate. The weight of each term ai j equals the probability that ai j is the maximum reward
observed over N trials. This probability can be computed based on the difference between the

probability of receiving N rewards that are no higher than ai j, which equals
(

∑k:aik≤ai j
pk

)N
, minus

the probability of receiving N rewards that are strictly lower than ai j, which equals
(

∑k:aik<ai j
pk

)N
.

Observe that an action i might receive the same reward in combination with different actions of
the teammate, and as a result, there is an extra weight p j

∑k:aik=ai j
pk

that computes the probability of

observing the reward ai j in combination with action j of the teammate, out of all the other actions
the teammate might have selected and would have resulted in the same reward.

Using Theorem 1, let us compute the expected reward for a lenient learner that ignores the lower
of two observed rewards for each of its actions. We assume again that the teammate selects actions
at random. The expected rewards in the Climb coordination problem are:

ExpectedReward(a1) = 11∗ 5
9 −30∗ 1

9 +0∗ 1
3 = 2.78

ExpectedReward(a2) = −30∗ 1
9 +7∗ 5

9 +6∗ 1
3 = 2.56

ExpectedReward(a3) = 0∗ 2
9 +0∗ 2

9 +5∗ 5
9 = 2.78

Observe that a1 has the highest reward (tied with that of a3). Were the agent to be more lenient
(for example, if it ignored the lower two of three observed rewards), the expected reward for a1

would be significantly higher than those for a2 and a3. Similarly, the expected rewards in the
Penalty domain (with learners ignoring the lower of every two rewards) are:

ExpectedReward(a1) = 10∗ 5
9 +0∗ 1

3 −10∗ 1
9 = 4.44

ExpectedReward(a2) = 0∗ 2
9 +2∗ 5

9 +0∗ 2
9 = 1.11

ExpectedReward(a3) = −10∗ 1
9 +0∗ 1

3 +10∗ 5
9 = 4.44
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Note that the Penalty game has two global optima, and that the lenient agents might have diffi-
culties choosing both the same optimum. As we will show in this paper, lenience can help multiagent
learning algorithms converge to the global optimum in domains with a unique such global optimum,
as well as in some domains with multiple optima.

The results above support the hypothesis that lenient learners might benefit from estimating the
expected reward for an action based on how good that action might be once the teammate has learned
a better behavior. However, the analysis so far relied on the assumption that the teammate only
chooses random actions. The EGT frameworks for multiagent learning, as described in Section 2.3,
clearly eliminate this assumption by explicitly keeping track of the agents’ probabilities of selecting
each action over time, and by using that information to describe the learning process of each agent.
The paper continues with extensions of these models to account for lenience: Section 4 demonstrates
the benefits of lenience for cooperative coevolutionary algorithms, while Section 5 presents evidence
for the advantages of lenience in multiagent Q-learning algorithms.

4. Enhanced Evolutionary Game Theory Model for Cooperative Coevolutionary
Algorithms

As described in Section 2.3.1, the EGT model for CCEAs updates the utility of an action based
on the expected reward for that action in combination with all possible actions that the teammate
might select (Equations 5 – 6). Next, we use Theorem 1 to enhance this model to account for lenient
learners.

Assessing fitness as the maximum of multiple rewards has been used before in practical coopera-
tive coevolutionary algorithms (for example, in Wiegand et al., 2001). The research here contributes
a formal analysis of this approach, which has so far been lacking.

Definition 1 The EGT model in Equations 18 – 21 represents a theoretical model for a cooperative
coevolutionary algorithm where the fitness of an individual is computed as the maximum reward
with N collaborators.

u(t)
i =

m

∑
j=1

ai j
y(t)

j

∑
k:aik=ai j

y(t)
k

⎛
⎝( ∑

k:aik≤ai j

y(t)
k

)N

−
(

∑
k:aik<ai j

y(t)
k

)N
⎞
⎠, (18)

w(t)
j =

n

∑
i=1

ai j
x(t)

i

∑
k:ak j=ai j

x(t)
k

⎛
⎝( ∑

k:ak j≤ai j

x(t)
k

)N

−
(

∑
k:ak j<ai j

x(t)
k

)N
⎞
⎠, (19)

x(t+1)
i =

(
u(t)

i

∑n
k=1 x(t)

k u(t)
k

)
x(t)

i , (20)

y(t+1)
j =

(
w(t)

j

∑m
k=1 y(t)

k w(t)
k

)
y(t)

j . (21)

Note that the enhanced model is equivalent to Wiegand’s standard EGT model in Equations 5 – 8
when a single collaborator is used (N = 1). As demonstrated next, CCEAs are expected to achieve
better performance as N increases. The proof that is the case relies on the following lemmas which
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establish bounds on the probabilities that the initial populations have extremely large or small pro-
portions of certain genotypes.

Lemma 1 Assume the populations for the EGT model are initialized at random based on a uniform
distribution over all possible initial populations. Then, for any ε > 0, there exists θε > 0 such that

P

(
min
i=1..n

x(0)
i ≤ θε

)
< ε, (22)

P

(
max
i=1..n

x(0)
i ≥ 1−θε

)
< ε, (23)

P

(
min

j=1..m
y(0)

j ≤ θε

)
< ε, (24)

P

(
max
j=1..m

y(0)
j ≥ 1−θε

)
< ε. (25)

Proof One method to sample the simplex Δn uniformly is described in Devroye (1986) (pages
568 – 569): take n− 1 uniformly distributed numbers in [0,1], then sort them, and finally use the
differences between consecutive numbers (also, the difference between the smallest number and 0,
and that between 1 and the largest number) as the coordinates for the point.

It follows that mini=1..n x(0)
i is the smallest distance between two such numbers (and possibly

the boundaries 0 and 1). Similarly, maxi=1..n x(0)
i is the largest distance between two numbers.

Suppose γ > 0 is a small number. We iterate over the n−1 uniformly-distributed random num-

bers that are needed to generate an initial population
(

x(0)
i

)
i=1..n

. The probability that the first

number is not within γ of the boundaries 0 and 1 is 1−2γ. The probability that the second number
is not within γ of the boundaries or of the first number is less than or equal to 1−4γ. In general, the
probability that the kth number is not within γ of the boundaries or of the first k−1 numbers is less
than or equal to 1− 2kγ. Given that the numbers are generated independently of one another, the
probability that the closest pair of points (considering the boundaries) is farther apart than γ is equal
to

P

(
min
i=1..n

x(0)
i ≤ γ

)
= 1−P

(
min
i=1..n

x(0)
i > γ

)

= 1−
n−1

∏
i=1

(1−2iγ) ≤ 1− (1−2(n−1)γ)n−1 .

Inequalities 22 and 24 are symmetric, and as such, the proof that

P

(
min

j=1..m
y(0)

j ≤ γ
)
≤ 1− (1−2(m−1)γ)m−1

is very similar. Given that

lim
γ→0

1− (1−2(n−1)γ)n−1 = 0,

lim
γ→0

1− (1−2(m−1)γ)m−1 = 0
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it follows that for any ε > 0 there exists θε > 0 such that P
(

mini=1..n x(0)
i ≤ θε

)
< ε and

P
(

min j=1..m y(0)
j ≤ θε

)
< ε.

To prove Inequality 23, consider that maxi=1..n x(0)
i ≥ 1−θε implies that all other xi ratios

except for the maximum are smaller to θε, which, as proven above, occurs with probability smaller
than ε. The proof for Inequality 25 is similar.

Lemma 1 basically proved that the probability that an agent starts with an extremely low or an
extremely high probability of selecting an action is very low, given a random initialization of the
multiagent learning process. Following, Lemma 2 derives a complementary result, namely that each
agent should have a fair likelihood of selecting each of its actions when the learning process starts.

Lemma 2 Assume the populations for the EGT model are initialized at random based on a uniform
distribution over all possible initial populations. Then, for any ε > 0, there exists ηε > 0 such that

P

(
min
i=1..n

x(0)
i > ηε∧max

i=1..n
x(0)

i < 1−ηε∧ min
j=1..m

y(0)
j > ηε∧ max

j=1..m
y(0)

j < 1−ηε

)
≥ 1− ε.

Proof We apply Lemma 1 for 1−√1−ε
2 , which is greater than 0. The specific value of ηε for this

proof equals the value of θ 1−√1−ε
2

from Lemma 1. It follows that:

P

(
min
i=1..n

x(0)
i > ηε∧max

i=1..n
x(0)

i < 1−ηε∧ min
j=1..m

y(0)
j > ηε∧ max

j=1..m
y(0)

j < 1−ηε

)

= P

(
min
i=1..n

x(0)
i > θ 1−√1−ε

2
∧max

i=1..n
x(0)

i < 1−θ 1−√1−ε
2

)
×

P

(
min

j=1..m
y(0)

j > θ 1−√1−ε
2
∧ max

j=1..m
y(0)

j < 1−θ 1−√1−ε
2

)

=
(

1−P

(
min
i=1..n

x(0)
i ≤ θ 1−√1−ε

2
∨max

i=1..n
x(0)

i ≥ 1−θ 1−√1−ε
2

))
×(

1−P

(
min

j=1..m
y(0)

j ≤ θ 1−√1−ε
2
∨ max

j=1..m
y(0)

j ≥ 1−θ 1−√1−ε
2

))

≥
(

1−
(

P

(
min
i=1..n

x(0)
i ≤ θ 1−√1−ε

2

)
+P

(
max
i=1..n

x(0)
i ≥ 1−θ 1−√1−ε

2

)))
×(

1−
(

P

(
min

j=1..m
y(0)

j ≤ θ 1−√1−ε
2

)
+P

(
max
j=1..m

y(0)
j ≥ 1−θ 1−√1−ε

2

)))

≥
(

1−2
1−√1− ε

2

)
×
(

1−2
1−√1− ε

2

)
= 1− ε.
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Next, we prove that the revised EGT model described by Equations 18 – 21 converges to the
global optimum with an arbitrarily-high probability.

Theorem 2 Given a joint reward matrix A with a unique global optimum ai� j� , for any ε > 0 there
exists Nε ≥ 1 such that the theoretical CCEA model in Equations 18 – 21 converges to the global
optimum with probability greater than (1− ε) for any number of collaborators N such that N ≥ Nε.

Proof

ε only serves as a guarantee for the worst case scenario for the proportions of individuals in the
initial populations. From Lemma 2, it follows that there exists ηε > 0 such that with probability at
least 1− ε, it is the case that ηε < x(0)

i < 1−ηε and ηε < y(0)
j < 1−ηε for i, j ∈ {1,2,3}. In other

words, with probability ε, the initial populations will not have any proportion of individuals that
cover more than 1−ηε, nor cover less than ηε of the entire population.

We will prove that there exists Nε ≥ 0 such that the EGT model converges to the global optimum
for any N ≥ Nε and for all initial populations that satisfy ηε < x(0)

i� < 1−ηε and ηε < y(0)
j� < 1−ηε.

To this end, let α be the second highest element of the joint payoff matrix A (α < ai� j�). It follows

that u(t)
i ≤ α for all i �= i�, and similarly w(t)

j ≤ α for all j �= j�. Given the symmetry, proving only
the first (by refining Equation 18) is sufficient:

u(t)
i ≤

m

∑
j=1

α
y(t)

j

∑
k:aik=ai j

y(t)
k

⎛
⎝( ∑

k:aik≤ai j

y(t)
k

)N

−
(

∑
k:aik<ai j

y(t)
k

)N
⎞
⎠

≤ α
m

∑
j=1

⎛
⎝( ∑

k:aik≤ai j

y(t)
k

)N

−
(

∑
k:aik<ai j

y(t)
k

)N
⎞
⎠≤ α.

Next, we identify a lower bound for u(t)
i� :
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u(t)
i� =

m

∑
j=1

ai� j
y(t)

j

∑k:ai�k=ai� j
y(t)

k

⎛
⎝( ∑

k:ai�k≤ai� j

y(t)
k

)N

−
(

∑
k:ai�k<ai� j

y(t)
k

)N
⎞
⎠

= ai� j�

(
1−
(

1− y(t)
j�

)N
)

+

∑
j �= j�

ai� j
y(t)

j

∑k:ai�k=ai� j
y(t)

k

⎛
⎝( ∑

k:ai�k≤ai� j

y(t)
k

)N

−
(

∑
k:ai�k<ai� j

y(t)
k

)N
⎞
⎠

= ai� j�

(
1−
(

1− y(t)
j�

)N
)

+

∑
j �= j�∧ai� j≥0

ai� j
y(t)

j

∑k:ai�k=ai� j
y(t)

k

⎛
⎝( ∑

k:ai�k≤ai� j

y(t)
k

)N

−
(

∑
k:ai�k<ai� j

y(t)
k

)N
⎞
⎠+

∑
j �= j�∧ai� j<0

ai� j
y(t)

j

∑k:ai�k=ai� j
y(t)

k

⎛
⎝( ∑

k:ai�k≤ai� j

y(t)
k

)N

−
(

∑
k:ai�k<ai� j

y(t)
k

)N
⎞
⎠

≥ ai� j�

(
1−
(

1− y(t)
j�

)N
)

+

∑
j �= j�∧ai� j<0

ai� j
y(t)

j

∑k:ai�k=ai� j
y(t)

k

⎛
⎝( ∑

k:ai�k≤ai� j

y(t)
k

)N

−
(

∑
k:ai�k<ai� j

y(t)
k

)N
⎞
⎠

≥ ai� j�

(
1−
(

1− y(t)
j�

)N
)

+ ∑
j �= j�∧ai� j<0

ai� j
y(t)

j

∑k:ai�k=ai� j
y(t)

k

(
∑

k:ai�k≤ai� j

y(t)
k

)N

.

Given that ∑m
k=1 y(t)

k = 1, the previous inequality can be further refined:

u(t)
i� ≥ ai� j�

(
1−
(

1− y(t)
j�

)N
)

+ ∑
j �= j�∧ai� j<0

ai� j
y(t)

j

∑k:ai�k=ai� j
y(t)

k

(
1− y(t)

j�

)N

≥ ai� j�

(
1−
(

1− y(t)
j�

)N
)

+
(

1− y(t)
j�

)N

∑
j �= j�∧ai� j<0

ai� j

= ai� j�−
(

1− y(t)
j�

)N

⎛
⎝ai� j�− ∑

j �= j�∧ai� j<0

ai� j

⎞
⎠ . (26)

The inequalities ηε < y(0)
j� < 1−ηε hold for the initial populations, as inferred earlier from Lemma 2.

It follows from Equation 26 that

u(0)
i� ≥ ai� j�− (1−ηε)

N

⎛
⎝ai� j�− ∑

j �= j�∧ai� j<0

ai� j

⎞
⎠ . (27)

However,
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lim
N→∞

ai� j�− (1−ηε)
N

⎛
⎝ai� j�− ∑

j �= j�∧ai� j<0

ai� j

⎞
⎠ = ai� j� (28)

Given that ai� j� > α, Equation 28 implies that there exists N1 ≥ 1 such that

ai� j�− (1−ηε)
N

⎛
⎝ai� j�− ∑

j �= j�∧ai� j<0

ai� j

⎞
⎠>

ai� j�

2
+

α
2

> α (29)

for all N ≥ N1. From Equations 26 and 29, it follows that

u(0)
i� >

ai� j�

2
+

α
2

> α (30)

for all N ≥ N1. Observe that N1 does not depend on the initial populations x(0) and y(0). Similarly,
it is straightforward to prove that

w(t)
j� ≥ ai� j�−

(
1− x(t)

i�

)N

⎛
⎝ai� j�− ∑

i�=i�∧ai j�<0

ai j�

⎞
⎠ , (31)

w(0)
j� ≥ ai� j�− (1−ηε)

N

⎛
⎝ai� j�− ∑

i�=i�∧ai j�<0

ai j�

⎞
⎠ (32)

and that there exists N2 ≥ 1 such that

ai� j�− (1−ηε)
N

⎛
⎝ai� j�− ∑

i�=i�∧ai j�<0

ai j�

⎞
⎠>

ai� j�

2
+

α
2

> α

which implies that

w(0)
j� >

ai� j�

2
+

α
2

> α

for all N ≥ N2.
Let Nε = max(N1,N2), and let N≥Nε. Next, we show by induction by t (the number of iterations

of the model, that is, the number of generations) that the following four inequalities hold (note that
the last two imply a monotonic increase in the actions that comprise the global optimum):

u(t)
i� ≥ ai� j�− (1−ηε)

N

⎛
⎝ai� j�− ∑

j �= j�∧ai� j<0

ai� j

⎞
⎠ , (33)

w(t)
j� ≥ ai� j�− (1−ηε)

N

⎛
⎝ai� j�− ∑

i�=i�∧ai j�<0

ai j�

⎞
⎠ ,

x(t+1)
i� ≥ x(t)

i� , (34)

y(t+1)
j� ≥ y(t)

j� . (35)
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At the first generation (t = 0), the first two inequalities hold (Equations 27 and 32). Combining
these with the definition of N, it follows that u(0)

i� > u(0)
i for all i �= i� (and similarly, w(0)

j� > w(0)
j for

all j �= j�). As a consequence, Equation 20 implies that

x(1)
i� =

(
u(0)

i�

∑n
k=1 x(0)

k u(0)
k

)
x(0)

i�

>

(
u(0)

i�

∑n
k=1 x(0)

k u(0)
i�

)
x(0)

i�

= x(0)
i� .

and Equation 21 similarly implies that

y(1)
j� =

(
w(0)

j�

∑m
k=1 y(0)

k w(0)
k

)
y(0)

j�

>

(
w(0)

j�

∑m
k=1 y(0)

k w(0)
j�

)
y(0)

j�

= y(0)
j� .

To prove the inductive step, it follows from Equation 26 and from the inductive hypothesis that

u(t+1)
i� ≥ ai� j�−

(
1− y(t+1)

j�

)N

⎛
⎝ai� j�− ∑

j �= j�∧ai� j<0

ai� j

⎞
⎠

≥ ai� j�−
(

1− y(t)
j�

)N

⎛
⎝ai� j�− ∑

j �= j�∧ai� j<0

ai� j

⎞
⎠

· · ·

≥ ai� j�−
(

1− y(0)
j�

)N

⎛
⎝ai� j�− ∑

j �= j�∧ai� j<0

ai� j

⎞
⎠

≥ ai� j�− (1−ηε)
N

⎛
⎝ai� j�− ∑

j �= j�∧ai� j<0

ai� j

⎞
⎠ .

Given the definitions of N and α, this also implies that u(t+1)
i� > α > u(t+1)

i for all i �= i�. As a
consequence,
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x(t+1)
i� =

(
u(t)

i�

∑n
k=1 x(t)

k u(t)
k

)
x(t)

i�

>

(
u(t)

i�

∑n
k=1 x(t)

k u(t)
i�

)
x(t)

i�

= x(t)
i� .

Similarly, Equation 31 and the inductive hypothesis imply that

w(t+1)
j� ≥ ai� j�−

(
1− x(t+1)

i�

)N

⎛
⎝ai� j�− ∑

i�=i�∧ai j�<0

ai j�

⎞
⎠

≥ ai� j�−
(

1− x(t)
i�

)N

⎛
⎝ai� j�− ∑

i�=i�∧ai j�<0

ai j�

⎞
⎠

· · ·

≥ ai� j�− (1−ηε)
N

⎛
⎝ai� j�− ∑

i�=i�∧ai j�<0

ai j�

⎞
⎠ .

Again, given the definition of N and α, this implies w(t+1)
j� > α > w(t+1)

j for all j �= j�. As a
consequence,

y(t+1)
j� =

(
w(t)

j�

∑m
k=1 y(t)

k w(t)
k

)
y(t)

j�

>

(
w(t)

j�

∑m
k=1 y(t)

k w(t)
j�

)
y(t)

j�

= y(t)
j�

Having shown that both
(

x(t)
i�

)
t

and
(

y(t)
j�

)
t

are monotonically increasing (Equations 34 – 35),

and given that they are bounded between 0 and 1, it follows that they converge to some value. Let
x̄ = limt→∞ x(t)

i� . We used Lemma 2 to define ηε > 0 such that ηε < x(0)
i (among other inequalities).

This clearly implies x̄ > 0, as
(

x(t)
i�

)
t
is monotonically increasing. We also have that

x(t+1)
i�

x(t)
i�

=
u(t)

i�

∑n
k=1 u(t)

k x(t)
k

≥ u(t)
i�

u(t)
i� x(t)

i� +α
(

1− x(t)
i�

)

= 1+

(
u(t)

i� −α
)(

1− x(t)
i�

)
u(t)

i� x(t)
i� +α

(
1− x(t)

i�

) .
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But limt→∞
x(t+1)

i�

x(t)
i�

= 1, and therefore

lim
t→∞

(
u(t)

i� −α
)(

1− x(t)
i�

)
u(t)

i� x(t)
i� +α

(
1− x(t)

i�

) = 0

which implies

lim
t→∞

(
u(t)

i� −α
)(

1− x(t)
i�

)
= 0.

Finally, Equations 30 and 33 imply that u(t)
i� − α >

ai� j�

2 − α
2 > 0. As a consequence

limt→∞ x(t)
i� = 1. The proof that y(t)

j� also converges to 1 is similar and is omitted for brevity. It

follows that x(t)
i and y(t)

j converge to 0 for all i �= i� and for all j �= j�.

Theorem 2 shows that CCEAs will converge to the global optimum in domains with a unique
such optimum, if set appropriately and if given enough resources. This proves that the earlier claims
of uncontrolled drift to suboptimal solutions, as reported in Wiegand (2004), were entirely due to the
use of a formal model that employed a simplified fitness assessment mechanism. The term “enough”
is used here to indicate two types of resources that CCEAs need: large populations to explore the
space (the populations are in fact assumed to be infinite in our formal model, for simplicity), and
large numbers of collaborators to provide accurate fitness estimates for all populations. This paper
does not go into great depths with respect to the requirement for large populations. As for the second
requirement, Section 4.1 analyzes the impact of the number of collaborators onto the performance
of the CCEA.

Observe also that Theorem 2 does not cover domains with multiple optima, such as the Penalty
domain discussed in Section 3. Next, we use a visualization technique to study the impact of
lenience onto cooperative coevolutionary algorithms as applied to domains with one optimum, as
well as to domains with multiple global optima.

4.1 Basins of Attraction due to Estimations

This section describes an intuitive way to visualize the impact of improved estimates on the perfor-
mance of the system. Given specific initial populations, the EGT model is completely deterministic.
As shown by Wiegand (2004), the populations are expected to converge to Nash equilibria in the
payoff matrix. As a result, it is straightforward to provide two-dimensional visualizations of the
basins of attraction for different Nash equilibria when each population contains only two geno-
types: the two-dimensional location of a pixel uniquely encodes the initial ratios of one of the
genotypes for each population, and the color of the pixel specifies the equilibrium to which the
system converges after repeated iteration (see Panait et al., 2004, for details).

However, such simple problem domains present a limited range of challenges to cooperative
coevolutionary algorithms. This section will instead illustrate the basins of attraction of Nash equi-
libria in two 3×3 coordination games: Climb and Penalty. This domains can stress the challenges
posed by poor estimates of fitness, as discussed in Section 3.

Given that fitness proportional selection works properly only when all individuals have positive
fitness, we add 30 to all values in the Climb payoff matrix, and we add 10 to all values in the Penalty
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Figure 2: The projection of Δ3 × Δ3 to [0,1]2. (a): The projection divides the simplex Δ3 into
six equal-area triangles; arrows show the direction for sorting points in each area. (b):
Visualization of the cartesian product of two simplexes.

payoff matrix. In contrast, in the next Section (Section 5), all experiments will employ the original
payoff matrices.

We apply the EGT model in Equations 18 – 21 to each of these two problem domains. The
model is iterated for 100000 generations or until the proportion of one action in each population
exceeds a threshold of 1−10−10. A specific color identifies each of the possible end results (Nash
equilibria). For consistency, black dots always indicate convergence to a suboptimal solution, while
white and grey dots indicate convergence to global optima. The projection of the Δ3×Δ3 is detailed
next.

The search space (Δ3) of the first population is projected along the vertical axis, while that of the
second population is projected along the horizontal axis. The objective of this process is to group
together regions of the space of initial populations that are expected to converge to the same Nash
equilibrium. The projection of Δ3 to one dimension starts by dividing it into six equal-area triangles,
as shown in Figure 2a. Initial populations in areas 1 – 2 have a majority of 1s in the population, and
similarly areas 3 – 4 and 5 – 6 have majorities of 2s and 3s. If i < j, all initial populations in area i are
projected before those in area j. Inside each area, initial populations are ordered lexicographically
in the direction of the arrow. More specifically, in regions 1 – 2, the sorting is done primarily on p1,
and secondarily on p2; for 3 – 4, p2 and p3; for 5 – 6, p3 and p1. Even-numbered regions are sorted
ascending and odd-numbered regions are sorted descending.

We sample 216 initial populations in the simplex: the six areas in Figure 2a are each divided
into six triangles, and each of them is further divided into six more triangles. The center of each
resulting triangle corresponds to an initial population. We add random noise distributed uniformly
between −0.00005 and 0.00005 to reduce certain artifacts due to identical distributions of the two
populations (see the discussion at the end of this section about the thin diagonal line in Figure 4).
The sampling also does not cover initial populations on the edges or vertexes of the simplex, but the
probability that an evolutionary algorithm starts from those initial populations is negligibly small.
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Figure 3: Basins of attraction for CCEA in the Climb problem domain for cooperative coevolution
with 1, 3, 5 and 7 collaborators per population. White and black mark the basins of
attraction for the (1,1) and (2,2) equilibria, respectively.

The right image in Figure 2 is an example of the resulting projection of (Δ3)2 onto 2-D. Thanks
to the sorting described above, certain regions reflect majority-1, majority-2, and majority-3 regions;
and borders between those regions are the mixture of the two regions. Dark lines in this figure show
locations that have high ratios of 1s, 2s, or 3s in one or the other population.

First, Figure 3 visualizes the impact of improved estimates due to increased numbers of collab-
orators for each population (to parallel Theorem 2). The images shows the basins of attraction in
the Climb coordination game. Observe that the difficulty of the problem domain decreases as each
population is provided with more accurate estimates for the fitness of individuals. When using a
single collaborator, it appears that the coevolutionary search will find the optimum if at least one
of the populations starts with a large number of 1s. Even in this case, the system is most likely
to converge to the global optimum if the ratio of 2s is relatively low. As each population gets a
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Figure 4: Basins of attraction for CCEA in the Penalty problem domain for cooperative coevolution
with 1, 3, 5 and 7 collaborators per population. White, black, and light grey mark the
basins of attraction for the (1,1), (2,2), and (3,3) equilibria, respectively.

better estimate of fitness (via an increased number of collaborators), the basin of attraction for the
suboptimal equilibrium reduces to areas where at least one of the initial populations has a very large
proportion of 2s or 3s: the more collaborators are used, the larger the proportion of 2s or 3s required
to still converge to the sub-optimum.

Figure 4 presents the basins of attraction in the Penalty game. Note that the Penalty game has
two global optima and thus does not fit the hypothesis of the formal proof in Theorem 2. The basins
of attraction illustrated in Figure 4 indicate that lenient learners exhibit good performance in some
games with multiple global optima as well. What precise characteristics of the coordination game
pose difficulties to lenient learners is the focus of ongoing analysis.

Observe that the two global optima cover most of the space in Figure 4 even when a single
collaborator is used; the suboptimal equilibria covers mainly areas where at least one of the pop-
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ulation started with a high percentage of 2s, and the other population has the 1s and 3s equally
distributed—this increases the percentage of miscoordinations. As the number of collaborators is
increased, the basin of attraction for the (2,2) point reduces to only areas where both populations
start with almost solely 2s. The visualization of the basins of attraction suggests that Penalty is a
much easier coordination game than Climb. Note also the thin diagonal line in the top-left graph of
Figure 4. Interestingly, this is due to the fact that if the proportion of 1s in one population is about
equal to the proportion of 3s in the other population, there are frequent miscoordinations that impact
on the expected reward for these actions as estimated by the learners, and the system converges to
the suboptimal (2, 2) equilibrium.

The visualization of the basins of attraction to Nash equilibria provided an intuitive approach
to grasping the impact that lenience has onto cooperative coevolutionary algorithms. Figures 3 – 4
showed that the number of trajectories for CCEAs that converge to suboptimal solutions decreases
significantly across both problem domains, as the level of lenience increases. Next, we apply this
visualization technique to show that lenience is not specific to only cooperative coevolution, but it
can be used to improve the performance of other multiagent learning algorithms as well.

5. Evolutionary Game Theory Models for Lenient Multiagent Q-Learning

The RD model in Equations 14–17 assumes that the agent will update the utility of an action based
on the average reward it expects to receive for that action. This approach is therefore similar to the
one used by the EGT model of cooperative coevolutionary algorithms in Equations 5–8. As argued
in Section 3 and demonstrated in Section 4 (for cooperative coevolutionary algorithms only), using
the average reward usually results in poor estimates for the quality of actions, causing potential
attraction to towards suboptimal solutions.

To remedy this situation, we extend the RD model such that each learner ignores lower rewards
to improve its estimate. The key to this extension is in Theorem 1 in Section 3. The following RD
model is a straightforward combination of these previous results:

ui =
m

∑
j=1

ai jy j

((
∑k:aik≤ai j

yk

)N−
(

∑k:aik<ai j
yk

)N
)

∑k:aik=ai j
yk

, (36)

wj =
n

∑
i=1

ai jxi

((
∑k:ak j≤ai j

xk

)N
−
(

∑k:ak j<ai j
xk

)N
)

∑k:ak j=ai j
xk

, (37)

dxi
dt

xi
=

α
τ

(
ui−∑

k

xkuk

)
+α∑

k

xk ln
xk

xi
, (38)

dy j

dt

y j
=

α
τ

(
wj−∑

k

ykwk

)
+α∑

k

yk ln
yk

y j
. (39)

Note that the two equations describing the update rule for the two learners have not changed.
What has changed, however, is the expected reward that is used to update the utilities of actions
Equations 36 and 37). As expected, observe that the two RD models described by Equations 14–17
and 36–39 are equivalent when N = 1 (that is, when the agents do not ignore any low rewards). For
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Figure 5: Basins of attraction in the Climb problem domain for multiagent Q-learning that updates
the utility of an action based on the maximum of 1, 3, 5 and 7 of the rewards received
when selecting that action. White and black mark the basins of attraction for the (1,1) and
(2,2) equilibria.

this reason, the setting N = 1 constitutes a benchmark representing the formal model for traditional
Q-learners.

5.1 Basins of Attraction to Nash Equilibria for Multiagent Q-Learning

Given that the RD model provides differential equations, the next state of the concurrent learning
system can be approximated by assuming the variations in the derivative are small over short periods
of time θ:
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Figure 6: Basins of attraction in the Penalty problem domain for multiagent Q-learning that updates
the utility of an action based on the maximum of 1, 3, 5 and 7 of the rewards received
when selecting that action. White, black, and light grey mark the basins of attraction for
the (1,1), (2,2), and (3,3) equilibria, respectively.

x′i = xi +θ
dxi

dt
,

y′j = y j +θ
dy j

dt
.

Experiments used the following settings: θ = 0.001, the learning rate α = 0.1, and the exploration
parameter τ = 0.01. We iterate the RD model 100000 times, or until both agents have a probability
exceeding 1−10−10 to select one of their actions over the other two.

The basins of attraction for the optimal (1,1) (both play their first action) and suboptimal (2,2)
(both play their second action) equilibria in the Climb domain are visualized in Figure 5. Given
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Figure 7: Basins of attraction in the Climb problem domain for cooperative coevolution and multia-
gent reinforcement learning, both ignoring all but the maximum of 1, 3, 5, and 7 rewards.
White and black mark the basins of attraction for the (1,1) and (2,2) equilibria.

that the new RD model reduces to the one described in Tuyls et al. (2006) when N = 1, the basin of
attraction in the top-left graph suggests that a straightforward extension of Q-learning to multiagent
domains may converge to the suboptimal solution when started from many initial conditions. As
the learners ignore more of the lower rewards, they improve their estimates for the quality of their
actions, and are thus more likely to converge to the global optimum. The same behavior can be
observed in the Penalty domain, as illustrated in Figure 6.

Note that multiagent Q-learning improves with more lenience in nearly an identical (but not
quite identical) fashion to coevolution. Figure 5 shows the basins of attraction in the Climb coor-
dination game. Once again, the images show that the difficulty of the problem domain decreases
as each population is provided with more accurate estimates for the utilities of actions. Similarly,
Figure 6 presents the basins of attraction in the Penalty game. As was the case for coevolution,
increasing numbers of collaborators are able to essentially eliminate convergence to the subopti-
mal equilibrium. Also, Q-learning likewise has a thin diagonal line of suboptimal convergence in
the top-left graph of Figure 6, which once again is due to one agent selecting action 1 in equal
proportions to the second agent selecting action 3, and vice-versa.

6. Discussion and Conclusions

At first glance one would think that coevolution and multiagent Q-learning, being fairly different
algorithms, with fairly different settings and aimed at different kinds of problems, would respond
differently in these scenarios. However, not only do they perform nearly identically in the “classic”
case (no lenience), but they also respond in nearly the same fashion when subjected to varying
degrees of lenience as well. To highlight this similarity, Figures 7 and 8 sample the diagonal graphs
in Figures 3 – 5 and Figures 4 – 6: these are the cases where both agents ignore the same number
of lower rewards. This is not really that surprising however: as the theoretical analysis has shown,
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Figure 8: Basins of attraction in the Penalty problem domain for cooperative coevolution and multi-
agent reinforcement learning, both ignoring all but the maximum of 1, 3, 5, and 7 rewards.
White, black, and light grey mark the basins of attraction for the (1,1), (2,2), and (3,3)
equilibria, respectively.

the dynamics of these equations is quite similar; so much so, indeed, that each of these respective
communities would do well to more closely examine the existing work of the other.

Keep in mind that both evolutionary algorithms and Q-learning are guaranteed to converge to
the global optimum in single-agent scenarios, if properly set and if given enough resources. We have
argued that the attraction of these algorithms towards suboptimal solutions is caused primarily by
poor estimates, and that it can be dealt with if learners simply ignore lower rewards. Figures 7 and 8
suggest that if the multiagent learning algorithm is heading towards suboptimal solutions, it is usu-
ally caused by the estimation procedure for the quality of an action of the learning algorithm. These
algorithms do not start to suffer from undesirable pathologies just because they are used in multia-
gent scenarios. Rather, poor estimates are the primary cause for the suboptimal solutions. Ignoring
lower rewards improves the learners’ estimate for the quality of their behaviors, resulting in an
increased probability that the multiagent learning system will converge to the global optimum.

In summary, this paper presented an extended formal model for a new class of multiagent learn-
ing algorithms, namely those involving lenient agents that ignore low rewards observed upon per-
forming actions in the environment. The paper also illustrated the basins of attraction to different
optimal and suboptimal Nash equilibria, and showed how intuitive graphs might reveal valuable
information about the properties of multiagent learning algorithms that was lacking in the sum-
marizations of empirical results. The paper provided theoretical support for previous reports that
lenience helps learners achieve higher rates of convergence to optimal solutions, and also proved
that properly-set lenient learners are guaranteed to converge to the Pareto-optimal Nash equilibria
in coordination games. Finally, the results strengthened the use of Evolutionary Game Theory to
study the properties of multiagent reinforcement learning algorithms.

This work has also opened many avenues of future research. We plan to extend these formal
models to help analyze the properties of multiagent learning algorithms in more complex domains,
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such as those involving more actions and players, stochasticity, multiple states, and partial observ-
ability. We hope that this formal analysis will provide the foundation for new learning algorithms
guaranteed to converge to optimal solutions.
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Abstract

In this paper, we propose a recursive method for structural learning of directed acyclic graphs
(DAGs), in which a problem of structural learning for a large DAG is first decomposed into two
problems of structural learning for two small vertex subsets, each of which is then decomposed
recursively into two problems of smaller subsets until none subset can be decomposed further. In
our approach, search for separators of a pair of variables in a large DAG is localized to small subsets,
and thus the approach can improve the efficiency of searches and the power of statistical tests
for structural learning. We show how the recent advances in the learning of undirected graphical
models can be employed to facilitate the decomposition. Simulations are given to demonstrate the
performance of the proposed method.

Keywords: Bayesian network, conditional independence, decomposition, directed acyclic graph,
structural learning

1. Introduction

Directed acyclic graphs (DAGs), also known as Bayesian networks, are frequently used to represent
independencies, conditional independencies and causal relationships in a complex system with a
large number of random variables (Lauritzen, 1996; Cowell et al., 1999; Pearl, 2000; Spirtes et al.,
2000). Structural learning of DAGs from data is very important in applications to various fields,
such as medicine, artificial intelligence and bioinformatics (Jordan, 2004; Engelhardt et al., 2006).

There have been two primary methods for learning the structures of DAGs from data. The
search-and-score method defines a score for each possible structure based on the goodness-of-fit of
the structure to data and the complexity of the structure, and then it tries to search the best structure
over all possible structures (Cooper and Herskovits, 1992; Heckerman et al., 1995; Chickering,
2002; Friedman and Koller, 2003). The constraint-based method evaluates the presence or absence
of an edge by testing conditional independencies among variables from data. The tests are usually
done by using statistical or information-theoretic measures (Pearl, 2000; Spirtes et al., 2000; Cheng
et al., 2002). There have also been hybrid methods. For example, Tsamardinos et al. (2006) takes
advantage of both approaches. In a constraint-based method, search for separators of vertex pairs is a
key issue for orientation of edges and for recovering DAG structures and causal relationships among
variables. To recover structures of DAGs, Verma and Pearl (1990) presented the inductive causation
(IC) algorithm which searches for a separator S of two variables, say u and v, from all possible
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variable subsets such that u and v are independent conditionally on S. A systematic way of searching
for separators in increasing order of cardinality was proposed by Spirtes and Glymour (1991). The
PC algorithm limits possible separators to vertices that are adjacent to u and v (Pearl, 2000; Spirtes et
al., 2000). Kalisch and Bühlmann (2007) showed that the PC algorithm is asymptotically consistent
even when the number of vertices in a DAG grows at a certain rate as the sample size increases.

In this paper, we propose a recursive algorithm in which a problem of structural learning for
a large DAG is split recursively into problems of structural learning for small vertex subsets. Our
algorithm can be depicted as a binary tree whose top node is the full set of all vertices or variables
and whose other nodes are proper subsets of the vertex set at its parent node. The algorithm mainly
consists of two steps: the top-down step and the bottom-up step. First at the top-down step, the full
set of all variables at the top is decomposed into two small subsets, each of which is decomposed
recursively into two smaller subsets until each node cannot be decomposed further at the bottom
of the tree. At each step, the decomposition is achieved by learning an undirected graph known as
independence graph for a variable subset. Next at the bottom-up step, subgraphs (called skeletons)
of leaf nodes are first constructed, and then a pair of child subgraphs are combined together into
a large subgraph at their parent node until the entire graph is constructed at the top of the tree.
In the algorithm, search for separators in a large graph is localized to small subgraphs. Statistical
test is used to determine a skeleton as in the IC algorithm (Verma and Pearl, 1990) and the PC
algorithm (Spirtes, 2000). By recursively decomposing the full variable set into small subsets, this
algorithm can improve the efficiency of search for separators in structural learning, and it can also
make statistical tests more powerful. We also discuss that several methods of learning undirected
graphical models (Castelo and Roverato, 2006; Schmidt et al., 2007) can be used to facilitate the
decomposition. Finally, we provide simulation results to show the performance of our method.

Section 2 gives notation and definitions. In Section 3, we first present the main theoretical
results and then discuss the realization of the algorithm in detail, and we also introduce how the
recent advances in various related fields can be used to improve the proposed method. In Section
4, we first use an example to illustrate our approach for learning the equivalence class of a DAG in
detail, then we give numerical evaluations of its performance for several networks, and finally we
discuss the computational complexity of our recursive algorithm. Conclusion is given in Section 5.
The proofs of our main results are presented in Appendix.

2. Notation and Definitions

Let ~GV = (V,~EV ) denote a DAG where V = {X1, . . . ,Xn} is the vertex set and ~EV the set of directed
edges. A directed edge from a vertex u to a vertex v is denoted by 〈u,v〉. We assume that there is
no directed loop in ~GV . We say that u is a parent of v and v is a child of u if there is a directed
edge 〈u,v〉, and denote the set of all parents of a vertex v by pa(v) and the set of all children of
v by ch(v). We say that two vertices u and v are adjacent in ~GV if there is an edge connecting
them. A path l between two distinct vertices u and v is a sequence of distinct vertices in which
the first vertex is u, the last one is v and two consecutive vertices are connected by an edge, that
is, l = (c0 = u,c1, . . . ,cm−1,cm = v) where 〈ci−1,ci〉 or 〈ci,ci−1〉 is contained in ~EV for i = 1, . . . ,m
(m ≥ 1), and ci 6= c j for all i 6= j. We say that u is an ancestor of v and v is a descendant of u if
there is a path between u and v in ~GV and all edges on this path point at the direction toward v. The
set of ancestors of v is denoted as an(v), and we define An(v) = an(v)∪{v}. A path l is said to be
d-separated by a set of vertices Z if
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(1) l contains a “chain”: u→ v→ w or a “fork” u← v→ w where v is in Z, or

(2) l contains a “collider” u→ v← w where v is not in Z and no descendant of v is in Z.

Two disjoint sets X and Y of vertices are d-separated by a set Z if Z d-separates every path from any
vertex in X to any vertex in Y ; We call Z a d-separator of X and Y . In ~GV , a collider u→ v← w is
called a v-structure if u and w are non-adjacent in ~GV .

Let ḠV = (V, ĒV ) denote an undirected graph where ĒV is a set of undirected edges. An undi-
rected edge between two vertices u and v is denoted by (u,v). An undirected graph is called com-
plete if any pair of vertices is connected by an edge. Define a moral graph Ḡm

V for a DAG ~GV to
be an undirected graph Ḡm

V = (V, ĒV ) whose vertex set is V and whose edge set is constructed by
marrying parents and dropping directions, that is, ĒV = {(u,v) : 〈u,v〉 or 〈v,u〉 ∈ ~EV} ∪ {(u,v) :
(u,w,v) forms a v-structure} (Lauritzen, 1996). An undirected edge added for marrying parents is
called a moral edge.

For an undirected graph, we say that vertices u and v are separated by a set of vertices Z if each
path between u and v passes through Z. We say that two disjoint vertex sets X and Y are separated
by Z if Z separates every pair of vertices u and v for any u ∈ X and v ∈ Y . We call (A,B,C) a
decomposition of ḠV if

(1) A∪B∪C = V , and

(2) C separates A and B in ḠV .

Note that the above decomposition does not require that the separator C is complete, which is
required for weak decomposition defined by Lauritzen (1996).

For a set K ⊆ V , we say that an undirected graph ḠK is an undirected independence graph
for a DAG ~GV if that a set Z separates X and Y in ḠK implies that Z d-separates X and Y in
~GV . An undirected independence graph is minimal if the proper subgraph obtained by deleting
any edge is no longer an undirected independence graph. The moral graph Ḡm

V is the minimal
undirected independence graph for ~GV with K = V (Lauritzen, 1996). It can also be obtained by
connecting each vertex u with all vertices in its Markov blanket Mb(u), which is the minimal set
by which u are d-separated from the remaining set in V (that is, V \ [Mb(u)∪{u}]). For a subset
K ⊆ V , the Markov blanket for a vertex u ∈ K can be defined similarly, that is, it is the mini-
mum set that is contained in K and d-separates u from the remaining set in K. When K = V ,
it is easy to verify Mb(u) = pa(u)∪ ch(u)∪ pa(ch(u)). Define the local skeleton for a variable
set K ⊆ V with respect to ~GV as an undirected graph L̄K(K,E) where K is the vertex set and
E = {(u,v) : no subset S of K d-separates u and v in ~GV} is the edge set. Note that though both
minimal undirected independence graphs and local skeletons are undirected graphs and defined on
the same vertex subset, they may be different. According to the definition of a minimal undirected
independence graph, the absence or presence of an edge between u and v in the minimal undirected
independence graph over K ⊆ V depends on whether its two vertices are d-separated by the re-
maining set K \ {u,v} in ~GV , while an edge between u and v in the local skeleton is determined
by whether there exists a subset of K that can d-separate u and v in ~GV . Thus the edge set of the
minimal undirected independence graph contains the edge set of the local skeleton.

The global skeleton is an undirected graph obtained by dropping the directions of the edges
in a DAG, which coincides the local skeleton for K = V . Two DAGs over the same variable set
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V

* +

,

(d) A local skeleton

Figure 1: A directed graph, a moral graph, a decomposition and a local skeleton.

are called Markov equivalent if they induce the same conditional independence restrictions. Two
DAGs are Markov equivalent if and only if they have the same global skeleton and the same set of
v-structures (Verma and Pearl, 1990). An equivalence class of DAGs consists of all DAGs which are
Markov equivalent, and it is represented as a partially directed graph (PDAG) where the directed
edges represent arrows that are common to every DAG in the Markov equivalence class, while
an undirected edge represents that the edge is oriented one way in some member of the Markov
equivalence class, and is oriented the other way in some other member. Therefore the goal of
structural learning is to construct a PDAG to represent the equivalence class.
Example 1. Consider the DAG in Figure 1 (a). b→ e← c, b→ e← g, c→ f ← d, c→ e←
g and f → h ← g are v-structures. A path l = (c,a,d) is d-separated by vertex a, while the
path l′ = (c, f ,h,g) is d-separated by an empty set. We have an(e) = {a,b,c,g} and An(e) =
{a,b,c,g,e}. The Markov blanket of c is Mb(c) = {a,b,d,e, f ,g}, which d-separates c and the
remaining set {h}. The moral graph Ḡm

V is given in Figure 1 (b), where edges (b,c), (b,g), (c,g),
(c,d) and ( f ,g) are moral edges. Note that the set {c,d} separates {a} and {b,e, f ,g,h} in Ḡm

V ,
thus ({a},{b,e, f ,g,h},{c,d}) forms a decomposition of the undirected graph Ḡm

V , the decomposed
undirected independence subgraphs for {a,c,d} and {b,c,d,e, f ,g,h} are shown in Figure 1 (c).
The graph in Figure 1 (d) is the local skeleton L̄K(K,E) for K = {a,c,d} because we have c and d
are d-separated by {a} in ~GV . Note that the minimal undirected independence graph for {a,c,d}
in Figure 1(c) coincides with its local skeleton in Figure 1 (d), which does not hold in general. For
example, the local skeleton for K = {c,e,g} does not have the edge (c,g), while the corresponding
minimal undirected independence graph is complete.

Given a DAG ~GV , a joint distribution or density of variables X1, . . . ,XN is

P(x1, · · · ,xN) =
N

∏
i=1

P(xi|pai),
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where P(xi|pai) is the conditional probability or density of Xi given pa(Xi) = pai. The DAG ~GV

and the joint distribution P are said to be compatible (Pearl, 2000) and P obeys the global directed
Markov property of ~GV (Lauritzen, 1996). Let X Y denote the independence of X and Y , and
X Y |Z the conditional independence of X and Y given Z. In this paper, we assume that all inde-
pendencies of a probability distribution of variables in V can be checked by d-separations of ~GV ,
called the faithfulness assumption (Spirtes et al., 2000), which means that all independencies and
conditional independencies among variables can be represented by ~GV . As a consequence, we also
use to denote the d-separation in DAGs.

3. A Recursive Method for Structural Learning of a DAG

In this section, we first present theoretical results in this paper and then we apply these results to
structural learning of a DAG and show how the problem of searching for d-separators over the
full set of all vertices can be recursively split into the problems of searching for d-separators over
smaller subsets of vertices. We also discuss how to learn from data the undirected independence
graphs which are used to achieve the recursive decomposition at each recursive step.

3.1 Theoretical Results and Recursive Algorithm for Structural Learning

Below we first give two theorems based on which we propose the recursive algorithm for structural
learning of DAGs.
Theorem 1. Suppose that A B|C in a DAG ~GV . Let u ∈ A and v ∈ A∪C. Then u and v are
d-separated by a subset of A∪B∪C if and only if they are d-separated by a subset of A∪C.

According to Theorem 1, we can see that all edges falling in A or crossing A and C in the local
skeleton L̄(K,E) with K = A∪C ∪B can be validly recovered from the marginal distribution of
variables in A∪C. Note that such a local skeleton over K can be used to recover the entire DAG
over V even if there may not exist a marginalized DAG over K (Richardson and Spirtes, 2002).
Theorem 2. Suppose that A B|C in a DAG ~GV . Let u and v be two vertices both of which are
contained in the separator C. Then u and v are d-separated by a subset of A∪B∪C if and only if
they are d-separated by a subset of A∪C or by a subset of B∪C.

According to Theorem 2, the existence of an edge falling into the separator C in the local skele-
ton L̄(K,E) with K = A∪C∪B can be determined from the marginal distribution of A∪C or the
marginal distribution of B∪C.

Note that the union set K = A∪B∪C in Theorems 1 and 2 may be a subset of the full set V
(that is, K ⊆ V ), and they are more general results than Theorem 1 presented in Xie et al. (2006),
which requires that the union set K equals V (that is, K = A∪B∪C = V ). These two theorems
can guarantee that, for any partition (A,B,C) of a vertex set K ⊆ V that satisfies A B|C, two non-
adjacent vertices u and v in K are d-separated by a subset S of K in ~GV if and only if they are
d-separated by a subset S′ of either A∪C or B∪C in ~GV . Therefore, we have the following result.
Theorem 3. Suppose that A B|C in a DAG ~GV . Then the local skeleton L̄K = (K,EK) can
be constructed by combining local skeletons L̄A∪C = (A∪C,EA∪C) and L̄B∪C = (B∪C,EB∪C) as
follows:

(1) the vertex set K = A∪C∪B and

(2) the edge set EK = (EA∪C ∪EB∪C)\{(u,v) : u,v ∈C and (u,v) 6∈ EA∪C ∩EB∪C}.
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Based on these theorems, we propose a recursive algorithm for learning the structure of a DAG.
Our algorithm has a series of operations on a binary tree. The top node of the tree is the full set
of all variables, the leaves of the tree are subsets of variables which cannot be decomposed, and
the variable set of each parent node in the binary tree is decomposed into two variable sets of its
two children. Our algorithm consists of two steps: the top-down step for decomposing the full
set of all variables into subsets as small as possible, and the bottom-up step for combining local
skeletons into the global skeleton. At the top-down step, a variable set is decomposed into two
subsets whenever a conditional independence A B|C is found, and this decomposition is repeated
until no new decomposition can be found. The decomposition at each step is done by learning an
undirected independence graph over the vertex subset at the tree node, which will be discussed in
Subsection 3.3. At the bottom-up step, two small skeletons are combined together to construct a
larger skeleton, and the combination is repeated until the global skeleton is obtained. The entire
process is formally described in the following algorithm.
Main Algorithm (The recursive decomposition for structural learning of DAGs)

1. Input: a target variable set V ; observed data D.

2. Call DecompRecovery (V , L̄V ) to get the global skeleton L̄V and a separator list S .

3. For each d-separator Suv in the separator list S , orient the local skeleton u−w− v as a v-
structure u → w ← v if u−w− v (Note no edge between u and v) appears in the global
skeleton and w is not contained in the separator Suv.

4. Apply Meek’s rule (Meek, 1995) to obtain a DAG in the Markov equivalence class: we orient
other edges if each opposite of them creates either a directed cycle or a new v-structure. The
Markov equivalence class can be obtained by collecting all possible DAGs.

5. Output: the equivalence class of DAGs.

PROCEDURE DecompRecovery (K, L̄K)

1. Construct an undirected independence graph ḠK ;

2. If ḠK has a decomposition (A,B,C)

Then

• For each pair (u,v) of u ∈ A and v ∈ B, save (u,v,Suv = C) to the d-separator list S ;

• DecompRecovery (A∪C, L̄A∪C);

• DecompRecovery (B∪C, L̄B∪C);

• Set L̄K = CombineSubgraphs (L̄A∪C, L̄B∪C)

Else

• Construct the local skeleton L̄K directly (such as using the IC algorithm):

Start with a complete undirected graph over K.

For any vertex pair (u,v) in the set K, if there exists a subset Suv of K \{u,v} such that
u v|Suv, then delete the edge (u,v) and save (u,v,Suv) to the d-separator list S .
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3. RETURN (L̄K).

FUNCTION CombineSubgraphs (L̄U , L̄V )

1. Combine L̄U = (U,EU) and L̄V = (V,EV ) into an undirected graph L̄U∪V = (U ∪V,EU∪V )
where

EU∪V = (EU ∪EV )\{(u,v) : u,v ∈U ∩V and (u,v) 6∈ EU ∩EV};

2. Return (L̄U∪V ).

As shown in the main algorithm, the equivalence class of ~GV can be constructed by first calling
DecompRecovery (V , L̄V ) to get the skeleton, then recover all v-structures using the d-separator list
S to orient the edges in L̄V , and finally orient other edges as much as possible using the rule in Meek
(1995). Since a decomposition (A,B,C) of the undirected independence graph ḠK implies A B|C,
it is obvious by Theorems 1 and 2 that our algorithm is correct.

A binary decomposition tree is used in DecompRecovery to describe our algorithm simply and
clearly. In our implementation, we use a junction tree to decompose a graph into several subgraphs
simultaneously and to find the corresponding separators. It is known that the junction tree may
not be unique, and thus we may have multiple decompositions. In theory, we prefer to use the
junction tree with the minimum tree width. However, this is known to be an NP hard problem
(Arnborg et al., 1987); therefore, we may use some sub-optimal method to consruct a junction tree
for an undirected graph (Jensen and Jensen, 1994; Becker and Geiger, 2001). For example, two
most well-known algorithms are the lexicographic search (Rose et al., 1976) and the maximum
cardinality search (Tarjan and Yannakakis, 1984), whose computational expenses are O(ne) and
O(n + e) respectively, where e is the number of edges in the graph. Especially, the latter method
is used in our implementation. According to our experiences, the junction tree obtained by either
method usually leads to very efficient decompositions.

In the recursive algorithm, statistical tests are used only at the top-down step but not at the
bottom-up step. Thus the data sets used for statistical tests can be reduced into marginal data sets
with decomposition of graphs. In this way, we only need to pass through small marginal data sets
for statistical tests of subgraphs and need not pass through the full data set for every statistical test.
Other algorithms (such as the PC algorithm) can be used to replace the IC algorithm to improve the
performance of constructing the local skeleton L̄K in DecompRecovery.

3.2 Tests of Conditional Independence

Conditional independence test of two variables u and v given a set C of variables is required at Step 1
and the ‘Else’ part of Step 2 of Procedure DecompRecovery to construct an undirected independence
graph and a local skeleton respectively. Null hypothesis H0 is u v|C and alternative H1 is that H0

may not hold. Generally we can use the likelihood ratio test statistic

G2 =−2log
sup{L(θ|D) under H0}

sup{L(θ|D) under H1}
,

where L(θ|D) is the likelihood function of parameter θ with observed data D. Under H0, the statis-
tic G2 asymptotically follows the χ2 distribution with d f degrees of freedom being equal to the
difference of the dimensions of parameters for the alternative and null hypothesis (Wilks, 1938).
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Let Xk be a vector of variables and N be the sample size. For the case of a Gaussian distribution,
the test statistic for testing Xi X j|Xk can be simplified to

G2 = −N× log(1− corr2(Xi,X j|Xk))

= N× log
det(Σ̂{i,k}{i,k})det(Σ̂{ j,k}{ j,k})

det(Σ̂{i, j,k}{i, j,k})det(Σ̂k,k)
,

which has an asymptotic χ2 distribution with d f = 1. Actually, the exact null distribution or a better
approximate distribution of G2 can be obtained based on Bartlett decomposition, see Whittaker
(1990) for more detailed discussion on this.

For the discrete case, let Nm
s be the observed frequency in a cell of Xs = m where s is an index

set of variables and m is a category of variables Xs. For example, Nabc
i jk denotes the frequency of

Xi = a, X j = b and Xk = c. The G2 statistic for testing Xi X j|Xk is then given by

G2 = 2 ∑
a,b,c

Nabc
i jk log

Nabc
i jk Nc

k

Nac
ik Nbc

jk

,

which is asymptotically distributed as a χ2 distribution under H0 with degree of freedom

df = (#(Xi)−1)(#(X j)−1) ∏
Xl∈Xk

#(Xl),

where #(X) is the number of categories of variable X .
For discrete data, the size of conditional variable sets cannot be so large that independence tests

become inefficient. Thus the algorithm restricts the cardinality of conditioning sets. There are many
methods that can be used to find a small conditioning set, such as a forward selection of variables.
With the recursive decomposition, independence tests are localized to smaller and smaller subsets
of variables, and thus the recursive algorithm has higher power for statistical tests.

3.3 Constructing Undirected Independence Graphs

In this subsection, we discuss how to construct undirected independence graphs at Step 1 of Proce-
dure DecompRecovery. At first we call DecompRecovery with the full set V as the input argument,
and construct an undirected independence graph ḠV at Step 1. Then at each recursive calling, to
construct a local undirected independence graph ḠK with a subset K (say K = A∪C) as the input
argument, we shall present a theoretical result based on which we only need to check edges over the
separator C without need of testing conditional independencies between any pair of variables in A
and between any pair of variables crossing A and C.

To construct an undirected independence graph ḠV , we start with a complete undirected graph,
and then we check an edge between each pair of vertices u and v. The edge (u,v) is removed if u
and v are independent conditionally on the set of all other variables. For linear Gaussian models, the
undirected graph can be constructed by removing an edge (u,v) if and only if the corresponding en-
try in the inverse covariance matrix is zero (Dempster, 1972; Whittaker, 1990). After decomposing
a graph ḠA∪B∪C into two subsets A∪C and B∪C, we need to construct a local undirected indepen-
dence graph ḠK (say ḠA∪C) at Step 1 of Procedure DecompRecovery. We show in the following
theoretical result that an initial ḠA∪C can be constructed by using all undirected edges contained
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by A∪C in the previous graph ḠA∪B∪C and then only pairs of vertices contained in C need to be
checked via conditional independence tests.
Theorem 4. Suppose that the distribution of V = A∪B∪C is positive and has the conditional
independence A B|C. Then for any u in A and any v in A∪C, we have that u v|[(A∪C)\{u,v}] if
and only if u v|[(A∪B∪C)\{u,v}].

Note that Theorems 1 and 4 are different. The former is used to determine an edge in a DAG,
and the latter is used to determine an edge in an undirected independence graph. According to this
theorem, there exists an edge (u,v) in the minimal undirected independence graph ḠA∪C for u in A
and v in A∪C if and only if there exists an edge (u,v) in the minimal undirected independence graph
ḠA∪B∪C. Thus given an undirected independence graph ḠA∪B∪C obtained in the preceding step, an
undirected independence graph ḠA∪C has the same set of edges as ḠA∪B∪C each of which has at least
one vertex in A, but all of possible edges within the separator C need to be checked for ḠA∪C.

When there is a large number of variables and a small sample size, it is infeasible or statisti-
cally unstable to test an independence between two variables conditionally on all other variables,
and this problem is more serious when variables are discrete. Many current methods for learning
undirected graphical models can also be used in our algorithm. For example, procedures based
on limited-order partial correlations (Wille and Bühlmann, 2004; Castelo and Roverato, 2006) are
rather suitable and can be even used in the case where the number of variables is larger than the
number of samples. Another way of learning undirected independence graphs is to apply current
available Markov blanket learning algorithms. By connecting each vertex with those in its Markov
blanket, an independence graph is then obtained. Indeed, it is neither new nor uncommon to learn
the Markov blanket as either an initial step for learning a DAG or as a special problem of interest.
Koller and Sahami (1996) developed a method for feature selection which employs the concept of
Markov blanket. Margaritis and Thrun (1999) proposed a two-phase algorithm to first identify a
Markov blanket for each variable and then obtain a DAG by connecting vertices in a maximally
consistent way. Tsamardinos et al. (2003) proposed a method that can soundly identify all Markov
blankets and scale-up to a graph with thousands of variables.

Another particular method for learning the undirected independence graph may use Lasso-type
estimators (Tibshirani, 1996; Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Wainwright
et al., 2006). We can apply Lasso method to select a neighborhood set of a vertex which contains the
Markov blanket of the vertex. Schmidt et al. (2007) developed a new method of learning structure
of a DAG. Note that it is not necessary to learn neighborhoods exactly in our algorithm, and there
may be extra edges in our undirected independence graph.

4. Illustration and Evaluation of the Recursive Algorithm

In this section, we first illustrate the recursive algorithm step by step via a concrete example and
then show simulation results to evaluate its performance.

4.1 Illustration of the Recursive Algorithm

In this subsection, we illustrate our recursive algorithm using a concrete example. We suppose in
the following example that conditional independencies can be implemented correctly, that is, each
conditional independence is checked by using the underlying DAG. Therefore the purpose of the
example is simply to illustrate the overall scheme of the recursive algorithm presented in Section
3.1. The performance of conditional independence tests is discussed in the next subsection. We
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compare the recursive algorithm with the decomposition algorithm proposed in Xie et al. (2006), in
which an entire undirected independence graph is first constructed and then it is decomposed into
many small subgraphs at one step instead of recursive steps. We show that, in our algorithm, search
for separators is localized to smaller vertex subsets than those obtained by using the decomposition
algorithm.
Example 1. (Continued) Consider again the DAG ~GV = (V,~EV ) in Figure 1 (a). We call Procedure
DecompRecovery to construct the global skeleton over V . At the top-down step (that is, at the
‘Then’ part of Step 2 in DecompRecovery), we construct the binary tree shown in Figure 2. At the
top of the binary tree, the first decomposition is done by splitting the full vertex set V in G1 (that
is, the moral graph) into two subsets {a,c,d} and {b,c, . . . ,h} with the separator {c,d}. Next we
learn the undirected independence graphs G2 and G3 for the two subsets separately. To construct
the subgraphs G2 and G3, by Theorem 5, we only need to check the edge (c,d) in the separator
{c,d}, and other edges in G2 and G3 can be obtained directly from G1. Repeat this procedure until
no further decomposition is possible. Finally we get the entire binary tree T as shown in Figure 2,
where each leaf node is a complete graph and cannot be decomposed further.

-*

-+ -,

.

/

0

1

2

3

4

5

. 0

1

/

0

1

2

3

4

5

. 0

.

1

/

0

2 40

3

4

5

0

1
3

3

4

5

1

Figure 2: The binary tree T obtained at the top-down step (at ‘Then’ of Step 2).
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Figure 3: The local skeletons obtained at ‘Else’ of Step 2.
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Figure 4: Combinations of local skeletons in Procedure CombineSubgraphs.

Before the bottom-up step (that is, the ‘Else’ part of Step 2 in Procedure DecompRecovery),
for each leaf node K, we construct a local skeleton over K. For each vertex pair (u,v) in K, we
search a separator set Suv in all possible subsets of K \ {u,v} to construct the local skeleton. All
local skeletons of leaf nodes are shown in Figure 3. For example, the vertices c and d are adjacent
in the local skeleton K1 since no vertex set in K1 d-separates them, whereas b and g are non-adjacent
in the local skeleton K2 since an empty set d-separates them in ~GV . At the bottom-up step, calling
Function CombineSubgraphs, we combine the local skeletons from the leaf nodes to the root node
to form the global skeleton, as shown in Figure 4. For example, local skeletons L1 and L2 are
combined to L3, and then L3 and L4 are combined to L5, as shown in Figure 4. Similarly, we get
the local skeleton L6. At the last step, we combine L5 and L6 into the global skeleton. Note that the
edge (c,d) in L5 is deleted at Step 1 of Function CombineSubgraphs since the edge is not contained
in L6. After all the combinations are done, we get the global skeleton in Figure 5. We can see that
the undirected independence graphs and the local skeletons are different as shown in Figure 2 and
Figure 4 respectively and that the former has more edges than the latter.

At Step 2 of Procedure DecompRecovery, we save all separators to the d-separator list S . At
Step 3 of the main Algorithm, we use separators in the list S to recover all v-structures of the DAG.
For example, there is a d-separator {a} in S which d-separates c and d, and there is a structure
c− f − d in the global skeleton L̄V where f is not contained in the separator {a}. Thus we can
orient the structure c− f −d as a v-structure c→ f ← d. Similarly, since an empty set d-separates
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Figure 5: The global skeleton L̄V .
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Figure 6: The recovered equivalence class.

b and g in ~GV , we can orient b− e− g as b→ e← g. After recovering all v-structures, we apply
the orientation rule in Meek (1995) and get the desired equivalence class of ~GV in Figure 6. In
this equivalence class, the undirected edge (a,c) cannot be oriented uniquely because any of its
orientation leads to a Markov equivalent DAG.

Below we compare the recursive algorithm with the decomposition algorithm proposed in Xie
et al. (2006). We show that theoretically the recursive algorithm can decompose the entire graph
into smaller subgraphs than the decomposition algorithm does because the decomposition in the
decomposition algorithm is done only once, whereas the recursive algorithm tries to re-decompose
undirected independence subgraphs at each recursive step. When there are a lot of v-structures in
a DAG, many moral edges can be deleted in construction of a subgraph, and thus the recursive
algorithm is more efficient than the decomposition algorithm. The following example illustrates the
difference of decompositions obtained by these two algorithms.

Example 2. Consider the DAG in Figure 7. By using the decomposition algorithm proposed in Xie
et al. (2006), a ‘d-separation tree’ is built from an undirected independence graph (that is, the moral
graph in this example), and the full variable set is decomposed into three subsets of variables at one
time, see Figure 8 (a). By using the recursive algorithm proposed in this paper, we can decompose
the graph into four subgraphs in Figure 8 (b), which have smaller subsets of variables. This is
because the undirected independence graph over {a,b,c} in Figure 8 (b) is re-constructed and the
edge (b,c) is deleted for b c|a.
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Figure 7: A DAG.
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Figure 8: Comparison of two different algorithms for structural learning.

4.2 Simulation Studies

Below we give numerical examples to evaluate the performance of the recursive algorithm. We first
present simulation results for the ALARM network, which is a medical diagnostic network and is
shown in Figure 9 (Beinlich et al., 1989; Heckerman, 1998). It is a DAG with 37 vertices and 46
edges and it is often used to evaluate performance of learning algorithms. In the following two
subsections, we use the ALARM network to do simulation for the Gaussian case and the discrete
case separately. Next we show simulation results for several other networks in the final subsection.
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Figure 9: The ALARM network.

4.2.1 THE GAUSSIAN CASE

In this subsection, for the underlying DAG of the ALARM network, we generate a sample from a
joint Gaussian distribution using a structural equation model of recursive linear regressions, whose
coefficients are randomly generated from the uniform distribution in the interval (−1.5,−0.5)∪
(0.5,1.5) and the residual variance is 1 for each linear regression. We apply the recursive algorithm
to the generated sample to construct a DAG, and then we compare the underlying DAG with the
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constructed DAG and record the number of extra edges, the number of missing edges and the struc-
tural hamming distance (SHD), where SHD is defined as the total number of operations to verify the
constructed PDAG to the Markov equivalence class of the underlying DAG, and where the opera-
tions may be: add or delete an undirected edge, and add, remove or reverse an orientation of an edge
(Tsamardinos et al., 2006). The likelihood ratio test introduced in Subsection 3.2 is used to test the
partial correlation coefficient at the significance level α = 0.01. We repeatedly draw n = 1000 sets
of samples and obtain the average numbers of extra edges, missing edges and SHD from n = 1000
simulations. The first 3 simulation results are shown in Table 1 for different sample sizes 1000,
2000, 5000 and 10000. In Table 1, three values in a bracket denote the number of extra edges, the
number of missing edges and SHD respectively. The column ‘Ave’ in Table 1 shows the averages of
n = 1000 simulations. It can be seen that the algorithm performs better as the sample size increases.
From the simulations, we found that most decompositions at the top-down step are correct, and we
also found that when coefficients make the faithfulness assumption close to fail (that is, some of the
edges only reflect weak or nearly zero associations), the learned PDAG from simulation may not be
exactly the same as the underlying PDAG, and most of edge mistakes appear for these edges that
represent rather weak associations.

Sample Size 1 2 3 Ave

1000 (2, 2, 13) (0, 1, 6) (2, 4, 10) (1.20, 2.70, 12.8)

2000 (0, 1, 5) (1, 0, 5) (0, 1, 8) (0.96, 1.77, 9.12)

5000 (1, 2, 5) (0, 0, 2) (1, 2, 4) (0.85, 1.07, 6.18)

10000 (0, 1, 2) (0, 0, 0) (0, 2, 4) (0.75, 0.77, 4.99)

Table 1: Extra edges, missing edges, and SHD for the first 3 simulations and averages from 1000
simulations.

Our implementation is based on the Bayesian network toolbox written by Murphy (2001) and
the simulations run particularly fast. For a single simulation for all sample sizes N = 1000, 2000,
5000, 10000, when conditional independence tests are used to check edges, it costs only around
3 seconds in Matlab 7 on a laptop Intel 1.80GHz Pentium(R)M with 512 MByte RAM running
Windows XP.

We also compare our methods with the PC algorithm (Spirtes and Glymour, 1991) and the Three
Phaze Dependency Analysis (TPDA) algorithm (Cheng et al., 2002), which are readily available in
the Causal Explorer System developed by Aliferis et al. (2003). The simulation is repeated 100
times for each of different network parameters and sample sizes. For each generated data set, the
structure learned from each method is then compared with the true underlying structure. For each
algorithm, we choose two different significance levels, that is, α = 0.01 and 0.05. In the second
row of Table 2, the underlined values in a bracket denote the number of extra edges, the number
of missing edges and SHD respectively, and other rows give values relative to the second row,
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Alg (Level α) N = 1000 N = 2000 N = 5000 N = 10000 Ave Time

(1.2, 2.4, 12) (1.0, 1.5, 8.2) (0.9, 0.9, 5.8) (0.7, 0.6, 4.6) 2.55 sec

Rec(0.01) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0 ,1.0, 1.0) 1.0

Rec(0.05) (3.1, 1.0, 1.5) (3.5, 1.1, 1.7) (4.2, 1.1, 2.2) (4.7, 1.2, 2.3) 1.5

PC(0.01) (1.8, 4.5, 3.5) (2.6, 6.3, 4.7) (2.8, 8.0, 6.0) (4.0, 9.7, 7.2) 21.2

PC(0.05) (2.9, 4.0, 3.5) (4.3, 3.5, 4.7) (6.0, 4.0, 6.2) (8.6, 5.1, 7.3) 24.8

TPDA(0.01) (3.9, 4.1, 3.5) (4.3, 5.7, 4.8) (3.9, 7.5, 6.1) (3.7, 8.5, 6.8) 73.6

TPDA(0.05) (4.4, 3.7, 3.5) (4.7, 5.1, 4.7) (5.7, 4.3, 6.0) (8.5, 4.8, 7.1) 88.3

Table 2: Results relative to the recursive algorithm with α = 0.01 and α = 0.05: extra edges, miss-
ing edges, and SHD

which are obtained by dividing their real values by the underlined values in the second row. A
relative value larger than 1 denotes that its real value is larger than the corresponding value in the
second row. For example, the third row labeled Rec(0.01) with all values equal to 1 shows that our
algorithm with α = 0.01 has the same results as the second row; the seventh row labeled PC(0.01)
shows the relative results for the PC algorithm with α = 0.01, where (1.8,4.5,3.5) means the real
values as (1.8×1.2,4.5×2.4,3.5×12). The last column labeled ‘Ave Time’ denotes average time
cost for one simulation of all 4 sample sizes. In Table 2, all values are larger than 1, which means
our algorithm Rec(0.01) has the least number of extra edges, the least number of missing edges and
the least SHD, and further it costs the least times.

4.2.2 THE DISCRETE CASE

Now we show simulations of the ALARM network for the discrete case where these discrete vari-
ables have two to four levels. For every simulation, the conditional probability distribution of each
variable Xi given its parents pai is draw randomly in the following way: for each fixed configuration
pai of the parents, we first generate a sequence {r1, . . . ,rL} of random numbers from the uniform
distribution U(0,1), where L is the number of levels of Xi; then let P(Xi = j|pai) = r j/∑k rk as
the distribution of Xi conditional on the fixed configuration pai of Xi’s parents. Note that the joint
distribution generated in this way may be unfaithful, which together with the problem of discrete-
ness makes the learning task harder than that for the Gaussian case. We run 100 simulations for
each sample size N = 1000, 2000, 5000 or 10000, and then we compare our method with several
other algorithms by averages from 100 simulations. In addition to the PC algorithm and the TPDA
algorithm used in the Gaussian case, we also compare our method with the Sparse Candidate (SC)
algorithm (Friedman et al., 1999) and the MMHC algorithm (Tsamardinos et al., 2006). For the PC
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algorithm, we set the parameter max-fan-in (that is, the maximum in-degree) to its true value so that
the PC algorithm can run fast. We use the TPDA and the MMHC algorithms that are implemented
in the Causal Explorer System (Aliferis et al., 2003) with the default setting. For all algorithms
except the SC algorithm, we use two significance levels (α = 0.01, α = 0.05) in the simulations.
For the SC algorithm, the most important parameter to be specified is the number of candidates (the
maximum size of potential parent sets), which are set to 5 and 10 separately.

Alg (Level α) N = 1000 N = 2000 N = 5000 N = 10000 Ave Time

(1.3, 10, 33) (1.2, 6.6, 23) (0.8, 4.0, 16) (0.7, 2.6, 11) 27 sec

Rec(0.01) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) 1.0

Rec(0.05) (4.0, 0.8, 1.1) (3.6, 0.8, 1.2) (4.8, 0.8, 1.3) (4.9, 0.8, 1.4) 1.3

PC(0.01) (0.2, 1.5, 1.9) (0.1, 1.5, 2.6) (0.2, 1.6, 3.3) (0.1, 1.8, 4.5) 1.7

PC(0.05) (0.8, 1.2, 1.9) (0.5, 1.3, 2.5) (0.7, 1.3, 3.2) (0.7, 1.5, 4.4) 1.9

TPDA(0.01) (10.2, 1.2, 2.7) (2.7, 1.6, 3.0) (1.9, 2.7, 4.1) (0.9, 4.1, 5.8) 0.9

TPDA(0.05) (0.0, 2.5, 2.2) (0.1, 3.9, 3.1) (0.1, 6.5, 4.5) (0.1, 9.9, 6.6) 0.2

SC(5) (2.0, 0.8, 0.8) (2.4, 0.8, 1.0) (3.6, 0.9, 1.1) (4.3, 0.9, 1.4) 4.7

SC(10) (2.2, 0.8, 0.8) (2.7, 0.9, 1.0) (3.8, 0.8, 1.1) (4.2, 0.7, 1.2) 6.6

MMHC(0.01) (0.3, 1.3, 1.1) (0.3, 1.4, 1.1) (0.4, 1.5, 1.1) (0.7, 1.5, 1.2) 1.1

MMHC(0.05) (0.5, 1.2, 1.0) (0.4, 1.3, 1.0) (0.5, 1.3, 1.0) (1.0, 1.3, 1.1) 1.4

Table 3: Results relative to the recursive algorithm with α = 0.01 and α = 0.05: extra edges, miss-
ing edges, and SHD

We summarize the simulation results in Table 3. In terms of SHD, our algorithm, the SC al-
gorithm and the MMHC algorithm perform better than the PC and TPDA algorithms. It can also
be seen that the performance difference between our method and the others becomes larger as the
sample size increases. Although it can be seen from the last column labeled ‘Ave Time’ that the
average CPU time cost for our algorithm is the second least, the fastest algorithm TPDA has the
largest SHD among all algorithms. From the results in Tables 3, we can see that although the recur-
sive algorithm seems to have a better performance in most cases, it is still not quite clear which one
of these algorithms is superior in general. Their performance depends on preference of reducing
the false positive error (including an edge that is not in the true DAG) or the false negative error
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(excluding an edge that is in the true DAG). For example, the PC and MMHC algorithms have a
smaller false positive error; the SC algorithm has a smaller false negative error; and the recursive
algorithm has smaller SHD. We also found that choosing a good parameter is also important to
achieve an optimal performance for each algorithm. The recursive algorithm seems to work better
when we choose a significance level α = 0.01, while for MMHC it is better to choose α = 0.05.

The above comparison is based on results from randomly generated values of parameters of
joint distributions. The results may change when different values of these parameters are used. The
performance of an algorithm also depends on the structures of a network.

4.2.3 SIMULATIONS OF OTHER NETWORKS

In this subsection we show simulation results for other three networks: Insurance with 27 vertices
and 52 edges (Binder et al., 1997), HailFinder with 56 vertices and 66 edges (Abramson et al., 1996)
and Carpo with 61 vertices and 74 edges, all of which can be obtained through the online Bayesian
network repository (http://www.cs.huji.ac.il/labs/compbio/ Repository). We compare the recursive
algorithm with the SC and MMHC algorithms since these two have been extensively compared with
many state-of-art algorithms and shown in general outperforming other algorithms by Tsamardinos
et al. (2006). In our simulations, the parameter values of the joint distributions are set to the original
values from the repository. For each network, 10 data sets are generated, and we give one better
result in Table 4 for each algorithm with two criteria (α = 0.01 and 0.05 for Rec and MMHC, the
number of candidates = 5 and 10 for SC). From the last column ‘Ave Time’ of Table 4, it can be
seen that the recursive algorithm is fastest in average CPU time and it also has a better performance
in most cases for these networks.

4.3 Complexity Analysis

Below we discuss the complexity of the recursive algorithm proposed in this paper. We mainly
focus on the number of conditional independence tests for constructing the equivalence class since
decomposition of graphs is a computationally simple task compared to the conditional independence
tests. In the recursive algorithm DecompRecovery, two steps (Step 1 for constructing an undirected
independence graph ḠK and the ’Else’ part of Step 2 for constructing a local skeleton L̄K) involve
conditional independence tests, where K is the vertex set of the subgraph. At Step 1, an undirected
independence graph can be constructed by testing independence between any pair of variables con-
ditionally on other variables, and thus the complexity is O(|K|2), where |K| denotes the number of
vertices in the set K. As discussed in Section 3.3, an undirected independence graph ḠA∪C can be
constructed from the previous graph ḠA∪B∪C by checking only all possible edges within the sepa-
rator C. Thus the complexity for constructing an undirected independence graph can be reduced.
At Step 2, we construct a local skeleton over a vertex subset K. Suppose that we use the IC al-
gorithm. Then the complexity for constructing the local skeleton LK is O(|K|22|K|−2). Below we
consider the total expenses and suppose that the full vertex set V is recursively decomposed into
H subsets {K1, . . . ,KH}, where H ≤ n and Kh ≤ n for all h. For each decomposition, we need to
construct an undirected independence graph, and thus the total expenses for all decompositions is
less than O(Hn2). The total expenses for constructing all skeletons is O(∑h |Kh|2|Kh|−2), which is
less than O(Hkmax2kmax−2), where kmax = max{|K1|, . . . , |KH |}. The complexity for the IC algorithm
is known to be O(n22n−2). Since Kmax usually is much less than n, the recursive decomposition can
greatly reduce the complexity of the IC algorithm. Of course, when no decomposition is available,
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Alg (Level α) N = 1000 N = 2000 N = 5000 N = 10000 Ave Time

Insurance

(2.4, 13, 43) (1.5, 10, 40) (1.3, 7.4, 32) (1.1, 6.7, 27) 16 sec

Rec(0.01) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) 1.0

SC(5) (1.6, 1.0, 1.0) (2.3, 1.2, 1.2) (2.5, 1.3, 1.3) (2.9, 1.4, 1.5) 6.7

MMHC(0.05) (0.6, 1.3, 1.1) (1.1, 1.4, 1.2) (1.2, 1.5, 1.2) (1.1, 1.4, 1.2) 8.0

Hailfinder

(5.9, 16, 53) (7.1, 14, 47) (8.0, 14, 43) (7.3, 14, 41) 62 sec

Rec(0.01) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) 1.0

SC(10) (2.0, 1.0, 1.1) (1.8, 1.1, 1.1) (2.0, 1.1, 1.3) (2.1, 0.8, 1.2) 5.6

MMHC(0.05) (1.6, 1.2, 1.1) (1.6, 1.1, 1.0) (1.7, 1.1, 1.2) (1.0, 1.9, 1.2) 17.4

Carpo

(10, 12, 49) (9.0, 5.0, 36) (6.5, 2.6, 21) (6.3, 1.0, 18) 74 sec

Rec(0.01) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) 1.0

SC(10) (2.3, 0.5, 1.2) (2.6, 0.5, 1.7) (2.8, 0.9, 2.2) (2.3, 1.3, 2.0) 6.6

MMHC(0.05) (2.5, 2.4, 2.1) (2.6, 4.5, 2.6) (3.1, 6.0, 3.4) (3.0, 12, 3.4) 44

Table 4: Results relative to the recursive algorithm for other networks: extra edges, missing edges,
and SHD

the complexity of our algorithm becomes the same as the IC algorithm, which reflects the fact that
structural learning of DAGs is an NP-hard problem (Chickering et al., 2004). Similarly, the recur-
sive decomposition can also be used to improve the performance of the PC algorithm and other
algorithms.
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5. Conclusion

In this paper, we proposed a recursive algorithm for structural learning of DAGs. We first present its
theoretical properties, then show its experimental results and compare it with other algorithms. In
the recursive algorithm, a structural learning for a large DAG is first split recursively into those for
small subgraphs until each subgraph cannot be decomposed further, then we perform local learn-
ing for these subgraphs which cannot be decomposed, finally we gradually combine these locally
learned subgraphs into the entire DAG. The main problem for structural learning of a DAG is the
search for d-separators, which becomes exponentially complicated with the number of vertices in-
creases. In the recursive algorithm, all searches for d-separators are localized into subsets of ver-
tices. Thus the efficiency of structural learning and the power of statistical tests can be improved by
decomposition.

There are several works related to our recursive approach. Friedman et al. (1999) discussed
how the idea of recursive decomposition can be used in accelerating their Sparse Candidate algo-
rithm, Narasimhan and Bilmes (2005) discussed the application of this idea to find a sub-optimal
graphical models by noticing the corresponding decomposition of the Kullback and Leibler diver-
gence (Kullback and Leibler, 1951) with respect to the graph separation. Geng et al. (2005) and
Xie et al. (2006) proposed the decomposition algorithms for structural learning of DAGs. However,
the method proposed in Geng et al. (2005) requires that each separator has a complete undirected
graph. Xie et al. (2006) removed the condition, but their algorithm performs decomposition only
based on the entire undirected independence graph ḠV of the full vertex set V and cannot perform
decomposition of undirected independence subgraphs. Theorems 1, 2 and 3 in this paper relax this
requirement, and they do not require the union set K = A∪B∪C of a decomposition (A,B,C) to
be equal to the full vertex set V . Thus the recursive algorithm can delete more edges in undirected
independence subgraphs and further decompose them, see Example 2. Theorems 1, 2 and 3 are also
useful properties for collapsibility of DAGs.

Now we discuss several potential utilities and further works of the recursive approach. This re-
cursive decomposition approach can also be used to localize a learning problem of interest. Suppose
that V is the full set of all observed variables, but we are interested only in a local structure over
a variable subset A. Using the recursive approach, we can recursively decompose the variable sets
into small sets, only focus on the subtrees that contain variables in A, and ignore other subtrees that
are unrelated to A. In such a way, the local structure over A can be obtained without need of learning
other structures that are unrelated to A. The recursive approach can also use a prior knowledge of
independencies among variables to decompose structural learning.
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Appendix A.

We first give some lemmas which will be used in proofs of theorems.
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Lemma 1. A subset S of vertices separates u from v in [~GAn({u}∪{v}∪S)]
m if and only if u v|S.

Proof. The result can be obtained directly from Proposition 3.25 of Lauritzen (1996) and Theorem
1.2.4 of Pearl (2000). �

Lemma 2. Let S be a subset of V . Then two vertices u and v in S are d-separated by a subset of
S if and only if they are d-separated by an({u,v})∩S.
Proof. Define S′ = an({u,v})∩ S. The necessity is obvious since S ⊇ S′. For sufficiency, suppose
that u and v are not d-separated by S′. Since An({u,v}∪S′) = An({u,v}), we have from Lemma 1
that there is a path l connecting u and v in [~GAn({u,v})]

m which is not separated by S′ in the moral

graph, that is, the path l does not contain any vertex in S′. Since l is contained in [~GAn({u,v})]
m and

S′ = an({u,v})∩S, we then have that l does not contain any vertex in S\{u,v}. Now from the con-
dition, suppose that u and v are d-separated by S0 ⊆ S. Then we also have from an(u,v)∩ S0 ⊆ S′

that l does not contain any vertex in an(u,v)∩ S0. Thus we obtain that l is not separated by S0 in
[~GAn(u,v,S)]

m, which by Lemma 1 implies that u and v are not d-separated by S0. However, this con-
tradicts the condition that u and v are d-separated by S0 ⊆ S, which concludes the proof for Lemma
2. �

Lemma 3. If four disjoint sets X , Y , Z and W satisfy X Y ∪Z|W , then we have X Y |Z∪W .
Proof. This result is obvious. �

Under the faithfulness assumption, a conditional independence is equivalent to the correspond-
ing d-separation, and thus d-separation also has the above property.

Lemma 4. Suppose that l is a path that connects two nonadjacent vertices u and v. If l is not
contained completely in An(u)∪An(v), then l is d-separated by any subset S of an(u)∪an(v).
Proof. Since l is not completely contained in An(u)∪ An(v), there exists vertices m and n in
l = (u, . . . ,m,x, . . . ,y,n, . . . ,v) such that both m and n are contained in An(u)∪An(v) and no vertices
from x to y are contained in An(u)∪An(v) where x and y, u and m, n and v may be separately the
same vertex. So we have that the arrows must be oriented as 〈m,x〉 and 〈n,y〉, and then there must
be a collider between m and n on l. Let s→ w← t be the collider that is closest to m. Then we have
that the sub-path of l from m to w is directed. Notice that m∈ An(u)∪An(v) and w 6∈ An(u)∪An(v).
Thus we obtain that S and its subset do not contain the middle vertex w or its descendants, which
implies that l is d-separated by any subset of S at the collider s→ w← t. �

Proof of Theorem 1: The necessity is obvious since (A∪B∪C) ⊇ (A∪C). For sufficiency, let
a and d be two vertices in A and A∪C respectively that are d-separated by a subset of A∪B∪C.
Define W = (an(a)∪an(d))∩ (A∪B∪C). By Lemma 2, a and d must be d-separated by W . Define
S′ = (an(a)∪an(d))∩ (A∪C). Then we only need to show that S′ (⊆ A∪C) can d-separate every
path l connecting a and d in ~GV . We consider the following two cases separately:

(1) a path l is not contained completely in An(a)∪An(d), and
(2) a path l is contained completely in An(a)∪An(d).
For case (1), we get from Lemma 4 that l must be d-separated by S′ since S′ is a subset of

an(a)∪an(d).
For case (2), we have from condition A B|C that [{a}∪ (S′ ∩A)] b|C for any b ∈ B, which

implies, by Lemma 3, a b|(S′∩A)∪C. Since S′ ⊆ (A∪C), we get

a b|(S′∪C).
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By reduction to absurdity, suppose that there is a path l contained in An(a)∪An(d) connecting a and
d which cannot be d-separated by S′. Because W (⊇ S′) d-separates a and d and thus d-separates l
but S′ does not, there must exist at least one vertex on the path l which is contained in W \S′ (⊆ B).
Let b be such a vertex that is closest to a on the path l and define l ′ to be the sub-path of l from
a to b. It is obvious that l ′ is d-connected by S′; otherwise l will be d-separated by S′. Since b is
closest to a on l and b ∈ B, any of other vertices on l ′ is not in B. From l′ ⊆ l ⊆ (An(a)∪An(d))
and S′ = (an(a)∪ an(d))∩ (A∪C), we have that all vertices of l ′ except a and b are contained in
S′. Since l′ is d-connected by S′, l′ is also d-connected by S′∪C, which contradicts (A.1). Thus we
showed that every path in case (2) is also d-separated by S′, which concludes our proof for Theorem
1. �

The following lemma, which is non-trivial due to the fact that a sequence can contain the same
vertex more than once, indicates that the d-separation for a path can be made equivalent to that for
a sequence.

Lemma 5. Two non-adjacent vertices u and v are d-separated by S in ~GV if and only if for any
sequence l = (u, . . . ,v) connecting u and v

1. l contains a “chain” i→ m→ j or a “fork” i← m→ j such that the middle vertex m is in S,
or

2. l contains a “collider” i→m← j such that the collision vertex m is not in S and no descendant
of m is in S.

When a sequence l = (u, . . . ,v) satisfies the above conditions 1 and 2, we also say that the sequence
l is d-separated by S.
Proof. The sufficiency is obvious from definition of d-separation. For necessity, suppose there are
sequences connecting u and v that satisfy neither condition 1 nor 2. Let l = (z0 = u,z1 . . . ,zk−1,zk =
v) be the shortest one of such sequences, it’s easy to show that such a sequence is itself a path which
contradicts with the condition that u and v are d-separated by S in ~GV . �

Proof of Theorem 2: The necessity is obvious since (A∪B∪C)⊇ (A∪C). We show the sufficiency
in a similar way to proof of Theorem 1. Let c and c′ be two vertices in C that are d-separated by a
subset of A∪B∪C. Thus from Lemma 2 they are also d-separated by S = (an(c)∪an(c′))∩(A∪B∪
C). Without loss of generality, suppose that c is not an ancestor of c′. Define S1 = (an(c)∪an(c′))∩
(A∪C) and S2 = (an(c)∪ an(c′))∩ (B∪C). To prove that either S1 (⊆ A∪C) or S2 (⊆ B∪C) can
d-separate c and c′ in ~GV , it is sufficient to show that there will not exist a path l1 in A∪C and a path
l2 in B∪C such that l1 cannot be d-separated by S1 and l2 cannot be d-separated by S2. To show
this, we consider the following two cases separately:

(1) a path li is not completely contained in An(c)∪An(c′), and
(2) both paths l1 and l2 are contained in An(c)∪An(c′).
For case (1), since both S1 and S2 are subsets of an(c)∪an(c′), we know from Lemma 4 that l

must be d-separated both by S1 and by S2.
For case (2), by reduction to absurdity, we suppose that there are two paths l1 and l2 such that li

cannot be d-separated by Si for i = 1 and 2. Since every path li between c and c′ is d-separated by
S which equals S1∪S2, we have that for path li, there is at least one vertex contained in S \Si. Let
d1 and d2 be such vertices that are closest to c on l1 and l2 respectively. We have d1 ∈ (S \S1) and
thus d1 ∈ B, and similarly d2 ∈ (S \S1) and thus d2 ∈ A. Let l′1 denote the sub-path from c to d1 of
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l1 and l′2 denote the sub-path from c to d2 of l2. Since li cannot be d-separated by Si, we have that l′i
cannot be d-separated by Si. Connecting l′1 and l′2 at c, we get a sequence l ′ from d1 to d2 through
c. Note that l′ may have the same vertices and thus it may not be a path. Below we show that l ′ is
not d-separated by C, that is, the middle vertex of each collider or its descendant is in C but any of
other vertices on l ′ is not in C.

For any vertex u which is not the middle vertex of a collider on l ′1, since u is in an(c)∪ an(c′)
and l1 and l′1 is not d-separated by S1, we have that u 6∈ S1 and thus u 6∈C. Similarly, we can show
that C does not contain any vertex u which is not the middle vertex of a collider on l ′2. Thus we have
shown that C does not contain any vertex which is not a middle vertex of colliders on l ′ except that
vertex c has not yet been considered. Now we show that vertex c is a middle vertex of a collider
on l′. Let v denote the neighbor of c on l ′1. Since v is in an(c)∪ an(c′) and it cannot be c′, v is an
ancestor of c or c′. If the edge between c and v is oriented as c→ v, then v must be an ancestor of
c′. This contradicts the supposition that c is not an ancestor of c′, and thus the edge between c and
v must be oriented as c← v. Similarly for the neighbor w of c on l ′2, we can also show that the edge
between c and w must be oriented as c← w, which implies that the sequence (v,c,w) must form a
collider on l′. Thus we have shown that C does not contain any vertex which is not a middle vertex
of colliders on l′.

For any vertex u which is a middle vertex of a collider on l ′i , u or its descendant must be in Si,
otherwise l′i and so li are d-separated by Si, which contradicts the supposition. Since u is contained
in an(c)∪an(c′), we have that c (∈C) or c′ (∈C) is a descendant of u, and thus u or its descendant
must be in C. For the collider u→ c← v on the sequence l ′, we also have that c is in C. Thus we
have shown that the middle vertex of each collider on l ′ or its descendant is in C.

By the above result and Lemma 5, we have d2 / d1|C, where d2 ∈ A and d1 ∈ B. This contradicts
A B|C. Thus either S1 or S2 must d-separate c and c′ in ~GV . �

Proof of Theorem 3: This is an immediate consequence of Theorems 1 and 2. �

Proof of Theorem 4: For necessity, since A B|C, we have from the property of conditional inde-
pendence that u B|A∪C \ {u}. This and the condition u v|A∪C \ {u,v} imply u v∪B|A∪C \
{u,v}. Again, from the property of conditional independence, we have u v|A∪B∪C \{u,v}. For
sufficiency, from A B|C, we get u B|A∪C \ {u}. This and the condition u v|A∪B∪C \ {u,v}
imply u B∪{v}|A∪C \ {u,v}. Then we obtain u v|A∪C \ {u,v}, and this completes our proof
for the theorem. �
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Abstract
We consider the problem of estimating the parameters of a Gaussian or binary distribution in such
a way that the resulting undirected graphical model is sparse. Our approach is to solve a maximum
likelihood problem with an added `1-norm penalty term. The problem as formulated is convex
but the memory requirements and complexity of existing interior point methods are prohibitive for
problems with more than tens of nodes. We present two new algorithms for solving problems with
at least a thousand nodes in the Gaussian case. Our first algorithm uses block coordinate descent,
and can be interpreted as recursive `1-norm penalized regression. Our second algorithm, based on
Nesterov’s first order method, yields a complexity estimate with a better dependence on problem
size than existing interior point methods. Using a log determinant relaxation of the log partition
function (Wainwright and Jordan, 2006), we show that these same algorithms can be used to solve
an approximate sparse maximum likelihood problem for the binary case. We test our algorithms on
synthetic data, as well as on gene expression and senate voting records data.
Keywords: model selection, maximum likelihood estimation, convex optimization, Gaussian
graphical model, binary data

1. Introduction

Undirected graphical models offer a way to describe and explain the relationships among a set of
variables, a central element of multivariate data analysis. The principle of parsimony dictates that
we should select the simplest graphical model that adequately explains the data. In this paper we
consider practical ways of implementing the following approach to finding such a model: given a
set of data, we solve a maximum likelihood problem with an added `1-norm penalty to make the
resulting graph as sparse as possible.

Many authors have studied a variety of related ideas. In the Gaussian case, model selection in-
volves finding the pattern of zeros in the inverse covariance matrix, since these zeros correspond to
conditional independencies among the variables. Traditionally, a greedy forward-backward search
algorithm is used to determine the zero pattern (e.g., Lauritzen, 1996). However, this is computa-
tionally infeasible for data with even a moderate number of variables. Li and Gui (2005) introduce
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a gradient descent algorithm in which they account for the sparsity of the inverse covariance matrix
by defining a loss function that is the negative of the log likelihood function. Speed and Kiiveri
(1986) and, more recently, Dahl et al. (Revised 2007) proposed a set of large scale methods for
problems where a sparsity pattern for the inverse covariance is given and one must estimate the
nonzero elements of the matrix.

Another way to estimate the graphical model is to find the set of neighbors of each node in
the graph by regressing that variable against the remaining variables. In this vein, Dobra and West
(2004) employ a stochastic algorithm to manage tens of thousands of variables. There has also been
a great deal of interest in using `1-norm penalties in statistical applications. d’Aspremont et al.
(2004) apply an `1 norm penalty to sparse principle component analysis. Directly related to our
problem is the use of the Lasso of Tibshirani (1996) to obtain a very short list of neighbors for each
node in the graph. Meinshausen and Bühlmann (2006) study this approach in detail, and show that
the resulting estimator is consistent, even for high-dimensional graphs. A related approach is the
graphical lasso, explored by Friedman et al. (2007).

Our objective here is to both estimate the sparsity pattern of the underlying graph and to obtain a
regularized estimate of the covariance matrix. The difficulty of the problem formulation we consider
lies in its computation. Although the problem is convex, it is non-smooth and has an unbounded
constraint set. As we shall see, the resulting complexity for existing interior point methods is O(p6),
where p is the number of variables in the distribution. In addition, interior point methods require
that at each step we compute and store a Hessian of size O(p2). The memory requirements and
complexity are thus prohibitive for O(p) higher than the tens. Specialized algorithms are needed to
handle larger problems.

The remainder of the paper is organized as follows. We begin by considering Gaussian data.
In Section 2 we set up the problem, derive its dual, discuss properties of the solution and how
heavily to weight the `1-norm penalty in our problem. In Section 3 we present a provably convergent
block coordinate descent algorithm that can be interpreted a sequence of iterative `1-norm penalized
regressions. In Section 4 we present a second, alternative algorithm based on Nesterov’s recent
work on non-smooth optimization, and give a rigorous complexity analysis with better dependence
on problem size than interior point methods. In Section 5 we show that the algorithms we developed
for the Gaussian case can also be used to solve an approximate sparse maximum likelihood problem
for multivariate binary data, using a log determinant relaxation for the log partition function given
by Wainwright and Jordan (2006). In Section 6, we test our methods on synthetic as well as gene
expression and senate voting records data.

2. Problem Formulation

In this section we set up the sparse maximum likelihood problem for Gaussian data, derive its dual,
and discuss some of its properties.

2.1 Problem Setup

Suppose we are given n samples independently drawn from a p-variate Gaussian distribution:
y(1), . . . ,y(n) ∼ N (µ,Σp), where the covariance matrix Σ is to be estimated. Let S denote the second
moment matrix about the mean:
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S :=
1
n

n

∑
k=1

(y(k)−µ)(y(k)−µ)T .

Let Σ̂−1 denote our estimate of the inverse covariance matrix. Our estimator takes the form:

Σ̂−1 = argmax
X�0

logdetX − trace(SX)−λ‖X‖1. (1)

Here, ‖X‖1 denotes the sum of the absolute values of the elements of the positive definite matrix X .
The scalar parameter λ controls the size of the penalty. The penalty term is a proxy for the

number of nonzero elements in X , and is often used—albeit with vector, not matrix, variables—in
regression techniques, such as the Lasso.

In the case where S � 0, the classical maximum likelihood estimate is recovered for λ = 0.
However, when the number of samples n is small compared to the number of variables p, the sec-
ond moment matrix may not be invertible. In such cases, for λ > 0, our estimator performs some
regularization so that our estimate Σ̂ is always invertible, no matter how small the ratio of samples
to variables is.

Even in cases where we have enough samples so that S � 0, the inverse S−1 may not be sparse,
even if there are many conditional independencies among the variables in the distribution. By
trading off maximality of the log likelihood for sparsity, we hope to find a very sparse solution that
still adequately explains the data. A larger value of λ corresponds to a sparser solution that fits the
data less well. A smaller λ corresponds to a solution that fits the data well but is less sparse. The
choice of λ is therefore an important issue that will be examined in detail in Section 2.3.

2.2 The Dual Problem and Bounds on the Solution

By expressing the `1 norm in (1) as

‖X‖1 = max
‖U‖∞≤1

trace(XU),

where ‖U‖∞ denotes the maximum absolute value element of the symmetric matrix U , we can write
(1) as

max
X�0

min
‖U‖∞≤λ

logdetX − trace(X ,S +U).

This corresponds to seeking an estimate with the maximum worst-case log likelihood, over all
additive perturbations of the second moment matrix S. A similar robustness interpretation can be
made for a number of estimation problems, such as support vector machines for classification.

We can obtain the dual problem by exchanging the max and the min. The resulting inner prob-
lem in X can be solved analytically by setting the gradient of the objective to zero and solving for
X . The result is

min
‖U‖∞≤λ

− logdet(S +U)− p

where the primal and dual variables are related as: X = (S +U)−1. Note that the log determinant
function acts a log barrier, creating an implicit constraint that S +U � 0.

To write things neatly, let W = S+U . Then the dual of our sparse maximum likelihood problem
is

Σ̂ := max{logdetW : ‖W −S‖∞ ≤ λ}. (2)
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Observe that the dual problem (2) estimates the covariance matrix while the primal problem esti-
mates its inverse. We also observe that the diagonal elements of the solution are Σkk = Skk + λ for
all k.

The following theorem shows that adding the `1-norm penalty regularizes the solution.

Theorem 1 For every λ > 0, the optimal solution to (1) is unique, with bounded eigenvalues:

p
λ
≥ ‖Σ̂−1‖2 ≥ (‖S‖2 +λp)−1.

Here, ‖A‖2 denotes the maximum eigenvalue of a symmetric matrix A. The proof is contained in
the appendix.

The dual problem (2) is smooth and convex, albeit with p(p+1)/2 variables. For small values
of p, the problem can be solved by existing interior point methods (e.g., Vandenberghe et al., 1998).
The complexity to compute an ε-suboptimal solution using such second-order methods, however, is
O(p6 log(1/ε)), making them infeasible when p is larger than the tens.

A related problem, solved by Dahl et al. (Revised 2007), is to compute a maximum likelihood
estimate of the covariance matrix when the sparsity structure of the inverse is known in advance.
This is accomplished by adding constraints to (1) of the form: Xi j = 0 for all pairs (i, j) in some
specified set. Our constraint set is unbounded as we hope to uncover the sparsity structure automat-
ically, starting with a dense second moment matrix S.

2.3 Choice of Penalty Parameter

Consider the true, unknown graphical model for a given distribution. This graph has p nodes, and
an edge between nodes k and j is missing if variables k and j are independent conditional on the
rest of the variables. For a given node k, let Ck denote its connectivity component: the set of all
nodes that are connected to node k through some chain of edges. In particular, if node j 6∈Ck, then
variables j and k are independent.

Meinshausen and Bühlmann (2006) show that the Lasso, when used to estimate the set of neigh-
bors for each node, yields an estimate of the sparsity pattern of the graph in a way that is asymp-
totically consistent. Consistency, they show, hinges on the choice of the regularization parameter.
In addition to asymptotic results, they prove a finite sample result: by choosing the regularization
parameter in a particular way, the probability that two distinct connectivity components are falsely
joined in the estimated graph can be controlled.

Following the methods used by Meinshausen and Bühlmann (2006), we can derive a corre-
sponding choice for the regularization parameter. Let Ĉλ

k denote our estimate of the connectivity
component of node k. In the context of our optimization problem, this corresponds to the entries of
row k in Σ̂ that are nonzero.

Let α be a given level in [0,1]. Consider the following choice for the penalty parameter in (1):

λ(α) := (max
i> j

σ̂iσ̂ j)
tn−2(α/2p2)

√

n−2+ t2
n−2(α/2p2)

(3)

where tn−2(α) denotes the (100−α)% point of the Student’s t-distribution for n− 2 degrees of
freedom, and σ̂i is the empirical variance of variable i. Then we can prove the following theorem:
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Theorem 2 Using λ(α) the penalty parameter in (1), for any fixed level α,

P(∃k ∈ {1, . . . , p} : Ĉλ
k 6⊆Ck) ≤ α.

Observe that, for a fixed problem size p, as the number of samples n increases to infinity, the
penalty parameter λ(α) decreases to zero. Thus, asymptotically we recover the classical maximum
likelihood estimate, S, which in turn converges in probability to the true covariance Σ.

Meinshausen and Bühlmann (2006) prove that Lasso recovers the underlying sparsity pattern
consistently, in a scheme where the number of variables is allowed to grow with the number of
samples: p ∈ O(nγ). Although such an analysis is beyond the scope of this paper, a similar result
seems to hold here provided we assume certain conditions on the true covariance matrix.

From the point of view of estimating the covariance matrix itself, when the number of variables
is allowed to grow with the number of samples, it may be better to use estimates such as those
described by Bickel and Levina (2008), which are shown to be consistent in the operator norm as
long as (log p)2/n → 0.

3. Block Coordinate Descent Algorithm

In this section we present an algorithm for solving (2) that uses block coordinate descent.

3.1 Algorithm Description

We begin by detailing the algorithm. For any symmetric matrix A, let A\k\ j denote the matrix
produced by removing column k and row j. Let A j denote column j with the diagonal element A j j

removed. The plan is to optimize over one row and column of the variable matrix W at a time, and
to repeatedly sweep through all columns until we achieve convergence.
Initialize: W (0) := S +λI
For k ≥ 0

1. For j = 1, . . . , p

(a) Let W ( j−1) denote the current iterate. Solve the quadratic program

ŷ := argmin
y
{yT (W ( j−1)

\ j\ j )−1y : ‖y−S j‖∞ ≤ λ}. (4)

(b) Update rule: W ( j) is W ( j−1) with column/row W j replaced by ŷ.

2. Let Ŵ (0) := W (p).

3. After each sweep through all columns, check the convergence condition. Convergence occurs
when

trace((Ŵ (0))−1S)− p+λ‖(Ŵ (0))−1‖1 ≤ ε.
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3.2 Convergence and Property of Solution

Using Schur complements, we can prove convergence:

Theorem 3 The block coordinate descent algorithm described above converges, achieving an ε-
suboptimal solution to (2). In particular, the iterates produced by the algorithm are strictly positive
definite: each time we sweep through the columns, W ( j) � 0 for all j.

The proof of Theorem 3 sheds some interesting light on the solution to problem (1). In particular,
we can use this method to show that the solution has the following property:

Theorem 4 Fix any k ∈ {1, . . . , p}. If λ ≥ |Sk j| for all j 6= k, then column and row k of the solution
Σ̂ to (2) are zero, excluding the diagonal element.

This means that, for a given second moment matrix S, if λ is chosen such that the condition in
Theorem 4 is met for some column k, then the sparse maximum likelihood method estimates variable
k to be independent of all other variables in the distribution. In particular, Theorem 4 implies that if
λ ≥ |Sk j| for all k > j, then (1) estimates all variables in the distribution to be pairwise independent.

Using the work of Luo and Tseng (1992), it may be possible to show that the local convergence
rate of this method is at least linear. In practice we have found that a small number of sweeps through
all columns, independent of problem size p, is sufficient to achieve convergence. In each iteration,
we must solve one quadratic program (QP). In a standard primal-dual interior point method for
solving QPs, the computational cost is dominated by the cost of finding a search direction, which
involves inverting matrices of size p. The cost of each iteration is therefore O(p3). For a fixed
number of K sweeps, the cost of the method is O(K p4).

3.3 Interpretation as Iterative Penalized Regression

The dual of (4) is
min

x
xTW ( j−1)

\ j\ j x−ST
j x+λ‖x‖1. (5)

Strong duality obtains so that problems (5) and (4) are equivalent. If we let Q denote the square
root of W ( j−1)

\ j\ j , and b := 1
2 Q−1S j, then we can write (5) as

min
x

‖Qx−b‖2
2 +λ‖x‖1. (6)

The problem (6) is a penalized least-squares problems, known as the Lasso. If W ( j−1)
\ j\ j were the j-

th principal minor of the sample covariance S, then (6) would be equivalent to a penalized regression
of variable j against all others. Thus, the approach is reminiscent of the approach explored by
Meinshausen and Bühlmann (2006), but there are two differences. First, we begin by adding a
multiple of the identity to the sample covariance matrix, so we can guarantee that each penalized
regression problem has a unique solution, without requiring the data or solutions to satisfy any
special conditions (see Osborne et al., 2000, for conditions that guarantee uniqueness of the Lasso).
Second, and more importantly, we update the problem data after each regression: except at the very
first update, W ( j−1)

\ j\ j is never a minor of S. In this sense, the coordinate descent method can be
interpreted as a sequence of iterative Lasso problems. The approach is pursued to great advantage
by Friedman et al. (2007), who also provide a conceptual link to the approach of Meinshausen and
Bühlmann (2006).
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4. Nesterov’s First Order Method

In this section we apply the recent results due to Nesterov (2005) to obtain a first order algorithm
for solving (1) with lower memory requirements and a rigorous complexity estimate with a better
dependence on problem size than those offered by interior point methods. Our purpose is not to ob-
tain another algorithm, as we have found that the block coordinate descent is fairly efficient; rather,
we seek to use Nesterov’s formalism to derive a rigorous complexity estimate for the problem, im-
proved over that offered by interior-point methods. In particular, although we have found in practice
that a small, fixed number K of sweeps through all columns is sufficient to achieve convergence us-
ing the block coordinate descent method, we have not been able to compute a bound on K. In what
follows, we compute a guaranteed theoretical upper bound on the complexity of solving (1).

As we will see, Nesterov’s framework allows us to obtain an algorithm that has a complexity of
O(p4.5/ε), where ε > 0 is the desired accuracy on the objective of problem (1). This is in contrast
to the complexity of interior-point methods, O(p6 log(1/ε)). Thus, Nesterov’s method provides
a much better dependence on problem size and lower memory requirements at the expense of a
degraded dependence on accuracy.

4.1 Idea of Nesterov’s Method

Nesterov’s method applies to a class of non-smooth, convex optimization problems of the form

min
x
{ f (x) : x ∈ Q1} (7)

where the objective function can be written as

f (x) = f̂ (x)+max
u

{〈Ax,u〉2 : u ∈ Q2}.

Here, Q1 and Q2 are bounded, closed, convex sets, f̂ (x) is differentiable (with a Lipschitz-
continuous gradient) and convex on Q1, and A is a linear operator. The challenge is to write our
problem in the appropriate form and choose associated functions and parameters in such a way as
to obtain the best possible complexity estimate, by applying general results obtained by Nesterov
(2005).

Observe that we can write (1) in the form (7) if we impose bounds on the eigenvalues of the
solution, X . To this end, we let

Q1 := {x : aI � X � bI},
Q2 := {u : ‖u‖∞ ≤ λ}

where the constants a,b are given such that b > a > 0. By Theorem 1, we know that such bounds
always exist. We also define f̂ (x) := − logdetx+ 〈S,x〉, and A := I.

To Q1 and Q2, we associate norms and continuous, strongly convex functions, called prox-
functions, d1(x) and d2(u). For Q1 we choose the Frobenius norm, and a prox-function d1(x) =
− logdetx + p logb. For Q2, we choose the Frobenius norm again, and a prox-function d2(x) =
‖u‖2

F/2.
The method applies a smoothing technique to the non-smooth problem (7), which replaces the

objective of the original problem, f (x), by a penalized function involving the prox-function d2(u):

f̃ (x) = f̂ (x)+max
u∈Q2

{〈Ax,u〉−µd2(u)}. (8)
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The above function turns out to be a smooth uniform approximation to f everywhere. It is
differentiable, convex on Q1, and a has a Lipschitz-continuous gradient, with a constant L that
can be computed as detailed below. A specific gradient scheme is then applied to this smooth
approximation, with convergence rate O(L/ε).

4.2 Algorithm and Complexity Estimate

To detail the algorithm and compute the complexity, we must first calculate some parameters cor-
responding to our definitions and choices above. First, the strong convexity parameter for d1(x) on
Q1 is σ1 = 1/b2, in the sense that

∇2d1(X)[H,H] = trace(X−1HX−1H) ≥ b−2‖H‖2
F

for every symmetric H. Furthermore, the center of the set Q1 is x0 := argminx∈Q1 d1(x) = bI,
and satisfies d1(x0) = 0. With our choice, we have D1 := maxx∈Q1 d1(x) = p log(b/a).

Similarly, the strong convexity parameter for d2(u) on Q2 is σ2 := 1, and we have

D2 := max
u∈Q2

d2(U) = p2/2.

With this choice, the center of the set Q2 is u0 := argminu∈Q2 d2(u) = 0.
For a desired accuracy ε, we set the smoothness parameter µ := ε/2D2, and set x0 = bI. The

algorithm proceeds as follows:
For k ≥ 0 do

1. Compute ∇ f̃ (xk) = −x−1 +S +u∗(xk), where u∗(x) solves (8).

2. Find yk = argminy {〈∇ f̃ (xk),y− xk〉+ 1
2 L(ε)‖y− xk‖2

F : y ∈ Q1}.

3. Find zk = argminx {L(ε)
σ1

d1(X)+∑k
i=0

i+1
2 〈∇ f̃ (xi),x− xi〉 : x ∈ Q1}.

4. Update xk = 2
k+3 zk + k+1

k+3 yk.

In our case, the Lipschitz constant for the gradient of our smooth approximation to the objective
function is

L(ε) := M +D2‖A‖2/(2σ2ε)

where M := 1/a2 is the Lipschitz constant for the gradient of f̃ , and the norm ‖A‖ is induced
by the Frobenius norm, and is equal to λ.

The algorithm is guaranteed to produce an ε-suboptimal solution after a number of steps not
exceeding

N(ε) :=

4‖A‖
√

D1D2

σ1σ2
· 1

ε +
√

MD1
σ1ε

= (κ
√

(logκ))(4p1.5aλ/
√

2+
√

εp)/ε.

(9)

where κ = b/a is a bound on the condition number of the solution.
Now we are ready to estimate the complexity of the algorithm. For Step 1, the gradient of the

smooth approximation is computed in closed form by taking the inverse of x. Step 2 essentially

492



MODEL SELECTION THROUGH SPARSE MAXIMUM LIKELIHOOD ESTIMATION

amounts to projecting on Q1, and requires that we solve an eigenvalue problem. The same is true
for Step 3. In fact, each iteration costs O(p3). The number of iterations necessary to achieve an
objective with absolute accuracy less than ε is given in (9) by N(ε) = O(p1.5/ε). Thus, if the
condition number κ is fixed in advance, the complexity of the algorithm is O(p4.5/ε).

5. Binary Variables: Approximate Sparse Maximum Likelihood Estimation

In this section, we consider the problem of estimating an undirected graphical model for multi-
variate binary data. Recently, Wainwright et al. (2006) applied an `1-norm penalty to the logistic
regression problem to obtain a binary version of the high-dimensional consistency results of Mein-
shausen and Bühlmann (2006). We apply the log determinant relaxation of Wainwright and Jordan
(2006) to formulate an approximate sparse maximum likelihood (ASML) problem for estimating
the parameters in a multivariate binary distribution. We show that the resulting problem is the same
as the Gaussian sparse maximum likelihood (SML) problem, and that we can therefore apply our
previously-developed algorithms to sparse model selection in a binary setting.

Consider a distribution made up of p binary random variables. Using n data samples, we wish
to estimate the structure of the distribution. An Ising model for this distribution is

p(x;θ) = exp{
p

∑
i=1

θixi +
p−1

∑
i=1

p

∑
j=i+1

θi jxix j −A(θ)} (10)

where

A(θ) = log ∑
x∈X p

exp{
p

∑
i=1

θixi +
p−1

∑
i=1

p

∑
j=i+1

θi jxix j} (11)

is the log partition function.
The sparse maximum likelihood problem in this case is to maximize (10) with an added `1-norm

penalty on terms θk j. Specifically, in the undirected graphical model, an edge between nodes k and
j is missing if θk j = 0.

A well-known difficulty is that the log partition function has too many terms in its outer sum
to compute. However, if we use the log determinant relaxation for the log partition function devel-
oped by Wainwright and Jordan (2006), we can obtain an approximate sparse maximum likelihood
(ASML) estimate.

In their paper, Wainwright and Jordan (2006) consider the problem of computing marginal prob-
abilities over subsets of nodes in a graphical model for a discrete-valued Markov random field. This
problem is closely related to the one we examine here, and exactly solving the problem for general
graphs is intractable. Wainwright and Jordan (2006) propose a relaxation by using a Gaussian bound
on the log partition function (11) and a semidefinite outer bound on the polytope of marginal prob-
abilities. In the next section, we use their results to obtain an approximate estimate of undirected
graphical model for binary variables, and we show that, when using the simplest semidefinite outer
bound on the constraint set, we obtain a problem that is almost exactly the same as that considered
in previous sections, for the Gaussian case. In particular, this means that we can reuse the block
coordinate descent or Nesterov algorithms to approximately estimate graphical models in the case
of binary data.
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5.1 Problem Formulation

Let’s begin with some notation. Letting d := p(p+1)/2, define the map R : Rd → Sp+1 as follows:

R(θ) =











0 θ1 θ2 . . . θp

θ1 0 θ12 . . . θ1p
...

θp θ1p θ2p . . . 0











Suppose that our n samples are z(1), . . . ,z(n) ∈ {−1,+1}p. Let z̄i and z̄i j denote sample mean
and second moments. The sparse maximum likelihood problem is

θ̂exact := argmax
θ

1
2
〈R(θ),R(z̄)〉−A(θ)−λ‖θ‖1. (12)

Finally define the constant vector m = (1, 4
3 , . . . , 4

3) ∈ Rp+1. Wainwright and Jordan (2006) give
an upper bound on the log partition function as the solution to the following variational problem:

A(θ) ≤ maxµ
1
2 logdet(R(µ)+diag(m))+ 〈θ,µ〉

= 1
2 ·maxµ logdet(R(µ)+diag(m))+ 〈R(θ),R(µ)〉. (13)

If we use the bound (13) in our sparse maximum likelihood problem (12), we won’t be able to
extract an optimizing argument θ̂. Our first step, therefore, will be to rewrite the bound in a form
that will allow this.

Lemma 5 We can rewrite the bound (13) as

A(θ) ≤ p
2

log(
eπ
2

)− 1
2
(p+1)− 1

2
· {max

ν
νT m+ logdet(−(R(θ)+diag(ν))). (14)

Using this version of the bound (13), we have the following theorem.

Theorem 6 Using the upper bound on the log partition function given in (14), the approximate
sparse maximum likelihood problem has the following solution:

θ̂k = µ̄k

θ̂k j = −(Γ̂)−1
k j

(15)

where the matrix Γ̂ is the solution to the following problem, related to (2):

Γ̂ := argmax{logdetW : Wkk = Skk +
1
3
, |Wk j −Sk j| ≤ λ}. (16)

Here, S is defined as before:

S =
1
n

n

∑
k=1

(z(k)− µ̄)(z(k)− µ̄)T

where µ̄ is the vector of sample means z̄i.
In particular, this means that we can reuse the algorithms developed in Sections 3 and 4 for

problems with binary variables. The relaxation (13) is the simplest one offered by Wainwright and
Jordan (2006). The relaxation can be tightened by adding linear constraints on the variable µ.
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5.2 Penalty Parameter Choice for Binary Variables

For the choice of the penalty parameter λ, we can derive a formula analogous to (3). Consider the
choice

λ(α)bin :=
(χ2(α/2p2,1))

1
2

(mini> j σ̂iσ̂ j)
√

n
(17)

where χ2(α,1) is the (100−α)% point of the chi-square distribution for one degree of freedom.
Since our variables take on values in {−1,1}, the empirical variances are of the form:

σ̂2
i = 1− µ̄2

i .

Using (17), we have the following binary version of Theorem 2:

Theorem 7 With (17) chosen as the penalty parameter in the approximate sparse maximum likeli-
hood problem, for a fixed level α,

P(∃k ∈ {1, . . . , p} : Ĉλ
k 6⊆Ck) ≤ α.

6. Numerical Results

In this section we present the results of some numerical experiments, both on synthetic and real data.
The synthetic experiments were performed on continuous data, and tests only the original problem
formulation. Both continuous and discrete real data sets are used, however, testing the Gaussian and
binary formulations respectively.

6.1 Synthetic Experiments

Synthetic experiments require that we generate underlying sparse inverse covariance matrices. To
this end, we first randomly choose a diagonal matrix with positive diagonal entries. A given number
of nonzeros are inserted in the matrix at random locations symmetrically. Positive definiteness is
ensured by adding a multiple of the identity to the matrix if needed. The multiple is chosen to be
only as large as necessary for inversion with no errors.

6.2 Sparsity and Thresholding

A very simple approach to obtaining a sparse estimate of the inverse covariance matrix would be
to apply a threshold to the inverse empirical covariance matrix, S−1. However, even when S is
easily invertible, it can be difficult to select a threshold level. We solved a synthetic problem of size
p = 100 where the true concentration matrix density was set to δ = 0.1. Drawing n = 200 samples,
we plot in Figure 1 the sorted absolute value elements of S−1 on the left and Σ̂−1, the solution to (1),
on the right.

It is clearly easier to choose a threshold level for the sparse maximum likelihood estimate.
Applying a threshold to either S−1 or Σ̂−1 would decrease the log likelihood of the estimate by
an unknown amount. One way to compute the largest possible threshold t that preserves positive
definiteness in S can be computed by solving the minimization problem:

t ≤ min
‖v‖1=1

vT S−1v.
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The condition (6.2) is equivalent to the condition that S−1 + L � 0 for all matrices L such that
‖L‖∞ ≤ t.
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Figure 1: Sorted absolute value of elements of (A) S−1 and (B) Σ̂−1. The solution Σ̂−1 to (1) is
un-thresholded.

6.3 Recovering Structure

We begin with a small experiment to test the ability of the method to recover the sparse structure
of an underlying covariance matrix. Figure 2 (A) shows a sparse inverse covariance matrix of size
p = 30. Figure 2 (B) displays a corresponding S−1, using n = 60 samples. Figure 2 (C) displays
the solution to (1) for λ = 0.1. The value of the penalty parameter here is chosen arbitrarily, and the
solution is not thresholded. Nevertheless, we can still pick out features that were present in the true
underlying inverse covariance matrix.
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Figure 2: Recovering the sparsity pattern. We plot (A) the original inverse covariance matrix Σ−1,
(B) the noisy sample inverse S−1, and (C) the solution to problem (1) for λ = 0.1.

Using the same underlying inverse covariance matrix, we repeat the experiment using smaller
sample sizes. We solve (1) for n = 30 and n = 20 using the same arbitrarily chosen penalty parameter
value λ = 0.1, and display the solutions in Figure 3. As expected, our ability to pick out features of
the true inverse covariance matrix diminishes with the number of samples. This is an added reason
to choose a larger value of λ when we have fewer samples, as in (3).
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Figure 3: Recovering the sparsity pattern for small sample size. We plot (A) the original inverse
covariance matrix Σ−1, (B) the solution to problem (1) for n = 30 and (C) the solution for
n = 20. A penalty parameter of λ = 0.1 is used for (B) and (C).

6.4 CPU Times Versus Problem Size

For a sense of the practical performance of the block coordinate descent method, we implemented
it in Matlab, using Mosek to solve the quadratic program at each step. For problem sizes ranging
from p = 400 to p = 1000, we solved the problem using n = 2p samples. In all cases, one sweep
through all the columns was sufficient to achieve an absolute accuracy of ε = 1e−7. The Nesterov
algorithm, implemented in C, was found to have a comparable computation time provided one
chooses a large value for the desired accuracy. Since the Nesterov algorithm aims for a lower
accuracy and requires the setting of bounds a and b on the eigenvalues of the solution, it was not
included in this experiment.

In Figure 4 we plot the average CPU time to achieve convergence, along with CPU times for
the Lasso for comparision. CPU times were computed using an AMD Athlon 64 2.20Ghz processor
with 1.96GB of RAM. Using this very simple implementation, the block coordinate descent method
solves a problem of size p = 1000 in about an hour and a half. The computation time could possibly
be cut down by using a fast Lasso implementation to solve the optimization problem, as described
in Section 3.3, and by using a suitable method to compute the square root matrix Q from (6).

6.5 Path Following Experiments

Figure 6.5 shows two path following examples. We solve two randomly generated problems of size
p = 5 and n = 100 samples. The red lines correspond to elements of the solution that are zero in
the true underlying inverse covariance matrix. The blue lines correspond to true nonzeros. The
vertical lines mark ranges of λ for which we recover the correct sparsity pattern exactly. Note that,
by Theorem 4, for λ values greater than those shown, the solution will be diagonal.

On a related note, we observe that (1) also works well in recovering the sparsity pattern of
a matrix masked by noise. The following experiment illustrates this observation. We generate a
sparse inverse covariance matrix of size p = 50 as described above. Then, instead of using an
empirical covariance S as input to (1), we use S = (Σ−1 +V )−1, where V is a randomly generated
uniform noise of size σ = 0.1. We then solve (1) for various values of the penalty parameter λ.

In Figure 6, for each value of λ shown, we randomly selected 10 sample covariance matrices S
of size p = 50 and computed the number of misclassified zeros and nonzero elements in the solution
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Figure 4: Average CPU times vs. problem size using block coordinate descent. We plot the average
CPU time (in seconds) versus problem size. The standard deviations for the block coor-
dinate descent method are: 0.6077, 0.2652, 0.1989, 1.0165, 48.0833, 2.7732, and 6.2314
seconds respectively. For the Lasso, the standard deviations are: 0.0221, 0.3646, 0.1878,
0.5966, 12.7279, 13.1257, and 0.6187 seconds respectively.

to (1). We plot the average percentage of errors (number of misclassified zeros plus misclassified
nonzeros divided by p2), as well as error bars corresponding to one standard deviation. As shown,
the error rate is nearly zero on average when the penalty is set to equal the noise level σ.

6.6 Estimating the Stability of the Solution Using Cross-validation

Viewing our estimator as a machine that classifies elements of the concentration matrix as either zero
or nonzero, we next turn to the question of the stability of the classification. Classifier instability
is defined here as the probability that the classification of an arbitrary element of the matrix is
changed by some small disturbance in the data. In other words, once we obtain a concentration
graph by treating our estimated matrix Σ̂ as an adjacency matrix, we would like to measure the
stability of our results.

To empirically estimate the instability of our classifier, we can use the following simple pro-
cedure. First, we use all the available data to obtain an estimate of the concentration matrix Σ̂−1

0 .
Then we perform K-fold cross validation: randomly dividing the available data into K subsamples,
we compute K different estimates Σ̂−1

i by successively leaving out one subsample each time. After
each estimate Σ̂−1

i is computed, we count the number of matrix entries with classifications that are
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Figure 5: Path following: elements of solution to (1) as λ increases. Dashed lines correspond to
elements that are zero in the true inverse covariance matrix; solid lines correspond to true
nonzeros. Vertical lines mark a range of λ values using which we recover the sparsity
pattern exactly.
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Figure 6: Recovering sparsity pattern in a matrix with added uniform noise of size σ = 0.1. We
plot the average percentage or misclassified entries as a function of log(λ/σ).

different from those of Σ̂−1
0 . Our estimate of the instability is then the average number of entries,

taken over the K estimates, that were classified differently from those of Σ̂−1
0 .
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Figure 7: Estimating stability of the solution using cross validation. We plot estimated instability,
the probability that the classification of an arbitrary element is changed by a small distur-
bance in the data, for a range of values of λ using data sets of size n = 30,60, and 100
samples for a problem with p = 30 variables.

Below we show the results of some experiments using synthetic data. First, we randomly gener-
ated an underlying concentration matrix of size p = 30. Let δ = 0.25 denote the fraction of nonzero
elements in Σ−1. Then, from the corresponding covariance matrix Σ, we generated three data sets
of sizes n = 30,60, and 100.

In Figure 7 we plot estimated instability versus a range of values for the penalty parameter λ,
using 10-fold cross validation. We applied Theorem 4 to compute a maximum value of λ; beyond
this value, the estimated graph is empty for all three data sets. As shown, even for a small number
of samples, the estimated graph is fairly stable for all values of λ.

We can also see how our estimate of the instability changes as we divide the available data into
a greater number of subsamples. In Figure 8 we repeat the experiment described above, this time
fixing λ = 0.2 and instead varying the number of folds K in the cross validation. In these examples,
for each value of n, dividing the available data into more subsamples for cross validation decreases
our estimate of the instability.

6.7 Performance as a Binary Classifier

In this section we numerically examine the ability of the sparse maximum likelihood (SML) method
to correctly classify elements of the inverse covariance matrix as zero or nonzero. For comparision,
we will use the Lasso estimate of Meinshausen and Bühlmann (2006), which has been shown to
perform extremely well. The Lasso regresses each variable against all others one at a time. Upon
obtaining a solution θ(k) for each variable k, one can estimate sparsity in one of two ways: either by
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Figure 8: Estimating instability of the solution using cross validation. We plot the estimate of the
instability obtained using K samples, for various values of K. Once again, we use data
sets of size n = 30,60, and 100 samples for a problem with p = 30 variables.

declaring an element Σ̂i j nonzero if both θ(k)
i 6= 0 and θ(k)

j 6= 0 (Lasso-AND) or, less conservatively,
if either of those quantities is nonzero (Lasso-OR).

As noted previously, Meinshausen and Bühlmann (2006) have also derived a formula for choos-
ing their penalty parameter. Both the SML and Lasso penalty parameter formulas depend on a
chosen level α, which is a bound on the same error probability for each method. For these experi-
ments, we set α = 0.05.

In the following experiments, we fixed the problem size p at 30 and generated sparse underlying
inverse covariance matrices as described above. We varied the number of samples n from 10 to 310.
For each value of n shown, we ran 30 trials in which we estimated the sparsity pattern of the inverse
covariance matrix using the SML, Lasso-OR, and Lasso-AND methods. We then recorded the
average number of nonzeros estimated by each method, and the average number of entries correctly
identified as nonzero (true positives).

We show two sets of plots. Figure 6.7 corresponds to experiments where the true density was
set to be low, δ = 0.05. We plot the power (proportion of correctly identified nonzeros), positive
predictive value (proportion of estimated nonzeros that are correct), and the density estimated by
each method. Figure 6.7 corresponds to experiments where the true density was set to be high,
δ = 0.40, and we plot the same three quantities.

Meinshausen and Bühlmann (2006) report that, asymptotically, Lasso-AND and Lasso-OR yield
the same estimate of the sparsity pattern of the inverse covariance matrix. At a finite number of
samples, the SML method seems to fall in in between the two methods in terms of power, positive
predictive value, and the density of the estimate. It typically offers, on average, the lowest total
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Figure 9: Classifying zeros and nonzeros for a true density of δ = 0.05. We plot the positive predic-
tive value, the power, and the estimated density using SML, Lasso-OR and Lasso-AND.

number of errors, tied with either Lasso-AND or Lasso-OR. Among the two Lasso methods, it
would seem that if the true density is very low, it is slightly better to use the more conservative
Lasso-AND. If the density is higher, it may be better to use Lasso-OR. When the true density is
unknown, we can achieve an accuracy comparable to the better choice among the Lasso methods by
computing the SML estimate. Figure 11 shows one example of sparsity pattern recovery when the
true density is low.

The Lasso and SML methods have a comparable computational complexity. However, unlike
the Lasso, the SML method is not parallelizable. Parallelization would render the Lasso a more
computationally attractive choice, since each variable can regressed against all other separately, at
an individual cost of O(p3). In exchange, SML can offer a more accurate estimate of the sparsity
pattern, as well as a well-conditioned estimate of the covariance matrix itself.

6.8 Recovering Structure from Binary Data

Next we turn our attention to the binary version of the algorithm, as described in Section 5. For
p = 100 variables, we randomly generated Ising models (10) such that the maximum degree of the
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Figure 10: Classifying zeros and nonzeros for a true density of δ = 0.40. We plot the positive
predictive value, the power, and the estimated density using SML, Lasso-OR and Lasso-
AND.

resulting graph was d = 4. We drew n i.i.d. samples and then attempted to recover the underly-
ing sparsity pattern using both the approximate sparse maximum likelihood method and `1-norm
penalized logistic regression as described by Wainwright et al. (2006).

In Figure 12 we plot the average sensitivity (the fraction of actual nonzeros that are correctly
identified as nonzeros) as well as the average specificity (the fraction of actual zeros that are cor-
rectly identified as zeros) for a range of sample sizes. We used a significance level of α = 0.05
for the approximate sparse maximum likelihood method, and a regularization parameter choice of
λn = 0.04∗ (log p)3/

√
n for the penalized logistic regression AND method, as described by Wain-

wright et al. (2006).

7. Gene Expression and U.S. Senate Voting Records Data

We tested our algorithms on three sets of data: two gene expression data sets, as well as US Senate
voting records. Gene expression data is often assumed to be approximately normally distributed,
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Figure 11: Comparing sparsity pattern recovery to the Lasso. (A) true covariance (B) Lasso-OR
(C) Lasso-AND (D) SML.
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Figure 12: Comparing sparsity pattern recovery to the `1-norm penalized logistic regression (PLR).
We show the sensitivity (left) as well as the specificity (right) as the number of samples
is increased.

while the voting records data is here considered binary. In this section we briefly explore their
respective estimated graphical models.
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7.1 Rosetta Inpharmatics Compendium

We applied our algorithms to the Rosetta Inpharmatics Compendium of gene expression profiles
described by Hughes et al. (2000). The 300 experiment compendium contains n = 253 samples
with p = 6136 variables. With a view towards obtaining a very sparse graph, we replaced α/2p2 in
(3) by α, and set α = 0.05. The resulting penalty parameter is λ = 0.0313.

This is a large penalty for this data set, and by applying Theorem 4 we find that all but 270 of
the variables are estimated to be independent from all the rest, clearly a very conservative estimate.
Figure 13 displays the resulting graph.

Figure 13: Application to Hughes compendium. The above graph results from solving (1) for this
data set with a penalty parameter of λ = 0.0313.

Figure 14 focuses on a region of Figure 13, a cluster of genes that is unconnected to the remain-
ing genes in this estimate. According to Gene Ontology (see Ashburner et al., 2000), these genes
are associated with iron homeostasis. The probability that a gene has been false included in this
cluster is at most 0.05.

As a second example, in Figure 15, we show a subgraph of genes associated with cellular mem-
brane fusion. All three graphs were rendered using Cytoscape.
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Figure 14: Application to Hughes data set (closeup of Figure 13). These genes are associated with
iron homeostasis.

7.2 Iconix Microarray Data

Next we analyzed a subset of a 10,000 gene microarray data set from 160 drug treated rat livers
(Natsoulis et al., 2005). In this study, rats were treated with a variety of fibrate, statin, or estro-
gen receptor agonist compounds. Taking the 500 genes with the highest variance, we once again
replaced α/2p2 in (3) by α, and set α = 0.05. The resulting penalty parameter is λ = 0.0853.

By applying Theorem 4 we find that all but 339 of the variables are estimated to be independent
from the rest. This estimate is less conservative than that obtained in the Hughes case since the ratio
of samples to variables is 160 to 500 instead of 253 to 6136.

The first order neighbors of any node in a Gaussian graphical model form the set of predictors
for that variable. In the estimated obtained by solving (1), we found that LDL receptor had one of
the largest number of first-order neighbors in the Gaussian graphical model. The LDL receptor is
believed to be one of the key mediators of the effect of both statins and estrogenic compounds on
LDL cholesterol. Table 1 lists some of the first order neighbors of LDL receptor.

It is perhaps not surprising that several of these genes are directly involved in either lipid or
steroid metabolism (K03249, AI411979, AI410548, NM 013200, Y00102). Other genes such as
Cbp/p300 are known to be global transcriptional regulators. Finally, some are un-annotated ESTs.
Their connection to the LDL receptor in this analysis may provide clues to their function.
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Figure 15: Application to Hughes data set (subgraph of Figure 13). These genes are associated with
cellular membrane fusion.

ACCESSION GENE

BF553500 CBP/P300-INTERACTING TRANSACTIVATOR

BF387347 EST
BF405996 CALCIUM CHANNEL, VOLTAGE DEPENDENT

NM 017158 CYTOCHROME P450, 2C39
K03249 ENOYL-COA, HYDRATASE/3-HYDROXYACYL CO A DEHYDROG.
BE100965 EST
AI411979 CARNITINE O-ACETYLTRANSFERASE

AI410548 3-HYDROXYISOBUTYRYL-CO A HYDROLASE

NM 017288 SODIUM CHANNEL, VOLTAGE-GATED

Y00102 ESTROGEN RECEPTOR 1
NM 013200 CARNITINE PALMITOYLTRANSFERASE 1B

Table 1: Predictor genes for LDL receptor.

7.3 Senate Voting Records Data

We conclude our numerical experiments by testing our approximate sparse maximum likelihood
estimation method on binary data. The data set consists of US senate voting records data from the
109th congress (2004 - 2006). There are one hundred variables, corresponding to 100 senators.
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Figure 16: US Senate, 109th Congress (2004-2006). The graph displays the solution to (12) ob-
tained using the log determinant relaxation to the log partition function of Wainwright
and Jordan (2006). Democratic senators are represented by round nodes and Republican
senators are represented by square nodes.

Each of the 542 samples is bill that was put to a vote. The votes are recorded as -1 for no and 1 for
yes.

There are many missing values in this data set, corresponding to missed votes. Since our analysis
depends on data values taken solely from {−1,1}, it was necessary to impute values to these. For
this experiment, we replaced all missing votes with noes (-1). We chose the penalty parameter λ(α)
according to (17), using a significance level of α = 0.05. Figure 16 shows the resulting graphical
model, rendered using Cytoscape. Red nodes correspond to Republican senators, and blue nodes
correspond to Democratic senators.

We can make some tentative observations by browsing the network of senators. As neighbors
most Democrats have only other Democrats and Republicans have only other Republicans. Senator
Chafee (R, RI) has only Democrats as his neighbors, an observation that supports media statements
made by and about Chafee during those years. Senator Allen (R, VA) unites two otherwise separate
groups of Republicans and also provides a connection to the large cluster of Democrats through Ben
Nelson (D, NE), which also supports media statements made about him prior to his 2006 re-election
campaign. Thus, although we obtained this graphical model via a relaxation of the log partition
function, the resulting picture is supported by conventional wisdom. Figure 17 shows a subgraph
consisting of neighbors of degree three or lower of Senator Allen.

Finally, we estimated the instability of these results using 10-fold cross validation, as described
in Section 6.6. The resulting estimate of the instability is 0.00376, suggesting that our estimate of
the graphical model is fairly stable.
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Figure 17: US Senate, 109th Congress. Neighbors of Senator Allen (degree three or lower).
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Appendix A. Proof of Solution Properties and Block Coordinate Descent
Convergence

In this section, we give short proofs of the two theorems on properties of the solution to (1), as well
as the convergence of the block coordinate descent method.

Proof of Theorem 1:
Since Σ̂ satisfies Σ̂ = S +Û , where ‖U‖∞ ≤ λ, we have:

‖Σ̂‖2 = ‖S +Û‖2

≤ ‖S‖2 +‖U‖2 ≤ ‖S‖2 +‖U‖∞ ≤ ‖S‖2 +λp

which yields the lower bound on ‖Σ̂−1‖2. Likewise, we can show that ‖Σ̂−1‖2 is bounded above. At
the optimum, the primal dual gap is zero:

− logdet Σ̂−1 + trace(SΣ̂−1)+λ‖Σ̂−1‖1 − logdet Σ̂− p
= trace(SΣ̂−1)+λ‖Σ̂−1‖1 − p = 0

We therefore have
‖Σ̂−1‖2 ≤ ‖Σ̂−1‖F ≤ ‖Σ̂−1‖1

= p/λ− trace(SΣ̂−1)/λ ≤ p/λ
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where the last inequality follows from trace(SΣ̂−1) ≥ 0, since S � 0 and Σ̂−1 � 0.

Next we prove the convergence of block coordinate descent:

Proof of Theorem 3:
To see that optimizing over one row and column of W in (2) yields the quadratic program (4), let

all but the last row and column of W be fixed. Since we know the diagonal entries of the solution,
we can fix the remaining diagonal entry as well:

W =

(

W\p\p wp

wT
p Wpp

)

.

Then, using Schur complements, we have that

detW = detW\p\p · (Wpp −wT
p (W\p\p)

−1wp)

which gives rise to (4).
By general results on block coordinate descent algorithms (e.g., Bertsekas, 1998), the algorithms

converges if (4) has a unique solution at each iteration. Thus it suffices to show that, at every sweep,
W ( j) � 0 for all columns j. Prior to the first sweep, the initial value of the variable is positive
definite: W (0) � 0 since W (0) := S +λI, and we have S � 0 and λ > 0 by assumption.

Now suppose that W ( j) � 0. This implies that the following Schur complement is positive:

w j j −W T
j (W ( j)

\ j\ j)
−1Wj > 0

By the update rule we have that the corresponding Schur complement for W ( j+1) is even greater:

w j j −W T
j (W ( j+1)

\ j\ j )−1Wj > w j j −W T
j (W ( j)

\ j\ j)
−1Wj > 0

so that W ( j+1) � 0.

Finally, we apply Theorem 3 to prove the second property of the solution.

Proof of Theorem 4:
Suppose that column j of the second moment matrix satisfies |Si j| ≤ λ for all i 6= j. This means

that the zero vector is in the constraint set of (4) for that column. Each time we return to column j,
the objective function will be different, but always of the form yT Ay for A � 0. Since the constraint
set will not change, the solution for column j will always be zero. By Theorem 3, the block co-
ordinate descent algorithm converges to a solution, and so therefore the solution must have Σ̂ j = 0.

Appendix B. Proof of Error Bounds

Next we shall show that the penalty parameter choice given in (3) yields the error probability bound
of Theorem 2. The proof is nearly identical to that of (Meinshausen and Bühlmann, 2006, Theorem
3). The differences stem from a different objective function, and the fact that our variable is a matrix
of size p rather than a vector of size p. Our proof is only an adaptation of their proof to our problem.
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B.1 Preliminaries

Before we begin, consider problem (1), for a matrix S of any size:

X̂ = argmin− logdetX + trace(SX)+λ‖X‖1

where we have dropped the constraint X � 0 since it is implicit, due to the log determinant function.
Since the problem is unconstrained, the solution X̂ must correspond to setting the subgradient of the
objective to zero:

Si j −X−1
i j = −λ for Xi j > 0,

Si j −X−1
i j = λ for Xi j < 0,

|Si j −X−1
i j | ≤ λ for Xi j = 0.

(18)

Recall that by Theorem 1, the solution is unique for λ positive.

B.2 Proof of Error Bound for Gaussian Data

Now we are ready to prove Theorem 2.

Proof of Theorem 2:
Sort columns of the covariance matrix so that variables in the same connectivity component are

grouped together. The correct zero pattern for the covariance matrix is then block diagonal. Define

Σcorrect := blk diag(C1, . . . ,C`) (19)

The inverse (Σcorrect)−1 must also be block diagonal, with possible additional zeros inside the
blocks. If we constrain the solution to (1) to have this structure, then by the form of the objective,
we can optimize over each block separately. For each block, the solution is characterized by (18).

Now, suppose that
λ > max

i∈N, j∈N\Ci

|Si j −Σcorrect
i j |. (20)

Then, by the subgradient characterization of the solution noted above, and the fact that the solution
is unique for λ > 0, it must be the case that Σ̂ = Σcorrect. By the definition of Σcorrect, this implies
that, for Σ̂, we have Ĉk = Ck for all k ∈ N.

Taking the contrapositive of this statement, we can write:

P(∃k ∈ N : Ĉk 6⊆Ck)

≤ P(maxi∈N, j∈N\Ci
|Si j −Σcorrect

i j | ≥ λ)

≤ p2(n) ·maxi∈N, j∈N\Ci
P(|Si j −Σcorrect

i j | ≥ λ)

= p2(n) ·maxi∈N, j∈N\Ci
P(|Si j| ≥ λ).

(21)

The equality at the end follows since, by definition, Σcorrect
i j = 0 for j ∈ N\Ci. It remains to

bound P(|Si j| ≥ λ).
The statement |Sk j| ≥ λ can be written as:

|Rk j|(1−R2
k j)

− 1
2 ≥ λ(skks j j −λ2)−

1
2

where Rk j is the correlation between variables k and j, since

|Rk j|(1−R2
k j)

− 1
2 = |Sk j|(SkkS j j −S2

k j)
− 1

2 .
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Furthermore, the condition j ∈ N\Ck is equivalent to saying that variables k and j are indepen-
dent: Σk j = 0. Conditional on this, the statistic

Rk j(1−R2
k j)

− 1
2 (n−2)

1
2

has a Student’s t-distribution for n−2 degrees of freedom. Therefore, for all j ∈ N\Ck,

P(|Sk j| ≥ λ|Skk = skk,S j j = s j j)

= 2P(Tn−2 ≥ λ(skks j j −λ2)−
1
2 (n−2)

1
2 |Skk = skk,S j j = s j j)

≤ 2F̃n−2(λ(σ̂2
kσ̂2

j −λ2)−
1
2 (n−2)

1
2 )

(22)

where σ̂2
k is the sample variance of variable k, and F̃n−2 = 1−Fn−2 is the CDF of the Student’s

t-distribution with n−2 degree of freedom. This implies that, for all j ∈ N\Ck,

P(|Sk j| ≥ λ) ≤ 2F̃n−2(λ(σ̂2
kσ̂2

j −λ2)−
1
2 (n−2)

1
2 )

since P(A) =
R

P(A|B)P(B)dB ≤ K
R

P(B)dB = K. Putting the inequalities together, we have that:

P(∃k : Ĉλ
k 6⊆Ck)

≤ p2 ·maxk, j∈N\Ck
2F̃n−2(λ(σ̂2

kσ̂2
j −λ2)−

1
2 (n−2)

1
2 )

= 2p2F̃n−2(λ((n−2)/((maxi> j σ̂kσ̂ j)
2 −λ2))

1
2 ).

For any fixed α, our required condition on λ is therefore

F̃n−2(λ((n−2)/((max
i> j

σ̂kσ̂ j)
2 −λ2))

1
2 ) = α/2p2

which is satisfied by choosing λ according to (3).

B.3 Proof of Bound for Binary Data

We can reuse much of the previous proof to derive a corresponding formula for the binary case.

Proof of Theorem 7:
The proof of Theorem 7 is identical to the proof of Theorem 2, except that we have a different

null distribution for |Sk j|. The null distribution of

nR2
k j

is chi-squared with one degree of freedom. Analogous to (22), we have:

P(|Sk j| ≥ λ|Skk = skk,S j j = s j j)
= 2P(nR2

k j ≥ nλ2skks j j|Skk = skk,S j j = s j j)

≤ 2G̃(nλ2σ̂2
kσ̂2

j)

where σ̂2
k is the sample variance of variable k, and G̃ = 1−G is the CDF of the chi-squared distri-

bution with one degree of freedom. This implies that, for all j ∈ N\Ck,

P(|Sk j| ≥ λ) ≤ 2G̃((λσ̂kσ̂ j
√

n)2).
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Putting the inequalities together, we have that:

P(∃k : Ĉλ
k 6⊆Ck)

≤ p2 ·maxk, j∈N\Ck
2G̃((λσ̂kσ̂ j

√
n)2)

= 2p2G̃((mini> j σ̂kσ̂ j)
2nλ2)

so that, for any fixed α, we can achieve our desired bound by choosing λ(α) according to (17).

Appendix C. Proof of Connection Between Gaussian SML and Binary ASML

We end with a proof of Theorem 6, which connects the exact Gaussian sparse maximum likelihood
problem with the approximate sparse maximum likelihood problem obtained by using the log de-
terminant relaxation of Wainwright and Jordan (2006). First we must prove Lemma 5.

Proof of Lemma 5:
The conjugate function for the convex normalization A(θ) is defined as

A∗(µ) := sup
θ
{〈µ,θ〉−A(θ)}. (23)

Wainwright and Jordan derive a lower bound on this conjugate function using an entropy bound:

A∗(µ) ≥ B∗(µ). (24)

Since our original variables are spin variables x {−1,+1}, the bound given in the paper is

B∗(µ) := −1
2

logdet(R(µ)+diag(m))− p
2

log(
eπ
2

) (25)

where m := (1, 4
3 , . . . , 4

3).
The dual of this lower bound is B(θ):

B∗(µ) := maxθ〈θ,µ〉−B(θ) ≤ maxθ〈θ,µ〉−A(θ) =: A∗(µ). (26)

This means that, for all µ,θ,

〈θ,µ〉−B(θ) ≤ A∗(µ) (27)

or

B(θ) ≥ 〈θ,µ〉−A∗(µ) (28)

so that in particular

B(θ) ≥ max
µ

〈θ,µ〉−A∗(µ) =: A(θ) (29)
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Using the definition of B(θ) and its dual B∗(µ), we can write

B(θ) := maxµ〈θ,µ〉−B∗(µ)

= p
2 log( eπ

2 )+maxµ
1
2〈R(θ),R(µ)〉+ 1

2 logdet(R(µ)+diag(m))

= p
2 log( eπ

2 )+ 1
2 ·max{〈R(θ),X −diag(m)〉+ logdet(X) : X � 0,diag(X) = m}

= p
2 log( eπ

2 )+ 1
2 · {maxX�0 minν〈R(θ),X −diag(m)〉+ logdet(X)+νT (diag(X)−m)}

= p
2 log( eπ

2 )+ 1
2 · {maxX�0 minν〈R(θ)+diag(ν),X〉+ logdet(X)−νT m}

= p
2 log( eπ

2 )+ 1
2 · {minν−νT m+maxX�0〈R(θ)+diag(ν),X〉+ logdet(X)}

= p
2 log( eπ

2 )+ 1
2 · {minν−νT m− logdet(−(R(θ)+diag(ν)))− (p+1)}

= p
2 log( eπ

2 )− 1
2(p+1)+ 1

2 · {minν−νT m− logdet(−(R(θ)+diag(ν)))}
= p

2 log( eπ
2 )− 1

2(p+1)− 1
2 · {maxν νT m+ logdet(−(R(θ)+diag(νλ)}.

(30)

Now we use Lemma 5 to prove the main result of Section 5.1. Having expressed the upper
bound on the log partition function as a constant minus a maximization problem will help when we
formulate the sparse approximate maximum likelihood problem.

Proof of Theorem 6:
The approximate sparse maximum likelihood problem is obtained by replacing the log partition

function A(θ) with its upper bound B(θ), as derived in Lemma 5:

n · {maxθ
1
2〈R(θ),R(z̄)〉−B(θ)−λ‖θ‖1}

= n · {maxθ
1
2〈R(θ),R(z̄)〉−λ‖θ‖1 + 1

2(p+1)− p
2 log( eπ

2 )

+ 1
2 · {maxν νT m+ logdet(−(R(θ)+diag(ν)))}}

= n
2(p+1)− np

2 log( eπ
2 )+ n

2 ·maxθ,ν{νT m+ 〈R(θ),R(z̄)〉
+ logdet(−(R(θ)+diag(ν)))−2λ‖θ‖1}.

(31)

We can collect the variables θ and ν into an unconstrained symmetric matrix variable Y :=
−(R(θ)+diag(ν)).

Observe that
〈R(θ),R(z̄)〉 = 〈−Y −diag(ν),R(z̄)〉
= −〈Y,R(z̄)〉−〈diag(ν),R(z̄)〉 = −〈Y,R(z̄)〉 (32)

and that
νT m = 〈diag(ν),diag(ν)〉 = 〈−Y −R(θ),diag(m)〉
= −〈Y,diag(m)〉−〈R(θ),diag(m)〉 = −〈Y,diag(m)〉. (33)

The approximate sparse maximum likelihood problem can then be written in terms of Y :

n
2(p+1)− np

2 log( eπ
2 )+ n

2 ·maxθ,ν{νT m+ 〈R(θ),R(z̄)〉
+ logdet(−(R(θ)+diag(m)))−2λ‖θ‖1}
= n

2(p+1)− np
2 log( eπ

2 )+ n
2 ·max{logdetY −〈Y,R(z̄)+diag(m)〉

−2λ∑p
i=2 ∑p+1

j=i+1 |Yi j|}.

(34)

If we let M := R(z̄)+diag(m), then:

M =

(

1 µ̄T

µ̄ Z + 1
3 I

)
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where µ̄ is the sample mean and

Z =
1
n

n

∑
k=1

z(k)(z(k))T .

Due to the added 1
3 I term, we have that M � 0 for any data set.

The problem can now be written as:

Ŷ := argmax{logdetY −〈Y,M〉−2λ
p

∑
i=2

p+1

∑
j=i+1

|Yi j| : Y � 0}. (35)

Since we are only penalizing certain elements of the variable Y , the solution X̂ of the dual
problem to (35) will be of the form:

X̂ =

(

1 µ̄T

µ̄ X̃

)

where

X̃ := argmax{logdetV : Vkk = Zkk +
1
3
, |Vk j −Zk j| ≤ λ}.

We can write an equivalent problem for estimating the covariance matrix. Define a new variable:

Γ = V − µ̄µ̄T .

Using this variable, and the fact that the second moment matrix about the mean, defined as before,
can be written

S =
1
n

n

∑
k=1

z(k)(z(k))T − µ̄µ̄T = Z − µ̄µ̄T

we obtain the formulation (16). Using Schur complements, we see that our primal variable is of the
form:

Y =

(

∗ ∗
∗ Γ̂−1

)

.

From our definition of the variable Y , we see that the parameters we are estimating, θ̂k j, are the
negatives of the off-diagonal elements of Γ̂−1, which gives us (15).
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Abstract
Loog (2007) provided a complete characterization of the family of solutions to a generalized Fisher
criterion. We show that this characterization is essentially equivalent to the original characterization
proposed in Ye (2005). The computational advantage of the original characterization over the new
one is discussed, which justifies its practical use.
Keywords: linear discriminant analysis, dimension reduction, linear transformation

1. Generalized Fisher Criterion

For a given data set consisting of n data points {ai}
n
i=1 in IRd , a linear transformation G ∈ IRd×`

(` < d) maps each ai for 1 ≤ i ≤ n in the d-dimensional space to a vector ãi in the `-dimensional
space as follows:

G : ai ∈ IRd → ãi = GT ai ∈ IR`.

Assume that there are k classes in the data set. The within-class scatter matrix Sw, the between-
class scatter matrix Sb, and the total scatter matrix St involved in linear discriminant analysis are
defined as follows (Fukunaga, 1990):

Sw =
k

∑
i=1

(Ai − cie
T )(Ai − cie

T )T ,

Sb =
k

∑
i=1

ni(ci − c)(ci − c)T ,

St =
k

∑
i=1

(Ai − ceT )(Ai − ceT )T ,

where Ai denotes the data matrix of the i-th class, ci = Aie/ni is the centroid of the i-th class, ni is
the sample size of the i-th class, c = Ae/n is the global centroid, and e is the vector of all ones with
an appropriate length. It is easy to verify that St = Sb +Sw.

In Ye (2005), the optimal transformation G is computed by maximizing a generalized Fisher
criterion as follows:

G = arg max
G∈IRm×`

trace
(

(

GT StG
)+

GT SbG
)

, (1)

c©2008 Jieping Ye.
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where M+ denotes the pseudo-inverse (Golub and Van Loan, 1996) of M and it is introduced to
overcome the singularity problem when dealing with high-dimensional low-sample-size data.

1.1 Equivalent Transformation

Two linear transformations G1 and G2 can be considered equivalent if there is a vector v such that
GT

1 (ai−v) = GT
2 (ai−v), for i = 1, · · · ,n. Indeed, in this case, the difference between the projections

by G1 and G2 is a mere shift.

Definition 1.1 For a given data set {a1, · · · ,an}, two transformations G1 and G2 are equivalent, if
there is a vector v such that

GT
1 (ai − v) = GT

2 (ai − v), for i = 1, · · · ,n.

2. Characterization of Solutions to the Generalized Fisher Criterion

Let St = UΣUT be the orthogonal eigendecomposition of St (note that St is symmetric and positive
semi-definite), where U ∈ IRd×d is orthogonal and Σ ∈ IRd×d is diagonal with nonnegative diagonal
entries sorted in nonincreasing order. Denote Σr as the r-th principal submatrix of Σ, where r =
rank(St). Partition U into two components as U = [U1,U2], where U1 ∈ IRd×r and U2 ∈ IRd×(d−r).
Note that r ≤ n, and for high-dimensional low-sample-size data, U1 is much smaller than U2.

In Loog (2007), a complete family of solutions S to the maximization problem in Eq. (1) is
given as (We correct the error in Loog (2007) by using U instead of U T .)

S =

{

U

(

ΛZ
Y

)

∈ IRd×`

∣

∣

∣

∣

Z ∈ IR`×` is nonsingular , Y ∈ IR(n−r)×`

}

,

where Λ ∈ IRr×` maximizes the following objective function:

F0(X) = trace
(

(

XT ΣrX
)−1

XT (UT
1 SbU1)X

)

.

In Ye (2005), a family of solutions S̃ is given as

S̃ =

{

U

(

ΛZ
0

)

∈ IRd×`

∣

∣

∣

∣

Z ∈ IR`×` is nonsingular

}

.

The only difference between these two characterizations of solutions is the matrix Y in S , which is
replaced by the zero matrix in S̃ . We show in the next section the equivalence relationship between
these two characterizations.

3. Equivalent Solution Characterizations

Consider the following two transformations G1 and G2 from S and S̃ respectively:

G1 = U

(

ΛZ
Y

)

∈ S , G2 = U

(

ΛZ
0

)

∈ S̃ .
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Recall that U = [U1,U2], where the columns of U2 span the null space of St . Hence,

0 = UT
2 StU2 =

n

∑
i=1

UT
2 (ai − c) · (UT

2 (ai − c))T ,

and UT
2 (ai − c) = 0, for i = 1, · · · ,n, where c is the global centroid. It follows that

GT
1 (ai − c) = ZT ΛTUT

1 (ai − c)+Y TUT
2 (ai − c) = ZT ΛTUT

1 (ai − c) = GT
2 (ai − c),

for i = 1, · · · ,n. That is, G1 and G2 are equivalent transformations. Hence, the two solution charac-
terizations S and S̃ are essentially equivalent.

Remark 3.1 The analysis above shows that the additional information contained in S is the null
space, U2, of St , which leads to an equivalent transformation. In S̃ , the null space U2 is removed,
which can be further justified as follows. Since St = Sb +Sw, we have

0 = UT
2 StU2 = UT

2 SbU2 +UT
2 SwU2.

It follows that UT
2 SbU2 = 0, as both Sb and Sw are positive semi-definite. Thus, the null space U2

does not contain any discriminant information. This explains why the null space of St is removed in
most discriminant analysis based algorithms proposed in the past.

4. Efficiency Comparison

In S , the full matrix U is involved, whose computation may be expensive, especially for high-
dimensional data. In contrast, only the first component U1 ∈ IRd×r of U is involved in S̃ , which can
be computed efficiently for high-dimensional low-sample-size problem by directly working on the
Gram matrix instead of the covariance matrix.

In summary, we show that S and S̃ are equivalent characterizations of the solutions to the gen-
eralized Fisher criterion in Eq. (1). However, the latter one is preferred in practice due to its relative
efficiency for high-dimensional low-sample-size data.
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Abstract

Support vector machine (SVM) is one of the most popular and promising classification algorithms.
After a classification rule is constructed via the SVM, it is essential to evaluate its prediction accu-
racy. In this paper, we develop procedures for obtaining both point and interval estimators for the
prediction error. Under mild regularity conditions, we derive the consistency and asymptotic nor-
mality of the prediction error estimators for SVM with finite-dimensional kernels. A perturbation-
resampling procedure is proposed to obtain interval estimates for the prediction error in practice.
With numerical studies on simulated data and a benchmark repository, we recommend the use of
interval estimates centered at the cross-validated point estimates for the prediction error. Further
applications of the proposed procedure in model evaluation and feature selection are illustrated with
two examples.

Keywords: k-fold cross-validation, model evaluation, perturbation-resampling, prediction errors,
support vector machine

1. Introduction

As a state-of-the-art machine learning algorithm in classifying high-dimensional data, support vec-
tor machines (SVMs) developed by Vapnik and his colleagues (1995, 1998) have gained popularity
due to many attractive features. The SVM has been used frequently in practice for developing
prediction rules. After a prediction rule is constructed, the common practice is to provide a point
estimate of the corresponding accuracy without accounting for the sampling variability in the esti-
mated accuracy of the prediction rule. However, to ensure the reproducibility of the reported results,
it is crucial to account for such sampling variability and provide interval estimates for the accuracy
measures, especially when the sample size is not large relative to the number of unknown model
parameters.

Various methods have been available to estimate the prediction error of classifiers based on
the cross-validation and bootstrap methods (Efron, 1986; Efron and Tibshirani, 1997; Fu et al.,
2005; Molinaro et al., 2005; Shao, 1996; Varma and Simon, 2006). When the sample size is not

c©2008 Bo Jiang, Xuegong Zhang and Tianxi Cai.



JIANG, ZHANG AND CAI

sufficiently large, point estimates may be inadequate for choosing the classifier with optimized
parameters or features (Reunanen, 2003; Varma and Simon, 2006). For example, in Table 1, we
summarize the accuracies of SVM classifiers with different kernels based on on two artificial data
sets that are generated as in Section 4.3. It appears that the polynomial kernel outperforms the linear
kernel for both data sets with higher accuracy. However, it is unclear whether the difference in the
higher accuracy is due to randomness. Due to its high generalization ability, the linear kernel may
be preferred unless it results in significantly lower accuracy. As such, the point estimates of the
accuracy measures may not provide sufficient evidence for determining which type of kernel should
be used.

To adequately assess the accuracy and draw valid conclusions, it is important to account for
the sampling variability in the estimated prediction error. Some studies have suggested performing
hypothesis testing by considering the variability in the cross-validated estimator (Dietterich, 1998).
Bengio and Grandvalet (2004) and Nadeau and Bengio (2003) pointed out that there exists no uni-
versally unbiased estimator of the variance of K-fold cross-validated estimator that is based only on
the results of the cross-validation experiments. Therefore, the estimation of uncertainty around the
prediction error estimators remains a theoretical, as well as practical problem.

Data Sample Linear Kernel Polynomial Kernel
Type Size Accuracy Accuracy

1 100 94% 95%
2 100 92% 96%

Table 1: Kernel selection in SVM classifiers based on the cross-validation point estimates for the
prediction error.

To assess the predictive performance of SVM derived from data with finite sample size, prob-
abilistic bounds such as VC-based bounds (Vapnik, 1998) and stability-based bounds (Kearns and
Ron, 1999; Bousquet and Elisseeff, 2002) have been proposed. However, those theoretical bounds
are too conservative to give an accurate estimation. In particular, they do not account for the sam-
pling variability inherent in different types of data. In statistical literature, the bootstrap resampling
procedure (Efron, 1979) and its variants (Efron, 1987; Wu, 1986; Liu, 1988; Hall and Mammen,
1994) provide a general framework for ascertaining variances and constructing confidence intervals,
but limited effort has been made to study the distributional properties of the estimated prediction
error (Efron and Tibshirani, 1995, Section 5).

In this article, we develop procedures to approximate the distribution of the estimated accuracy
measures for SVM classifiers and construct confidence intervals for the accuracy measures. The
proposed method, which may be linked to the weighted bootstrap resampling (Hall and Mammen,
1994; Hall and Maesono, 2000) and the Bayesian bootstrap method (Rubin, 1981), directly builds
on the perturbation-resampling procedure considered in Park and Wei (2003) and Cai et al. (2005).
The accuracy measure we consider is the expected absolute difference between the true and pre-
dicted responses for future subjects. For SVMs with finite-dimensional kernels, we show that the
accuracy measure can be consistently estimated via cross-validation procedures, and the resulting
estimators are asymptotically normal. A practical perturbation-resampling procedure is proposed
to approximate the sampling distribution of the prediction error. This inference procedure is valid
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without having to specify the true association between the response and the predictors. This is par-
ticularly appealing when it is difficult, if not impossible, to identify the true model under which the
data are generated. Numerical studies based on simulated data and a benchmark repository sug-
gest that both the variance estimator and the interval estimator centered at the cross-validated point
estimator perform well. The proposed procedure is further illustrated with applications in kernel
selection and in the genotypic testing for drug resistance.

2. Estimating the Prediction Error of SVM Classifiers

In this section, we provide a brief review on the construction of SVM classifiers and introduce point
estimators of the accuracy measure used for evaluating the performance of SVM classifiers.

2.1 Basic Notations and Construction of SVM Classifiers

The SVM classifier is derived based on the hinge loss function:

L(Y, f (X)) = [1−Y f (X)]+ =

{

0 , Y f (X) > 1
1−Y f (X) , Y f (X) ≤ 1

,

where X is the input vector and Y ∈ {−1,1} is the output label, and f (X) is the prediction function.
Here, we first consider the case when f (X) is a linear function, f (X;θ) = w′X + b (we use V′ to
denote the transpose of the vector V hereafter), where θ = (w′,b)′ is the adjustable parameter. Based
on f (·), we predict Y by the decision function Ŷ (X,θ) = sign{ f (X;θ)}, where sign(·) denotes the
sign of the function value.

To construct an optimal prediction rule, one may consider the prediction function f (X;θ) that
minimizes the SVM risk function

Q(θ) = E{[1−Y f (X;θ)]+} .

To approximate the expected risk function Q(θ), one may consider its penalized empirical counter-
part,

Q̂n(θ) =
1
n

n

∑
i=1

[1−Yi f (Xi;θ)]+ +λnw′w , (1)

and obtain θ̂ = argminθQ̂n(θ), where {(Xi,Yi); i = 1, . . . ,n} are n independent realizations of (X,Y ),
and λn is the regularization parameter that controls the amount of penalty. Subsequently, the pre-
diction of Y may be made based on f (X; θ̂).

In practice, the minimizer θ̂ may be ascertained through quadratic programming techniques
since the minimization of Q̂n(θ) is equivalent to the minimization of

min
α

{
n

∑
i=1

αi −
1
2

n

∑
i, j=1

αiYi(X′
iX j)Yjα j} , (2)

with linear constraints 0 ≤ αi ≤ C, i = 1, . . . ,n and ∑n
i=1 αiYi = 0, where C = 1/(2λnn). Here, the

constraint parameter C = C(n) depends on the sample size n and typically satisfies nC(n) → ∞, or
equivalently λn → 0, under which requirement SVM classifiers are universally consistent (Steinwart,
2002).
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Note that the only way in which the input vectors appear in the minimizing problem (2) is in
the form of inner products, X′

iX j. If the input vectors are mapped to a so called ”feature space” H
via a mapping denoted by Φ, then the minimizing algorithm would only depend on the data through
inner products in H , that is, functions of the form Φ(Xi)

′Φ(X j). Hence, if there is a kernel function
K(·, ·) such that K(Xi,X j) = Φ(Xi)

′Φ(X j), one may carry out the minimization based on kernel
function K(·, ·) only. For the simplest case when K(Xi,X j) = X′

iX j, we will refer to function K(·, ·)
as the linear kernel. Other examples include the polynomial kernel K(Xi,X j) = (γX′

iX j + b)d , and
the RBF kernel K(Xi,X j) = exp{−‖Xi −X j‖2/2σ2}, with specified hyper-parameters γ, b, d and
σ.

2.2 Point Estimators for the Prediction Error

To evaluate how well the trained SVM performs on a future, independent subject (X0,Y0) from the
same population of (X,Y ), we consider the absolute prediction error D0:

D0 = E|Y0 − Ŷ (X0, θ̂)| , (3)

where θ̂ is the solution to minimizing function (1), and Ŷ (X,θ) is the decision function introduced in
Section 2.1. Note that θ̂ is a function of random variables {(Xi,Yi); i = 1, . . . ,n}, and the expectation
E in (3) is with respect to {(Xi,Yi); i = 1, . . . ,n} and (X0,Y0). Thus, D0 depends on sample size n and
is sometimes referred to as the generalization error (see Nadeau and Bengio, 2003). To estimate D0,
we first consider the training error, which is also called apparent or re-substitution error in statistical
literature, D̂ = D̂(θ̂), where

D̂(θ) = n−1
n

∑
i=1

|Yi − Ŷ (Xi,θ)| . (4)

When the sample size n is small or moderate relative to the dimension of parameter θ, training
error D̂(θ̂) tends to be biased downward as an estimate of D0. One remedy to reduce such a bias is to
use the cross-validation procedure. Here we consider the commonly used K-fold cross-validation.
Specifically, we randomly split the data into K disjoint subsets of about equal size and label them as
Ik,k = 1, . . . ,K. For each k, we use all observations which are not in Ik to obtain an estimate θ̂(−k)

for θ via (1), and then compute the prediction error estimate D̂(k)(θ) via (4) based on observations
in Ik. Then, the cross-validated prediction error estimator for D0 is

D̂ = K−1
K

∑
k=1

D̂(k)(θ̂(−k)) . (5)

We show in the next section that the cross-validation estimator D̂ is consistent for estimating
the prediction error of SVM classifiers under certain conditions. However, as we have mentioned
above, point estimates are not adequate in drawing valid conclusions, and we need to further study
the distributional properties of the estimated prediction error.

3. Interval Estimators for the Prediction Error

In this section, we provide large sample properties of the estimated prediction error. In particular,
we discuss the consistency and asymptotic normality of the estimators. Based on these theoretical
results, we present a simple perturbation-resampling procedure to obtain interval estimates for the
prediction error. In addition, we provide inference procedures for comparing two competing models.
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3.1 Large Sample Properties of Point Estimators

Suppose that the parameter θ belongs to a compact set Θ, and both the expectation E(X) and the
covariance matrix var(X) of the input vector X are finite. To derive the asymptotic properties for
D̂, we first need to establish that θ̂ ”stabilizes” as n increases, that is, θ̂ converges to a constant
vector in probability, as n → ∞. In Theorem 1 of Appendix A, we show that under some regularity
conditions, the limiting objective function Q(θ) is strictly convex with a unique minimizer θ0, and
thus for large n, there exists a unique minimizer, θ̂, of Q̂n(θ). Furthermore, as n → ∞, θ̂ → θ0 and
D̂(θ̂) → D0 in probability.

To further study the large sample property of D̂, we explore the distribution of

W = n1/2{D̂(θ̂)−D0} . (6)

Note that although D̂(θ) is not differentiable with respect to θ, E[D̂(θ)] is continuously differentiable
at θ0. In Theorem 2 of Appendix B, we show that W is asymptotically equivalent to n−1/2 ∑n

i=1 ηi,
and converges in distribution to a zero mean normal with variance E(η2

i ), where ηi is defined in
(14) of Appendix B. The variance of W can be approximated by

n−1
n

∑
i=1

η̂2
i , (7)

where η̂i is obtained by replacing all the theoretical quantities in ηi by their empirical counterparts.

It is commonly known that the training error D̂ is biased downward as an estimate of D0 and
hence should not be used without correction. To reduce such a bias, we consider the K-fold cross-
validated estimator given in (5), where K is fixed and relatively small with respect to n. Using similar
arguments as for the convergence of D̂(θ̂), one may show that D̂ converges to D0 in probability.
Furthermore, we show in Theorem 3 of Appendix C that

W = n1/2{D̂ −D0} (8)

is asymptotically equivalent to W in (6) and thus W also converges in distribution to a zero mean
normal with variance E(η2

i ). This implies that the cross-validated estimator D̂ , while potentially
has less bias compared to the training error D̂, is expected to have the same magnitude of variability
as that of D̂. Thus, we recommend to construct confidence intervals for D0 by centering at D̂ with
width determined by the variability in W . Although the proposed procedure is derived through large
sample approximations, the results of numerical studies given below indicate that the distributions
of W and W are reasonably close in finite samples.

3.2 Perturbation-Resampling Procedure for Estimating the Confidence Interval

Estimating the variance of W based on (7) may be difficult in practice with high-dimensional θ
since it requires the estimation of the gradient of an unknown non-parametric function. To over-
come such difficulties, we propose a computationally efficient perturbation-resampling procedure
to approximate the distribution of W . To be specific, let {Gi; i = 1, . . . ,n} be a vector of independent
and identically distributed positive random variables with unit mean and unit variance that are gen-
erated independent of the data. In practice, one may generate {Gi; i = 1, . . . ,n} from an exponential
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distribution. For any given set of {Gi; i = 1, . . . ,n}, we define

Q̂∗
n(θ) =

1
n

n

∑
i=1

Gi{[1−Yi f (Xi;θ)]+ +λnw′w} , (9)

and let θ∗ be the minimizer of Q̂∗
n(θ). Note that conditionally on the observed data, the only random

quantities in Q̂∗
n(θ) are the G’s. Next, let

W ∗ = n−1/2
n

∑
i=1

{|Yi − Ŷ (Xi,θ∗)|− D̂(θ̂)}Gi . (10)

It follows from the arguments given in Appendix D that the distribution of W in (8) can be approx-
imated well by the conditional distribution of W ∗ in (10) given the data {(Xi,Yi); i = 1, . . . ,n}. The
random variables Gi used in (10) may be linked to the Bayesian bootstrap method (Rubin, 1981)
with Gi/(n−1 ∑n

i=1 Gi) being the weights instead.
To obtain θ∗ numerically, one may solve the dual problem of (9),

min
α

{
n

∑
i=1

αi −
1
2

n

∑
i, j=1

αiYi(X′
iX j)Yjα j} , (11)

under the constraints ∑n
i=1 αiYi = 0 and 0 ≤ αi ≤CGi for i = 1, . . . ,n. The solution of w is given by

w∗ = (∑n
i=1YiαiXi)/(n−1 ∑n

i=1 Gi). Note that the only difference between (2) and (11) is that there
is a random multiplier on the upper bound of αi in (11). For each generated set of {Gi; i = 1, . . . ,n},
we compute the corresponding W ∗ via (10). By repeatedly generating {Gi; i = 1, . . . ,n}, we may
obtain a large number of realizations of W ∗ which may be used to approximate the distribution of
W and construct confidence intervals for D0. For example, a 100(1−α)% confidence interval for
D0 may be obtained as

[D̂ −n−1/2ξ̂1−α/2,D̂ −n−1/2ξ̂α/2],

where ξ̂α is the αth percentile of W ∗. The integrated procedure of perturbation-resampling is given
in Algorithm 1, where N is the number of perturbations.

Algorithm 1 Perturbation-Resampling Procedure
1: Given data {(Xi,Yi); i = 1, . . . ,n}, a classifier is trained based on the SVM algorithm
2: Estimate the cross-validation error of the classifier by using (5)
3: for r = 1 → N do
4: Generate independent positive random variables {Gi; i = 1, . . . ,n} from an exponential dis-

tribution with unit mean and unit variance
5: Solve the quadratic programming problem (11), and calculate W ∗

r by using (10)
6: end for
7: Estimate the resampling distribution of W ∗ based on {W ∗

r ;r = 1, . . . ,N}, which approximates
the distribution of W in (6), or asymptotically the distribution of W in (8)

8: Use the resampling distribution to estimate the confidence interval of the prediction error cen-
tered at the cross-validation error estimate

9: Statistical evaluation of different models can be further made based on the resampling distribu-
tion (see Section 3.3)
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3.3 Comparing Models Based on Interval Estimates

Suppose there are two competing models, say, f j(X; θ̂ j), j = 1,2, where the functions f1 and f2

could be different in the kernels or features used, and θ̂ j is the solution via (1) with the function f j

and the data {(Xi,Yi); i = 1, . . . ,n}. The theoretical and empirical prediction errors D0 j and D̂ j(θ j)
are defined by (3) and (4) accordingly, j = 1,2. We are interested in making inference about, for
example, ∆ = D02 −D01 to assess how much improvement Model 2 is over Model 1.

A consistent estimator for ∆ is ∆̂ = D̂2(θ̂2)− D̂1(θ̂1). It follows from the argument presented in
Section 3.1 that

W∆ = n1/2{∆̂−∆}

is asymptotically normal with mean zero. To approximate this normal distribution, one may use the
perturbation-resampling technique discussed in Section 3.2. Specifically, let θ∗

j be the minimizer of
n−1 ∑n

i=1 Gi{[1−Yi f j(Xi;θ)]+ +λnw′w}, j = 1,2. Also, let

W ∗
j = n−1/2

n

∑
i=1

{|Yi − Ŷj(Xi,θ∗
j)|− D̂ j(θ̂ j)}Gi ,

where Ŷj(X,θ) = sign{ f j(X;θ)}. Then, the distribution of W∆ can be approximated by the condi-
tional distribution of W ∗

∆ = W ∗
2 −W ∗

1 . Confidence intervals for ∆ can then be constructed.
Note that even if ∆̂ is a consistent estimator for the prediction gain ∆, it represents the fitting gain

of using Model 2 and may lead to a wrong comparison between models with a large probability. By
applying the cross-validation procedure, the overfitted model is likely to have a larger prediction er-
ror and one would choose the more parsimonious model. Thus, the K-fold cross-validated estimator
D̂2 − D̂1, where D̂ j is defined by (5) for Model j, j = 1,2, may be less biased than ∆̂ particularly
in non-asymptotic situations. Let W j be defined by (8) based on Model j. Again, the resampling
distribution of W2 −W1 can be asymptotically approximated by W ∗

∆ . Based on the results of our
simulated experiments, this approximation performs quite well even with limited number of sam-
ples.

4. Numerical Studies and Examples

In this section, we examine the finite-sample performance of the proposed inference procedure via
extensive numerical studies based on both simulated data and a benchmark repository. Furthermore,
we illustrate the new procedure with examples in kernel and biomarker selections.

4.1 Simulation Studies

We first conduct simulation studies to examine how well the proposed inference procedure performs
in finite samples. The data are generated as follows: (1) the response Y is generated from {−1,1}
with equal probabilities; (2) given Y , the input vector X are generated from d-dimensional multivari-
ate normal with mean 1d×1I(Y = 1)+(−1)d×1I(Y = −1), where 1d×1 is a d-dimensional vector of
ones. We consider sample sizes n = 50 and 100, and dimensions d = 10,20, and 30. For each con-
figuration, we generate 1,000 independent data sets. For each simulated data set, SVM classifiers
are trained by using the LIBSVM program (Chang and Lin, 2001) with a linear kernel. For simplic-
ity, we set the penalty parameter C equal to 1 here. We estimate the empirical absolute prediction
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error via 5-fold cross-validation. The distribution of the empirical absolute prediction is obtained
by using perturbation-resampling procedure with 1,000 times of perturbations (N = 1,000 in Al-
gorithm 1). Confidence interval with nominal level of 95% is then constructed based on empirical
percentiles of the resampling distribution. To evaluate normal approximation and cross-validation
procedures, we also construct confidence intervals based on normal assumption with both the esti-
mated variance and the true variance calculated from the simulation parameters of the samples. For
comparison, VC-based bounds (Vapnik, 1998) and stability-based bounds (Bousquet and Elisseeff,
2002) on the prediction error are also obtained with the same nominal level of 95%.

To evaluate these interval estimates, the true prediction errors of the trained SVM classifiers
are calculated according to 10,000 replications of simulated data sets for each setting. Confidence
intervals are compared with the true prediction error, and their coverage accuracies are obtained
by averaging on 1,000 data sets. Coverage accuracy is defined as the frequency for true value to
fall inside the estimated confidence interval, which measures the accuracy of interval estimates.
In the ideal case, the coverage accuracy of an estimated interval should be equal or close to its
level of confidence, and with its length as small as possible. In Table 2, we report the coverage
accuracies and average lengths of 95% confidence intervals centered at 5-fold cross-validation errors
for different procedures.

Sample Dimen- Empirical Normal Normal VC Stability
Size sion Percentiles1 Estimated2 True3 Bound Bound

CA AL CA AL CA AL CA CA
10 94.7 0.20 93.9 0.19 94.8 0.20 100.0 100.0

50 20 94.4 0.16 92.5 0.15 94.5 0.20 100.0 100.0
30 93.8 0.12 90.4 0.14 94.2 0.17 100.0 100.0
10 95.1 0.15 94.8 0.14 95.2 0.16 100.0 100.0

100 20 95.2 0.15 94.5 0.13 95.1 0.16 100.0 100.0
30 94.6 0.12 93.2 0.12 95.1 0.15 100.0 100.0

Table 2: Coverage accuracies (CA) and average lengths (AL) of 95% confidence intervals obtained
by using different procedures on simulated data.

As shown in Table 2, at sample size of n = 100, the empirical coverage levels for the 95% con-
fidence intervals under normal approximation with the true variance range from 95.1% to 95.2%,
which validates the accuracy of cross-validation and normal approximation. In practice, the true
variance of the prediction error estimator is unknown and thus the perturbation-resampling proce-
dure would be used to ascertain the variability of the estimator. From the results in Table 2, we can
see that confidence intervals obtained by the empirical percentiles of the perturbed samples perform
slightly better than those constructed via normal approximation with estimated variances, in a sense
that intervals based on the empirical percentiles have larger coverage accuracies with comparable

1. Interval estimates are constructed by using empirical percentiles of the resampling distribution obtained by
perturbation-resampling.

2. Interval estimates are constructed as D̂ ± 1.96n−1/2σ̂ with σ̂2 being the conditional variance of W ∗ estimated by
perturbation-resampling.

3. Interval estimates are constructed as D̂ ±1.96n−1/2σ with σ2 calculated as the true variance of W .
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lengths. Although the proposed algorithm may fail when the dimension of the unknown parameters
is equal to or larger than the sample size, the simulation results indicate that the procedure derived
through large sample approximations performs well even when sample size is moderate relative to
the dimension of the parameters. On the contrary, we note that confidence bounds based on VC
dimension or stability are too conservative with relative small number of samples in this example.
Since these bounds are proposed to provide general guides on the construction of classifiers, they
may not be suitable to account for the sampling variability from a specific population.

4.2 Variance Estimation on Benchmark Repository

We further validate the ability of the proposed procedure in estimating the variance of the cross-
validation estimator on the benchmark repository used in Mika et al. (1999) and Chang and Lin
(2001). The benchmark repository consists of 10 artificial and real-world data sets from the UCI,
DELVE and STATLOG benchmark repositories. These data sets are collected from a variety of
research areas ranging from oncology and disease diagnosis to molecular biology, astronomy, bank-
ing and signal processing. Each data set is randomly divided into 100 partitions with equal size (50
partitions for the flare-solar, image and titanic data sets).

To evaluate the variance estimator obtained by the perturbation-resampling procedure, we esti-
mate the standard deviation of 5-fold cross-validation error based only on the first partition of each
data set. We also obtain the 5-fold cross-validation estimates of the SVM classifier on the rest 99
partitions, and the results are used to calculate the sample standard deviation of the cross-validation
estimator, which is regarded as the true value. For comparison, we estimate the standard deviation
based on two other methods proposed by Nadeau and Bengio (2003) using the first partition of each
data set. The first approach is performed by randomly splitting data into two distinct sets (we name
it ”splitting” method here), and the second approach is based on the approximation of a so-called
statistic ρ (we name it ”ρ-based” method here). The description of the data sets, the standard de-
viations estimated by different methods, and their computational efficiencies are shown in Table 3.
Computational time is tested on a PC with a Pentium 4 running at 2.8GHz and 512MB of RAM.

The results in Table 3 suggest that the perturbation-resampling based estimate of the standard
deviation using only the first partition of each data set is rather close to the sample standard de-
viation estimated using the entire data set. To the contrary, the standard deviation estimated by
splitting the data set tends to be biased upward, while the ρ-based method tends to underestimate
the standard deviation of the cross-validation error. In the results shown above, 1,000 times of ran-
domly splitting or resampling are used in all the three methods, and as a result, the actual computa-
tional efficiencies of different methods are comparable. This study demonstrates that the proposed
perturbation-resampling procedure can be an accurate and efficient way to estimate the variance of
the cross-validation error.

4.3 Example in Kernel Selection

To illustrate the application of the proposed procedure in model comparison, we perform kernel
selection for SVM classifiers on simulated data. Samples {(X1i,X2i); i = 1, ...,n} are generated from
a uniform distribution on two-dimensional area [0,1]× [0,1]. For data type 1, two classes of samples
are separated by the curve corresponding to a linear function, X1 + X2 = 1, with a few exceptions
introduced as ”noise”. For data type 2, the separating curve corresponds to a cubic function X 3

1 +
X3

2 = 1. Intuitively, samples of data type 1 should be classified well by using the simple linear
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Data Sample Dimen- True4 Resampling5 Splitting6 ρ-based7

Set Size sion Sd Sd Time Sd Time Sd Time
banana 53 2 0.089 0.090 1.8 0.095 2.2 0.029 2.1
covtype 200 54 0.058 0.060 29 0.044 36 0.016 29

flare-solar 21 9 0.120 0.124 1.3 0.113 1.2 0.036 1.2
ijcnn1 283 22 0.022 0.023 21 0.024 25 0.009 23
image 46 18 0.081 0.089 4.0 0.123 4.2 0.037 3.9

ringnorm 74 20 0.065 0.067 17 0.107 16 0.030 16
svmguide1 70 4 0.029 0.030 88 0.055 71 0.017 66

titanic 44 3 0.078 0.082 1.3 0.123 1.3 0.034 1.2
twonorm 74 20 0.027 0.026 3.9 0.084 3.9 0.021 3.8
waveform 50 21 0.046 0.049 3.1 0.130 3.4 0.033 3.4

Table 3: Estimating the standard deviation of the 5-fold cross-validation error using different meth-
ods (computational time is shown in seconds).

kernel, while the cubic polynomial kernel might perform better when classifying samples from data
type 2. We generate each type of data with sample size n equal to 100 and 200, respectively.

Polynomial kernels can be generalized as K(Xi,X j) = (γX′
iX j + b)d , where Xi and X j, i, j =

1, . . . ,n, are input vectors. In our study, we choose the hyper-parameters as γ = 1/n, b = 0, and
d = 3. Then we apply the SVM algorithm by using the linear kernel and the polynomial kernel
with optimal hyper-parameter C chosen by a cross-validation procedure, respectively. To make
inference about the performances of different kernels, we use the model comparison procedure
introduced in Section 3.3 to obtain 95% confidence intervals for the difference in cross-validation
errors when using different kernels. We also compute the true prediction errors, together with the
exact confidence intervals on the difference between their cross-validated estimates, based on the
prediction results of 1,000 replications of simulated data sets for each setting. In Table 4, we report
the 10-fold cross-validation errors by using linear and polynomial kernels, the 95% confidence
intervals on the difference between errors, and their respective true values.

For the first type of data, although the polynomial kernel could potentially lead to slightly lower
error rates compared to the linear kernel, 95% confidence intervals for error difference are quite tight
around zero. This suggests that the classifiers obtained based on these two types of kernels have
similar accuracies as we expect. On the other hand, for the second type of data, 95% confidence
intervals for error differences tend to deviate downward from zero, which indicates that the polyno-
mial kernel indeed performs better than the linear kernel. (At the significant level of 0.05, n = 100
is not sufficient to conclude this, whereas n = 200 allows to make the above statement.) These

4. The true standard deviation (Sd) is calculated based on 5-fold cross-validation errors estimated on the rest 99 parti-
tions of the data.

5. Standard deviation (Sd) and computation time (Time) are obtained by applying perturbation-resampling method on
the first partition of the data.

6. Standard deviation (Sd) and computation time (Time) are obtained by applying splitting method (Nadeau and Bengio,
2003) on the first partition of the data.

7. Standard deviation (Sd) and computation time (Time) are obtained by applying ρ-based method (Nadeau and Bengio,
2003) on the first partition of the data.
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Data Sample Linear Kernel Polynomial Kernel .95 Interval on Difference
Type Size Errors Errors Between CV Errors

CV8 True9 CV True Estimated Exact10

1 100 0.060 0.055 0.050 0.065 [-0.111, 0.066] [-0.050, 0.080]
2 100 0.080 0.078 0.040 0.037 [-0.120, 0.004] [-0.130, 0.001]
1 200 0.080 0.074 0.075 0.077 [-0.041, 0.024] [-0.035, 0.025]
2 200 0.150 0.153 0.085 0.087 [-0.106, -0.004] [-0.105, -0.005]

Table 4: Kernel selection based on the interval estimates of the difference in cross-validation errors.

conclusions are consistent with the intuitions behind the data generating procedure. In particular,
the predicted results are consistent with the true values of both point and interval estimates obtained
by simulating a large number of data sets. This study serves as an example to demonstrate how to
use the proposed model comparison procedure to choose an appropriate kernel in constructing SVM
classifiers.

4.4 Example in the Genotypic Testing for Drug Resistance

In this section, we give an example to show how the proposed procedure can be used in selecting
important markers in the genotypic testing for HIV protease inhibitor (PI) resistance on the HIV
RT and Protease Sequence Database (Rhee et al., 2003). First, we divide the sample set into two
classes by labeling each protease sequence sample with 99 amino acids as either ”resistant” or
”susceptible”, depending on whether the resistance factor of the sample exceeds a certain drug-
specific cutoff value or not (Beerenwinkel et al., 2002). Then, we predict the resistance to seven
FDA-approved PIs using 10 sites on the substrate binding cleft or its flap that are reported to cause
resistance by reducing the binding affinity between the inhibitor and the mutant protease enzyme.
Aside from these mutations, mutation information at site 90, denoted by X(90), on the protease
sequence has been reported to either contribute to or directly confer in vitro and in vivo resistance
to each of the seven approved PIs, but the mechanism by which these mutations cause PI resistance
is still not known. It is interesting to assess the incremental value of X(90) in predicting HIV drug
resistance. To this end, we compare the prediction errors for the models with and without X(90) and
evaluate the incremental value of X(90) based on the reduction in the prediction error, denoted by
∆X(90)

. We obtain the point and interval estimates of ∆X(90)
based on the model comparison method

discussed in Section 3.3 with 10-fold cross-validation. In both cases, the hyper-parameter C is
chosen by using a cross-validation procedure, respectively.

The results in Table 5 show that the 95% confidence intervals for ∆X(90)
are tight around zero for

drugs APV, ATV, and LPV, which indicates that X(90) adds rather modest value, if any, on top of other
variables, for predicting resistance to these drugs. On the other hand, by including information on
X(90), the prediction of drug resistance to IDV and RTV can be significantly improved in a sense that

8. 10-fold cross-validation errors are computed.
9. The true errors are estimated based on the prediction results of 1,000 replications of simulated data sets for each

setting.
10. The exact confidence intervals are estimated based on the prediction results of 1,000 replications of simulated data

sets for each setting.
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Drug Sample Resistant Without Site 90 With Site 90 .95 Interval
Name Size Fraction Error .95 Interval Error .95 Interval for Difference
APV 577 38.1% 0.149 [0.130,0.202] 0.147 [0.129,0.198] [-0.025,0.025]
ATV 142 51.4% 0.261 [0.195,0.403] 0.197 [0.135,0.270] [-0.110,0.022]
IDV 579 50.6% 0.123 [0.108,0.163] 0.081 [0.067,0.133] [-0.063,-0.006]
LPV 253 74.7% 0.119 [0.090,0.236] 0.115 [0.078,0.167] [-0.032,0.027]
NFV 617 64.0% 0.113 [0.093,0.147] 0.092 [0.076,0.130] [-0.050,0.001]
RTV 510 50.2% 0.098 [0.069,0.123] 0.057 [0.039,0.090] [-0.060,0.000]
SQV 598 43.6% 0.172 [0.146,0.211] 0.132 [0.113,0.166] [-0.080,0.002]

Table 5: Interval estimates for the prediction errors and their difference in the genotypic testing
for HIV drug resistance with or without mutation information at site 90 on the protease
sequence.

the 95% confidence intervals for ∆X(90)
tend to locate on the negative side of the zero point. These

results are consistent with studies in literature (see Para et al., 2000; Shulman et al., 2002; Campo
et al., 2003; Saah et al., 2003). Therefore, X(90) is an important marker for choosing antiretroviral
drugs and therapies, and the roles played by X(90) in reducing the susceptibility of these two drugs
need to be further studied.

5. Discussion

In this paper, we propose procedures for making inference about the prediction error of SVM clas-
sifiers based on cross-validated point estimators and their corresponding interval estimators. We es-
tablish large sample theory for the cross-validated estimators, and present a perturbation-resampling
procedure to construct the confidence interval for prediction errors. The proposed interval estimates
are obtained by approximating the spread of W with that of W . Alternatively, one may consider
directly perturbing W to yield potentially better approximations. However, such a perturbation
procedure may be computationally intensive since a K-fold cross-validation scheme has to be con-
ducted for each realization of the resampling weights. Results from extensive simulation studies
suggest that the proposed point and interval estimators perform well in finite samples. Furthermore,
through numerical studies, we demonstrate that the interval estimates provide much more informa-
tion about the true underlying prediction accuracy than the point estimates. Although it is unclear
whether similar theoretical results hold for SVM classifier with the RBF kernel (see the discussion
in Appendix B), the framework in this article is likely to be applicable to other inductive learning
algorithms with different types of loss functions.

The proposed procedures also allow us to tackle the issue of model evaluation and selection by
taking the uncertainty of estimators for the prediction error into account. We give several examples
to illustrate some direct applications of the method, such as to provide confidence intervals around
the estimated prediction error in kernel and biomarker selections. In addition to the examples out-
lined above, the proposed procedures may have other practical applications in model evaluation or
variable selection.
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Appendix A. Consistency of θ̂ and D̂

In the following theorem, we will show that as n → ∞, θ̂ → θ0 and the training error D̂(θ̂) will con-
verge to the absolute prediction error D0 in probability. Without loss of generality, we assume that
g0(X) = P(Y = 1 | X) and the distribution function of X are continuously differentiable hereafter.

Theorem 1 Let θ0 = (w′
0,b0)

′ = argminθ∈ΘQ(θ), Ω be the input vector space, and

Λ(Y,θ1) = {X ∈ Ω | [1−Y (w′
0X+b0)][1−Y (w′

1X+b1)] < 0}
for θ1 = (w′

1,b1)
′. Furthermore, we assume the following regularity condition:

P(Y = 1,X ∈ Λ(1,θ1))+P(Y = −1,X ∈ Λ(−1,θ1)) > 0 (12)

for any θ1 6= θ0. Then, as n → ∞, θ̂ → θ0 and D̂(θ̂) → D0 in probability.

Proof. In view of Theorem 2.1 of Newey and McFadden (1994, Section 2), we can establish the
convergence of θ̂→ θ0 by showing that (a) Q(θ) has a unique minimizer θ0; and (b) Q̂n(θ) converges
to Q(θ) in probability, uniformly in θ.

For (a), we note that since Q(θ) is continuous with respect to θ and Θ is compact, it must have
a minimum within Θ. Furthermore, it is easy to verify that for any a,b ∈ R,

(a+b)+ ≤ a+ +b+ , (13)

and a strict inequality holds if and only if ab < 0. As a result, under condition (12), Q(θ) is a strictly
convex function at θ0, and thus has a unique minimizer θ0.

For (b), since Q̂n(θ) is also a convex function of θ because of (13), and Q̂n(θ) converges in
probability to Q(θ) for each θ ∈ Θ, we have supθ∈Θ |Q̂n(θ)−Q(θ)| goes to zero in probability,
a uniform convergence property for convex functions proved by Pollard (1991, Section 6). This
concludes the proof for the convergence of θ̂ to θ0 in probability.

It remains to show the consistency of D̂(θ̂) for D0. Since g0(X) is continuously differentiable,
E|Y0 − Ŷ (X0,θ)| is continuously differentiable in θ with bounded derivatives. Moreover, since
0 ≤ E|Y0 − Ŷ (X0,θ)| ≤ 2, it follows from a uniform law of large numbers (Pollard, 1990, Chap-
ter 8) that supθ∈Θ |D̂(θ)−E|Y0 − Ŷ (X0,θ)|| → 0 in probability. This, coupled with the convergence
of θ̂ to θ0, implies that D̂(θ̂)−D0 → 0 in probability.

The regularity condition in (12) guarantees the existence and uniqueness of the minimizer to
the objective function. This condition states that any deviation of the parameter θ from the mini-
mizer θ0 will always result in the change of output labels of certain samples. Given the continuous
differentiability of both g0(X) = P(Y = 1 | X) and the distribution function of X, the condition can
be satisfied if the probability density function of the input vector X is not equal to zero in some
neighboring area of the optimal separating hyperplane.
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Appendix B. Large Sample Distribution for D̂

With the assumption that g0(X) = P(Y = 1 | X) and the distribution function of X are continuously
differentiable, we have ∇θ=θ0Q(θ) = −E{Y I(Y f (X;θ0) < 1)(X′,1)′}, which is also differentiable,
almost everywhere θ ∈Θ. Thus, Q(θ) is twice differentiable almost everywhere θ ∈ Θ. Let H be the
Hessian matrix of Q(θ) at θ0, d(θ) = E{D̂(θ)} and ḋ(θ) = ∇d(θ), we prove the following theorem:

Theorem 2 Under the regularity condition (12) in Theorem 1, the distribution of W is asymptotically
equivalent to n−1/2 ∑n

i=1 ηi and converges to a zero mean normal with variance E(η2
i ), where

ηi = |Yi − Ŷ (Xi,θ0)|−D0 − ḋ(θ0)H−1Mi(θ0) , (14)

and Mi(θ0) = −YiI(Yi f (Xi;θ0) < 1)(X′
i,1)′ +2λn(w′

0,0)′.

Proof. Under the regularity condition, the limiting objective function Q(θ) is strictly convex at θ0,
and thus its Hessian matrix H at θ0 is positive definite. To derive the asymptotic distribution theory
for W , we first show that

√
n(θ̂−θ0) = −n−1/2H−1

n

∑
i=1

Mi(θ0)+op(1) , (15)

where Mi(θ0) = −YiI(Yi f (Xi;θ0) < 1)(X′
i,1)′ +2λn(w′

0,0)′.
To this end, let Z = (X′,Y )′, t = (w′

t ,bt)
′, and write

[1−Y f (X;θ0 + t)]+− [1−Y f (X;θ0)]+ = B(Z)′t+R(Z, t) , (16)

where B(Z) = −Y I(Y f (X;θ0) < 1)(X′,1)′, and

R(Z, t) = {1−Y f (X;θ0 + t)}[I{Y f (X;θ0 + t) < 1}− I{Y f (X;θ0) < 1}] .

Noting that R(Z,0) = 0, and that the distribution function of X and the conditional probability mass
function of Y given X are continuous differentiable, it is easy to verify that

ER(Z, t) =
1
2

t′Ht+o(‖t‖2) and ER(Z, t)2 = O(‖t‖3) .

Furthermore, EB(Z) is just the first order derivative of Q(θ) at θ0, thus EB(Z) = 0. Let Zi =
(X′

i,Yi)
′, s = (w′

s,bs)
′, and An(s) = ∑n

i=1{[1−Yi f (Xi;θ0+s/
√

n)]++λn(w0+ws/
√

n)′(w0+ws/
√

n)
−[1−Yi f (Xi;θ0)]+ −λnw′

0w0}. An(s) is convex with respect to s because of (13), and it is mini-
mized by

√
n(θ̂n−θ0). Note first that nER(Z,s/

√
n) = 1

2 s′Hs+rn,0(s), where rn,0(s) = o(‖s‖2)→ 0
for fixed s. Accordingly, using (16),

An(s) =
n

∑
i=1

{[B(Zi)+2λn(w′
0,0)′]′s/

√
n+R(Zi,s/

√
n)−ER(Zi,s/

√
n)}

+nER(Z,s/
√

n)+λnw′
sws

= U ′
ns+

1
2

s′Hs+ rn,0(s)+ rn,1(s)+ rn,2(s) ,

where Un = n−1/2 ∑n
i=1{B(Zi)+2λn(w′

0,0)′} = n−1/2 ∑n
i=1 Mi(θ0), rn,2(s) = λnw′

sws, and rn,1(s) =

∑n
i=1{R(Zi,s/

√
n)−ER(Zi,s/

√
n)}. Now rn,1(s) tends to be zero in probability for each s, since its
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mean is zero and its variance is ∑n
i=1 var{R(Zi,s/

√
n)} = o(‖s‖2). Moreover, rn,2(s) also tends to

be zero in probability when λn → 0. Since An(s) is a convex function, H is positive definite, and the
covariance matrix var(X) is finite, it follows from the Basic Corollary of Hjort and Pollard (1993)
that (15) holds.

Secondly, we show that the class of functions indexed by θ, ℑ = {|Y − Ŷ (X,θ)| : ‖θ−θ0‖ ≤ δ}
is a Donsker class, where δ is a given positive number and Ŷ (X,θ) = sign(w′X + b). Both of
the classes of function {1 + Ŷ (X,θ) : ‖θ − θ0‖ ≤ δ} and {1 − Ŷ (X,θ) : ‖θ − θ0‖ ≤ δ} are VC
classes (van der Vaart and Wellner, 1996, Lemma 2.6.15), and hence are Donsker. Note that in
this case ℑ = {I(Y = −1)[1 + Ŷ (X,θ)]+ I(Y = 1)[1− Ŷ (X,θ)] : ‖θ−θ0‖ ≤ δ}, and therefore is a
Donsker class. It follows that n1/2[D̂(θ)− d(θ)], a process in θ, converges weakly to a zero mean
Gaussian process and thus is stochastic equicontinuous at θ0. This, coupled with (15), implies that
n1/2{D̂(θ̂)−D0} = n1/2[D̂(θ̂)− D̂(θ0)]+n1/2[D̂(θ0)−D0] is asymptotically equivalent to

n1/2{D̂(θ0)−D0}+ ḋ(θ0)n
1/2(θ̂−θ0) ' n−1/2

n

∑
i=1

ηi ,

where

ηi = |Yi − Ŷ (Xi,θ0)|−D0 − ḋ(θ0)H−1Mi(θ0) .

Here and in the sequel, we use the notation a ' b to denote that a = b + op(1). Thus, W =
n1/2{D̂(θ̂)−D0} converges in distribution to a zero mean normal random variable.

Since the limiting variance of W is σ2 = E(η2
i ) and n−1 ∑n

i=1 η2
i converges to σ2 in probability

(based on the law of large numbers), one may estimate σ2 by n−1 ∑n
i=1 η2

i . Furthermore, it is not
difficult to show that n−1 ∑n

i=1(η2
i − η̂2

i ) → 0 since we expect that all the empirical estimates of the
theoretical quantities in ηi are consistent. We note that although n−1 ∑n

i=1 η̂2
i is a consistent estimator

of σ2, we approximate σ2 based on the resampling method, not n−1 ∑n
i=1 η̂2

i .
For a more general case, when the prediction function f (X) in (1) is not a linear function of the

input vector X, one can rewrite the prediction function in the form of f (X) = w′Φ(X)+b, where Φ
is a mapping from the input vector space to a ”feature space” H . Given that the expectation EΦ(X),
the covariance matrix var(Φ(X)), and the VC dimension of f (X) are all finite (for example, when
Φ is a mapping corresponding to a polynomial kernel function), and coupled with the fact that a
{0,1}-valued class of functions is a uniform Donsker class if and only if its VC dimension is finite
(Dudley, 1999), one can prove all the results given above using similar arguments. Note that when
it comes to construct SVM classifier using the RBF kernel, however, these conditions cannot be
satisfied because of the infinite-dimensional feature space of the RBF kernel.

Appendix C. Large Sample Property of D̂

In this appendix, we will show that the distribution of W is asymptotically equivalent to that of W
based on training error.

Theorem 3 W in (8) is asymptotically equivalent to W in (6).

Proof. For each partition Ik, n−1/2{D̂(k)(θ̂(−k))−D0} is asymptotically equivalent to n−1/2K ∑n
i=1

I(ξi = k){|Yi − Ŷ (Xi, θ̂(−k))| −D0}, where {ξi; i = 1, . . . ,n} are n exchangeable discrete random

535



JIANG, ZHANG AND CAI

variables uniformly distributed over {1, . . . ,K}, independent of the data, which satisfy ∑n
i=1 I(ξi =

k) ' n/K,k = 1, . . . ,K. Conditionally on {ξi; i = 1, . . . ,n}, it follows from similar arguments in
Appendix B that

θ̂(−k)−θ0 = − K
n(K −1)

H−1
n

∑
i=1

I(ξi 6= k)Mi(θ0)+op(n
−1/2) .

Then using the same argument as given for n1/2{D̂(θ̂)−D0}, one can show that n1/2{D̂(k)(θ̂(−k))−
D0} is asymptotically equivalent to

n1/2{D̂(k)(θ0)−D0}+ ḋ(θ0)n
1/2(θ̂(−k)−θ0) ' n1/2

n

∑
i=1

ηki ,

where

ηki = I(ξi = k)K{|Yi − Ŷ (Xi,θ0)|−D0}+ I(ξi 6= k)
K

K −1
ḋ(θ0)H−1Mi(θ0) .

It follows that n1/2(D̂ −D0) ' n−1/2 ∑n
i=1(∑

K
k=1 K−1ηki). Since ∑K

k=1 I(ξi = k) = 1 and ∑K
k=1 I(ξi 6=

k) = K −1, it is straightforward to show that

n−1/2
n

∑
i=1

(
K

∑
k=1

K−1ηki) = n−1/2
n

∑
i=1

{

|Yi − Ŷ (Xi,θ0)|−D0 + ḋ(θ0)H−1Mi(θ0)
}

= n−1/2
n

∑
i=1

ηi .

Appendix D. Justification for the Perturbation-Resampling Procedure

Here, we give a brief justification for the perturbation-resampling approach presented in Section
3.2. For formal justification of the approach, please see similar but more rigorous derivations given
in Park and Wei (2003) and Cai et al. (2005).

To justify the resampling method, we first note that it follows from the arguments in Appendix
B that

√
n(θ̂−θ0) = −n−1/2H−1

n

∑
i=1

Mi(θ0)+op(1) ,

and that
√

n(θ∗−θ0) = −n−1/2H−1
n

∑
i=1

GiMi(θ0)+op(1) ,

where Mi(θ0) = −YiI(Yi f (Xi;θ0) < 1)(X′
i,1)′ +2λn(w′

0,0)′.
Then, consider the unconditional version of W ∗. Let D∗(θ) = n−1 ∑n

i=1{|Yi − Ŷ (Xi,θ)|Gi},
D̂(θ) = n−1 ∑n

i=1 |Yi−Ŷ (Xi,θ)|, and D0 = E|Y0−Ŷ (X0, θ̂)|, where (X0,Y0) is an independent sample
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from the same population of (X,Y ), and the expectation E is with respect to {(Xi,Yi); i = 1, . . . ,n}
and (X0,Y0). As θ̂ converges to θ0 and D̂(θ̂) converges to D0, it is straight forward to show that

W ∗ = n1/2(D∗(θ∗)−D∗(θ0))−n1/2(D̂(θ̂)− D̂(θ0))

+n1/2(D∗(θ0)− D̂(θ0))−n−1/2
n

∑
i=1

D̂(θ̂)(Gi −1)

' ḋ(θ0)n
1/2(θ∗−θ0)− ḋ(θ0)n

1/2(θ̂−θ0)

+n−1/2
n

∑
i=1

|Yi − Ŷ (Xi,θ0)|(Gi −1)−n−1/2
n

∑
i=1

D0(Gi −1)

' n−1/2
n

∑
i=1

{|Yi − Ŷ (Xi,θ0)|−D0}(Gi −1)− ḋ(θ0)n
−1/2H−1

n

∑
i=1

Mi(θ0)(Gi −1)

= n−1/2
n

∑
i=1

ηi(Gi −1) ,

where ηi = |Yi − Ŷ (Xi,θ0)|−D0 − ḋ(θ0)H−1Mi(θ0).
Conditionally on the data, it follows from the Multiplier Central Limit Theorem (van der Vaart

and Wellner, 1996, Chapter 2.9) that the conditional distribution of W ∗ converges to a normal with
mean 0 and variance n−1 ∑n

i=1 η2
i , which are the same as the unconditional distribution of W (or

its cross-validation counterpart W ). This implies that for ε > 0, there exists an N0 such that when
n > N0, the probability, with respect to samples S = {(Xi,Yi); i = 1, . . . ,n} , of the event

sup
u∈R

|P(W ∗ ≤ u|S)−P(W ≤ u)| < ε ,

is at least 1− ε.
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S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K. R. Müller. Fisher discriminant analysis with
kernels. In Neural Networks for Signal Processing IX, pages 41–48, 1999.

A. Molinaro, R. Simon, and R. Pfeiffer. Prediction error estimation: A comparison of resampling
methods. Bioinformatics, 21:3301–3307, 2005.

C. Nadeau and Y. Bengio. Inference for the generalization error. Machine Learning, 52:239–281,
2003.

538



ESTIMATING THE CONFIDENCE INTERVAL FOR PREDICTION ERRORS OF SVM

W. Newey and D. McFadden. Large sample estimation and hypothesis testing. In D. McFadden and
R. Engler, editors, Handbook of Econometrics IV, pages 2113–2245. Amsterdam: North Holland,
1994.

M. F. Para, D. V. Glidden, R. Coombs, A. Collier, J. Condra, C. Craig, R. Bassett, R. Leavitt,
S. Snyder, V. J. McAuliffe, and C. Boucher. Baseline human immunodeficiency virus type I
phenotype, genotype, and RNA response after switching from long-term hard-capsule saquinavir
to indinavir or soft-gel-capsule saquinavir in AIDS clinical trials group protocol 333. Journal of
Infectious Diseases, 182:733–743, 2000.

Y. Park and L. J. Wei. Estimating subject-specific survival functions under the accelerated failure
time model. Biometrika, 90:717–723, 2003.

D. Pollard. Empirical Process: Theory and Applications. Hayward, CA: Institute of Mathematical
Statistics, 1990.

D. Pollard. Asymptotics for least absolute deviation regression estimators. Econometric Theory, 7:
186–199, 1991.

J. Reunanen. Overfitting in making comparisons between variable selection methods. Journal of
Machine Learning Research, 3:1371–1382, 2003.

S. Y. Rhee, M. J. Gonzales, R. Kantor, B. J. Betts, J. Ravela, and R. W. Shafer. Human immunode-
ficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Research, 31:
298–303, 2003.

D. Rubin. The bayesian bootstrap. The Annals of Statistics, 9:130–134, 1981.

A. J. Saah, D. W. Haas, M. J. DiNubile, J. Chen, D. J. Holder, R. R. Rhodes, M. Shivaprakash, K. K.
Bakshi, R. M. Danovich, D. J. Graham, and J. H. Condra. Treatment with indinavir, efavirenz,
and adefovir after failure of nelfinavir therapy. Journal of Infectious Diseases, 187:1157–1162,
2003.

J. Shao. Bootstrap model selection. Journal of the American Statistical Association, 91:655–665,
1996.

N. Shulman, A. Zolopa, D. Havlir, A. Hsu, C. Renz, S. Boller, P. Jiang, R. Rode, J. Gallant,
E. Race, D. J. Kempf, and E. Sun. Virtual inhibitory quotient predicts response to ritonavir boost-
ing of indinavir-based therapy in human immunodeficiency virus-infected patients with ongoing
viremia. Antimicrobial Agents and Chemotherapy, 146:3907–3916, 2002.

I. Steinwart. Support vector machines are universally consistent. Journal of Complexity, 18:768–
779, 2002.

A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. New York:
Springer-Verlag Inc., 1996.

V. N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer, 1995.

V. N. Vapnik. Statistical Learning Theory. New York: John Wiley and Sons Inc., 1998.

539



JIANG, ZHANG AND CAI

S. Varma and R. Simon. Bias in error estimation when using cross-validation for model selection.
BMC Bioinformatics, 7:91, 2006.

C. F. J. Wu. Jackknife, bootstrap, and other resampling methods in regression analysis (with dis-
cussion). The Annals of Statistics, 14:1261–1295, 1986.

540



Journal of Machine Learning Research 9 (2008) 541-558 Submitted 3/07; Revised 11/07; Published 3/08

An Information Criterion for Variable Selection
in Support Vector Machines

Gerda Claeskens GERDA.CLAESKENS@ECON.KULEUVEN.BE

Christophe Croux CHRISTOPHE.CROUX@ECON.KULEUVEN.BE

Johan Van Kerckhoven JOHAN.VANKERCKHOVEN@ECON.KULEUVEN.BE

ORSTAT and Leuven Statistics Research Center
Katholieke Universiteit Leuven
B-3000 Leuven, Belgium

Editors: Isabelle Guyon and Amir Saffari

Abstract

Support vector machines for classification have the advantage that the curse of dimensionality is
circumvented. It has been shown that a reduction of the dimension of the input space leads to
even better results. For this purpose, we propose two information criteria which can be computed
directly from the definition of the support vector machine. We assess the predictive performance of
the models selected by our new criteria and compare them to existing variable selection techniques
in a simulation study. The simulation results show that the new criteria are competitive in terms of
generalization error rate while being much easier to compute. We arrive at the same findings for
comparison on some real-world benchmark data sets.

Keywords: information criterion, supervised classification, support vector machine, variable se-
lection

1. Introduction

We study classification using the support vector machine (SVM). We start from a training set
{(xi,yi)} containing n observations. Each p-dimensional observation xi = (xi1, . . . ,xip) has a class
label yi assigned to it, which is either +1 or −1. We wish to find a function f (·) such that for an
observation x the predicted class ŷ = +1 if f (x) is positive, and ŷ =−1 if f (x) is negative. We want
this function to assign the correct class labels to the training observations (low training error rate)
and to accurately classify new observations (low generalization error rate). Working with a subset
of the p variables xi1, . . . ,xip reduces variability of the class-label estimator and might lead to better
out-of-sample predictions.

It is only true to some extent that variable selection would not be necessary in the support vector
machine setting since it manages to circumvent the so-called “curse of dimensionality” (see, for
example, Cristianini and Shawe-Taylor, 2000; Hastie et al., 2001; Schölkopf and Smola, 2002).
While the SVM approach avoids fitting a number of parameters equal to the dimension of the input
space, there remains the high probability of a perfect separation in high-dimensional problems. For
example, if p is larger than the number of observations, it is always possible to perfectly separate the
two classes of training data by a hyperplane. In general, the risk of overfitting will increases with
the dimension for most data configurations. Hence, the risk of obtaining a decision rule with poor
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generalization properties (high generalization error rate) cannot be avoided. Guyon et al. (2002)
illustrate this and show that variable selection can further improve the SVM’s performance.

Variable selection techniques can be divided into three categories. Filters select subsets of vari-
ables as a pre-processing step, independently of the prediction method. Wrappers use the classifica-
tion method to score subsets of variables. Finally, embedded methods include variable selection into
the construction of the classifier. In this paper we propose new information criteria for SVMs, yield-
ing a wrapper method where we consider the SVM merely as a black box. We refer to Guyon and
Elisseeff (2003) for an introduction to variable and feature selection in Machine Learning. Informa-
tion criteria are a standard tool for model selection in traditional statistics. Information criteria for
variable selection assign a numerical value to each subset of the variables under consideration. The
subset with the lowest value of the information criterion is then selected. Examples are the Akaike
information criterion (AIC, Akaike, 1973) and the Bayesian information criterion (BIC, Schwarz,
1978). Claeskens and Hjort (2008) survey and explain the use of common information criteria for
statistical variable selection in likelihood-based models, we refer to there for more references.

For support vector machines only very few information criteria have been developed. The kernel
regularisation information criterion (KRIC) of Kobayashi and Komaki (2006) was originally pro-
posed for parameter tuning of the SVM. We apply it for variable selection. However, the KRIC has
a complicated definition and is computationally expensive for large sample sizes. In this paper two
new information criteria are proposed, one shares properties with AIC, the other with BIC. We want
the new criteria to select a preferably compact subset of variables with good predictive properties.
We will show that submodels selected by the new criteria are as performing as the ones chosen by
the KRIC, while they incur substantially less computational overhead. We also make a comparison
with using cross-validated error rate based criteria, as in Kearns et al. (1997). An important contri-
bution of this paper is that our numerical comparisons show that the popular, but time consuming,
cross-validation criteria are outperformed in generalization error by the new information criteria,
where the latter are coming at almost no additional computational cost.

Alternative approaches perform variable selection in feature space instead of in input space
(Shih and Cheng, 2005), or select a set of “maximally separating directions” in the input space
(Fortuna and Capson, 2004). These methods, however, do not select a set of original input variables.
Various other authors have suggested different formulations for the SVM such that variable selection
is performed automatically. Examples of such embedded methods can be found in Bi et al. (2003),
Zhu et al. (2004), Neumann et al. (2005), Lee et al. (2006), Wang et al. (2006), Zhang (2006), and
Lin and Zhang (2006).

In Section 2 we define the support vector machine setting, we review existing information cri-
teria and we describe ranking techniques to speed up the variable selection process. In Section 3,
we define the new information criteria and highlight their advantages. Section 4 contains the results
of a simulation study and in Section 5 we compare the different techniques on a few real-world
benchmark data sets. Section 6 concludes and gives some directions for further research.

2. Problem Setting

In this Section we first review the definition of a support vector machine. Afterwards some existing
variable selection techniques are discussed. Finally we present the ranking techniques that will be
used in this paper.
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2.1 The Support Vector Machine

We denote the training sample (xi,yi), 1 ≤ i ≤ n, with xi a p-dimensional vector of explicative
variables, and yi ∈ {−1,+1} the class label. The goal is to estimate a target function f (x) in the
space of explicative variables such that f (xi) > 0 for yi = +1, and f (xi) < 0 for yi =−1.

We start with linear support vector machines, where f (x) is of the form f (x) = w′x + b. For
binary classification this function is obtained by solving the minimisation problem

min
w,b,ξi

{

1
2
‖w‖2 +C

n

∑
i=1

ξi

}

subject to

{

yi(w′xi +b)≥ 1−ξi,

ξi ≥ 0, i = 1, . . . ,n.
(1)

The ξi are slack margin variables, indicating how close a point xi lies to the separating boundary
(if ξi < 1), or how badly it is misclassified (if ξi > 1). The tuning parameter C controls how much
weight is put on trying to achieve perfect separation.

The dual problem can be solved more easily, and has the following form:

min
α
{1

2
α′Qα−

n

∑
i=1

αi} subject to

{

0≤ αi ≤C, i = 1, . . . ,n,

∑n
i=1 yiαi = 0.

(2)

Here αi is the weight given to the observation (xi,yi), and Q is a positive semi-definite matrix with
entries Qi, j = yiy jx′ix j. The vector w can be found from w = ∑n

i=1 yiαixi. The negative intercept b is
found by computing b = 0.5(r2− r1), where

r1 =
∑0<yiαi<C(Qα)i−1

∑0<yiαi<C 1
and r2 =

∑0>yiαi>−C(Qα)i−1

∑0>yiαi>−C 1
.

If no i exist for which 0 < yiαi < C, then define

r1 =
1
2

(

min
αi=0,yi=1

(Qα)i− max
αi=C,yi=1

(Qα)i

)

,

and analogously for r2, with yi = −1. Note that we can write ξi = [1− yiai]+, where [x]+ =
max{0,x} and where ai = f (xi).

The linear SVM can be extended towards more complex decision functions in a rather straight-
forward way. Therefore we replace the inner products x′ix j in the definition of Q by a more general
kernel function K(xi,x j). See Cristianini and Shawe-Taylor (2000) for the properties that these
kernel functions must have. This leads to a more general decision function

f (x) =
n

∑
i=1

yiαiK(xi,x)+b. (3)

Popular choices for the kernel function in (3) are the linear kernel, where the kernel function is
K(x,z) = x′z, the polynomial kernel of the form K(x,z) = (c0 + γx′z)d , and the radial basis kernel
K(x,z) = exp(−γ‖x− z‖2), where c0, γ and d are regularization parameters that can be tuned for
optimal performance of the classifier. In this more general setting, we have

‖w‖2 =
n

∑
i, j=1

yiy jαiα jK(xi,x j) = α′Qα

for the squared norm of the weight vector, where Qi, j = yiy jK(xi,x j).
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2.2 Existing Variable Selection Techniques for SVM

We compare our new methods (Section 3) to variable selection based on (ten-fold) cross-validation
(CV), guaranteed risk minimisation (GRM, Vapnik, 1982) and the kernel regularisation information
criterion (KRIC) by Kobayashi and Komaki (2006). Each of these will be explained in more detail
below.

Ten-fold cross-validation divides the training data in ten parts of roughly equal size. One part is
left out, the other nine parts are the training data and are used to fit the SVM. This SVM is applied
to the part that is left out to obtain an estimate of the error rate. This process is repeated ten times
(each time a different part is left out) to obtain the CV generalization error rate ε̂(S) as the average
of the ten separate error rates. We select the model with the lowest value of ε̂(S), where S ranges
over all subsets of variables under consideration. Another common method is five-fold CV. The
lower the number of folds, the less computing time is required, but the higher the variability of
the estimates of the generalization error. Note that n−fold CV is the same as the computationally
infeasible leave-one-out CV.

General risk minimisation (Vapnik, 1982) is derived from the estimated generalization error
rate, using

GRM(S) = ε̂(S)+
|S|
n

(

1+
√

1+ ε̂(S)(n/|S|)
)

. (4)

Here, |S| stands for the number of input variables in the set S and n is the number of observations
in the training sample. We select the model with the lowest value of GRM(S), where S ranges over
all subsets of variables under consideration. Kearns et al. (1997) compare CV, GRM and mini-
mum description length (Rissanen, 1989). Their experiments have demonstrated that none of the
criteria is consistently better than the others. Note that the computational overhead for computing
these measures can be immense, since we need to train ten support vector machines to estimate the
generalization error rate for only one submodel.

We now define the KRIC of Kobayashi and Komaki (2006). This criterion was originally de-
veloped to tune the constant C in the SVM definition (1), and by extension to tune the kernel pa-
rameters. We use it without much adjustment for variable selection. Denote by xi,S the subvector of
xi, consisting of elements xi j with j ∈ S, and similarly for other vectors. We estimate the SVM (1)
using the observations (xi,S,yi), yielding the vectors ωS,bS and ξS, where the subscript S refers to
the subset of variables under consideration. In the dual problem (2), we have αS = (αS,1, . . . ,αS,n)
and [QS]i,k = yiykK(xi,S,xk,S). The decision rule fS(x) is as in (3), and we set ai,S = fS(xi,S). Next,
we define vectors tS and mS of length n, with components

tS,i = η2 exp(−ηai,Syi)

(1+ exp(−ηai,Syi))2 and mS,i =−η
yi exp(−ηai,Syi)

1+ exp(−ηai,Syi)
, i = 1, . . . ,n.

Here we choose η = log(2) such that log(1 + exp(−ηx)) and η[1− x]+ coincide for x = 0, see
Kobayashi and Komaki (2006) for further motivation. With λ = C−1 log2 the KRIC for the logistic
Bayesian model for SVMs is defined as

KRIC(S) = 2

[ n

∑
i=1

log
(

1+ exp(−ηai,Syi)
)

(5)

+ trace((QSdiag(tS)+λIn)
−1QS(diag(mS)

2−n−1mSmt
S))

]

.
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Alternatively, Sollich’s Bayesian model for SVMs (Sollich, 2002) leads to a KRIC with a similar
form as the one in (5). Using

ν(ai,S) = (1+ exp(−2C))−1(exp(−C[1−ai,S]+)+ exp(−C[1+ai,S]+)),

the KRIC for the Sollich Bayesian model for SVMs is defined as

KRICS(S) = KRIC(S)−2n log
n

∑
i=1

ν(ai,S). (6)

The computation of the KRIC includes inverting an n×n-matrix with only a few zeroes. Therefore,
the computation is time-consuming if the sample size n is large. Both the CV error rate and the
KRIC may require a prohibitive computing time when a large number of different models needs to
be evaluated.

2.3 Ranking Techniques

A full subset search is computationally not feasible even not for problems with only a small number
of dimensions (p = 15 for example). To dramatically reduce the number of models while still
selecting a model that is “almost” the best model, Chen et al. (2005) use a genetic algorithm, while
Peng et al. (2005) suggest a combined backward elimination/forward selection strategy. However,
both of these techniques still suffer from the possibility that a large number of models needs to be
checked before arriving at a solution.

Alternatively, variable ranking consists of assigning a “value of importance” to each variable
and sorting the variables according to their importance. This results in a series of p stacked models,
thus only p evaluations of the variable selection criterion are needed. The most commonly used
algorithm is the SVM recursive feature elimination (SVM-RFE) technique from Guyon et al. (2002).
For a linear SVM, the variables are ranked by w2

j , with w j the j-th component of the weight vector
w. This technique assumes that the variables are standardized to have mean 0 and variance 1. The
extension proposed by Rakotomamonjy (2003) allows application to SVMs with a non-linear kernel.
We use the following SVM-RFE algorithm with variable influence

∆‖wS‖2
( j)=

∣

∣‖wS‖2−‖wS\{ j}‖2
∣

∣

as suggested by Rakotomamonjy (2003).

Step 1: Initialise S← {1, . . . , p}, the subset of unranked features, and r← (), the vector of ranked
features.

Step 2: Repeat the following steps until S = /0.

(a) Train a SVM on (xi,S,yi), and compute ‖wS‖2 = α′SQSαS.

(b) For each j ∈ S, train a new SVM on (xi,S\{ j},yi). This gives a value ‖wS\{ j}‖2 =
α′S\{ j}QS\{ j}αS\{ j} for each j ∈ S.

(c) Obtain j0 = argmin j |‖wS‖2−‖wS\( j)‖2| and set S← S\{ j0} and r← ( j0,r).
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The vector r contains the ranked variables, with the first element the most important one. A disad-
vantage of this method is that the number of SVMs to be trained is O(p2). This can be overcome by
using αS instead of αS\{ j} in Step 2b, such that ‖wS\{ j}‖2 ≈ α′SQS\{ j}αS. Rakotomamonjy (2003)
argues that this will not affect the ranking significantly, while still allowing a major reduction in
computational time, bringing the number of SVMs to be estimated to O(p). We employ this ap-
proximation in the simulation study in Section 4 and in the real data examples in Section 5.

The most easy way to rank the variables is by filtering methods. Zhang et al. (2006) propose
using s j = |w j(m j,+1−m j,−1)| for ranking, where m j,+1 and m j,−1 are the within-class means of
variable j. Shih and Cheng (2005) use the Fisher score

S j =
|m j,+1−m j,−1|
√

σ2
j,+1 +σ2

j,−1

for a linear SVM, where σ2
j,+1 and σ2

j,−1 are the within-class variances of variable j. The main
advantage of using S j is that it is not necessary to train any SVM to rank the variables. The Fisher
score ranking is considered in Sections 4 and 5.

3. The New Information Criteria

As stated in the previous section, evaluating the CV error rate or the KRIC of a particular sup-
port vector machine model requires a high number of additional computations. For this reason, we
propose two new criteria which use information already available in the SVM, without additional
complicated computations. The criteria are based on how badly the SVM violates the margin con-
straints, which are written as ∑n

i=1 ξi,S, where ξi,S is the margin slack of observation i in the support
vector machine trained on the variables with indices in S, where S is a subset of {1, . . . , p}. Alter-
natively, we can use the logarithm of this sum, analogous to Bai and Ng (2002) for selecting the
number of factors in factor analysis. However, in the SVM setting this has the drawback that the
value is undefined if the sum equals zero, which can happen if the data are perfectly separable. Also,
Bai and Ng (2002) advise using a log-transform for scalar invariance reasons. Since we follow the
advice to standardise the variables before training the SVM, for better ranking as explained in Sec-
tion 2.3, we automatically have scalar invariance of the sum of the margin slacks. For these reasons,
we choose not to take the log-transform.

Generally (but not always), ∑i ξi,S will decrease as more variables are added. Therefore we add
a penalty term related to the number of included variables to ensure a tradeoff between accuracy
and simplicity of the chosen model. We suggest adding a linear penalty term, such that we get an
information criterion of the form

IC(S) =
n

∑
i=1

ξi +C(n)|S| , (7)

where S is the set of variables included in the model.
A first choice is to take C(n) constant in (7). It is interesting to note that IC(S) is then,

up to constant factors, an easily computable approximation of the KRIC of Kobayashi and Ko-
maki (2006), hereby providing a theoretical justification for its use. To better understand this,
note first that log

(

1 + exp(−ηai,Syi)
)

is a continuous approximation of the hinge loss function
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η[1− yiai,S]+ = ηξi,S for all 1 ≤ i ≤ n. Hence, the first term of the KRIC can be approximated, up
to a constant factor, by ∑i ξi,S. For the approximation of the second term in (5), rewrite

W = (QSdiag(tS)+λIn)
−1QS(diag(mS)

2−n−1mSmt
S)

= V diag(tS)
−1(diag(mS)

2−n−1mSmt
S),

with V = (A + λIn)
−1A a symmetric, positive semi-definite matrix and A = QSdiag(tS). Denoting

A− the generalised inverse of A, and using a series expansion around λ = 0, gives that the leading
term of V = A−(I +λA−)−1A is equal to A−A. This expansion converges as long as the eigenvalues
of λA− are strictly less than one, which can be obtained by taking λ small enough. We now use
a singular value decomposition of both A and A− and use the fact that the singular values of A−

are the reciprocals of the non-zero singular values of A, to obtain that the product A−A is a n× n
diagonal matrix with on the diagonal |S| ones and the remaining entries zero. Thus, the leading term
of trace(W ) equals the sum of |S| diagonal entries of the matrix diag(tS)

−1(diag(mS)
2−n−1mSmt

S)).
The i-th diagonal element of this matrix is equal to

n−1
n

t−1
S,i m2

S,i =
n−1

n
exp(−ηai,Syi).

To further facilitate computations we replace this by 1, motivated by the fact that ηai,Syi is often
small. Although this approximation might be crude for a single term, we found empirically that it
works well for the summation over the entire training set. Hence, we arrive at the approximation
trace(W )≈ |S| which is the linear penalty term in (7).

Taking the constant value C(n) = 2, leads to our first new support vector machine information
criterion (SVMIC):

SVMICa(S) =
n

∑
i=1

ξi +2|S|. (8)

The newly proposed criterion SVMICa for support vector machines shares the form of the penalty
with the well-known Akaike (1973) information criterion. This AIC is defined as minus twice the
value of the maximised log likelihood of the model, plus two times the number of parameters to
be estimated (that is, 2|S|). Because the penalty 2|S| is not dependent on the sample size n, we
expect that both criteria share some properties, such as having the tendency to not select the most
parsimonious model. For the AIC, Woodroofe (1982) has shown that in the limit for n→ ∞, the
expected number of superfluous parameters is less than one.

To support the definition of SVMICa , we ran a simulation experiment and compared the values
of KRIC and SVMICa for 100 models. The sample size is n = 50, with 10 variables of which only
the first 4 variables are different from zero. A detailed description of the simulation setting can be
found in Section 4. We used a linear kernel. Figure 1 reports these numerical results and shows
a high correlation (0.975) between the values of the two criteria. Other simulation settings gave
comparable correlation values.

Our second proposed criterion follows the spirit of Bayesian information criterion (BIC) by
Schwarz (1978). This criterion is defined similarly as the AIC, but instead of the penalty 2|S|, it
uses log(n)|S|. The BIC has been shown to be consistent (Haughton, 1988, 1989). This means that
if the true model is contained in the search list, the criterion will (in the limit for n→ ∞) select this
correct model. For a related construction for factor models, see Bai and Ng (2002). This motivates
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Figure 1: Values of KRIC and SVMICa in a simulation experiment, showing high correlation
(0.975).

us to take C(n) = log(n), and we define our second criterion

SVMICb(S) =
n

∑
i=1

ξi + log(n)|S|. (9)

It is immediate that the computational cost of both SVMICs is much lower than of the cross-
validated error rate (10 more SVMs to train for 10-fold cross-validation) and of the kernel regulari-
sation information criterion KRIC (which needs computations of the order O(n3) due to the matrix
inversion). The best case is when the ξi,S are directly available. Computing the SVMICs is only an
O(n) computation in that case, and usually even less when employing the property that

ξi,S 6= 0⇔ αi,S = 1.

When only αS and QS are available, ξi,S is computed using the relation

ξi,S =
[

1− yi

n

∑
j=1

α j,S>0

α j,S[QS]i j

]

+
.

This means that in the worst case, the computation time of the SV MICs is O(n2), which is still faster
than using either CV error rate or KRIC.
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4. Simulation Results

We perform M = 100 simulation runs with the following settings. We generate n∈{25,50,100,200}
independent observations xi, 1 ≤ i ≤ n of dimension p ∈ {25,50,100,200}, with distribution
N (0,σ2Ip) where σ2 = 1. For each observation we generate a class label yi ∈ {−1,+1}, with
P(yi = 1) = 1/2. Finally, we let µ = (1/2,−1/2,−1/2,1/2,0, . . . ,0) of dimension p, and set
xi ← xi + yiµ to separate the two classes to some extent. This implies that the optimal separat-
ing hyperplane is x′µ = 0, such that ŷ = +1 if x′µ > 0, resulting in a generalization error rate of
Φ(−‖µ‖2/σ), with Φ the cumulative distribution function of a standard normal. In our example,
with σ = 1 and ‖µ‖2 = 1, we find an optimal generalization error rate of 0.159.

During each simulation run, we standardize the variables to improve the numerical performance
of the SVM algorithm. The variables are ranked using either the Fisher score or based on the
variable influence on w, as described in Section 2.3. For each of the nested models obtained in the
variable ranking step, we compute (i) SVMICa and (ii) SVMICb as in (8) and (9). We compare their
performance to (iii) ten-fold CV, (iv) Vapnik’s GRM as in (4), (v) KRIC for the logistic Bayesian
model for SVMs as in (5), and (vi) KRIC for the Sollich model for SVMs as in (6). An important
remark is that for ten-fold CV, we employ the CV2 method, which includes the feature selection
procedure in each cross-validation step, as suggested by Zhang et al. (2006). Computing the CV
error rate in the usual way can lead to a (severely) biased estimate of the generalization error, and
using CV2 reduces this bias.

The experiment is repeated with two different kernels (i) a linear kernel K(x1,x2) = x′1x2 leading
to a linear decision rule (ii) a quadratic kernel K(x1,x2) = (γx′1x2 + 1)2, with γ = 1/p, the inverse
of the number of variables, leading to a quadratic decision rule. The tuning parameter C in each
SVM that we train is chosen to be C = 1, as we standardize the explicative variables a priori. This
is also the standard setting for C for the svm procedure in the R software package. We experimented
with other values of C in the range from 0.1 up to 10, and found only minor differences in the
simulation outcomes. We test the accuracy of the classifiers computed from the selected input
variables by estimating their generalization (out-of-sample) error rate from a test sample of 10000
new observations. These observations are generated in the same way as the training sample.

Table 1 reports the generalization error rates, obtained by averaging over the 100 simulation
runs. An overall observation is that the error-rate based selection criteria (CV and GRM) have the
worst performance. The performances of the KRICs and the new SVMICs are comparable. More
precisely, we observe that the KRICs are better as a variable selection method for small sample sizes
(n = 25), while the SVMICs give better results for larger sample sizes. This is especially apparent
when the quadratic kernel is used. For a small number of observations compared to the number
of variables, we also note that SVMICa slightly outperforms SVMICb in terms of generalization
error rate, and that the opposite is true with many observations and fewer variables. The differences
in generalization error rates become smaller as the number of variables grows. This is particularly
true for CV, whose relative performance becomes better at large sample sizes. But SVMICa and
SVMICb are still somewhat ahead, and have the advantage that they are much easier (and less
time-intensive) to compute than the other criteria, included the KRICs having a computation time
of order O(n3). Note that, as n grows, the generalization error rates of the models obtained by
our two suggested criteria are converging towards the theoretically obtained minimal generalization
error rate of 15.9%. Investigating which variable ranking criterion is better, results in case of linear
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Linear kernel
n p SVMICa SVMICb CV GRM KRIC KRICS
25 25 32.2 29.4 32.6 31.6 33.5 31.8 36.2 34.5 31.3 29.0 31.5 29.9

50 34.6 31.6 35.3 32.6 35.3 33.5 37.4 35.4 34.4 33.2 34.4 33.2
100 37.4 33.9 37.3 35.0 37.8 34.4 38.6 35.7 37.0 34.9 37.1 34.9

50 25 24.4 21.6 24.6 23.2 27.1 25.5 31.1 29.6 25.7 24.9 26.0 25.9
50 28.5 23.3 27.7 24.8 29.5 26.3 31.4 30.5 29.8 28.7 30.2 29.7
100 30.9 24.6 29.1 25.0 31.0 28.0 32.1 30.9 31.0 30.1 31.3 30.8

100 25 19.9 18.5 19.6 18.9 24.6 23.8 30.1 30.1 21.8 20.6 22.3 21.7
50 22.9 19.2 20.2 19.0 25.8 25.4 29.9 29.6 26.9 26.8 27.3 27.8

200 25 17.8 17.0 16.9 16.8 22.7 21.5 28.9 29.3 18.7 18.0 19.2 18.9
Quadratic kernel
n p SVMICa SVMICb CV GRM KRIC KRICS
25 25 31.3 30.7 34.2 33.8 33.8 32.9 37.7 36.6 29.5 28.4 30.2 30.1

50 35.8 35.3 39.3 38.5 39.6 38.5 43.6 42.6 33.3 33.0 33.9 34.1
100 43.3 43.3 48.3 48.4 42.8 42.7 49.2 48.7 37.1 37.1 37.7 38.2

50 25 22.7 21.3 25.0 24.3 26.7 25.9 31.8 31.7 23.6 22.5 24.8 25.1
50 24.4 23.0 26.8 26.8 29.8 28.1 33.9 33.5 27.6 27.1 29.1 29.3
100 26.4 25.6 30.8 30.2 34.1 33.8 40.3 40.1 31.1 30.9 32.5 32.8

100 25 19.4 18.5 19.9 19.1 23.8 19.2 30.6 30.2 20.0 20.0 21.7 22.0
50 19.7 18.5 19.8 19.5 24.2 22.0 30.5 30.7 22.6 22.6 24.7 25.1

200 25 20.1 20.3 17.1 16.8 22.4 21.4 29.4 29.6 18.3 18.1 20.3 20.6

Table 1: Simulated average generalization error rate (%) for the six methods using two different
kernels. For each method, the number on the left resulted from ranking by variable influ-
ence on ‖w‖2, and the number on the right in each column is from ranking by the Fisher
scores S j.

kernels to a strong preference for ranking with the Fisher score. For the quadratic kernel, it is
slightly better to rank the variables based on variable influence on ‖w‖2.

Figure 2 presents the values of the 100 simulated generalization errors as boxplots, giving insight
in the variability of the variable selection methods. For most of the cases it turns out that cross-
validation is highly variable, while GRM has a small variability. This good property of GRM is,
however, accompanied by a much higher average generalization error rate. Comparing the different
information criteria shows that SVMICa is quite comparable to the KRICs. The SVMICb has a
larger variability. In the setting with small sample size (n = 25) and relatively large number of
variables (100), all methods, except for GRM, are comparable with respect to variability, but GRM
has again the largest median error rate. Our main conclusion from this analysis is that SVMICa has
a similar variability than the KRIC criteria, but SVMICb has a larger variability. Recall that the
average error rates, as reported in Table 1, were of similar magnitude for all the four information
criteria. Hence, when needing to choosing between the two newly proposed information criteria,
we have a preference for SVMICa.

Given the variability of the generalization errors over the 100 simulation runs, see the boxplots
in Figure 2, it is important to test whether the averages reported in Table 1 are also significantly
different from each other. We performed standard t-tests, and most difference are indeed signifi-
cant. For example, for the settings presented in Figure 1, we obtained that, at the 1% level, (a) all
differences are significant, except between SVMICb and the 2 KRiCs (b) all differences are signif-
icant, except between SVMICa and the 2 KRICs (c) all differences are significant, except between
SVMICb and the 2 KRICs (d) the differences with the GRM method are significant, the others not.
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Figure 2: Generalization error rates for 100 simulation experiments, for n = 100, p = 25 (a) linear
kernel, ranking with ‖w‖2, (b) linear kernel, ranking with Fisher score, (c) quadratic
kernel, ranking with ‖w‖2, and for (d) n = 25, 100 variables, linear kernel and ranking
with ‖w‖2.

Furthermore, we investigate which models are actually chosen by the different criteria. This
information is reported in Table 2. For each setting, it shows how many times the correct subset of
input variables, containing only the first four input variables, was chosen (C, correct). This table
also shows how many times a too-sparse group of variables was selected (U, underfitting), and how
many times a too-rich group of variables was chosen (O, overfitting). So an overfit means that all
correct variables are selected, but in addition some superfluous ones, while an underfit selects a
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Kernel: Linear Quadratic
Models selected: C U O R C U O R

n = 25; p = 25 SVMICa 1 22 1 76 3 36 0 61
SVMICb 0 42 0 58 0 64 0 36
CV 0 38 4 58 1 40 5 54
GRM 0 77 0 23 0 75 0 25
KRIC 1 1 7 91 0 1 25 74
KRICS 0 0 9 91 0 0 49 51

n = 200; p = 25 SVMICa 22 0 76 2 2 0 98 0
SVMICb 77 9 10 4 67 14 6 13
CV 7 48 43 2 4 43 49 4
GRM 1 98 1 0 1 99 0 0
KRIC 6 0 93 1 8 0 84 8
KRICS 1 0 99 0 0 0 100 0

n = 25; p = 100 SVMICa 0 8 0 92 0 35 0 65
SVMICb 0 20 0 80 0 63 0 37
CV 0 23 6 71 0 33 10 57
GRM 0 56 0 44 0 64 0 36
KRIC 0 1 0 99 0 0 41 59
KRICS 0 0 1 99 0 0 56 44

Table 2: Simulated frequencies of selected models, with variable ranking done by influence on
‖w‖2. Here ‘C’ denotes correct selection, ‘U’ is underfitting, ‘O’ is overfitting, and ‘R’ for
all other situations.

subset of the important variables, but no irrelevant variables are included. The good performance
of SVMICa and SVMICb might be due to the fact that these criteria seem to have the tendency to
select a set of variables which includes all significant ones as the number of observations grows. The
simulation results indicate that SVMICa behaves like AIC with its tendency to overfit. The SVMICb
seems to share the property of BIC that it selects the correct model more often, if at least this true
model is one of the possibilities to select from. The cross-validated error rate, and the general risk
minimisation in particular, seem to have the tendency to ignore variables which nevertheless are
important. As a consequence, the models that these criteria select are of poor predictive quality.
The two KRICs of Kobayashi and Komaki (2006) share the overselection property exhibited by
SVMICa, but the KRICs select excessive variables even more frequently than SVMICa. This can
explain why these criteria perform somewhat worse when the number of observations is large, and
why they outperform the proposed SVMICs when the number of observations is small, since the
latter tend to underfit the model in the case of few observations.

This concludes the results for the case of two populations coming from an identical distribution,
differing only in mean. Another case that we examined is where the variances of the two populations
differ from each other. We performed a simulation study, in a similar way as the previous one, where
the samples have been drawn from N (µ, Ip) for class +1, and from N (−2µ,4Ip) for class −1.

The results of this simulation are summarized in Tables 3 and Table 4. We observe similar
results as in the case where both populations had equal variance. Selection based on CV error rate
and on GRM still perform rather poor. As before, the performances of the KRICs and SVMICs

552



AN INFORMATION CRITERIA FOR VARIABLE SELECTION IN SVMS

Linear kernel
n p SVMICa SVMICb CV GRM KRIC KRICS
25 25 28.9 28.0 30.1 29.2 30.4 28.4 32.7 31.6 29.0 27.5 28.8 27.7

50 33.3 30.2 34.2 31.3 35.1 31.4 35.3 33.1 32.7 30.7 32.5 30.5
100 35.6 31.5 35.7 32.3 36.0 32.6 36.9 33.7 34.8 32.6 34.8 33.0
200 36.5 33.2 36.4 34.4 36.4 34.2 36.6 35.6 36.4 33.5 36.1 33.7

50 25 23.3 20.5 23.9 21.9 26.1 24.9 28.9 28.6 24.2 23.6 24.6 24.3
50 27.1 21.7 25.7 22.7 27.7 25.2 29.1 28.4 27.7 26.8 27.6 27.1
100 28.3 23.1 27.4 23.7 28.7 25.2 29.9 28.7 28.4 26.7 28.4 27.5

100 25 19.0 17.4 18.1 17.4 22.7 21.5 27.6 27.6 20.5 20.0 21.0 20.9
50 21.8 17.8 19.3 18.0 23.5 22.7 26.9 27.0 24.8 25.0 25.0 25.5

200 25 17.0 16.1 15.9 15.6 21.4 20.7 27.0 27.0 17.9 17.0 18.3 17.8
Quadratic kernel
n p SVMICa SVMICb CV GRM KRIC KRICS
25 25 29.2 28.9 31.8 31.8 31.8 28.7 35.4 34.7 25.7 24.9 25.8 26.2

50 35.1 35.8 39.6 40.0 38.1 37.6 42.8 42.4 30.5 30.8 31.3 32.3
100 42.1 41.7 48.2 48.1 42.2 42.3 49.4 48.7 35.0 36.0 36.2 38.1
200 50.1 50.1 50.1 50.1 44.7 44.4 50.1 50.1 38.9 40.0 40.4 41.8

50 25 20.5 19.3 23.5 22.2 25.9 24.5 30.6 30.2 19.0 19.1 19.5 19.9
50 23.1 22.2 26.1 26.2 28.3 27.6 33.2 32.7 23.8 23.9 25.1 26.1
100 26.5 25.8 30.4 30.4 34.5 33.7 40.5 40.4 28.2 28.8 30.1 32.3

100 25 14.6 15.2 18.5 16.4 20.8 19.9 27.8 27.1 14.2 14.5 14.5 14.9
50 17.9 17.0 18.4 17.8 22.0 21.5 27.7 28.3 18.1 18.5 19.5 20.3

200 25 9.9 9.8 12.9 13.2 19.6 17.6 29.3 26.8 10.1 10.3 9.7 9.8

Table 3: As Table 1, but now for two populations with different variances.

Kernel: Linear Quadratic
Models selected: C U O R C U O R

n = 25; p = 25 SVMICa 0 22 1 77 1 36 0 63
SVMICb 0 47 0 53 1 57 0 42
CV 1 40 1 58 1 39 8 52
GRM 0 76 0 24 0 70 0 30
KRIC 0 0 6 94 0 0 25 75
KRICS 0 0 8 92 0 0 50 50

n = 200; p = 25 SVMICa 11 0 85 4 0 20 0 80
SVMICb 69 10 16 5 0 45 0 55
CV 6 56 37 1 0 33 4 63
GRM 0 100 0 0 0 56 0 44
KRIC 5 0 93 2 0 0 40 60
KRICS 0 0 99 1 0 0 53 47

n = 25; p = 200 SVMICa 0 1 0 99 0 52 0 48
SVMICb 0 8 0 92 0 54 0 46
CV 0 22 2 76 0 22 5 73
GRM 0 46 0 54 0 54 0 46
KRIC 0 1 0 99 0 0 46 54
KRICS 0 0 0 100 0 0 56 44

Table 4: As Table 2, but now for two populations with different variances.

are similar. More precisely, the SVMICs have an improved performance with respect to the KRICs
when the sample size is large (n ≥ 50) and the linear kernel is used, and the KRICs work slightly
better for small sample sizes (n = 25). For the quadratic kernel, we notice a good performance of
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the KRICs, which is only matched by SVMICa for larger sample sizes. From Table 4 we can again
make the same observations as before when the linear kernel is used. For the quadratic kernel the
SVMICs have more difficulty selecting all the relevant variables than the KRICs, which explains
why the latter criteria have an improved performance here.

We also conducted a simulation experiment where the input variables were strongly correlated.
First, the observations were generated as in the first simulation experiment. Then, we applied the
transformation

xi j = ρxik j + εi j with εi j ∼N (0,ρ2) i.i.d.

where i = 1, . . . ,n, k j is chosen arbitrarily between 1 and 4, and 4 < j≤ p/2, such that about half of
the unimportant input variables are correlated with the four important ones. The parameter |ρ|< 1
controls the degree of correlation. We have chosen ρ = 0.8 and found similar results (not reported)
as for the case where the variances of both class-population differ.

5. Tests on Real Data Sets

We compare the performance of the new methods with that of the other discussed criteria on several
real-world data sets. We use some of the benchmark data sets used in Rakotomamonjy (2003), and
in Rätsch et al. (2001). The data sets used are the Pima Indians Diabetes database (768 observations,
8 variables), the Statlog Cleveland Heart Disease database (303 observations, 14 variables), and Leo
Breiman’s ringnorm and twonorm data sets (both 7400 observations, 20 variables). These data sets
are available from the UCI Machine Learning Repository (the first two), and the Delve Repository
(last two). We perform 100 random splits of the data in a training sample and a test sample, where
the size of the training sample is chosen as

√
2n, with n the total number of observations in the data

set. We chose the size of the training set such that there is a sufficient amount of observations in
the test sample to estimate the generalization (out-of-sample) error rate. The training sample size
is relatively small, such that the computation time for the KRIC remains within bounds. For each
of these partitions we perform variable selection on the training sample exactly as in the simulation
study. We first rank the variables to retain p stacked subsets of input variables, and then use the
information criteria to select the variables that best explain the training data. Then, we predict the
class labels for the test sample, and use these predictions to estimate the generalization error rate.
We use variable ranking based on variable influence on ‖w‖2 as well as on Fisher score, and we use
a linear, quadratic and radial kernel.

The estimated generalization error rates are presented in Table 5 for each data set and estimation
setting. We observe that the KRICs are the preferred choice of variable selection criterion in terms
of generalization error rate for the ‘twonorm’ and ‘heart’ data sets. For the ‘ringnorm’ and ‘diabetes’
data sets the difference in performance between the KRICs and our newly proposed SVMICs is less
pronounced. The predictive performance of the models selected by SVMICa are for most settings
comparable to that of the KRIC, while being much faster to compute. These results are consistent
across all settings. The CV error rate and especially the GRM have a poor performance, which is in
line of the results obtained in the simulation.

From these results, and the results obtained in Section 4, we suggest to use either the SVMICa
or the SVMICb if a preliminary analysis of the data or a priori knowledge indicates that the true
decision function is almost linear. When it differs strongly from a linear function, the researcher has
a choice between the ease of computation of the support vector machine information criteria, or the
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Ranking: Variable influence on ‖w‖ Fisher scores
Data Kernel: Linear Quadratic Radial Linear Quadratic Radial
Diabetes SVMICa 28.6 28.5 29.2 28.0 28.2 28.4

SVMICb 29.0 28.9 29.2 28.6 28.5 28.9
CV 28.6 29.1 29.1 28.8 28.5 29.3
GRM 29.6 29.7 29.6 29.1 29.2 29.3
KRIC 28.5 28.2 29.4 27.5 28.1 29.6
KRICS 28.6 28.5 29.7 28.3 28.6 29.7

Heart SVMICa 27.0 27.4 27.7 27.6 28.0 28.3
SVMICb 27.6 28.9 28.9 28.2 29.3 29.5
CV 27.6 28.6 27.2 26.8 28.0 28.8
GRM 29.3 30.3 29.4 28.8 30.4 30.6
KRIC 25.4 23.4 23.8 24.5 23.2 23.8
KRICS 25.3 23.5 25.2 25.2 23.7 25.0

Ringnorm SVMICa 31.1 16.4 8.4 30.8 15.6 6.5
SVMICb 34.9 20.2 13.5 35.2 22.4 13.4
CV 33.9 32.1 26.6 32.8 25.6 21.2
GRM 39.2 41.3 38.6 39.3 38.4 37.3
KRIC 30.1 16.3 6.0 29.6 15.9 4.4
KRICS 29.9 16.0 3.1 29.2 15.4 2.5

Twonorm SVMICa 9.9 9.3 11.4 10.1 8.9 9.4
SVMICb 13.5 14.1 15.9 15.0 15.2 16.0
CV 20.5 21.0 19.8 21.0 21.1 20.8
GRM 31.4 31.7 31.6 30.8 31.2 31.3
KRIC 8.0 7.5 11.0 6.8 6.8 9.2
KRICS 7.5 6.0 4.0 6.6 5.5 4.8

Table 5: Generalization error rates (%) for variable selection applied to four data sets. Two variable
ranking schemes and three types of kernel are used for each of the criteria.

somewhat improved predictive performance, though with higher computational cost, of the kernel
regularization information criterion.

Finally, we applied the newly proposed information criteria for variable selection to two large
data sets, the “Madelon” (n = 2000, p = 500) and “Arcene” data (n = 100, p = 10000). These data
sets were part of the NIPS 2003 feature selection, and are described in detail in Guyon et al. (2006).
Given the high dimensionality of these data, the variables were ranked according to the Fisher score.
We used a linear kernel and computed balanced error rates (BER), that is the average of the error
rate of the positive class and the error rate of the negative class. When using SVMICa we obtain a
BER of 43.0% for the Madelon data, and 31.1% for the Arcene data. For SVMICb we get 37.3%
and 31.1%, respectively. In Guyon et al. (2006, 2007) the BER of other feature selection methods
is presented, and it turns out that several other methods yield much better performance on these
data. A possible explication is that we used a standard SVM, without any optimal tuning of the
regularization parameters.
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6. Conclusions

In this paper we considered the problem of variable selection in support vector machines. We
proposed two new information criteria, SVMICa and SVMICb, which allow us to evaluate the
suitability of the selected subset of variables for predictive purposes, without much additional com-
putational costs. We provided an argumentation for these criteria, linking SVMICa to the KRIC
of Kobayashi and Komaki (2006), and justifying SVMICb with the need for a consistent selection
criterion. We demonstrated the effectiveness of these criteria in a simulation study, where we com-
pared their predictive performance to the KRIC, cross-validation and general risk minimization.
Especially for decision functions which are close to an affine function, we found that SVMICa and
SVMICb performed the best of all tested criteria, and were also the easiest to compute. For more
complicated decision functions, we found that SVMICa still performs well for selecting models with
good generalization properties. We repeated the experiment on several real data examples, and the
result confirmed the good properties of these newly proposed criteria. In particular we showed that
cross-validation criteria are outperformed in generalization error by the new information criteria,
where the latter are coming at almost no additional computational cost.

The aim of our paper was to propose an information criterion for a standard SVM. We do not
claim that the procedure is outperforming other very advanced feature selection methods, which are
not relying on a standard SVM. Obtaining information criteria for other machine learners is an inter-
esting topic for future research. Another research question is how suitable the information criteria
are for optimal tuning of the regularization and other parameters of the SVM, without necessarily
selecting a subset of input variables. Finally, it would be interesting to continue on the theoretical
verification of the good performance of our two proposed criteria, and for example try to obtain
consistency results for the SVM information criteria.
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Abstract
Closed sets have been proven successful in the context of compacted data representation for associ-
ation rule learning. However, their use is mainly descriptive, dealing only with unlabeled data. This
paper shows that when considering labeled data, closed sets can be adapted for classification and
discrimination purposes by conveniently contrasting covering properties on positive and negative
examples. We formally prove that these sets characterize the space of relevant combinations of fea-
tures for discriminating the target class. In practice, identifying relevant/irrelevant combinations of
features through closed sets is useful in many applications: to compact emerging patterns of typical
descriptive mining applications, to reduce the number of essential rules in classification, and to ef-
ficiently learn subgroup descriptions, as demonstrated in real-life subgroup discovery experiments
on a high dimensional microarray data set.

Keywords: rule relevancy, closed sets, ROC space, emerging patterns, essential rules, subgroup
discovery

1. Introduction

Rule discovery in data mining mainly explores unlabeled data and the focus resides on finding
itemsets that satisfy a minimum support constraint (namely frequent itemsets), and from them, con-
structing rules over a certain confidence. This is the case of the well-known Apriori algorithm of
Agrawal et al. (1996), and its successors, for example, Brin et al. (1997), Han and Pei (2000) and
Zaki (2000b) among others. From a different perspective, machine learning is mainly concerned
with the analysis of class labeled data, mainly resulting in the induction of classification and predic-
tion rules, and—more recently—also descriptive rules that aim at discovering insightful knowledge
from the data (subgroup discovery, contrast set mining). Traditional rule learning algorithms for
classification include CN2 (Clark and Niblett, 1989) and Ripper (Cohen, 1995). Other approaches
have been proposed that are based on the association rule technology but applied to class labeled
data, for example, a pioneer work towards this integration is Liu et al. (1998), and later followed
by others, for example, the Apriori-C classifier by Jovanoski and Lavrač (2001), and the Essence
algorithm for inducing “essential” classification rules based on the covering properties of frequent
itemsets, by Baralis and Chiusano (2004).
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Subgroup discovery is a learning task directed at finding subgroup descriptions that are char-
acteristic for examples with a certain property (class) of interest. Special rule learning algorithms
for subgroup discovery include Apriori-SD (Kavšek and Lavrač, 2006), CN2-SD (Lavrač et al.,
2004) or SD (Gamberger and Lavrač, 2002). The goal of these descriptive mining algorithms is to
find characteristic rules as combinations of features with high coverage. If there are several rules
with the same coverage, most specific rules (with more features) are appropriate for description and
explanation purposes. On the other hand, the closely related task of contrast set mining aims at
capturing discriminating features that contrast instances between classes. Algorithms for contrast
set mining are STUCCO (Bay and Pazzani, 2001), and also an innovative approach presented in the
form of mining emerging patterns (Dong and Li, 1999). Basically, Emerging Patterns (EP) are sets
of features in the data whose supports increase significantly from one class to another. Interestingly,
also good classifiers can be constructed by using the discriminating power of the mined EPs, for
example, see Li et al. (2000). A condensed representation of EPs, defined in terms of a support
growth rate measure, has been studied in Soulet et al. (2004).

Indeed, we can see all these tasks on labeled data (learning classification rules, subgroup dis-
covery, or contrast set mining) as a rule induction problem, that is, a process of searching a space
of concept descriptions (hypotheses in the form of rule antecedents). Some descriptions in this hy-
pothesis space may turn out to be more relevant than others for characterizing and/or discriminating
the target class. The question of relevance has attracted much attention in the context of feature
selection for propositional learning (Koller and Sahami, 1996; Liu and Motoda, 1998). This is an
important problem since non-relevant features can be excluded from the learning process, thus facil-
itating the search for the final solution and increasing the quality of the final rules. Feature filtering
can be applied during the learning process, or also, by pre-processing the set of training examples
(Lavrač et al., 1999; Lavrač and Gamberger, 2005).

Searching for relevant descriptions for rule construction has been extensively addressed in de-
scriptive data mining as well. A useful insight was provided by closure systems (Carpineto and
Romano, 2004; Ganter and Wille, 1998), aimed at compacting the whole space of descriptions into
a reduced system of relevant sets that formally conveys the same information as the complete space.
The approach has successfully evolved towards mining closed itemsets (see, for example, Pasquier
et al., 2001; Zaki, 2004). Intuitively, closed itemsets can be seen as maximal sets of items/features
covering a maximal set of examples. Despite its success in the data mining community, the use of
closed sets is mainly descriptive. For example, they can be used to limit the number of association
rules produced without information loss (see, for example, how to characterize rules with respect to
their antecedent in Crémilleux and Boulicaut, 2002).

To the best of our knowledge, the notion of closed sets has not yet been exported to labeled
data, nor used in the learning tasks for labeled data described above. In this paper we show that
raw closed sets can be adapted for discriminative purposes by conveniently contrasting covering
properties on positive and negative examples. Moreover, by exploiting the structural properties and
the feature relevancy theory of Lavrač et al. (1999) and Lavrač and Gamberger (2005), we formally
justify that the obtained closed sets characterize the space of relevant combinations of features for
discriminating the target class.

In practice, our notion of closed sets in the labeled context (described in Sections 3 and 4)
can be naturally interpreted as non-redundant descriptive rules (discriminating the target class) in
the ROC space (Section 5). We also show that finding closed sets in labeled data turns out to be
very useful in many applications. We have applied our proposal to reduce the number of emerging
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patterns (Section 6.1), to compress the number of essential rules (Section 6.2), and finally, to learn
descriptions for subgroup discovery on potato microarray data (Section 6.3).1

2. Background

Features, used for describing the training examples, are logical variables representing attribute-
value pairs (called items in the association rule learning framework of Agrawal et al., 1996). If
F = { f1, . . . , fn} is a fixed set of features, we can represent a training example as a tuple of features
f ∈ F with an associated class label. For instance, Table 1 contains examples for the simplified
problem of contact lens prescriptions (Witten and Frank, 2005). Patients are described by four
attributes: Age, Spectacle prescription, Astigmatism and Tear production rate; and each tuple is
labeled with a class label: none, soft or hard. Then, F is the set of all attribute-value pairs in the
data, that is, F = {Age=young, . . . , Tear=normal} (the class label is not included in F), and each
example (a patient) corresponds to a subset of features in F with an associated class label. This
small data set will be used throughout the paper to ease the understanding of our proposals.

We consider two-class learning problems where the set of examples E is divided into positives
(P, target-class examples identified by label +) and negatives (N, labeled by −), and E = P∪N.
Multi-class problems can be translated to a series of two-class learning problems: each class is once
selected as the target class (positive examples), while examples of all the other classes are treated
as non-target class examples (thus, negative examples). For instance, when class soft of Table 1 is
the target class, all examples with label soft are considered as positive, as shown in Table 2, and all
examples labeled none and hard are considered as negative.

Given a rule X → + formed from a set of features X ⊆ F , true positives (TP) are those positive
examples covered by the rule, that is, p ∈ P such that X ⊆ p; and false positives (FP) are those
negative examples covered by the rule, that is, n ∈ N such that X ⊆ n; reciprocally, true negatives
(TN) are those negative examples not covered by X . Later, we will see that some combinations of
features X ⊆ F produce more relevant antecedents than others for the rules X → +. Our study will
focus specifically on the combinations of features from the universe F which best define the space
of non-redundant rules for the target class. We will do it by integrating the notion of closed itemsets
and the concept of feature relevancy proposed in previous works.

2.1 Closed Itemsets

From the practical point of view of data mining algorithms, closed itemsets are the largest sets
(w.r.t. set-theoretic inclusion) among those other itemsets occurring in the same examples (Bastide
et al., 2000a; Crémilleux and Boulicaut, 2002; Pasquier et al., 2001; Taouil et al., 2000; Zaki, 2000a,
2004; Zaki and Ogihara, 1998). Formally, let support of itemset X ⊆ F , denoted by supp(X), be the
number of examples in the data where X is contained. Then: a set X ⊆ F is said to be closed when
there is no other set Y ⊆ F such that X ⊂ Y and supp(X) = supp(Y ).

In the example of Table 2, the itemset corresponding to {Age=young} is not closed because it
can be extended to the maximal set {Age=young, Astigmatism=no, Tear=normal} that has the same
support in this data. Notice that by treating positive examples separately, the positive label will be
already implicit in the closed itemsets mined on the target class data. So, here we will work by

1. A preliminary version of this work appeared in Garriga et al. (2006). This paper is improved based on the valuable
reviewers’ comments, incorporates proofs, detailed explanations, extended comparisons with related work and more
experiments.
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Spectacle Tear
Id Age prescription Astig. prod. Lens

1 young myope no normal soft
2 young hypermetrope no normal soft
3 pre-presbyopic myope no normal soft
4 pre-presbyopic hypermetrope no normal soft
5 presbyopic hypermetrope no normal soft
6 young myope no reduced none
7 young myope yes reduced none
8 young hypermetrope no reduced none
9 young hypermetrope yes reduced none
10 pre-presbyopic myope no reduced none
11 pre-presbyopic myope yes reduced none
12 pre-presbyopic hypermetrope no reduced none
13 pre-presbyopic hypermetrope yes reduced none
14 pre-presbyopic hypermetrope yes normal none
15 presbyopic myope no reduced none
16 presbyopic myope no normal none
17 presbyopic myope yes reduced none
18 presbyopic hypermetrope no reduced none
19 presbyopic hypermetrope yes reduced none
20 presbyopic hypermetrope yes normal none
21 young myope yes normal hard
22 young hypermetrope yes normal hard
23 pre-presbyopic myope yes normal hard
24 presbyopic myope yes normal hard

Table 1: The contact lens data set, proposed by Witten and Frank (2005).

Spectacle Tear
Id Age prescription Astig. prod. Class

1 young myope no normal +

2 young hypermetrope no normal +

3 pre-presbyopic myope no normal +

4 pre-presbyopic hypermetrope no normal +

5 presbyopic hypermetrope no normal +

Table 2: The set of positive examples when class soft of the contact lens data of Table 1 is selected
as the target class. These examples form the set P of positive examples, while instances of
classes none and hard are considered non-target, thus treated together as negative examples
N. Note that examples are represented here in a simplified tabular form instead of the
feature set representation.
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Figure 1: The lattice of closed itemsets for data in Table 2.

constructing the closure system of items on our positive examples and use this system to study the
structural properties of the closed sets to discriminate the implicit label. Many efficient algorithms
have been proposed for discovering closed itemsets over a certain minimum support threshold; see
a compendium of them in Goethals and Zaki (2004).

The foundations of closed itemsets are based on the definition of a closure operator on a lattice
of items (Carpineto and Romano, 2004; Ganter and Wille, 1998). The standard closure operator
Γ for items acts as follows: the closure Γ(X) of a set of items X ⊆ F includes all items that are
present in all examples having all items in X . According to the classical theory, operator Γ satisfies
the following properties: Monotonicity: X ⊆ X ′ ⇒ Γ(X) ⊆ Γ(X ′); Extensivity: X ⊆ Γ(X); and
Idempotency: Γ(Γ(X)) = Γ(X).

From the formal point of view of Γ, closed sets are those coinciding with their closure, that is,
for X ⊆ F , X is closed iff Γ(X) = X . Also, when Γ(Y ) = X for a set Y 6= X , it is said that Y is a
generator of X . By extensivity of Γ we always have Y ⊆ X for Y generator of X . Intensive work has
focused on identifying which collection of generators is good to ensure that all closed sets can be
produced. The named δ-free sets in Boulicaut et al. (2003) are minimal generators when δ = 0, and
these are equivalent to key patterns in Bastide et al. (2000b). Different properties of these δ-free
sets generators in Boulicaut et al. (2003) have been studied for different values of δ.

Considering Table 2, we have the following Γ({Age=young}) = {Age=young, Astigmatism=no,
Tear=normal}. Then, {Age=young} is a generator of this closed set. Note that for Γ(Y ) = X , both
Y and X are sets with exactly the same support in the data, but X being a largest set of items,
that is, Y ⊂ X for all Y such that Γ(Y ) = X . This property is ensured by the extensivity of this
operator. Moreover, closed sets formalized with operator Γ are exactly those sets obtained in closed
set mining process and defined above, which present many advantages (see, for example, Balcázar
and Baixeries, 2003; Crémilleux and Boulicaut, 2002).
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Closed itemsets are lossless in the sense that they uniquely determine the set of all frequent
itemsets and their exact support (cf. Pfaltz, 1996; Zaki and Ogihara, 1998, for more theoretical
details). Closed sets of items can be graphically organized in a Hasse diagram, where each node
corresponds to a closed itemset, and there is an edge between two nodes if and only if they are
comparable (w.r.t. set-theoretic inclusion) and there is no other intermediate closed itemset in the
lattice. In this partial order organization, ascending/descending paths represent the subset/superset
relation. Typically, the top of this lattice is represented by a constant T corresponding to a set of
items not included in any example.

Figure 1 shows the lattice of closed itemsets obtained from data from Table 2. Each node is
depicted along with the set of example identifiers where the closed set occurs. Notice that all closed
itemsets with the same support cover a different subset of transactions of the original data. In
practice, such exponential lattices are not completely constructed, as only a list of closed itemsets
over a certain minimum support suffices for practical purposes. Therefore, instead of closed sets
one needs to talk about frequent closed sets, that is, those closed sets over the minimum support
constraint given by the user. Also notice the difference of frequent closed sets from the popular
concept of maximal frequent sets (see, for example, Tan et al., 2005), which refers to those sets for
which none of their supersets are frequent.

Obviously, imposing a minimum support constraint will eliminate the largest closed sets whose
support is typically very low. The impact of such constraint depends on the application. In general,
there exists a trade-off between quality and speed up of the process. In the following we consider
a theoretical framework with all closed sets; in practice though, we will need a minimum support
constraint to consider only the frequent ones.

2.2 Relevant Features for Discrimination

The main aim of the theory of relevancy, described in Lavrač et al. (1999) and Lavrač and Gam-
berger (2005), is to reduce the hypothesis space by eliminating irrelevant features from F in the
pre-processing phase. Other related work, such as Koller and Sahami (1996) and Liu and Motoda
(1998), eliminate features in the model construction phase. However, here we concentrate on the
elimination of irrelevant features in the preprocessing phase, as proposed by Lavrač and Gamberger
(2005):

Definition 1 (Coverage of features) Feature f ∈ F covers another feature f ′ ∈ F if and only if
true positives of f ′ are a subset of true positives of f , and true negatives of f ′ are a subset of true
negatives of f . In other words, TP( f ′) ⊆ TP( f ) and TN( f ′) ⊆ TN( f ) (or equivalently, TP( f ′) ⊆
TP( f ) and FP( f ) ⊆ FP( f ′)).

Using the definition of feature coverage, we further define that f ′ ∈ F is relatively irrelevant if
there exists another feature f ∈ F such that f covers f ′. To illustrate this notion we take the data
of Table 1: if examples of class none form our positives and the rest of examples are considered
negative, then the feature Tear=reduced covers Age=young, hence making this last feature irrelevant
for the discrimination of the class none.

Other notions of irrelevancy described in Lavrač and Gamberger (2005) consider a minimum
coverage constraint in the true positives or accordingly, on the true negatives.
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3. Closed Sets on Target-class Data

Given a set of examples E = P∪N it is trivial to realize that for any rule X →+ with a set of features
X ⊆ F , the support of itemset X in P (target class examples) exactly corresponds to the number of
true positives (TP) of the rule; reciprocally, the support of X in N (non-target class examples) is
the number of false positives (FP) of the rule. Also, because of the anti-monotonicity property of
support (i.e., Y ⊆ X implies supp(X) ≤ supp(Y )) the following useful property can be easily stated.

Proposition 2 Let X ,Y ⊆ F such that Y ⊆ X, then TP(X) ⊆ TP(Y ) and FP(X) ⊆ FP(Y ).

Proof The anti-monotonicity property of support on the set of positive examples ensures that
|TP(X)| ≤ |TP(Y )|. Since Y ⊆ X , we necessarily have TP(X)⊆ TP(Y ). The same reasoning applies
to the set of negative examples.

For convenience, let supp+(X) denote the support of the set X in the positive set of examples
P, and supp−(X) the support in the negative set of examples N. Notice that for a rule X → + we
indeed have that supp+(X) = |TP(X)| and supp−(X) = |FP(X)|. In the following we will use one
notation or the other according to the convenience of the context.

Following from the last proposition, the next property can be readily seen.

Lemma 3 Feature f ∈ F covers another feature f ′ ∈ F (as in Definition 1), iff supp+({ f ′}) =
supp+({ f , f ′}) and supp−({ f}) = supp−({ f , f ′}).

Proof That f covers f ′ can be formulated as TP( f ′) ⊆ TP( f ) and FP( f ) ⊆ FP( f ′). Because all the
true positives of f ′ are also covered by f , it is true that TP( f ′) = TP( f , f ′); similarly, because all
the false positives of f are also covered by f ′ we have FP( f ) = FP( f , f ′). These two facts directly
imply that supp+({ f ′}) = supp+({ f , f ′}) and supp−({ f}) = supp−({ f , f ′}).

The other direction is proved as follows. The anti-monotonicity property of Proposition 2 ap-
plied over { f ′} ⊆ { f , f ′} leads to TP( f , f ′) ⊆ TP( f ′). Indeed, from supp+({ f ′}) = supp+({ f , f ′})
we have |TP( f ′)|= |TP( f , f ′)|, which along with TP( f , f ′)⊆ TP( f ′) implies an equivalence of true
positives between these two sets: that is, TP( f , f ′) = TP( f ′). From here we deduce TP( f ′)⊆TP( f ).
Exactly the same reasoning applies to the negatives. Proposition 2 ensures that FP( f , f ′) ⊆ FP( f )
because { f} ⊆ { f , f ′}. But from supp−({ f}) = supp−({ f , f ′}) we have |FP( f )| = |FP( f , f ′)|,
which together with FP( f , f ′) ⊆ FP( f ) leads to the equivalence of the false positives between these
two sets: that is, FP( f ) = FP( f , f ′). Then, we deduce FP( f ) ⊆ FP( f ′). That is f covers f ′ as in
Definition 1.

Indeed, this last result allows us to rewrite, within the data mining language, the definition
of relevancy proposed by Lavrač et al. (1999) and Lavrač and Gamberger (2005): a feature f is
more relevant than f ′ when supp+({ f ′}) = supp+({ f , f ′}) and supp−({ f}) = supp−({ f , f ′}). For
instance, the support of {Age=young} over the class none of data from Table 1 is equal to the
support of {Age=young, Tear=reduced} in this same class none ; at the same time, the support of
{Tear=reduced} is zero in the negatives (formed here by the classes soft and hard together), thus
equal to the support in the negatives of {Age=young, Tear=reduced}. So, the feature Age=young
is irrelevant with respect to Tear=reduced, as we identified in Section 2.1. In other words, f ′ is
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irrelevant with respect to f if the occurrence of f ′ always implies the presence of f in the positives,
and at the same time, f always implies the presence of f ′ in the negatives.

To the effect of our later arguments it will be useful to cast the result of Lemma 3 in terms of
the formal closure operator Γ. This will provide the desired mapping from relevant sets of features
to the lattice of closed itemsets constructed on target class examples. Again, because we need to
formalize our arguments against positive and negative examples separately, we will use Γ+ or Γ−

for the closure of itemsets on P or N respectively.

Lemma 4 A feature f is more relevant than f ′ iff Γ+({ f ′}) = Γ+({ f , f ′}) and Γ−({ f}) =
Γ−({ f , f ′}).

Proof It follows immediately from Lemma 3 and the formalization of operator Γ. A feature f is
more relevant than f ′ when f covers f ′ according to Definition 1. Then, by Lemma 3 we have that
supp+({ f ′}) = supp+({ f , f ′}) and supp−({ f}) = supp−({ f , f ′}). By construction of Γ, this means
that the sets { f ′} and { f , f ′} have the same closure on the positives, and the sets { f} and { f , f ′}
have the same closure on the negatives. That is: because Γ is an extensive operator, we can rewrite
it as Γ+({ f ′}) = Γ+({ f , f ′}) and Γ−({ f}) = Γ−({ f , f ′}).

Interestingly, operator Γ is formally defined for the universe of sets of items, so that these
relevancy results on single features can be directly extended to sets of features. This provides a
proper generalization, which we express in the following definition.

Definition 5 (Relevancy of feature sets) Set of features X ⊆ F is more relevant than set Y ⊆ F iff
Γ+(Y ) = Γ+(X ∪Y ) and Γ−(X) = Γ−(X ∪Y ).

To illustrate Definition 5 take the positive examples from Table 2, with negative data formed
by classes none and hard together. Feature Spectacle=myope alone cannot be compared to feature
Astigmatism=no alone with Definition 1 (because Astigmatism=no does not always imply Specta-
cle=myope in the negatives). For the same reason, Spectacle=myope cannot be compared to feature
Tear=normal alone. However, when considering these two features together, then Spectacle=myope
turns out to be irrelevant w.r.t. the set {Astigmatism=no, Tear=normal}. So, the new semantic
notion of Definition 5 allows us to decide if a set of features is structurally more important than
another for discriminating the target class. In the language of rules: rule Y → + is irrelevant if
there exists another rule X → + satisfying two conditions: first, Γ+(Y ) = Γ+(X ∪Y ); and second,
Γ−(X) = Γ−(X ∪Y ). E.g., when soft is the target class: the rule Spectacle=myope → + is not
relevant because at least the rule {Astigmatism=no, Tear=normal}→ + will be more relevant.

Finally, from the structural properties of operator Γ and from Proposition 2, we can deduce that
the semantics of relevant sets in Definition 5 is consistent.

Lemma 6 A set of features X ⊆ F is more relevant than set Y ⊆ F (Definition 5) iff TP(Y )⊆ TP(X)
and FP(X) ⊆ FP(Y ).

Proof That X is more relevant than Y means Γ+(Y ) = Γ+(X ∪Y ) and Γ−(X) = Γ−(X ∪Y ). Propo-
sition 2 ensures that TP(X ∪Y ) ⊆ TP(Y ) because Y ⊆ X ∪Y . Then, from Γ+(Y ) = Γ+(X ∪Y ) we
naturally have that |TP(Y )|= |TP(X ∪Y )| (by formalization of Γ), which together with TP(X ∪Y )⊆
TP(Y ) leads to the equality of the true positives between the following sets: TP(X ∪Y ) = TP(Y ).
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From here, TP(Y ) ⊆ TP(X). On the other hand, it is implied by the definition of relevancy that
Y ⊆ X , thus directly from Proposition 2 we have that FP(X) ⊆ FP(Y ).

The other direction is proved as follows. Let X and Y be two sets such that TP(Y ) ⊆ TP(X) and
FP(X) ⊆ FP(Y ). As all the true positives of Y are also covered by X , it is true that TP(Y ) = TP(X ∪
Y ); similarly, as all the false positives of X are also covered by Y we have that FP(X) = FP(X ∪Y ).
This directly implies that supp+(Y ) = supp+(X ∪Y ) and supp−(X) = supp−(X ∪Y ). By construc-
tion of Γ, this means we can directly rewrite this as Γ+(Y ) = Γ+(X ∪Y ) and Γ−(X) = Γ−(X ∪Y ).
That is: set X is more relevant than Y by Definition 5.

In the language of rules, Lemma 6 implies that when a set of features X ⊆ F is more relevant
than Y ⊆ F , then rule Y → + is less relevant than rule X → + for discriminating the target class.
Moreover, Lemma 6 proves the consistency of Definition 5. If we consider X = { f} and Y = { f ′},
then the definition is simply reduced to the coverage of Definition 1. Yet, the interestingness of
Definition 5 is that we can use this new concept to study the relevancy of itemsets (discovered in
the mining process) for discrimination problems. Also, it can be immediately seen that if X is
more relevant than Y in the positives, then Y will be more relevant than X in the negatives (by just
reversing Definition 5).

Next subsection characterizes the role of closed itemsets to find relevant sets of features for
discrimination. Notice that the first condition to consider a set X more relevant than Y in the dis-
crimination of target class examples is that Γ+(Y ) = Γ+(X ∪Y ). So, the closure system constructed
on the positive examples will be proved to be structurally important for inducing target class rules.

3.1 Closed Sets for Discrimination

Together with the result of Lemma 6, it can be shown that only closed itemsets mined in the set of
positive examples suffice for discrimination.

Theorem 7 Let Y ⊆ F be a set of features such that Γ+(Y ) = X and Y 6= X. Then, set Y is less
relevant than X (as in Definition 5).2

Proof By the extensivity property of Γ we know Y ⊆ X . Then, Proposition 2 ensures that TP(X) ⊆
TP(Y ) and FP(X) ⊆ FP(Y ). However, by hypothesis we have Γ+(Y ) = X , which by construction
ensures that |TP(Y )| = |TP(X)|; but because Y ⊆ X , it must be true that TP(Y ) = TP(X). In all,
we obtained that TP(Y ) = TP(X) and FP(X) ⊆ FP(Y ), and from Lemma 6 we have that X is more
relevant than Y .

Typically, in approaches such as Apriori-C (Jovanoski and Lavrač, 2001), Apriori-SD (Kavšek
and Lavrač, 2006) or RLSD (Zhang et al., 2004), frequent itemsets with very small minimal support
constraint are initially mined and subsequently post-processed in order to find the most suitable rules

2. We are aware that some generators Y of a closed set X might be exactly equivalent to X in terms of TP and FP,
thus forming equivalence classes of rules (i.e., Y → + might be equivalent to X → +). The result of this theorem
characterizes closed sets in the positives as those representatives of relevant rules; so, any set which is not closed can
be discarded, and thus, efficient closed mining algorithms can be employed for discrimination purposes. The next
section will approach the notion of the shortest representation of a relevant rule, which will be conveyed by these
mentioned equivalent generators.
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for discrimination. The new result presented here states that not all frequent itemsets are necessary:
as shown in Theorem 7 only the closed sets have the potential to be relevant.

To illustrate this result we use again data in Table 2, where Γ+({Astigmatism=no}) =
{Astigmatism=no, Tear=normal}. Thus, rule Astigmatism=no → + can be discarded: it covers ex-
actly the same positives as {Astigmatism=no, Tear=normal}, but more negatives. Thus, a rule whose
antecedent is {Astigmatism=no, Tear=normal} would be preferred for discriminating the class soft.

However, Theorem 7 simply states that those itemsets which are not closed in the set of positive
examples cannot form a relevant rule to discriminate the target class, thus they do not correspond to
a relevant combination of features. In other words, closed itemsets suffice but some of them might
not be necessary to discriminate the target class. It might well be that a closed itemset is irrelevant
with respect to another closed itemset in the system.

As illustrated above, when considering class soft as the target class (identified by +), we had
that feature Spectacle=myope is irrelevant with respect to set {Astigmatism=no, Tear=normal}; yet,
set {Spectacle=myope, Astigmatism=no, Tear=normal} is closed in the system (see the lattice of
Figure 1). Indeed, this latter closed set is still irrelevant in the system according to our Definition 5
and can be pruned away. The next section is dedicated to the task of reducing the closure system of
itemsets to characterize the final space of relevant sets of features.

4. Characterizing the Space of Relevant Sets of Features

This section studies how the dual closure system on the negative examples is used to reduce the
lattice of closed sets on the positives. This reduction will characterize a complete space of relevant
sets of features for discriminating the target class. First of all, we raise the following two important
remarks following from Proposition 2.

Remark 8 Given two different closed sets on the positives X and X ′ such that X * X ′ and X ′ *
X (i.e., there is no ascending/descending path between them in the lattice), then they cannot be
compared in terms of relevancy, since they cover different positive examples.

We exemplify Remark 8 with the lattice in Figure 1. The two closed sets: {Age=young, Astigma-
tism=no, Tear=normal} and {Spectacle=myope, Astigmatism=no, Tear=normal}, are not comparable
with subset relation: they cover different positive examples and they cannot be compared in terms
of relevance.

Remark 9 Given two closed sets on the positives X and X ′ with X ⊂ X ′, we have by construction
that TP(X ′) ⊂ TP(X) and FP(X ′) ⊆ FP(X) (from Proposition 2). Notice that because X and X ′

are different closed sets in the positives, TP(X ′) is necessarily a proper subset of TP(X); however,
regarding the coverage of false positives, this inclusion is not necessarily proper.

To illustrate Remark 9 we use the lattice of closed itemsets in Figure 1. By construction the
closed set {Spectacle=myope, Astigmatism=no, Tear=normal} from Figure 1 covers fewer positives
than the proper predecessor {Astigmatism=no, Tear=normal}. However, both closed sets cover ex-
actly one negative example. In this case {Astigmatism=no, Tear= normal} is more relevant than
{Spectacle=myope, Astigmatism=no, Tear=normal}.

Remark 9 points out that two different closed sets in the positives, yet being one included in
the other, may end up covering exactly the same set of false positives. In this case, we would like
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Transaction occurrence list Closed Set

1,2,3,4,5 {Astigmatism=no, Tear=normal }
2,4,5 {Spectacle=hypermetrope,

Astigmatism=no, Tear=normal }
3,4 {Age=pre-presbyopic,

Astigmatism=no, Tear=normal }
1,2 {Age=young, Astigmatism=no,

Tear=normal }

Table 3: The four closed sets corresponding to the space of relevant sets of features for data in Table
2.

to discard the closed set covering less true positives. Because of the anti-monotonicity property of
support, the smaller one will be the most relevant.

From these two remarks we obtain the following result.

Theorem 10 Let X ⊆ F and X ′ ⊆ F be two different closed sets in the positives such that X ⊂ X ′.
Then, we have that X ′ is less relevant than X (as in Definition 5) iff Γ−(X) = Γ−(X ′).

Proof That X ′ is less relevant than X is defined as: Γ+(X ′) = Γ+(X ′∪X) and Γ−(X) = Γ−(X ′∪X).
Since X ⊂ X ′ by hypothesis, we always have that X ′ = X ′∪X , so that the above two conditions can
be rewritten as Γ+(X ′) = Γ+(X ′) (always true) and Γ−(X) = Γ−(X ′), as we wanted to prove.

In the backward direction we start from Γ−(X) = Γ−(X ′), where X ⊂ X ′ as stated by hypothesis
of the theorem. Because X ⊂ X ′ it is true that X ′ = X ′∪X . Then, we can rewrite Γ−(X) = Γ−(X ′)
as Γ−(X) = Γ−(X ′∪X), thus satisfying already the first condition of Definition 5. Also, Γ+(X ′) is
simply the same as Γ+(X ′) = Γ+(X ′∪X), thus satisfying the second condition of Definition 5.

Thus, by Theorem 10 we can reduce the closure system constructed on the positives by discard-
ing irrelevant nodes: if two closed itemsets are connected by an ascending/descending path on the
lattice of positives (i.e., they are comparable by set inclusion ⊂), yet they have the same closure on
the negatives (i.e., they cover the same false positives, or equivalently, their support on the negatives
is exactly the same), then just the shortest set is relevant.

Finally, after Theorem 7 and Theorem 10, we can characterize the space of relevant sets of
features for discriminating the selected target class as follows.

Definition 11 (Space of relevant sets of features) The space of relevant combinations of features
for discriminating the target class is defined as those sets X for which it holds that: Γ+(X) = X and
there is no other closed set Γ+(X ′) = X ′ such that Γ−(X ′) = Γ−(X).

It is trivial to see after Remarks 8 and 9, that by construction, any two sets in this space always
cover a different set of positives and a different set of negatives. These final sets can be directly
interpreted as antecedents of rules for classifying the target class (i.e., for each relevant X ⊆ F in
the space, we have a relevant rule X → + for classifying the positives).

The four closed sets forming the space of relevant sets of features for the class soft are shown in
Table 3. It can be checked that the CN2 algorithm (Clark and Niblett, 1989) would output a single
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rule whose antecedent corresponds to the closed set in the first row of Table 3. On the other hand,
Ripper (Cohen, 1995) would obtain the most specific relevant rules, that is, those corresponding to
the three last rows from Table 3. Finally, other algorithms such as Apriori-C would also output rules
whose antecedents are not relevant as such, for example, Astigmatism=no → Lenses= soft.

To complete the example of the contact lenses database: the lattice of closed itemsets on the
class hard contains a total of 7 nodes, which is reduced to only 3 relevant sets; on the other hand,
the lattice of closed itemsets on the class none contains a total of 61 nodes, which is reduced to 19
relevant sets.

The space of relevant combinations defines exhaustively all the relevant antecedents for dis-
criminating the target class. Not to generate this space completely, in large sets of data a minimum
support threshold will be usually imposed (see more details in the experimental section). As ex-
pected, too large relevant sets will be naturally pruned by the minimum support constraint, which
might have an undesired effect depending on the application. Still, it is known that very long closed
sets, that is, too specific sets of features in our contribution, tend to overestimate when constructing
a classifier or learning a discriminative model. In general, it will be up to the user to find a proper
trade off between quality of the results and speed up of the process.

4.1 Shortest Representation of a Relevant Set

Based on Theorem 7 we know that generators Y of a closed set X are characterized to cover exactly
the same positive examples, and at least the same negative examples. Because of this property, any
generator will be redundant w.r.t. its closure. That is:

Remark 12 Let Y be a generator of X in the closure system on the positives; then, Γ+(Y ) = X
always implies TP(Y ) = TP(X) and FP(X) ⊆ FP(Y ) (from Lemma 6 and Theorem 7). However,
note that the inclusion between the set of false positives is not necessarily proper.

However, we have FP(X)⊆FP(Y ) for Y generator of X ; so, it might happen that some generators
Y are equivalent to their closed set X in that they cover exactly the same true positives and also the
same false positives.

Definition 13 (Equivalent generators) Let Γ+(Y ) = X and Y 6= X. We say that a generator Y is
equivalent to its closure X iff FP(X) = FP(Y ).

The equivalence between true positives of Y and X is guaranteed because Γ+(Y ) = X . Therefore,
it would be only necessary to check if generators cover the same false positives than its closure
to check equivalence. Generators will provide a more general representation of the relevant set
(because Y ⊂ X by construction). So, Y → + is shorter than the rule X → + and it is up to the
user to choose the more meaningful to her or to the application. For example, this may depend on a
minimum-length criterion of the final classification rules: a generator Y equivalent to a closed set X
satisfies by construction that Y ⊂ X , so Y → + is shorter than the rule X → +. Then, the minimal
equivalent generators of a closed itemset X naturally correspond to the minimal representation of
the relevant rule X → +.

In terms of the closure operator of negatives, we have the following way of characterizing these
equivalent generators.
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Figure 2: The evaluation of relevant combinations of features in the ROC space.

Proposition 14 Let Γ+(Y ) = X and Y 6= X. Then Y is an equivalent generator of X iff Γ−(X) =
Γ−(Y ).

Proof It is defined that the generator Y is equivalent to its closure X when FP(X) = FP(Y ), which
directly implies Γ−(X) = Γ−(Y ) by construction of Γ. On the other direction: Γ−(X) = Γ−(Y )
implies |FP(Y )| = |FP(X)|, but because Y ⊆ X by the extensivity of Γ, we necessarily have that
FP(Y ) = FP(X).

It is well-known that minimal generators of a closed set X can be computed by traversing the
hypergraph of differences between X and their proper predecessors in the system (see, for example,
Pfaltz and Taylor, 2002). In practice, efficient algorithms have been designed for computing free
sets and their generalizations (see, for example, Calders and Goethals, 2003).

5. Evaluation of Relevant Sets in the ROC Space

The ROC space (Provost and Fawcett, 2001) is a 2-dimensional space that shows a classifier (rule/
ruleset) performance in terms of its false positive rate (also called ‘false alarm’), FPr = |FP|

|TN|+|FP| =
|FP|
|N| plotted on the X-axis, and true positive rate (also called ‘sensitivity’) TPr = |TP|

|TP|+|FN| = |TP|
|P|

plotted on the Y -axis. The ROC space is appropriate for measuring the quality of rules since rules
with the best covering properties are placed in the top left corner, while rules that have similar
distribution of covered positives and negatives as the distribution in the entire data set are close to
the main diagonal.

A set of features from Definition 5 can be interpreted as a condition part of a rule or also
as a subgroup description. A set of relevant sets of features from Definition 11 can therefore be
visualized and evaluated in the ROC space as a ruleset.

Relevant sets are induced with a minimum support constraint on the positives (as discussed in
Section 4). This means that in the ROC space they all lie above the minimum true positive rate
constraint line (in Figure 2 denoted as minTPr). Relevant sets are depicted in Figure 2 as circles.
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Sometimes, depending on the application, additional filtering criteria are applied. In such cases
a maximum false positive rate constraint can be imposed (in Figure 2 this constraint is represented
by a dashed line, rules eliminated by this constraint are shown as circles with backslash), or we
can apply a minimum confidence constraint (represented by a dotted line, rules eliminated by this
constraint are shown as slashed circles in Figure 2). Alternatively we may simply select just the
rules on the convex hull.

Let us interpret and visualize Theorems 7 and 10 in the ROC space. According to Theorem 7,
sets of features Y , s.t. Y ⊂ X , that cover the same positives as X (i.e., T P(Y ) = T P(X)), are filtered
out. Since Y and X have the same true positive rate (i.e., T Pr(Y ) = T Pr(X)), both lie on the same
horizontal line in the ROC space. Since Y is a subset of X , which in rule learning terminology
translates into “rule X is a specialization of rule Y ”, FPr(X) ≤ FPr(Y ) so Y is located at the right
hand side of X . In Figure 2, a sample feature set filtered out according to Theorem 7 is depicted as a
diamond. Note that this captures exactly the notion of relevancy defined by Lavrač and Gamberger
(2005) and Lavrač et al. (1999).

According to Theorem 10, sets of features X ′, s.t. X ⊂ X ′, that cover the same negatives as
X (i.e., FP(X ′) = FP(X)), are filtered out. Since X ′ and X have the same false positive rate (i.e.,
FPr(X ′) = FPr(X)), both lie on the same vertical line in the ROC space. Since X is a subset
of X ′, which in rule learning terminology translates into “rule X ′ is a specialization of rule X ”,
T Pr(X)≥ T Pr(X ′), therefore X is located above X ′ in the ROC space. In Figure 2, a sample feature
set filtered out according to Theorem 10 is depicted as a square.

Note that the feature sets filtered out by the relevancy filter are never those on the ROC convex
hull. Furthermore, it can be proved that there are no sets of features outside the convex hull (grey
area on Figure 2 denotes an area without sets/rules).

6. Experimental Evaluation

The results presented above lead to the concept of closed sets in the context of labeled data. In
practice, closed sets can be discovered from labeled data as follows.

1. First, mining the set S = {X1, . . . ,Xn} of frequent closed itemsets from the target class (The-
orem 7). This requires a minimum support constraint on positives. For our experiments we
will use the efficient LCM algorithm by Uno et al. (2004).

2. Second, reducing S to the space of relevant set of features by checking the coverage in the
negatives (Theorem 10). Schematically, for any closed set Xi ∈ S, if there exists another
closed set X j ∈ S such that both have the same support in the negatives and X j ⊂ Xi, then Xi is
removed.

The first step of this process usually requires a minimum support constraint on true positives,
while the second step can be computed automatically without any constraints. However, depend-
ing on the purpose of the application we can apply an extra filtering criterion (such as forcing a
maximum false positive constraint on the negatives, or a minimum accuracy constraint), or com-
pute minimal equivalent generators of the relevant sets as described above. For short, we will name
this computing process as RelSets (i.e., the process of discovering the Relevant Sets of features of
Definition 5).

572



CLOSED SETS FOR LABELED DATA

Emerging Patterns
Growth rate > 1.5 Growth rate ∞

Data set Class Distrib. % EPs RelSets CF% EPs RelSets CF%

Lenses soft 20.8 31 4 87.10 8 3 62.5
hard 16.9 34 3 91.18 6 2 66.67
none 62.5 50 12 76.00 42 4 90.48

Iris setosa 33.3 83 16 80.72 71 7 90.14
versicolor 33.3 134 40 70.15 63 10 84.13
virginica 33.3 92 16 82.61 68 6 91.18

Breast-w benign 65.5 6224 316 94.92 5764 141 97.55
malignant 34.5 3326 628 81.12 2813 356 87.34

SAheart 0 34.3 4557 1897 58.37 2282 556 75.64
1 65.7 9289 2824 69.60 3352 455 86.43

Balance-scale B 7.8 271 75 72.32 49 49 0.00
R 46 300 84 72.00 90 90 0.00

Yeast MIT 16.4 3185 675 78.81 250 40 84.00
CYT 31.2 3243 808 75.08 68 16 76.47
ERL 0.3 1036 5 99.52 438 4 99.09

Monk-1 0 64.3 1131 828 26.79 321 18 94.39
1 35.7 686 9 98.69 681 4 99.41

Lymphography metastases 54.72 36435 666 98.17 10970 90 99.18
10% min supp. malign 41.21 61130 740 98.79 19497 55 99.72
Crx + 44.5 3366 782 76.76 304 26 91.44
10% min supp. − 55.5 3168 721 77.24 12 5 58.33

Table 4: Compression factor (CF% = (1− |RelSets|
|EPs| )× 100) of EPs in several UCI data sets. Note

that we did not impose any minimum true positive threshold on any data set, except for
Lymphography and Crx, where all EPs and RelSets were discovered with a 10% threshold
on true positives.

As discussed above, the minimum support constraint on the first phase will tend to prune too
long closed sets and this might have an impact in the application. In practice however, it is known
that the longest sets of features are sometimes too specific, thus leading to overfitting problems. It is
up to the user to trade off between the specificity of the closed sets and the speed up of the process.
Also notice that the lowest the minimum support constraint, the largest the number of closed sets,
and thus, the most expensive it becomes to compute the second phase of the approach. Our goal is
not to present efficient algorithms but to illustrate the concept of relevancy.

Still we find important to point out that the notion of relevancy explored in the paper prefers
typically the shortest closed sets. This is obvious by the second reduction phase shown in Theorem
10, where the shortest sets are always more relevant than the longest ones if they cover the same
negative examples. Thus, finding a proper threshold level for the minimum support is not critical in
our experiments as different minimum support thresholds lead to very similar results.
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6.1 Emerging Patterns on UCI data

Emerging Patterns (EP) (Dong and Li, 1999; Li et al., 2000; Dong et al., 1999) are sets of features
in the data whose supports change significantly from one class to another. More specifically, EPs
are itemsets whose growth rates (the ratio of support from one class to the other, that is, TPr

FPr of the
pattern) are larger than a user-specified threshold. In this experimental setting we want to show that
some of the EPs mined by these approaches are redundant, and that our relevant sets correspond to
the notion of compacted data representation for labeled data. Indeed, EPs are a superset of the result
returned by RelSets.

In our comparisons we calculate relevant sets over a certain growth rate threshold (1.5 and
infinite), and we compare this with the number of EPs by using the same growth rate constraint.
Numerical attributes in the data sets are discretized when necessary by using four equal frequency
intervals. Although being a very simple discretization scheme, we want to point out that our goal in
this experiment is to compare the number of EPs with our relevant sets, and thus, any preprocessing
decision on the original data will affect in the same way the two methods we wish to compare.

Results are shown in Table 4. We observe that compression factor may vary according to the data
set. When data is structurally redundant, compression factors are higher since many frequent sets
are redundant with respect to the closed sets. However, in data sets where this structural redundancy
does not exist (such as the Balance-scale data), the compression factor is zero, or close to zero.

A set of relevant properties of EPs have been studied in Soulet et al. (2004). This latter work
also identifies condensed representations of EPs from closed sets mined in the whole database. Our
approach is different in that we deal with pieces of the data for each class separately, and this allows
for a reduction phase given by Theorem 10. Indeed, the amount of compression that this second
phase provides in our approach depends on the distribution of the negative examples in the data, but
at least, the number of relevant sets obtained by RelSets will be always smaller than the number of
condensed EPs from Soulet et al. (2004).

6.2 Essential Rules on UCI Data

Essential rules were proposed by Baralis and Chiusano (2004) to reduce the number of association
rules to those with nonredundant properties for classification purposes. Technically, they correspond
to mining all frequent itemsets and removing those sets X such that there exists another frequent
Y with Y ⊂ X and having both the same support in positives and negatives. This differs from our
proposal in the way of treating the positive class with closed sets. The compression factor achieved
for these rules is shown in Table 5. Note that essential rules are not pruned by growth rate threshold,
and this is why their number is usually higher than the number of emerging patterns shown in
previous subsection.

6.3 Subgroup Discovery in Microarray Data Analysis

Microarray gene expression technology offers researchers the ability to simultaneously examine
expression levels of hundreds or thousands of genes in a single experiment. Knowledge about gene
regulation and expression can be gained by dividing samples into control samples (in our case mock
infected plants), and treatment samples (in our case virus infected plants). Studying the differences
between gene expression of the two groups (control and treatment) can provide useful insights into
complex patterns of host relationships between plants and pathogens (Taiz and Zeiger, 1998).
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Data set Class Distrib. % Essential rules RelSets CF%

Lenses soft 20.8 43 4 90.69
hard 16.9 39 3 92.30
none 62.5 89 19 78.65

Iris setosa 33.3 76 20 73.68
versicolor 33.3 111 41 63.06
virginica 33.3 96 27 71.87

Breast-w benign 65.5 3118 377 87.90
malignant 34.5 2733 731 73.25

SAheart 0 34.3 6358 4074 35.92
1 65.7 9622 4042 58

Balance-scale B 7.8 415 147 88.67
R 46 384 364 5.20

Yeast MIT 16.4 2258 1125 50.17
CYT 31.2 2399 1461 80.78
ERL 0.3 417 5 98.80

Monk-1 0 64.3 1438 1135 21.07
1 35.7 1477 363 75.42

Lymphography metastases 54.72 1718 369 78.52
10% min supp. malign 41.21 2407 476 80.22
Crx + 44.5 2345 1091 53.47
10% min supp. − 55.5 2336 1031 55.86

Table 5: Compression factor (CF% = (1− |RelSets|
|EPs| )×100) of essential rules in UCI data sets. Note

that essential rules and RelSets are not pruned by any growth rate threshold.

Microarray data analysis problems are usually addressed by statistical and data mining/machine
learning approaches (Speed, 2003; Causton et al., 2003; Parmigiani et al., 2003). State-of-the-art
machine learning approaches to microarray data analysis include both supervised learning (learning
from data with class labels) and unsupervised learning (such as conceptual clustering). A review
of these various approaches can be found in Molla et al. (2004). It was shown by Gamberger et al.
(2004) that microarray data analysis problems can be approached also through subgroup discovery,
where the goal is to find a set of subgroup descriptions (a rule set) for the target class, that preferably
has a low number of rules while each rule has high coverage and accuracy (Lavrač et al., 2004;
Gamberger and Lavrač, 2002).

The goal of the real-life experiment addressed in this paper is to investigate the differences
between virus sensitive and resistant transgenic potato lines. For this purpose, 48 potato samples
were used, leading to 24 microarrays. The laboratory experiment was carried out at the National
Institute of Biology, Ljubljana, Slovenia.

Our data set contains 12 examples. Each example is a pair of microarrays (8 and 12 hours after
infection) from the same transgenic line. All the data was discretized by using expert background
knowledge. Features of the form |gene expression value| > 0.3 were generated and enumerated.
Three groups of features were generated: first group corresponding to gene expression levels 8 hours
after infection (feature numbers ∈ [1,12493]); second group corresponding to gene expression levels
12 hours after infection (feature numbers ∈ [12494,24965]); finally, a third group corresponding
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Data set Class Num. of rules AUC Time
RelSets RelSets-ROC SD RelSets SD RelSets SD

potatoes sensitive 1 1 20 100% 100% <1s >1h
resistant 1 1 20 100% 91% <1s >1h

Table 6: Comparison of algorithms RelSets and SD on the potato microarray data. Column RelSets-
ROC shows the number of RelSets rules on the ROC convex hull.

to the difference between gene expression levels 12 and 8 hours after infection (feature numbers
∈ [24966,37559]).

We used the RelSets algorithm to analyze the differences between gene expression levels char-
acteristic for virus sensitive potato transgenic lines, discriminating them from virus resistant potato
transgenic lines and vice versa. We ran it twice: once the sensitive examples were considered pos-
itive and once the resistant ones were considered positive. In both cases the constraint of minimal
true positive count was set to 4, and in the first phase the algorithm returned 22 closed sets on pos-
itives. Rule relevancy filtering according to Definition 5, filtered the rules to just one relevant rule
with a 100% true positive rate and a 0% false positive rate for each class. The results gained are
shown below, where features are represented by numbers.

Twelve features determine the virus sensitive class for the potato samples used:

{13031, 13066, 19130, 23462, 24794, 25509, 29938, 33795, 33829, 35003, 35190, 36266} →
sensitive

Sixteen features determine the virus resistant class for the potato samples used:

{16441, 20474, 20671, 24030, 25141, 29777, 30111, 32459, 33225, 33248, 33870, 34108, 34114,
34388, 37252, 37484} → resistant

When comparing our results with the SD algorithm for subgroup discovery (Gamberger and
Lavrač, 2002), we observe that the running time of SD degrades considerably due to the high di-
mensionality of this data set. Moreover, SD obtains a larger set of rules which are less interpretable
and do not have the same quality as the rules obtained with RelSets. Table 6 shows the numbers of
discovered rules, area under ROC curve and the running time of both algorithms.

The results obtained with RelSets were validated by the experts from the National Institute of
Biology, Ljubljana, Slovenia, and evaluated as insightful. Based on the tested samples, the experts
have observed that the response to the infection after 8 hours is not strong enough to distinguish
between resistant transgenic lines and sensitive ones. None of the gene expression changes after 8
hours appeared significant for the RelSets algorithm. However, selected gene expression levels after
12 hours and the comparison of gene expression difference (12-8) characterize the resistance to the
infection with potato virus for the transgenic lines tested.3

3. Details of this analysis are beyond the scope of this paper: first qualitative analysis results have appeared in Kralj
et al. (2006), while a more thorough analysis is to appear in a biological journal.
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7. Conclusions

We have presented a theoretical framework that, based on the covering properties of closed itemsets,
characterizes those sets of features that are relevant for discrimination. We call them closed sets
for labeled data, since they keep similar structural properties of classical closed sets, yet taking into
account the positive and negative labels of examples. We show that these sets define a nonredundant
set of rules in the ROC space.

This study extends previous results where the notion of relevancy was analyzed for single fea-
tures (Lavrač and Gamberger, 2005; Lavrač et al., 1999), and it provides a new formal perspec-
tive for relevant rule induction. In practice the approach shows major advantages for compacting
emerging patterns and essential rules and solving hard subgroup discovery problems. Thresholds on
positives make the method tractable even for large databases with many features. The application
to potato microarray data, where the goal was to find differences between virus resistant and virus
sensitive potato transgenic lines, shows that our approach is not only fast, but also returns a small
set of rules that are meaningful and easy to interpret by domain experts.

Future work will be devoted to adapting efficient algorithms of emerging patterns by Dong and
Li (1999) for the discovery of the presented relevant sets.
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Abstract
In this paper, the naive credal classifier, which is a set-valued counterpart of naive Bayes, is ex-
tended to a general and flexible treatment of incomplete data, yielding a new classifier called naive
credal classifier 2 (NCC2). The new classifier delivers classifications that are reliable even in the
presence of small sample sizes and missing values. Extensive empirical evaluations show that, by
issuing set-valued classifications, NCC2 is able to isolate and properly deal with instances that are
hard to classify (on which naive Bayes accuracy drops considerably), and to perform as well as
naive Bayes on the other instances. The experiments point to a general problem: they show that
with missing values, empirical evaluations may not reliably estimate the accuracy of a traditional
classifier, such as naive Bayes. This phenomenon adds even more value to the robust approach to
classification implemented by NCC2.

Keywords: naive Bayes, naive credal classifier, imprecise probabilities, missing values, conserva-
tive inference rule, missing at random

1. Introduction

Is it possible to draw credible conclusions about a domain only looking at some data produced
within the domain itself?

The answer to this question appears to be related to the problem of modeling ignorance.1 In fact,
there are at least two kinds of ignorance involved in the process of learning from data. The first is
prior ignorance about the domain, as we are assuming that data are our only source of information.
The second is ignorance arising from missing values, as data are often incomplete; in this case,
ignorance is about the process that originates the missing values: that is, the missingness process.
So, in principle, we should model both ignorances properly in order to deliver credible conclusions.

Let us consider pattern classification, which is the focus of this paper. Considering Bayesian
classifiers, we see that prior ignorance is modeled in common practice by so-called non-informative
prior densities (or just priors, for short). But such an approach can lead, especially when the
learning set is small, to the known problem of prior-dependent classifications, whose reliability is

1. When we use the word “ignorance” in this paper, we actually mean a condition of near-ignorance. Indeed, full
ignorance is not compatible with learning, as it is well known (e.g., see Section 7.3.7 of Walley, 1991, Section 2.3 of
Zaffalon, 2005b).
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questionable. This appears to indicate that non-informative priors do not model prior ignorance
satisfactorily.

A more objective-minded2 model of prior ignorance has been proposed through a classifier
called naive credal classifier (NCC), see Zaffalon (2001), which is an extension of naive Bayes
classifier (NBC) to imprecise probabilities (Walley, 1991). NCC models prior ignorance by a set
of prior densities (also called prior credal set), which is turned into a set of posteriors by element-
wise application of Bayes’ rule. The classification is eventually issued by returning all the classes
that are non-dominated by any other class according to the posterior credal set, where class ci is
said to dominate c j if for all the posteriors it holds that the probability of ci is larger than that of
c j. This makes NCC naturally issue set-valued classifications (i.e., classifications made by more
than one class) when faced with instances that are hard to classify, due to a combination of prior
ignorance and poor information about those specific instances in the learning set. The shift of
paradigm based on set-valued classifications allows NCC to deliver robust classifications in spite of
small learning sets. NCC has indeed shown excellent accuracy in real-world case studies (Zaffalon,
2005a; Zaffalon et al., 2003), thus demonstrating the usefulness, for classification purposes, of
modeling prior ignorance via a credal set. In the following, set-valued classifications are also called
indeterminate. Determinate classifications correspond instead to the set being a singleton, and hence
to the case usually considered by more traditional classifiers. Similarly, we say that a classifier is
determinate when it outputs a single class and indeterminate otherwise.

As for the ignorance arising from missing data, we can think of the missingness process (MP)
as a process that takes in input the complete data, which we cannot usually observe, and outputs
the incomplete data, which we do observe. If data are our only source of information, we are
ignorant about the MP because it is usually not possible to learn how it operates, from the observed,
incomplete data.

In common practice, missing values are often ignored; this entails the idea that the MP is non-
selective in producing them, or, in other words, that it is a missing at random (MAR) process (Little
and Rubin, 1987; Jaeger, 2005). However, if one is ignorant about the MP, assuming MAR cannot be
regarded as an objective-minded approach, as is well documented, for instance, by Manski (2003).

In its original formulation, NCC introduced also an initial attempt to deal with ignorance about
the MP. The idea was to model ignorance about it by using a set of likelihoods: a likelihood per each
complete learning set consistent with the incomplete one. A similar avenue was also implemented
by robust Bayes classifier (Ramoni and Sebastiani, 2001).3 These approaches are indeed valuable,
but have two problems: (i) they implicitly still assume MAR for the missing values in the instance
to classify, thus creating a peculiar asymmetry between learning and test set that is not of general
validity in applications; (ii) they may well be too conservative, because for some feature variables
one might know that the missingness is MAR, and they do not allow this information to be incor-
porated in the model. Furthermore, their treatment of missing values rests on intuitive arguments
rather than on a principled derivation.

2. Although we base our results on Walley’s theory, which is a subjective theory of probability, we sometimes use the
terminology “objective-minded.” We do so to stress that using (very) weak assumptions leads to results that are much
more determined by the data than by our prior beliefs (intended in a loose way, not only as prior probabilities), and in
this sense are more objective. Yet, in the paper we deliberately avoid using the word “objective” alone, just because
it is improper within the considered theory.

3. When used with the so-called strong dominance score.
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By this paper we extend NCC to a very general and flexible treatment of incomplete data, both
in learning and testing. We call the resulting classifier naive credal classifier 2 (NCC2), in order to
emphasize the advancement made to deal with incomplete data, while keeping the original benefits
of NCC on the front of prior ignorance.

By NCC2, it is possible to declare that some (possibly all or none) of the feature variables are
subject to a MAR process, and the remaining ones are automatically assumed to be subject to an
MP that is unknown to us. Remarkably, the set of feature variables subject to a MAR MP can be
chosen differently from the learning to the test set. This is a key characteristic of NCC2: in fact, if
the MP is unknown, it may well change its behavior from unit to unit for all we know (i.e., it may
not be identically distributed), and we should act accordingly.

The development of NCC2 is based on a recently derived so-called conservative inference rule
(CIR) to compute (imprecise) conditional expectations with incomplete data (Zaffalon, 2005b). Af-
ter giving some notation and briefly recalling CIR in Section 2, we derive NCC2 in Section 3 by
specializing CIR to the case of naive classification. In the end we obtain procedures to learn NCC2
and to do classifications with it that do not involve approximations and are computationally fast.
(The software which implements NCC2 is released as open source; more details are provided in
Section 3.5.)

Next, we concentrate on empirical evaluations: in Section 4 we analyze the behavior of NCC2
from a number of angles and on a number of publicly available data sets. The analysis turns out to
be particularly meaningful when we compare NCC2 with its precise-probability counterpart, that is,
naive Bayes. We do this by evaluating the accuracy of NBC on the instances of the test set where
NCC2 issues a determinate classification separately from those where it does not. In fact, NCC2
is indeterminate on an instance when it deems that there is not enough knowledge in the learning
set to make a determinate classification reliably; NBC, on the other hand, issues a determinate
classification on such an instance (as well as on any other). Therefore we expect NBC to have
different behaviors on the two kinds of instances isolated by NCC2. And this is indeed the case:
the experiments show that NBC undergoes a major drop in accuracy moving from the instances
classified in a determinate way by NCC2 to the indeterminate ones. The drop is observed on every
data set, with no exception.

It is important to realize that such a drop points out a key question: the usual way to measure the
performance of a classifier, that is, its predictive accuracy, which is an average over all the instances
of the test set, may not help uncover a possible bad performance of the classifier on a subset of the
test instances. These instances are precisely those that are hard to classify and that NCC2 isolates
by delivering set-valued classifications.

But set-valued classifications help NCC2 to do more than just isolating the hard instances, they
enable it to cope effectively with them: in fact, we show that set-valued classifications are often
informative, as they usually lead to drop some unlikely classes; and that the measured set-based
accuracy of NCC2 (i.e., the proportion of times the true class is contained in the output set) is often
similar to the accuracy obtained on the instances classified in a determinate way.

At this point we should say that the mentioned experiments have been carried out with a variety
of settings, obtained considering both MAR processes and non-MAR ones, and the mentioned out-
comes are been confirmed over all of them (although sometimes this is due more to prior ignorance
and some others more to the missing data).

To make our results stronger, we have also investigated whether NBC could take advantage of
the posterior probabilities it computes in order to deal more successfully with the hard instances.
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We have considered such posterior probabilities again by separating the cases where NCC2 is deter-
minate from the others, and by comparing those probabilities with the measured accuracy that NBC
actually achieves on the data. What we show is that the NBC probabilities are (also very) unreliable
on the instances that are hard to classify, as isolated by NCC2, and definitely more unreliable than
on the remaining instances. In other words, we observe another kind of drop that now is related to
the quality of the posterior probabilities computed by NBC.

Overall, we show that NBC may well be too optimistic in dealing with small data sets and
missing data, thus yielding unreliable predictions. It is useful to recall that NBC is known to be very
robust to missing data. Therefore, it is not unlikely that the optimism on the front of missing data is
even greater with more complex classifiers. This point appears to be worth of serious consideration
on its own.

At the same time, and in contrast with naive Bayes, our experiments show that NCC2 may
sometimes be too pessimistic (i.e., conservative) especially when dealing with missing data. This
happens because by construction NCC2 implicitly considers the worst possible MP to have acted on
the non-MAR part of the data, and in some cases this hypothesis may be too far from the MP that
has actually produced the missing values.

In most of our experiments, for instance, we have deliberately used very simple MPs, and this
has favored some excess of caution to show up. Yet, we have also considered an illustrative example
of a more elaborated MP, in Section 4.6. In this case we show that the indeterminacy of NCC2 is
fully justified, the NBC being completely unreliable in the area of indeterminacy. Even more impor-
tant, we show that such an unreliability cannot be uncovered by making empirical evaluations: de-
spite the predictive accuracy of NBC on a certain instance is measured properly by cross-validation,
the actual accuracy on new instances of the same type can be significantly worse. This highlights
the fact that modeling ignorance properly is important, even if there are data available for empirical
evaluations. Indeed, in such an experiment NCC2 does not decrease its performance, nor do its
empirical evaluations fail.

This is not to say that one should abuse assuming ignorance about the MP: when there are
many missing values, especially in the instance to classify, one would obtain conclusions much
too weak. This is shown in a setup where missingness increases in Section 4.5. Our view is that
information about the MP should be incorporated in a model when available. In fact, we regard as
an important research avenue the definition of classification models able to flexibly incorporate MP-
related knowledge, which is usually not conveyed by the data at hand. With NCC2, incorporating
knowledge is done by declaring that some variables are subject to a MAR MP, and we actually
recommend doing so whenever possible; this has the potential, shown also experimentally in the
above section, to yield strong enough conclusions in many cases. Eventually, in Section 4.7 we
analyze the results obtained on the eucalyptus data sets; in fact, such results are quite peculiar and
therefore worthy of a separate investigation. The conclusion we achieve in this case is that the
use of coarsened rather than missing observations is another very effective means to incorporate
knowledge, in case there is no support for declaring some variables as subject to a MAR MP.

2. Setup

In this paper, the variables that refer to complete data, which are in general not observable, are called
latent, while those referring to incomplete data, which are the ones to which we have usually access,
are called manifest. A given manifest value is identical to the corresponding latent one, unless the
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latent value has been turned into missing by the MP; in this case, the manifest value is actually the
symbol of missing value. Therefore, in a case where the data at hand are complete, the instances of
the latent and the manifest variables coincide.

c1 a11, . . . ,a1k
...

...
...

...
...

...
cN aN1, . . . ,aNk

d

â11, . . . , â1r
...
...
...

âN1, . . . , âNr

x̂

aM1, . . . ,aMk

xM

âM1, . . . , âMr

x̂M

c1 a11, . . . ,a1k
...

...
...

...
...

...
cN aN1, . . . ,aNk

cM aM1, . . . ,aMk

d−

â11, . . . , â1r
...
...
...

âN1, . . . , âNr

âM1, . . . , âMr

x̂+

Figure 1: Graphical representation of some vectors of latent variables. Rows 1, . . . ,N constitute the
training set, while the M-th unit is a new instance to be classified.

In the following, i indexes a given unit (i.e., a certain row) of the data set: the learning set (or
training set) is made up of the units for which 1 ≤ i ≤ N, while the unit to classify (not belonging
to the learning set) is indexed by M := N +1. A set of units to classify is referred to as test set.

In a classification problem there are typically class variables and attribute variables. We de-
note: (i) the latent class variable as Ci, and we assume that it is always observed; (ii) the latent
attribute variables affected by an unknown MP (i.e., to be conservatively modeled as non-MAR)
as Ai1,. . . ,Aik; (iii) the latent attributes affected by a MAR MP as Âi1, . . . , Âir. The two MPs are
assumed to be independent of each other and their coarsening behavior is allowed to vary with
different units, that is, they are not assumed to be identically distributed.4

For all i, Ci takes generic value ci in the finite set C, called set of latent classes, while Ai j (Âil)
take generic values a j (âl) in the finite sets A j (Âl), called sets of latent attributes.

We define the following groups of latent variables: Xi := (Ai1, . . . ,Aik), Di := (Ci,Xi), and X̂i :=
(Âi1, . . . , Âir). We then extend such grouped variables to span the whole training set, instead than

4. See Zaffalon (2005b), Section 5, for a discussion about this point.
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just the i-th unit, defining the vector C := (C1, . . . ,CN) and the matrices X := (X1, . . . ,XN), X̂ :=
(X̂1, . . . , X̂N), D := (D1, . . . ,DN). The same grouped variables but with a “+” superscript, include
also data of the M-th unit (i.e., the instance to be classified): C+ := (C1, . . . ,CM), X + := (X1, . . . ,XM),
X̂

+
:= (X̂1, . . . , X̂M),D+ := (D1, . . . ,DM). Let also define D- := (C,X +).5

Observe that realizations of the random matrix (D+, X̂
+
) represent the possible complete data

sets, which we cannot observe directly, and that realizations of (D, X̂) represent the possible com-
plete learning sets, while those of (XM, X̂M) represent the possible complete units to classify.

To complete the notation regarding latent variables, we assume that the generic latent unit
(d, x̂) ∈ D× X̂ is generated in independently and identically distributed (IID) way according to
the aleatory probability (or chance) ϑ(d,x̂). The vector of such chances is denoted by ϑ, which be-
longs to Θ, that is, a (non-empty) subset of the unitary |D× X̂|-dimensional simplex. Let θ denote
the random variable of which ϑ is a generic value. Knowledge about θ is expressed by p(θ), which
denotes an imprecise prior density for θ. This means that p(θ) is known to belong to a non-empty
set P(θ) of precise prior densities for θ. P(θ) is referred to as prior credal set.

As for the manifest variables, we assume that we either observe a precise value, or we do not
observe it at all. Manifest variables are denoted by the letter O followed by the latent variable
they refer to, written as a subscript. We define hence the following manifest variables: O := OD =
(O1, . . . ,ON), O+ := OD+ = (O1, . . . ,OM), O- := OD- = (O1, . . . ,ON ,XM), Ô := OX̂ = (Ô1, . . . , ÔN),
Ô

+
:= OX̂

+ = (Ô1, . . . , ÔM).

2.1 Classification With Imprecise Probabilities and Conservative Inference Rule

The goal of classification is to predict the class of the M-th unit, given the previous units (1, . . . ,N)
and the values of the M-th attribute variables.

To this extent, a traditional probabilistic classifier outputs what it deems to be the optimal pre-
diction: that is, the class with the highest probability (in the case of 0-1 loss function) on the basis
of a uniquely computed posterior density. In the imprecise setting, however, the optimality criterion
has to be extended to manage a set of posterior densities (derived from a set of priors and a set of
likelihoods), instead of a single posterior; in particular, according to Section 3.9.2 of Walley (1991),
the optimality criterion in the imprecise setting prescribes to return the non-dominated classes. The
definition of dominance is as follows: class ci dominates c j if for all the computed posteriors den-
sities, the posterior probability of ci is greater than that of c j; clearly, c j is non-dominated if no
class dominates c j. The second procedure of Figure 2, based on pairwise comparison of classes,
identifies the non-dominated classes. Observe that, as a result of the uncertainty arising from both
prior specification and non-MAR missing values, there can be several non-dominated classes; in
this case, the classifier returns an indeterminate (or set-valued) classification. Classifiers that issue
set-valued classifications are called credal classifiers by Zaffalon (2002).

A key point is that non-dominated classes are incomparable;6 this means that there is no in-
formation in the model that allows us to rank them. In other words, credal classifiers are models
that allow us to drop the dominated classes, as sub-optimal, and to express our indecision about the
optimal class by yielding the remaining set of non-dominated classes.

5. Since we assume the class variable to be always observed, C is a complete vector. Hence, it is possible to derive the
NCC2 algorithms also by grouping C with X̂ .

6. If we exclude the classes that are non-dominated due to indifference rather than incomparability, and that constitute
a very special case in the imprecise setting.

586



THE NAIVE CREDAL CLASSIFIER 2

In the setup of this paper, the test of dominance can be re-written as follows: c′′ is dominated
by c′ if and only if it holds that

1 < min
xM∈oM

min
d∈o

inf
p(θ)∈P(θ)

p(c′M|d-, x̂+ ∈ ô+)

p(c′′M|d-, x̂+ ∈ ô+)
. (1)

Actually, Equation (1) is the general form of the test of dominance for any classifier based on the
conservative inference rule presented in Zaffalon (2005b); CIR is a conditioning rule (i.e., a rule
for computing conditional expected values) that generalizes the traditional conditioning; it assumes
that prior beliefs are dealt with via a credal set P(θ) and it accounts for data sets in which the
missingness process is MAR for some variables (the term x̂+ ∈ ô+ refers indeed to the missing data of
MAR feature variables in the training set), and unknown for some others. Moreover, CIR is able to
manage variables whose MP is MAR in learning and unknown in testing, or vice versa. Equation (1)
follows almost immediately from Theorem 4 in Zaffalon (2005b) after considering that for c′M to
dominate c′′M, it must hold that p(c′M|d-, x̂+ ∈ ô+) > p(c′′M|d-, x̂+ ∈ ô+) for all the possible posteriors,
which we obtain considering any precise prior in the prior credal set, as well as any completion of
the non-MAR missing values both in the sample and in the unit to classify.

CIR can be regarded as unifying two rules (Zaffalon, 2005b): a conservative learning rule,
which prescribes how to learn the classifier from an incomplete training set, and a conservative
updating rule, which prescribes how to classify a novel instance that contains missing values. Such a
distinction is made clear by two distinct optimization loops of Equation (1); the middle optimization
loop (mind∈o) realizes the conservative learning rule, by prescribing to loop on the completions
of the non-MAR part of the learning set, that is, d ∈ o, while the outer minimum implements the
conservative updating rule, prescribing to loop on the replacements for the non-MAR missing values
of the unit to classify. The inner loop, which minimizes over the prior credal set, is common to both
learning and updating rules.

NCC2 specializes the test of Equation (1) to the case of naive classification. In the following, we
will move from the precise setting (corresponding in fact to naive Bayes) to NCC2 in four steps: in
Section 3.1 we describe the precise setting (assuming hence that there is a single prior, and that there
is a single likelihood as non-MAR data are complete); in Section 3.2 we extend the computation
to manage a set of priors; in Sections 3.3 and 3.4 we finally relax the assumptions of completeness
about non-MAR data in learning and testing respectively, thus managing a set of likelihoods and
instances to classify.

3. Introducing NCC2

In this section, we introduce the NCC2 framework. In particular, we derive an expression that
specializes the test of Equation (1) to the case of naive classification; such an expression realizes
both the minimizations over possible priors and over possible unobserved values by distributing
some pseudo-counts in a way that minimizes the ratio of the posterior probabilities of the two
competing classes c′M and c′′M.

Formal proofs of the findings derived in this section are provided in Appendix B.

3.1 Updating Precise Beliefs

In this section, we assume that a single prior is specified and that only the observations of the features
affected by the MAR MP contain some missing data; the observations of the feature affected by the
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unknown MP, instead, do not contain any missing data. In practice, this corresponds to the naive
Bayes setting, with the difference that we explicitly separate variables affected by the MAR MP and
the unknown MP. In our setting, the naive hypothesis (i.e, the assumption of mutual independence
of the latent attribute variables Ai1, . . . , Aik, Âi1, . . . , Âir conditional on the class variable Ci) can be
formalized as follows:

ϑ(di,x̂i) = ϑci

k

∏
j=1

ϑai j|ci

r

∏
l=1

ϑâil |ci
∀(di, x̂i) ∈ D× X̂, (2)

where ϑc denotes the chance of (Ci = ci); ϑai j|c and ϑâil |c denote the chances of (Ai j = a j|Ci = ci)

and (Âil = âl|Ci = ci), respectively.
We focus on the precise probability p(cM|d-, x̂+ ∈ ô+). Let us consider the probability p(cM,d-, x̂+ ∈

ô+), which is proportional to the previous one. Write p(cM,d-, x̂+ ∈ ô+) as
R

Θ p(ϑ)p(cM,d-, x̂+ ∈
ô+|ϑ)dϑ. Observe that p(cM,d-, x̂+ ∈ ô+|ϑ) is equal to p(d, x̂ ∈ ô|ϑ)p(cM,xM, x̂M ∈ ôM|ϑ) because
of the IID assumption about the data generation mechanism. We obtain that

p(cM|d-, x̂+ ∈ ô+) ∝
Z

Θ
p(ϑ)p(d, x̂ ∈ ô|ϑ)p(cM,xM, x̂M ∈ ôM|ϑ)dϑ. (3)

The term p(d, x̂ ∈ ô|ϑ) in (3) is called likelihood function.
By sticking to the naive hypothesis, the likelihood can be expressed as follows:

Lemma 1
p(d, x̂ ∈ ô|ϑ) = ∏c∈C{ϑn(c)

c [∏k
j=1 ∏a j∈A j

ϑn(a j,c)
a j|c

][∏r
l=1 ∏âl∈Âl

ϑn(âl ,c)
âl |c

]}.

Here n(c) resp. n(a j,c) denote the number of occurrences of c resp. of joint occurrences of (a j,c)
in d, and n(âl,c) denotes the number of joint occurrences of (âl,c) in the learning set after dropping
the units with missing values of Âl . Technically, the likelihood function of Lemma 1 has the same
functional form as a product of Dirichlet densities; in particular, the frequencies n(·) correspond to
the Dirichlet hyperparameters usually denoted as α(·)−1.

With similar arguments to those used with Lemma 1, and assuming that the MAR attribute
variables have been re-ordered so as to index the non-missing ones in the instance to classify from
1 to r′ ≤ r, we obtain:

Lemma 2 p(cM,xM, x̂M ∈ ôM|ϑ) = ϑcM ∏k
j=1 ϑaM j|cM ∏r′

l=1 ϑâMl |cM
.

Note that restricting the second product between l = 1 and l = r′ prevents the inclusion in the
expression of the attributes that are missing in the unit to classify.

3.1.1 IMPRECISE PRIOR (PRIOR CREDAL SET)

The remaining term in (3) is p(ϑ), that is, the prior. We define it so as to be conjugate to the
likelihood, according to the following expression:

p(ϑ|s, t)dϑ ∝ ∏
c∈C

{ϑst(c)−1
c dϑC[

k

∏
j=1

∏
a j∈A j

ϑst(a j,c)−1
a j|c

dϑA j|c] ·

·[
r

∏
l=1

∏
âl∈Âl

ϑst(âl ,c)−1
âl |c

dϑÂl |c
]}, (4)
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which is a product of Dirichlet densities. The density is named p(ϑ|s, t), so as to make it explicitly
the hyperparameters on which it depends (here t denotes the vector of t(·)-hyperparameters). In
other words, the prior is defined by an expression that is similar to the likelihood function except
that the frequencies n(·) are replaced everywhere by st(·)− 1. The real hyperparameter s can be
regarded as the size of the hypothetical sample, in the common interpretation of conjugate Bayesian
priors as additional sample units; Walley (1996) gives arguments to choose s in the interval [1,2],
and we will adopt s := 1 for the empirical experiments of Section 4. The real hyperparameter t(·)
can instead be regarded as the proportion of units in which the variables in question take certain
values (e.g., t(c) is the proportion of units where the class variable is equal to c) in the hypothetical
sample.

Now, remember that we want the prior to be imprecise, that is, to be a set of priors. We define
the set by imposing a system of constraints on the t-hyperparameters that resemble the structural
constraints of the observed frequencies n(·): in particular, ∑c∈C t(c) = 1, ∑a j∈A j

t(a j,c) = t(c),
∑âl∈Âl

t(âl,c) = t(c). We moreover impose the conditions t(a j,c) > 0, t(âl,c) > 0. The credal set
P(θ) is defined as the set of all the precise priors that satisfy these constraints. The construction of
P(θ) is similar to the approach implemented by Walleys’ imprecise Dirichlet model (Walley, 1996).

Informally, one could interpret P(θ) in the following way: say that any single, precise Dirichlet
prior, is a possible state of information about the process generating (latent) data. Then, our igno-
rance about this process is modeled by considering the set of all the states of information about the
process, that is, by considering that all of them are actually possible.7

3.1.2 PROBABILITY OF THE NEXT CLASS

The tools introduced so far lead us to the following result.

Theorem 3 Consider Expression (3). It holds that:

p(cM|d-, x̂+ ∈ ô+,s, t) = p(cM|d, x̂ ∈ ô,s, t)
k

∏
j=1

p(aM j|cM,d, x̂ ∈ ô,s, t) ·

·
r′

∏
l=1

p(âMl|cM,d, x̂ ∈ ô,s, t), (5)

where

• p(cM|d, x̂ ∈ ô,s, t) := [n(cM)+ st(cM)]/(N + s);

• p(aM j|cM,d, x̂ ∈ ô,s, t) := [n(aM j,cM)+ st(aM j,cM)]/[n(cM)+ st(cM)] ( j = 1, . . . ,k);

• p(âMl|cM,d, x̂ ∈ ô,s, t) := [n(âMl,cM)+ st(âMl,cM)]/[nl(cM)+ st(cM)] (l = 1, . . . ,r′);

• nl(cM) := ∑âl∈Âl
n(âl,cM).

Note that MAR attributes that are missing in the unit to be classified do not affect the posterior
probabilities of the class.

7. To be more precise, we do not consider all of them, only those with s fixed; this corresponds to fix the “strength” of
our prior ignorance.
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3.2 Credal Dominance Tests with an Imprecise Prior

Let us now address the computation of the inner optimization problem in (1), under the choice of
the imprecise prior made in Section 3.1.1.

Lemma 4 Consider the problem infp(θ)∈P(θ) p(c′M|d-, x̂+ ∈ ô+)/p(c′′M|d-, x̂+ ∈ ô+), with the set of
prior densities described in Section 3.1.1, and the probabilities in the function to optimize (also
called objective function in the following) defined as in (5). Such a problem is equivalent to the
following:

inf
0<t(cM′′ )<1

{[
n(c′′M)+ st(c′′M)

n(c′M)+ s− t(c′′M)
]k−1

k

∏
j=1

n(aM j,c′M)

n(aM j,c′′M)+ st(c′′M)

·
r′

∏
l=1

[
nl(c′′M)+ st(c′′M)

nl(c′M)+ s− t(c′′M)
·

n(âMl,c′M)

n(âMl ,c′′M)+ st(c′′M)
]}

=: inf
0<t(cM′′ )<1

h(t(cM′′)). (6)

The problem of finding the prior p(θ) ∈ P(θ) that minimizes the ratio of the posterior probabilities
p(c′M|d-, x̂+ ∈ ô+)/p(c′′M|d-, x̂+ ∈ ô+) can be hence be solved by finding the value 0 < t(cM′′) < 1 that
minimizes h(t(cM′′)), as follows.

Theorem 5 The infimum of h(t(cM′′)) over (0,1) is determined by the following procedure:

• if there is j such that n(aM j,c′M) = 0 or l such that n(âMl,c′M) = 0, infh(t(cM′′)) = 0;

• if k = 0 and r′ = 0, infh(t(cM′′)) = h(1);

• otherwise, h(t(cM′′)) can be shown to be convex over (0,1); hence, it can be minimized by a
convex optimization procedure (detailed in the proofs).

3.3 Credal Dominance Test with an Incomplete, Non-MAR, Learning Set

In case the learning data produced by the unknown MP are incomplete, the problem to be solved is

min
d∈o

inf
p(θ)∈P(θ)

p(c′M|d-, x̂+ ∈ ô+)/p(c′′M|d-, x̂+ ∈ ô+). (7)

Theorem 6 The procedure of Theorem 5 solves Problem (7) after renaming n(aM j,c′M) := n(aM j,c′M)
and n(aM j,c′′M) := n(aM j,c′′M), where n(aM j,c′M) := mind∈o n(aM j,c′M) and n(aM j,c′′M) :=
maxd∈o n(aM j,c′′M).

In other words, to solve Problem (7) we have to select the realization of the non-MAR part of
the learning set, among the possible realizations d ∈ o consistent with our observations, which
minimizes the probability ratio.

For a non-MAR feature variable A j, one can prove that:

• the probability of class c′M is minimized by assuming the value of A j to be different from a′M j
whenever A j is missing and the class of the instance is c′M; this is the meaning of the lower
counts n(aM j,c′M);8

8. Note that, despite the different meaning, the counts n(a j,c) for non-MAR feature variables are computed identically
to the counts nl(a j,c) for MAR ones.
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• the probability of class c′′M is maximized by assuming the value of A j to be aM j whenever A j is
missing and the class of the instance is c′′M; this is the meaning of the upper counts n(aM j,c′′M).

Once the realization of the non-MAR missing values is identified by upper and lower counts, the
most unfavorable complete realization of the learning set has been chosen (i.e., the minimization
over d ∈ o has been accomplished), and we are in the case of Problem (6).

3.4 Credal Dominance Test with an Incomplete, Non-MAR, Unit to Classify

Finally, we consider the case when the unit to classify is missing some of the attributes subject to
the unknown MP. We need to address the following problem:

min
xM∈oM

min
d∈o

inf
p(θ)∈P(θ)

p(c′M|d-, x̂+ ∈ ô+)

p(c′′M|d-, x̂+ ∈ ô+)
. (8)

Problem (8) can be trivially solved as follows: (i) considering all the possible realizations xM of the
non-MAR part of the instance (this is accomplished by considering all the possible replacements
for the missing values); (ii) for each xM ∈ oM, assuming xM to be the realization of the non-MAR
part of the unit to classify, and then solving Problem (7); (iii) if the computed solution is smaller
than or equal to 1, c′′M is not dominated by c′M (and the computation can be interrupted); instead, if
the solution is greater than 1 for each xM , c′′M is dominated by c′M.

Although this procedure leads to the exact solution, it takes exponential time due to the number
of the replacements of missing values in the instance to classify. A more efficient polynomial-
time procedure, which is still exact, can be designed to solve Problem (8) and is in fact given in
Appendix A.

The underlying idea of such a procedure is to split the outer minimum in (8) in many minima,
each one related to a different feature variable, and to distribute them at different places into the
objective function. This makes is clear that the function to optimize is the lower envelope of a
set of convex functions. In Appendix A we show that it is easy to compute the points where the
function that determines the envelope changes, thus in fact obtaining a partition of the envelope
function’s domain with the property that in each of its elements the envelope function is convex. At
that point, the function can be locally optimized efficiently on every element of the partition; and the
global optimum is then just the minimum of the local optima so computed. The fact that the overall
procedure is polynomial follows because the size of the partition is bounded by a polynomial.

A final remark is that, to make notation simpler, we refer to the possible realizations of the non-
MAR variables in the instance to be classified as oM; such a notation implies however that the non-
MAR variables of the test set are the same of the training set. If instead the non-MAR variables of
the test set are different from those of the training set, oM should contain all the possible realizations
of the variables which are non-MAR in the test set.

The NCC2 procedures are summarized in Fig. 2. Learning has linear complexity with respect
to the number of attributes, while testing has roughly quadratic complexity, if the procedure carried
out in Appendix A is adopted. Please refer to Appendix A also for the exact expression for the
complexity.

3.5 Software Availability

The software JNCC2, implemented by the authors of this paper, implements the naive credal clas-
sifier 2. JNCC2 is open source, released under the GNU GPL license; it is hence freely available
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LEARNING

• list the attributes affected by a MAR MP or by an unknown MP on the learning set;

• compute on the learning set the counts n(âl,c), nl(c) for MAR attributes and the counts
n(a j,c), n(a j,c), n(c) for non-MAR attributes.

CLASSIFICATION OF AN INSTANCE

1. set NonDominatedClasses := C;

2. for class c′ ∈ C

• for class c′′ ∈ C, c′′ 6= c′

– if c′′ is dominated by c′ (to be assessed via the below procedure), drop c′′ from
NonDominatedClasses;

– exit;

• exit

3. return NonDominatedClasses.

DOMINANCE TEST BETWEEN TWO CLASSES (c′, c′′)

• list the attributes affected by a MAR MP or by an unknown MP in the instance;

• for each xM ∈ oM (i.e., for each possible realizations of the non-MAR part of the unit to
classify):

– assume xM to be the realization of the non-MAR part of the instance;

– solve Problem (7) via Theorem 6;

– if the computed solution is smaller than 1, c′′ is not dominated by c′. STOP.

• if, after having tried every xM ∈ oM, no solution greater than 1 has been found, c′ dominates
c′′.

/*alternatively to the above exhaustive procedure (for each xM ∈ oM) , the minimum can be com-
puted more efficiently via the procedure presented in Appendix A.*/

Figure 2: Summary of NCC2 procedures.

together with user manual, sources and documentation. Being written in Java, it runs under any
operating system; it has a command-line interface.

JNCC2 loads data stored in the ARFF format, which is a textual format (designed for classifica-
tion problem), originally developed for WEKA (Witten and Frank, 2005), an open source software
for data mining. Hence, the large public repositories of ARFF files can be used to extensively test
NCC2.

592



THE NAIVE CREDAL CLASSIFIER 2

For downloads and further information about JNCC2, see www.idsia.ch/˜giorgio/jncc2.
html.

4. Experiments

We consider 18 data sets from the UCI repository, and available in the ARFF format from the
WEKA data sets page.9 All the data sets are complete, that is, they do not contain any missing data.

We discretized the numerical features via MDL-based discretization (Fayyad and Irani, 1993),
and then we split each data set into a training and a test set. Feature discretization is necessary, as
NCC2 is designed to work with categorical variables. Discretizing the features on the entire data
set introduces a slight optimistic bias in the evaluation of the classifiers accuracy (in principle, the
discretization intervals should be computed on the training set, and then applied unchanged in the
test set); yet, this is not a problem as our goal is to compare NBC and NCC2 in identical conditions,
rather than to compare our findings with previous results obtained on the same data sets.

Also, since our goal is to fairly compare NBC and NCC2, and not to finely tune them for max-
imum performance, we did not perform feature selection (although, in fact, we remove numerical
feature variables discretized into a single bin); yet, as both NBC and NCC2 are based on the naive
hypothesis, redundant or mutually dependent feature variables might significantly bias the learning
process; hence, in order to achieve maximum performance, one should consider selecting feature
variables.

In the experiments presented in the following we generate artificial missingness on the original,
complete data sets by using different MPs and then we compare NBC and NCC2 accuracy on the
incomplete data sets.

4.1 Missingness Generation

We consider two different artificial MPs: (i) a MAR one, and (ii) a non-MAR, non-identically dis-
tributed one (nonMAR). The MPs we consider do not affect the class variable, as the class variable
has been assumed to be always observed.

Note that we do not test mixed cases of MAR and non-MAR feature variables, which NCC2 is
actually designed to treat. In fact, such settings would simply lead to results intermediate between
those obtained under the MAR and the non-MAR settings. Yet, mixed settings are valuable and
should be considered whenever possible when operating the classifier, as they allow for finely tuning
the treatment of missing data to the characteristics of the MP.

The MAR MP turns into missing, with 5% probability, all the features of both the training and
test sets. Such a missingness process actually meets not only the definition of MAR, but also the
more restrictive definition called MCAR, that is, missing completely at random, see Little and Rubin
(1987). We have taken into consideration also a non-MCAR, MAR MP; however, the results do not
differ significantly from those obtained with the MAR MP (which satisfies also MCAR) described
above.

The non-MAR MP works as follows : (i) it splits the categorical values of each feature variable
into two halves; (ii) for each feature variable, it turns into missing, with probability 5%, the obser-
vations falling in the first half of values, on the training set; (ii) for each feature variable, it turns

9. The URL is http://www.cs.waikato.ac.nz/ml/weka/.
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into missing, with probability 5%, the observations falling in the second half of values, in the test
set. Such MP is not identically distributed, as it follows a different pattern from training to test set.

We split each data set into equally sized training and test subsets. Using this training/test split,
for each data set and for each MP we generate artificial missingness 100 times, producing hence
100 different training and test sets. The results we present are obtained as an average over 100 runs
for each data set-MP pair.

4.2 Performance Measures

The performance of NBC is measured by its accuracy, that is, the percentage of correct classifi-
cations, while the evaluation of NCC2 requires a larger number of indicators: determinacy, that
is, the percentage of classifications having as output a unique class; single accuracy, that is, ac-
curacy of NCC2 when it is determinate; indeterminate output size, that is, the average number of
classes returned when NCC2 is indeterminate; set-accuracy, that is, the percentage of indeterminate
classifications that contain the true class. Note that if a data set has two classes, the output size
is necessarily 2 and set-accuracy 100%; therefore, such two indicators are meaningful on data sets
with more than two classes only.

We consider three classifiers: (i) NBC (with standard Laplace prior); (ii) NCC2-MAR, that is,
NCC2 which assumes all missing values to be generated by a MAR MP; (iii) NCC2-nonMAR,
that is, NCC2 which assumes all missing values to be generated by an unknown MP. Indetermi-
nate classifications of NCC2-MAR are in fact due to prior uncertainty only, while indeterminate
classifications of NCC2-nonMAR are due to both the prior and the missing values.

We then consider an additional set of indicators, which refer to the NBC accuracy on specific
subsets of instances (note that such indicators, referring to subsets of instances, are written in italic):

• NCC2-MAR D and NCC2-MAR I, as the NBC accuracies on the instances classified respec-
tively in a determinate and indeterminate way by NCC2-MAR; such indicators point out the
effects of the prior specification on NBC;

• NCC2-nonMAR D and NCC2-nonMAR I, as the NBC accuracies on the instances classified re-
spectively in a determinate and indeterminate way by NCC2-nonMAR; such indicators point
out the joint effect of prior specification and missing values on NBC;

• ∆NCC2-nonMAR, as the NBC accuracies on the instances over which NCC2-nonMAR out-
puts a larger number of classes than NCC2-MAR; such an indicator points out the effect of
missing values on NBC.

It turns out however that NCC2-MAR D coincides with the single-accuracy of NCC2-MAR,
and that NCC2-nonMAR D coincides with the single-accuracy of NCC2-nonMAR: in fact, when
determinate, NCC2-MAR and NCC2-nonMAR return the same output as NBC.10 In the following
we will hence only mention NCC-MAR D and NCC-nonMAR D; it is understood that the single-
accuracy of respectively NCC2-MAR and NCC2-nonMAR coincides with such values.

10. Differences might arise only in case that the NBC prior is not included in the credal set, and that such a prior leads
to a classification which is different from the classification to which leads any single prior of the credal set. The
frequency of such an event is however negligible and therefore the above indicators can be considered to be the same.
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4.3 Overview of the Results

Table 1 reports the performance of NBC, NCC2-MAR and NCC2-nonMAR under the different
MPs, averaged over all the data sets. The average of set-accuracy and indeterminate output size
have been computed considering only data sets with more than two classes. The detailed results
data set by data set are instead shown in Tables 6 and 7, which refer respectively to the MAR and
non-MAR setting.

NBC achieves an average accuracy of about 80%; although its accuracy seems to be insensitive
to the MP, we show later however, through a deeper analysis, that this is not the case.

The average determinacy of NCC2-MAR is about 91%, that is, NCC2-MAR yields set-valued
classification in 9% of cases; this indicator is mainly influenced by the data set size and therefore
it does not show great differences between the different MP settings. The point here is that when
we declare all the feature variables to be MAR, imprecision in the probabilities is only originated
by the imprecise prior density, as it follows from (1). Such a kind of imprecision strictly decreases
with the size of the learning set because the prior, as in the precise Bayesian setting, counts less and
less with more data.

The results detailed data set by data set (Tables 6 and 7) show that NCC2-MAR has considerably
lower determinacy on the glass data set than on any other data set. This is a consequence of the low
number of training instances (about 100) and high number of output classes (i.e., 7). In these
conditions the prior has much weight and it originates more imprecision.

The determinacy of NCC2-nonMAR ranges from 33% under the MAR setting, to 50–55% under
the non-MAR settings. The higher indeterminacy under the MAR setting for NCC2-nonMAR is due
to the higher number of missing data: in fact, the MAR MP produces twice as many missing data
as the non-MAR MPs, because it turns all the values of the feature variables into missing, with
probability 5%, instead of half the values as the non-MAR MP does.

Looking at the results data set by data set, we can detect three factors that increase the indeter-
minacy of NCC2-nonMAR: (a) high prior uncertainty, that is, data sets over which NCC2-MAR is
already quite indeterminate, and to which the uncertainty coming from missing data adds up; this
is the case of glass; (b) high number of features variables (40–60), as in the case of kr-kp, optdig-
its, waveform, splice; in the case of the letter data set, the cause is instead (c) the high number of
categories (10 on average) in which feature variables are discretized. Factors (b) and (c) increase
the indeterminacy as they increase the number of complete data sets d ∈ o consistent with the in-
complete one. Increasing the number of the complete data sets makes it more likely to obtain lower
values of the optimum in (1), eventually yielding a larger number of non-dominated classes. It is
interesting to observe that the factors (a)–(c) above are the same that can lead NBC to overfitting.
Hence, we can conjecture that classifiers based on precise and imprecise probability, respectively
react in different ways to such critical characteristics of the data, the first ones by losing reliability,
the second ones by becoming excessively cautious.

Let us focus now on the the size of the indeterminate output, which is the average number of
classes in the set-valued classifications returned by NCC2 in a certain setting, and on set-accuracy,
which denotes the percentage of times when set-valued classifications contain the actual class (we
recall that the indeterminate output size and set-accuracy are measured only on data sets with more
than two classes). The size of the indeterminate output should be compared with the (average)
number of classes of the data sets under considerations, which is 8.8; hence, NCC2-MAR returns
on average less than half the classes, and NCC2-nonMAR slightly more than half the classes. This
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MAR non-MAR
NBC

Accuracy (%) 80.5 80.9
NCC2-MAR

Determinacy (%) 91.1 91.1
Set-Acc. (%) 84.0 84.3

Indeterminate Output Size 2.6 2.6
NCC2-nonMAR

Determinacy (%) 33.0 49.4
Set-Acc. (%) 97.9 96.6

Indeterminate Output Size 6.0 5.3
NBC accuracy (%) on subsets of instances

MAR non-MAR
NCC2-MAR D 83.2 83.5
NCC2-MAR I 48.4 48.0

NCC2-nonMAR D 92.2 90.4
NCC2-nonMAR I 74.2 71.3
∆NCC2-nonMAR 75.1 72.7

Table 1: Measured performance, averaged over all the 18 data sets. The average of set-accuracy
and indeterminate output size has been computed considering only the data sets with more
than two classes; the average number of classes of such data sets is 8.8.

shows that set-valued classifications are informative: they lead us to drop on average half of the
classes, as sub-optimal, for the more doubtful instances, thus preventing an over-confident use of
the issued judgment. Moreover, indeterminate classifications allow very high set-accuracy under
any MP setting; about 85% for NCC2-MAR and about 96% for NCC2-nonMAR. Set-valued clas-
sifications appear then as a very effective way to maintain reliability while conveying informative
content. This is especially appealing for contexts in which the classification outcome is very sensi-
tive, such as, for instance, the medical area.

Probably the most interesting part of our results concerns the analysis of the accuracy of NBC
made separately for the instances classified in a determinate way by NCC2 and for those whose
classification is set-valued. Here the intuition is that we expect NBC to perform worse in the latter
set of instances, as NCC2 deems that they are harder to classify. Indeed, by averaging over the
two different MPs, we obtain that the accuracy of NBC drops of 33 points from NCC2-MAR D
to NCC2-MAR I; of 20 points from NCC2-nonMAR D to NCC2-nonMAR I and of 19 points from
NCC2-nonMAR D to ∆NCC2-nonMAR.

The overall performance of NBC can hence be regarded as the average of a good accuracy on the
instances which are easier to classify, and a much lower accuracy on the instances which are harder,
due to the fact that the available information about them is reduced with respect to the former ones.
Such a reduction depends in part on the learning set, which in general contains different degrees
of information in relationship with different units to classify; and in part on the number and type
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of missing feature variables in those units, which contributes to determine the information that the
classifier can exploit to classify them.

We regard the alternate good-bad performance of NBC on different units as an important finding,
which should be brought to light and properly taken into account. In contrast, such a finding can
well remain hidden if we only measure the predictive accuracy, as it is common with traditional
classifiers, because it is an average over all the instances in the test set.11 NCC2, instead, recognizes
the more difficult instances and preserves its reliability by issuing indeterminate classifications.
(NCC2-MAR does the same, but not with respect to the hardness originated by missing data, both
in learning and test set.)

In fact, the following relationships hold on the average indicators, but also on every data set-MP
pair:

• NCC2-MAR D > NCC2-MAR I,

• NCC-nonMAR D > NCC2-nonMAR I,

• ∆NCC2-nonMAR > NCC2-nonMAR I.

The intuition behind these inequalities is, as before, that on the instances where NCC2 is indeter-
minate, there is a drop of accuracy of NBC compared to the remaining instances. This happens not
only on every data set but also under every experimental setup that we considered. This enforces
the idea that NCC2 truly isolates instances that are hard to classify and where, as a consequence,
NBC is less reliable.

Despite the inequalities remain the same in the different settings, one should not overlook the
fact that the amount of instances isolated by NCC2 may be also very different in the different cases.
In particular, looking at Table 1, we see that NCC2-nonMAR may produce even 5–6 times as much
indeterminacy as NCC2-MAR. This is not surprising as prior uncertainty tends to vanish with larger
samples whereas this does not need to be the case for the uncertainty originated by missing values.
We see then that the large majority of indeterminate classifications issued by NCC2-nonMAR are
due to missing data rather than prior uncertainty.12

It is useful to remark also that the indeterminacy generated by NCC2-nonMAR may sometimes
be greater than necessary, or, in other words, that NCC2-nonMAR may show an excess of caution.
This makes the drop in NBC accuracy be usually smaller from NCC2-MAR D to NCC2-MAR I,
than from NCC2-nonMAR D to ∆NCC2-nonMAR. The excess of caution appears because the MP
acting on the data is simpler than what NCC2-nonMAR expects. One reason is that for the MP
described in Section 4.1 only half the values contained in A j are actually possible replacements.
This information is not accessible to NCC2-nonMAR, which then considers all the values in A j as
possible replacement for the missing values of A j. The other, more important, reason is that we have

11. There are some reasons why computing in addition the standard deviation of the predictive accuracy would not be
very helpful either: (i) the standard deviation might be small simply because so is the subset of test-set instances
on which the classifier performs badly; (ii) the standard deviation cannot be reliably estimated in the case of small
samples; (iii) finally, even if computing the standard deviation might point to the problem, it would not help to isolate
the critical instances, nor to know what to do with them, as opposed to what NCC2 makes it possible to do.

12. With respect to the variability of the empirical measures collected, we can observe that NCC2-MAR I has usually
larger standard deviation than the others (see Tables 6 and 7); this is expected, as NCC2-MAR tends to generate
indeterminacy on relatively few instances. Anyway, the difference between NCC2-MAR D and NCC2-MAR I, and
between NCC2-NonMAR D and NCC2-NonMAR I, is much larger than the standard deviations of the estimate of then
indicators (actually, is it well above twice the standard deviation in most cases).
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deliberately designed the non-MAR MPs so as to make them act in quite a naive way. We have done
so to show that even those MPs can lead to appreciable problems for NBC, as confirmed by the fact
that for the large majority of data sets it holds that the NBC accuracy on the ∆NCC2-nonMAR area
decreases, moving from the MAR to the non-MAR setting. And, finally, when we consider MPs
that are not naive, as the one described in Sect. 4.6, we see that the caution of NCC2-nonMAR is
fully justified, NBC being totally unreliable on the area of indeterminacy.

4.4 NBC Probabilities Vs. Set-valued Classifications

We have shown that, thanks to imprecise probabilities, NCC2 delivers set-valued classifications on
hard-to-classify instances, over which the accuracy of NBC clearly drops. In the following, we
further compare the predictions of NBC and NCC2 by taking into consideration also the posterior
probabilities computed by NBC for the classes. To make things clearer we carry out the analysis in
two steps.

The first step, described in the next two sections, focuses on a simplified setup that allows us to
make a very detailed analysis: a single data set containing two classes, and subject only to a MAP
MP. The focus in this case is on prior ignorance, as the only possible source of indeterminacy for
NCC2; we can therefore understand how strong assumptions about the prior can affect the ability
of NBC to compute posterior probabilities. Thanks to the restriction to the binary case (i.e., two
classes), we can then also clearly see that there is a difference between the cases that are deemed
doubtful by NBC (i.e., with probability close to 50%) and those that are deemed so by NCC2 (i.e.,
that lead it to indeterminacy).

The second step extends the analysis to all the data sets and to ignorance originated by non-
MAR missing data. In this case there is necessarily less detail but we have the advantage of having
the full comparison between NBC probabilities and NCC2 indeterminacy, and where we observe
that the situation basically resembles the one observed in the first step. This is done in Section 4.4.3.

4.4.1 AN ILLUSTRATIVE EXAMPLE: THE SPECT DATA SET

We focus on the spect data set, which is made of 2 classes and 267 instances.

For the following analysis, we split the data set into training set of 67 instances and a test set of
200 instances. We choose a 25-75% split in this example because we want to clearly see the effect
of the prior, which is well known to decrease with increasing sizes of the learning set.

We run the experimental framework of Section 4.3 with the MAR MP; that is, we generate 100
pairs of training and test sets (made artificially incomplete by the MP) from the original training/test
split. The findings presented in the following are obtained by analyzing the predictions issued over
the 100 test sets.

In particular, we consider four pieces of information for each classified instance: the actual
class, the class returned by NBC and its associated probability, and whether or not the instance
has been classified by NCC2 in a determinate way. The instances are then partitioned into subsets,
according to the probability estimated by NBC for the returned class, that is, instances for which
NBC estimates a probability in the range 50–55%, 55–60%, and so on (i.e., we use a step of 5% in
probability to define the subsets). On each subset of instances, we measure: (a) the determinacy of
NCC2-MAR; (b) the accuracy achieved by NBC on the instances classified determinately and (c)
indeterminately by NCC2-MAR.
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Figure 3: Relationship between the posterior probabilities computed by NBC and the output of
NCC2-MAR on the spect data set.

The results are reported in Figure 3. The dashed line represents the percentage of instances in the
subset (related to a certain range of probabilities) under consideration that is classified determinately
by NCC2. We see then that there is a positive association between higher posterior probabilities
computed by NBC and higher determinacy. This is a natural effect but it needs some words to be
explained, and we postpone this task to the next section.

An interesting point is that the output of NCC2 is indeterminate for all the instances as long
as the probability estimated by NBC for the returned class is lower than 75%. In other words,
here NCC2 deems that there is very little information about those instances in the learning set and
suspends the judgment. Remarkably, such caution is justified as on those instances NBC is just
guessing (uniformly) at random, at is follows from the line for NCC2-MAR I. The point here is that
NBC believes to be quite confident on a number of instances (assigning probabilities that go as up
as 75%) but in practice it is not. Stated differently, it believes it knows but it does not. NCC2 simply
knows not to know from the very beginning and this enables it to avoid losing credibility.

Moving on to greater probabilities, we see that the determinacy of NCC2 rises substantially
when the probability estimated by NBC exceeds 80%; in this region NCC2 returns a mix of de-
terminate and indeterminate classifications, and the drop of accuracy between NCC2-MAR D and
NCC2-MAR I is large at any level of posterior probability. In fact, NCC2 returns indeterminate
classification also on a non-negligible number of instances classified very confidently (for instance,
with probability higher than 85%) by NBC, and over which the accuracy of NBC is bad indeed.

The last discussion points to an important question, which is useful to stress: that is, to the fact
that NCC2 does not suspend the judgment only on instances that are deemed doubtful by NBC,
that is, those whose probability is for instance less than 55%. Moreover, while on the spect data
set NCC2 is fully indeterminate on the instances on which NBC is doubtful, this is not always the
case. For instance, the same analysis performed on the spambase data set (2 classes, 1300 training
instances) shows that about 40% of instances in the range 50–55% of probability are classified
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0 1

Probability intervals for c′Mp p pp p p

{c′′M} {c′M}{c′M,c′′M} Output of NCC2

Figure 4: A graphical view of the test of dominance in the binary case. The output of the classifier
is indeterminate if and only if the posterior probability interval for c′M contains 1

2 .

determinately by NCC2 (while the behavior on the remaining ranges of probabilities followed a
pattern similar to the one shown in Fig. 3).

4.4.2 ASSOCIATION BETWEEN NBC PROBABILITIES OF NCC2 DETERMINACY

In the following, we explain, with reference to a generic data set with two classes, why there is
a positive association between increasing posterior probabilities computed by NBC and increasing
determinacy of NCC2.

Re-consider the notation that we have introduced for the test of dominance in (1). Define the
posterior lower and upper probabilities of class c′M respectively as

p(c′M|x̂+ ∈ ô+) := inf
p(θ)∈P(θ)

p(c′M|x̂+ ∈ ô+)

and
p(c′M|x̂+ ∈ ô+) := sup

p(θ)∈P(θ)

p(c′M|x̂+ ∈ ô+).

Compared to (1), here we have removed the parts related to the non-MAR missingness process as
in this moment we prefer to keep things simple by focusing on the MAR case, as in the previous
section.

With the new definitions, the test of dominance (1) can be easily re-written in the case of a data
set with two classes as a simple test that checks the position of the interval [p(c′M|x̂+ ∈ ô+), p(c′M|x̂+ ∈

ô+)] relative to the probability value 1
2 . This is shown graphically in Fig. 4. Such a figure shows

three possible positions of the posterior intervals, which are represented as segments. When the
interval contains the value 1

2 , as in the middle case, then the output of the classifier is indeterminate:
both classes are returned. Here we have complete indeterminacy because it is not possible to know
if one of the two classes has posterior probability larger than the other (note that in this case the
interval for c′′M contains 1

2 as well). In the remaining two cases, the value 1
2 is either greater or less

than all the points in the interval and this allows the classifier to know that one of the two classes is
dominated, thus returning a determinate classification, as shown above the intervals. Now, assume
temporarily the width of the NCC2 interval to be constant across all the instances. By construction,
the posterior interval computed by NCC2 is typically “close” to the posterior probability given by
NBC.13 Hence, the NBC probability and the NCC2 interval tend to move together; if the NBC

13. In our experiments the posterior probability is actually very often in the interval, but we cannot say this is always the
case because the Laplace prior used for NBC is not contained in the prior credal set of NCC2.
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probability grows, then the NCC2 interval reaches a point that makes it exclude the value 1
2 , leading

to a determinate classification. This explains the basic mechanism behind the association between
NBC probabilities and NCC2 determinacy.

Let us now move on to the realistic scenario that involves dropping the simplifying assumption
about the width of the NCC2 interval to be constant.14 In fact, it practice it happens that the length
of the NCC2 interval varies from unit to unit, as it depends on the amount of information that the
learning set contains about the specific unit under consideration: the less the information the wider
the interval, and vice versa. The fact that the learning set contains different amounts of information
for different units to classify should not be surprising: a unit to classify can be put in correspondence
with the subset of the learning set characterized by the values taken by the feature variables for the
unit under consideration; and these subsets have (also very) different sizes (remember that we are
dealing only with the MAR case; in the non-MAR case, we should consider also the effect of
missing data and the interpretation would be slightly more complicated, but still of a similar kind).

Therefore, it may well happen that for a certain unit to classify to which NBC assigns a high
posterior probability, the width of the NCC2 interval dilates so much that 1

2 gets included in the
interval, leading to an indeterminate classification. In this case, NCC2 deems that there is little
information in the learning set about the unit under consideration, and expresses this by a large
width of the interval. NBC does not have such expressive means and, moreover, may generate
such a high probability mostly because of its prior density, drawing then conclusions that are not
supported by the data.

In any case, it is clear that increasing the NBC probability makes it less likely that the NCC2
interval is as large as to be able to contain the value 1

2 . This is the reason why we observe the,
very natural at this point, association between increasing NBC probabilities and increasing NCC2
determinacy.

4.4.3 RESULTS ON ALL THE DATA SETS

In this section we consider all the usual 18 data sets with the same training/test splits of Section 4,
that is, 50%-50%. We consider two settings: the first compares NBC and NCC2-MAR when the
MP is MAR, and the second compares NBC and NCC2-nonMAR when the MP is non-MAR. We
analyze jointly the predictions issued on all the data sets, respectively under the first (Figure 5a) and
second setting (Figure 5b).

One point to consider is that in data sets with two classes, one can spot the instances doubtful
for NBC looking at those with probability around 50% for the returned class. However, for data sets
with more than two classes, the instances that are doubtful for NBC are not as easy to recognize as
before; for instance, with four classes both the posterior mass functions [40%, 40.5%, 15%, 4.5%]
and [24.5%, 25.5%, 25%, 25%], lead to doubtful classifications for NBC. For this reason, we only
focus now on the case when NBC is confident, that is, on the instances with probability for the
returned class greater than or equal to 55%.

Looking at the figures we see that the determinacy is much higher in the MAR setup than in the
non-MAR; in fact, we have already seen that the non-MAR case leads in general to a much larger
amount of instances that are isolated as difficult ones. Nevertheless, both Figures 5a and 5b show a
clear drop of accuracy of NBC, for the same level of posterior probability of the predicted class, from

14. If it were really so, the behavior of NCC2 would be quite trivial, and could be reproduced by that of an NBC that
uses a threshold larger that 1

2 to decide when a class should be said to dominate the other.
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(a) NBC, NCC2-MAR and MAR MP
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(b) NBC, NCC2-nonMAR and non-MAR MP

Figure 5: Relationship between the posterior probabilities computed by NBC and the output of
NCC2.

the instances classified in a determinate way by NCC2 to the others. The drop is especially striking
on the instances classified confidently by NBC, when the computed probability is for instance larger
than 70%. This is more evident in Fig. 5a; on the other hand, the drop observed in Fig. 5b applies to
a much larger set of instances. In fact, NCC2-nonMAR suspends the judgment frequently also on
the instances classified by NBC with probability greater than 80%; the reason is that a replacement
for missing data especially unfavorable for the class predicted by NBC, can well change the outcome
of the classification with respect to the output of NBC, which instead marginalizes out the missing
feature variable.

The instances for which NBC returns a probability higher than 90% are of particular interest,
also because they constitute 62% of the total instances. On this area, NCC2-MAR returns 1.5% of
indeterminate classifications on which it achieves the following remarkable performance: NCC2-
MAR D: 94%; NCC2-MAR I: 54%. The performance of NCC2-nonMAR in this area is as follows:
determinacy 66%, NCC2-NonMAR D: 96%; NCC2-NonMAR I: 89%. The drop is in this case
significant, yet smaller than under MAR: in fact, as already pointed out NCC2-nonMAR is more
conservative than necessary under this setting.

Summing up, hence, uncertainty related to the choice of the prior manifest itself more evidently,
but not only, on the instances in which NBC is less confident; yet, only part of such doubtful
instances lead to indeterminate classifications. On the other hand, missing data treated as non-MAR
can lead to many indeterminate classifications even if the probability computed by NBC for the
returned class is high. This is clear by comparing the dashed lines in Figures 5a and 5b.

4.5 Results with Increasing Missingness

Next, we analyze how NCC2-nonMAR deals with very high levels of missingness. We adopt the
non-MAR MP, with missingness rate at 15% per feature variable; given how the MP works, it will
produce about 7.5% missing data on each feature. We focus on two data sets: segment-challenge
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segment 5 91.6 54.8 97.7 99.4 5.5/7 97.7 84.1
segment 15 91.4 18.3 99.4 99.9 6/7 99.4 89.6

segment-pruned 5 93.8 77.8 98.0 99.7 4.6/7 98.0 79.1
segment-pruned 15 93.0 48.8 99.1 99.5 5.1/7 99.1 87.7

Table 2: Segment-challenge data set: impact of feature selection on the performance of NBC and
NCC2-nonMAR. Standard deviation of the indicators is always smaller than 2%, that is,
all indicators ± (at maximum) 2 percentage points.

(classes: 7; feature variables: 19; average number of bins per discretized feature variable: 5.6)15

and waveform (classes: 3; feature variables: 40; average number of bins per feature variable: 8.4).16

Let us stress that in our intentions the results we present constitute a kind of worst-case analysis
in terms of achieved determinacy, since (a) the amount of missing data generated by the MP is far
higher than those usually found in real data sets; (b) NCC2-nonMAR treats all feature variables
as non-MAR, both in training and testing (while usually, the investigator is able to isolate some
MAR feature variables); (c) the considered data sets contain a high number of feature variables,
classes and bins per feature variable, and these characteristics work together towards rising the
indeterminacy of NCC2-nonMAR. Moreover, as already discussed, given how the non-MAR MP
works, NCC2-nonMAR is more conservative than necessary under this setting.

Tables 2 and 3 report the results, displaying also the outcomes previously obtained with miss-
ingness rate 5%. In fact, while the performance of NBC is substantially insensitive to the amount
of missing data, the determinacy of NCC2-nonMAR clearly decreases; with rate of missingness per
feature variable equal to 15%, the determinacy of NCC2-nonMAR drops to about 1% on waveform
and 18% on segment. As a side-effect, we see also that the indicator NCC2 I increases with the
level of missingness; this is due to the fact that the number of instances on which NCC2 I is com-
puted approaches the overall test set, so that NCC2 I approximates the average accuracy of NBC.
Remarkably, however, even in such a difficult setting, there is a clear drop of accuracy (some 15
points), on both data sets, between NCC2 D and NCC2 I.

Is there a way to reduce the indeterminacy of NCC2-nonMAR? A first way to improve the
situation is feature selection. On the one hand, feature selection is necessary if one wants to get
maximum performance from NBC and NCC2, since redundant feature variables, which violate the
naive assumption, might skew the learning process of both classifiers; on the other hand, reducing
the set of feature variables reduces the amount of missing data, which is beneficial for the deter-

15. Two feature variables, out of the 19, are discretized into a single bin; they are not considered when computing the
average number of bins.

16. Twenty feature variables, out of the 40, are discretized into a single bin; they are not considered when computing the
average number of bins.
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waveform 5 81.3 54.3 89.5 99.9 2.1/3 89.5 71.7
waveform 15 81.1 1.2 100 100 2.7/3 100 81.1

waveform-pruned 5 82.3 65.9 88.1 99.9 2.1/3 88.2 70.9
waveform-pruned 15 81.7 10.2 97.0 100 2.5/3 96.9 79.9

Table 3: Waveform data set: impact of feature selection on the performance of NBC and NCC2-
nonMAR. Standard deviation of the indicators is always smaller than 2%, that is, all indi-
cators ± (at maximum) 2 percentage points.

minacy of NCC2-nonMAR. We performed feature selection by cross-checking the suggestions of
different methods implemented in WEKA (Witten and Frank, 2005); eventually, we selected 6 fea-
ture variables for segment-challenge and 14 for waveform.

In Table 2 and 3, the data sets after feature selection are referred to as pruned. The effectiveness
of the feature selection we performed is demonstrated by a slight yet sensible improvement of NBC
accuracy; as for NCC2-nonMAR, it achieves a satisfactory 50% of determinate classifications on
segment-challenge, and a less satisfactory 10% on waveform. Still, it is remarkable that such a
10% of instances is naturally classified in a determinate way under such weak assumptions and with
such an amount of missing data; this should make us quite confident about the reliability of the
classification, and indeed the measured accuracy is 97%. The drop between NCC2 D and NCC2 I
after feature selection does not show major changes compared to before feature selection.

So far the analysis in the most conservative possible conditions. Let us recall at this point that
a strength of NCC2 is the possibility of declaring that some feature variables are MAR (possibly
changing this from learning to test set). This is likely to be often possible to do in practice if we
only consider that currently most classifiers take for granted that all the feature variables should be
MAR. We considered then a new setup for waveform-pruned obtained by declaring that only half
the feature variables are non-MAR both in training and testing; and the determinacy of NCC2 raised
up to 58.5%.

4.6 A More Sophisticated MP

So far, we have considered a very simple MP, which in particular works independently on each
feature variable. It is interesting at this point to consider a more complex MP, working for instance
on the joint values of the feature variables. We show that this can have much bigger effects: in fact,
it can lead not only to severe misclassifications, but also to erroneous empirical evaluations of the
accuracy of classifiers which assume MAR.

We consider now the vote data set, also taken from the UCI repository. The data set contains
information about the United States Congressional Voting; the classification task is to guess whether
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a certain congressman is republican or democrat, by looking at his/her votes about some critical
laws. The data set has 435 instances, 16 features variables and 2 classes; by feature selection, we
reduce to 3 the number of features variables. The pruned data set is complete, that is, it does not
contain any missing data. In the following, we denote by the symbol “*” a missing value generated
by the non-MAR MP. Let us name as “type A” the instances with values (n, y, n, class1) and as “type
B” the instances with values (y, n, n, class0). The data set contains about 26% type A and 26% type
B instances.

The malicious MP that we consider turns the type A instances of the training set into (*, *, n,
class1), and the type B instances of the test set into (*, *, n, class0); it hence affects about 26% of
the training set and 26% of the test set.

We measured the following on the test set:

• NBC accuracy 71.4%;

• NCC2-MAR: determinacy 100%; single accuracy 71.4%;

• NCC2-nonMAR: determinacy 55.3%, single accuracy 99.2%.

Remarkably, in this case NCC2-MAR is always determinate, and therefore it behaves identically to
NBC. With reference to the previous results on the same data set, obtained with a simpler MP, there
is a major drop of accuracy (some 25 points) for NBC (and consequently for NCC2-MAR, too); on
the other hand, NCC2-MAR becomes more indeterminate, but it preserves a high single-accuracy.

Going more deeply in the analysis, the accuracy of NBC and NCC2-MAR is 99.2% on the
instances NCC2-nonMAR D, and 37.1 only (lower than random guessing!) on the instances NCC2-
nonMAR I. Hence, this MP heavily deteriorates the reliability of the classifiers which assume MAR.
NCC2-nonMAR, being based on CIR, behaves instead robustly even against such a malicious MP.

However, there is a further point of interest, concerning the failure of the empirical evaluations
of classifiers that are always determinate, when data are made missing by a non-MAR MP. Let
us assume that the only available data are the instances of the training set. Evaluating by cross-
validation the classifiers on the instances of the training set, we measure:

• NBC accuracy 88.2%;

• NCC2-MAR: determinacy 89.9%; single accuracy 93.9%;

• NCC2-nonMAR: determinacy 49.5%, single accuracy 100%.

The evaluation of the accuracy of NBC and NCC2-MAR is hence heavily biased when compared
against their actual performance on the test set. This phenomenon is discussed at some length in
Section 6 of Zaffalon (2005b). On the other hand, NCC2-nonMAR is reliably evaluated.

Of course, this kind of “extreme” example heavily relies on the fact that the MP is not identically
distributed. Yet, note that if one is ignorant about the MP, such a behavior should be considered as
a possibility, which is just what NCC2 does. On the other hand, imposing the assumption that
the MP is identically distributed should be done on a case-by-case basis, as doing it in general
is questionable (unlike imposing the data generation process to be so, given that MPs are usually
processes of a very different kind). Alternative assumptions, between the two extremes of assuming
ignorance and assuming that the MP is identically distributed, are not so easy to envisage if we also
require that they are widely applicable as one would like them to be in the field of data mining.
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NBC - 62.4 ± 5.1 - -
NCC2-MAR 91.8 ± 3.3 64.2 ± 5.5 2.2 ± 0.2 83.9 ± 15.4

NCC2-nonMAR 65.1 ± 5.5 60.1 ± 7.7 3.3 ± 0.3 89.8 ± 5.7

Table 4: Results on the eucalyptus data set. Accuracy refers to determinate classifications only,
while output size to indeterminate classifications only.

Values of feature variable “vigour”
Output class 1 2 3 4 5 6 7
c1 (“none”) 24 10 14 1 6 1 0
c2 (“low”) 0 3 24 17 8 2 0
c3 (“average”) 0 0 2 17 31 14 1
c4 (“good”) 0 0 0 6 28 57 16
c5 (“best”) 0 0 0 0 8 21 23

Table 5: Counts n(a j,ck) for feature variable “vigour” in the eucalyptus data set.

In summary, we conclude that the conservative approach provided by NCC2 can be considered
as a valuable avenue to reliably cope with situations where we miss substantial information about
(part of) the MP. Such an approach might become even more effective by exploiting coarsened
observations, as a way to insert knowledge about the MP. This is discussed in the next section.

4.7 The Eucalyptus Data Set: A Difficult One For NCC2-nonMAR

The eucalyptus data set is available from the Weka (Witten and Frank, 2005) repository17 of public
data sets. It contains 736 instances; there are 19 feature variables and 5 classes. After feature
selection, there are 8 feature variables left; about 3% of the values in the data set are missing. NBC,
NCC2-MAR and NCC2-nonMAR have been validated via 10 runs of 10 folds cross-validation;
feature variables have been discretized via MDL-based discretization (Fayyad and Irani, 1993).
Results are reported in Table 4.

Strikingly, NCC2-MAR has higher single-accuracy than NCC2-nonMAR. To investigate this
issue, we split in a stratified way (i.e., keeping the proportion of the classes as close as possible
between training and test set) the data set into a training and a test set; this enables us to detect a set
of 35 critical instances, which are classified accurately and in a determinate way by NCC2-MAR,
and in a totally indeterminate way by NCC-nonMAR, which returns five classes out of five.

17. The URL is http://www.cs.waikato.ac.nz/ml/weka/index_datasets.html.
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A key point is that all these instances lack the value of feature variable vigour. The frequen-
cies n(a j,ck), reported in Table 5, show that, for any class ck, there is at least a value ã j such that
n(ã j,ck)=0. This is due to different reasons, such as the high number of classes in which the fea-
ture variable is discretized; the skew of the distribution of the counts n(a j,ck), for any class ck,
towards certain values of the feature variable; the high number of output classes (i.e., 5), and also
the relatively small size of the data set.

In fact, if the value of vigour is missing and the MP is supposed to be non-MAR, for any
pair of classes (ci,c j) there exists a replacement ã j for the missing value such that n(ã j,ci) = 0,
and hence p(c′M|d-, x̂+ ∈ ô+)/p(c′′M|d-, x̂+ ∈ ô+) = 0, thus preventing the existence of any credal-
dominance relationship between any two classes. In this condition, hence, NCC2-nonMAR has to
output all the classes.

On the other hand, the conditional counts of the remaining feature variables, strongly skewed
towards class c1, allow NCC2-MAR (and NBC as well) for predicting all these instances accurately
and in a determinate way. This phenomenon is the reason why NCC2-MAR is both more accurate
and determinate than NCC2-nonMAR on the eucalyptus data set.

4.7.1 SOLUTION VIA COARSENING (OR SET-BASED OBSERVATIONS)

Yet, NCC2-nonMAR is processing correctly the eucalyptus instances: if the MP affecting the vigour
feature variable is non-MAR, by definition all the possible replacements for the missing values
should be taken into consideration. However, NCC2-nonMAR is unnecessarily cautious, as demon-
strated by both NCC2-MAR and NBC, which are able to classify the critical instances both accu-
rately and in a determinate way. It appears hence that some further knowledge should be put into the
classifier, to mitigate its unnecessary caution; yet, we try to avoid assuming MAR. A step forward
in this direction can be accomplished by introducing set-based (or coarsened) observations.

Up to now, we have assumed that manifest values are either equal to the latent ones, or set equal
to the symbol of missing data. In the former case, the value is known exactly; in the latter, it is known
in the most indeterminate way, that is, we only know that it belongs to the set of possible values
of the feature variable. Coarsened observations represent an intermediate situation of knowledge,
in which the observation, for instance referring to feature variable A j, is known to belong to a set
A

′

j ⊆ A j. The size and composition of A
′

j can vary between different set-based observations of the
same feature variable, thus allowing for a high degree of flexibility. Actually, the possible values of
A

′

j are all the possible non-empty subsets of A j.

If A j is assumed to be affected by a non-MAR MP, set-based observations restrict the set of
possible replacements from A j to A

′

j (we recall that A
′

j will generally be different for each set-based
observation). Therefore, set-based observations provide, without implying any strong assumption
about the MP, a higher degree of knowledge than missing data, and they tend to generate less
indeterminacy than missing data.

Remarkably, real MPs often produce set-based observations rather than missing data. For in-
stance, let us consider a doctor that recommends a patient to go through exam B only if exam A
is positive. In fact, the domain knowledge of the doctor makes it possible to conclude that if A is
negative, the outcome of B will range within a restricted set of values, not influential for the diag-
nosis. On the contrary, if A is positive, the value of B cannot be predicted. However, when B is not
performed because A is negative, we do have a set-based observation rather than a missing value.
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In many cases, it is possible to provide coarsening sets rather than missing values at the time data
are collected, by excluding unsuitable values from the set of the possible replacements.

Let us stress that using set-based observations and assuming MAR are two fundamentally dif-
ferent ways of inserting knowledge into the classifier. In fact, set-based observations incorporate
specific domain knowledge (obtained at data collection or data validation time) into the data set
and eventually into the classifier. On the other hand, MAR is an assumption typically done by the
modeler, whose tenability is only rarely checked with domain experts.

What happens using set-based observations on the eucalyptus data set? On the 35 critical in-
stances we tried to substitute the missing values of vigour with set-based observations, using a
coarsening set A

′

j = {1,2,3,4,5}, which contains 5 values out of the 7 possible. Using such set-
based observations, NCC-nonMAR classifies 32/35 critical instances correctly and in a determinate
way; on the remaining 3 instances, it outputs 4 classes, including the true one. In this way, the usual
inequalities (NCC-MAR D > NCC-MAR I, NCC-nonMAR D > NCC-nonMAR I, ∆NCC2-nonMAR
> NCC-nonMAR I) hold also on the eucalyptus data set.

In our example, set-based observations constitute an effective way to insert knowledge about
the MP into the classifier without assuming MAR; they appear hence as a promising approach for
credal classifiers. It is useful to observe that coarsened observations have received considerable
attention in the traditional literature of statistical inference from incomplete observations. A work
of paramount importance on this topic is the popular coarse-data model of Heitjan and Rubin (1991),
which generalizes the missing-data model of Rubin (1976). This appears to enforce the potential
of coarsening for classification in general, and to make it worth of further investigation. From
a practical viewpoint, the use of set-based observations would require some changes in the data
archiving formats, which are usually designed to store precise observations only.

5. Conclusions

There are usually different amounts of information in the data that a classifier can exploit to classify
different units. This depends in part of the fact that a learning set can be more informative about
some units than some others, and in part on the type and amount of missing values in the units to
classify. As a consequence, a classifier’s predictions may be more uncertain on some units than
on some others. But if we impose that the classifier is inferred using a single prior density and
that it considers all the missing data as ignorable, we lose much of the capability to distinguish
that some units are harder to classify than others: we cannot see anymore that some of the strong
conclusions that we obtain are determined by our strong assumptions rather than the supposedly
strong information in the data, and are hence actually fragile. Nor can help much in this respect
the experimental evaluations of the classifier as they are, somewhat necessarily, designed to yield
its average performance. And yet, we do care about distinguishing the hardness of different units
in many real-world applications: in the case of medical diagnosis, for instance, we do not want a
classifier to be good only on average; we want it to make reliable predictions on every single patient.

In this paper we have tried to pursue such a goal just by weakening the assumptions that are
traditionally made by classifiers. We have modified the naive Bayes classifier so as to model prior
ignorance in an objective-minded way by using a set of prior densities, and by giving the opportunity
to treat some of the missing values as originated by a missingness process that we do not know (and
the others by a MAR one). The resulting model, called naive credal classifier 2, departs from the
more traditional classifiers in a number of ways, the more substantial one being the fact that NCC2
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makes set-valued classifications in general: it issues a determinate classification (i.e., a singleton)
only when it deems that there it has enough information to do so.

Extensive empirical evaluations have shown that NCC2 has high accuracy when it issues deter-
minate classifications, and that when it is more cautious, it is very often justified: NBC is clearly
shown to considerably decrease its classification accuracy on the instances classified in a set-valued
way by NCC2, as well as its ability to compute predictive posterior probabilities. This indicates that
set-valued classifications do indeed isolate the instances of the test set that are hard to classify. And
they actually do more than just isolating them: they are in fact still informative, as unlikely classes
are dropped anyway, and invite the domain expert (for instance, a doctor that has to issue the ulti-
mate diagnosis) to avoid over-confident statements. We have also pointed out that in some extreme
cases of missingness processes, the empirical evaluations made for naive Bayes can be completely
biased, so that not even its average predictive accuracy can be evaluated reliably. In these cases,
NCC2 was instead still reliably evaluated.

Dealing effectively with the hard instances is not an easy task in general, and we have shown
that NBC fails on this a number of times by yielding unreliable classifications due to its inherent
optimism. The way NCC2 sometimes fails on this is different, as it leads to an excess of caution;
this is less critical although still not desirable. In these cases, the classifier is too pessimistic and
the information used to build it up should be strengthened in order to obtain stronger conclusions.
The more obvious way to do so with NCC2, and that—provided that one stays within the realm
of tenable assumptions—is also what we recommend, is to minimize the number of missing values
that are declared to be subject to an unknown missingness process. A less obvious but still very
important way to do so is to simplify the model as much as possible, for example by doing feature
selection. In fact we have conjectured that the same factors that can lead NBC to overfitting (e.g.,
high number of features or feature variables) can well result in excessive caution of NCC2. When
also this is not enough, another approach may prove to be very helpful: using coarsened rather
than missing values in data sets. Coarsened, or set-based, observations carry more information than
missing ones in general because they naturally exclude some values as possible replacement for the
missing information. Such extra information might be often available in real applications, and it
seems to have the potential to lead to strong enough conclusions in a number of cases. It is also
a kind of information that is typically provided by a domain expert rather than by the modeler (as
opposed to MAR, for example) and as such it is a good candidate to be tenable.

More generally speaking, we regard the problem of providing a classifier with knowledge about
the missingness process, which usually cannot be obtained from data, as a serious and an important
topic of research. This seems to have much to do with identifying general and tenable assumptions
about missingness processes of which classifiers could take advantage.

NCC2 can be regarded as the outcome of having made a first step in this direction. Doing such
a step has led to a classifier that offers us a range of new opportunities to deal robustly with predic-
tions in case of small or incomplete data sets: in particular, it allows us to check whether in very
weak states of prior information we can draw strong enough conclusions for our aims, thus avoid-
ing us to worry about doing mistaken assumptions; it lets us work incrementally towards stronger
assumptions and conclusions; it enables us to uncover situations that otherwise could not be, not
even experimentally. And it makes all of this possible by means of fast and exact computations.
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Appendix A. A Polynomial-time Procedure for Incompleteness in the Instance to
Classify

Although the procedure sketched in Section 3.4 solves Problem (8), a substantially more efficient
procedure can be designed to solve the same problem. However, to avoid adding further complexity
to the presentation of NCC2 carried out in the main body of the paper, we present it here, in Figure 6.
The correctness of the procedure is stated by the following theorem, whose proof is in Appendix B.

Theorem 7 The optimum of Problem (8) is obtained by the procedure in Figure 6.

1. Build the set U := {xe =
n(aMe′ ,c

′′
M)n(aMe′′ ,c

′
M)−n(aMe′ ,c

′
M)n(aMe′′ ,c

′′
M)

s[n(aMe′ ,c
′
M)−n(aMe′′ ,c

′
M)]

: e = 1, . . . ,k′,aMe′ ,aMe′′ ∈

Ae,n(aMe′ ,c′M) 6= n(aMe′′ ,c′M),xe ∈ (0,1)}, where the lower and upper counts are defined as
in Theorem 6.

2. Use the points in U to define a partition J of (0,1).

3. For each interval I∈ J, determine an associated tuple (aI
M1, . . . ,a

I
Mk′)∈A1×·· ·×Ak′ by se-

lecting, for each e = 1, . . . ,k′ an element among those yielded by argminaI
Me∈Ae

n(aI
Me,c

′
M)

n(aI
Me,c

′′
M)+xI

,

where xI denotes the middle point of the interval I.

4. For each of the intervals in J, minimize the function defined by the tuple associated with
the interval, by applying of Theorem 6 with suitable changes to adapt it to J.

5. Take the minimum of the values provided by the previous step.

Figure 6: The solution procedure for Problem (8).

The intuitive idea behind the procedure is presented in the following. Let us assume that among
the k attribute variables there are k′ (1 ≤ k′ ≤ k) that are not observed in the instance to classify.
Assume, without loss of generality, that they are indexed from 1 to k′. The objective function of the
problem can be re-written as (let x := st(c′′M)):

inf
0<x<s

{[
n(c′′M)+ x

n(c′M)+ s− x)
]k−1

k′

∏
e=1

[ min
aMe∈Ae

n(aMe,c′M)

n(aMe,c′′M)+ x
]·

·
k

∏
j=k′+1

n(aM j,c′M)

n(aM j,c′′M)+ x

r′

∏
l=1

[
nl(c′′M)+ x

nl(c′M)+ s− x
·

n(âMl,c′M)

n(âMl,c′′M)+ x
]}, (9)
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where the functions n(aMe,c′M)/[n(aMe,c′′M)+ x] can be minimized, given x, separately over each
aMe, as shown by the minima over aM1, · · · ,aMk′ .
For variable Ae, the functions of this type obtained for each different value aMe ∈ Ae are compared
over the interval [0,s]; when the value aMe, which minimizes them, changes, there is a so-called
partition point. Now, let us consider the set U, which collects the partition points of all the variables
A1, . . . ,Ak′ : the tuple {a1, · · ·ak′} which minimizes the first factor of Problem (9) changes over the
interval [0,s] at every point belonging to U. Since the function is convex on each sub-interval, we
can solve a minimization problem on each sub-interval; the global minimum is finally found by
comparing the local minima obtained over each sub-interval.

Let us analyze briefly the computational complexity of the procedure. The procedure is based
on the determination of the partition J, whose size is at most 1+∑k′

e=1(|Ae|
2−|Ae|)/2, which is also

the number of minimizations in the worst case. Each minimization is done according to Theorem 6.
This is based on the computation of the logarithmic derivatives of the function of interest. Each
evaluation of the logarithmic derivative is a task linear in k + r′, where we recall that r′ is the
number of non-missing MAR variables in the instance to classify. If we regard the complexity of
Newton-Raphson’s method as a constant, which is reasonable as it is an extremely fast algorithm,
we obtain that the procedure works in time O([1 + ∑k′

e=1(|Ae|
2 − |Ae|)/2](k + r′)). To obtain a

simpler expression, we can focus on an upper bound: O(A
2
(k + r′)2), where A := argmaxk′

e=1 |Ae|.
The complexity is then roughly quadratic in the number of attribute variables and quadratic also in
the worst-case number of attributes per variable.

Appendix B. Proofs

Proof [Lemma 1] The likelihood is easily re-written as ∏N
i=1 ϑ(di,x̂i∈ôi) thanks to the IID assumption,

where ϑ(di,x̂i∈ôi) := ∑x̂i∈ôi
ϑ(di,x̂i). By Assumption (2) we have that

p(d, x̂ ∈ ô|ϑ) =
N

∏
i=1

[ ∑
x̂i∈ôi

ϑ(di,x̂i)]

=
N

∏
i=1

( ∑
âi1∈ôi1

. . . ∑
âir∈ôir

ϑci

k

∏
j=1

ϑai j|ci

r

∏
l=1

ϑâil |ci
)

=
N

∏
i=1

{ϑci [
k

∏
j=1

ϑai j|ci
][

r

∏
l=1

∑
âil∈ôil

ϑâil |ci
]}.

Let us focus on ∏N
i=1 ϑci . By grouping the same chances over the N units, that expression can be

re-written as ∏c∈C ϑn(c)
c , where n(c) denotes the number of occurrences of c in d. In the same way,

we re-write ∏N
i=1 ϑai j|c for all j and a given c as ∏a j∈A j

ϑn(a j,c)
a j|c

, where n(a j,c) denotes the number

of joint occurrences (a j,c) in d. Now consider ∑âil∈ôil
ϑâil |c, for a given c. Whenever ôil coincides

with Âl , ∑âil∈ôil
ϑâil |c = 1; and in all the other cases the sum degenerates to a single term, as the

observation of the variable value has been precise. Indeed, as clarified in Section 2, according to the
definition of missing data we either observe a value exactly, or we do not observe it at all.

This means that we are allowed to drop the missing values from the learning set. In other words,

∏N
i=1(∑âil∈ôil

ϑâil |c) becomes, for all l, ∏âl∈Âl
ϑn(âl ,c)

âl |c
, where n(âl ,c) denotes the number of joint

occurrences (âl,c) in the learning set after dropping the units with missing values of Âl .
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We skip the proof of Lemma 2 as it follows a pattern analogous (and easier) to that of the previous
proof.
Proof [Theorem 3] Lemmas 1 and 2, together with the chosen prior in (4), allow us to re-write
p(cM|d-, x̂+ ∈ ô+) in Equation (3), that is, p(cM|d-, x̂+ ∈ ô+,s, t), as follows:

p(cM|d-, x̂+ ∈ ô+,s, t) ∝
Z

ΘC

ϑcM ∏
c∈C

ϑn(c)+st(c)−1
c dϑC

·
k

∏
j=1

Z

ΘA j |cM

ϑaM j|cM ∏
a j∈A j

ϑn(a j,cM)+st(a j,cM)−1
a j|cM

dϑA j|cM

·
r

∏
l=1

ôMl 6=Âl

Z

ΘÂl |cM

ϑâMl |cM ∏
âl∈Âl

ϑn(âl ,cM)+st(âl ,cM)−1
âl |cM

dϑÂl |cM
.

(10)

Expression (10) is obtained by the following steps: (i) substituting in (3) the expressions for the
prior, the likelihood and the probability of the next class obtained in Section 3.1; (ii) observing that
the Dirichlet densities involved in the integration are independent, so that they can be integrated
separately; (iii) dropping the integrals related to classes different from cM , as each of them equals
1 given that it is missing the term of which to take the expectation; and (iv), for similar reasons,
dropping the integrals related to missing attribute values in the unit to classify. Observe that in (10)
we have used the following notation: we have denoted by ϑC ∈ ΘC the vector of chances ϑc, c ∈ C.
Similarly, ϑA j|cM

∈ ΘA j|cM
(for all j = 1, . . . ,k) resp. ϑÂl |cM

∈ ΘÂl |cM
(for all l = 1, . . . ,r) denote the

vector of chances ϑa j|cM
, a j ∈ A j, resp. ϑâl |cM

, âl ∈ Âl .
Each integral in (10) represents the expectation of a chance with respect to a Dirichlet density.

It is well known that such a calculation can be solved exactly (Kotz et al., 2000, Chap. 49), leading
to the statement of the theorem.

Proof [Lemma 4] Using (5) we first re-write the function to optimize as follows:

[
n(c′′M)+ st(c′′M)

n(c′M)+ st(c′M)
]k−1

k

∏
j=1

n(aM j,c′M)+ st(aM j,c′M)

n(aM j,c′′M)+ st(aM j,c′′M)
·

·
r′

∏
l=1

[
nl(c′′M)+ st(c′′M)

nl(c′M)+ st(c′M)
·

n(âMl,c′M)+ st(âMl,c′M)

n(âMl,c′′M)+ st(âMl,c′′M)
].

Then we simplify the optimization problem according to the following considerations.

• The objective function is only concerned with the r′ non-missing MAR attribute variables.

• For each j ∈ {1, . . . ,k} and c ∈ C, the objective function contains only one term t(a j,c). We
can choose its value freely in the interval [0, t(c)], as the constraints of type ∑a j∈A j

t(a j,c) =
t(c) are always satisfied by assigning the value [t(c)− t(a j,c)] to any term t(a j′ ,c) ( j′ ∈
{1, . . . ,r}, j′ 6= j) that does not appear in the objective function, and zero to the others. It
follows that constraints of type ∑a j∈A j

t(a j,c) = t(c) can be re-written as t(a j,c)≤ t(c) for all
j ∈ {1, . . . ,k}, c ∈ C. Analogous considerations hold with constraints of type ∑âl∈Âl

t(âl,c) =
t(c).
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• The optimum of the problem is obtained when all the terms t(aM j,c′M) and t(âMl,c′M) go to
zero, and all the terms t(aM j,c′′M) and t(âMl,c′′M) go to t(c′′M). This follows from the preceding
observation and because the objective function is made of non-negative terms. Therefore, in
the objective function we can replace the mentioned terms with the corresponding values at
the optimum.

• Constraint ∑c∈C t(c) = 1 can be replaced by t(cM′)+ t(cM′′) = 1, because the objective func-
tion is only concerned with those two classes, as because such a constraint naturally holds at
a global optimum. Suppose the last statement is false, that is, that t(cM′)+ t(cM′′) < 1 at a
global optimum point. Then we might keep t(cM′′) fixed and increase t(cM′) up to 1− t(cM′′)
(making the t(·) terms of the remaining classes go to zero), so decreasing the optimum value.

These lead to the statement of the lemma once we also remove the variable t(c′M) from considera-
tion.

Proof [Theorem 5] To demonstrate Theorem 5, it is necessary first to introduce two lemmas, whose
proofs are given later.

Lemma 8 Consider Problem (6), assuming that the following two conditions hold: (i) there is no
j such that n(aM j,c′M) = 0 nor l such that n(âMl ,c′M) = 0; and (ii) k + r′ > 0. Then the objective
function h(t(cM′′)) is (strictly) convex over (0,1).

Lemma 9 Consider Problem (6), and the same assumption used in Lemma 8. Then the logarithmic
derivative of the objective function in t(c′′M) = 0 is −∞ if and only if any of the following cases hold:
n(c′′M) = 0; there is j ∈ {1, . . . ,k} s.t. n(aM j,c′′M) = 0; there is l ∈ {1, . . . ,r′} s.t. n(âMl,c′′M) = 0 and
nl(c′′M) 6= 0.

Having introduced Lemmas 8 and 9, we can now prove Theorem 5. The first two steps of
the procedure deal with special cases. The first step is justified since in the stated conditions the
objective function attains the value zero, and this is a global minimum because the function is non-
negative. The second step considers a degenerate problem of classification, in which there are no
attribute variables; in this case the minimum is at t(cM′′) = 1, as the objective function is strictly
decreasing, as it can be shown by differentiating.

Otherwise, the function is convex and the local minimum is also the global minimum. The
minimum is found by the following procedure:

1. If:

• n(c′′M) = 0 or

• there is j ∈ {1, . . . ,k} s.t. n(aM j,c′′M) = 0 or

• there is l ∈ {1, . . . ,r′} s.t. n(âMl,c′′M) = 0 and nl(c′′M) 6= 0,

then let (lnh(t(c′′M)))′|t(c′′M)=0 := −∞, else compute (lnh(t(c′′M)))′|t(c′′M)=0.

2. Compute (lnh(t(c′′M)))′|t(c′′M)=1.

3. If (lnh(t(c′′M)))′|t(c′′M)=0 ≥ 0, let inf0<t(c′′M)<1 h(t(c′′M)) := h(0). Stop.
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4. If (lnh(t(c′′M)))′|t(c′′M)=1 ≤ 0, let inf0<t(c′′M)<1 h(t(c′′M)) := h(1)). Stop.

5. If (lnh(t(c′′M)))′|t(c′′M)=0 < 0 and (lnh(t(c′′M)))′|t(c′′M)=1 > 0, approximate the minimum numer-
ically by Newton-Raphson’s algorithm as in p. 366 of Press et al. (1993).

The procedure is basically a test based on the values of the logarithmic derivative at the extremes
of the interval [0,1]. If the function were bounded, the last three points would obviously identify
the minimum. The preceding points allow the test to be extended to the case of h(0) being un-
bounded.18 This happens according to the conditions stated in Lemma 9. We account for these
cases by introducing the value −∞ for the derivative in the solution procedure, and treating it as one
of the possible values.

As far as Newton-Raphson’s method is concerned, it can be applied as the first and second
derivatives are available. Note that if the Newton-Raphson is combined with bracketing as in the
cited implementation, then its convergence is guaranteed.

Proof [Lemma 8] Consider the following definitions to simplify the notation: α j := n(aM j,c′M),
β j := n(aM j,c′′M), α̃ := n(c′M), β̃ := n(c′′M), γl := n(âMl ,c′M), δl := n(âMl,c′′M), γ̃l := nl(c′M), δ̃l :=
nl(c′′M), x := st(c′′M). Re-write Problem (6) accordingly as

inf
0<x<s

(
β̃+ x

α̃+ s− x
)k−1

k

∏
j=1

α j

β j + x

r′

∏
l=1

(
δ̃l + x

γ̃l + s− x
·

γl

δl + x
)

= inf
0<x<s

h(x).

The objective function is positive on the domain of definition, so we can compute the logarithmic
derivative of h(·):

d lnh(x)
dx

=

=
k−1

β̃+ x
+

k−1
α̃+ s− x

−
k

∑
j=1

1
β j + x

+
r′

∑
l=1

1

δ̃l + x
+

−
r′

∑
l=1

1
δl + x

+
r′

∑
l=1

1
γ̃l + s− x

. (11)

Another differentiation leads to the following expression:

d2 lnh(x)
dx2 =

= −
k−1

(β̃+ x)2
+

k−1
(α̃+ s− x)2 +

k

∑
j=1

1
(β j + x)2 +

−
r′

∑
l=1

1

(δ̃l + x)2
+

r′

∑
l=1

1
(δl + x)2 +

r′

∑
l=1

1
(γ̃l + s− x)2 .

(12)

18. Note that the function is always defined in t(cM′′) = 1 as the cases that arise when either n(c′M) = 0 or when there is l
such that nl(c′M) = 0, are ruled out by the initial assumption prescribing that there is neither j such that n(aM j,c′M) =
0, nor l such that n(âMl ,c′M) = 0.
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There are three possible cases.

1. k = 0 and r′ > 0. In Expression (12), the sum on j disappears, and the other terms are positive
except for two of them: − 1

(α̃+s−x)2 and −∑r′
l=1

1
(δ̃l+x)2 .

Consider the first one. By definition, γ̃l ≤ α̃ for each l, so that 1
(α̃+s−x)2 ≤ 1

(γ̃l+s−x)2 , whence

− 1
(α̃+s−x)2 +∑r′

l=1
1

(γ̃l+s−x)2 ≥ 0.

Now consider the second negative term in Expression (12). By definition, it holds that
δl ≤ δ̃l for each l, whence ∑r′

l=1
1

(δ̃l+x)2 ≤ ∑r′
l=1

1
(δl+x)2 , or, in other words, −∑r′

l=1
1

(δ̃l+x)2 +

∑r′
l=1

1
(δl+x)2 ≥ 0.

This shows that the negative terms in Expression (12) together with the considered positive
ones produce non-negative results. Since there are positive terms left in Expression (12), the
overall expression is positive. In other words, the function lnh(·) is (strictly) convex, and so
is h(·) (by applying the exponential function).

2. k > 0 and r′ = 0. In this case, there is only one negative term in Expression (12): − k−1
(β̃+x)2 .

By definition, β j ≤ β̃ for each j, so that − k−1
(β̃+x)2 + ∑k

j=1
1

(β j+x)2 ≥ 0. Since there are positive

terms left in Expression (12), the function h(·) is (strictly) convex.

3. k > 0 and r′ > 0. In this case there are two negative terms in Expression (12) (the others being
positive): − k−1

(β̃+x)2 and −∑r′
l=1

1
(δ̃l+x)2 . We have already shown in the two preceding cases that

−∑r′
l=1

1
(δ̃l+x)2 + ∑r′

l=1
1

(δl+x)2 ≥ 0 and that − k−1
(β̃+x)2 + ∑k

j=1
1

(β j+x)2 ≥ 0. As there are positive

terms left in Expression (12), the overall expression is positive. Also in this case, the function
h(·) is (strictly) convex.

Proof [Lemma 9] Consider Expression (11) for the logarithmic derivative, and the notation intro-
duced there. Let us focus on the expression obtained from Expression (11) by dropping the terms
that are bounded when x approaches zero:

k−1

β̃+ x
−

k

∑
j=1

1
β j + x

+
r′

∑
l=1

1

δ̃l + x
−

r′

∑
l=1

1
δl + x

. (13)

Of course Expression (11) goes to −∞ when x approaches zero if and only if Expression (13) does
the same, so that we can concentrate on the latter.

(⇐) Let us now show that if any of the conditions in the statement holds, Expression (13) goes
to −∞ with x approaching zero.

First, consider the case when β̃ = n(c′′M) = 0, and suppose that k = 0. The first term in (13)
becomes −1/x, the second disappears, and the last two terms sum up to zero. Indeed, when β̃ = 0,
δ̃l = δl = 0. The expression becomes −1/x, and the implication is verified. In the case when r ′ = 0,
it must be k > 0 and hence the first two terms in (13) yield −1/x as β j = 0 for all j when β̃ = 0; and
the last two terms disappear. Again, the expression becomes −1/x, and the implication is verified.
The case when both k > 0 and r′ > 0 is verified on the basis of the previous two cases.
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Second, consider the case when there is j ∈ {1, . . . ,k} s.t. β j = n(aM j,c′′M) = 0. If also β̃ = 0, we
would fall in the previous case and the implication would be true, so we can assume that β̃ > 0. In the
case when r′ = 0, the implication would follow immediately. Consider r′ > 0. The only possibility
for Expression (13) not to go to −∞ with x going to zero, is that there is l s.t. δ̃l = 0. In this way
the term −1/(β j + x) = −1/x would sum up to zero together with the term 1/(δ̃l + x) = 1/x. But
this is not possible: in fact, δ̃l = 0 implies δl = 0, so that 1/(δ̃l +x) = 1/x cancels out together with
−1/(δl + x) = −1/x. The implication is true also in this case.

Finally, consider the case when there is l ∈ {1, . . . ,r′} s.t. δl = n(âMl,c′′M) = 0 and δ̃l = nl(c′′M) 6=
0. Observe that the term −1/(δl +x) =−1/x cannot cancel out because of other terms: in fact, with
the l-th terms, we have that δ̃l > 0; if there is another l ′ s.t. δ̃l = 0, also δl = 0 and the related
two terms sum up to zero. The only remaining possibility to cancel −1/(δl + x) = −1/x out is that
β̃ = 0. But in this case we know that the implication must be true. It follows that also in this case
the implication is verified.

(⇒) Let us now consider the reverse implication. If Expression (13) goes to −∞ with x going
to zero, at least one of the terms in such an expression must do the same. By considering the terms
one by one, the implication is proved in a trivial way.

Proof [Theorem 6]
Problem

min
d∈o

inf
p(θ)∈P(θ)

p(c′M|d-, x̂+ ∈ ô+)/p(c′′M|d-, x̂+ ∈ ô+),

where the set of prior densities is defined according to Expression (4), the constraints are those
described in Section 3.1.1, and the probabilities in the function to optimize are defined as in (5), is
equivalent to the following:

min
d∈o

inf
0<t(c′′M)<1

{[
n(c′′M)+ st(c′′M)

n(c′M)+ s− st(c′′M)
]k−1

k

∏
j=1

n(aM j,c′M)

n(aM j,c′′M)+ st(c′′M)
·

·
r′

∏
l=1

[
nl(c′′M)+ st(c′′M)

nl(c′M)+ s− st(c′′M)
·

n(âMl ,c′M)

n(âMl,c′′M)+ st(c′′M)
]}.

The problem can be then re-written as follows:

inf
0<t(c′′M)<1

min
d∈o

{[
n(c′′M)+ st(c′′M)

n(c′M)+ s− st(c′′M)
]k−1

k

∏
j=1

n(aM j,c′M)

n(aM j,c′′M)+ st(c′′M)
·

·
r′

∏
l=1

[
nl(c′′M)+ st(c′′M)

nl(c′M)+ s− st(c′′M)
·

n(âMl ,c′M)

n(âMl,c′′M)+ st(c′′M)
]}. (14)

This is obtained by inverting the order of the optimizations and using Expression (6). Note that
the inner minimization only affects the product over j in the objective function. Moreover, the
counts in such a product attain the same value at the optimum for any choice of t(c′′M), leading
to the following product: ∏k

j=1 n(aM j,c′M)/[n(aM j,c′′M) + st(c′′M)]. Note that the pairwise counts
are optimized separately as they do not affect each other. These arguments enable us to reduce
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Problem (14) as:

inf
0<t(c′′M)<1

{

[

n(c′′M)+ st(c′′M)

n(c′M)+ s− st(c′′M)

]k−1 k

∏
j=1

n(aM j,c′M)

n(aM j,c′′M)+ st(c′′M)
· (15)

·
r′

∏
l=1

[

nl(c′′M)+ st(c′′M)

nl(c′M)+ s− st(c′′M)
·

n(âMl,c′M)

n(âMl,c′′M)+ st(c′′M)

]

},

with n(aM j,c′M) := mind∈o n(aM j,c′M) and n(aM j,c′M) := maxd∈o n(aM j,c′M). At this point, Prob-
lem (15) is an instance of Problem (6) obtained for a specific choice of a complete data set d in o.

Proof [Theorem 7] Let us focus the attention on the term minaMe∈Ae

n(aMe,c′M)
n(aMe,c′′M)+x . As a function of x,

this is the lower envelope of the set of functions { n(aMe,c′M)
n(aMe,c′′M)+x : aMe ∈ Ae} =: Fe. Consider a value

x such that the lower envelope coincides with two different functions in Fe before and after x. This
implies that the two functions must cross at x, because the function that was over the other before
x must be under it after x. In other words, the set of points where any two different functions in
Fe cross (let us call them partition points), contains the points where the function matched by the
lower envelope changes.

We can identify the partition points in the following way. Consider any two different functions
in Fe: n(aMe′ ,c′M)/[n(aMe′ ,c′′M)+ x] and n(aMe′′ ,c′M)/[n(aMe′′ ,c′′M)+ x]. Assume that n(aMe′ ,c′M) 6=
n(aMe′′ ,c′M): in the opposite case the only way for the two functions to cross would be that also
n(aMe′ ,c′′M) = n(aMe′′ ,c′′M), but the two functions would be the same, which is excluded a priori.
The two functions cross when n(aMe′ ,c′M)/[n(aMe′ ,c′′M)+ x] = n(aMe′′ ,c′M)/[n(aMe′′ ,c′′M)+ x], and
this happens if and only if

x =
n(aMe′ ,c′′M)n(aMe′′ ,c′M)−n(aMe′ ,c′M)n(aMe′′ ,c′′M)

n(aMe′ ,c′M)−n(aMe′′ ,c′M)
. (16)

In other words, there is at most one partition point for any two different functions,19 and we can
identify it easily by (16). The maximum number of partition points is also the number of distinct
pairs of different functions in Fe, which is at most (|Ae|

2 −|Ae|)/2.20

The crucial observation here is that the lower envelope matches a single function of Fe in any
sub-interval of (0,s) that does not contain partition points; and we are always able to select an
element of Ae that gives rise to the matched function. In other words, the partition points can be
used to define a partition of (0,s), in the sub-intervals of which the lower envelop matches a single
function that we are able to characterize by an element of Ae. This argument is easily extended to
the entire product over e in (9): we compute the set of partition points for each term of the product,
and take their union. The union defines a partition J of (0,s), in which every sub-interval I is
associated with a single tuple (aI

M1, . . . ,a
I
Mk′) ∈ A1 ×·· ·×Ak′ , so that

k′

∏
e=1

[ min
aMe∈Ae

n(aMe,c′M)

n(aMe,c′′M)+ x
] =

k′

∏
e=1

n(aI
Me,c

′
M)

n(aI
Me,c

′′
M)+ x

.

19. Note that it could be outside [0,s].
20. Note that some partition points may be such that the lower envelope does not change the matched function in Fe, and

so they could be discarded. As an example, assume that the value x identified by (16) is a partition point only for
the two mentioned functions, and that there is a third function below the other two at x. In this case the former two
functions are not involved in the determination of the lower envelope at x.
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Problem (9) then becomes the following:

min
I∈J

inf
x∈I

{[
n(c′′M)+ x

n(c′M)+ s− x)
]k−1

k′

∏
e=1

n(aI
Me,c

′
M)

n(aI
Me,c

′′
M)+ x

·

·
k

∏
j=k′+1

n(aM j,c′M)

n(aM j,c′′M)+ x
·

·
r′

∏
l=1

[
nl(c′′M)+ x

nl(c′M)+ s− x
·

n(âMl,c′M)

n(âMl,c′′M)+ x
]},

where the inner optimization can be solved by the procedure given in Section (3.2), applying it to
the interval I rather than (0,s).

Now it is easy to show that the procedure in Fig. 6 solves Problem (8). The first step of the
procedure builds the set of partition points for the functions in Fe, and the next one defines the
partition of (0,s). Since the function is convex on each sub-interval, the remaining steps solve a
minimization problem on each sub-interval; finally, the global minimum is selected.

Appendix C. Experimental Results Data Set by Data Set

Detailed results by data set are shown in Tables 6 and 7, which refer respectively to the MAR and
non-MAR setting.
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Abstract

In this paper we introduce an improved implementation of locally weighted projection regression
(LWPR), a supervised learning algorithm that is capable of handling high-dimensional input data.
As the key features, our code supports multi-threading, is available for multiple platforms, and
provides wrappers for several programming languages.

Keywords: regression, local learning, online learning, C, C++, Matlab, Octave, Python

1. Introduction

Locally weighted projection regression (LWPR) is an algorithm that achieves nonlinear function
approximation in high dimensional spaces even in the presence of redundant and irrelevant input
dimensions (Vijayakumar et al., 2002). At its core, it uses locally linear models, spanned by a small
number of univariate regressions in selected directions in input space. This nonparametric local
learning system learns rapidly with second order learning methods based on incremental training,
using statistically sound stochastic cross validation.

The implementation of LWPR we present in this work is written in low-level C, requires no
additional libraries, and comes with convenient wrappers for C++, Matlab and Python. Together
with documentation, tutorials and additional supporting materials, it is freely available for download
from http://www.ipab.inf.ed.ac.uk/slmc/software/lwpr.

2. The LWPR Algorithm

The goal of LWPR is to learn a regression function from training data that incrementally arrive as
input-output tuples (xi,yi), where we assume univariate output data for now. The LWPR regression
function is constructed by blending local linear models ψk(x) in the form

f (x) =
1

W (x)

K

∑
k=1

wk(x)ψk(x), W (x) =
K

∑
k=1

wk(x). (1)

c©2008 Stefan Klanke, Sethu Vijayakumar and Stefan Schaal.
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Here, wk(x) is a locality kernel that defines the area of validity of the local models (also termed
“receptive field”), which is usually modeled by a Gaussian

wk(x) = exp

(

−
1
2
(x− ck)

T Dk(x− ck)

)

, (2)

where ck is the centre of the kth linear model and Dk is its distance metric. During training, all
updates to the local models are weighted by their activation wk(x), facilitating fully localised and
inpedendent learning. If no existing local model yields an activation above a certain threshold (e.g.,
wgen = 0.1), a new local model is created with its center ck set to the input datum. Thus, the number
K of local models is adapted automatically.

For learning the linear models ψk(x) themselves, LWPR employs an online formulation of
weighted partial least squares (PLS) regression. In particular, within each local model1 the input
data x is projected along selected directions ui, yielding “latent” variables si with

si = uT
i xi−1, xi = xi−1 − sipi = xi−1 −piuT

i xi−1, x0 = x− x̄,

where the vectors pi ensure orthogonality of the projections, and x̄ is the weighted mean of the input
data (as seen through the receptive field). The output of the local model is then formed by a linear
combination of the latent variables (also called PLS factor loadings)

ψk(x) = β0 +
R

∑
i=1

βisi. (3)

The number R of regression directions is automatically adapted to the local dimensionality of the
training data, and the parameters ui, pi, and βi can be robustly estimated from accumulating certain
statistics of the training set (for details please see Vijayakumar et al., 2005). In a similar fashion,
the distance metrics D can be adapted using stochastic cross-validation, such that the input space is
covered by wide receptive fields in regions of low curvature, and narrow receptive fields where the
curvature is high. The initial distance metric assigned to a newly created receptive field is a rather
critical open parameter. If available, one should use an estimate of the Hessian of the function that is
to be approximated. As a valuable feature of the algorithm, LWPR can optionally yield confidence
bounds for its predictions (Vijayakumar et al., 2005).

There are two possible choices with regard to handling multivariate output data: First, the local
models itself could be made multivariate, in which case only one layer of receptive fields is needed.
Alternately, one can learn all output dimensions independently, effectively using univariate PLS
regression (see, e.g., Garthwaite, 1994) within the local models. In the present implementation
we use the latter approach, which is computationally more costly for many output dimensions, but
usually exhibits superior prediction performance.

LWPR is an algorithm that is particularly suited (and recommended) for regression problems
with a sufficiently large number of training examples. For use in small data set scenarios, the data
should be presented to the algorithm multiple times in random order.

3. Details of the Implementation

This section describes several important aspects of our implementation, all of which are related to
execution speed.

1. For notational convenience we drop the index k of the local model.
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3.1 Data Structures and Memory Allocation

On modern computers, the speed at which many algorithms run does not only depend on the pro-
cessor, but also critically on the speed of memory access. We designed our library so that memory
access is as continuous as possible, thus minimising the chance of cache misses. In our library, all
variables2 of each local model are allocated together in a contiguous piece of memory. Moreover,
we allocate “workspaces” as part of the LWPR model for storing intermediate results, such that no
further allocations are needed during the computations.

3.2 Multithreaded Updates and Predictions

Since the LWPR algorithm is designed to be parallelisable (the local models learn independently),
and nowadays even off-the-shelf mainstream computers are equipped with multi-core processors,
we constructed our LWPR library such that it is capable of running the computations in multiple
threads. The library currently supports POSIX threads on Linux/Unix machines and native threads
on the Windows platform. The desired number of threads has to be defined at compile time, and
threading can be deactivated altogether.

In order to balance the overhead of creating threads with the expected reduction in computation
time, we chose to implement two complimentary strategies for distributing the work. Predictions
of the LWPR model are split up on a per-output-dimension level, which implies that LWPR models
for one-dimensional output data will not be accelerated by using multiple threads. The more costly
update operations, however, are distributed across multiple threads on the receptive field level, so
even single-output models may benefit (see Fig. 1).
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1/2 1/10 2/2 3/2
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Figure 1: Illustration of our threading implementation for the case of (up to) 4 threads. The example
LWPR model has 3 output dimensions with 10, 8, and 9 receptive fields, respectively. A
label M/N denotes the N-th receptive field in the M-th output sub-model. For predictions,
each thread handles a different output dimension. For updates, the workload of each
output dimension is split up among threads, and outputs are handled one after another.

3.3 Fast Computation of Predictions and Their Gradients

For some applications of LWPR, it may be useful to compute analytic derivatives of the model, for
example, to retrieve the Jacobian from a learned forward kinematics relation. The gradient of a
single predicted output (1) is given by

∂ f (x)

∂x
=

1
W ∑

k

(

∂wk

∂x
ψk +wk

∂ψk

∂x

)

−
1

W 2 ∑
k

wkψk ∑
l

∂wl

∂x
,

2. Local models require no less than 27 variables, most of them vectors or matrices, for storing all the memory terms
and sufficient statistics, etc.
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where ∂wk
∂x = −wkDk(x− ck) for the Gaussian kernel (2). The local models ψk(x) are computed by

PLS recursions, and therefore also the gradients of (3) have to be calculated in this rather costly
way:

∂ψ
∂x

=
R

∑
i=1

βi
∂si

∂x0
=

R

∑
i=1

βi

(

uT
i

∂xi−1

∂x0

)T

=
R

∑
i=1

βi

(

∂xi−1

∂xi−2
. . .

∂x1

∂x0

)T

ui

= β1u1 +β2(I−u1pT
1 )u2 +β3(I−u1pT

1 )(I−u2pT
2 )u3 + . . . .

However, between updates (for example, during prediction-only cycles) or after training has fin-
ished, the slopes ∂ψ

∂x of the local models do not change. Our implementation exploits this by memo-
rising the slopes once a gradient is calculated, and directly using these slopes for predictions without
running through the PLS recursions.

3.4 Matlab Interface

Our library started its life as a Matlab-only implementation, and therefore the Matlab struct describ-
ing an LWPR model is practically identical to the data structure used within the C library. When
calling the C functions from Matlab via MEX-wrappers, however, these data structures normally
have to be converted back and forth, which is time-consuming. Therefore, we added a special
storage mechanism to our MEX-wrappers, which allows us to transfer Matlab data to and from C-
managed memory. Then, updates and predictions of an LWPR model can be computed by calling
the “normal” MEX-functions, but passing a certain reference identifier instead of the complete Mat-
lab struct. As an illustration of the performance gain, we trained an LWPR model on a 2D toy data
set. For accomplishing 10,000 updates, the Matlab-only implementation took roughly 100 seconds,
using the MEX wrappers alone took 11.3s, but with our storage mechanism the task is finished after
only 0.8s. The Matlab implementation—including the MEX-wrappers and the storage scheme—is
also compatible with recent versions of Octave.3
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Abstract
Large-scale logistic regression arises in many applications such as document classification and
natural language processing. In this paper, we apply a trustregion Newton method to maximize
the log-likelihood of the logistic regression model. The proposed method uses only approximate
Newton steps in the beginning, but achieves fast convergence in the end. Experiments show that it
is faster than the commonly used quasi Newton approach for logistic regression. We also extend
the proposed method to large-scale L2-loss linear support vector machines (SVM).
Keywords: logistic regression, newton method, trust region, conjugate gradient, support vector
machines

1. Introduction

The logistic regression model is useful for two-class classification. Given datax and weights(w,b),
it assumes the following probability model

P(y =±1|x,w) =
1

1+exp(−y(wT x+b))
,

wherey is the class label. If training instances arexi, i = 1, . . . , l and labels areyi ∈ {1,−1}, one
estimates(w,b) by minimizing the negative log-likelihood:

min
w,b

l

∑
i=1

log(1+ e−yi(wT xi+b)).

There are numerous applications of logistic regression. It can be extended to a multi-class classifi-
cation model, which is a special case of conditional random fields, and is also called the maximum
entropy model in the natural language processing community.

To have a simpler derivation without considering the bias termb, one often augments each
instance with an additional dimension:

xT
i ← [xT

i ,1] wT ← [wT ,b]. (1)

c©2008 Chih-Jen Lin, Ruby C. Weng and S. Sathiya Keerthi.
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Moreover, to obtain good generalization abilities, one adds a regularizationtermwT w/2, so in this
paper we consider the following form of regularized logistic regression:

min
w

f (w)≡
1
2

wT w+C
l

∑
i=1

log(1+ e−yiwT xi), (2)

whereC > 0 is a parameter decided by users so that the two terms in (2) are balanced. One can
easily check that (2) is twice continuously differentiable.

There are many methods for training logistic regression models. In fact, mostunconstrained
optimization techniques can be considered. Those which have been used inlarge-scale scenarios
are, for example, iterative scaling (Darroch and Ratcliff, 1972; Pietra et al., 1997; Goodman, 2002;
Jin et al., 2003), nonlinear conjugate gradient, quasi Newton (in particular, limited memory BFGS)
(Liu and Nocedal, 1989; Benson and Moré, 2001), and truncated Newton (Komarek and Moore,
2005). All these optimization methods are iterative procedures, which generate a sequence{wk}∞

k=1
converging to the optimal solution of (2). One can distinguish them accordingto the following two
extreme situations of optimization methods:

Low cost per iteration;
←→

High cost per iteration;
slow convergence. fast convergence.

For instance, iterative scaling updates one component ofw at a time, so the cost per iteration is
low but the number of iterations is high. In contrast, Newton method, which is expensive at each
iteration, has very fast convergence rates. Many have attempted to compare these methods for
logistic regression. Minka (2003) experiments with small data sets, and Malouf (2002) has done
an extensive comparison for large-scale sets. Currently, most argue that the limited memory BFGS
method is the most efficient and effective (e.g., Malouf, 2002; Sutton and McCallum, 2006) and
references therein). In this article, we aim at situations for which bothl (number of instances) and
n (number of features) are very large. In addition, the data instancesx1, . . . ,xl are sparse (i.e., many
feature values are zero). Many recent applications from document classification and computational
linguistics are of this type.

Truncated Newton methods have been an effective approach for large-scale unconstrained op-
timization, but their use for logistic regression has not been fully exploited. Though Komarek and
Moore (2005) have considered this type of methods, their implementation doesnot follow rigorous
optimization derivations, and hence may not be guaranteed to obtain the minimum of the negative
log-likelihood. In Section 2, we discuss an efficient and robust truncated Newton method for logis-
tic regression. This approach, called trust region Newton method, uses only approximate Newton
steps in the beginning, but takes full Newton directions in the end for fast convergence.

In Sections 3 and 4, we discuss some existing optimization methods for logistic regression
and conduct comparisons. As Newton method uses the exact Hessian (second derivative), it has
quadratic convergence near the optimum. Results indicate that our proposed method converges
much faster than quasi-Newton methods, which use only an approximate Hessian. Section 5 in-
vestigates a variant of our proposed method by using preconditioned conjugate gradients in the
trust region framework. In Section 6, we extend the proposed trust region method to solve L2-loss
support vector machines. Finally, Section 7 gives conclusions.

All sources used in this paper are available at

http://www.csie.ntu.edu.tw/ ˜ cjlin/liblinear .

A preliminary version of this work appears in a conference paper (Lin etal., 2007).
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2. Trust Region Newton Methods

In this section, we briefly discuss Newton and truncated Newton methods. Forlarge-scale logistic
regression, we then propose a trust region Newton method, which is a typeof truncated Newton
approach.

2.1 Newton and Truncated Newton Methods

To discuss Newton methods, we need the gradient and Hessian off (w):

∇ f (w) = w+C
l

∑
i=1

(σ(yiwT xi)−1)yixi, (3)

∇2 f (w) = I +CXT DX , (4)

whereI is the identity matrix,

σ(yiwT xi) = (1+ e−yiwT xi)−1.

D is a diagonal matrix with

Dii = σ(yiwT xi)(1−σ(yiwT xi)), andX =







xT
1
...

xT
l







is anl×n matrix. The Hessian matrix∇2 f (w) is positive definite, so (2) is strictly convex. We can
further prove the following theorem.

Theorem 1 (2) attains a unique global optimal solution.

The proof is in Appendix A.
Since∇2 f (wk) is invertible, the simplest Newton method updatesw by the following way

wk+1 = wk +sk, (5)

wherek is the iteration index andsk, the Newton direction, is the solution of the following linear
system:

∇2 f (wk)sk =−∇ f (wk). (6)

However, there are two issues in using this update rule:

1. The sequence{wk} may not converge to an optimal solution. In fact, even the function value
may not be guaranteed to decrease.

2. While we assume that the data matrixX is sparse,XT DX is much denser. The Hessian matrix
is then too large to be stored. Thus, solving the linear system (6) is an issue that needs careful
consideration.
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Optimization researchers address the first issue by adjusting the length of the Newton direction.
Two techniques are often used: line search and trust region.

For the second issue, there are two major types of methods for solving linearsystems: direct
methods (e.g., Gaussian elimination), and iterative methods (e.g., Jacobi and conjugate gradient).
The main operation of certain iterative methods is the product between the Hessian matrix and a
vectors:

∇2 f (w)s= (I +CXT DX)s

= s+C ·XT (D(Xs)). (7)

As we assume sparseX , (7) can be efficiently calculated without storing the Hessian matrix∇2 f (wk).
Therefore, for large logistic regression, iterative methods are more suitable than direct methods,
which require the whole Hessian matrix. Among iterative methods, currently conjugate gradients
are the most used ones in Newton methods. The optimization procedure then has two layers of
iterations: at each outer iteration an inner conjugate gradient procedurefinds the Newton direction.
Unfortunately, conjugate gradient methods may suffer from lengthy iterations in certain situations.
To save time, one may use only an “approximate” Newton direction in the early stages of the outer
iterations. Such a technique is called truncated Newton method (or inexact Newton method).

Komarek and Moore (2005) are among the first to apply truncated Newton methods for logistic
regression.1 They approximately solve (6) by conjugate gradient procedures and use (5) to update
wk. They terminate the conjugate gradient procedure if the relative difference of log likelihoods
between two consecutive conjugate gradient iterations is smaller than a threshold. However, they do
not provide a convergence proof. In fact, when we tried their code, we found that‖∇ f (wk)‖ may
not approach zero and hence{wk} may not converge to an optimum.

Optimization researchers have well addressed the above two issues together. They devise the
procedure of outer iterations, and specify stopping conditions for the inner iterations. The overall
framework guarantees the convergence to the global minimum. The truncationrule of the inner al-
gorithm is important as one should stop after a sufficiently good direction hasbeen found. A survey
of truncated Newton methods is by Nash (2000). Some comparisons betweenlimited memory quasi
Newton and truncated Newton are by Nocedal and Nash (1991) and Zouet al. (1993).

2.2 A Trust Region Newton Method

We consider the trust region method (Lin and Moré, 1999), which is a truncated Newton method to
deal with general bound-constrained optimization problems (i.e., variables are in certain intervals).
We simplify the setting to unconstrained situations, so the algorithm is close to earlier work such as
Bouaricha et al. (1997) and Steihaug (1983).

At each iteration of a trust region Newton method for minimizingf (w), we have an iteratewk,
a size∆k of the trust region, and a quadratic model

qk(s) = ∇ f (wk)T s+
1
2

sT ∇2 f (wk)s

1. They minimize only the negative log likelihood without the regularization termwT w/2.
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Algorithm 1 A trust region algorithm for logistic regression

1. Givenw0.

2. Fork = 0,1, . . . (outer iterations)

• If ∇ f (wk) = 0, stop.

• Find an approximate solutionsk of the trust region sub-problem

min
s

qk(s) subject to‖s‖ ≤ ∆k. (11)

• Computeρk via (8).

• Updatewk to wk+1 according to (9).

• Obtain∆k+1 according to (10).

as the approximation of the valuef (wk + s)− f (wk). Next, we find a stepsk to approximately
minimizeqk(s) subject to the constraint‖s‖ ≤ ∆k. We then updatewk and∆k by checking the ratio

ρk =
f (wk +sk)− f (wk)

qk(sk)
(8)

of the actual reduction in the function to the predicted reduction in the quadratic model. The direc-
tion is accepted ifρk is large enough:

wk+1 =

{

wk +sk if ρk > η0,

wk if ρk ≤ η0,
(9)

whereη0 > 0 is a pre-specified value.
From Lin and Moŕe (1999), updating rules for∆k depend on positive constantsη1 andη2 such

thatη1 < η2 < 1, while the rate at which∆k is updated relies on positive constantsσ1,σ2, andσ3

such thatσ1 < σ2 < 1 < σ3. The trust region bound∆k is updated by the rules

∆k+1 ∈ [σ1min{‖sk‖,∆k},σ2∆k] if ρk ≤ η1,
∆k+1 ∈ [σ1∆k,σ3∆k] if ρk ∈ (η1,η2),
∆k+1 ∈ [∆k,σ3∆k] if ρk ≥ η2.

(10)

Similar rules are used in most modern trust region methods. A description of our trust region
algorithm is given in Algorithm 1. The main difference between our algorithm and those by Steihaug
(1983) and Bouaricha et al. (1997) is on the rule (10) for updating∆k.

The conjugate gradient method to approximately solve the trust region sub-problem (11) is given
in Algorithm 2. The main operation is the Hessian-vector product∇2 f (wk)di, which is implemented
using the idea in Eq. (7). Note that only one Hessian-vector product is needed at each conjugate
gradient iteration. Since

r i =−∇ f (wk)−∇2 f (wk)s̄i,

the stopping condition (12) is the same as

‖−∇ f (wk)−∇2 f (wk)s̄i‖ ≤ ξk‖∇ f (wk)‖,
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Algorithm 2 Conjugate gradient procedure for approximately solving the trust regionsub-problem
(11)

1. Givenξk < 1,∆k > 0. Let s̄0 = 0, r0 =−∇ f (wk), andd0 = r0.

2. Fori = 0,1, . . . (inner iterations)

• If
‖r i‖ ≤ ξk‖∇ f (wk)‖, (12)

then outputsk = s̄i and stop.

• αi = ‖r i‖2/((di)T ∇2 f (wk)di).

• s̄i+1 = s̄i +αidi.

• If ‖s̄i+1‖ ≥ ∆k, computeτ such that

‖s̄i + τdi‖= ∆k, (13)

then outputsk = s̄i + τdi and stop.

• r i+1 = r i−αi∇2 f (wk)di.

• βi = ‖r i+1‖2/‖r i‖2.

• di+1 = r i+1 +βidi.

which implies that̄si is an approximate solution of the linear system (6). However, Algorithm 2
is different from standard conjugate gradient methods for linear systemsas the constraint‖s‖ ≤ ∆
must be taken care of. It is known that (Steihaug, 1983, Theorem 2.1) with s̄0 = 0, we have

‖s̄i‖< ‖s̄i+1‖,∀i,

so in a finite number of conjugate gradient iterations, either (12) is satisfied or s̄i+1 violates the trust
region constraint. In the latter situation, (13) finds a point on the trust region boundary as

qk(s̄i + τdi) < qk(s̄i).

The whole procedure is a careful design to make sure that the approximateNewton direction is good
enough and the trust region method converges.

Next, we discuss convergence properties of the trust region Newton method. Most results can be
traced back to Steihaug (1983). However, here we follow Lin and Moré (1999) as our algorithmic
settings are closer to it. For the sequence{wk} to have at least one limit point,2 since f (wk) is
decreasing, it suffices to show that the level set{w | f (w) ≤ f (w0)} is closed and bounded. This
result has been explained in the proof of Theorem 1. To have this limit pointto be the minimum,
Theorem 2.1 of Lin and Moré (1999) requires that∇2 f (wk) is uniformly bounded. We have this
property as∇2 f (w) is continuous in this bounded level set.

Eq. (12) is a relative stopping condition in solving a linear system. The parameterξk effectively
controls the efforts associated with the inner iterations. The following theorem summarizes the
convergence of Algorithm 1.

2. That is, the sequence{wk} has at least one convergent sub-sequence.
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Theorem 2 The sequence {wk} generated by Algorithm 1 globally converges to the unique mini-
mum of (2). If ξk < 1, then the trust region method Q-linearly converges:

lim
k→∞

‖wk+1−w∗‖
‖wk−w∗‖

< 1, (14)

where w∗ is the unique optimal solution of (2). If

ξk→ 0 as k→ ∞,

then the limit in (14) becomes zero, so we have Q-superlinear convergence.

We do not provide a proof here as it follows from Theorem 5.4 of Lin andMoré (1999). Since
the Hessian matrix∇2 f (w) is continuously differentiable,∇2 f (w) is Lipschitz continuous around
the optimal solution. Hence, as explained by Lin and Moré (1999),3 if ξk ≤ κ0‖∇ f (wk)‖ for a
positive constantκ0, then at final iterations, our algorithm has quadratic convergence:

lim
k→∞

‖wk+1−w∗‖
‖wk−w∗‖2

< 1.

Regarding the computational complexity, the cost per iteration is

O(nnz) for 1 function and 0/1 gradient evaluations

+ O(nnz)× number of conjugate gradient iterations, (15)

where nnz is the number of nonzero elements in the sparse matrixX . Note that ifwk is not updated
in (9), then the gradient is the same for the next iteration.

3. Related Methods and Implementation Issues

In this section, we discuss a general limited memory quasi Newton implementation (Liu and No-
cedal, 1989). Many consider it to be very efficient for training logistic regression. We also discuss
implementation issues of the proposed trust region Newton method.

3.1 Limited Memory Quasi Newton Method

We briefly introduce the approach by Liu and Nocedal (1989). Quasi Newton methods use certain
techniques to obtain an approximate inverse HessianHk and can easily update it toHk+1. One of
the most popular updates is BFGS. The approach by Liu and Nocedal (1989) is almost the same as
BFGS, but restricts the update to use onlym vectors from the previous iterations. The matrixHk is
not formed explicitly and there is an efficient way to computeHk∇ f (wk). This property is useful
for large logistic regression as we cannot afford to storeHk. The procedure is sketched in Algorithm
3.

Regarding the convergence rate, Assumption 7.1 of Liu and Nocedal (1989) requires:

1. f (w) is twice continuously differentiable.

2. The level set{w | f (w)≤ f (w0)} is bounded.

3. See the explanation given in that paper after the proof of Theorem 5.4.
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Algorithm 3 Limited memory BFGS

1. Givenw0,H0 and a small integerm.

2. Fork = 0,1, . . .

• If ∇ f (wk) = 0, stop.

• Usingm vectors from previous iterations to calculateHk∇ f (wk), whereHk is an approx-
imate inverse Hessian.

• Searchαk so that
f (wk−αHk∇ f (wk))

satisfies certain sufficient decrease conditions.

• UpdateHk to Hk+1.

3. There are positive constantsM1 andM2 such that

M1‖s‖2≤ sT ∇2 f (w)s≤M2‖s‖2, ∀s.

The function we are minimizing satisfies the first condition. The second condition follows from our
proof of Theorem 1 (see Eq. 29). The third condition follows from choosing

M1 = 1 andM2 = 1+C‖XT‖‖X‖.

Then Algorithm 3 is R-linearly convergent. That is, there is a constantc < 1 such that

f (wk)− f (w∗)≤ ck( f (w0)− f (w∗)), (16)

wherew∗ is the unique optimal solution of (2). Note that (14) implies (16), so Algorithm 1 has
a stronger convergence property than Algorithm 3. While truncated Newton methods find an ap-
proximate direction, they still use the exact Hessian matrix. In contrast, limited memory quasi
Newton methods consider only approximate Hessian matrices, so we can expect that it has slower
convergence.

The cost per iteration is

O(nnz) for function/gradient evaluations in line search

+ O(nm) for Hk∇ f (wk) and updatingHk to Hk+1. (17)

As generallynm < nnz, function/gradient evaluations take most computational time. Moreover,
compared to (15), the cost per iteration is less than that for our trust region method. However, as we
will show in experiments,LBFGS’ total training time is longer due to its lengthy iterations.

In this paper, we usem = 5, which is the default choice in theLBFGS software (Liu and Nocedal,
1989).

3.2 Implementation Issues of Trust Region Newton Method

We give details of parameters in the proposed Algorithms 1 and 2. All settings are almost the same
as theTRON software (Lin and Moŕe, 1999).
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Problem l # Positive # Negative n # nonzeros
a9a 32,561 7,841 24,720 123 451,592
real-sim 72,309 22,238 50,071 20,958 3,709,083
news20 19,996 9,999 9,997 1,355,191 9,097,916
yahoo-japan 176,203 15,937 160,266 832,026 23,506,415
rcv1 677,399 355,460 321,939 47,236 49,556,258
yahoo-korea 460,554 145,831 314,723 3,052,939 156,436,656

Table 1: Data statistics:l is the number of instances andn is the number of features. # nonzeros
indicates the number of nonzeros amongl×n values.

We set the initial∆0 = ‖∇ f (w0)‖ and takeη0 = 10−4 in (9) to updatewk. For changing∆k to
∆k+1, we use

η1 = 0.25,η2 = 0.75,

σ1 = 0.25,σ2 = 0.5,σ3 = 4.0.

As (10) specifies only the interval in which∆k+1 should lie, there are many possible choices of the
update rules. We use the same rules as given by Lin and Moré (1999). In the conjugate gradient
procedure, we useξk = 0.1 in the stopping condition (12). One may wonder how the above numbers
are chosen. These choices are considered appropriate following the research on trust region methods
in the past several decades. It is unclear yet if they are the best for logistic regression problems, but
certainly we would like to try custom settings first.

4. Experiments

In this section, we compare our approach with a quasi Newton implementation for logistic regres-
sion. After describing data sets for experiments, we conduct detailed comparisons and discuss
results.

4.1 Data Sets

We consider six data sets from various sources. Table 1 lists the numbers of instances (# positive, #
negative), features, and nonzero feature values. Details of data setsare described below.

a9a: This set is compiled by Platt (1998) from the UCI “adult” data set (Asuncion and New-
man, 2007). It is available athttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/
binary/a9a .

real-sim: This set is from the web site
http://people.cs.uchicago.edu/ ˜ vikass/datasets/lskm/svml/ . It, originally compiled by
Andrew McCallum, includes Usenet articles from four discussion groups, for simulated auto racing,
simulated aviation, real autos, and real aviation.

news20: This is a collection of news documents. We use the data processed by Keerthi and
DeCoste (2005). They consider binary term frequencies and normalizeeach instance to unit length.
This set is available at
http://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/binary/news20.binary.bz2 .
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TRON LBFGS
C CV Time Time

0.25 84.69% 1 12
1 84.71% 2 24
4 84.72% 4 47

16 84.71% 7 92

(a) a9a

TRON LBFGS
CV Time Time

95.85% 4 17
96.97% 6 34
97.41% 10 52
97.51% 14 126

(b) real-sim

TRON LBFGS
CV Time Time

89.74% 24 78
93.36% 38 181
95.49% 59 331
96.30% 82 614

(c) news20

TRON LBFGS
C CV Time Time

0.25 91.91% 28 94
1 92.50% 42 185
4 92.81% 64 326

16 92.86% 113 534

(d) yahoo-japan

TRON LBFGS
CV Time Time

97.18% 39 106
97.56% 62 427
97.72% 94 615
97.69% 118 821

(e) rcv1

TRON LBFGS
CV Time Time

81.34% 221 1066
84.03% 385 2165
85.75% 773 3480
86.40% 1888 6329

(f) yahoo-korea

Table 2: The comparison betweenTRON andLBFGS. Here time (in seconds) is the total training
time in the CV procedure. AsTRON and LBFGS minimize the same formulation and their CV
accuracy values are almost the same, we present only the result ofTRON. The number of CV folds
is five for small problems, and is two for larger ones (yahoo-japan, rcv1, yahoo-korea). Note that
the CV values do not increase usingC > 16.

yahoo-japan: This set, obtained from Yahoo!, includes documents in hundreds of classes. We
consider the class with the largest number of instances as positive and all remaining instances as
negative. We use binary term frequencies and normalize each instance tounit length.

rcv1: This set (Lewis et al., 2004) is an archive of manually categorized newswire stories from
Reuters Ltd. Each vector is a cosine normalization of a log transformed TF-IDF (term frequency,
inverse document frequency) feature vector. The news documents are in a hierarchical structure of
classes. We split the data to positive/negative by using the two branches in the first layer of the
hierarchy. Data which are multi-labeled (i.e., in both branches) are not considered. The set used
here can be found at
http://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/binary/rcv1_test.binary. bz2 .

yahoo-korea: This set, from Yahoo!, includes documents in a hierarchy of classes. We consider
the largest branch from the root node (i.e., the branch including the largest number of classes) as
positive, and all others as negative.

Clearly, excepta9a, all other sets are from document classification. We find that normalizations
are usually needed so that the length of each instance is not too large. Otherwise, when the number
of features is large,wT xi may be huge and cause difficulties in solving optimization problems (For
good performance also, past experiences show that such normalizations are usually needed). After
normalization, we include the bias term using (1).

All data sets are quite balanced. It is known that unbalanced sets usually lead to shorter training
time. Therefore, problems used in this article are more challenging in terms of training time.
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Figure 1: A comparison betweenTRON (blue solid line) andLBFGS (red dotted line). They-axis
shows the difference to the optimal function value. Thex-axis (training time) is in seconds. We use
the training set from the first training/validation split of the CV procedure and setC = 4.
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Figure 2: A comparison betweenTRON (blue solid line) andLBFGS (red dotted line). They-axis
shows‖∇ f (w)‖∞ = maxj |∇ f (w) j|. Thex-axis (training time) is in seconds. We use the training
set from the first training/validation split of the CV procedure and setC = 4.
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4.2 Comparisons

We compare two logistic regression implementations:

• TRON: the trust region Newton method discussed in Section 2.2.

• LBFGS: the limited memory quasi Newton implementation (Liu and Nocedal, 1989). See the
discussion in Section 3.1. The source code is available online at

http://www.ece.northwestern.edu/ ˜ nocedal/lbfgs.html .

We do not consider the code by Komarek and Moore (2005) because oftwo reasons. First, we
have mentioned its convergence problems in Section 2.1. Second, for sparse data, it handles only
problems with 0/1 feature values, but most our data have real-numbered features.

These methods are implemented in high-level languages such as C/C++ or FORTRAN. For
easier experiments, we use their Matlab interfaces. Experiments are conducted on an Intel Core2
Quad (2.66GHz) computer with 8 GB RAM. All sources used for this comparison can be found at

http://www.csie.ntu.edu.tw/ ˜ cjlin/liblinear .

We set the initialw0 = 0.
We conduct two types of experiments. For the first one, we simulate the practical use of logistic

regression by setting a stopping condition and checking the prediction ability.Most unconstrained
optimization software use gradient information to terminate the iterative procedure, so we use

‖∇ f (wk)‖∞ ≤ 10−3 (18)

as the stopping condition. We then report cross-validation (CV) accuracy. For the larger sets (yahoo-
japan, rcv1, andyahoo-korea), we use two-fold CV. For others, five-fold CV is conducted. We do
not consider other measurements such as AUC (Area Under Curve) or F-measure as all problems
are rather balanced, and CV accuracy is suitable. Moreover, different values of the regularization
parameterC may affect the performance as well as training time. So we try four different C values:
0.25, 1, 4, and 16. Table 2 presents the result of comparisons. We showCV accuracy and the total
training time in the CV procedure.

On training time,TRON is better thanLBFGS, so truncated Newton methods are effective for
training logistic regression. One may wonder if any implementation-specific details cause unfair
timing comparisons. Indeed we have made the experimental environments as close as possible. For
the methods compared here, we store the sparse matrixX by the same compressed row format.
Section 4.3 discusses that different sparse formats may lead to dissimilar computational time. For
LBFGS, one main cost is on function/gradient evaluations, which are provided byusers. We im-
plement the same code inTRON andLBFGS for function/gradient evaluations. Thus, our timing
comparison is quite fair.

For C ≥ 16, the CV accuracy does not improve. One can clearly see that the training time is
higher asC increases. One reason is that the second term of (4) plays a more important role and
hence the Hessian matrix is more ill-conditioned. Another reason is that (18) becomes a stricter
condition. In (3), the second term off (w) is proportional toC. Hence, practically one may use a
stopping condition relative toC.
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Figure 3: A comparison betweenTRON (blue solid line) andSVMlin (red dotted line) for L2-SVM.
The y-axis shows the difference to the optimal function value. Thex-axis (training time) is in
seconds. We use the same training set as in Figure 1 and setC = 4.
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For the second experiment, we check the convergence speed of both methods. Figure 1 presents
the results of time versus the difference to the optimal function value. We use the training set from
the first training/validation split of the CV procedure and setC = 4. In Figure 2, we check time
against‖∇ f (w)‖∞. Both figures indicate thatTRON more quickly decreases the function as well
as the gradient values thanLBFGS. This result is consistent with the faster theoretical convergence
rate ofTRON.

4.3 Row and Column Formats in StoringX

A sparse matrix can be represented by many ways. Two commonly used onesare “compressed
column” and “compressed row” formats (Duff et al., 1989). For example,if

X =

[

−10 0 −20 0
30 0 0 10

]

,

then its compressed column format is by three arrays:

X val = [−10,30,−20,10], X rowind = [1,2,1,2], X colptr = [1,3,3,4,5],

whererowind means row indices andcolptr means column pointers.4 Alternatively, compress
row format has

X val = [−10,−20,30,10], X colind = [1,3,1,4], X rowptr = [1,3,5].

There are two important properties: First,X ’s column (row) format isXT ’s row (column) format.
Second, using the column (row) format forX leads to easy accesses of all values of one column
(row). For data classification, the column (row) format thus lets us easily access any particular
feature (any particular instance).

The main conjugate gradient operation (7) involves two matrix-vector products—one is with
XT , and the other is withX . In using the column format, there are ways so that for both operations,
sequentiallyX ’s columns are accessed. Similarly, if using the row format, we only need to access
X ’s rows. Thus, one may think that using the two (row and column) sparse formats does not cause
many differences. Table 3 presents a comparison. Surprisingly, for some problems the difference is
huge. One possible reason is the different number of nonzero entries per column and per row inX .
During the matrix-vector product, as a column (or a row) is used at a time, its elements should be
put in the higher level of the computer memory hierarchy. If the number of nonzeros in a column
is significantly larger than those in a row, very likely a column cannot be fit intothe same memory
level as that for a row. We think that this situation occurs forrcv1, for which the number of instances
is significantly larger than the number of features.

Of course the practical behavior depends on the computer architecturesas well as how nonzero
elements are distributed across rows and columns. We do not intend to fully address this issue
here, but would like to point out the importance of implementation details in comparing learning
algorithms. In Table 2, both methods are implemented using the row format. Withoutbeing careful
on such details, very easily we may get misleading conclusions.

4. This way of using three arrays is common in FORTRAN programs, which did not support pointers. One can imple-
ment this format using pointers, where each pointer associates with values and indices of a row.
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Problem Row Column
a9a 7 7
real-sim 14 22
news20 82 55
yahoo-japan 113 127
rcv1 118 226
yahoo-korea 1888 2060

Table 3: Total training time (in seconds) in the CV procedure by storingX in compress row and
column formats. We useC = 16 andε = 0.001.

5. Preconditioned Conjugate Gradient Methods

To reduce the number of conjugate gradient iterations, in the truncated Newton method one often
uses preconditioned conjugate gradient procedures. Instead of solving the Newton linear system
(6), we consider a preconditioner which approximately factorizes the Hessian matrix

∇2 f (wk)≈ PPT (19)

and then solve a new linear system

(P−1∇2 f (wk)P−T )ŝ=−P−1∇ f (wk),

whereŝ= PT s. If the approximate factorization (19) is good enough,P−1∇2 f (wk)P−T is close to the
identity and less conjugate gradient iterations are needed. However, as we need extra efforts to findP
and the cost per conjugate iteration is higher, a smaller number of conjugate gradient iterations may
not lead to shorter training time. Thus, finding suitable preconditioners is usually difficult. Popular
preconditioners include, for example, diagonal matrix of the Hessian and incomplete Cholesky
factorization.

Our situation differs from other unconstrained optimization applications in two aspects. First,
lengthy conjugate gradient iterations often occur at final outer steps, but for machine learning appli-
cations the algorithm may stop before reaching such a stage. Thus we may not benefit from using
preconditioners. Second, preconditioners are more easily obtained by assuming that the whole Hes-
sian matrix∇2 f (wk) is available. As we never multiplyXT DX out, ∇2 f (wk) is not stored and the
selection of preconditioners may be more restricted. In this section, we conduct experiments by
using the simple diagonal preconditioner

P = PT =
√

Diag(∇2 f (wk)).

Since

∇2 f (wk)ii = 1+C
l

∑
j=1

X2
jiD j j,

one goes through allX ’s nonzero elements once for finding diagonal elements. The cost of obtaining
the preconditioner is thus no more than that of one conjugate gradient iteration.

The trust region sub-problem needs to be adjusted. Here we follow the derivation of Lin and
Moré (1999) by considering a scaled version

min
s

qk(s) subject to‖PT s‖ ≤ ∆k. (20)
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Algorithm 4 Preconditioned conjugate gradient procedure for approximately solvingthe trust re-
gion sub-problem (21)

1. Givenξk < 1,∆k > 0. Let ŝ0 = 0, r0 =−ĝ, andd0 = r0.

2. Fori = 0,1, . . . (inner iterations)

• If
‖r i‖ ≤ ξk‖ĝ‖,

then outputsk = P−T ŝi and stop.

• αi = ‖r i‖2/((di)T Ĥdi).

• ŝi+1 = ŝi +αidi.

• If ‖ŝi+1‖ ≥ ∆k, computeτ such that

‖ŝi + τdi‖= ∆k,

then outputsk = P−T (ŝi + τdi) and stop.

• r i+1 = r i−αiĤdi.

• βi = ‖r i+1‖2/‖r i‖2.

• di+1 = r i+1 +βidi.

With ŝ= PT s, we transform (20) to

min
ŝ

q̂k(ŝ) subject to‖ŝ‖ ≤ ∆k, (21)

where

q̂k(ŝ) = ĝT ŝ+
1
2

ŝT Ĥŝ,

and
ĝ = P−1∇ f (wk), Ĥ = P−1∇2 f (wk)P−T .

Eq. (21) is in the same form as (11), the sub-problem without using preconditioners, so the proce-
dure to approximately solve (21) is almost the same as Algorithm 2. We give details in Algorithm
4. Note that in practical implementations we calculateĤdi by a way similar to (7)

P−1(P−T di +C(XT (D(X(P−T di))))).

In Table 4, we present the average number of conjugate gradient iterations per fold in the CV
procedure. The approach of using diagonal preconditioning reduces the number of iterations for
only two problems. The number is increased for all other data sets. This experiment indicates the
difficulty of doing preconditioning. Identifying effective preconditioners is thus a challenging future
research issue.
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Problem CG PCG
a9a 567 263
real-sim 104 160
news20 71 155
citeseer 113 115
yahoo-japan 278 326
rcv1 225 280
yahoo-korea 779 736

Table 4: Average number of conjugate gradient iterations per fold in the CVprocedure. CG: without
preconditioning. PCG: using diagonal preconditioning. We useC = 16 and the stopping condition
‖∇ f (wk)‖∞ ≤ 0.001.

6. Trust Region Method for L2-SVM

The second term in (2) can be considered as a loss function, so regularized logistic regression is
related to other learning approaches such as Support Vector Machines(SVM) (Boser et al., 1992).
L1-SVM solves the following optimization problem:

min
w

f1(w)≡
1
2

wT w+C
l

∑
i=1

max
(

0,1− yiwT xi
)

,

while L2-SVM solves

min
w

f2(w)≡
1
2

wT w+C
l

∑
i=1

(

max(0,1− yiwT xi)
)2

. (22)

SVM is often used with a nonlinear kernel, where dataxi are mapped to a high dimensional space.
However, for document classification, past experiments show that with/without nonlinear mapping
gives similar performances. For the case of no nonlinear mapping, we have the possibility of directly
solving bigger optimization problems. We refer to such cases aslinear SVM, and considerable
efforts have been made on its fast training (e.g., Kao et al., 2004; Keerthiand DeCoste, 2005;
Joachims, 2006; Shalev-Shwartz et al., 2007; Smola et al., 2008). L1-SVM is not differentiable, so
our method cannot be applied. For L2-SVM, the training objection function (22) is differentiable but
not twice differentiable (Mangasarian, 2002). In this section, we extendour trust region method for
L2-SVM. We then compare it with an earlier Newton method for L2-SVM (Keerthi and DeCoste,
2005).

6.1 Trust Region Method

Let f2(w) be the L2-SVM function. It is strictly convex, so a proof similar to Theorem 1shows that
a unique global minimum exists. From Mangasarian (2002),f2(w) is continuously differentiable
with the gradient

∇ f2(w) = (I +2CXT
I,:XI,:)w−2CXT

I,:yI,

where
I = {i | 1− yiwT xi > 0} (23)
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is an index set depending onw andXI,: includesX ’s rows corresponding to the setI. Unfortunately,
L2-SVM is not twice differentiable, so one cannot use Newton directions.However, as shown by
Mangasarian (2002), this function is almost twice differentiable. The gradient ∇ f2(w) is Lipschitz
continuous, so one can define thegeneralized Hessian matrix

B(w) = I +2CXT DX ,

where

Dii =











1 if 1− yiwT xi > 0,

any element in[0,1] if 1− yiwT xi = 0,

0 if 1− yiwT xi < 0.

Then the trust region method (Lin and Moré, 1999) can be applied by replacing∇2 f (w) in Section
2.2 withB(w). In other words, we use the generalized Hessian matrixB(w) to obtain Newton-like
directions. AsB(w) is uniformly bounded:

1≤ ‖B(w)‖ ≤ 1+2C‖XT‖‖X‖, ∀w,

Theorem 2.1 of Lin and Moré (1999) implies the global convergence. However, we cannot apply
Theorem 5.4 of Lin and Moré (1999) to have quadratic convergence. This result requires the twice
continuous differentiability.

For experiments here, we setDii = 0 if 1− yiwT xi = 0. The Hessian-vector product in the
conjugate gradient procedure is then

B(w)s= s+2C ·XT
I,:(DI,I(XI,:s)). (24)

6.2 Modified Newton Method for L2-SVM

The method by Keerthi and DeCoste (2005) is currently one of the most efficient methods to train
large-scale linear L2-SVM. Its key idea is that for any given index setI ⊂ {1, . . . , l}, if the optimal
solutionw∗ of the following problem

min
w

1
2

wT w+C∑
i∈I

(1− yiwT xi)
2 (25)

satisfies

1− yi(w∗)T xi

{

> 0 if i ∈ I,

≤ 0 if i /∈ I,

then w∗ is an optimal solution of the L2-SVM problem (22). OnceI is fixed, (25) is a simple
regularized least square problem and can be solved by the following linear system:

(I +2CXT
I,:XI,:)w = 2CXT

I,:yI . (26)

One then guesses this setI by (23) and solves (26). The matrix in (26) is a generalized Hessian atw,
so (26) intends to obtain a Newton-like direction. Keerthi and DeCoste (2005) use conjugate gradi-
ent methods to solve (26), and the procedure is described in Algorithm 5. They prove that Algorithm
5 converges to the optimal solution of (22) in a finite number of iterations. This convergence result
assumes that at each iteration, (26) is exactly solved. However, they usea relative stopping condition
in practical implementations, so the convergence remains an issue. In contrast, the convergence of
our trust region method holds when the conjugate gradient procedure only approximately minimizes
the trust-region sub-problem.
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Algorithm 5 Modified Newton Method for L2-SVM

1. Givenw0.

2. Fork = 0,1, . . .

• If ∇ f (wk) = 0, stop.

• Set up (26) using
Ik = {i | 1− yi(wk)T xi > 0}.

Solve (26) by the conjugate gradient procedure and obtainw̄k.

• Let sk = w̄k−wk.

Find
αk = argmin

α≥0
f (wk +αsk),

and setwk+1 = wk +αksk.

6.3 Comparisons

We compare our proposed trust region implementation (TRON) in Section 6.1 withSVMlin

http://people.cs.uchicago.edu/ ˜ vikass/svmlin.html ,

an implementation of the method by Keerthi and DeCoste (2005). To solve (26), SVMlin considers
a relative stopping condition for the conjugate gradient procedure. Following their convergence
result, we modifySVMlin to quite accurately solve the linear system (26): Recall in Algorithm 5
that we sequentially obtain the following items:

wk→ Ik→ w̄k.

We then use
‖(I +2CXT

Ik,:XIk,:)w̄
k−2CXT

Ik,:yIk‖∞ ≤ 10−3

as the stopping condition of the conjugate gradient procedure inSVMlin.
Figure 3 presents the result of time versus the difference to the optimal function value. Both

approaches spend most of their time on the operation (24) in the conjugate gradient procedure.
Clearly, TRON more quickly reduces the function value.SVMlin is slower because it accurately
solves (26) at early iterations. Hence, many conjugate gradient iterationsare wasted. In contrast,
trust region methods are effective on using only approximate directions in the early stage of the
procedure.

7. Discussion and Conclusions

As logistic regression is a special case of maximum entropy models and conditional random fields,
it is possible to extend the proposed approach for them. The main challenge isto derive the Hes-
sian matrix and efficiently calculate the Hessian-vector product. This topic deserves a thorough
investigation in the future.
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One may use a different regularized term for logistic regression. For example, the two-norm
‖w‖2/2 could be replaced by a one-norm term‖w‖1. Then (2) becomes

min
w

‖w‖1 +C
l

∑
i=1

log(1+ e−yiwT xi). (27)

This formula has been used for some applications. See (Balakrishnan andMadigan, 2005) and Koh
et al. (2007) and references therein. Unfortunately, (27) is not differentiable onw. We can transform
it to a twice-differentiable bound-constrained problem by usingw≡ w+−w−:

min
w+,w−

n

∑
j=1

w+
j +

n

∑
j=1

w−j +C
l

∑
i=1

log(1+ e−yi(w+−w−)T xi)

subject to w+
j ≥ 0,w−j ≥ 0, j = 1, . . . ,n. (28)

As the truncated Newton method by Lin and Moré (1999) exactly targets at such bound-constrained
problems, we can thus extend the proposed approach for (28). A comparison to investigate if our
method is better than existing ones is an interesting direction for future work.

In summary, we have shown that a trust region Newton method is effective for training large-
scale logistic regression problems as well as L2-SVM. The method has nice optimization properties
following past developments for large-scale unconstrained optimization. Itis interesting that we
do not need many special settings for logistic regression; a rather directuse of modern trust region
techniques already yields excellent performances. From this situation, wefeel that many useful
optimization techniques have not been fully exploited for machine learning applications.
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Appendix A. Proof of Theorem 1

Since f (w) is strictly convex, a minimum attained is unique and global. The remaining issue is to
check if a minimum exists (as strictly convex functions likeex do not attain a minimum). It suffices
to prove that the level set is bounded:

{w | f (w)≤ f (w0)}, (29)

wherew0 is any vector. If this property is wrong, there is a sequence{wk} in the set (29) satisfying
‖wk‖→ ∞. However,

f (wk)≥
1
2
‖wk‖2→ ∞

contradicts the fact thatf (wk)≤ f (w0),∀k.
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Abstract

In structured classification problems, there is a direct conflict between expressive models and ef-
ficient inference: while graphical models such as Markov random fields or factor graphs can rep-
resent arbitrary dependences among instance labels, the cost of inference via belief propagation
in these models grows rapidly as the graph structure becomes more complicated. One important
source of complexity in belief propagation is the need to marginalize large factors to compute mes-
sages. This operation takes time exponential in the number of variables in the factor, and can limit
the expressiveness of the models we can use. In this paper, we study a new class of potential
functions, which we call decomposable k-way potentials, and provide efficient algorithms for com-
puting messages from these potentials during belief propagation. We believe these new potentials
provide a good balance between expressive power and efficient inference in practical structured
classification problems. We discuss three instances of decomposable potentials: the associative
Markov network potential, the nested junction tree, and a new type of potential which we call the
voting potential. We use these potentials to classify images of protein subcellular location patterns
in groups of cells. Classifying subcellular location patterns can help us answer many important
questions in computational biology, including questions about how various treatments affect the
synthesis and behavior of proteins and networks of proteins within a cell. Our new representation
and algorithm lead to substantial improvements in both inference speed and classification accuracy.

Keywords: factor graphs, approximate inference algorithms, structured classification, protein
subcellular location patterns, location proteomics

1. Introduction

In standard supervised classification problems, the label of each test instance is independent of the
labels of all other instances. In some problems, however, we may receive multiple test instances
at a time, along with side information about dependences among the labels of these instances. For

c©2008 Shann-Ching Chen, Geoffrey J. Gordon and Robert F. Murphy.
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example, if each instance is a handwritten character, the side information might be that the string of
characters forms a common English word; or, if each instance is a microscope image of a cell with a
certain protein tagged, the side information might be that several cells share the same tagged protein.
To solve such a structured classification problem in practice, we need both an expressive way to
represent our beliefs about the structure, as well as an efficient probabilistic inference algorithm for
classifying new groups of instances.

Unfortunately, the goal of having an expressive language is in direct conflict with the goal of
having an efficient inference algorithm: while Markov random fields or factor graphs can represent
arbitrary dependences among instances, inference rapidly becomes intractable as the graph structure
becomes more complicated (see, e.g., Koller and Friedman, 2007). Simple graphs such as pairwise
links arranged in chains or trees lead to efficient inference, but these structures may not allow us to
express our beliefs accurately or completely. On the other hand, if we try to couple large groups of
labels (either directly, by specifying a factor that links to a large number of labels, or indirectly, by
using a graph with large loops), the cost of inference grows exponentially.

To speed up inference, we can move to approximate algorithms such as loopy belief propagation
(see, e.g., Koller and Friedman, 2007). Loopy belief propagation handles large loops efficiently,
but it does nothing to speed up the task of working with single large factors. In fact, in practical
problems, the operation of marginalizing a large factor can easily become the main bottleneck for
inference, preventing us from using more-expressive models.

Therefore, in this paper, we study a new class of potential functions, which we call decom-
posable k-way potentials. Computing messages for these potentials is much more efficient than
for general potentials, even though the new potentials can express distributions that cannot be rep-
resented by groups of smaller potentials. Accordingly, we believe these new potentials provide a
better balance between expressive power and efficient inference than was previously available.

We discuss three instances of decomposable potentials: the associative Markov network poten-
tial, the nested junction tree, and a new type of potential which we call the voting potential. We
use these potentials to classify images of protein subcellular location patterns in groups of cells.
Classifying protein subcellular location patterns is important as a step in solving many practical
computational biology problems, particularly in the area of systems biology: for example, it can
help in designing high-throughput screening systems for drug discovery, or in conducting experi-
ments to determine the effect of various treatments on the synthesis and behavior of proteins and
networks of proteins within a cell. Our new representation and algorithm lead to substantial im-
provements in both inference speed and classification accuracy.

Preliminary versions of portions of this work have been presented previously (Chen and Mur-
phy, 2006; Chen et al., 2006a,b). These papers describe applications of decomposable potentials
and the corresponding fast inference algorithms for segmenting and classifying images of protein
subcellular location patterns. But, none of these papers describe the idea of decomposable potentials
of Section 4 or the nested inference algorithm of Section 5 in full generality. They also do not cover
some of the instances of decomposable potentials described in Section 6; and, the experiments of
Sections 8–9 have not been reported previously.

2. Factor Graphs

The factor graph representation of a probability distribution (Kschischang et al., 2001) describes the
relationships among a set of variables xi using local factors or potentials ϕ j. Each factor depends
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f1

f3

f2

x1

x2

x3

Figure 1: A probability distribution represented as a factor graph. Small squares denote potential
functions; for example, this factor graph contains a potential which connects the variables
x1, x2, and x3, and another which connects x1 and f1.

on only a subset of the variables, and the overall probability distribution is the product of the local
factors, together with a normalizing constant Z:

P(x) =
1
Z ∏

factors j

ϕ j(xV ( j)).

Here V ( j) is the set of variables that are arguments to factor j; for example, if ϕ j depends on x1, x3,
and x4, then V ( j) = {1,3,4} and xV ( j) = (x1,x3,x4).

Each variable xi or factor ϕ j corresponds to a node in the factor graph. Fig. 1 shows an example:
the large nodes represent variables, with shaded circles for observed variables and open circles for
unobserved ones. The small square nodes represent factors, and there is an edge between a variable
xi and a factor ϕ j if and only if ϕ j depends on xi, that is, when i ∈ V ( j). (By convention the
graph only shows factors with two or more arguments. Factors with just a single argument are not
explicitly represented, but are implicitly allowed to be present at each variable node.)

The inference task in a factor graph is to combine the evidence from all of the factors to compute
properties of the distribution over x represented by the graph. Naively, we can do inference by
enumerating all possible values of x, multiplying together all of the factors, and summing to compute
the normalizing constant. Unfortunately, the total number of terms in the sum is exponential in the
number of random variables in the graph. So, usually, a better way to perform inference is via a
message-passing algorithm called belief propagation (BP). Here we briefly review the basics of BP
in factor graphs; for more details, see Kschischang et al. (2001).

The basic BP algorithm works on a factor graph which is tree-shaped (i.e., has no cycles). It
sends messages from every variable to each of its neighboring factors, and from every factor to each
of its neighboring variables. Messages to or from a variable xi will be vectors whose length is equal
to the number of values that xi can take on.

For a variable xi with neighboring factors ϕ1,ϕ2, . . . ,ϕk, suppose that x has received messages
m j→i(xi) from its neighbors ϕ j for j ∈ {1 . . .(k − 1)}. (To simplify notation, we have numbered
xi’s neighbors consecutively starting from 1. This is not a loss of generality since we can always
temporarily permute our factor indices to make it so.) Suppose also that xi has local evidence
represented by the one-argument factor ϕloc

i (xi). Then we can compute xi’s message to ϕk as

mi→k(xi) = ϕloc
i (xi)

k−1

∏
j=1

m j→i(xi). (1)

653



CHEN, GORDON AND MURPHY

That is, we take the componentwise product of all of the messages from factors 1 . . .k−1, multiply
in the local evidence, and send the result to ϕk. The normalization of the message is arbitrary, so
for convenience or numerical precision we may multiply each component of the message by an
arbitrary constant.

Similarly, suppose that a factor ϕ j has neighbors x1,x2, . . . ,xk (again numbered consecutively
without loss of generality) and has received messages mi→ j(xi) for i ∈ {1 . . .(k−1)}. Then we can
compute ϕ j’s message to xk as

m j→k(xk) = ∑
x1

∑
x2

. . . ∑
xk−1

ϕ j(x1, . . . ,xk)
k−1

∏
i=1

mi→ j(xi). (2)

Unlike Equation 1, in Equation 2 we must marginalize out variables other than xk by summing over
their possible values.

BP works by picking an arbitrary node of the graph as root and then making two passes over
the tree: first it passes messages inward from the leaves to the root, and then outward from the root
to the leaves. When the message passing finishes, the posterior marginal probability of any random
variable xi is just the componentwise product of its local potential and all of its incoming messages:

P(xi) = ϕloc(xi) ∏
{ j|i∈V ( j)}

m j→i(xi). (3)

2.1 Working with General Graphs

The above discussion assumed that our factor graph was tree-shaped. For graphs with loops, we
have two alternatives: first, we can collapse groups of variable nodes together into combined nodes,
which can turn our graph into a tree and allow us to run BP as above. Second, we can run an
approximate inference algorithm that doesn’t require a tree-shaped graph. We can also combine
these alternatives if desired, grouping variable nodes to reduce the number of loops in the graph so
that our approximate inference becomes more accurate.

When we combine a set of variable nodes, the new node represents all possible settings of all
of the original nodes. E.g., if we collapse a variable x1 that has settings T,F with a variable x2 that
has settings A,B,C, then the combined variable x12 has settings TA,T B,TC,FA,FB,FC. When we
collapse a set of variables, we need to alter the neighboring factor nodes: any factor adjacent to any
of the original nodes becomes a neighbor of the new combined node, and its list of arguments is
extended if necessary to include all variables in the collapsed set.

The advantage of collapsing variable nodes is that it can allow us to simplify the structure of
our graph: if in the collapsed graph there are two factor nodes with the same set of arguments, then
we can combine them by multiplying their potentials elementwise. For example, Fig. 2 shows the
result of collapsing x1 and x2 in the factor graph of Fig. 1. The potentials ϕ23 and ϕ123 from the
original graph have the same set of neighbors in the new graph, and so can be combined into one
factor node. Similarly, the local potentials ϕloc

1 and ϕloc
2 can be combined with the factor ϕ12 to form

a new local potential at the collapsed node x12. Notice that the new factor graph is tree-shaped, even
though the original one had loops.

When removing loops from a factor graph, we may wish to include each original variable in
more than one combined node. We are free to do so as long as we adjust our potentials to enforce
the constraint that all copies of the variable must agree on its value. That is, when any two copies
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f1

f3

f2

x12

x3

Figure 2: Another factor graph that can represent the same probability distribution as the graph of
Fig. 1. The new graph was derived by collapsing together the nodes for variables x1 and
x2 from Fig. 1.

x1

x2

x5

x3 x4

x1 x5x23 x24

Figure 3: A factor graph with multiple loops (left) and a tree derived from the factor graph by
collapsing pairs of nodes (right).

disagree, at least one potential must be zero. The cost of storing or working with such a hard-
constraint potential depends only on the number of distinct variables in its argument list.

For example, in the graph of Fig. 3, we could form a tree by collapsing x2, x3, and x4 into a
single node. The resulting graph would have variables x1, x234, and x5, and factors ϕ1234 and ϕ2345.
But, we can form a tree with smaller factors if we group x2 with x3 and also separately with x4: the
resulting graph has variables x1, x23, x24, and x5, and factors ϕ123, ϕ234, and ϕ245. The potential ϕ234

encodes the constraint that the settings of x23 and x24 must agree on the assignment to x2.
A factor graph that has been reduced to a tree is equivalent to a junction tree. A junction tree

is a connected acyclic graph whose nodes are labeled with sets of variables in a way that satisfies
the running intersection property: if a variable is present at two nodes A and B, it is also present
at all nodes along the (unique) path connecting A and B in the tree. The factor nodes in a tree-
shaped factor graph correspond to nodes of the junction tree, with labels equal to their argument
sets. The collapsed variable nodes correspond to edges of the junction tree. The groups of original
variables at each collapsed variable node (such as {x2,x4} in the figure) are called separators, since
conditioning on all of the variables in a separator is sufficient to separate the factor graph into two or
more disconnected pieces. The running intersection property ensures that we can define potentials
that constrain all copies of a variable to agree.

If we collapse our factor graph all the way to a tree, we can do inference with the exact BP
algorithm from above. If we leave some loops, a similar BP algorithm can still work: we can initial-
ize all messages to be uniform, then start at an arbitrary node and use the same formulas as before
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for message calculation (Equations 1–2). However, we may have to update each message several
times before the marginals converge. The version of the algorithm that updates messages repeatedly
until convergence is called loopy BP, or LBP. Inference with LBP is approximate because it can
double-count evidence: messages to a node i from two nodes j and k can both contain information
from a common neighbor l of j and k. Several researchers have empirically demonstrated that when
LBP converges, the posterior marginal probabilities from Equation 3 often approximate the true
marginals well (Murphy et al., 1999; McEliece et al., 1998; Zhang and Chang, 2004). If LBP oscil-
lates between some steady states and does not converge, we can stop the process after some number
of iterations; in this case, the approximate posteriors will usually be inaccurate. Although oscilla-
tions can be avoided by using “momentum” (Murphy et al., 1999), which replaces the messages that
were sent at time t with a weighted average of the messages at times t and t −1, in some cases the
approximate posteriors are still inaccurate (Murphy et al., 1999). The convergence of LBP depends
on the exact graph structure and on the type and strength of the factors involved (Pearl, 1988; Hes-
kes, 2004). Recently, researchers have developed sufficient conditions for the convergence of LBP
(Weiss, 2000; Tatikonda and Jordan, 2002; Ihler et al., 2005), and a measurement of message errors
has been proposed (Ihler et al., 2005).

For either exact or loopy BP, the runtime for each pass over the factor graph is exponential in
the number of distinct original variables included in the largest factor. So, inference can become
prohibitively expensive if our factors are too large, either because they were too large in the original
graph or because we merged too many variables.

3. Factor Graphs and Structured Classification

To use belief propagation to solve structured classification problems, we need two things: a local
classifier for individual instances, and a factor graph which encodes our prior beliefs about likely
arrangements of instance labels. The local classifier tells us the likelihood of individual test exam-
ples under each possible class assignment, while the factor graph tells us how to trade off evidence
at one example against evidence at another. We can learn local classifiers in a number of ways; for
the cell image classification experiments below, we use standard support vector machines, together
with a post-processing step that allows us to interpret the SVM outputs as probabilities.

There are also a number of ways to construct factor graphs that encode our beliefs about likely
label vectors. In our experiments below, we construct a factor graph in two steps: first we use
domain-specific heuristics to identify pairs of examples whose labels are likely to be the same,
and use these pairs to build a similarity graph with an edge between each such pair of examples.
Then, we use this similarity graph to decide what potentials to add to our factor graph. (In the
protein subcellular location pattern classification problem, the similarity graph edges come from
either physical proximity or similarity in appearance.) Given the similarity graph, we compare
factor graphs built from several different types of potentials; the following sections introduce these
potentials and discuss their advantages and disadvantages.
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3.1 The Potts Potential

The simplest potential function is the Potts potential. The Potts potential is a pairwise (i.e., two-
argument) factor which encourages two nodes xi and x j to have the same label:

ϕ(xi,x j) =

{

ω xi = x j

1 otherwise.
(4)

Here ω > 1 is an arbitrary parameter which expresses how strongly we believe that xi and x j have the
same label. If we use one Potts potential for each edge in the similarity graph, the overall probability
of a vector of labels x is

P(x) =
1
Z ∏

nodes i

P(xi) ∏
edges i, j

ϕ(xi,x j) (5)

where we have written Z for a normalizing constant and P(xi) for the probability which the base
classifier assigns to label xi for node i. Equations 4–5 form what is known as a Potts model.

Unfortunately, the Potts model does not perfectly capture our desired intuition about inference
from labels of neighboring cells. To see why, consider a two-class prediction problem where node xi

has kA neighbors of class A and kB neighbors of class B, and suppose that classes A and B have equal
prior probability for xi given the classifier output. In this situation the ratio of posterior probabilities
for classes A and B will be ωkA−kB . So for example, if ω is 2, and if xi has 1 neighbor of class A and
3 of class B, then the ratio of probabilities will be 21−3 = 1/4. So, class A will be 1/4 as likely as
class B, and P(xi has label A) = 0.2.

However, if xi has 7 neighbors of class A and 9 neighbors of class B, the posterior probability of
class A will still be 0.2, even though our intuition tells us that the probability should be much closer
to 0.5 in this case. The same will hold whenever there are 2 more neighbors of class B than class A,
even if the counts are 107 and 109. Worse, as class B’s majority gets larger, the ratio of probabilities
will approach 0 exponentially fast. So, a sufficiently strong vote from xi’s neighbors will quickly
overwhelm any evidence at xi itself—an undesirable situation.

The source of this problem is that, in Equation 5, the evidence from separate potentials has to
combine multiplicatively. So, as long as the evidence from different neighbors acts through separate
potentials, we will see an exponential dependence between the number of neighbors of a given class
and the probability of that class. We can reduce the severity of this problem by choosing ω to be only
a little bit larger than 1. But, to fix the problem we need to move to potential functions that depend
on k > 2 nodes. Our experimental results, below, will show that potentials that combine evidence
additively can perform better than the Potts potential over a wider range of inference problems.

3.2 The Voting Potential

To capture the intuition that we should be less certain about nodes whose neighbors split relatively
evenly, we propose a new potential which we call the voting potential. In the voting potential, a
node’s classification is influenced by the proportion of classes among its neighbors, rather than the
difference in class counts as in the Potts model.

The voting potential has one distinguished argument, called the center; the remaining arguments
are called voters. In the factor graphs for our cell classification experiments below, we use one
voting potential per cell j; the center for the jth potential is cell j itself, and the voters are the cells
that are adjacent to j in the similarity graph. We will write N( j) for the set of similarity-graph
neighbors of cell j, so that the jth potential depends on variables V ( j) = { j}∪N( j).
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x1 x2 x3 ϕ
0 0 0 3/4
0 0 1 1/2
0 1 0 1/2
0 1 1 1/4
1 0 0 1/4
1 0 1 1/2
1 1 0 1/2
1 1 1 3/4

Table 1: An example of the voting potential with parameter λ = 2 for n = 2 classes. The center
node x1 has two neighbors, x2 and x3.

We define the voting potential as follows:

ϕ j(xV ( j)) =
λ/n+∑i∈N( j) I(xi,x j)

|N( j)|+λ
. (6)

Here n is the number of classes, λ is a smoothing parameter, and I is an indicator function:

I(xi,x j) =

{

1 if xi = x j

0 otherwise.

(The normalization constant in the denominator of Equation 6 is irrelevant to inference, and is
included only for ease of interpretation.) An example of the voting potential is given in Table 1.

The voting potential function combines the evidence from all of node x j’s neighbors into a
summary vote which then influences x’s classification. The parameter λ controls how much weight
we put on a vote from a small number of neighboring cells. We can interpret it as the size of
an additional set of fictitious neighbors whose votes are distributed uniformly; this trick limits the
influence of a vote from a small number of neighbors, and is called Laplace smoothing. For example,
looking at the first and fifth rows of the table, we can see that when both of x1’s neighbors are 0, x1

is 3 times as likely to be 0 as 1, since there are 2+1 votes for x1 = 0 and 0+1 votes for x1 = 1.
The behavior of the voting potential contrasts with that of the Potts potential described in Sec-

tion 3.1, in which each neighbor separately influences the center node without reference to the other
neighbors. In line with our intuition, we will see below that networks which use the voting potential
can yield more accurate results than the Potts model for structured classification problems.

3.3 The AMN Potential

The associative Markov network (AMN) potential (Taskar et al., 2004) is defined to be

ϕ(x1 . . .xk) = 1+
n

∑
y=1

(ωy −1)I(x1 = x2 = . . . = xk = y) (7)

for parameters ωy > 1, where I(predicate) is defined to be 1 if the predicate is true and 0 if it is false.
So, the AMN potential is constant unless all of the variables x1 . . .xk are assigned to the same class
y, in which case it is equal to ωy.
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The AMN potential reduces to the Potts potential when k = 2 and ωy = ω for all y. So, in
this case it inherits the same problems that the Potts potential has. For any k, the AMN potential
has no direct effect on a label vector’s likelihood unless all of the k argument variables agree on
the label y. (It affects all vectors’ likelihoods indirectly through the normalizing constant.) As k
gets larger, there are comparatively fewer label vectors where all k labels agree, and so the AMN
potential may not have much influence on the overall posterior distribution over label vectors unless
the cell-level classifiers already were very close to agreement. And in fact, our experiments below
demonstrate that factor graphs based on the AMN potential perform best when the neighborhood
size k is relatively small (but larger than 2).

4. Decomposable Potentials

While k-way factors can lead to more accurate inference, they can also slow down belief propaga-
tion. For a general k-way factor, it takes time exponential in k even to look at all of the entries.
So, we cannot expect to find inference algorithms for general k-way potentials that take less than
exponential time.

For specific k-way potentials, though, we can hope to take advantage of special structure to de-
sign a fast inference algorithm. In particular, for many interesting potential functions, we can write
down an algorithm which efficiently performs sums of the form required for message computation:

∑
x1

∑
x2

. . . ∑
xk−1

ϕ∗
j(x1, . . . ,xk), (8)

ϕ∗
j(x1, . . . ,xk) = m1(x1)m2(x2) . . .mk(xk−1)ϕ j(x1, . . . ,xk). (9)

Here mi(xi) is the message to factor j from variable xi. (If we removed loops in our factor graph by
collapsing groups of variables, then Equation 9 may look instead like

ϕ∗
j(x1, . . . ,xk) = m12(x1,x2)m245(x2,x4,x5) . . .mk−1(xk−1)ϕ j(x1, . . . ,xk).

That is, the argument sets of the messages may overlap with one another. The derivations below
apply equally well to either expression for ϕ∗

j .)
For example, as we will see below, we can compute Equations 8–9 quickly if ϕ j is a sum of

terms ∑l ψ jl where each term ψ jl depends only on a small subset of its arguments x1 . . .xk. Or,
we can compute Equations 8–9 quickly if ϕ j is constant except at a small number of input vectors
(x1, . . . ,xk). In the first case we will say that ϕ j is a sum of low-arity terms ψ jl , and in the second
case we will say that ϕ j is sparse.

More generally, suppose that ϕ∗
j in Equation 8 can be written as a sum of products of low-arity

functions: writing ψ jl for a generic term in the sum and ξ jlm for a generic factor of ψ jl ,

ϕ∗
j(x1, . . . ,xk) =

L j

∑
l=1

ψ jl(x1, . . . ,xk) =
L j

∑
l=1

M jl

∏
m=1

ξ jlm(xV ( j,l,m)) (10)

where the set of indices V ( j, l,m)⊆ {1 . . .k} tells us which variables ξ jlm depends on. Also suppose
that, for each term ψ jl in the sum, the sets V ( j, l,m) can be arranged into a junction tree. That is,
suppose that we can build a cycle-free graph on M jl nodes, with one node labeled with V ( j, l,m)
for each m, which satisfies the running intersection property.
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If ϕ∗
j satisfies the above properties, and if L j, M jl , and |V ( j, l,m)| are small for all j, l, and m,

then we will say that ϕ∗
j is decomposable. And, we will say that ϕ j is a decomposable potential

(in the context of this message computation). Decomposable potentials include the special cases
mentioned above, namely sparse potentials and potentials that are sums of low-arity terms, as well
as a wide variety of other examples which we will describe in more detail below. We will see below
that we can evaluate Equations 8–9 quickly for a decomposable potential by using an algorithm very
similar to belief propagation.

5. Belief Propagation with Decomposable Potentials

When we are running BP or loopy BP on a factor graph with decomposable potentials, we can
accelerate the computation of the belief messages that would otherwise be slow to compute. There
are two types of messages that we need for BP or loopy BP, shown in Equations 1 and 2.

Messages from a variable (or a separator, which we treat as a single large variable) to a factor are
fast to compute in any case: we can calculate them from Equation 1 by looping over the incoming
edges at node xi and, for each edge, looping over the n possible classes we can assign to xi. So, we
do not need to accelerate the computation of these messages.

Messages from a factor to a variable (Equation 2) are slow to compute naı̈vely if the factor
connects to many other variables. In this section we will show that we can calculate these messages
efficiently for decomposable potentials of the form shown in Equation 10. So, this section shows
that we can implement BP and loopy BP efficiently for decomposable potentials. The derivation of
this section works with general decomposable potentials; below, in Sections 6.1 and 6.2, we will
work out the formulas for specific cases including the voting potential and the associative Markov
network potential.

The algorithm that we will use to compute the messages is essentially the same as the overall
belief propagation algorithm. So, when we perform inference on a factor graph with decomposable
potentials, we will be running two nested copies of belief propagation: the inner copy will act on a
single decomposable potential, and will compute the messages which the outer copy needs to send
from that potential.

Substituting Equations 8–10 into Equation 2 and rearranging terms tells us that the desired
message is

m j→k(xk) = ∑
x1

∑
x2

. . . ∑
xk−1

ϕ j(x1, . . . ,xk)
k−1

∏
i=1

mi→ j(xi)

= ∑
x1

∑
x2

. . . ∑
xk−1

(

L j

∑
l=1

M jl

∏
m=1

ξ jlm(xV ( j,l,m))

)

=
L j

∑
l=1

∑
x1

∑
x2

. . . ∑
xk−1

M jl

∏
m=1

ξ jlm(xV ( j,l,m)). (11)

Now let us fix l temporarily, leaving a term of the form

∑
x1

∑
x2

. . . ∑
xk−1

M jl

∏
m=1

ξ jlm(xV ( j,l,m)). (12)
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We have assumed that the sets V ( j, l,m) for m ∈ {1, . . . ,M jl} can be arranged into a junction tree.
Pick a node of this junction tree whose label contains xk, and call this node the root. Refer to each
node by its index m, and write par(m) for the parent of node m.

Now pick an arbitrary leaf of the junction tree. Without loss of generality, say that this leaf has
index m = 1. We can partition the variables in the set V ( j, l,1) into two subsets,

C(1) = V ( j, l,1)∩V ( j, l,par(1)) and D(1) = V ( j, l,1)\V ( j, l,par(1)).

C(1) contains the variables that node 1 has in Common with its parent, while D(1) contains the
variables from node 1 that are Distinct from its parent’s variables. The variables in D(1) can only
appear in V ( j, l,1): if any of them appeared in V ( j, l,m) for m 6= 1 it would violate the running
intersection property, since any path from 1 to m has to pass through par(1).

Without loss of generality, suppose that the variables in D(1) are numbered consecutively from
1, say D(1) = {1,2}. That means that the factor ξ jl1 depends on x1 and x2, but no other factor ξ jlm

for m 6= 1 depends on x1 or x2. So, by the distributive law, we can rearrange Equation 12 as follows:

∑
x3

. . . ∑
xk−1

M jl

∏
m=2

ξ jlm(xV ( j,l,m)).

(

∑
x1

∑
x2

ξ jl1(xV ( j,l,1))

)

(13)

To get Equation 13 we have moved the x1 and x2 summations inward as far as possible.
We can think of the expression in parentheses in Equation 13 as a message which travels from

node 1 to node par(1) of the junction tree: it depends only on the variables in the set C(1), and it
summarizes everything that node par(1) needs to know about node 1 in order to compute the term
of Equation 12. We will write µ1→par(1) for this message, that is,

µ1→par(1)(xC(1)) = ∑
x1

∑
x2

ξ jl1(xV ( j,l,1)). (14)

We can continue computing messages in this fashion from leaf nodes of the junction tree to their
parents. After several steps our expression will look something like this:

∑
x7

. . . ∑
xk−1

M jl

∏
m=4

ξ jlm(xV ( j,l,m))
3

∏
m=1

µm→par(m)(xC(m)). (15)

Here we have eliminated the variables x1 through x6 and computed the messages from nodes m =
1,2,3 to their parents. At this point suppose that node m = 4 is an internal node of the junction tree,
and that it has as its only child node m = 1. Because we have already computed the message from
node 1 to node 4, we can now compute the message from 4 to par(4). Suppose that D(4) = {7};
then we can rearrange Equation 15 as follows.

∑
x8

. . . ∑
xk−1

M jl

∏
m=5

ξ jlm(xV ( j,l,m))×

3

∏
m=2

µm→par(m)(xC(m))

(

∑
x7

µ1→4(xC(1))ξ jl4(xV ( j,l,4))

)

. (16)

Here we have used the distributive law to move the x7 summation inward as far as possible. As
above, none of the functions ξ jlm for m > 4 can depend on x7: if they did, then by the running

661



CHEN, GORDON AND MURPHY

intersection property, 7 would have to be an element of V (par(4)) and couldn’t be in D(4). The
message µ1→4 could depend on x7, since 7 could be in C(1). So, to be safe, we have left µ1→4 inside
the x7 summation. On the other hand, the messages µ2→par(2) and µ3→par(3) cannot depend on x7: if
one of them did, 7 would have to be in V ( j, l,par(2)) or V ( j, l,par(3)), which would again violate
the running intersection property.

In a natural generalization of Equation 14, we will write µ4→par(4)(xC(4)) for the expression in
parentheses in Equation 16. It should be clear at this point that we can compute a message from
each node in the junction tree to its parent, so long as we work from the leaves upward; the message
from a node m to its parent par(m) will depend on the messages from m’s children to m. Once we
process all of the children of the root r, we will be left with an expression that contains summations
only over variables in V ( j, l,r). (In fact, it will contain summations over exactly the variables in
V ( j, l,r)\{k}.) We can perform these summations to find the desired term (Equation 12), which is
a function only of xk. We can then repeat the process for each l to get all of the terms in Equation 11.

The above algorithm computes the message from a factor ϕ j to a single neighboring variable xk.
If we want the messages from ϕ j to all of its variables we can run the above algorithm multiple times;
however, the multiple runs will redundantly recompute many of the messages µs→t . Instead, as is
usual for the belief propagation algorithm, we can combine all of the runs into a single computation
which passes one message in each direction over each edge of the junction tree.

If we have merged groups of variables in constructing our outer junction tree, then there are two
modifications needed for the above analysis. First, if the argument sets of the incoming messages
at a given factor node overlap, we may need to build different inner junction trees to compute
different outgoing messages. So, we may not be able to share computation as described in the
previous paragraph. This loss of sharing may increase our runtime by a small factor. Second, and
more importantly, if the desired outer message depends on several original variables, then there
may be no node of our inner junction tree that contains all the needed variables. In this case we
may condition on the possible values of some of the needed variables, and use several runs of inner
message passing, each of which computes a slice of the desired outer message. In general, there
may be several ways to decompose a potential, and several possible choices of which variables to
condition on for a given decomposition. Each of these setups may lead to a different runtime for
message computation. See Section 6.3 below and Kjærulff (1998) for more details.

6. Instances of Decomposable Potentials

Decomposable potentials are common and useful. In this section, we discuss the details and deriva-
tions of message passing with the voting potential, the associative Markov network potential, and
the nested junction tree.

6.1 Decomposing the Voting Potential

The general BP-style algorithm of Section 5 is more complicated than we need when we are com-
puting messages for the voting potential: since Equation 6 is a sum of low-arity functions rather than
a sum of products of low-arity functions, the computation for each term in the sum is particularly
simple. So, in this section we will derive efficient expressions for the necessary messages.

There are two types of messages we need to think about: those from a factor ϕ j to the node
xk that ϕ j is centered on, and those from a factor ϕ j to some non-centered variable node xi with
i 6= k. To simplify notation, assume that V ( j) = {1, . . . ,k}; also assume that we have normalized the
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messages mi→ j(xi) so that ∑xi
mi→ j(xi) = 1. With these assumptions, the message from a factor ϕ j

to its center variable node xk can be computed as follows:

(λ+ |N( j)|) m j→k(xk)

= ∑
x1

∑
x2

. . . ∑
xk−1

(

λ/n+
k−1

∑
i=1

I(xi,xk)

)

k−1

∏
i′=1

mi′→ j(xi′)

=
λ
n ∑

x1

∑
x2

. . . ∑
xk−1

k−1

∏
i′=1

mi′→ j(xi′)+

∑
x1

∑
x2

. . . ∑
xk−1

k−1

∑
i=1

I(xi,xk)
k−1

∏
i′=1

mi′→ j(xi′)

=
λ
n

+
k−1

∑
i=1

∑
x1

∑
x2

. . . ∑
xk−1

I(xi,xk)
k−1

∏
i′=1

mi′→ j(xi′)

=
λ
n

+
k−1

∑
i=1

∑
x1

∑
x2

. . . ∑
xk−1

I(xi,xk)mi→ j(xi)
k−1

∏
i′=1,i′ 6=i

mi′→ j(xi′)

=
λ
n

+
k−1

∑
i=1

∑
xi

I(xi,xk)mi→ j(xi)

=
λ
n

+
k−1

∑
i=1

mi→ j(xk).

The first equation above is the definition of the desired message. The second equation distributes
multiplication over addition. The third equation uses the fact that all terms in the product
∏k−1

i′=1 mi′→ j(xi′) are independent, along with our assumption ∑xi′
mi′→ j(xi′) = 1, to compute the first

summation. The fourth equation factors mi→ j out of the product. The fifth equation uses again the
facts that all terms in the product are independent and ∑xi′

mi′→ j(xi′) = 1. The last line uses the fact
that I(xi,xk) is nonzero iff xi = xk.

The message from a factor j to a non-centered variable can be computed similarly. Under the
same assumptions as above, we will calculate the message m j→1:

(λ+ |N( j)|) m j→1(x1)

= ∑
x2

. . .∑
xk

(

λ/n+
k−1

∑
i=1

I(xi,xk)

)

k

∏
i′=2

mi′→ j(xi′)

=
λ
n

+∑
x2

. . .∑
xk

k−1

∑
i=1

I(xi,xk)
k

∏
i′=2

mi′→ j(xi′)

=
λ
n

+∑
x2

. . .∑
xk

I(x1,xk)
k

∏
i′=2

mi′→ j(xi′)+∑
x2

. . .∑
xk

k−1

∑
i=2

I(xi,xk)
k

∏
i′=2

mi′→ j(xi′)

=
λ
n

+∑
xk

I(x1,xk)mk→ j(xk)+∑
x2

. . .∑
xk

k−1

∑
i=2

I(xi,xk)
k

∏
i′=2

mi′→ j(xi′)

=
λ
n

+mk→ j(x1)+∑
x2

. . .∑
xk

k−1

∑
i=2

I(xi,xk)
k

∏
i′=2

mi′→ j(xi′)
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=
λ
n

+mk→ j(x1)+
k−1

∑
i=2

∑
x2

. . .∑
xk

I(xi,xk)mi→ j(xi)mk→ j(xk)
k−1

∏
i′=2,i′ 6=i

mi′→ j(xi′)

=
λ
n

+mk→ j(x1)+
k−1

∑
i=2

∑
xi

∑
xk

I(xi,xk)mi→ j(xi)mk→ j(xk)

=
λ
n

+mk→ j(x1)+
k−1

∑
i=2

∑
xk

mi→ j(xk)mk→ j(xk).

The first equality above is the definition of the desired message. The second pulls the term λ/n
out of the sums, using the facts that the terms in the product ∏k

i′=2 mi′→ j(xi′) are independent and
∑xi′

mi′→ j(xi′) = 1. The third equality splits the sum over i into two pieces, one for i = 1 and the
other for i ≥ 2. The fourth equality uses the independence of the terms in the left-hand product to
simplify away the summations over x2 through xk−1. The fifth uses the fact that I(x1,xk) = 0 when
x1 6= xk. The sixth equality pulls the terms mi→ j and mk→ j out of the remaining product. The seventh
uses the independence of terms in the product to simplify away the summations over variables other
than xi and xk. And the last equality uses the fact that I(xi,xk) = 0 when xi 6= xk.

Despite the fact that the variables x1, . . . ,xk have exponentially many possible assignments, the
above derivations show that we can compute the messages m j→k and m j→1 exactly and almost
instantaneously. The message m j→k is particularly easy to interpret: it is the (Laplace smoothed)
average of the messages from x1, . . . ,xk−1.

6.2 Decomposing the AMN Potential

It is even easier to derive an efficient expression for the messages from an AMN potential than it
was for the messages from a voting potential. As before, let us assume that V ( j) = {1, . . . ,k}, that
we desire the message m j→k(xk), and that we have normalized the messages mi→ j(xi) to sum to 1
over xi for each i = 1, . . . ,k− 1. Since the AMN potential is symmetric in its arguments, there is
only one type of message to calculate.

We can write Equation 7 in the form of Equation 10 by noting that

I(x1 = x2 = . . . = xk = y) = I(x1 = y)I(x2 = y) . . . I(xk = y)

and that each function I(xi = y) depends on only one variable xi. Given this representation, the
desired message is:

m j→k(xk) = ∑
x1

∑
x2

. . . ∑
xk−1

(

1+∑
y

(ωy −1)
k

∏
i=1

I(xi,y)

)

k−1

∏
i′=1

mi′→ j(xi′)

= 1+∑
x1

∑
x2

. . . ∑
xk−1

∑
y

(ωy −1)
k

∏
i=1

I(xi,y)
k−1

∏
i′=1

mi′→ j(xi′)

= 1+∑
y

(ωy −1)I(xk,y)∑
x1

∑
x2

. . . ∑
xk−1

k−1

∏
i=1

I(xi,y)mi→ j(xi)

= 1+∑
y

(ωy −1)I(xk,y)
k−1

∏
i=1

mi→ j(y)

= 1+(ωxk −1)
k−1

∏
i=1

mi→ j(xk).
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The first equality above is the definition of the desired message. The second pulls the constant 1
outside of the sums and uses the independence of terms in the product. The third rearranges the
order of the sums and products. The fourth uses the fact that the product is zero unless xi = y for all
i ∈ {1, . . . ,k−1}. The fifth uses the fact that I(xk,y) is 0 unless xk = y.

6.3 The Nested Junction Tree

The nested junction tree method (Kjærulff, 1998) can speed up message propagation in the junction
trees that arise when we remove loops from a factor graph. In particular, it helps compute messages
from the large factors that arise when we merge groups of variables. It works by noticing that each
of these messages is computed from the product of many smaller factors, which can sometimes be
arranged into a nontrivial “inner” junction tree.

Unlike the previous two examples (the voting and AMN potentials), the nested junction tree
method does not attempt to look inside the factors of the original factor graph. Instead, it keeps
track of the variable merges during junction tree construction, and sometimes is able to “undo”
some of these merges temporarily to provide computational savings.

For example, the factor graph of Fig. 4 can be collapsed into a junction tree by merging x2 and
x3 as shown. The time and space costs of belief propagation on this junction tree are dominated by
its largest potential, ϕ2345. Consider the message from ϕ2345 to x23:

m2345→23(x2,x3) = ∑
x4

∑
x5

ϕ2345(x2,x3,x4,x5)m4→2345(x4)m5→2345(x5).

Standard belief propagation will first compute

ϕ∗
2345(x2,x3,x4,x5) = ϕ2345(x2,x3,x4,x5)m4→2345(x4)m5→2345(x5)

= ϕ245(x2,x4,x5)ϕ345(x3,x4,x5)m4→2345(x4)m5→2345(x5)

for all settings of (x2,x3,x4,x5), and then marginalize ϕ∗
2345 to get m2345→23.

If there are (for example) ten possible settings of each original variable, the space required for
computing m2345→23 with standard belief propagation is 10100 locations: 104 for storing ϕ∗

2345,
and 102 for storing m2345→23. And, the time cost is 39900 flops: for each of the 104 settings of
(x2,x3,x4,x5) we must multiply together one element each from the tables ϕ245, ϕ345, m4→2345, and
m5→2345, at a cost of 3 flops per iteration. Then, for each of the 102 elements of m2345→23, we must
sum 102 elements of ϕ∗

2345 (using 102 −1 flops), leading to a total cost of 3×10000+99×100.
However, if we examine the message computations in more detail, it turns out that we can take

advantage of the structure of ϕ∗
2345 to save time and space. Since ϕ∗

2345 was formed by multiplying
together four smaller tables, and since the argument sets of these smaller tables form a junction tree,
ϕ∗

2345 is decomposable. (The inner junction tree is shown at the far right of Fig. 4.) Using this fact,
we can find m2345→23 by passing messages through the inner junction tree several times. In more
detail, suppose we pick the factor ϕ345 as the root of the inner junction tree. This factor contains
one of the message variables (x3) but not the other one (x2). So, we must condition on each value of
x2 in turn. For each value of x2, we first compute the intermediate message

ϕx2(x4,x5) = ϕ245(x2,x4,x5)m4→2345(x4)m5→2345(x5).
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x1

x2 x4

x3 x5

x1 x23

x4

x5

245

45

345

Figure 4: A factor graph for which the nested junction tree method can speed up belief propagation.
Left: original factor graph. Middle: factor graph after merging x2 and x3. Right: inner
junction tree for computing the message m2345→23.

This message is associated with the separator {x4,x5} in the inner junction tree. We can then incor-
porate this inner message into the factor {x3,x4,x5}, and marginalize to get a slice of our desired
(outer) message:

m2345→23(x2,x3) = ∑
x4

∑
x5

ϕ345(x3,x4,x5)ϕx2(x4,x5).

Each pass through the inner junction tree keeps x2 fixed, computing a slice m2345→23(x2, ·) of the
outer message. (By m2345→23(x2, ·), we mean a table of the values of m2345→23 for a fixed value of
the first argument and all possible values of the second argument.)

The nested belief propagation algorithm for computing m2345→23 saves us both space and time.
For time, the cost to compute an element of one of the ϕx2 tables is 2 multiplications; there are
102 elements of each table, and 10 tables, so the total cost of this step is 2× 10× 100 = 2000
flops. To compute ϕ345(x3,x4,x5)ϕx2(x4,x5) for fixed x2 takes 1000 flops (one per table element),
and to marginalize out (x4,x5) takes 99 flops for each of the 10 resulting elements, for a total of
1000 + 10× 99 = 1990 per slice. Since there are 10 slices, we need 19900 flops for all of them.
The grand total is therefore 19900 + 2000 = 21900, a savings of approximately 45% compared to
standard belief propagation.

The space savings are even greater: we can reuse a single array of size 102 for all of the ϕx2

tables, and a single array of size 103 for all of the products ϕ345(x3,x4,x5)ϕx2(x4,x5). Adding in
the cost of storing the final message, we have a space cost of 100+1000+100 = 1200 locations, a
savings of about 88%.

An important limitation of the nested junction tree method is the following lemma, which pro-
vides a lower bound on inference time based on the number of variables in the largest node label (or
clique):

Lemma 1 In a junction tree T with binary variables, let C be the largest clique, and say that we
wish to compute the posterior marginal for some variable xq. So long as C is minimal, the nested
junction tree method cannot reduce the time for this inference task to less than Ω(2|C|). (The time
for non-binary variables is at least as large.)

Proof Each edge (i, j) in clique C arises either because there is a potential that directly links vari-
ables xi and x j (this case includes so-called “moral edges”), or because we triangulated a chordless
cycle that contains xi and x j (in which case some other clique sends C a message that links xi with
x j). The nested junction tree method achieves its speedup by avoiding consideration of some of
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these edges when computing outgoing messages from C: for a message M from C to some other
clique D, we can ignore the corresponding incoming message N from D to C. Without N, we may be
able to ignore as many as

(

|M|
2

)

of the edges of C while calculating M, since each edge that connects
two variables in M may be supported only by N.

Because we can ignore some of the edges of C, we can avoid building a single large table of
size 2|C|, and instead run a nested copy of the message passing algorithm to find M. This inner
message passing algorithm works on an inner junction tree T ′ built from the remaining edges of C.
To compute M, we pick some clique C′ of T ′ as root; then, for each possible setting of the variables
in M \C′, we pass messages from leaves to root in T ′ to find a slice of M. This slice corresponds to
the fixed setting of M \C′, and covers all possible settings of the variables in M∩C′.

To calculate the total cost of these inner runs of message passing, we need to look at the structure
of T ′. In particular, we need to figure out the size of the largest clique of T ′. For this purpose, we
can divide the variables of T ′ into three sets: those in M \C′ (which we hold fixed during each inner
iteration), those in M∩C′ (which form the resulting slice of M), and those in C \M (the rest of C).
The variables in M∩C′ are fully connected to one another, since they are all members of C′. And,
the variables in C \M are fully connected to one another, since none of them are covered by the
incoming message N. But, these two sets of variables are also fully connected to each another: no
edge between C \M and M∩C′ can be covered by N, since each such edge has one vertex in M and
one outside of M. So, C \M and M∩C′ together form a clique of T ′.

Recapping, we have 2|M\C′| inner runs of message passing, each of which works with a junction
tree containing a clique of size |C \M|+ |M ∩C′|. We will now prove by induction that inference
takes time at least k2|C|, where k is an implementation-dependent constant.

For the inductive step, our runtime for calculating M is at least

2|M\C′|× k2|C\M|+|M∩C′|

for 2|M\C′| runs of message passing, each of which costs k2|C\M|+|M∩C′| by the inductive hypothesis.
Since |M \C′|+ |C \M|+ |M∩C′| = |C|, our runtime is therefore at least k2|C|, as claimed.

There are several possible base cases. The most obvious is when |C| = 1; in this case we can
choose k > 0 so that the runtime is at least 2k. The induction can also bottom out if the nested junc-
tion tree method becomes inapplicable at any step. There are two ways it can become inapplicable:
first, if M \C′ = /0, then the argument above means that the nested junction tree has only a single
clique of size |C|, and the nested junction tree method therefore offers no speedup. In this case we
need to build a table of size 2|C| for inference. So, we can again choose k > 0 so that our runtime is
at least k2|C|.

Second, the nested junction tree method is inapplicable if clique C has no outgoing messages. C
has no outgoing messages if and only if we select it as the root for message passing. In this case, C
gets incoming messages from all of its neighbors, and the nested junction tree method again offers
no speedup: to perform any inference task on C’s fully-connected graph, we must again build a table
of size 2|C| and take time at least k2|C| for some k > 0.

So, by choosing k > 0 small enough to satisfy all of the above base cases, we have completed
the induction. The only remaining detail is the question of non-binary variables. But, it should be
obvious from the proof above that any non-binary variables can only increase the cost of inference.

Lemma 1 means that we cannot expect the nested junction tree method on its own to make it practical
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to work with trees with very large cliques. This conclusion is borne out by the experimental results
of Kjærulff (1998), Tables 1 and 2: the time savings shown there are never greater than about
60%. In contrast, the examples of the previous two sections show that decomposable potentials in
general can lead to far greater savings: in these examples, the message calculation time goes from
exponential to polynomial in the size of the clique, and Fig. 10 below shows that this change can
easily result in speedups of multiple orders of magnitude.

7. Prior Updating

By calculating messages as described in Section 6.1, we can run loopy belief propagation on a factor
graph that includes voting potentials. However, we might expect the messages from a factor ϕ j to
a non-centered variable xi (where i 6= c j) to be fairly weak: the overall vote of all of xc j ’s neighbors
will not be influenced very much by xi’s single vote, so there will not be a strong penalty if xi votes
the wrong way.

This observation suggests an even simpler algorithm for inference: we can run loopy BP but
ignore all of the messages from factors to non-centered variables. (Ignoring a message means
considering it to be uniform.) We will call this algorithm Prior Updating, or PU, since it works
by using the current classifications of a node’s neighbors to update the prior for the node’s own
classification. Our group proposed a version of Prior Updating for inference on graphs (Chen and
Murphy, 2006) before the work described in the current paper, which explores its relationship to
potential functions in loopy belief propagation.

We can expect that PU will be noticeably faster than loopy BP, since there will usually be many
more non-centered variables than there are centered ones in each factor. We might also hope that
PU could be more accurate than loopy BP, since it is less prone to double-count evidence: we
have broken any loops which would allow a message that xc j sends to factor ϕ j to return back and
influence the classification of xc j . (As it turns out, we will see below that in our experiments PU
is often slightly worse and sometimes slightly better than loopy BP on factor graphs with voting
potentials.) We will examine the speed and classification performance of loopy BP, PU, and other
inference methods in Section 9. PU can be seen as an approximation of LBP on factor graphs with
voting potentials, and like LBP, is not guaranteed to converge. However, in our experiments, we
never observed problems with convergence for PU or for LBP with the voting potential.

8. Experimental Materials and Methods

2D HeLa Image Set We applied our methods to the problem of classifying subcellular patterns in
an image of many cells, a problem that we have formalized previously (Chen and Murphy, 2006).
The starting point is a set of fluorescence microscope images of HeLa cells created by introduc-
ing antibodies and molecular probes against proteins in major subcellular organelles (Boland and
Murphy, 2001). The data set contains 862 single-cell images from ten classes, with each class hav-
ing between 73 and 98 images. The true class of each image is known with certainty since the
fluorescent probe present in each slide is known.

Classifying protein subcellular patterns is important since it allows us to identify where a protein
is located in cell organelles, which is required for it to carry out its specific function (Boland and
Murphy, 2001). This knowledge is critical to understanding how that protein works in a cell, and to
describing cell behaviors under different conditions.
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In the past, the most common way to determine protein location patterns has been by human in-
terpretation of fluorescence microscope images. In recent years, however, automated systems have
been developed for consistent and objective interpretation of such images; the current paper’s tech-
niques are designed to help the accuracy of these automated systems (Chen et al., 2006c; Glory and
Murphy, 2007). Automated systems, when available, can be preferable to human image annotation,
since they can help avoid human biases and errors. They also make it possible to analyze images
from high-throughput microscopy, which would otherwise be too numerous for humans to handle.

Subcellular Location Features Several sets of informative features have been developed to de-
scribe protein subcellular patterns (Boland and Murphy, 2001; Chen et al., 2006c; Glory and Mur-
phy, 2007). These features, termed Subcellular Location Features (SLFs), are of several types,
including Zernike moment features, Haralick texture features, morphological features and wavelet
features. The details for different versions of SLFs are reviewed elsewhere (Huang and Murphy,
2004). The best single-cell classification results obtained to date with a single feature set for the 2D
HeLa data set were with feature set SLF16 (Huang and Murphy, 2004), which we have therefore
used in the work described here. In this feature set, each cell is represented by a feature vector f of
length d = 47.

Support Vector Machine To determine the evidence for each individual cell we used Support
Vector Machine classifiers (Cortes and Vapnik, 1995), as implemented in the LIBSVM library ver-
sion 2.82 (Chang and Lin, 2001). To handle problems with k > 2 classes, we learned k(k− 1)/2
binary SVM classifiers, one for each pair of classes. We then derived probability estimates by ap-
plying sigmoid functions to the decision values of these SVMs, in an improved implementation (Lin
et al., 2003) of the Platt Scaling method (Platt, 2000).

Simulating Multi-Cell Images We are interested in the simultaneous classification of all of the
cells in a multi-cell microscope image. Unfortunately, it is difficult to collect multi-cell images for
which we know the ground truth classification of each cell: if we prepare a slide from a mixture of
two or more types of cells, we do not have direct control over which type appears where. For this
reason, we simulated the multi-cell problem by creating synthetic multi-cell images using multiple
real single-cell HeLa images.1 To generate a structured classification problem, we selected two of
the ten classes at random; then we selected N1 images from the first class and N2 from the second,
with N1 + N2 = 12. We then treated these images as if they were the output of a segmentation
algorithm that was run on a multi-cell image.

Constructing the Similarity Graph As an intermediate step in the construction of our factor
graph, we built a similarity graph: the nodes of this graph correspond to cells, and an edge between
two cells means that we believe that they are likely to share the same label. The simplest approach
to building the similarity graph is to include all possible edges. With a fully-connected similarity
graph, all cells in the test image are considered equally similar to one another; such a graph expresses
a prior belief that images containing a few groups of same-class cells are more likely than images
containing cells of many different classes. Our experiments below show that even this modest
amount of prior information can improve the accuracy of our classifier compared to the no-edges
(independent classification) case; for example, in Figs. 7–9, the performance of LBVP is higher

1. We are in the process of analyzing true multi-cell images with known ground truth, which we collect by tagging one
of the cell types with a fluorescent marker at a wavelength different from the one used to label the target protein.
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Figure 5: Classification of multiple examples using proximity in feature space. (a) At the training
stage, a linear classifier separates two classes in a 2D feature space. (b) At the testing
stage, we have added feature bias, causing 3 examples of one class to be misclassified.
But, these examples can be classified correctly by constructing a similarity graph and
running belief propagation on the corresponding factor graph.

when 100% of edges are present than it is when 0% of edges are present. But of course, if more-
specific information is available, we will get better performance by using it to construct a more
informative similarity graph with an intermediate number of edges.

One possible source of additional information is physical proximity between cells. Physical
proximity is informative if we believe that nearby cells are likely to share an ancestor. However, we
wanted to avoid having to simulate cell positions in our synthetic images, so in the current work we
did not include edges based on physical proximity. In previous work (Chen and Murphy, 2006), we
did evaluate graphs built using physical proximity, and they improved classification accuracy when
applicable. So long as edges tend to connect cells that share the same class, the exact source of
edges does not matter for our inference algorithms; so, the experimental results below should apply
equally well to graphs that contain edges from physical proximity.

Instead, for our experiments below, we built the similarity graph according to feature-space
proximity: we added edges between cells whose feature vectors were close to one another according
to z-scored Euclidean distance. Using feature-space proximity in this way makes sense because
minor experimental variations can perturb the features of a whole group of test cells in similar
ways.

In more detail, minor differences in how cells were prepared (such as variations in plating time,
exposure time, concentration of reagents, ambient temperature, etc.) can cause a noticeable bias in
the computed features of a test group of cells compared to our training set. We do not generally
have enough cells of enough different classes in a test group to estimate this bias accurately before
classifying the cells. However, if there is a margin in feature space between classes, then building a
similarity graph based on feature-space proximity is likely to connect each cell mostly to other cells
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of the same class. So, as long as the feature bias is not so large that it causes most cells of a given
class to be misclassified, we can hope to “rescue” cells that have been moved just across the class
boundary, since they will be connected to other cells of the same class that are correctly classified.
Fig. 5 justifies this intuition with a simple synthetic example.

In addition to the above reasons, feature-space proximity among test images could be infor-
mative if the training set wasn’t large enough or the classifier wasn’t flexible enough to learn the
location classes well. In our experiments, we believe that the influence of this last effect is minimal.

To produce a variety of graphs with different edge densities, we introduced a parameter dcutoff:
we connected two nodes whenever their z-scored Euclidean distance in feature space was less than
dcutoff.2 Large values of dcutoff correspond to graphs with many edges, while small values correspond
to graphs with few edges. We varied dcutoff to produce graphs with edge densities ranging from 0%
to 100% of the possible edges.

Constructing the Factor Graphs From each similarity graph we built several different factor
graphs using different kinds of potentials. Each different factor graph corresponds to a different
way to turn our qualitative similarity judgements into a precise probability distribution over label
vectors.

The simplest factor graph was the Potts model. In the Potts model, we used one Potts potential
for each edge in the similarity graph; each potential had parameter ω = 1.7. The next type of factor
graph was an associative Markov network. In this model we used one AMN potential for each node;
this potential covered the node and all of its similarity-graph neighbors, and had ωy = 2.9 for all y.
The last type of factor graph used the voting potential. In this graph there was one voting potential
centered on each node; this potential covered the node and all of its similarity-graph neighbors, and
had parameter λ = 1.7. For all three types of potential, we determined the above parameter values
ahead of time by a coarse search.3

Synthetic Graphs Since the size of the 2D HeLa data set is limited, we performed additional
experiments on automatically-generated inference problems. These experiments investigated the
sensitivity of our method to the accuracy of the base classifier. We generated a synthetic graph by
picking two of the ten classes at random and two numbers N1 and N2. We generated N1 cells of the
first class and N2 cells of the second. For each cell we selected feature vectors of length d = 2 from
a standard normal distribution; for one of the groups of cells we then displaced the feature vectors
by a distance s. We chose s = 3 as a value which yielded a reasonable degree of overlap between
classes. Finally, as above, we connected pairs of nodes whose feature-space distances were less than
dcutoff.

Synthetic Evidence To generate the evidence for a node in one of our synthetic graphs, we picked
random scores for each class. The score for the true class was generated from a normal distribution

2. A reviewer of a previous version of this paper suggested that all edges should be present in the graph, and that we
should adjust the weight of each edge based on the distance between the nodes. This is a reasonable suggestion;
however, some of the potential functions we are evaluating do not have an obvious way to take edge weights into
account. So, for the sake of an easier comparison, in this paper we work only with 0-1 weights.

3. As we examined the parameter space of the AMN potential, we discovered that results appear to be very sensitive to
the strength parameter ω and the edge density of the graph. So, while we fixed a single compromise parameter for the
AMN potentials in our experiments (so that our AMN results are comparable to our results for other potentials), we
strongly recommend parameter learning for practical use of the AMN potential, for example, by the method described
in (Taskar et al., 2004).
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with mean µ > 0 and unit variance, while the scores for other classes were generated from normal
distributions with mean 0 and unit variance. Each score was then transformed by a sigmoid to
produce the evidence for its corresponding class. Large values of µ result in a highly-accurate
simulated base classifier, while small values yield a classifier that performs only a little better than
chance. We show results for a range of values of µ that result in base accuracies from 50% to 90%.

9. Experimental Results

We conducted experiments to determine the effect of various potential functions and inference al-
gorithms on overall classification accuracy in structured classification problems. In particular, we
designed our experiments to compare the two-way Potts potential with the k-way AMN and voting
potentials, and to compare our approximate inference algorithms to their exact counterparts. Our
results support the following conclusions:

• We can achieve better classification accuracy by moving from the Potts model, with its two-
way potentials, to models that contain k-way potentials for k > 2.

• Of the k-way potentials that we tested, the voting potential is the best for a range of problem
types.

• For small networks where exact inference is feasible, our approximate inference algorithms
yield results similar to exact inference at a fraction of the computational cost.

• For larger networks where exact inference becomes intractable, our approximate inference
algorithms are still feasible, and structured classification with approximate inference lets us
take advantage of the similarity graph to improve classification accuracy compared to the base
(unstructured) classifier.

9.1 Synthetic Graphs

Our first experiment used small, synthetic graphs to compare the Potts, AMN, and voting potentials,
and to compare exact and approximate inference. (Since we wanted a large number of test samples,
and since we wanted to vary the accuracy of the base classifier over a wide range, it would not have
been practical to conduct this experiment with the real HeLa data.) In this experiment, for each
trial, we randomly generated a synthetic similarity graph with 10 nodes split between 2 classes (out
of a list of 4 total classes), as described above. We used 50% graph edge density for the Potts and
voting potentials and 40% graph edge density for the AMN potential, since these densities were
approximately optimal according to our preliminary experiments. We also generated simulated
classifier likelihoods at each node using values of µ that corresponded to base classifier accuracies
ranging from 50% to 90%.

For each generated classification problem, we built three different factor graphs according to
the methods described above: a Potts model, a model that used AMN potentials, and a model that
used voting potentials. Finally, we computed posterior marginal class probabilities using seven
different inference algorithms: exact inference on the Potts model (EIPP), loopy belief propagation
on the Potts model (LBP), exact inference on the model with AMN potentials (EIAMN), loopy
belief propagation on the model with AMN potentials (LBAMN), exact inference on the model with
voting potentials (EIVP), loopy belief propagation on the model with voting potentials (LBVP), and
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Figure 6: Accuracy Improvement vs. Base Accuracy with different inference methods on graphs
with synthetic evidence: exact inference on the model with voting potentials (EIVP, 4−),
loopy belief propagation on the model with voting potentials (LBVP, 4−−), prior up-
dating on the model with voting potentials (PU, 4·· ·), exact inference on the model with
AMN potentials (EIAMN, �−), loopy belief propagation on the model with AMN po-
tentials (LBAMN, �−−), exact inference on the Potts model (EIPP, ©−) and loopy
belief propagation on the Potts model (LBP, ©−−). (a) Graphs with equal numbers of
nodes from two classes, (N1,N2) = (5,5). (b) Graphs with unequal numbers of nodes
from two classes, (N1,N2) = (2,8). 95% confidence bars (not shown) are smaller than
the plot symbols.

prior updating on the model with voting potentials (PU). We evaluated each method by averaging
its classification accuracy over all nodes in the graph, and then over 10,000 different graphs; the
results are shown in Fig. 6.

As Fig. 6 illustrates, the methods using the voting potential (EIVP, LBVP, and PU) significantly
outperformed the other potentials when the graph has an equal number of nodes from each class.
For the unequal case, the voting potential had comparable performance to the Potts potential, and
outperformed the AMN potential. In addition, the approximate methods (PU, LBVP, and LBP) did
not differ substantially from their corresponding exact algorithms (EIVP, EIVP, and EIPP respec-
tively), with the exception that LBAMN is substantially worse than EIAMN, and PU appears to be
slightly worse than EIVP at lower base accuracies, and slightly better at higher base accuracies.

9.2 HeLa Data

Encouraged by the above results, we next considered classification accuracy for the real HeLa cell
images. The factor graphs in this case are too large for exact inference, and therefore we cannot
compare approximate and exact inference algorithms. Instead, we sought in our second experi-
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Figure 7: Accuracy Improvement vs. Graph Complexity with different approximate inference
methods on graphs with evidence from real data and base accuracy = 91.6%: loopy be-
lief propagation on the model with voting potentials (LBVP, 4−−), prior updating on
the model with voting potentials (PU, 4·· ·), loopy belief propagation on the model with
AMN potentials (LBAMN, �−−) and loopy belief propagation on the Potts model (LBP,
©−−). (a) Graphs with equal numbers of nodes from two classes, (N1,N2) = (6,6). (b)
Graphs with unequal numbers of nodes from two classes, (N1,N2) = (2,10). Confidence
bars are not shown, since paired tests are more powerful for our experimental setup; see
text for statistical comparisons.

ment to determine whether our approximate inference algorithms are able to improve classification
accuracy substantially compared to our baseline SVM classifier.

For each trial in this experiment, we built a graph containing 12 cells in two classes. (We did not
tell the classifier which two classes we used, so there were still 10 possible labels for each cell.) We
assigned evidence to each cell using the SVM classifier described above; the base accuracy of this
classifier was 91.6%. In order to evalute the inference performance on different base accuracies, we
also selected the best 4 and 6 (out of 47) features to achieve the lower base accuracies of 70.6%
and 83.1%, respectively. To test the algorithms’ performance on a variety of problems, we adjusted
dcutoff to achieve levels of connectivity ranging from 0% to 100% of the possible edges; 0% graph
complexity corresponds to a completely disconnected graph, in which each node’s class is assigned
using just the base classifier, while 100% means that the graph is fully connected.

We evaluated each algorithm’s accuracy by 6-fold cross-validation: we trained the SVM using
5/6 of the images, used the other 1/6 of the images to construct testing networks, and recorded the
improvement in classification accuracy compared to the base classifier in each testing network. We
repeated this procedure 6 times so that every image appeared in the test partition once. Finally, we
averaged the overall accuracy over 10 different splits into folds. The results in Fig. 7, Fig. 8, and
Fig. 9 demonstrate that PU and LBVP can robustly achieve a good improvement in classification
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Figure 8: Accuracy Improvement vs. Graph Complexity with different approximate inference
methods on graphs with evidence from real data and base accuracy = 83.1%: loopy belief
propagation with voting potentials (LBVP, 4−−), prior updating with voting potentials
(PU, 4·· ·), loopy belief propagation with AMN potentials (LBAMN, �−−) and loopy
belief propagation on the Potts model (LBP, ©−−). (a) Graphs with equal numbers of
nodes from two classes, (N1,N2) = (6,6). (b) Graphs with unequal numbers of nodes
from two classes, (N1,N2) = (2,10). Confidence bars are not shown, since paired tests
are more powerful for our experimental setup; see text for statistical comparisons.

accuracy on graphs with equal numbers of nodes from two classes, as compared to methods based
on other potentials. (One-tailed paired t-test: p = 0.0033, p = 0.0018, p = 0.0001 for graphs with
91.6%, 83.1%, and 70.6% base accuracies, respectively. Tests were conducted at graph complexity
50%; p values are for comparison to closest competitor.)

On graphs with unequal class sizes, voting and Potts potentials achieved statistically compara-
ble results when the graph complexity was tuned optimally. But, the performance of the voting-
potential-based methods was more robust: their accuracy remained high for a wider range of graph
complexities. (For example, one-tailed paired t-test for LBVP versus LBP: p = 0.0036 for graphs
with 91.6% base accuracies at graph complexity 80%; p = 0.0008 for graphs with 83.1% base
accuracies at graph complexity 90%; p ≤ 0.0001 for graphs with 70.6% base accuracies at graph
complexity 100%.)

9.3 Inference Speed

Our final experiment compares the computational efficiency of the different inference methods.
Each point in Fig. 10 shows the average inference time per trial on different sizes of graphs with
various algorithms (note the logarithmic time scale). Each graph has N1 = N2, uses four of the ten
classes from the HeLa data set, and has 50% graph complexity. In this figure, we also included
the processing time for loopy belief propagation with voting potentials using naive message com-
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Figure 9: Accuracy Improvement vs. Graph Complexity with different approximate inference
methods on graphs with evidence from real data and base accuracy = 70.6%: loopy be-
lief propagation on the model with voting potentials (LBVP, 4−−), prior updating on
the model with voting potentials (PU, 4·· ·), loopy belief propagation on the model with
AMN potentials (LBAMN, �−−) and loopy belief propagation on the Potts model (LBP,
©−−). (a) Graphs with equal numbers of nodes from two classes, (N1,N2) = (6,6). (b)
Graphs with unequal numbers of nodes from two classes, (N1,N2) = (2,10). Confidence
bars are not shown, since paired tests are more powerful for our experimental setup; see
text for statistical comparisons.

putation (LBVPNC), which computes messages using ordinary marginalization rather than our new
message computation algorithms. LBVPNC is expected to be faster then EIVP when the number
of neighbors of one node is only a small fraction of the total number of nodes; otherwise LBVPNC
could be much slower than EIVP, as is the case in this experiment.

The exact inference methods take time exponential in the size of the graph and are impractical
to run for graphs of more than 12 nodes, while the processing times of PU, LBVP and LBP are
much faster, and remain well under a second for the largest graphs tested. (With more than four
classes, the exact inference times would rise even more quickly, and the graphs would have to be
even smaller to allow exact inference.) The processing times for approximate inference methods are
a combination of two factors: the number of iterations to converge and the time for each iteration.
Fig. 11 shows the number of iterations needed for each method.

10. Related Work

The problem of how to quickly compute belief messages (or other similar quantities in an inference
algorithm) is an important one, and several special cases of our decomposable structure have been
previously described in the literature. One recent example is an algorithm for fast inference in
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Figure 10: Dependence of inference time on graph size for different inference methods: exact in-
ference on the model with voting potentials (EIVP, 4−), loopy belief propagation on
the model with voting potentials (LBVP, 4−−), loopy belief propagation on the model
with voting potentials using naive message computation (LBVPNC, 4·−), prior up-
dating on the model with voting potentials (PU, 4·· ·), exact inference on the model
with AMN potentials (EIAMN, �−), loopy belief propagation on the model with AMN
potentials (LBAMN, �−−), exact inference on the Potts model (EIPP, ©−) and loopy
belief propagation on the Potts model (LBP, ©−−). Values shown are times for one
run of inference on the given graph, averaged over 12 trials.

hidden Markov models with structured transition matrices (Siddiqi and Moore, 2005). HMMs are a
special case of chain-shaped factor graphs: there is one node representing the state xt at each time
step t, and there is a factor connecting the nodes xt and xt+1 for each t. The potential functions for
all factors are the same, and are equal to the transition matrix: ϕ(xt ,xt+1) = P(xt+1 | xt).

The special structure for transition matrices proposed by Sidiqqi and Moore is called “Dense
Mostly Constant,” or DMC. In a DMC transition matrix for n states, each row contains k arbitrary
entries in specified positions, and the other n− k entries are all equal to a shared constant. The
k arbitrary entries may be in different positions for each row, and the shared constant may also
differ from row to row. Siddiqi and Moore show how to run the forward-backward, Viterbi, and
Baum-Welsh algorithms quickly for HMMs with DMC transition matrices.

The DMC structure is a special case of our decomposable potential structure: any potential
function corresponding to a DMC transition matrix can be written as a rank-one term plus a sparse
term. More precisely,

φ(xt ,xt+1) = q(xt)+ ∑
x,x′∈S

(wxx′ −q(x))I(xt ,x)I(xt+1,x
′).
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Here q(xt) is the shared constant for the row corresponding to xt , S is the set of transition matrix
entries (x,x′) which are allowed to differ from the shared constants, and wxx′ is the value of the
transition matrix entry at position (x,x′). The functions q(xt), I(xt ,x), and I(xt+1,x′) each have
arity 1; and, the set S is sparse, since it has at most kn � n2 elements. Since DMC potentials
are decomposable, our message calculation algorithm allows us to run belief propagation quickly;
doing so is essentially equivalent to Sidiqqi and Moore’s implementation of the forward-backward
algorithm.

As we have pointed out above, the associative Markov network potential is also an example of
our decomposable potential structure. The original paper on AMNs used an inference algorithm
based on linear programming rather than on belief propagation (Taskar et al., 2004). However, the
reason that their LP-based inference algorithm is tractable is exactly that they can take advantage
of the AMN potential’s special structure. There does not appear to be a simple way to extend their
LP-based inference algorithm to the more general decomposable potential structure studied here,
but this would be an interesting direction for future work. Another interesting direction for future
work would be to extend their parameter-learning algorithm to handle more general structures like
the decomposable potentials studied here.

In the context of a computer vision application, Felzenszwalb and Huttenlocher (2004) describe
how to run loopy belief propagation quickly for a number of different pairwise potential functions.
One that they consider is the Potts potential, and their algorithm for handling this potential takes
advantage of the fact that it is a constant plus a sparse matrix, 1 + (ω− 1)I. They also consider
pairwise potentials based on distance functions, which do not in general appear to be examples of
our class of decomposable potential functions. On the other hand, they consider only potentials with
up to two arguments.

In addition to the potentials studied in this paper, multiple examples of specific decomposable
potentials exist in the literature. One of the most common forms is a potential used in directed
graphical models (Bayes nets), in which the child’s distribution depends on the sum of the par-
ents’ values (e.g., Frey and Kannan, 2000). Another good example is a potential used to represent
probability distributions over graphs, in which a structure’s probability depends on the degree of its
nodes (Morris et al., 2003). All of these examples share a certain similarity to several of the special
cases of decomposable potentials mentioned above, in that the speedup comes from accelerating the
calculation of a single large sum within the message computation.

Another way to handle large sums is to build a sum tree: for example, the sum x1 + x2 + x3 + x4

can be rewritten [(x1 + x2)+ (x3 + x4)]. So, a potential with 4 arguments, ϕ(x1,x2,x3,x4) = f (x1 +
x2 + x3 + x4), can be replaced by three smaller potentials and two new variables:

I(y1 = x1 + x2) I(y2 = x3 + x4) f (y1 + y2).

Similarly, a potential that depends on a sum of n terms can be replaced by n− 1 three-argument
potentials and n− 2 additional variables. See Liao et al. (2006) for an example of an algorithm
based on this intuition. While this method works well for potentials that are functions of sums, it
is not straightforward to extend it to more complicated potentials of the form we consider in this
paper.

A final, and related, example of a tractable approximation to belief propagation is given by
Barber (2001). Barber considers the directed version of the belief propagation algorithm, with
conditional probability distribution functions of the form

P(x | s) = f (θ · s).
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Here x is a node in the graph, s is the vector of parents of x, θ is a vector of fixed parameters,
and f is a one-dimensional function with a tractable (approximate) Fourier expansion. This class
of potentials is different from ours; perhaps an even larger class of potentials could be handled by
combining the two techniques, arriving at a class of potentials that looked like

ϕ j(x1, . . . ,xk) = ∑
i

fi

(

L j

∑
l=1

M jl

∏
m=1

ξ jlm(xV ( j,l,m))

)

where fi is a basis function (e.g., a multiple of a sine wave if we are using Fourier expansions as
above).

It is possible to find the most likely vector of labels for a Potts model using graph cuts when each
variable xi is binary. A related algorithm can be used for approximate inference with non-binary
variables, and always finds a label vector within a factor of 2 of the most likely. (See Kleinberg and
Tardos, 1999; Taskar et al., 2004, for a discussion.) It does not appear to be easily possible to extend
this group of algorithms to k-way potentials such as the voting potential.

In our own previous work, we applied PU to image segmentation problems to identify cell re-
gions (Chen et al., 2006b). In this case, the voting potential assumed that two sources of information
were available: images of nuclear staining and of cell boundary locations, both of which were ex-
pected to be noisy. The nuclear staining provided an initial assignment of whether a pixel belongs
to the background or to one of the cells, while the cell boundary image provided a probability esti-
mate of whether two neighboring pixels should have the same label. The results indicated that PU
provided efficient and accurate inference.

11. Conclusions and Future Work

We have examined the problem of classifying multiple dependent examples in a protein subcel-
lular location pattern recognition task. We have compared several different graphical models and
inference algorithms designed to solve this sort of structured classification problem, including one
based on the novel voting potential function. The voting potential, like the previously studied Potts
and AMN potentials, encodes the intuition that a variable is likely to have the same class as its
neighbors. Our experiments show that the voting potential often does a better job of encoding this
intuition than the Potts and AMN potentials do.

In addition to the new potential, we have presented new approximate inference algorithms: first,
we have shown how to implement loopy belief propagation efficiently for networks with decompos-
able potentials, including the AMN and voting potentials. And second, we have suggested ignoring
certain belief messages during LBP for the voting potential, resulting in an algorithm called Prior
Updating. These fast algorithms enable us to use potentials like the voting potential on real data,
where they would otherwise be impractical.

We believe that the voting potential function and the class of decomposable potentials will
generalize to other graphs and other applications: for example, in image segmentation, it is common
to use a potential which encourages nearby pixels to be part of the same object. With a potential
similar to the voting potential described here, we could allow many neighboring pixels to vote on
which object a particular pixel belongs to; and in fact, we have conducted initial experiments in this
direction (Chen et al., 2006b). For another example, in regression and classification it is common
to reject outliers to improve the robustness of the learned concept. In a given training set, multiple
outliers may result from similar causes, such as being out of focus or in a different phase of the
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Figure 11: Dependence of number of iterations to converge on graph size for different inference
methods: loopy belief propagation on the model with voting potentials (LBVP, 4−−),
prior updating on the model with voting potentials (PU, 4·· ·), loopy belief propagation
on the model with AMN potentials (LBAMN, �−−) and loopy belief propagation on
the Potts model (LBP, ©−−). Values shown are numbers of iterations for one run of
inference to converge on the given graph, averaged over 12 trials.

cell cycle. By using feature-space similarity to connect training examples in a graph, we can infer
which types of outliers are present in the data and use this information to determine more accurately
whether each point is an outlier.

In addition to the specific potentials we propose, our algorithms for calculating belief messages
efficiently will also generalize to other domains. Whenever a graph contains a factor with a de-
composable potential function, we can greatly reduce the time required to calculate belief messages
from that factor. Our message calculation algorithm is exact; one might expect that further speed
improvements would be possible if we are willing to accept approximate calculations. One promis-
ing avenue that we intend to explore is a “loopy” version of our message calculation algorithm. In
such an algorithm, an inner loop of message passing would approximate the belief messages needed
by the outer loop.
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Abstract

A number of today’s state-of-the-art planners are based on forward state-space search. The im-
pressive performance can be attributed to progress in computing domain independent heuristics
that perform well across many domains. However, it is easy to find domains where such heuristics
provide poor guidance, leading to planning failure. Motivated by such failures, the focus of this pa-
per is to investigate mechanisms for learning domain-specific knowledge to better control forward
search in a given domain. While there has been a large body of work on inductive learning of con-
trol knowledge for AI planning, there is a void of work aimed at forward-state-space search. One
reason for this may be that it is challenging to specify a knowledge representation for compactly
representing important concepts across a wide range of domains. One of the main contributions
of this work is to introduce a novel feature space for representing such control knowledge. The
key idea is to define features in terms of information computed via relaxed plan extraction, which
has been a major source of success for non-learning planners. This gives a new way of leverag-
ing relaxed planning techniques in the context of learning. Using this feature space, we describe
three forms of control knowledge—reactive policies (decision list rules and measures of progress)
and linear heuristics—and show how to learn them and incorporate them into forward state-space
search. Our empirical results show that our approaches are able to surpass state-of-the-art non-
learning planners across a wide range of planning competition domains.

Keywords: planning, machine learning, knowledge representation, search

1. Introduction

In recent years, forward state-space search has become a popular approach in AI planning, leading to
state-of-the-art performance in a variety of settings, including classical STRIPS planning (Hoffmann
and Nebel, 2001; Vidal, 2004), optimal planning (Helmert et al., 2007), temporal-metric planning
(Do and Kambhampati, 2003), nondeterministic planning (Bryce and Kambhampati, 2006), and
oversubscribed planning (Benton et al., 2006), among others. Given that forward state-space search
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is one of the oldest techniques available for planning, and many other search spaces and approaches
have been developed, this state-of-the-art performance is somewhat surprising. One of the key rea-
sons for the success is the development of powerful domain-independent heuristics that work well
on many AI planning domains. Nevertheless, it is not hard to find domains where these heuristics
do not work well, resulting in planning failure. We are motivated by these failures and in this study,
we investigate machine learning techniques that find domain-specific control knowledge that can
improve or speed-up forward state-space search in a non-optimal, or satisficing, planning setting.

As outlined in Section 3 there is a large body of work on learning search-control knowledge
for AI planning domain. However, despite the significant effort, none of these approaches has been
demonstrated to be competitive with state-of-the-art non-learning planners across a wide range of
planning domains. There are at least two reasons for the performance gap between learning and
non-learning planners. First, most prior work on learning control knowledge has been in the context
of non-state-of-the-art planning approaches such as partial-order planning, means-ends analysis,
among others. In fact, we are only aware of two recent efforts (Botea et al., 2005; Coles and Smith,
2007) that learn control knowledge for forward state-space search planners. Even these approaches
have not demonstrated the ability to outperform the best non-learning planners as measured on plan-
ning competition domains. Second, it is a challenge to define a hypothesis space for representing
control knowledge that is both rich enough for a wide variety of planning domains, yet compact
enough to support efficient and reliable learning. Indeed, a common shortcoming of much of the
prior work is that the hypothesis spaces, while adequate for the small number of domains investi-
gated, were not rich enough for many other domains.

The primary goal of this work is to contribute toward reversing the performance gap between
learning and non-learning planners. In this work, we do this by addressing each of the above two
issues. First, our system is based on the framework of forward state-space search, in particular,
being built upon the state-of-the-art planner FF (Hoffmann and Nebel, 2001). Second, we propose
a novel hypothesis space for representing useful heuristic features of planning states. We show how
to use this feature space as a basis for defining and learning several forms of control knowledge
that can be incorporated into forward state-space search. The result is a learning-based planner that
learns control knowledge for a planning domain from a small number of solved problems and is
competitive with and often better than state-of-the-art non-learning planners across a substantial set
of benchmark domains and problems.

A key novelty of our proposed feature space is that it leverages the computation of relaxed
plans, which are at the core of the computation of modern forward-search heuristics (Bonet and
Geffner, 2001; Hoffmann and Nebel, 2001). Relaxed plans are constructed by ignoring, to varying
degrees, the delete/negative effects of actions and can be computed very efficiently. The length of
these plans can then serve as an informative heuristic (typically non-admissible) for guiding state-
space search. In addition to their length, relaxed plans contain much more information about a
search state that is ignored by most forward-search planners.1 Our proposed feature space gives
one way of using this information by viewing the relaxed plan as a structure for defining potentially
useful features of the current state. As an example of the utility of our feature space, note that
the fact that relaxed planning ignores delete effects is the main reason that the length sometimes
dramatically underestimates the true distance to goal, leading to poor heuristic guidance (note that
relaxed-plan length can also overestimate the distance to goal). Our feature space is able to partially

1. One exception is Vidal (2004) where relaxed plans are also used to extract macro actions.
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capture information about the delete effects ignored in a relaxed plan, which can be used to learn
knowledge that partially compensates for the underestimation.

We use the relaxed-plan feature space to learn two forms of knowledge for controlling forward
state-space planning. In each case, the knowledge is learned based on a set of training problems
from a domain, each labeled by a solution. First, we consider learning knowledge in the form of
linear heuristic functions. In particular, we learn heuristics that are linear combinations of relaxed-
plan features, with one of those features being the relaxed-plan length. Thus, our heuristic learner
can be viewed as an approach for automatically correcting deficiencies of the usual relaxed-plan
length heuristic, by augmenting it with a weighted combination of additional features selected from
the large space of possible relaxed-plan features.

As a second form of control knowledge, we investigate reactive policies. Learning reactive
policies for planning domains has been studied by several researchers (Khardon, 1999; Martin and
Geffner, 2000; Yoon et al., 2002, 2005). However, all of these studies have used the learned policies
as stand-alone search-free planners that simply execute the linear sequence of actions selected by
the policies. While this non-search approach is efficient and has been shown to work well in a
number of domains, it often fails due to flaws in the policy that arise due to imperfect learning.
Nevertheless, such policies capture substantial information about the planning domain, which we
would like to exploit in a more robust way. In this work, we propose and evaluate a simple way
of doing this by integrating learned policies into forward search. At each search node (i.e., state),
we execute the learned policy for a fixed horizon and add all of the states encountered to the search
queue. In this way, flaws in the policy can be overcome by search, while the search efficiency can be
substantially improved by quickly uncovering good “deep states” that are found by the policy. We
evaluate this idea using two representations for learned policies both of which make use of relaxed-
plan features—decision lists of rules similar to Yoon et al. (2002) and measures of progress (Yoon
et al., 2005)—both of which make use of relaxed-plan features.

In our experiments, we learned and evaluated both forms of control knowledge on benchmark
problems from recent planning competitions. We learned on the first 15 problems in each domain
and tested on the remaining problems. The results are very much positive. Forward state-space
search with the learned control knowledge outperforms state-of-the-art planners, in most of the
competition domains. We also demonstrate the utility of our relaxed-plan feature space by con-
sidering feature spaces that ignore parts of the relaxed-plan information, showing that using the
relaxed-plan information leads to the best performance.

The remainder of the paper is structured as follows. In Section 2, we introduce the problem
of learning domain-specific control knowledge for planning and in Section 3 we overview some of
the prior work in this area. In Section 4, we describe the two general forms of control knowledge,
heuristics and reactive policies, that we consider learning in this work and how we will use that
knowledge to guide forward state-space search. In Section 5, we will describe a relaxed-plan feature
space that will serve as our basis for representing both learned heuristics and policies. In Sections 6
and 7 we will describe specific representations for policies and heuristics, in terms of the relaxed-
plan features, and give learning algorithms for these forms of control knowledge. In Section 8, we
demonstrate the effectiveness of our proposal in this study through empirical results on benchmark
planning domains. In Section 9, we summarize and discuss potential future extensions to this work.
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2. Problem Setup

In this paper, we focus our attention on learning control knowledge for deterministic STRIPS plan-
ning domains. Below we first give a formal definition of the types of planning domains we consider
and then describe the learning problem.

2.1 Planning Domains

A deterministic planning domain D defines a set of possible actions A and a set of states S in terms
of a set of predicate symbols P , action types Y , and objects O. Each state in S is a set of facts,
where a fact is an application of a predicate symbol in P to the appropriate number of objects from
O. There is an action in A , for each way of applying the appropriate number of objects in O to an
action type symbol in Y . Each action a ∈ A consists of: 1) an action name, which is an action type
applied to the appropriate number of objects, 2) a set of precondition state facts Pre(a), 3) two sets
of state facts Add(a) and Del(a) representing the add and delete effects respectively. As usual, an
action a is applicable to a state s iff Pre(a)⊆ s, and the application of an (applicable) action a to s,
denoted a(s), results in the new state a(s) = (s\Del(a))∪Add(a).

Given a planning domain, a planning problem P from the domain is a tuple (s,A,g), where
A⊆A is a set of applicable actions, s ∈ S is the initial state, and g is a set of state facts representing
the goal. A solution plan for a planning problem is a sequence of actions (a1, . . . ,ah), where the
sequential application of the sequence starting in state s leads to a goal state s′ where g ⊆ s′. Later
in the paper, in Section 7, when discussing measures of progress, it will be useful to talk about
reachability and deadlocks. We say that a planning problem (s,A,g) is reachable from problem
(s0,A,g) iff there is some action sequence in A∗ that leads from s0 to s. We say that a planning
problem P is deadlock free iff all problems reachable from P are solvable.

2.2 Learning Control Knowledge from Solved Problems

The bi-annual International Planning Competition (IPC), has played a large role in the recent
progress observed in AI planning. Typically the competition is organized around a set of plan-
ning domains, with each domain providing a sequence of planning problems, often in increasing
order of difficulty. Despite the fact that the planners in these competitions experience many similar
problems from the same domain, to our knowledge only one of them, Macro-FF (Botea et al., 2005),
has made any attempt to learn from previous experience in a domain to improve performance on
later problems.2 Rather they solve each problem as if it were the first time the domain had been en-
countered. The ability to effectively transfer domain experience from one problem to the next would
provide a tremendous advantage. Indeed, the potential benefit of learning domain-specific control
knowledge can be seen by the impressive performance of planners such as TL Plan (Bacchus and
Kabanza, 2000) and SHOP (Nau et al., 1999), where human-written control knowledge is provided
for each domain. However, to date, most “learning to plan” systems have lagged behind the state-
of-the-art non-learning domain-independent planners. One of the motivations and contributions of
this work is to move toward reversing that trend.

The input to our learner will be a set of problems for a particular planning domain along with a
solution plan to each problem. The solution plan might have been provided by a human or automat-

2. Macro-FF learned on training problems from each domain provided by the organizers before the competition, rather
than learning during the actual competition itself.
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ically computed using a domain-independent planner (for modestly sized problems). The goal is to
analyze the training set to extract control knowledge that can be used to more effectively solve new
problems from the domain. Ideally, the control knowledge allows for the solutions of large, difficult
problems that could not be solved within a reasonable time limit before learning.

As a concrete example of this learning setup, in our experiments, we use the problem set from
recent competition domains. We first use a domain-independent planner, in our case FF (Hoffmann
and Nebel, 2001), to solve the low-numbered planning problems in the set (typically corresponding
to the easier problems). The solutions are then used by our learner to induce control knowledge.
The control knowledge is then used to solve the remaining, typically more difficult, problems in the
set. Our objective here is to obtain fast, satisficing planning through learning. The whole process
is domain independent, with knowledge transferring from easy to hard problems in a domain. Note
that although learning times can be substantial, the learning cost can be amortized over all future
problems encountered in the domain.

3. Prior Work

There has been a long history of work on learning-to-plan, originating at least back to the original
STRIPS planner (Fikes et al., 1972), which learned triangle tables or macros that could later be
exploited by the planner. For a collection and survey of work on learning in AI planning see Minton
(1993) and Zimmerman and Kambhampati (2003).

A number of learning-to-plan systems have been based on the explanation-based learning (EBL)
paradigm, for example, Minton et al. (1989) among many others. EBL is a deductive learning
approach, in the sense that the learned knowledge is provably correct. Despite the relatively large
effort invested in EBL research, the best approaches typically did not consistently lead to significant
gains, and even hurt performance in many cases. A primary way that EBL can hurt performance is
by learning too many, overly specific control rules, which results in the planner spending too much
time simply evaluating the rules at the cost of reducing the number of search nodes considered. This
problem is commonly referred to as the EBL utility problem (Minton, 1988).

Partly in response to the difficulties associated with EBL-based approaches, there have been a
number of systems based on inductive learning, perhaps combined with EBL. The inductive ap-
proach involves applying statistical learning mechanisms in order to find common patterns that can
distinguish between good and bad search decisions. Unlike EBL, the learned control knowledge
does not have guarantees of correctness, however, the knowledge is typically more general and
hence more effective in practice. Some representative examples of such systems include learning
for partial-order planning (Estlin and Mooney, 1996), learning for planning as satisfiability (Huang
et al., 2000), and learning for the Prodigy means-ends framework (Aler et al., 2002). While these
systems typically showed better scalability than their EBL counterparts, the evaluations were typi-
cally conducted on only a small number of planning domains and/or small number of test problems.
There is no empirical evidence that such systems are robust enough to compete against state-of-the-
art non-learning planners across a wide range of domains.

More recently there have been several learning-to-plan systems based on the idea of learning re-
active policies for planning domains (Khardon, 1999; Martin and Geffner, 2000; Yoon et al., 2002).
These approaches use statistical learning techniques to learn policies, or functions, that map any
state-goal pair from a given domain to an appropriate action. Given a good reactive policy for a do-
main, problems can be solved quickly, without search, by iterative application of the policy. Despite
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its simplicity, this approach has demonstrated considerable success. However, these approaches
have still not demonstrated the robustness necessary to outperform state-of-the-art non-learning
planners across a wide range of domains.

Ideas from reinforcement learning have also been applied to learn control policies in AI planning
domains. Relational reinforcement learning (RRL) (Dzeroski et al., 2001), used Q-learning with a
relational function approximator, and demonstrated good empirical results in the Blocksworld. The
Blocksworld problems they considered were complex from a traditional RL perspective due to the
large state and action spaces, however, they were relatively simple from an AI planning perspective.
This approach has not yet shown scalability to the large problems routinely tackled by today’s
planners. A related approach, used a more powerful form of reinforcement learning, known as
approximate policy iteration, and demonstrated good results in a number of planning competition
domains (Fern et al., 2006). Still the approach failed badly on a number of domains and overall
does not yet appear to be competitive with state-of-the-art planners on a full set of competition
benchmarks.

The most closely related approaches to ours are recent systems for learning in the context of
forward state-space search. Macro-FF (Botea et al., 2005) and Marvin (Coles and Smith, 2007)
learn macro action sequences that can then be used during forward search. Macro-FF learns macros
from a set of training problems and then applies them to new problems. Rather, Marvin is an online
learner in the sense that it acquires macros during search in a specific problem that are applied at
later stages in the search. As evidenced in the recent planning competitions, however, neither system
dominates the best non-learning planners.

Finally, we note that researchers have also investigated domain-analysis techniques, for exam-
ple, Gerevini and Schubert (2000) and Fox and Long (1998), which attempt to uncover structure in
the domain by analyzing the domain definition. These approaches have not yet demonstrated the
ability to improve planning performance across a range of domains.

4. Control Knowledge for Forward State-Space Search

In this section, we describe the two general forms of control knowledge that we will study in this
work: heuristic functions and reactive policies. For each, we describe how we will incorporate
them into forward state-space search in order to improve planning performance. Later in the paper,
in Sections 6 and 7, we will describe specific representations for heuristics and policies and give
algorithms for learning them from training data.

4.1 Heuristic Functions

The first and most traditional forms of control knowledge we consider are heuristic functions. A
heuristic function H(s,A,g) is simply a function of a state s, action set A, and goal g that estimates
the cost of achieving the goal from s using actions in A. If a heuristic is accurate enough, then
greedy application of the heuristic will find the goal without search. However, when a heuristic is
less accurate, it must be used in the context of a search procedure such as best-first search, where
the accuracy of the heuristic impacts the search efficiency. In our experiments, we will use best-first
search, which has often been demonstrated to be an effective, though sub-optimal, search strategy
in forward state-space planning. Note that by best-first search, here we mean a search that is guided
by only the heuristic value, rather than the path-cost plus heuristic value. This search is also called
greedy best-first search. In this paper, when we use the term best-first search, it means greedy best-
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first search and we will add greedy in front of best-first search to remind the readers, as necessary,
in the following texts.

Recent progress in the development of domain-independent heuristic functions for planning has
led to a new generation of state-of-the-art planners based on forward state-space heuristic search
(Bonet and Geffner, 2001; Hoffmann and Nebel, 2001; Nguyen et al., 2002). However, in many
domains these heuristics can still have low accuracy, for example, significantly underestimating the
distance to goal, resulting in poor guidance during search. In this study, we will attempt to find
regular pattern of heuristic inaccuracy (either due to over or under estimation) through machine
learning and compensate the heuristic function accordingly.

We will focus our attention on linear heuristics that are represented as weighted linear combi-
nations of features, that is, H(s,A,g) = Σiwi · fi(s,A,g), where the wi are weights and the fi are
functions. In particular, for each domain we would like to learn a distinct set of features and their
corresponding weights that lead to good planning performance in that domain. Note that some of
the feature functions can correspond to existing domain-independent heuristics, allowing for our
learned heuristics to exploit the useful information they already provide, while overcoming defi-
ciencies by including additional features. The representation that we use for features is discussed in
Section 5 and our approach to learning linear heuristics over those features is described in Section
6.

In all of our experiments, we use the learned heuristics to guide (greedy) best-first search when
solving new problems.

4.2 Reactive Policies in Forward Search

The second general form of control knowledge that we consider in this study is of reactive policies.
A reactive policy is a computationally efficient function π(s,A,g), possibly stochastic, that maps a
planning problem (s,A,g) to an action in A. Given an initial problem (s0,A,g), we can use a reac-
tive policy π to generate a trajectory of pairs of problems and actions (((s0,A,g),a0),((s1,A,g),a1),
((s2,A,g),a2) . . .), where ai = π(si,A,g) and si+1 = ai(si). Ideally, given an optimal or near-optimal
policy for a planning domain, the trajectories represent high-quality solution plans. In this sense, re-
active policies can be viewed as efficient domain-specific planners that avoid unconstrained search.
Later in the paper, in Section 7, we will introduce two formal representations for policies: decision
rule lists and measures of progress, and describe learning algorithms for each representation. Below
we describe some of the prior approaches to using policies to guide forward search and the new
approach that we propose in this work.

The simplest approach to using a reactive policy as control knowledge is to simply avoid search
altogether and follow the trajectory suggested by the policy. There have been a number of studies
(Khardon, 1999; Martin and Geffner, 2000; Yoon et al., 2002, 2005; Fern et al., 2006) that consider
using learned policies in this way in AI planning context. While there have been some positive
results, for many planning domains the results have been mostly negative. One reason for these
failures is that inductive, or statistical, policy learning can result in imperfect policies, particularly
with limited training data. Although these policies may select good actions in many states, the lack
of search prevents them from overcoming the potentially numerous bad action choices.

In an attempt to overcome the brittleness of simply following imperfect reactive policies, pre-
vious researchers have considered more sophisticated methods of incorporating imperfect policies
into search. Two such methods include discrepancy search (Harvey and Ginsberg, 1995) and policy
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rollout (Bertsekas and Tsitsiklis, 1996). Unfortunately, our initial investigation showed that in many
planning competition domains these techniques were not powerful enough to overcome the flaws in
our learned polices. With this motivation we developed a novel approach that is easy to implement
and has proven to be quite powerful.

The main idea is to use reactive policies during the node expansion process of a heuristic search,
which in our work is greedy best-first search. Typically in best-first search, only the successors of
the current node being expanded are added to the priority queue, where priority is measured by
heuristic value. Rather, our approach first executes the reactive policy for h steps from the node
being expanded and adds the nodes of the trajectory along with their neighbors to the queue. In all
of our experiments, we used a value of h = 50, though we found that the results were quite stable
across a range of h (we sampled a range from 30 to 200).

Note that when h = 0 we get standard (greedy) best-first search. In cases, where the policy can
solve a given problem from the current node being expanded, this approach will solve the problem
without further search provided that h is large enough. Otherwise, when the policy does not directly
lead to the goal, it may still help the search process by putting heuristically better nodes in the
search queue in a single node expansion. Without the policy (i.e., h = 0) such nodes would only
appear in the queue after many node expansions. Intuitively, given a reasonably good heuristic, this
approach is able to leverage the good choices made by a policy, while overcoming the flaws. While
this technique for incorporating policies into search is simple, our empirical results, show that it is
very effective, achieving better performance than either pure heuristic search or search-free policy
execution.

5. A Relaxed-Plan Feature Space

A key challenge toward learning control knowledge in the form of heuristics and policies is to
develop specific representations that are rich enough to capture important properties of search nodes.
In this section, we describe a novel feature space for representing such properties. This feature space
will be used as a basis for our policy and heuristic representations described in Sections 6 and 7.
Note that throughout, for notational convenience we will describe each search node by its implicit
planning problem (s,A,g), where s is the current state of the node, g is the goal, and A is the action
set.

Each feature in our space is represented via an expression in taxonomic syntax, which as de-
scribed in Section 5.4, provides a language for describing sets of objects with common properties.
Given a search node (s,A,g) and a taxonomic expression C, the value of the corresponding feature
is computed as follows. First, a database of atomic facts D(s,A,g) is constructed, as described in
Section 5.3, which specifies basic properties of the search node. Next, we evaluate the class expres-
sion C relative to D(s,A,g), resulting in a class or set of objects. These sets, or features, can then
be used as a basis for constructing control knowledge in various ways—for example, using the set
cardinalities to define a numeric feature representation of search nodes.

Our feature space, is in the spirit of prior work (Martin and Geffner, 2000; Yoon et al., 2002;
Fern et al., 2006) that also used taxonomic syntax to represent control knowledge. However, our ap-
proach is novel in that we construct databases D(s,A,g) that contain not only facts about the current
state and goal, but also facts derived via a bounded reasoning process known as relaxed planning.
Prior work, considered only databases that included information about the current state and goal. By
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defining features in terms of taxonomic expressions built from our extended databases, we are able
to capture properties that are difficult to represent in terms of the state and goal predicates alone.

In the remainder of this section, we first review the idea of relaxed planning, which is central
to our feature space. Next, we describe the construction of the database D(s,A,g) for search nodes.
Finally, we introduce taxonomic syntax, which is used to build complex features on top of the
database.

5.1 Relaxed Plans

Given a planning problem (s,A,g), we define the corresponding relaxed planning problem to be
the problem (s,A+,g) where the new action set A+ is created by copying A and then removing the
delete list from each of the actions. Thus, a relaxed planning problem is a version of the original
planning problem where it is not necessary to worry about delete effects of actions. A relaxed plan
for a planning problem (s,A,g) is simply a plan that solves the relaxed planning problem.

Relaxed planning problems have two important characteristics. First, although a relaxed plan
may not necessarily solve the original planning problem, the length of the shortest relaxed plan
serves as an admissible heuristic for the original planning problem. This is because preconditions
and goals are defined in terms of positive state facts, and hence removing delete lists can only make
it easier to achieve the goal. Second, in general, it is computationally easier to find relaxed plans
compared to solving general planning problems. In the worst case, this is apparent by noting that
the problem of plan existence can be solved in polynomial time for relaxed planning problems, but
is PSPACE-complete for general problems. However, it is still NP-hard to find minimum-length
relaxed plans (Bylander, 1994). Nevertheless, practically speaking, there are very fast polynomial
time algorithms that typically return short relaxed plans whenever they exist, and the lengths of
these plans, while not admissible, often provide good heuristics.

The above observations have been used to realize a number of state-of-the-art planners based
on heuristic search. HSP (Bonet and Geffner, 2001) uses forward state-space search guided by
an admissible heuristic that estimates the length of the optimal relaxed plan. FF (Hoffmann and
Nebel, 2001) also takes this approach, but unlike HSP, estimates the optimal relaxed-plan length by
explicitly computing a relaxed plan. FF’s style of relaxed plan computation is linear with the length
of the relaxed plan, thus fast, but the resulting heuristics can be inadmissible. Our work builds on
FF, using the same relaxed-plan construction technique, which we briefly describe below.

FF computes relaxed plans using a relaxed plan graph (RPG). An RPG is simply the usual plan
graph created by Graphplan (Blum and Furst, 1995), but for the relaxed planning problem rather
than the original problem. Since there are no delete lists in the relaxed plan, there will be no mutex
relations in the plan graph. The RPG is a leveled graph alternating between action levels and state-
fact levels, with the first level containing the state facts in the initial state. An action level is created
by including any action whose preconditions are satisfied in the preceding state-fact level. A state-
fact level is created by including any fact that is in the previous fact level or in the add list of an
action in the preceding action level. RPG construction stops when a fixed point is reached or the
goal facts are all contained in the most recent state-fact level. After constructing the RPG for a
planning problem, FF starts at the last RPG level and uses a backtrack-free procedure that extracts
a sequence of actions that correspond to a successful relaxed plan. All of this can be done very
efficiently, allowing for fast heuristic computation.
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While the length of FF’s relaxed plan often serves as an effective heuristic, for a number of
planning domains, ignoring delete effects leads to severe underestimates of the distance to a goal.
The result is poor guidance and failure on all but the smallest problems. One way to overcome this
problem would be to incorporate partial information about delete lists into relaxed plan computation,
for example, by considering mutex relations. However, to date, this has not born out as a practical
alternative. Another possibility is to use more information about the relaxed plan than just its length.
For example, Vidal (2004) uses relaxed plans to construct macro actions, which help the planner
overcome regions of the state space where the relaxed-plan length heuristic is flat. However, that
work still uses length as the sole heuristic value. In this work, we give a novel approach to leveraging
relaxed planning, in particular, we use relaxed plans as a source of information from which we can
compute complex features that will be used to learn heuristic functions and policies. Interestingly,
as we will see, this approach will allow for features that are sensitive to delete lists of actions in
relaxed plans, which can be used to help correct for the fact that relaxed plans ignore delete effects.
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Figure 1: Blocksworld Example

5.2 Example of using Relaxed Plan Features for Learning Heuristics

As an example of how relaxed plans can be used to define useful features, consider a problem from
the Blocksworld in Figure 1. Here, we show two states S1 and S2 that can be reached from the initial
state by applying the actions putdown(A) and stack(A,B) respectively. From each of these states
we show the optimal relaxed plans for achieving the goal. For these states, the relaxed-plan length
heuristic is 3 for S2 and 4 for S1, suggesting that S2 is the better state. However, it is clear that, in
fact, S1 is better.

Notice that in the relaxed plan for S2, on(A,B) is in the delete list of the action unstack(A,B)
and at the same time it is a goal fact. One can improve the heuristic estimation by adding together
the relaxed-plan length and a term related to such deleted facts. In particular, suppose that we had a
feature that computed the number of such “on” facts that were both in the delete list of some relaxed
plan action and in the goal, giving a value of 0 for S1 and 1 for S2. We could then weight this feature
by two and add it to the relaxed-plan length to get a new heuristic. This would assign a value of
4 for S1 and 5 for S2, correctly ranking the states. Using taxonomic syntax, one can define such a
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feature as the cardinality of a certain class expression over a database of facts defined in the next
section.

While this is an over-simplified example, it is suggestive as to the utility of features derived
from relaxed plans. Below we describe a domain-independent feature space that can be instantiated
for any planning domain. Our experiments show that these features are useful across a range of
domains used in planning competitions.

5.3 Constructing Databases from Search Nodes

Recall that each feature in our feature space corresponds to a taxonomic syntax expression (see next
section) built from the predicate symbols in databases of facts constructed for each search node
encountered. We will denote the database for search node (s,A,g) as D(s,A,g), which will simply
contain a set of ground facts over some set of predicate symbols and objects derived from the search
node. Whereas prior work defined D(s,A,g) to include only facts about the goal g and state s,
we will also include facts about the relaxed plan corresponding to problem (s,A,g), denoted by
(a1, . . . ,an). Note that in this work we use the relaxed plan computed by FF’s heuristic calculation.

Given any search node (s,A,g) we now define D(s,A,g) to be the database that contains the
following facts:

• All of the state facts in s.

• The name of each action ai in the relaxed plan. Recall that each name is an action type Y from
domain definition D applied to the appropriate number of objects, for example, unstack(A,B).

• For each state fact in the add list of some action ai in the relaxed plan, add a fact to the
database that is the result of prepending an a to the fact’s predicate symbol. For example, in
Figure 1, for state S2 the fact holding(B) is in the add list of pickup(B), and thus we would
add the fact aholding(B) to the database.

• Likewise for each state fact in the delete list of some ai, we prepend a d to the predicate
symbol and add the resulting fact to the database. For example, in Figure 1, for S2, we would
add the fact don(A,B).

• For each state fact in the goal g, we prepend a g to the predicate symbol and add it to the
database. For example, in Figure 1, we would add the facts gon(A,B) and gon(B,C).

• For each predicate symbol that appears in the goal, we prepend a c to the predicate symbol
and add a corresponding fact to the database whenever it is true in the current state s and
appears in the goal. For example, the predicate con represents the relation “correctly on”,
and in Figure 1, for state S2 we would add the fact con(A,B) since A is currently on B and is
supposed to be on B in the goal. The ’c’ predicates provide a useful mechanism for expressing
concepts that relate the current state to the goal.

Figure 2, shows an example of the database that would be constructed for the state S2 in Figure
1. Note that taxonomic syntax class expressions will be constructed from the predicates in this
database which include the set of planning domain predicates and action types, along with a variant
of each planning domain predicate prepended with an ’a’, ’d’, ’g’, or ’c’. The database captures
information about the state and goal using the planning domain predicates, the ’g’ predicates, and
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on(A, B), on(B, table), on(C, table), clear(A), clear(C), armempty()
unstack(A, B), pickup(B), stack(B, C)

aholding(A), aclear(B), aholding(B), aon(B, C)
don(A, B), darmempty(), darmempty(), don(B, table), dholding(B), dclear(C)

gon(A, B), gon(B, C)

con(A, B), con(C,table)

Figure 2: Database for state S2 in Figure 1

’c’ predicates. It captures information about the relaxed plan using the action type predicates and
the ’a’ and ’d’ predicates. Notice that the database does not capture information about the temporal
structure of the relaxed plan. Such temporal information may be useful for describing features, and
is a natural extension of this work.

5.4 Defining Complex Features with Taxonomic Syntax

For a given search node (s,A,g) with database D(s,A,g) we now wish to define more complex
features of the search node. We will do this using taxonomic syntax (McAllester and Givan, 1993)
which is a first-order language for writing class expressions C that are used to denote sets of objects.
In particular, given a class expression C, the set of objects it represents relative to D(s,A,g) will be
denoted by C[D(s,A,g)]. Thus, each C can be viewed as defining a feature that for search node
(s,A,g) takes the value C[D(s,A,g)]. Below we describe the syntax and semantics of the taxonomic
syntax fragment we use in this paper.

Syntax. Taxonomic class expression are built from a set of predicates P , where n(P) will be
used to denote the arity of predicate P. For example, in our application the set of predicates will
include all predicates used to specify facts in database D(s,A,g) as described above. The set of
possible class expressions over P are given by the following grammar:

C := a-thing | P1 |C∩C | ¬C | (P C1 . . .Ci−1 ? Ci+1 . . .Cn(P))

where C and C j are class expressions, P1 is any arity one predicate, and P is any predicate sym-
bol of arity two or greater. Given this syntax we see that the primitive class expressions are the
special symbol a-thing, which will be used to denote the set of all objects, and single arity predi-
cates, which will be used to denote the sets of objects for which the predicates are true. One can
then obtain compound class expressions via complementation, intersection, or relational composi-
tion (the final rule). Before defining the formal semantics of class expressions, we introduce the
concept of depth, which will be used in our learning procedures. We define the depth of a class
expression C, denoted depth(C) as follows. The depth of a-thing or a single arity predicate is 0,
depth(C1∩C2) = 1 + max(depth(C1),depth(C2)), depth(¬C) = 1 + depth(C), and the depth of the
expression (P C1 . . .Ci−1 ? Ci+1 . . .Cn(P)), is 1+max

(

depth(C1), . . . ,depth(Cn(P))
)

. Note that the
number of class expressions can be infinite. However, we can limit the number of class expressions
under consideration by placing an upper bound on the allowed depth, which we will often do when
learning.

Semantics. We now describe the semantics of class expressions, which are defined relative to a
finite database D of ground facts over the set of predicates P and a finite set of constant symbols, or
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objects. For example, D might correspond to one of the databases described in the previous section.
One can simply view the database D as a finite first-order model, or Herbrand interpretation. Given
a class expression C and a database D, we use C[D] to denote the set of objects represented by C
with respect to D. We also use P[D] to denote the set of tuples of objects corresponding to predicate
P in D, that is, the tuples that make P true.

If C = a-thing then C[D] denotes the set of all objects in D. For example, in a database con-
structed from a Blocksworld state, a-thing would correspond to the set of all blocks. If C is
a single arity predicate symbol P, then C[D] is the set of all objects in D for which P is true.
For example, if D again corresponds to the Blocksworld then clear[D] and ontable[D] denote the
sets of blocks that are clear and on the table respectively in D. If C = C1 ∩C2 then C[D] =
C1[D] ∩C2[D]. For example, (clear ∩ ontable)[D] denotes the set of blocks that are clear and
on the table. If C = ¬C′ then C[D] = a-thing−C′[D]. Finally, for relational composition, if
C = (P C1 . . .Ci−1 ? Ci+1 . . .Cn(P)) then C[D] is the set of all constants c such that there exists
c j ∈ C j[D] such that the tuple (c1, . . . ,ci−1,c,ci+1, . . . ,cn(R)) is in P[D]. For example, if D again
contains facts about a Blocksworld problem, (on clear ?)[D] is the set of all blocks that are directly
under some clear block.

As some additional Blocksworld examples, C = (con a-thing ?) describes the blocks that are
currently directly under the block that they are supposed to be under in the goal. So if D corresponds
to the database in Figure 2 then C[D] = {B, table}. Recall that as described in the previous section
the predicate con is true of block pairs (x,y) that are correctly on each other, that is, x is currently
on y and x should be on y in the goal. Likewise (con ? a-thing) is the set of blocks that are directly
above the block they are supposed to be on in the goal and would be interpreted as the set {A,C} in
database D. Another useful concept is ¬(con ? a-thing) which denotes the set of blocks that are
not currently on their final destination block and would be interpreted as {B, table} with respect to
D.

6. Learning Heuristic Functions

Given the relaxed plan feature space, we will now describe how to use that space to represent
and learn heuristic functions for use as control knowledge in forward state-space search. Recall
from Section 4.1 that we will use the learned heuristics to control (greedy) best-first search in our
experiments. Below we first review our heuristic representation followed by a description of our
learning algorithm. Recall that heuristic functions are just one of two general forms of control
knowledge that we consider in this paper. Our second form, reactive policies, will be covered in the
next section.

6.1 Heuristic Function Representation

Recall that a heuristic function H(s,A,g) is simply a function of a state s, action set A, and goal g that
estimates the cost of achieving the goal from s using actions in A. In this section, we will consider
learning heuristic functions that are represented as weighted linear combinations of functions f i,
that is, H(s,A,g) = Σiwi · fi(s,A,g). In particular, for each planning domain we would like to learn a
distinct set of functions fi and their corresponding weights that lead to good planning performance
in that domain when guided by the resulting linear heuristic function. In this work, each function
will correspond to a class expression Ci defined over the relaxed-plan database as described in
the previous section, and will be denoted by fCi . We will take the numeric value of fCi given a
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search node (s,A,g) to be the cardinality of Ci with respect to D(s,A,g)—that is, fCi(s,A,g) =
|Ci[D(s,A,g)]|.

6.2 Heuristic Function Learning

The input to our learning algorithm is a set of planning problems, each paired with an example
solution plan, taken from a target planning domain. We do not assume that these solutions are
optimal, though there is an implicit assumption that the solutions are reasonably good. Our learning
objective is to learn a heuristic function that closely approximates the observed distance-to-goal for
each state in the training solutions. To do this, we first create a derived training set J that contains a
training example for each state in the solution set. In particular, for each training problem (s0,A,g)
and corresponding solution trajectory (s0,s1, . . . ,sn) we add to J a set of n examples {((si,A,g),n−
i) | i = 0, . . . ,n− 1}, each example being a pair of a planning problem and the observed distance-
to-goal in the training trajectory. Given the derived training set J, we then attempt to learn a real
valued function ∆(s,A,g) that closely approximates the difference between the distances recorded
in J and the value of FF’s relaxed-plan length (RPL) heuristic, RPL(s,A,g). We then take the final
heuristic function to be H(s,A,g) = RPL(s,A,g)+∆(s,A,g).

We represent ∆(s,A,g) as a finite linear combination of functions fCi with the Ci selected from
the relaxed plan feature space, that is, ∆(s,A,g) = Σiwi · fCi(s,A,g). Note that the overall represen-
tation for H(s,A,g) is a linear combination of features, where the feature weight of RPL(s,A,g) has
been clamped to one. Another design choice could have been to allow the weight of the RPL feature
to also be learned, however, an initial exploration showed that constraining the value to be one and
learning the residual ∆(s,A,g) gives moderately better performance in some domains.

Learning the above representation involves selecting a set of class expressions from the above
infinite space defined in Section 5 and then assigning weights to the corresponding features. One
approach to this problem would be to impose a depth bound on class expressions and then learn the
weights (e.g., using least squares) for a linear combination that involves all features whose depths
of class expression are within the bound. However, the number of such features is exponential in the
depth bound, making this approach impractical for all but very small bounds. Such an approach will
also have no chance of finding important features beyond the fixed depth bound. In addition, we
would prefer to use the smallest possible number of features, since the time complexity of evaluating
the learned heuristic grows in proportion to the number of selected features. Thus, we consider
a greedy learning approach where we heuristically search through the space of features, without
imposing apriori depth bounds. The procedure described below is a relatively generic approach that
we found to work well, however, alternative more sophisticated search approaches are an important
direction for future work.

Figure 3 gives our algorithm for learning ∆(s,A,g) from a derived training set J. The main
procedure Learn-Delta first creates a modified training set J′ that is identical to J except that the
distance-to-goal of each training example is changed to the difference between the distance-to-
goal and FF’s relaxed-plan length heuristic. Each iteration of Learn-Delta maintains a set of class
expressions Φ, which represents the set of features that are currently under consideration. Initially
Φ is equal to the set of expressions of depth 0 and 1. Each iteration of the loop has two main
steps. First, we use the procedure Learn-Approximation (described below) to select a subset of
class expressions from Φ and to compute their feature weights. Second, we create a new candidate
feature set Φ that includes higher depth class expressions. This is done by using the selected features
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as seeds and then calling the procedure Expand-Features. This results in a larger candidate feature
set, including the seed features, which is again used by Learn-Approximation to find a possibly
improved approximation. We continue alternating between feature space expansion and learning an
approximation until the approximation accuracy does not improve. Here we measure the accuracy
of the approximation by the R-square value, which is the fraction of the variance in the data that is
explained by the linear approximation.

Learn-Approximation uses a simple greedy procedure. Starting with an empty feature set, on
each iteration the feature from Φ that can most improve the R-square value of the current feature
set is included in the approximation. This continues until the R-square value can no longer be
improved. Given a current feature set, the quality of a newly considered feature is measured by
calling the function lm from the statistics tool R, which outputs the R-square value and weights
for a linear approximation that includes the new feature. After observing no improvement, the
procedure returns the most recent set of selected features along with their weights, yielding a linear
approximation of ∆(s,A,g).

The procedure Expand-Features creates a new set of class expressions that includes the seed
set, along with new expressions generated from the seeds. There are many possible ways to generate
an expanded set of features from a given seed C. Here we consider three such expansion functions
that worked well in practice. The first function Relational-Extension takes a seed expression C and
returns all expressions of the form (P c0 . . .c j−1 C c j+1 . . .ci−1 ? ci+1 . . .cn(P)), where P is a pred-
icate symbol of arity larger than one, the ci are all a-thing, and i, j≤ n(P). The result is all possible
ways of constraining a single argument of a predicate by C and placing no other constraints on the
predicate. For example in Blocksworld, a relational extension of the class expression, holding, is
(gon holding ?). The extended expression describes the block in the goal state that should be under
the block currently being held.

The second procedure for generating new expressions given a class expression C is Specialize.
This procedure simply generates all class expressions that can be created by replacing a single depth
zero or one sub-expression c′ of C with the intersection of c′ and another depth zero or one class
expression. Note that all expressions that are produced by Specialize will be subsumed by C. That
is, for any such expression C′, we have that for any database D, C′[D]⊆C[D]. As an example, given
the Blocksworld expression (on ? a-thing), one of the class expression generated by Specialize
would be (on ? (a-thing ∩ gclear)). The input class expression describes all the blocks on some
block, and the example output class expression describes the blocks that are currently on blocks
that should be clear in the goal state. Finally, we add the complement of the seed classes into the
expanded feature set. For example in Logisticsworld, for the input class expression (cin ? a-thing),
the complement output is ¬(cin ? a-thing). The input describes packages that are already in the
goal location, and the output describes packages that are not in the goal location.

7. Learning Reactive Policies

In this section, we present two representations and associated learning algorithms for reactive poli-
cies: taxonomic decision lists and measures of progress. Recall that Section 4.2 describes in detail
our novel approach for using the resulting policies as search control knowledge.
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Learn-Delta (J,D)
// J is pairs of problem states and plan length from them
// D is domain definition to enumerate class expressions

J′←{((s,A,g),d−RPL(s,A,g)) | ((s,A,g),d) ∈ J}
d is the plan length, the remaining states in the solution trajectories

Φ←{C |C is a class expression of depth 0 or 1}
repeat until no R-square value improvement observed

(Φ′,W )← Learn-Approximation(J′, Φ)
// Φ′ is newly selected features, W is the set of weights for Φ′

Φ← Expand-Features(D , Φ′)
Return Φ′,W

Learn-Approximation (J,Φ)
Φ′←{} // return features
repeat until no improvement in R-square value

C← argmaxC∈Φ R-square(J,Φ′∪{C})
// R-square is computed after linear approximation with the features

Φ′←Φ′∪{C}
W ← lm(J,Φ′)

// lm, least square approximation, returns weights
Return Φ′,W

Expand-Features (D,Φ′)
Φ←Φ′ // return features
for-each C ∈Φ′

Φ←Φ∪Relational-Extension(D,C)∪Specialize(D,C)∪{¬C}
Return Φ

Figure 3: Pseudo-code for learning heuristics: The learning algorithm used to approximate the dif-
ference between the relaxed plan length heuristic and the observed plan lengths in the
training data.

7.1 Taxonomic Decision Lists

We first consider representing and learning policies as taxonomic decision lists. Similar representa-
tions have been considered previously (Martin and Geffner, 2000; Yoon et al., 2002), though this is
the first work that builds such lists from relaxed-plan-based features.

7.1.1 REPRESENTATION

A taxonomic decision list policy is a list of taxonomic action-selection rules. Each rule has the form

a(x1, . . . ,xk) : L1,L2, . . .Lm

where a is a k-argument action type, the Li are literals, and the xi are action-argument variables.
Each literal has the form x ∈C, where C is a taxonomic syntax class expression and x is an action-
argument variable.
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Given a search node (s,A,g) and a list of action-argument objects O = (o1, . . . ,ok), we say that a
literal xi ∈C is satisfied if oi ∈C[D(s,A,g)], that is, object oi satisfies the constraint imposed by the
class expression C. We say that a rule R = a(x1, . . . ,xk) : L1,L2, . . .Lm suggests action a(o1, . . .ok)
in (s,A,g) if each literal in the rule is true given (s,A,g) and O, and the preconditions of the action
are satisfied in s. Note that if there are no literals in a rule for action type a, then all legal actions of
type a are suggested by the rule. A rule can be viewed as placing mutual constraints on the tuples
of objects that an action type can be applied to. Note that a single rule may suggest no action or
many actions of one type. Given a decision list of such rules we say that an action is suggested by
the list if it is suggested by some rule in the list, and no previous rule suggests any actions. Again,
a decision list may suggest no action or multiple actions of one type.

A decision list L defines a deterministic policy π[L] as follows. If L suggests no action for
node (s,A,g), then π[L](s,A,g) is the lexicographically least action in s, whose preconditions are
satisfied; otherwise, π[L](s,A,g) is the least action suggested by L. It is important to note that
since π[L] only considers legal actions, as specified by action preconditions, the rules do not need
to explicitly encode the preconditions, which allows for simpler rules and learning. In other words,
we can think of each rule as implicitly containing the preconditions of its action type.

As an example of a taxonomic decision list policy, consider a simple Blocksworld domain where
the goal is to place all of the blocks on the table. The following policy will solve any problem in the
domain.

putdown(x1) : x1 ∈ holding,

pickup(x1) : x1 ∈ (on ? (on ? a-thing)).

The first rule will cause the agent to putdown any block that is being held. Otherwise, if no block
is being held, then the second rule will pickup a block x1 that is directly on top of a block that is
directly on top of another object (either the table or another block). In particular, this will pickup a
block at the top of a tower of height two or more, as desired.3

7.1.2 DECISION LIST LEARNING

Figure 4 depicts the learning algorithm we use for decision list policies. The training set J passed
to the main procedure Learn-Decision-List is a multi-set that contains all pairs of search nodes
and corresponding actions observed in the solution trajectories. The objective of the learning algo-
rithm is to find a taxonomic decision list that for each search node in the training set suggests the
corresponding action.

The algorithm takes a Rivest-style decision list learning approach (Rivest, 1987) where one rule
is learned at a time, from highest to lowest priority, until the resulting rule set “covers” all of the
training data. Here we say that a rule covers a training example if it suggests an action for the
corresponding state. An ideal rule is one that suggests only actions that are in the training data.

The main procedure Learn-Decision-List initializes the rule list to () and then calls the proce-
dure Find-Best-Rule in order to select a rule that covers many training examples and that correctly
covers a high fraction of those examples—that is, a rule with high coverage and high precision. The
resulting rule is then added to the tail of the current decision list, and at the same time the training
examples that it covers are removed from the training set. The procedure then searches for another

3. If the second rule is changed to pickup(x1) : x1 ∈ (on ? a-thing), then the decision rule list may find the loop, since
it might try to pick up a block on the table that has just been put down.
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Learn-Decision-List (J,d,b)
// J: set of training instances where each instance is a search node labeled by an action

// d: the depth limit for class expressions

// b: beam width, used in search for the rules

L← ()
while ( J 6= {} )

R← Find-Best-Rule (J,d,b)
J← J−{ j ∈ J | R suggests an action for j}
L← L : R; // append rule to end of current list

Return L

Find-Best-Rule(J,d,b)

Hvalue-best-rule←−∞; R← ()
for-each action type a

Ra←Beam-Search(a,J,d,b)
if H(J,Ra) > Hvalue-best-rule

// H(J,Ra) is learning heuristic function in Equation 2

R← Ra

Hvalue-best-rule← H(J,Ra)
Return R

Beam-Search(a,J,d,b)

Lset ←{(xk ∈C)|k ≤ n(a),depth(C)≤ d}
// the set of all possible literals involving class expressions of depth d or less

beam←{a(x1, . . . ,ak)} // initial beam contains rule with empty rule body
Hvalue-best←−∞; Hvalue-best-new← 0
while (Hvalue-best < Hvalue-best-new)

Hvalue-best← Hvalue-best-new
candidates←{R, l|l ∈ Lset ,R ∈ beam}

// the set of all possible rules resulting from adding one literal to a rule in the beam

beam← set of b best rules in candidates according to heuristic H from Equation 2
Hvalue-best-new← H value of best rule in beam

Return best rule in beam

Figure 4: Pseudo-code for learning policy

rule with high coverage and high precision with respect to the reduced training set. The process
of selecting good rules and reducing the training set continues until no training examples remain
uncovered. Note that by removing the training examples covered by previous rules we force Find-
Best-Rule to focus on only the training examples for which the current rule set does not suggest an
action.

The key procedure in the algorithm is Find-Best-Rule, which at each iteration does a search
through the exponentially large rule space for a good rule. Recall that each rule has the form

a(x1, . . . ,xk) : L1,L2, . . .Lm

where a is one of the action types and the Li are of the form x ∈C. Since this rule space is exponen-
tially large we use a greedy beam-search approach. In particular, the main loop of Find-Best-Rule
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loops over each action type a and then uses a beam search to construct a set of literals for that par-
ticular a. The best of these rules, as measured by an evaluation heuristic, is then returned. It remains
to describe the beam search over literal sets and our heuristic evaluation function.

The input to the procedure Beam-Search is the action type a, the current training set, a beam
width b, and a depth bound d on the maximum size of class expressions that will be considered.
The beam width and the depth bound are user specified parameters that bound the amount of search.
We used d = 2,b = 10 in all of our experiments. The search is initialized so that the current beam
contains only the empty rule, that is, a rule with head a(x1, . . . ,xk) and no literals. On each iteration
of the search a candidate rule set is constructed that contains one rule for each way of adding a new
literal, with depth bound d, to one of the rules in the beam. If there are n possible literals of depth
bound d this will resulting in a set of nb rules. Next the rule evaluation heuristic is used to select the
best b of these rules which are kept in the beam for the next iteration, with all other candidates being
discarded. The search continues until the search is unable to uncover an improved rule as measured
by the heuristic.

Finally, our rule evaluation heuristic H(J,R) is shown in Equation 2, which evaluates a rule R
with respect to a training set J. There are many good choices for heuristics and this is just one
that has shown good empirical performance in our experience. Intuitively this function will prefer
rules that suggest correct actions for many search nodes in the training set, while at the same time
minimizing the number of suggested actions that are not in the training data. We use R(s,A,g) to
represent the set of actions suggested by rule R in (s,A,g). Using this, Equation 1, evaluates the
“benefit” of rule R on training instance ((s,A,g),a) as follows. If the training set action a is not
suggested by R then the benefit is zero. Otherwise the benefit decreases with the size of R(s,A,g).
That is, the benefit decreases inversely with the number of actions other than a that are suggested.
The overall heuristic H is simply the sum of the benefits across all training instances. In this way
the heuristic will assign small heuristic values to rules that cover only a small number of examples
and rules that cover many examples but suggest many actions outside of the training set.

benefit(((s,A,g),a),R) =

{

0 : a 6∈ R(s,A,g)
1

|R(s,A,g)| : a ∈ R(s,A,g),
(1)

H(J,R) = ∑
j∈J

benefit( j,R). (2)

7.2 Measures of Progress

In this section, we describe the notion of measures of progress and how they can be used to define
policies and learned from training data.

7.2.1 REPRESENTATION

Good plans can often be understood as seeking to achieve specific subgoals en route to the goal.
In an object-oriented view, these subgoals, along with the goal itself, can be seen as properties of
objects, where in each case we wish to increase the number of objects with the given property.
Taking this view, we consider control knowledge in the form of compact descriptions of object
classes (properties) that a controller is to select actions to enlarge. For example in Blocksworld,
in an optimal trajectory, the number of blocks well placed from the table up never decreases, or in
Logisticsworld the number of solved packages never decreases in an optimal plan.
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Good trajectories also often exhibit locally monotonic properties: properties that increase mono-
tonically for identifiable local periods, but not all the time during the trajectory. For example, in
Blocksworld, consider a block “solvable” if its desired destination is clear and well placed from
the table up. Then, in good trajectories, while the number of blocks well placed from the table up
stays the same, the number of solvable blocks need never decrease locally; but, globally, the number
of solvable blocks may decrease as the number of blocks well placed from the table up increases.
Sequences of such properties can be used to define policies that select actions in order to improve
the highest-priority property possible, while preserving higher-priority properties.

Previously, the idea of monotonic properties of planning domains have been identified by Parmar
(2002) as “measures of progress” and we inherit the term and expand the idea to ensembles of
measures where the monotonicity is provided via a prioritized list of functions. Let F = (F1, . . . ,Fn)
be an ordered list where each Fi is a function from search nodes to integers. Given an F we define
an ordering relation on search nodes (s,A,g) and (s′,A,g) as F(s,A,g)� F(s′,A,g) if Fi(s,A,g) >

Fi(s′,A,g) while Fj(s,A,g) = Fj(s′,A,g) for all j < i. F is a strong measure of progress for planning
domain D iff for any reachable problem (s,A,g) of D , either g⊆ s or there exists an action a such
that F(a(s),A,g)� F(s,A,g). This definition requires that for any state not satisfying the goal there
must be an action that increases some component heuristic Fi while maintaining the preceding,
higher-priority components. In this case we say that such an action has priority i. Note that we
allow the lower priority heuristics that follow Fi to decrease so long as Fi increases. If an action
is not able to increase some Fi, while maintaining all higher-priority components, we say that the
action has null priority. In this work we represent our prioritized lists of functions F = (F1, . . . ,Fn)
using a sequence of class expressions C = (C1, . . . ,Cn) and just as was the case for our heuristic
representation we take the function values to be the cardinalities of the corresponding sets of objects,
that is, Fi(s,A,g) = |Ci[D(s,A,g)]|.

Given a prioritized list C, we define the corresponding policy π[C] as follows. Given search node
(s,A,g), if all legal actions in state s have null priority, then π[C](s,A,g) is just the lexicographically
least legal action. Otherwise π[C](s,A,g) is the lexicographically least legal action that achieves
highest priority among all other legal actions.

As a simple example, consider again a Blocksworld domain where the objective is to always
place all the blocks on the table. A correct policy for this domain is obtained using a prioritized
class expression list (C1,C2) where C1 = ¬(on ? (on ? a-thing)) and C2 = ¬holding. The first
class expression causes the policy to prefer actions that are able to increase the set of objects that
are not above at least two other objects (objects directly on the table are in this set). This expression
can always be increased by picking up a block from a tower of height two or greater when the hand
is empty. When the hand is not empty, it is not possible to increase C1 and thus actions are preferred
that increase the second expression while not decreasing C1. The only way to do this is to putdown
the block being held on the table, as desired.

7.2.2 LEARNING MEASURES OF PROGRESS

Figure 5 describes the learning algorithm for measures of progress. The overall algorithm is similar
to our Rivest-style algorithm for learning decision lists. Again each training example is a pair
((s,A,g),a) of a search node and the corresponding action selected in that node. Each iteration of
the main procedure Learn-Prioritized-Measures finds a new class expression, or measure, that is
added to the tail of the prioritized list and then removes any newly “covered” examples from the
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training set. Here we say that a measure C covers a training example ((s,A,g),a) if |C(D[s,A,g])| 6=
|C(D[a(s),A,g])|. It covers the example positively, if |C(D[s,A,g])|< |C(D[a(s),A,g])| and covers it
negatively otherwise. Intuitively if a class expression positively covers an example then it increases
across the state transition caused by the action of the example. Negative coverage corresponds to
decreasing across the transition. We stop growing the prioritized list when we are unable to find a
new measure with positive heuristic value.

The core of the algorithm is the procedure Find-Best-Measure, which is responsible for finding
a new measure of progress that positively covers as many training instances as possible, while
avoiding negative coverage. To make the search more tractable we restrict our attention to class
expressions that are intersections of class expressions of depth d or less, where d is a user specified
parameter. The search over this space of class expressions is conducted using a beam search of user
specified width b which is initialized to a beam that contains only the universal class expression a-
thing. We used d = 2,b = 10 in all of our experiments. Given the current beam of class expressions,
the next set of candidates contains all expressions that can be formed by intersecting an element of
the beam with a class expression of depth d or less. The next beam is then formed by selecting
the best b candidates as measured by a heuristic. The search ends when it is unable to improve the
heuristic value, upon which the best expression in the beam is returned.

To guide the search we use a common heuristic shown in Equation 3, which is known as
weighted accuracy (Furnkranz and Flach, 2003). This heuristic evaluates an expression by taking
a weighted difference between the number of positively covered examples and negatively covered
examples. The weighting factor ω measures the relative importance of negative coverage versus
positive coverage. In all of our experiments, we have used ω = 4 which results in a positive value
when the positive coverage is at least four times the negative coverage.

Hm(J,C,ω) = |{ j|C covers positively j ∈ J}|−ω×|{ j|C covers negatively j ∈ J}|. (3)

We note that one shortcoming of our current learning algorithm is that it can be fooled by properties
that monotonically increase along all or many trajectories in a domain, even those that are not
related to distinguishing between good and bad plans. For example, consider a domain with a class
expression C, where |C| never decrease and frequently increases along any trajectory. Our learner
will likely output this class expression as a solution, although it does not in any way distinguish
good from bad trajectories. In many of our experimental domains, such properties do not seem
to exist, or at least are not selected by our learner. However, in PHILOSOPHER from IPC 4, this
problem did appear to arise and hurt the performance of policies based on measures of progress.

There are a number of possible approaches for dealing with this pitfall. For example, one idea
would be to generate a set of random (legal) trajectories and reward class expressions that can
distinguish between the random and training trajectories.

8. Experiments

We evaluated our learning techniques on the traditional benchmark domain Blocksworld and then
on a subset of the STRIPS/ADL domains from two recent international planning competitions (IPC3
and IPC4). We included all of the IPC3 and IPC4 domains where FF’s RPL heuristic was sufficiently
inaccurate on the training data, so as to afford our heuristic learner the opportunity to learn. That is,
for domains where the FF heuristic is very accurate as measured in the first 15 training problems,
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Learn-Prioritized-Measures (J,d,b,ω)
// J: states and corresponding actions in the solution plan trajectories
// d: the depth limit of class expressions
// b is the beam width for the search for best measures
// ω is the weight used for the heuristic defined in Equation 3

C← () // C is the list of prioritized measures
while ( J 6= {} )

C← Find-Best-Measure (J,d,b,ω)
if Hm(J,C)≤ 0 // see Equation 3 for Hm

Return C

J← J−{ j ∈ J |C covers j}
C← C : C // append new expression to list

Return C

Find-Best-Measure(J,d,b,ω)

beam←{a-thing}
Hvalue-best←−∞
Hvalue-best-new← 0
while ( Hvalue-best-new > Hvalue-best )

Hvalue-best← Hvalue-best-new
candidates←{C′∩C|C ∈ beam,depth(C′)≤ d}
beam← best b elements of candidates according to Hm(J,C,ω)
Hvalue-best-new← Hm value of best element of beam

Return best element of beam

Figure 5: Pseudo-code for learning measures of progress

our heuristic learning has nothing to learn since its training signal is the difference between the
observed distance in the training set and FF’s heuristic. Thus, we did not include such domains.

For each domain, we used 15 problems as training data, with the solutions being generated by
FF. We then learned all three types of control knowledge (heuristics, taxonomic decision lists, and
measures of progress) in each domain and used that knowledge to solve the remaining problems,
which were typically more challenging than the training problems. We used each form of control
knowledge as described in Section 4. For the case of the policy representations (taxonomic decision
lists and measures of progress), we used FF’s RPL heuristic as the heuristic function and used a
fixed policy-execution horizon of 50.

To study the utility of our proposed relaxed-plan feature space, we also conducted separate
experiments that removed the relaxed plan features from consideration. As the experiments will
show, the relaxed-plan features were critical to achieving good performance in a number of domains.
The time cutoff for each planning problem was set to 30 CPU minutes and a problem was considered
unsolved after reaching the cutoff. For all of the experiments, we used a Linux box with 2 Gig RAM
and 2.8 Ghz Intel Xeon CPU.
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8.1 Table Mnemonics

Before we present our results, we first explain the mnemonics used in our data tables. We provide
one table for each of our domains, each having the same structure, for example, Figure 6 gives our
Blocksworld results. Each row corresponds to a distinct planning technique, some using learned
control knowledge and some not. The mnemonics used for these planners are described below.
These mnemonics are also used in the main text.

• FF: the planner FF (Hoffmann and Nebel, 2001). FF adds goal-ordering, enforced-hill climb-
ing, and helpful action pruning on top of relaxed plan heuristic search. If all these fail, FF
falls back on best first search guided by relaxed plan length.

• RPL: greedy best-first search using FF’s RPL heuristic.

• Best: best performer of the corresponding domain during the competition (only available for
IPC4).

• DL: greedy best-first search guided by RPL and learned decision list policy using the full
relaxed-plan feature space, refer to Section 7 for the representation and learning algorithm
and Section 4 for how to use the knowledge.

• H: greedy best-first search guided by a learned heuristic function using the full relaxed-plan
feature space, refer to Section 6 for representation and learning.

• MoP: greedy best-first search guided by RPL and learned measures-of-progress policy using
the full relaxed-plan feature space, refer to Section 7 for the representation and learning and
to Section 4 for use of the knowledge to guide the search.

• DL-noRP, H-noRP, MoP-noRP: identical to DL, H, and MoP except that the control knowl-
edge is learned from a feature space that does not include relaxed plan information. That is,
the database construction described in Section 5.3 does not include any facts related to the
relaxed plan into the search node databases. These experiments are conducted to check the
usefulness of the relaxed plan information.

The columns of the results tables show various performance measures for the planners. In the
following, we list mnemonics for the performance measures and their descriptions.

• Solved (n): gives the number of problems solved within 30 minutes out of n test problems.

• Time: the average CPU time in seconds consumed across all problems that were solved within
the 30 minute cutoff.

• Length: average solution length of the problems solved within the 30 minute cutoff.

• LTime: the time used for learning (only applies to the learning systems). Unless followed by
H, the number is in seconds.

• Greedy: number of problems solved using greedy execution of the decision list or measures-
of-progress policies (only applies to systems that learn decision list rules and measures of
progress). This allows us to observe the quality of the policy without the integration of heuris-
tic search.
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• Evaluated: the average number of states evaluated on the problems that were solved with the
30 minute cutoff.

8.2 Blocksworld Results

For Blocksworld, we have used the competition problems from track 1 of IPC2. There were 35
problems giving us 15 problems for training and 20 problems for testing. For this domain only, we
included one additional predicate symbol “above” that is not part of the original domain definition.
The above predicate is computed as the transitive closure of the “on” predicate and is true of tuple
(x,y) if x is above y in a stack of towers. This is an important concept to be able to represent in the
Blocksworld and is not expressible via the fragment of taxonomic syntax used in this work. Note
that in prior work (Yoon et al., 2002; Fern et al., 2006), we included the Kleene-star operator into
the taxonomic syntax, which allowed for concepts such as above to be expressed in terms of the
primitive predicates. However, we have decided to not include Kleene star in this work as it did
not appear necessary in most of the other domains and increases the size of the search space over
taxonomic expressions and hence learning time.

Blocksworld (IPC2)
Techniques Solved (20) Time Length LTime Greedy Evaluated

FF 16 0.64 38.12 - - 15310
RPL 20 11.74 116 - - 12932

DL 20 0.05 44 100 13 215
MoP 20 0.13 51.7 10 20 757

H 20 12.94 82.7 600 - 31940

DL-noRP 20 0.12 60.8 12 0 915
MoP-noRP 20 0.15 49.4 1 20 984

H-noRP 12 113.3 352 88 - 185808

Figure 6: Blocksworld (IPC2, Track 1) Results. For information on mnemonics, please refer sub-
Section 8.1

Figure 6 shows Blocksworld results for various learning and non-learning systems. For this
domain, DL, H, and MoP were all able to solve all of the problems. Note that greedy application
of the learned decision list policy manages to solve only 13 of the 20 problems, indicating that
the learned policy has a significant error rate. Despite this error rate, however, incorporating the
policy into search as implemented in DL allows for all 20 problems to be solved. Furthermore, the
incorporation of the policy into search significantly speeds up search, achieving an average search
time of 0.05 seconds compared to a time of 11.74 seconds achieved by RPL, which uses the same
RPL heuristic as DL but ignores the policy. The number of evaluated states partially shows why
running policies in the best first search helps. The average number of evaluated states is significantly
lower for DL compared to other techniques. Later in our discussion of the Depots domain we will
give empirical evidence that one reason for this reduction in the amount of search is that the policies
are able to quickly move through plateaus to find states with low heuristic values.
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We see that for this domain the measures of progress are learned quite accurately, allowing
for greedy search to solve all of the problems. Again, as for the decision-list policies we see that
the incorporation of the measures of progress into search significantly speeds up planning time
compared to RPL. The fact that measures of progress are learned more accurately is possibly due to
the fact that the training data for decision-list policy learning is quite noisy. That is, all actions not
in the training plans are treated as negative examples, while in fact many of those actions are just as
good as the selected action, since there are often many good action choices in a state. The training
data for learning measures of progress does not include such noisy negative examples. Note that
prior work (Yoon et al., 2002) has learned highly accurate Blocksworld policies, however, there the
training data contained the set of all optimal actions for each state, with all other actions labeled as
negative. Thus, the training data was not nearly as noisy in that work.

Considering now the performance of the heuristic learner H, we see that overall its solution times
were larger than for RPL and also considers more states than RPL. However, the heuristic learner
H did find significantly better solutions than RPL, which used only the RPL heuristic, reducing the
average length from 116 to 83. Thus, by attempting to learn a more accurate heuristic, H is able to
find higher quality solutions at the expense of more search.

Overall we see that the learners DL and MoP are more effective in this domain. This is likely be-
cause it is possible to learn very good decision list rules and measure of progress in the Blocksworld,
which guide the heuristic search to good solutions very quickly. Note that FF solves fewer prob-
lems than other systems, but the average solution length of FF is the best, noting that it is difficult
to compare averages between planners that solve different sets of problems. Apparently enforced
hill-climbing and the goal-ordering mechanisms of FF help facilitate shorter solutions when they
are able to find solutions.

Our feature comparison results indicate that when the relaxed plan features are removed, decision-
list and measures-of-progress learning still solve all of the problems, but the heuristic learner H-
noRP only solves 12 problems. This indicates that the relaxed plan information is important to the
heuristic learner in this domain. We note that previous work on learning Blocksworld decision list
rules and measures did not use relaxed-plan features and also had reasonable success. Thus, for the
Blocksworld it was not surprising that relaxed plan features were not critical for the policy learners.

The learning time for policies and measures are negligible for Blocksworld. As will be revealed
later, the learning time for decision-list policies is quite significant in many other domains. For
the Blocksworld domain, the number of predicates, the number of actions, and the arities of predi-
cates and actions are all small, which greatly reduces the complexity of feature enumeration during
learning, as described in Section 7. For many domains in the following experiments those numbers
increase sharply, and accordingly so does the learning time. It is important to remember, however,
that learning time is a price we pay once, and can then be amortized over all future problem solving.

8.3 IPC3 Results

IPC3 included 6 STRIPS domains: Zenotravel, Satellite, Rover, Depots, Driverlog, and FreeCell.
FF’s heuristic is very accurate for the first three domains, trivially solving the 15-training-problems
and leaving little room for learning. Thus, here we report results on Depots, Driverlog, and FreeCell.
Each domain includes 20 problems, and FF was able to generate training data for all 15 training
problems. Figures 7, 8, 9 summarizes the results.
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Depots (IPC3)
Techniques Solved (5) Time Length LTime Greedy Evaluated

FF 5 4.32 54.2 - - 1919
RPL 1 0.28 29 - - 1106

DL 5 3.73 63.2 8H 0 2500
MoP 5 48.5 81.2 950 0 16699

H 5 174 68.4 325 - 71795

DL-noRP 2 0.83 30 8H 0 437
MoP-noRP 4 94.5 124.7 900 0 101965

H-noRP 3 5 61.7 258 - 4036

Figure 7: Depots results

Driverlog (IPC3)
Techniques Solved (5) Time Length LTime Greedy Evaluated

FF 1 37.62 149 - - 171105
RPL 1 1623 167 - - 165454

DL 4 75.9 177 6H 0 15691
MoP 5 546 213 600 0 126638

H 3 199 402 274 - 98801

DL-noRP 3 86 142 8H 0 33791
MoP-noRP 3 583 177 900 0 253155

H-noRP 1 37 149 252 - 22164

Figure 8: Driverlog results

For Depots, FF performed the best, solving all of the problems. At the same time the average
plan length was short. Clearly, the goal-ordering and the enforced hill climbing were key factors
to this success since RPL, which carries out just the best-first search component of FF, only solved
one problem. The learning systems DL, MoP and H were all able to solve all of the problems,
showing that the learned knowledge was able to overcome the poor performance of RPL. However,
the learning systems consumed more time than FF and/or resulted in longer plans. In the Driverlog
domain, MoP was the only system able to solve all of the problems, with H and DL solving 4
and 3 problems respectively compared to the single solved problem of the non-learning systems.
In FreeCell, both non-learning systems were able to outperform the learning systems in terms of
problems solved and plan lengths. The learning system DL is close behind these systems, solving
one less problem, with about the same average length. This domain is a clear example of how
learned control knowledge can sometimes hurt performance. In practice, one might use a validation
process to determine whether to use learned control knowledge or not, and also to select among
various forms of control knowledge.

Aggregating the number of problems solved across the three domains in IPC3, the learning
and planning systems DL, MoP and H all solved more problems than FF and RPL. Overall the
learned control knowledge generally speeds up planning. The solution lengths are sometimes longer,
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Freecell (IPC3)
Techniques Solved (5) Time Length LTime Greedy Evaluated

FF 5 574 108 - - 26344
RPL 5 442 109 - - 25678

DL 4 217 108 6H 0 12139
MoP 3 371 192 1000 0 44283

H 5 89 145 4214 - 5096

DL-noRP 4 200 111 8H 0 11132
MoP-noRP 3 368 129 900 0 18299

H-noRP 2 29.87 85.5 3892 - 1521

Figure 9: FreeCell results

though it is quite likely that post processing techniques could be used to help reduce length by
removing wasteful parts of the plan. This for example has been done effectively in the planning
by rewriting framework (Ambite and Knoblock, 2001). In such frameworks, simply finding a sub-
optimal solution quickly is a key requirement that our learning approaches help facilitate.

Interestingly, greedy action selection according to both the learned decision list policies and
measures of progress is unable to solve any testing problem and very few training problems. This
indicates that the learned policies and measures have significant flaws. Yet, when incorporated into
our proposed search approach, they are still able to improve planning performance. This shows that
even flawed control knowledge can be effectively used in our framework, assuming it provides some
amount of useful guidance.

The DL system took a significant amount of time to learn in all of the domains, on the or-
der of hours. These domains have more predicates, actions and larger arities for each action than
Blocksworld, leading to a bigger policy search space. Still, the benefit of the policy cannot be ig-
nored, since once it is learned, the execution of a policy is much faster than measures of progress
or heuristic functions. This is verified by the solution time. DL consumes the least planning time
among all the learning systems. Finally, we see that for all the domains, the use of the relaxed-plan-
based features improved performance as exhibited by the better performance of the systems DL,
MoP, and H compared to DL-noRP, MoP-noRP, and H-noRP respectively.

Our approach to incorporating policies into search appears to help speed-up the search process
by adding nodes that are far from the current node being expanded, helping to overcome local
minima of the heuristic function. To help illustrate this, Figures 10 and 11 show the heuristic value
trace during the search in problem 20 of Depot, where RPL performed poorly and DL solved the
problem quickly. The figures plot the heuristic values of each newly expanded node. Figure 10
shows the heuristic trace for best-first search as used by RPL. The search stays at heuristic value
40 for more than 10000 node expansion, stuck in some local minima. Rather, Figure 11 shows that
DL, may have been stuck in a local minima from node expansion 5 to 8, but quickly finds its way
out and finds the goal after only 16 node expansions.

In contrast, recall that incorporating our learned policies into search in the Freecell domain hurt
performance. To help understand this, we again plotted the heuristic trace during the search in
Figures 12 and 13. As is the case with Depots problem 20, the learned policy leads to a heuristic
value jump (though small), but the jump did not help and we conjecture that the jump has led the
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Figure 10: Heuristic trace of RPL on Depots problem 20: The RPL search found some local min-
imum heuristic around 38 at about 200th node expansion and remain in that region for
over 15000 search nodes.
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Figure 11: Heuristic trace of DL on Depots problem 20: The DL search hit a local minimum from
node expansion 5 to 8, but quickly found a way out of it and reached the goal in just 16
node expansions.
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Figure 12: Heuristic trace of RPL on FreeCell problem 18: The RPL search hit a local minimum
of around 70 for a long sequence of node expansions, but in the end, the search found a
way out after 10000 node expansions.

search to some local minimum for both the heuristic and policy, which would not necessarily be
visited with the heuristic alone, causing poor performance here for the policy-based approach.

8.4 IPC4 Results

IPC4 includes seven STRIPS/ADL domains: Airport, Satellite, Pipesworld, Pipesworld-with-Tankage,
Philosophers (Promela), Optical Telegraph (Promela), and PSR (middle-compiled). FF’s heuristic
is very accurate for the first two domains, where for all of the solved problems the solution length
and FF’s heuristic are almost identical, leaving little room for learning. Thus, we only give results
for the latter five domains. Each domain includes either 48 or 50 problems, giving a total of 33 or
35 testing problems, using the 15 lower numbered problems as training examples. Figures 14, 15,
16, 17, 18 present the results.

For the IPC4 results, we show the performance of the competition’s best performer in each do-
main, labeled as Best. Note that the best planner varies from domain to domain. The CPU times
for the best performer were taken from the official competition results, and thus are not exactly
comparable to the CPU times of the other systems which were run on our local machine. In order
to provide a rough comparison between the times reported for Best from the IPC4 results, and the
times on our own machine, we ran Yahsp (Vidal, 2004) on our machine for a number of bench-
mark problems. In most cases, the times were quite similar. For example, on problems 40 and 45
from Pipesworld with Tankage the IPC4 results reported CPU times of 112.08 and 60.45, while we
recorded times of 127.35 and 68.76 on our machine

Overall, as for the IPC4 domains, our learning systems DL and H solved more problems than
FF or RPL, showing that the learning and planning approaches are useful. DL and H solved 127
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Figure 13: Heuristic trace of DL on FreeCell problem 18: Compared to Figure 12, DL search
found lower heuristic states faster but did not find a way out of it. The states may not
necessarily been found by RPL search.

Pipesworld (IPC4)
Techniques Solved (35) Time Length LTime Greedy Evaluated

FF 21 71.2 48.2 - - 63077
RPL 15 71.3 48.2 - - 26830
Best 35 4.94 74.6 - - -

DL 28 129 76.7 18H 0 37778
MoP 25 155 79.2 1000 0 48460

H 24 17.6 98.4 709 - 22448

DL-noRP 26 10.6 67.7 12H 0 8453
MoP-noRP 23 137 87.6 870 0 67733

H-noRP 15 276 319 685 - 134366

Figure 14: Pipesworld Results

problems among 171 testing problems from all of the domains while FF solved 42 and RPL solved
41. Quite surprisingly, DL and H were even able to outperform the collective results of the best
performers, which solved a total of 105 problems. The MoP system did not perform as well as the
other learners. In PSR, MoP was unable to learn any monotonic properties, and so was not even run.
In Philosophers and Optimal Telegraph, MoP did find monotonic properties, but those properties
hurt performance. Compared to DL and H, DL-noRP and H-noRP significantly underperformed.
DL-noRP solved 37 and H-noRP solved 45 showing the usefulness of the relaxed plan feature
space.
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Pipesworld-with-Tankage (IPC4)
Techniques Solved (35) Time Length LTime Greedy Evaluated

FF 4 532 62 - - 120217
RPL 4 333 62 - - 100952
Best 28 221 165 - - -

DL 16 124 86 36H 0 49455
MoP 14 422 138 1200 0 101833

H 12 281 39 2091 - 137996

DL-noRP 10 553 52 33H 0 159113
MoP-noRP 13 287 116 1038 0 77926

H-noRP 7 441 719 1970 - 153108

Figure 15: Pipesworld Tankage Results

PSR (IPC4)
Techniques Solved (35) Time Length LTime Greedy Evaluated

FF 17 692 108 - - 13706
RPL 22 710 116 - - 12829
Best 18 134 111 - - -

DL 17 736 102 1800 0 15448
MoP - - - - - -

H 25 568 109 2848 - 3189

DL-noRP 11 795 94 1530 0 26022
MoP-noRP - - - - - -

H-noRP 23 565 296 2685 - 4807

Figure 16: PSR Results

Finally, note that for most of these domains, greedy execution of the learned policies does not
solve any problems. Again, however, our approach to incorporating the policies into search is still
able to exploit them for significant benefits.

9. Discussion and Future Work

This study provided two primary contributions. First, we introduced a novel feature space for repre-
senting control knowledge based on extracting features from relaxed plans. Second, we showed how
to learn and use control knowledge over this feature space for forward state-space heuristic search
planning, a planning framework for which little work has been done in the direction of learning. We
have shown that the combined approach is competitive with state-of-the-art planners across a wide
range of benchmark problems. To the best of our knowledge, no prior learning-to-plan system has
competed this well across such a wide set of benchmarks.

One natural extension to the relaxed-plan feature space introduced in this paper is to consider
properties based on the temporal structure of relaxed plans. This could be accomplished by extend-
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Philosophers (IPC4)
Techniques Solved (33) Time Length LTime Greedy Evaluated

FF 0 - - - - -
RPL 0 - - - - -
Best 14 0.2 258 - - -

DL 33 2.59 363 3H 33 727
MoP 0 - - - 0 -

H 33 58.2 363 340 - 30325

DL-noRP 0 - - - - -
MoP-noRP 0 - - - - -

H-noRP 0 - - - - -

Figure 17: Philosophers Results

Optical Telegraph (IPC4)
Techniques Solved (33) Time Length LTime Greedy Evaluated

FF 0 - - - - -
RPL 0 - - - - -
Best 10 721 387 - - -

DL 33 501 594 1H 33 930
MoP 0 - - - - -

H 33 594 826 - 9777

DL-noRP 0 - - - - -
MoP-noRP 0 - - - - -

H-noRP 0 - - - - -

Figure 18: Optical Telegraph Results

ing our current feature language to include temporal modalities. Regarding the learning of heuris-
tics, our learning approach reduces the problem to one of standard function approximation. There
are a number of ways in which we might further improve the quality of the learned heuristic. One
approach would be to use ensemble-learning techniques such as bagging (Breiman, 1996), where
we learn and combine multiple heuristic functions. Another more interesting extension would be to
develop a learning technique that explicitly considers the search behavior of the heuristic, focusing
on parts of the state space that need improvement the most. An initial step in this direction has been
considered by Xu et al. (2007).

A key problem in applying learned control knowledge in planning is to robustly deal with imper-
fect knowledge resulting from the statistical nature of the learning process. Here we have shown one
approach to help overcome imperfect policies by incorporating them into a search process. However,
there are many other planning settings and forms of control knowledge for which we are interested
in developing robust mechanisms for applying control knowledge. For example, stochastic planning
domains and planning with richer cost functions are of primary interest. Learning control knowl-
edge for regression-based planners is also of interest—it is not clear how the forms of knowledge
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we learn here could be used in a regression based setting. As another example, we are interested in
robust methods of incorporating control knowledge into SAT-based planners. Huang et al. (2000)
have considered an approach to learning and incorporating constraints into a SAT-based planner.
However, the approach has not been widely evaluated and it appears relatively easy for imperfect
knowledge to make the planner incomplete by ruling out possible solutions.

Another research direction is to consider extending the relaxed-plan feature space to stochastic
planning domains. Here one might determinize the stochastic domain in one or more ways and
compute the corresponding relaxed plans. The resulting features could then be used to learn policies
or value functions, using an approach such as approximate policy iteration (Fern et al., 2006). It
would also be interesting to consider extending our approach for incorporating imperfect policies
into search in the context of real-time dynamic programming (Barto et al., 1995).

In summary, we have demonstrated that it is possible to use machine learning to improve the
performance of forward state-space search planners across a range of planning domains. However,
the results are still far from the performance of human-written control knowledge in most domains,
for example, TL-Plan (Bacchus and Kabanza, 2000) and SHOP (Nau et al., 1999). Also the results
have still not shown large performance gains over state-of-the-art non-learning systems. Demon-
strating this level of performance should be a key goal of future work in learning-based planning
systems.
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Abstract

Regularized kernel discriminant analysis (RKDA) performs linear discriminant analysis in the fea-
ture space via the kernel trick. Its performance depends on the selection of kernels. In this paper,
we consider the problem of multiple kernel learning (MKL) for RKDA, in which the optimal kernel
matrix is obtained as a linear combination of pre-specified kernel matrices. We show that the kernel
learning problem in RKDA can be formulated as convex programs. First, we show that this problem
can be formulated as a semidefinite program (SDP). Based on the equivalence relationship between
RKDA and least square problems in the binary-class case, we propose a convex quadratically con-
strained quadratic programming (QCQP) formulation for kernel learning in RKDA. A semi-infinite
linear programming (SILP) formulation is derived to further improve the efficiency. We extend
these formulations to the multi-class case based on a key result established in this paper. That is,
the multi-class RKDA kernel learning problem can be decomposed into a set of binary-class kernel
learning problems which are constrained to share a common kernel. Based on this decomposition
property, SDP formulations are proposed for the multi-class case. Furthermore, it leads naturally
to QCQP and SILP formulations. As the performance of RKDA depends on the regularization pa-
rameter, we show that this parameter can also be optimized in a joint framework with the kernel.
Extensive experiments have been conducted and analyzed, and connections to other algorithms are
discussed.

Keywords: model selection, kernel discriminant analysis, semidefinite programming, quadrati-
cally constrained quadratic programming, semi-infinite linear programming

1. Introduction

Formulation of machine learning problems as convex programs has been one of the recent trends
in machine learning research. Such formulations offer global solutions and avoid some difficulties
encountered by traditional learning algorithms (Lanckriet et al., 2003, 2004b; d’Aspremont et al.,
2007). Kernel methods (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004) work
by embedding the input data into some high-dimensional feature space, and they are generally
formulated as convex optimization problems. The key fact underlying the success of kernel methods
is that the embedding into feature space can be determined uniquely by specifying a kernel function
that computes the dot product between data points in the feature space. In other words, the kernel

c©2008 Jieping Ye, Shuiwang Ji and Jianhui Chen.
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function implicitly defines the nonlinear mapping to the feature space, and expensive computations
in the high-dimensional feature space can be avoided by evaluating the kernel function. Thus, one
of the central issues in kernel methods is the selection of kernels.

To automate kernel-based learning algorithms, it is desirable to integrate the tuning of kernels
into the learning process. This problem has been addressed from different perspectives recently.
Lanckriet et al. (2004b) pioneered the work of multiple kernel learning (MKL) in which the optimal
kernel matrix is obtained as a linear combination of pre-specified kernel matrices. It was shown
(Lanckriet et al., 2004b) that the coefficients in MKL can be determined by solving convex programs
in the case of support vector machines (SVM) (Vapnik, 1998; Cristianini and Taylor, 2000). This
MKL problem was formulated as support kernel machines (SKM) in Bach et al. (2004), and the
sequential minimal optimization (SMO) algorithm (Platt, 1999) was proposed to solve it. Recently,
this SKM was reformulated as semi-infinite linear program (SILP) which was shown to be scalable
to large data sets and a large number of kernels (Sonnenburg et al., 2006; Rakotomamonjy et al.,
2007). Micchelli and Pontil (2005, 2007) studied the problem of finding an optimal kernel from a
prescribed convex set of kernels by regularization. To deal with problems with structured output,
MKL for joint feature map was proposed in Zien and Ong (2007). While most existing work focuses
on learning kernels for SVM, Fung et al. (2004) proposed to learn kernels for discriminant analysis.
Based on ideas from MKL, this problem was reformulated as SDP in Kim et al. (2006). In general,
approaches based on learning linear combination of kernel matrices offer the additional advantage
of facilitating heterogeneous data integration from multiple sources. Such formulations have been
applied to combine various biological data, for example, amino acid sequences, hydropathy profiles,
and gene expression data, for enhanced biological inference (Lanckriet et al., 2004a).

Ong et al. (2005) showed that the learning of kernels can be accomplished by defining a repro-
ducing kernel Hilbert space on the space of kernels itself, and the resulting optimization problem is
an SDP. This formulation was recast into second order cone program (SOCP) (Lobo et al., 1998)
in Tsang and Kwok (2006). Hoi et al. (2007) showed that the kernel matrix can be learned in a
nonparametric manner by solving SDP. The kernel learning problem in the context of multiple tasks
was considered in Jebara (2004). Some recent extensions of kernel learning produced nonstationary
combinations (Lewis et al., 2006) and potentially infinite number of kernels (Argyriou et al., 2006).

This paper addresses the issue of kernel learning for regularized kernel discriminant analysis
(RKDA) (Mika et al., 1999; Baudat and Anouar, 2000; Mika et al., 2001, 2003). Our proposed
methods belong to the MKL framework, and they can thus be used for heterogeneous data integra-
tion. We systematically extend the kernel learning problem for RKDA in several directions. First,
we extend the formulation in Kim et al. (2006) by proposing a simplified SDP formulation. Based
on this simplified form and the equivalence relationship between KRDA and least square problems
in the binary-class case, we propose a convex quadratically constrained quadratic programming
(QCQP) formulation for this problem. To improve the efficiency of our formulations, we further
develop a semi-infinite linear programming (SILP) formulation. While most existing work on ker-
nel learning only deals with binary-class problems, we show that all of our formulations can be
extended naturally to the multi-class setting. In particular, we show that the kernel learning problem
for multi-class RKDA can be decomposed into a set of binary-class kernel learning problems that
are constrained to share a common kernel. It is worth noting that the optimal kernel is the same
for the original and the decomposed formulations, though the optimal transformation matrices may
not coincide. In other words, the decomposed form is equivalent to the original one for the purpose
of kernel learning. We further develop an approximate scheme to reduce the computational cost of

720



DISCRIMINANT KERNEL LEARNING

multi-class SDP formulation. Finally, we propose to optimize the regularization parameter along
with the kernels in a joint framework. This joint optimization framework is derived from and similar
to the work in De Bie et al. (2003); Lanckriet et al. (2004b).

The key contributions of this paper can be highlighted as follows:

• We propose a simplified SDP formulation for the RKDA kernel learning problem in the
binary-class case. Based on this simplified form and the equivalence relationship between
RKDA and least square problems in the binary-class case, we derive QCQP and SILP formu-
lations for this problem.

• We show that the multi-class RKDA kernel learning problem can be decomposed into k
binary-class kernel learning problems where k is the number of classes. This leads to two
(exact and approximate) SDP formulations in the multi-class case. Based on this decomposi-
tion property, we show that the QCQP and SILP formulations for binary-class problems can
be extended naturally to the multi-class case.

• We show that all the proposed formulations can be recast to optimize the regularization param-
eter simultaneously. This joint learning framework further automates the learning algorithms.

• We conduct extensive experiments using a collection of benchmark data sets to compare sev-
eral relevant algorithms under a unified experimental setup. To demonstrate the effectiveness
of the proposed formulations for heterogeneous data integration, we apply these formulations
to combine multiple data sources derived from gene expression pattern images (Tomancak
et al., 2002).

The rest of this paper is organized as follows: We derive the SDP, QCQP, and SILP formulations
for the binary-class case in Section 2. Section 3 extends these formulations to the multi-class case.
The joint optimization of regularization parameter is presented in Section 4. Section 5 presents the
experimental evaluation, and this paper concludes with discussion and conclusion in Section 6.

Notation
x ∈ IRn denotes an n-dimensional vector. Similarly, A ∈ IRm×n denotes a matrix with m rows

and n columns. I is used to denote the identity matrix of an appropriate dimension and em denotes
the vector of all ones of length m. For a square symmetric matrix S, S � 0 means it is positive
semidefinite. We also use the short-hand x ≥ 0 to denote that each component of the vector x is
non-negative.

2. Convex Formulations for Binary-class Problems

We use X to denote the input or instance space, which is a subspace of IRd , and Y = {−1,+1} to
denote the output or class label set. An input-output pair (x,y), where x ∈ X and y ∈ Y , is called an
example. An example is called positive (negative) if its class label is +1(−1). We assume that the
examples are drawn randomly and independently from a fixed, but unknown, underlying probability
distribution over X ×Y .

A symmetric function K : X ×X → R is called a kernel function (Schölkopf and Smola, 2002)
if it satisfies the finitely positive semidefinite property. That is, for any x1, · · · ,xm ∈ X , the Gram
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matrix G ∈ IRm×m, defined by Gi j = K(xi,x j) is positive semidefinite. Any kernel function K im-
plicitly maps the input set X to a high-dimensional (possibly infinite) Hilbert space HK equipped
with the inner product (·, ·)HK

through a mapping φK from X to HK :

K(x,z) = (φK(x),φK(z))HK
.

In kernel-based classification, the algorithms learn a classifier f : X →{−1,+1} whose decision
boundary between the two classes is affine in the feature space HK :

f (x) = sgn(wT φK(x)+b),

where w ∈ HK is the vector of feature weights, b ∈ IR is the intercept, and sgn(u) = +1, if u > 0,
and −1 otherwise.

Let {x+
1 , · · · ,x+

m+
} and {x−1 , · · · ,x−m−} denote the collections of data points from the positive and

negative classes, respectively. The total number of data points in the training set is m = m+ + m−.
For a given kernel function K, the basic idea of RKDA in the binary-class case is to find a direction
in the feature space HK onto which the projections of the two sets {φK(x+

i )}m+

i=1 and {φK(x−i )}m−
i=1

are well separated. Define the centroids of the two classes as follows:

µ+
K =

1
m+

m+

∑
i=1

φK(x+
i ),

µ−K =
1

m−

m−

∑
i=1

φK(x−i ),

and the two sample class covariance matrices as follows:

S+
K =

1
m+

m+

∑
i=1

(φK(x+
i )−µ+

K )(φK(x+
i )−µ+

K )T ,

S−K =
1

m−

m−

∑
i=1

(φK(x−i )−µ−K )(φK(x−i )−µ−K )T .

Specifically, in RKDA the separation between the two classes is measured by the ratio of the vari-
ance (wT (µ+

K − µ−K ))2 between the classes to the variance wT
(

m+/mS+
K +m−/mS−K

)

w within the
classes. Thus, RKDA maximizes the following objective function:

F1(w,K) =
(wT (µ+

K −µ−K ))2

wT
(

m+/mS+
K +m−/mS−K +λI

)

w
, (1)

where λ > 0 is the regularization parameter. The optimal weight vector

w∗ ≡ argmax
w

{F1(w,K)}

that maximizes the objective function in Equation (1) for a fixed kernel function K and a fixed
regularization parameter λ is given by

w∗ = (m+/mS+
K +m−/mS−K +λI)−1(µ+

K −µ−K ).
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The maximum value
F∗

1 (K) ≡ max
w

{F1(w,K)}

of the objective function in Equation (1) achieved by the optimal weight vector w∗ is given by

F∗
1 (K) = (µ+

K −µ−K )T (m+/mS+
K +m−/mS−K +λI

)−1
(µ+

K −µ−K ). (2)

It follows from the Representer Theorem (Schölkopf and Smola, 2002) that the optimal weight
vector in RKDA is in the span of the images of the training points in the feature space. In other
words, there exists a vector

α∗ = [α+
1 , · · · ,α+

m+
,α−

1 , · · · ,α−
m− ]T ∈ IRm

such that

w∗ =
m+

∑
i=1

α+
i φK(x+

i )+
m−

∑
i=1

α−
i φK(x−i ) = φK(X)α∗,

where φK(X) is the data matrix in the feature space given by

φK(X) =
[

φK(x+
1 ), · · · ,φK(x+

m+
),φK(x−1 ), · · · ,φK(x−m−)

]

.

The optimal vector α∗ is given by Kim et al. (2006) as

α∗ =
1
λ
(I − J(λI + JGJ)−1JG)a,

where I is the identity matrix, a is an m-dimensional vector given by

a = [1/m+, · · · ,1/m+,−1/m−, · · · ,−1/m−]T ∈ IRm, (3)

the matrix J is defined as:

J =

(

1√
m+

(I − 1
m+

em+eT
m+

) 0

0 1√
m−

(I − 1
m−

em−eT
m−)

)

,

G is restricted to be a linear combination of the p given kernel matrices G1, · · · ,Gp as

G ∈ G =

{

G =
p

∑
i=1

θiGi

∣

∣

∣

∣

∣

p

∑
i=1

θi = 1 , θi ≥ 0 ∀i

}

,

and em+ and em− are vectors of all ones of length m+ and m−, respectively.
The optimal value F∗

1 (K) in Equation (2) is thus given by

F∗
1 (K) = (µ+

K −µ−K )T (m+/mS+
K +m−/mS−K +λI

)−1
(µ+

K −µ−K )

= (µ+
K −µ−K )T w∗ = (µ+

K −µ−K )T φK(X)α∗ = aT φK(X)T φK(X)α∗

=
1
λ

aT G(I − J(λI + JGJ)−1JG)a. (4)

It was shown in Kim et al. (2006) that the optimal Gram matrix G based on the kernel function K that
maximizes F∗

1 (K) given in Equation (4) can be obtained by solving a semidefinite program (SDP)
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(Vandenberghe and Boyd, 1996; Boyd and Vandenberghe, 2004). General-purpose optimization
packages such as SeDuMi (Sturm, 1999) use the interior-point methods (Nesterov and Nemirovskii,
1994) to solve SDP. However, for problems of moderate size in machine learning, this overhead
of optimal kernel learning is large, and its computation time can easily exceed that of the learning
algorithm itself.

We propose a new SDP formulation for this problem in the next subsection. The proposed
SDP formulation has a simplified form. Experimental results presented in Section 5 show that
the proposed formulation is comparable to the one in Kim et al. (2006). More importantly, this
simplified formulation lays the foundation for the extensions to multi-class problems in Section 3
and the joint optimization of regularization parameter in Section 4.

2.1 Simplified SDP Formulation

In the rest of this paper, we work on the centered version of kernel matrices. This is equivalent to
centering the data as preprocessed in linear discriminant analysis (LDA) and principal component
analysis (PCA). More precisely, given a set of p kernel matrices G1, · · · ,Gp, the proposed algorithms
learn an optimal kernel matrix G̃ ∈ G̃ , where

G̃ =

{

G̃ =
p

∑
i=1

θiG̃i

∣

∣

∣

∣

∣

p

∑
i=1

θi ri = 1, θi ≥ 0

}

,

G̃i = PGiP, ri = trace(G̃i), and P ∈ IRm×m is the centering matrix defined as

P = I − 1
m

emeT
m, (5)

and em is the vector of all ones of size m.
Consider the maximization of the following objective function:

F2(w,K) =
(wT (µ+

K −µ−K ))2

wT (ΣK +λI)w
, (6)

where ΣK is defined as follows:

ΣK = m+ S+
K +m− S−K +

m+m−
m

(µ+
K −µ−K )(µ+

K −µ−K )T

=
m+

∑
i=1

(φK(x+
i )−µK)(φK(x+

i )−µK)T +
m−

∑
i=1

(φK(x−i )−µK)(φK(x−i )−µK)T

= φK(X)PφK(X)T , (7)

P is defined in Equation (5), and

µK =
1
m

(

m+

∑
i=1

φK(x+
i )+

m−

∑
i=1

φK(x−i )

)

is the global centroid of the data in the feature space. Note that the scaling factor 1/m has been
omitted in the definition of ΣK in Equation (7). It turns out that for fixed K and λ, Equations (1)
and (6) are equivalent in terms of the computation of the optimal weight vector w. We show in the
following theorem that optimizing F2(w,K) in Equation (6) with respect to the kernel function leads
to a simplified SDP formulation.
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Theorem 2.1 Given a set of p centered kernel matrices G̃1, · · · , G̃p, the optimal kernel matrix G̃ ∈
G̃ that maximizes the objective function in Equation (6) can be found by solving the following
semidefinite programming problem:

min
θ,t

t (8)

subject to

(

I + 1
λ ∑p

i=1 θiG̃i a
aT t

)

� 0,

θ ≥ 0,

θT r = 1,

where a is defined in Equation (3), θ = [θ1, · · · ,θp]
T , and r =

[

trace(G̃1), · · · , trace(G̃p)
]T

.

Proof The optimal weight vector

w∗ ≡ argmax
w

{F2(w,K)}

is given by
w∗ = (ΣK +λI)−1(µ+

K −µ−K ).

The maximum value of the objective function in Equation (6) achieved by w∗ is given by

F∗
2 (K) ≡ F2(w

∗,K) = (µ+
K −µ−K )T (ΣK +λI)−1(µ+

K −µ−K ).

It follows from Appendix A that

w∗ =
1
λ

φK(X)
(

I −P(λI +PGP)−1 PG
)

a,

and

F∗
2 (K) = (µ+

K −µ−K )T w∗ = aT φK(X)T w∗

=
1
λ

aT
(

G−GP(λI +PGP)−1 PG
)

a.

Since the vector a defined in Equation (3) is of zero mean, that is, Pa = a, we have

F∗
2 (K) =

1
λ

aT P
(

G−GP(λI +PGP)−1PG
)

Pa

=
1
λ

aT (G̃− G̃(λI + G̃)−1G̃
)

a, (9)

where G̃ is derived from G with both rows and columns centered as

G̃ = PGP.

Since

G̃− G̃(λI + G̃)−1G̃ = G̃− G̃(λI + G̃)−1(G̃+λI −λI)

= λG̃(λI + G̃)−1

= λ(G̃+λI −λI)(λI + G̃)−1

= λ−λ2(λI + G̃)−1,
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the optimal value F∗
2 (K) in Equation (9) can be simplified as

F∗
2 (K) = aT a−λaT (λI + G̃)−1a. (10)

It follows that the optimal kernel learning problem in RKDA, which maximizes F ∗
2 (K) in Equa-

tion (10) for a fixed regularization parameter λ, is equivalent to minimizing

λaT (λI + G̃)−1a = aT
(

I +
1
λ

G̃

)−1

a, (11)

subject to the constraint that G̃ ∈ G̃ .
Mathematically, the optimal kernel learning problem can be formulated as follows:

min
θ

aT

(

I +
1
λ

p

∑
i=1

θiG̃i

)−1

a

subject to θ ≥ 0,

θT r = 1.

We can write the inequality

aT
(

I +
1
λ

G̃

)−1

a ≤ t

equivalently as the linear matrix inequality (LMI) (Boyd and Vandenberghe, 2004)
(

I + 1
λ G̃ a

aT t

)

� 0,

via the Schur complement lemma (Golub and Van Loan, 1996; Lanckriet et al., 2004b). We com-
plete the proof by a simple change of variable.

2.2 QCQP Formulation

The optimization problem proposed by Kim et al. (2006) and the one in Theorem 2.1 are both SDP
problems, which are computationally very expensive to solve, even with the recent advances in
interior point methods. In this subsection, we show that this kernel learning problem can be refor-
mulated equivalently as a quadratically constrained quadratic program (QCQP) (Boyd and Vanden-
berghe, 2004), which can then be solved more efficiently than SDP.

It is known that discriminant analysis and least square problems are equivalent in the binary-
class case (Mika, 2002). Consider the regularized least squares problem, which minimizes the
following objective function:

F3(w,K) = ||(φK(X)P)T w−a||2 +λ||w||2. (12)

The following lemma relates this problem to the problem of optimal kernel learning.

Lemma 2.1 The optimal kernel function K solving the optimization problem in Equation (11) is
also the minimizer of the objective function in Equation (12).
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Proof The optimal w∗ that minimizes the objective function in Equation (12) for a fixed K and λ is
given by

w∗ =
(

λI +φK(X)PφK(X)T )−1 φK(X)Pa

=
1
λ

φK(X)
(

I −P(λI +PGP)−1 PG
)

a.

The optimal value of the objective function in Equation (12) is therefore given by

F∗
3 (K) = aT

(

I +
1
λ

G̃

)−1

a,

where G̃ = PGP. This completes the proof of this lemma.

Based on this equivalence result, we can formulate the kernel learning problem as a QCQP
problem, as summarized in the following theorem.

Theorem 2.2 Given a set of p centered kernel matrices G̃1, · · · , G̃p, the optimal kernel matrix, in
the form of a convex linear combination of the given p kernel matrices, that minimizes the objective
function in Equation (12) can be found by solving the following convex QCQP problem:

max
β,t

−1
4

βT β+βT a− 1
4λ

t

subject to t ≥ 1
ri

βT G̃iβ, for i = 1, · · · , p, (13)

where ri = trace(G̃i).

Proof We consider the dual formulation of the minimization of F3(w,K) in terms of w. Denote

η = (φK(X)P)T w−a.

It follows that
F3(w,K) = ||η||2 +λ||w||2.

Define the Lagrangian function of the following optimization problem:

min
w,η

F3(w,K) = ||η||2 +λ||w||2

subject to η = (φK(X)P)T w−a

as follows:
L(η,w,β) = ||η||2 +λ||w||2 −βT ((φK(X)P)T w−a−η),

where β is the vector of Lagrangian dual variables. Taking the derivatives of L(η,w,β) with respect
to η and w and setting them equal to zero, we get

∂L(η,w,β)

∂η
= 2η+β = 0,

∂L(η,w,β)

∂w
= 2λw−φK(X)Pβ = 0.
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It follows that

η = −β
2
, and w =

φK(X)Pβ
2λ

.

Thus, we obtain the following Lagrangian dual function:

g(β) = min
w,η

L(η,w,β) = −1
4

βT
(

I +
1
λ

PGP

)

β+βT a.

The optimal β∗ is computed by maximizing g(β) as

β∗ = argmax
β

g(β) = argmax
β

{

−1
4

βT
(

I +
1
λ

PGP

)

β+βT a

}

.

Since strong duality holds, the optimal kernel is given by solving the following optimization prob-
lem:

min
G̃∈G̃

max
β

{

−1
4

βT
(

I +
1
λ

G̃

)

β+βT a

}

.

We can rewrite the above optimization problem as

min
θ:θ≥0,θT r=1

max
β

{

−1
4

βT

(

I +
1
λ

p

∑
i=1

θiG̃i

)

β+βT a

}

(14)

= max
β

min
θ:θ≥0,θT r=1

{

−1
4

βT

(

I +
1
λ

p

∑
i=1

θiG̃i

)

β+βT a

}

= max
β

min
θ:θ≥0,θT r=1

{

− 1
4λ

p

∑
i=1

θiβT G̃iβ−
1
4

βT β+βT a

}

= max
β

{

−1
4

βT β+βT a− 1
4λ

max
θ:θ≥0,θT r=1

(

p

∑
i=1

θiβT G̃iβ

)}

= max
β

{

−1
4

βT β+βT a− 1
4λ

max
i

(

1
ri

βT G̃iβ
)}

. (15)

The exchange of minimization and maximization in deriving the second equation from the first holds
since the objective function is convex in θ and concave in β, the minimization problem is strictly
feasible in θ and the maximization problem is strictly feasible in β. Therefore, Slater’s condition
(Boyd and Vandenberghe, 2004) follows and strong duality holds (Lanckriet et al., 2004b; Boyd and
Vandenberghe, 2004). By simply changing the last term in Equation (15) to t and moving it to the
constraint, we prove this theorem.

Note that general-purpose optimization software packages like SeDuMi (Sturm, 1999) and
MOSEK (Andersen and Andersen, 2000) employ the interior point methods, and they solve the
primal and dual problems simultaneously. Thus, the coefficients, θ1, · · · ,θp, can be obtained di-
rectly from the dual variables.

The formulation in Equation (13) is a quadratically constrained quadratic program (QCQP),
which is a special form of second order cone program (SOCP) (Lobo et al., 1998; Alizadeh and
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Goldfarb, 2003) and SDP. Theoretical results on interior point method (Nesterov and Nemirovskii,
1994) show that QCQP can be solved more efficiently than SDP, and it is therefore more scalable
to large-scale problems. Similar ideas have been used in Lanckriet et al. (2004b) to learn a non-
negative linear combination of kernel matrices.

2.3 SILP Formulation

Semi-infinite programming (SIP) (Hettich and Kortanek, 1993) refers to optimization problems
that seek the maximum of the function F(z) subject to a system of constraints on z, expressed
as g(z, t) ≤ 0, for all t in some set B. When both the objective and constraints are linear (and hence
convex), it is known as semi-infinite linear programming (SILP). We show in this section that the
kernel learning problem for RKDA can be formulated as an SILP problem, as summarized in the
following theorem.

Theorem 2.3 Given a set of p centered kernel matrices G̃1, · · · , G̃p, the optimal kernel matrix, in
the form of a convex linear combination of the given p kernel matrices, that maximizes the objective
function in Equation (12) can be found by solving the following SILP problem:

max
θ,γ

γ (16)

subject to θ ≥ 0,

θT r = 1,
p

∑
i=1

θiSi(β) ≥ γ, for all β, (17)

where Si(β) is defined as

Si(β) =
ri

4
βT β+

1
4λ

βT G̃iβ− riβT a, for i = 1, · · · , p, (18)

r = (r1, · · · ,rp)
T , and ri = trace(G̃i).

Proof It follows from the definition of Si(β) in Equation (18) that the optimization problem in
Equation (14) can be expressed equivalently as

max
θ

min
β

p

∑
i=1

θiSi(β) (19)

subject to θ ≥ 0,

θT r = 1.

Assume β∗ is the optimal solution to the problem in Equation (19) and define γ∗ = ∑p
i=1 θiSi(β∗) as

the minimum objective value achieved by β∗. We have

p

∑
i=1

θiSi(β) ≥ γ∗, for all β.

By defining

γ = min
β

p

∑
i=1

θiSi(β)
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and substituting γ into the objective, we prove this theorem.

Note that the optimization problem in Equation (16) is an SILP since both θ and γ are linearly
constrained, and there are an infinite number of constraints, one for each possible value of β. As
in Sonnenburg et al. (2006), we propose to use the column generation technique to solve this SILP
problem. In this technique, the optimal θ and γ are computed for a restricted subset of constraints
in Equation (17) and this problem is called the restricted master problem. Constraints that are
not satisfied by current θ and γ are added successively to the restricted master problem until all
constraints are satisfied. For fast convergence of the algorithm, it is desirable to add constraint that
maximizes the violation for current θ and γ. That is, the β value that solves

βθ = argmin
β

p

∑
i=1

θiSi(β), (20)

is desired. If ∑p
i=1 θiSi(βθ) ≥ γ, then all the constraints are satisfied, and θ and γ reach their opti-

mal values. Otherwise, this constraint is added to the restricted master problem and the iteration
continues.

It follows from the definition of Si(β) in Equation (18) that the problem in Equation (20) can be
written as

min
β

{

1
4

βT β+
1

4λ
βT

(

p

∑
i=1

θiG̃i

)

β−βT a

}

. (21)

For a fixed θ, the problem in Equation (21) is an unconstrained convex quadratic program whose
solution can be obtained analytically. To avoid computing matrix inverse, we obtain β by solving
the following system of linear equations:

(

1
2

I +
1

2λ

p

∑
i=1

θiG̃i

)

β = a.

After β is computed, the corresponding constraint is added to the restricted master problem to ob-
tain the intermediate θ and γ. Note that the restricted master problem is a linear program. Thus,
the proposed algorithm for solving the SILP problem proposed in Theorem 2.3 alternates between
solving a linear system and a linear program. In contrast, the SILP formulation proposed in Sonnen-
burg et al. (2006) for SVM kernel learning involves solving a constrained quadratic program (QP)
and a linear program. They shown that the constrained QP coincides with a single kernel SVM
formulation, and thus existing software for solving SVM can be used directly.

The alternating algorithm for solving the proposed SILP problem belongs to a family of algo-
rithms for solving general SIP problems called the exchange methods, in which the constraints are
exchanged at each iteration. It follows from Theorem 7.2 in Hettich and Kortanek (1993) that these
methods are guaranteed to converge. Similar to the convergence criterion used in Sonnenburg et al.
(2006), the algorithm returns when

∣

∣

∣

∣

∣

1− ∑p
i=1 θ(t−1)

i Si(β(t))

γ(t−1)

∣

∣

∣

∣

∣

≤ ε, (22)

where θ(t−1)
i , for i = 1, · · · , p, and γ(t−1) are the optimal solutions to the restricted master problem at

the (t−1)-th iteration, β(t) is the β value that maximizes the constraint violation at the t-th iteration,
and ε is a user-specified tolerance parameter. We set ε = 5×10−4 in our experiments.
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2.4 Time Complexity Analysis

We analyze the time complexity of the proposed formulations for the binary-class case. It follows
from the analysis in Lanckriet et al. (2004b) that the proposed SDP and QCQP formulations have
the worst-case time complexity of O

(

(p+n)2n2.5
)

and O
(

pn2 +n3
)

, respectively, where p is the
number of candidate kernels and n is the number of training samples. The algorithm to solve the
proposed SILP formulation alternates between solving a linear program (LP) and a linear system of
equations. The LP formulation involved has a simple structure and its computation time is small,
especially when p is much smaller than n. Note that the number of constraints in the LP depends on
the number of iterations. Our experiments show that the algorithm converges within a small number
of iterations. Thus, the time complexity of the SILP formulation is dominated by the time in solving
the linear system which has a complexity of O

(

n3
)

. Overall, the SILP formulation has a worst-case
time complexity of O

(

n3Ite
)

where Ite is the number of iterations.
All formulations discussed in Lanckriet et al. (2004b), Kim et al. (2006) and Sonnenburg et al.

(2006) are constrained to binary-class problems. We show in the next section that our formulations
in this section can be extended naturally to the multi-class case.

3. Convex Formulations for Multi-class Problems

In the multi-class case, we are given a data set that consists of m samples {(xi,yi)}m
i=1, where xi ∈ IRd ,

and yi ∈ {1,2, · · · ,k} denotes the class label of the i-th sample, and k > 2. Similar to the binary-class
case, let X = [x1, · · · ,xm] be the data matrix.

In the multi-class RKDA formulation, the maximization of the following objective function is
commonly used (Ye, 2005):

F4(W,K) = trace
(

(

W T (ΣK +λI)W
)−1

W T BKW
)

, (23)

where W is the transformation matrix, and BK , the so-called between-class scatter matrix is defined
as

BK = φK(X)HHT φK(X)T ,

H = [h1,h2, · · · ,hk], and hi is a vector whose j-th entry is given by

hi( j) =







√

n
n j
−
√

n j

n if the j-th data point belongs to the i-th class

−
√

n j

n otherwise.
(24)

The optimal W is given by computing the eigenvectors of the following matrix:

(ΣK +λI)−1 BK .

Since the weight vectors are in the span of the images of the data points in the feature space, we can
express W as W = φK(X)A for some matrix A ∈ IRm×`, where A = [α1, · · · ,α`]. Then

F4(W,K) = trace
(

(

AT (GPG+λG)A
)−1

AT GHHT GA
)

.

Define two matrices SK
t and SK

b as follows:

SK
t = GPG+λG,

SK
b = GHHT G.
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Since the null space of SK
t lies in the null space of SK

b (Ye and Xiong, 2006), there exists a nonsin-
gular matrix Z such that

ZT SK
t Z =

(

I 0
0 0

)

,

ZT SK
b Z =

(

Σb 0
0 0

)

,

where Σb is diagonal with the diagonal entries sorted in non-decreasing order. The optimal A∗ is
given by

A∗ = Zq = [z1, · · · ,zq] ,

where Zq consists of the first q columns of Z, and q = rank(SK
b ). It follows that the optimal value of

F4(W,K) achieved by the optimal A∗ is given by

F∗
4 (K) = trace(Σb) = trace

(

(

SK
t

)−1
SK

b

)

. (25)

Here we have assumed that SK
t = GPG + λG is nonsingular. We could use the pseudo-inverse to

deal with the singular case, and all the following arguments still follow.
Thus, in the multi-class case, the optimal kernel function K can be computed by maximizing

F∗
4 (K) in Equation (25), which is however highly nonlinear and difficult to solve. In the following,

we present an equivalent formulation as the one in Equation (25), which is more tractable computa-
tionally.

3.1 SDP Formulation

Consider the maximization of the following objective function:

F5(W,K) =
k

∑
i=1

(wT
i φK(X)hi)

2

wT
i (ΣK +λI)wi

, (26)

where
W = [w1, · · · ,wk]

is the transformation matrix, and hi is defined in Equation (24). The following lemma shows that
the optimal kernel function K coincides for F4 and F5.

Lemma 3.1 Let F4 and F5 be defined as in Equation (23) and Equation (26), respectively. Let W ∗

and K∗ be the optimal solution to the following optimization problem:

max
K

max
W

F4(W,K), (27)

and let W̃ ∗ and K̃∗ be the optimal solution to the following optimization problem:

max
K

max
W

F5(W,K). (28)

Then K∗ = K̃∗.
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Proof Since W = φK(X)A, we have wi = φK(X)αi and

F5(W,K) =
k

∑
i=1

(αT
i Ghi)

2

αT
i (GPG+λG)αi

=
k

∑
i=1

(αT
i Ghi)

2

αT
i SK

t αi
.

The computation of αi and α j for i 6= j is independent of each other when the kernel function K and
λ are fixed. The optimal α∗

i is given by

α∗
i =

(

SK
t

)−1
Ghi.

It follows that the maximum value of F5(W,K) achieved by the optimal A∗ = [α∗
1, · · · ,α∗

k ] is given
by

F∗
5 (K) =

k

∑
i=1

(Ghi)
T (SK

t

)−1
Ghi.

Based on the properties of matrix trace, we have

F∗
5 (K) =

k

∑
i=1

(Ghi)
T (SK

t

)−1
Ghi

=
k

∑
i=1

trace
(

(Ghi)
T (SK

t

)−1
Ghi

)

=
k

∑
i=1

trace
(

(

SK
t

)−1
Ghi(Ghi)

T
)

= trace

(

(

SK
t

)−1
k

∑
i=1

(

Ghih
T
i GT )

)

= trace
(

(

SK
t

)−1 (
GHHT GT )

)

= trace
(

(

SK
t

)−1
SK

b

)

= F∗
4 (K).

This completes the proof.

It is interesting to note that, in general, the optimal W ∗ and W̃ ∗ for the optimization problems in
Equations (27) and (28) are different. However, it has been shown recently that, when the value of
the regularization parameter is approaching zero, multi-class regularized least squares is equivalent
to multi-class discriminant analysis under a mild condition (Ye, 2007). Empirical evidences show
that when the value of the regularization parameter is small, which is usually the case in practice,
their performance is similar.

The objective function in Equation (26) is closely related to its binary counterpart in Equa-
tion (6). Note that a variant of the Fisher discriminant ratio (FDR) (Kim et al., 2006) can be written
as:

F2(w,K) =
(wT φK(X)a)2

wT (ΣK +λI)w
.
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Thus, F5(W,K) in Equation (26) can be interpreted as the weighted summation of the FDRs between
the samples in the i-th class and the rest where i = 1, · · · ,k. The weights can be computed from the
definition of H in Equation (24) as follows:

hi =





















...
√

n
ni
−
√ ni

n

...
−
√ ni

n
...





















= (n−ni)

√

ni

n



















...
1
ni
...

− 1
n−ni
...



















= (n−ni)

√

ni

n
a(i),

where a(i) is obtained from Equation (3) by taking the samples from the i-th class as positive and the
rest as negative. It follows that the weight for the i-th binary classification problem is: (n−ni)

2ni/n.
Following the results from the last section for the binary-class case, the optimal kernel learning

problem for multi-class RKDA can be formulated as follows:

min
t1,··· ,tk,θ

k

∑
j=1

t j

subject to

(

I + 1
λ ∑p

i=1 θiG̃i h j

hT
j t j

)

� 0, for j = 1, · · · ,k,

θ ≥ 0,

θT r = 1. (29)

Unfortunately, the SDP problem given in Equation (29) is computationally prohibitive due to
the presence of positive semidefinite constraints. To alleviate this computational problem, we put
all the constraints in a single larger constraint. This imposes stronger constraints than those on
the original problem, but the computational cost can be reduced dramatically. It is based on the
following lemma.

Lemma 3.2 Let M ∈ IRm×m be any positive definite matrix, a1, · · · ,ak ∈ IRm, t1, · · · , tk ∈ IR. Then














M a1 a2 · · · ak

aT
1 t1 0 · · · 0

aT
2 0 t2 · · · 0
...

...
...

...
...

aT
k 0 0 · · · tk















� 0 (30)

implies
(

M a j

aT
j t j

)

� 0, for all j. (31)

Proof For a symmetric and positive semidefinite matrix, it is known that all of its principal sub-
matrices are also symmetric and positive semidefinite. Matrices in Equation (31) are all principal
submatrices of the matrix in Equation (30). This can be seen by removing 2 to j and j +2 to k +1
rows and columns of the block matrix in Equation (30). This completes the proof of the lemma.

We summarize the main result of this section in the following theorem:
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Theorem 3.1 Given a set of p centered kernel matrices G̃1, · · · , G̃p, the optimal kernel matrix, in
the form of linear combination of the given p kernel matrices, that maximizes the objective function
in Equation (26) can be found by solving the SDP problem in Equation (29). This problem can be
approximated by the following more restricted formulation:

min
t1,··· ,tk,θ

k

∑
j=1

t j

subject to















I + 1
λ ∑p

i=1 θiG̃i h1 h2 · · · hk

hT
1 t1 0 · · · 0

hT
2 0 t2 · · · 0
...

...
...

...
...

hT
k 0 0 · · · tk















� 0,

θ ≥ 0,

θT r = 1, (32)

where ri = trace(G̃i). The optimal solution to the formulation in Equation (32) satisfies the con-
straints in Equation (29).

The formulation in Equation (32) is an approximation to the exact formulation in Equation (29). We
use the approximate formulation in our experiments in Section 5, and empirical results show that it
achieves comparable performance with other exact formulations.

3.2 QCQP Formulation

Although the approximate SDP formulation in the last section is scalable in terms of the number
of classes, interior point algorithms for solving SDP have an inherently large time complexity,
and thus it cannot be applied to large-scale problems. In this subsection, we propose a QCQP
formulation which is more efficient than its SDP counterpart. The derivations here are similar to
those in Section 2.2.

In order to formulate the multi-class RKDA kernel learning problem into a QCQP problem, we
first consider the minimization of the following objective function:

F6(W,K) =
k

∑
i=1

(

||(φK(X)P)T wi −hi||2 +λ||wi||2
)

, (33)

where W = [w1, · · · ,wk]. It is clear that for a fixed K and λ, the computation of wi and w j for i 6= j
is independent of each other. By extending the results from Lemma 2.1 and Lemma 3.1, it is easy
to show that the optimal kernel function K minimizing the objective function in Equation (26) coin-
cides the minimizer of F6(W,K) in Equation (33). Motivated by this equivalence result, we derive
an efficient QCQP formulation for the multi-class RKDA kernel learning problem, as summarized
in the following theorem.

Theorem 3.2 Given a set of p centered kernel matrices G̃1, · · · , G̃p, the optimal kernel matrix, in
the form of a convex linear combination of the given p kernel matrices, that minimizes the objective
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function in Equation (33) can be found by solving the following convex QCQP problem:

max
β1,··· ,βk,t

k

∑
j=1

βT
j h j −

1
4

k

∑
j=1

βT
j β j −

1
4λ

t

subject to t ≥ 1
ri

k

∑
j=1

βT
j G̃iβ j, i = 1, · · · , p. (34)

where ri = trace(G̃i).

Proof We first consider the dual formulation of the minimization of F6(W,K) in terms of W for
fixed K and λ. Denote

ηi = (φK(X)P)T wi −hi.

It follows that

F6(w,K) =
k

∑
i=1

||ηi||2 +λ
k

∑
i=1

||wi||2.

Define the Lagrangian function of this problem as follows:

L({ηi}k
i=1,w,{βi}k

i=1) =
k

∑
i=1

||ηi||2 +λ
k

∑
i=1

||wi||2 −
k

∑
i=1

βT
i

(

(φK(X)P)T wi −hi −ηi
)

,

where the βi’s are the vectors of Lagrangian dual variables. Taking the derivatives of L with respect
to ηi and wi for all i, and setting them equal to zero, we get

∂L
∂ηi

= 2ηi +βi = 0,

∂L
∂wi

= 2λwi −φK(X)Pβi = 0.

Thus, we have

ηi = −βi

2
, and wi =

φK(X)Pβi

2λ
,

and we obtain the following Lagrangian dual function:

g(β1, · · · ,βk) = min
wi,ηi,i=1,··· ,k

L({ηi}k
i=1,w,{βi}k

i=1)

=
k

∑
i=1

(

−1
4

βT
i

(

I +
1
λ

PGP

)

βi +βT
i hi

)

. (35)

The optimal β∗
1, · · · ,β∗

k can be computed by maximizing g(β1, · · · ,βk) in Equation (35) as

(β∗
1, · · · ,β∗

k) = argmax
β1,··· ,βk

{

k

∑
i=1

(

−1
4

βT
i

(

I +
1
λ

PGP

)

βi +βT
i hi

)

}

.

Since strong duality holds, the optimal kernel matrix G̃ is given by solving the following optimiza-
tion problem:

min
G̃∈G̃

max
β1,··· ,βk

{

k

∑
i=1

(

−1
4

βT
i

(

I +
1
λ

G̃

)

βi +βT
i hi

)

}

.
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Similar to the binary-class case, the above optimization problem can be written as

min
θ:θ≥0,θT r=1

max
β1,··· ,βk

{

k

∑
j=1

(

−1
4

βT
j

(

I +
1
λ

p

∑
i=1

(

θiG̃i
)

)

β j +βT
j h j

)}

(36)

= max
β1,··· ,βk

min
θ:θ≥0,θT r=1

{

k

∑
j=1

(

−1
4

βT
j

(

I +
1
λ

p

∑
i=1

θiG̃i

)

β j +βT
j h j

)}

= max
β1,··· ,βk

min
θ:θ≥0,θT r=1

{

−1
4

k

∑
j=1

βT
j β j −

1
4λ

p

∑
i=1

θi

(

k

∑
j=1

βT
j G̃iβ j

)

+
k

∑
j=1

βT
j h j

}

= max
β1,··· ,βk

{

k

∑
j=1

βT
j h j −

1
4

k

∑
j=1

βT
j β j −

1
4λ

max
θ:θ≥0,θT r=1

{

p

∑
i=1

θi

(

k

∑
j=1

βT
j G̃iβ j

)}}

= max
β1,··· ,βk

{

k

∑
j=1

βT
j h j −

1
4

k

∑
j=1

βT
j β j −

1
4λ

max
i

(

1
ri

k

∑
j=1

βT
j G̃iβ j

)}

.

By constraining

max
i

(

1
ri

k

∑
j=1

βT
j G̃iβ j

)

≤ t

and putting t in the objective function, we prove the formulation in Equation (34).

3.3 SILP Formulation

The QCQP formulation in Theorem 3.2 has a worse-case time complexity of O(pk2n2 + k3n3),
which is cubic in terms of the number of classes and the number of data points. We show in this
subsection that the RKDA kernel learning problem in the multi-class case can be formulated as an
SILP problem, as summarized in the following theorem.

Theorem 3.3 Given a set of p centered kernel matrices G̃1, · · · , G̃p, the optimal kernel matrix, in
the form of a convex linear combination of the given p kernel matrices, that minimizes the objective
function in Equation (33) can be found by solving the following SILP problem:

max
θ,γ

γ (37)

subject to θ ≥ 0,

θT r = 1,
p

∑
i=1

θiSi(β) ≥ γ, for all β,

where Si(β) is defined as

Si(β) =
k

∑
j=1

(

ri

4
βT

j β j +
1

4λ
βT

j G̃iβ j − riβT
j h j

)

, for i = 1, · · · , p, (38)

r = (r1, · · · ,rp)
T , and ri = trace(G̃i).
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Formulation SDP QCQP SILP
Complexity O

(

(p+n)2(k +n)2.5
)

O(pk2n2 + k3n3) O(n3Ite)

Table 1: Time complexity of the proposed multi-class RKDA kernel learning formulations: p is
the number of candidate kernels, n is the number of training samples, k is the number of
classes, and Ite is the number of iterations in SILP.

Proof The proof follows the same procedure as in Theorem 2.3 by starting from Equation (36) and
changing the definition of Si(β) from Equation (18) to Equation (38).

Note that the only difference between formulations in Theorem 2.3 and Theorem 3.3 lies in the
definitions of Si(β). To find the β j, for j = 1, · · · ,k, that maximize the constraint violation in the
multi-class case, we need to solve the following k systems of linear equations:

(

1
2

I +
1

2λ

p

∑
i=1

θiG̃i

)

β j = h j, for j = 1, · · · ,k.

Note that the coefficient matrix is the same for all of the k linear systems. Thus the LU decomposi-
tion (Golub and Van Loan, 1996) needs to be computed only once, and only the forward/backward
substitution needs to be performed k times to obtain the solutions.

3.4 Time Complexity Analysis

In this subsection, we analyze the time complexity of the proposed formulations in the multi-class
case. By following similar analysis in the binary-class case, we can show that the proposed (approx-
imate) SDP and QCQP formulations have worse-case time complexity of O

(

(p+n)2(k +n)2.5
)

and
O(pk2n2 + k3n3), respectively. For the SILP formulation in the multi-class case, the k linear sys-
tems involved in each iterative step share the same coefficient matrix, and they can be solved in
O(n3) time. Thus, the overall complexity is still O(n3Ite) where Ite is the number of iterations. The
complexity of multi-class RKDA kernel learning formulations is summarized in Table 1.

4. Joint Kernel and Regularization Parameter Learning

The formulations presented in the last two sections focus on the estimation of the kernel matrix only,
while the regularization parameter λ is pre-specified. In some cases, the performance of RKDA
algorithm depends critically on the value of λ. In this section, we show that all the formulations
proposed in this paper can be reformulated equivalently, and this new formulation leads naturally
to the estimation of the regularization parameter λ in a joint framework. The detailed derivations in
this section are similar to those presented in Sections 2 and 3.

4.1 Joint Learning for Binary-class Problems

One key advantage of the kernel learning formulation in Equation (8) in comparison with the one in
Kim et al. (2006) is that the regularization parameter λ can also be estimated in a joint optimization
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framework. In particular, all the formulations (SDP, QCQP, and SILP) for the binary-class RKDA
kernel learning problems, presented in Theorems 2.1–2.3, can be recast to optimize the regulariza-
tion parameter simultaneously. The next three subsections provide details of these reformulations.

4.1.1 SDP FORMULATION

For the estimation of regularization parameter, we consider a slightly modified version of the regu-
larized least squares formulation, which is equivalent to the standard formulation in Equation (12).
The modified version minimizes the following objective function:

F7(w,K,τ) = τ||(φK(X)P)T w−a||2 + ||w||2, (39)

where τ = 1/λ. We will first consider the case when τ is fixed. We will then extend to the general
case when τ is optimized jointly.

The optimal w∗ that minimizes the objective function in Equation (39) for a fixed K and a fixed
τ is given by

w∗ =

(

1
τ

I +φK(X)PφK(X)T
)−1

φK(X)Pa

= τφK(X)

(

I −P

(

1
τ

I +PGP

)−1

PG

)

a.

The optimal value of the objective function in Equation (39) is given by

F∗
7 (K,τ) = aT

(

1
τ

I + G̃

)−1

a, (40)

where G̃ = PGP.
We can observe from Equation (40) that the identity matrix appears in exactly the same form as

other kernel matrices. We can thus treat the regularization parameter as one of the coefficients for
the kernel matrix and optimize them simultaneously. This leads to the following formulation:

mint,θ̃ t

subject to

(

∑p
i=0 θ̃iG̃i a

aT t

)

� 0,

θ̃ ≥ 0,
p

∑
i=0

θ̃itrace(G̃i) = 1, (41)

where θ̃ = [θ0,θ1, · · · ,θp]
T , θ0 = 1

τ = λ, and G̃0 = I.

4.1.2 QCQP FORMULATION

In order to cast the formulation in Theorem 2.2 to optimize the regularization parameter, we again
start from the modified least square problem in Equation (39). By following the same procedure as
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in Theorem 2.2, the optimization problem in Equation (15) can be expressed as

min
θ:θ≥0,θT r=1

max
β

{

−1
4

βT

(

1
τ

I +
p

∑
i=1

θiG̃i

)

β+βT a

}

= max
β

min
θ̃: θ̃≥0, θ̃T r=1

{

−1
4

βT

(

p

∑
i=0

θ̃iG̃i

)

β+βT a

}

, (42)

where θ0 = 1
τ , and G̃0 = I. This can be formulated to optimize the regularization parameter as one

of the coefficients for the kernel matrix as follows:

max
β,t

βT a− 1
4

t

subject to t ≥ 1
ri

βT G̃iβ, i = 0, · · · , p. (43)

This problem is a quadratically constrained linear program.

4.1.3 SILP FORMULATION

The SILP formulation proposed in Theorem 2.3 for the binary-class problem can also be reformu-
lated to optimize λ jointly. It follows from Equation (42) that this joint learning problem can be
formulated as follows:

max
θ̃,γ

γ (44)

subject to θ̃ ≥ 0,

θ̃T r = 1,
p

∑
i=0

θiSi(β) ≥ γ, for all β,

where Si(β) is defined as

Si(β) =
1
4

βT G̃iβ− riβT a, for i = 0, · · · , p,

r = (r0, · · · ,rp)
T , ri = trace(G̃i), θ̃ = [θ0,θ1, · · · ,θp]

T , θ0 = 1
τ = λ, and G̃0 = I.

4.2 Joint Learning for Multi-class Problems

All formulations for the multi-class RKDA kernel learning problems presented in Section 3 can be
recast to optimize the regularization parameter jointly. The next three subsections provide details of
these reformulations.
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4.2.1 SDP FORMULATION

In order to incorporate λ in the optimization problem, we modify the objective function in Equation
(26) as follows:

F8(W,K,τ) =
k

∑
i=1

(wT
i φK(X)hi)

2

wT
i (τΣK + I)wi

.

By following the same derivation in Lemma 3.1 and noticing the relationship with the binary-class
case, we derive the following SDP formulation for the multi-class RKDA kernel learning problem:

min
t1,··· ,tk,θ̃

k

∑
j=1

t j

subject to















∑p
i=0 θ̃iG̃i h1 h2 · · · hk

hT
1 t1 0 · · · 0

hT
2 0 t2 · · · 0
...

...
...

...
...

hT
k 0 0 · · · tk















� 0,

θ̃ ≥ 0,

θ̃T r = 1, (45)

where θ̃ = [θ0,θ1, · · · ,θp]
T , θ0 = 1

τ = λ, and G̃0 = I.

4.2.2 QCQP FORMULATION

Similar to the binary-class case, we modify the least square problem in Equation (33) as follows:

F9(W,K,τ) =
k

∑
i=1

(

τ||(φK(X)P)T wi −hi||2 + ||wi||2
)

,

where τ = 1/λ. By following the same derivation as in Theorem 3.2, we obtain the following joint
optimization problem:

max
β1,··· ,βk,t

k

∑
j=1

βT
j h j −

1
4

t

subject to t ≥ 1
ri

k

∑
j=1

βT
j G̃iβ j, i = 0, · · · , p. (46)

This is a quadratically constrained linear program.
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4.2.3 SILP FORMULATION

Similar to the reformulation in the binary-class case, the SILP formulation for multi-class problems
can also be formulated to optimize λ simultaneously as follows:

max
θ̃,γ

γ (47)

subject to θ̃ ≥ 0,

θ̃T r = 1,
p

∑
i=0

θiSi(β) ≥ γ, for all β,

where

Si(β) =
k

∑
j=1

(

1
4

βT
j G̃iβ j − riβT

j h j

)

, for i = 0, · · · , p,

r = (r0, · · · ,rp)
T , ri = trace(G̃i), θ̃ = [θ0,θ1, · · · ,θp]

T , θ0 = 1
τ = λ, and G̃0 = I.

The reformulations to optimize λ simultaneously proposed in this section are motivated from
Lanckriet et al. (2004b) and De Bie et al. (2003). As has been show in Lanckriet et al. (2004b),
this joint optimization of λ works well in most cases in comparison with the simple approach of
pre-specifying λ, but improved performance is not guaranteed.

5. Experimental Study

We conduct extensive experiments in this section to compare various aspects of relevant algorithms.
The first part of the experiments focuses on combining kernel matrices derived from a single source
of data. We demonstrate the effectiveness of the proposed MKL formulations for heterogeneous
data integration in the second part of the experiments. The SDP formulations in Equations (8), (32),
(41), and (45) are solved using the optimization package SeDuMi (Sturm, 1999). The QCQP formu-
lations in Equations (13), (34), (43), and (46) are solved using the MOSEK package (Andersen and
Andersen, 2000). The linear programs involved in the SILP formulations in Equations (16), (37),
(44), and (47) are solved using the MATLAB1 build-in function linprog. The tolerance parameter ε,
defined in Equation (22), is set to 5×10−4. The source codes of the proposed formulations for the
experiments are available online.2

We first evaluate the proposed formulations for binary-class problems in Section 5.1. The ex-
perimental results and analysis for the multi-class formulations are presented in Section 5.2. We
demonstrate the effectiveness of the proposed formulations for heterogeneous data integration in
Section 5.3. In Section 5.4, we analyze the relationship between RKDA and SVM, and Section 5.5
studies the effect of regularization parameter on classification performance.

5.1 Experiments on Binary-class Problems

In the binary-class case, we compare our formulations with the 1-norm soft margin SVM, 2-norm
soft margin SVM with and without the regularization parameter C optimized jointly as proposed in

1. The URL is http://www.mathworks.com.
2. The URL is http://www.public.asu.edu/˜jye02/Software/DKL/.
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sonar θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ/C TSA
SDPθ 0 0 0 0 0.550 0.307 0.022 0.041 0.029 0.050 5.0e-04 89.27±5.34
SDPθ,λ 0 0 0 0 0.550 0.307 0.022 0.041 0.029 0.050 3.1e-08 89.35±5.34
QCQPθ 0.003 0.003 0.004 0.011 0.444 0.375 0.046 0.034 0.035 0.048 5.0e-04 89.76±5.34
QCQPθ,λ 0 0 0 0 0.550 0.307 0.022 0.041 0.029 0.050 5.0e-02 89.35±5.34
SILPθ 0 0 0 0 0.459 0.406 0.011 0.034 0.032 0.059 5.0e-04 89.76±5.37
SILPθ,λ 0 0 0 0 0.547 0.313 0.023 0.031 0.034 0.052 4.2e-10 89.43±5.18
SDPKim 0.167 0.048 0.175 0.072 0.251 0.173 0.031 0.025 0.015 0.044 1.0e-08 88.46±5.28
SM1 0 0 0 0.040 3.953 5.514 0.491 0 0 0 1 89.75±4.90
SM2 0 0 0 0 2.875 6.765 0.359 0 0 0 1 89.59±5.24
SM2C 0 0.011 0.014 0.084 4.253 6.038 0.570 0.004 0.001 0 5.5e+7 89.84±4.80
RKDAK,λ

3 0 0 0 0 0 3 14 11 2 0 – 89.67±6.62
SVMK,C

4 0 0 0 0 0 2 16 7 5 0 – 89.35±5.18
RKDAλ

5 53.65 54.95 60.24 73.57 84.95 90.56 89.91 86.99 85.52 84.95 – –
SVMC

6 53.65 54.63 59.91 73.41 86.09 89.67 90.65 89.59 86.58 84.22 – –

Table 2: Comparison of twelve methods on the sonar data set. The twelve methods, listed from
top to bottom are: SDP formulation with λ fixed as proposed in Theorem 2.1, SDP
formulation with λ optimized jointly as proposed in Equation (41), QCQP formulation
with λ fixed as proposed in Theorem 2.2, QCQP formulation with λ optimized jointly as
proposed in Equation (43), SILP formulation with λ fixed as proposed in Theorem 2.3,
SILP formulation with λ optimized jointly as proposed in Equation (44), SDP formu-
lation proposed in Kim et al. (2006), 1-norm soft margin SVM, 2-norm soft margin
SVM without and with C optimized as proposed in Lanckriet et al. (2004b), RKDA and
SVM with the kernels and regularization parameters selected by double cross-validation.
Generally, subscripts of names in the first column are used to denote quantities that are
optimized. The ten pre-specified kernels are all RBF kernels and the σ values used
are 0.10, 0.22, 0.46, 1.00, 2.15, 4.46, 10.00, 21.54, 46.42, 100.00, as in Kim et al. (2006).
The table is partitioned into three sections row-wise. In the first section, the columns
headed with θi are the coefficients learned from the corresponding methods. The coef-
ficients for the proposed six formulations are normalized to sum to one while those for
other compared approaches are reported as obtained from their formulations. The column
headed with λ/C provides the values of the regularization parameters, whether fixed or
learned, and the test set accuracies and standard deviations are given in the last column.
The second section includes RKDA and SVM with kernel and regularization parameter
chosen by double cross-validation. We also report the number of times that a particular
kernel is selected by cross-validation. The third section shows the accuracies of RKDA
and SVM when the kernel is fixed and the regularization parameters chosen by cross-
validation. Dashes are used to denote non-applicable items.

Lanckriet et al. (2004b), and the SDP formulation proposed in Kim et al. (2006). Also, we use
double cross-validation to choose kernels and regularization parameters for SVM and RKDA. The
1-norm SVM classifier used is the LIBSVM package (Chang and Lin, 2001) and the 2-norm SVM
code was obtained by adapting Anton Schwaighofer’s implementation.7

Four data sets are used in the binary-class case. The sonar, ionosphere, and cancer data were
retrieved from the UCI Machine Learning Repository (Newman et al., 1998). The heart data were

3. The number of times that a kernel is chosen by doubly cross-validated RKDA over 30 randomizations.
4. The number of times that a kernel is chosen by doubly cross-validated SVM over 30 randomizations.
5. Accuracy of RKDA when the kernel is fixed to each of the ten candidate kernels and λ is chosen by cross-validation.
6. Accuracy of SVM when the kernel is fixed to each of the ten candidate kernels and C is chosen by cross-validation.
7. The URL is http://ida.first.fraunhofer.de/˜anton/software.html.
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obtained from the STATLOG project.8 All data are normalized. For each data set, we randomly
partition the entire data set into training and test sets using the ratio 8:2. Ten RBF kernels are con-
structed from the training set data with different choices of the parameter σ as in Kim et al. (2006).
Then the ten kernels are fed into the optimization software packages to obtain the corresponding
coefficients for each kernel. Finally, the kernels are combined and used to compute the accuracy.
For formulations SDPθ, QCQPθ, and SILPθ, the λ value is fixed to 5.0× 10−4. For SDPKim, this
value is fixed to 10−8, as used in Kim et al. (2006). Following Lanckriet et al. (2004b), we fix C to
1 for SM1 and SM2.

Tables 2–5 present the experimental results on sonar, heart, ionosphere, and cancer data sets, re-
spectively. In terms of performance, formulations that optimize λ jointly achieve similar accuracies
to the ones with λ fixed. Note that for our experiments, all the data are normalized and the λ value
is tuned manually for formulations with λ fixed. In practice, the optimal λ value is data-dependent.
Thus, formulations that optimize λ jointly are expected to work better in such situations. In cases
where no numerical problems have been reported, all the twelve compared methods achieve similar
performance. However, for the first ten methods, there is no need for cross-validation, and they can
be used for heterogeneous data integration from various sources.

For MKL formulations in Tables 2–5, we present the coefficients learned for each kernel. For
doubly cross-validated methods, that is, RKDAK,λ and SVMK,C, we record the number of times
that a particular kernel has been selected in cross-validation. To understand the relative importance
of each kernel when they are used individually, we fix the kernel to each of the ten pre-specified
kernels and tune the regularization parameter using cross-validation and the accuracy of each kernel
is recorded. We expect these quantities to have some relationship with the coefficients learned
by solving convex programs. For the sonar data, RKDAλ achieves the best performance on kernels
corresponding to θ6 and θ7 while SVMC achieves the highest accuracy on θ6, θ7 and θ8. On the other
hand, methods using linear combination of kernels favor kernels corresponding to θ5 and θ6. For
the heart data, cross-validated SVM favors kernels corresponding to θ9 and θ10 (they were chosen
9 and 17 times out of 30, respectively) while cross-validated RKDA uses kernels corresponding to
θ7, θ8, and θ9 most frequently. Our six formulations all give kernels corresponding to θ1 and θ10

large weights, especially to θ1, while SVM-based MKL formulations all set θ10 to zero. This may
be due to the fact that RKDA and SVM optimize different criteria and thus favor different kernels.
Another interesting observation is that all the ten MKL formulations give the first kernel a large
weight while it is the worst kernel when used individually. This implies that the best individual
kernel may not lead to a large weight when used in combination with others and poorly-performed
individual kernel may contain complementary information that is useful when combined with other
kernels. Such complementary information can not be incorporated when cross-validation is used
to choose a single best kernel. For the ionosphere data, the best three individual kernels chosen by
cross-validation are kernels corresponding to θ5, θ6 and θ7. Interestingly, the kernel corresponding
to θ5 is assigned a zero weight by nine out of the ten MKL-based methods. For the cancer data, all
kernels achieve similar performance when used separately while MKL-based formulations tend to
assign a large weight to the kernel corresponds to θ2.

To compare the efficiency of the proposed formulations with methods based on cross-validation,
we record the computation time of the proposed QCQP and SILP formulations along with that of
methods based on double cross-validation. Figure 1 plots the computation time of these six methods.

8. The URL is http://www.liacc.up.pt/ML/old/statlog/datasets.html.
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Note that methods based on SDP have a much larger computation time than these six methods and
their results are thus omitted. It can be seen that the proposed SILP formulations are more efficient
than cross-validation based methods. Note that the convergence rate of the algorithm for solving the
QCQP formulation depends on the data and parameter setting. Thus, it may take a relatively long
time to converge in some cases, as shown by QCQPθ on the cancer data in Figure 1.

heart θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ/C TSA
SDPθ 0.783 0.089 0 0 0 0.001 0 0 0.005 0.123 5.0e-4 81.98±4.27
SDPθ,λ 0.753 0.089 0 0 0 0.001 0 0 0.005 0.123 3.0e-2 81.67±4.49
QCQPθ 0.734 0.117 0.003 0.001 0.001 0.001 0.002 0.004 0.008 0.129 5.0e-4 81.85±4.17
QCQPθ,λ 0.753 0.089 0 0 0 0.001 0 0 0.005 0.123 1.2e-1 81.67±4.47
SILPθ 0.742 0.115 0 0 0 0.001 0 0 0.006 0.137 5.0e-4 81.98±4.27
SILPθ,λ 0.744 0.095 0 0 0 0 0 0 0.007 0.121 3.4e-2 81.73±4.23
SDPKim 0.881 0.036 0.002 0 0 0.001 0.003 0.004 0.009 0.065 1.0e-8 82.22±3.79
SM1 7.688 0.479 0.001 0.002 0.002 0.024 1.813 0 0 0 1 82.59±4.55
SM2 7.317 0.669 0 0 0 0.029 1.994 0 0 0 1 82.71±4.41
SM2C 6.746 0.626 0 0 0 0.036 1.991 0 0 0 4.4e+5 82.53±4.58
RKDAK,λ 0 0 0 0 1 2 7 9 7 4 – 77.35±5.83
SVMK,C 0 0 0 0 0 0 2 2 9 17 – 81.73±4.48
RKDAλ 58.64 65.06 69.62 73.33 77.28 79.13 78.70 77.65 76.79 75.92 – –
SVMC 57.96 64.75 71.79 76.60 79.93 80.30 81.66 81.54 82.22 82.59 – –

Table 3: See the caption and footnotes of Table 2 for explanation.

ionosphere θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ/C TSA
SDPθ 0.362 0.073 0.033 0.108 0 0.147 0.277 0 0 0 5.0e-4 94.67±2.25
SDPθ,λ 0.362 0.073 0.033 0.108 0 0.147 0.277 0 0 0 1.4e-7 94.67±2.25
QCQPθ 0.222 0.116 0.081 0.074 0.042 0.182 0.236 0.022 0.014 0.012 5.0e-4 94.86±2.39
QCQPθ,λ 0.362 0.073 0.033 0.108 0 0.147 0.277 0 0 0 2.2e-4 94.67±2.25
SILPθ 0.261 0.080 0.061 0.116 0 0.167 0.316 0 0 0 5.0e-4 94.90±2.33
SILPθ,λ 0.364 0.073 0.028 0.112 0 0.145 0.279 0 0 0 3.6e-9 94.81±2.23
SDPKim 0.942 0 0 0 0 0.006 0.038 0.013 0.001 0 1.0e-8 89.43±3.98
SM1 3.553 0.672 0.482 0.240 0 4.828 0.221 0 0 0 1 95.28±2.09
SM2 2.883 0.682 0.683 0.196 0 5.305 0.248 0 0 0 1 94.81±2.07
SM2C 3.910 0.714 0.561 0.255 0 5.300 0.256 0 0 0 1.4e+7 95.19±2.17
RKDAK,λ 0 0 0 4 5 10 8 3 0 0 – 92.33±5.51
SVMK,C 0 0 0 0 8 9 7 4 2 0 – 94.48±2.39
RKDAλ 65.71 76.47 90.33 92.14 93.33 94.28 93.14 91.71 90.61 89.00 – –
SVMC 65.38 66.57 89.38 93.00 94.57 95.04 93.80 93.42 92.61 91.95 – –

Table 4: See the caption and footnotes of Table 2 for explanation.

5.2 Experiments on Multi-class Problems

In the multi-class experiments, we compare our formulations with KRDA and SVM with kernels and
regularization parameters tuned using double cross-validation. The methods proposed in Lanckriet
et al. (2004b) and Kim et al. (2006) are only applicable to binary-class problems. Five data sets with
different numbers of classes are used for this experiment. The USPS handwritten digits database
was described in Hull (1994). We choose the first 3,6, and 8 classes with 100 data points in each
class for the experiment. The wine data set was obtained from UCI Machine Learning Repository
and the satimage and segment were obtained from the STATLOG project. We use the first 3,5, and
6 classes for the satimage data and the first 3 and 4 classes for the segment data. The waveform
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cancer θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ/C TSA
SDPθ 0.013 0.006 0.014 0 0.018 0.044 0.061 0.101 0.280 0.463 5.0e-4 96.05±2.65
SDPθ,λ 0 0.532 0.096 0.040 0.008 0.020 0.244 0.020 0 0.048 1.0e-8 96.00±1.44
QCQPθ 0.147 0.312 0.207 0.080 0.052 0.055 0.051 0.038 0.031 0.028 5.0e-4 97.01±1.31
QCQPθ,λ 0.003 0.662 0.111 0.042 0.010 0.015 0.134 0.007 0 0.004 4.3e-3 96.20±2.21
SILPθ 0 0.468 0.298 0.022 0.010 0.020 0.170 0.007 0 0.005 5.0e-4 97.01±1.20
SILPθ,λ 0.003 0.663 0.105 0.047 0.009 0.014 0.132 0.009 0 0.005 1.3e-2 96.98±1.28
SDPKim 0.970 0.006 0.005 0.004 0.004 0.003 0.003 0.002 0.002 0.002 5.0e-4 73.43±4.28
SM1 1.797 5.706 0.179 0.008 0 2.308 0 0 0 0 1 97.08±1.27
SM2 1.483 5.541 0.402 0.023 0.006 2.527 0.013 0 0 0 1 97.15±1.22
SM2C 1.690 4.855 0.546 0.047 0.003 2.521 0.015 0 0 0 1.0e+4 97.01±1.22
RKDAK,λ 0 0 0 2 8 2 3 4 4 7 – 95.79±1.55
SVMK,C 0 0 0 0 0 7 10 4 6 3 – 96.81±1.28
RKDAλ 94.54 95.32 96.05 96.15 96.30 95.74 95.59 95.59 95.49 95.64 – –
SVMC 92.21 94.93 96.03 96.30 96.81 96.88 96.86 96.66 96.69 96.64 – –

Table 5: See the caption and footnotes of Table 2 for explanation.
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Figure 1: Computation time (in seconds) of the six methods on four binary-class data sets.

data set was described in Breiman et al. (1984) and are also available from UCI Machine Learning
Repository. For each data set, we randomly partition the entire set into two subsets with 60% of
the samples in the training set and 40% in the test set. Ten RBF kernels, with σ assigned the same
values as in the binary-class case, are constructed from the training set.

Tables 6–15 present the experimental results on the ten data sets. In general, all the six proposed
formulations achieve similar performance on the ten data sets. Compared to the QCQP and SILP
formulations which are exact, our approximate SDP formulation for the multi-class problems work
well in most cases. This implies that the approximate formulation is close to the exact one while
the computational cost is lower. Furthermore, methods based on MKL and cross-validation achieve
similar performance on all of the data sets.

In order to gain insights into the relative importance of each kernel when used in combination
or separately, we use a similar experimental setup to the binary-class case. We found that for the
USPS(3),9 USPS(6), and USPS(8) data, all eight compared approaches favor the kernels correspond-
ing to θ9 and θ10. Similar behavior has been observed for the waveform(3) data where only the last
two kernels are selected by cross-validation and they are given large weights by all six MKL-based

9. The number in the parentheses denotes the number of classes used in the experiment.
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USPS(3)10 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0 0 0 0 0 0.027 0.023 0.012 0.518 0.420 5.0e-4 99.64±0.57
SDPθ,λ 0.007 0.004 0.015 0.016 0.013 0.036 0.022 0.014 0.493 0.379 6.3e-7 99.69±0.46
QCQPθ 0 0 0 0 0 0.037 0.052 0.040 0.372 0.498 5.0e-4 99.72±0.51
QCQPθ,λ 0.007 0.004 0.021 0.009 0.008 0.067 0.029 0.054 0.345 0.457 1.2e-5 99.64±0.47
SILPθ 0 0 0 0 0 0.037 0.052 0.043 0.370 0.499 5.0e-4 99.72±0.51
SILPθ,λ 0.007 0.005 0.019 0.011 0.006 0.069 0.027 0.057 0.343 0.457 3.6e-7 99.61±0.48
RKDAK,λ

11 0 0 0 0 0 0 0 0 8 22 – 98.97±1.11
SVMK,C

12 0 0 0 0 0 0 0 0 24 6 – 99.50±0.60

Table 6: Comparison of eight methods on the USPS data set when the first three classes are used.
The eight methods, listed from top to bottom, are the SDP formulation with λ fixed as
proposed in Theorem 3.1, the SDP formulation with λ optimized jointly as proposed in
Equation (45), the QCQP formulation with λ fixed as proposed in Theorem 3.2, the QCQP
formulation with λ optimized jointly as proposed in Equation (46), the SILP formulation
with λ fixed as proposed in Theorem 3.3, the SILP formulation with λ optimized jointly as
proposed in Equation (47), RKDA and SVM with kernels and regularization parameters
chosen by double cross-validation. Generally, subscripts of names in the first column are
used to denote quantities that are optimized. Ten RBF kernels are pre-specified and the
values for σ are the same as those used in the binary-class case (see caption of Table 2).
This table is partitioned into two sections row-wise. In the first section, the columns headed
with θi present the coefficients learned from each method. Note that all coefficients are
normalized to sum to one. This is followed by the values for the λ, whether fixed or
learned. The test set accuracies are given in the last column. In the second section, we
report the number of times that each kernel has been selected by double cross-validation
and the accuracies. Dashes are used to denote non-applicable items.

USPS(6) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0 0 0 0 0 0.001 0.009 0.195 0.655 0.141 5.0e-4 98.40±0.80
SDPθ,λ 0.018 0.001 0.011 0.038 0.013 0.011 0.036 0.222 0.516 0.134 1.9e-6 98.33±0.88
QCQPθ 0 0 0 0 0 0.001 0.023 0.165 0.564 0.247 5.0e-4 98.36±0.82
QCQPθ,λ 0.020 0.002 0.003 0.035 0.025 0.008 0.063 0.165 0.463 0.216 2.8e-5 98.28±0.89
SILPθ 0 0 0 0 0 0.002 0.028 0.156 0.569 0.245 5.0e-4 98.35±0.84
SILPθ,λ 0.021 0 0.003 0.037 0.017 0.011 0.064 0.169 0.459 0.218 1.4e-8 98.29±0.88
RKDAK,λ 0 0 0 0 0 0 0 0 20 10 – 98.08±0.85
SVMK,C 0 0 0 0 0 0 0 0 26 4 – 98.11±1.02

Table 7: See the caption and footnotes of Table 6 for explanation.

approaches. Thus for these data sets, the kernels selected by cross-validation and multiple kernel
learning (MKL) agree. In contrast, for the satimage(3), satimage(5), and satimage(6) data sets,
the proposed MKL-based approaches assign large weights to the first five kernels. In particular, θ2,
θ3, and θ5 are given large values for the satimage(3) data; θ2, θ4, and θ5 are given large values for the
satimage(5) data; θ1, θ2, and θ4 are given large values for the satimage(6) data. On the other hand,

10. The number in parenthesis denotes the number of classes used in the experiments.
11. RKDA with kernel and λ chosen by double cross-validation. The first ten columns show the number of times that a

kernel is chosen by doubly cross-validated RKDA over 30 randomizations.
12. SVM with kernel and λ chosen by double cross-validation. The first ten columns show the number of times that a

kernel is chosen by doubly cross-validated SVM over 30 randomizations.
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USPS(8) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0 0 0 0 0 0.034 0.057 0.118 0.792 0 5.0e-4 97.60±0.83
SDPθ,λ 0.032 0.002 0.016 0.011 0.009 0.130 0.056 0.104 0.641 0 4.4e-6 97.64±0.70
QCQPθ 0 0 0 0 0 0.001 0.116 0.053 0.697 0.133 5.0e-4 97.57±0.77
QCQPθ,λ 0.025 0.003 0.021 0.023 0.007 0.066 0.149 0.029 0.573 0.106 3.2e-5 97.65±0.72
SILPθ 0 0 0 0 0 0 0.112 0.060 0.695 0.134 5.0e-4 97.51±0.77
SILPθ,λ 0.024 0 0.020 0.025 0.006 0.071 0.144 0.034 0.571 0.106 7.8e-9 97.64±0.74
RKDAK,λ 0 0 0 0 0 0 0 0 12 18 – 97.53±0.78
SVMK,C 0 0 0 0 0 0 0 0 18 12 – 97.10±0.82

Table 8: See the caption and footnotes of Table 6 for explanation.

wine(3) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0.044 0.147 0.104 0.415 0.104 0.012 0.008 0.016 0.018 0.133 5.0e-4 97.98±1.60
SDPθ,λ 0.065 0.177 0.086 0.394 0.100 0.011 0.008 0.018 0.015 0.126 2.4e-7 97.79±1.60
QCQPθ 0.028 0.128 0.202 0.181 0.302 0.010 0.005 0.01 0.009 0.125 5.0e-4 98.12±1.49
QCQPθ,λ 0.046 0.169 0.171 0.177 0.289 0.009 0.004 0.011 0.004 0.123 9.3e-7 98.12±1.45
SILPθ 0.023 0.133 0.205 0.178 0.305 0.010 0.003 0.009 0.010 0.125 5.0e-4 98.12±1.49
SILPθ,λ 0.045 0.162 0.182 0.172 0.287 0.010 0.008 0 0.009 0.124 2.2e-7 98.12±1.45
RKDAK,λ 0 0 0 2 5 2 6 3 5 7 – 98.31±1.63
SVMK,C 0 0 0 6 4 11 4 4 1 0 – 97.65±1.90

Table 9: See the caption and footnotes of Table 6 for explanation.

satimage(3) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0 0.157 0.247 0.046 0.353 0.08 0.024 0.046 0.017 0.032 5.0e-4 98.03±0.94
SDPθ,λ 0.003 0.251 0.193 0.033 0.349 0.06 0.02 0.05 0.012 0.029 9.0e-4 98.00±0.97
QCQPθ 0 0.131 0.249 0.068 0.265 0.165 0.034 0.03 0.009 0.049 5.0e-4 98.06±0.96
QCQPθ,λ 0.002 0.229 0.193 0.049 0.281 0.115 0.055 0.023 0.003 0.048 1.8e-3 98.08±0.93
SILPθ 0 0.133 0.246 0.073 0.252 0.181 0.026 0.033 0.006 0.051 5.0e-4 98.06±0.96
SILPθ,λ 0.003 0.226 0.197 0.047 0.274 0.133 0.042 0.019 0.004 0.053 1.6e-3 98.08±0.93
RKDAK,λ 0 0 0 3 0 7 5 6 5 4 – 97.56±1.26
SVMK,C 0 0 0 0 5 5 8 3 5 4 – 97.92±1.09

Table 10: See the caption and footnotes of Table 6 for explanation.

the two methods based on cross-validation tend to use the last five kernels more frequently than the
first five kernels. This demonstrates that the best kernels used in combination and separately differ
significantly for the satimage data set. We expect that complementary information exists among
kernels for this data set such that a subset of kernels can be combined to obtain the optimal per-
formance though none of them is the best kernel when used individually. Similar phenomenon can
be observed from the segment(3) and segment(4) data sets in which the first kernel is assigned the
largest weight by MKL-based formulations while it is never selected by cross-validation. This anal-
ysis shows that the information used by methods based on MKL and cross-validation may coincide
or differ depending on the data.

To compare the efficiency of various methods, we report the computation time of the eight
methods on the ten data sets in Table 16. It can be seen that the SDP formulations are much
slower than methods based on cross-validation due to its inherent large complexity. The QCQP
formulations are relatively efficient for data sets with a small number of classes. When the number
of classes increases, their computation time increases rapidly. This is consistent with the theoretical
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satimage(5) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0 0.302 0.244 0.196 0.225 0 0 0 0 0.034 5.0e-4 93.50±1.57
SDPθ,λ 0.002 0.477 0.083 0.225 0.184 0 0 0 0 0.030 2.1e-7 93.42±1.69
QCQPθ 0 0.165 0.469 0.001 0.251 0.068 0 0 0.004 0.043 5.0e-4 93.52±1.59
QCQPθ,λ 0.011 0.337 0.310 0.017 0.235 0.048 0 0.001 0.003 0.039 2.4e-6 93.28±1.51
SILPθ 0 0.162 0.470 0.005 0.247 0.071 0 0 0.004 0.042 5.0e-4 93.48±1.60
SILPθ,λ 0.014 0.331 0.316 0.010 0.242 0.044 0 0.001 0.003 0.039 5.9e-9 93.33±1.52
RKDAK,λ 0 0 0 3 2 7 7 6 4 1 – 93.15±1.73
SVMK,C 0 0 0 1 11 13 5 0 0 0 – 93.48±2.08

Table 11: See the caption and footnotes of Table 6 for explanation.

satimage(6) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0.131 0.478 0.031 0.249 0.072 0 0 0 0 0.039 5.0e-4 87.65±1.85
SDPθ,λ 0.293 0.338 0.04 0.212 0.06 0 0 0 0 0.033 2.3e-2 86.69±1.97
QCQPθ 0.102 0.454 0.096 0.138 0.128 0.043 0.001 0.002 0.009 0.029 5.0e-4 87.96±1.78
QCQPθ,λ 0.282 0.295 0.114 0.107 0.111 0.035 0.001 0.002 0.008 0.024 2.0e-2 87.22±1.84
SILPθ 0.108 0.448 0.094 0.143 0.123 0.046 0 0.002 0.006 0.031 5.0e-4 87.97±1.74
SILPθ,λ 0.277 0.299 0.112 0.106 0.114 0.032 0.003 0.005 0.006 0.024 2.2e-2 87.26±1.81
RKDAK,λ 0 0 0 5 7 7 2 5 4 0 – 87.71±1.55
SVMK,C 0 0 0 1 16 10 3 0 0 0 – 88.50±2.11

Table 12: See the caption and footnotes of Table 6 for explanation.

segment(3) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0.329 0.040 0.061 0.349 0.094 0.003 0 0 0 0.125 5.0e-4 99.17±0.62
SDPθ,λ 0.215 0.083 0.053 0.314 0.089 0.003 0 0 0 0.114 1.3e-1 99.00±0.83
QCQPθ 0.314 0.046 0.075 0.257 0.127 0.087 0.002 0 0 0.091 5.0e-4 99.19±0.67
QCQPθ,λ 0.215 0.075 0.079 0.218 0.127 0.079 0 0 0 0.084 1.2e-1 99.03±0.76
SILPθ 0.312 0.049 0.073 0.263 0.118 0.093 0.003 0 0 0.090 5.0e-4 99.17±0.69
SILPθ,λ 0.210 0.083 0.071 0.222 0.128 0.078 0 0 0 0.085 1.2e-1 99.03±0.76
RKDAK,λ 0 0 2 8 1 3 4 6 4 2 – 98.86±1.08
SVMK,C 0 0 5 9 8 3 4 1 0 0 – 99.06±0.81

Table 13: See the caption and footnotes of Table 6 for explanation.

analysis in Section 3.4. In contrast, the proposed SILP formulations are more efficient than methods
based on cross-validation on all of the ten data sets.

5.3 Gene Expression Pattern Image Classification

In this experiment, we demonstrate the effectiveness of the proposed multiple kernel learning (MKL)
formulations for data (feature) integration. Gene expression pattern images of Drosophila melanogaster
embryo at a given developmental stage (time) capture the spatial and temporal distribution of gene
expression patterns (Tomancak et al., 2002). The identification of genes showing spatial overlaps
in their expression patterns is fundamentally important to formulating and testing gene interaction
hypotheses (Kumar et al., 2002; Peng and Myers, 2004). Estimation of pattern overlap is most bi-
ologically meaningful when images from a similar time point (developmental stage) are compared.
Thus, one of the central issues in gene expression pattern image analysis is the classification of
images into different developmental stage ranges (Ye et al., 2006).
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segment(4) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0.376 0.149 0.074 0.019 0.363 0.005 0 0 0 0.014 5.0e-4 97.00±1.09
SDPθ,λ 0.379 0.104 0.073 0.018 0.324 0.005 0 0 0 0.012 8.5e-2 96.77±1.25
QCQPθ 0.368 0.117 0.114 0.031 0.306 0.035 0 0 0 0.030 5.0e-4 97.00±1.17
QCQPθ,λ 0.373 0.073 0.111 0.028 0.271 0.033 0 0 0 0.027 8.5e-2 96.81±1.28
SILPθ 0.372 0.110 0.117 0.028 0.310 0.033 0 0 0 0.030 5.0e-4 97.02±1.12
SILPθ,λ 0.369 0.075 0.112 0.031 0.267 0.033 0 0 0 0.027 8.7e-2 96.81±1.26
RKDAK,λ 0 0 1 1 2 3 2 7 6 8 – 97.31±0.93
SVMK,C 0 0 0 4 5 7 4 6 1 3 – 96.83±1.38

Table 14: See the caption and footnotes of Table 6 for explanation.

waveform(3) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 λ TSA
SDPθ 0.072 0.072 0.072 0.072 0.029 0 0.007 0.028 0.415 0.232 5.0e-4 83.03±2.68
SDPθ,λ 0.074 0.074 0.074 0.074 0.069 0 0.01 0.034 0.377 0.214 6.8e-7 83.22±2.61
QCQPθ 0.061 0.061 0.061 0.061 0.061 0.006 0.003 0.036 0.423 0.226 5.0e-4 83.03±2.68
QCQPθ,λ 0.071 0.071 0.071 0.071 0.071 0.006 0.006 0.041 0.385 0.209 6.2e-6 83.19±2.49
SILPθ 0.053 0.021 0.033 0.115 0.094 0 0 0.036 0.422 0.227 5.0e-4 83.08±2.74
SILPθ,λ 0.012 0.066 0.033 0.136 0.113 0 0.006 0.040 0.382 0.213 2.0e-7 83.22±2.50
RKDAK,λ 0 0 0 0 0 0 0 0 6 24 – 84.17±3.14
SVMK,C 0 0 0 0 0 0 0 0 12 18 – 81.86±2.99

Table 15: See the caption and footnotes of Table 6 for explanation.

Data USPS wine satimage segment waveform
# of classes 3 6 8 3 3 5 6 3 4 3
SDPθ 50.98 411.15 1021.16 18.91 95.95 415.58 753.07 74.38 163.26 64.09
SDPθ,λ 69.95 646.05 1642.17 27.02 130.51 710.70 1172.55 99.29 235.50 96.08
QCQPθ 5.19 81.24 276.27 1.15 4.23 36.56 79.61 4.16 14.89 4.09
QCQPθ,λ 5.96 88.05 286.49 1.29 4.67 39.09 82.93 4.50 16.20 4.65
SILPθ 0.32 1.52 3.03 0.30 0.59 1.97 3.65 0.62 1.03 0.24
SILPθ,λ 0.60 3.45 6.70 0.30 0.66 2.29 4.38 1.03 1.52 0.25
RKDAK,λ 1.54 9.26 20.59 0.76 1.56 5.39 8.61 1.56 2.89 1.71
SVMK,C 5.60 17.82 23.18 3.65 1.87 4.24 9.50 3.53 4.13 5.44

Table 16: Comparison of computation time (in seconds) of various methods. The reported time is
averaged over 30 random partitions.

We collect 2705 gene expression pattern images in the first three stage ranges (1-3, 4-6, and 7-8)
from the FlyExpress13 database. The raw gene expression pattern images are of size 128×320. It
has been observed (Gargesha et al., 2005) that across various developmental stages, a distinguishing
feature is the image textural properties at sub-block level, because image texture at the sub-block
level changes as embryonic development progresses. Gabor filters (Daugman, 1988) have been
shown to be effective in detecting local texture features and are well suited for extracting textural
features for gene expression pattern images.

We apply Log Gabor Filters to extract the texture features (Daugman, 1988). Gabor filters are
the product of a complex sinusoidal function and a Gaussian-shaped function. We use Log Gabor
filters with 4 different wavelet scales and 6 different filter orientations to extract the texture infor-
mation. Hence, 24 Gabor images were obtained from the filtering operation. Note that all 24 Gabor
images have the same size (i.e., 128× 320) as the original one. Figure 2 plots the 24 Gabor im-

13. The URL is http://www.flyexpress.net.
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ages extracted from a sample image. These images contain different but potentially complementary
information for stage classification. Two RBF kernels are built from each of the 24 Gabor images
with σ values assigned as 50 and 100, respectively. We thus obtain a total of 48 kernel matrices.
To exploit the complementary information in kernels constructed from different Gabor images, we
apply the proposed SILP formulation to learn a linear combination of the 48 kernel matrices.

The 2705 images are randomly partitioned into training and test sets using the ratio 1:9. Our ex-
perimental results show that SILPθ achieves a classification accuracy of about 88.28%. To see how
each of the 48 kernel matrices works when used individually, we fix the kernel matrix and tune the λ
value using cross-validation. The maximum, minimum, and average accuracies achieved across the
48 kernel matrices are 72.03%, 54.37%, and 61.88%, respectively. We also assign a uniform weight
of 1 to each of the 48 kernel matrices and the combined kernel matrix achieves an accuracy of about
72.65%. These results demonstrate that different Gabor images contain complementary informa-
tion, which is critical for stage classification, and the proposed MKL formulations are effective in
exploiting this information by combining different kernel matrices.

Figure 2: The 24 Gabor images extracted from a single sample image with 4 different wavelet scales
and 6 different filter orientations.
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SM1 SM2 SM2C

data set training size C SVs PCT C SVs PCT C SVs PCT
sonar 167 1 155.4 93.05 1 152.2 91.12 2.43e7 156.8 93.89
heart 216 1 208.7 96.62 1 195.9 90.70 6.01e6 208.3 96.44
ionosphere 281 1 203.6 72.46 1 184.9 65.80 3.70e6 206.3 73.42
cancer 546 1 210.3 38.52 1 138.8 25.42 2.61e6 212.5 38.92

Table 17: The numbers of support vectors (“SVs”) obtained from the 1-norm soft margin SVM, 2-
norm soft margin SVM without and with C learned jointly that were proposed in Lanck-
riet et al. (2004b). These numbers are averaged over 30 random partitions. The total
number of data points in the training set and the C values are also shown. The columns
with title “PCT” show the percentage of support vectors over the training set.

5.4 SVM versus RKDA

It was shown (Shashua, 1999) that hard margin linear SVM is equivalent to linear discriminant
analysis (LDA) when all the training points are support vectors. Through experiments, we found
that the C values chosen by the 2-norm soft margin SVM proposed in Lanckriet et al. (2004b) are
very large. Under such circumstances, soft margin SVM is approaching hard margin SVM. It has
already been observed that SVM and kernel discriminant analysis usually have similar performance
(Mika, 2002) and this has been confirmed by our experiments in the last two subsections. Thus
it is interesting to report the number of support vectors for SVM. We record the average number
of support vectors for 1-norm soft margin SVM, 2-norm soft margin SVM without and with C
optimized jointly over the 30 random partitions reported in Section 5.1. As proposed in Lanckriet
et al. (2004b), C is fixed to 1 for 1-norm and 2-norm soft margin SVM without C optimized. Table 17
reports the average C values obtained by the joint optimization 2-norm soft margin SVM and the
average number of support vectors. For ease of comparison, we also report the size of training
set and the averaged percentage of support vectors over 30 randomizations. It can be seen that for
three out of four data sets, the percentages of support vectors are very high. This implies that SVM
is similar to RKDA and explains why they have similar performance, as reported in the last two
subsections.

5.5 The Effect of Regularization Parameter

In order to investigate the effect of regularization parameter in RKDA, we sampled 30 λ values
between 10−10 and 102 uniformly over logarithmic scale and the accuracies of SDPθ and QCQPθ are
plotted for two binary-class data sets (Figure 3) and two multi-class data sets (Figure 4). The results
for SILP formulations are omitted since their performance is similar to their QCQP counterparts. It
can be observed that as λ value changes, the accuracies oscillate in all cases. It can also be observed
from the four figures that QCQPθ tends to be less sensitive to the change of λ value than SDPθ. This
may be attributable to the fact that SDP is more computationally intensive and numerical problems
may cause the poor performance. Indeed, we observed several reports of numerical problems from
SeDuMi while conducting SDP experiments. The low accuracies of SDPθ for some choices of λ in
Figures 3 and 4 were caused by numerical problems and should be interpreted with caution.
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Figure 3: The change of accuracies for SDPθ and QCQPθ when λ varies from 10−10 to 102 for the
sonar (left) and heart (right) data. The horizontal axis represents the indexes of the 30 λ
values.

6. Discussion and Conclusion

We address the issue of learning appropriate kernels for RKDA in this paper. This problem is for-
mulated as convex programs and thus globally optimal solutions are guaranteed. Practically, some
convex optimization problems are computationally expensive and we propose approaches that are
scalable and efficient to solve. While most existing work on kernel learning only deal with binary-
class problems, we show that our binary-class formulations can be extended naturally to multi-class
setting. Furthermore, we consider the problem of optimizing the kernel and regularization parameter
in a joint framework, thus approaching the desirable goal of automated learning.

We have conducted extensive experiments to evaluate the proposed algorithms. When combin-
ing kernels from a single source of data, the proposed formulations have similar performance with
approaches based on double cross-validation. When the candidate kernels contain complementary
information, we show that the proposed formulations are effective to exploit such information. In
terms of computation time, the SILP formulations are more efficient than approaches based on
cross-validation. When evaluating the relative importance of each kernel (either used separately
or in linear combination), we found that the best individual kernel sometimes coincides with the
highly-weighted kernels in linear combination and sometimes disagrees considerably.

There are some directions for future work. Our experimental results have shown that the pro-
posed approximate SDP formulation works well in most cases while it has a much lower com-
putational cost in comparison with the exact formulation. We plan to compare the approximate
formulation to the exact one in terms of complexity and performance. The derivation of multi-class
formulations is based on an alternative criterion defined in Equation (23). This results in the same
optimal transformation matrix as the original criterion in Equation (26) when a common (fixed)
kernel matrix is used. However, they may differ when the kernel matrix is also optimized. We plan
to investigate their differences further in the future. Most existing formulations for learning SVM
kernels are restricted to the binary-class case. The idea from this paper may be useful for kernel
learning in multi-class SVM. A more general problem is learning kernels for multi-label data in
which each data point can be assigned to multiple classes. Such data are common in automatic
image annotation problems (Lavrenko et al., 2004). We plan to explore these in the future.
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Figure 4: The change of accuracies for SDPθ and QCQPθ when λ varies from 10−10 to 102 for
the satimage(6) (left) and waveform(3) (right) data. The horizontal axis represents the
indexes of the 30 λ values.
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Appendix A.

One of the basic tools used in our proof is the Sherman-Woodbury-Morrison formula (Golub and
Van Loan, 1996): Let S ∈ IRd×d , and Q,R ∈ IRd×n. Assuming that both the matrices S and (I +
RT S−1Q) are nonsingular, we have

(S +QRT )−1 = S−1 −S−1Q(I +RT S−1Q)−1RT S−1.

Since P = PP and P = PT , where P is the centering matrix defined in Equation (5), it follows that

w∗ = (ΣK +λI)−1(µ+
K −µ−K )

=
(

φK(X)PφK(X)T +λI
)−1 φK(X)a

=
(

φK(X)PPφK(X)T +λI
)−1 φK(X)a

=
(

(φK(X)P)(φK(X)P)T +λI
)−1 φK(X)a

=

(

1
λ

I − 1
λ2 φK(X)P

(

I +
1
λ

PφK(X)T φK(X)P

)−1

PφK(X)T

)

φK(X)a

=
1
λ

φK(X)
(

I −P(λI +PGP)−1 PG
)

a.
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Abstract

The linear model with sparsity-favouring prior on the coefficients has important applications in
many different domains. In machine learning, most methods to date search for maximum a pos-
teriori sparse solutions and neglect to represent posterior uncertainties. In this paper, we address
problems of Bayesian optimal design (or experiment planning), for which accurate estimates of
uncertainty are essential. To this end, we employ expectation propagation approximate inference
for the linear model with Laplace prior, giving new insight into numerical stability properties and
proposing a robust algorithm. We also show how to estimate model hyperparameters by empiri-
cal Bayesian maximisation of the marginal likelihood, and propose ideas in order to scale up the
method to very large underdetermined problems.

We demonstrate the versatility of our framework on the application of gene regulatory net-
work identification from micro-array expression data, where both the Laplace prior and the active
experimental design approach are shown to result in significant improvements. We also address
the problem of sparse coding of natural images, and show how our framework can be used for
compressive sensing tasks.

Part of this work appeared in Seeger et al. (2007b). The gene network identification application
appears in Steinke et al. (2007).

Keywords: sparse linear model, Laplace prior, expectation propagation, approximate inference,
optimal design, Bayesian statistics, gene network recovery, image coding, compressive sensing

1. Introduction

In many settings favoured in current machine learning work, the model and data set are given in
advance, and predictions with low error are sought. Many methods from different paradigms have
successfully been applied to these problems. While Bayesian approaches, such as the one we de-
scribe here, enjoy some benefits in this regime, they can be more difficult to implement, less algo-
rithmically robust, and often require more computation time than, for example, penalised estimation
methods, whose computation often reduces to a standard optimisation problem. In our opinion, the
real practical power of the Bayesian way is revealed better in higher-level tasks such as making
optimally cost-efficient decisions or experimental design. In the latter, aspects of the model and
measurement experiments are adapted based on growing knowledge about the current situation, and
data is sampled in a sequential and actively controlled manner, with the aim of obtaining answers as
quickly as possible. Our main motivation in the present work is to demonstrate how Bayesian exper-
imental design can be implemented in a computationally efficient and robust way, and how a range
of challenging applications can benefit from selectively sampling data where it is most needed.

c©2008 Matthias Seeger.
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A number of characteristics of the framework we propose here, are especially useful, if not
essential, to drive efficient experimental design for the applications we consider. The latter, at
least in the sequential variant discussed here, proceeds through a significant number of individual
decisions (say, where to sample data next). In order to make each decision, our current uncertainty
in variables of interest needs to be estimated quantitatively, and for a large number of candidates
we have to consider how, and by how much, each of them would reduce this uncertainty estimate.
As will become clear in the sequel, the uncertainty estimate is given by the posterior distribution,
an approximation to which can be obtained robustly and efficiently by our method. The estimate
is given as a Gaussian distribution, whose change after one more experiment can robustly and very
efficiently be quantified. These points motivate our insistence on robustness1 and efficiency below.
Another key aspect of the models treated here is sparsity. This regularisation principle allows us to
start from an overparameterised model, forcing parameters close to zero if they are not required. In
our experiments, we demonstrate that the interplay between sparsity regularisation and experimental
design seems to be particularly successful. In sequential design, most of the decisions have to be
done early, without a lot of data available, and the focus (under a sparsity prior) on a few relevant
effects only seems particularly useful in that respect.2 In contrast, if the models of interest here are
used with Gaussian priors, as is usually done, then sequential design is not different from optimising
X beforehand. Although observations become available along the way, these are not used at all. We
come back to this important point below.

In this work, we consider the linear model

u = X a + ε, ε ∼ N(0,σ2I), (1)

where X ∈ R
m,n is the design matrix, and a ∈ R

n is the vector of unknown parameters (or weights).
σ2 is the variance of the Gaussian noise. The model can be thought of as representing a noisy linear
system. It is called underdetermined if m ≤ n, and overdetermined otherwise. In the underdeter-
mined case, there are in general many solutions, even if we did not allow for noise, and additional
desired qualities of a need to be formalised. In a Bayesian framework, this is done by placing a
prior distribution on a, concentrating its mass on parameters fulfilling the requirements.

In the applications we consider, sparsity of a is a key prior assumption: elements of a should
be set to very small values whenever they are not required to describe the data well. On the other
hand, few elements should be allowed to be large if necessary. Among different solutions, the ones
with the largest number of very small components should be preferred a priori. Enforcing sparsity
is a fundamental statistical regularisation principle and lies behind many well known ideas such as
selective shrinkage or feature selection. It is discussed in more detail in Section 2.1. Many sparsity-
favouring priors have been suggested in statistics. In this paper, we concentrate on independent
Laplace (or double exponential) distribution priors of the form

P(a) = ∏
i

P(ai), P(ai) =
τ̃
2

e−τ̃|ai|, τ̃ = τ/σ. (2)

1. Robustness is an issue which is often overlooked when comparing machine learning methods, yet it is quite essential
in experimental design, where many decisions have to be done based on small posterior changes, and where non-
robust methods often lead to undesired, erratic high-variance behaviour. In experimental design, robustness can be
more important than high posterior approximation accuracy.

2. We report empirical observations here at the moment. We are not aware of strong theoretical results about this aspect.
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A key advantage of this choice over others is log-concavity, which implies important computational
advantages (see Section 2.1, Section 3.5). We refer to the linear model with Laplace prior as sparse
linear model.3

It is important to note that our method here is different from most of the classical treatments of
experimental design for the linear model, which entirely focus on Gaussian prior distributions. The
difference to these approaches lies in our use of non-Gaussian sparsity priors. Bayesian inference
for the linear model with Gaussian prior is analytically tractable (see O’Hagan, 1994, Chapter 9),
and most of the algorithmic complications we address in the following, do not arise there. On the
other hand, comparative results in some of our experiments show very significant benefits of using
experimental design with sparsity priors rather than Gaussian ones. Our findings point out the need
to theoretically analyse and understand experimental design with non-Gaussian priors, although in
the absence of analytically tractable formulae for inference, such studies would have to be done
conditioned on particular inference approximations.

Once the linear model is endowed with sparsity priors which are not Gaussian, Bayesian in-
ference in general is not analytically tractable anymore and has to be approximated. In this paper,
we employ the expectation propagation (EP) algorithm (Minka, 2001b; Opper and Winther, 2000)
for approximate Bayesian inference in the sparse linear model. Our motivation runs contrary to
most machine learning applications of the sparse linear model considered so far (where maximally
sparse solutions for a given fixed problem are estimated and good uncertainty representations seem
unimportant), mainly because Bayesian experimental design is fundamentally driven by such un-
certainty representations. While Bayesian inference can also be performed using Markov chain
Monte Carlo (MCMC) (Park and Casella, 2005), our approach is much more efficient, especially in
the context of sequential design, and can be applied to large-scale problems of interest in machine
learning. Moreover, experimental design requires the robust estimation in posterior changes across
many candidates, starting from a well-defined current distribution, which seems difficult to do with
MCMC. The application of EP to the sparse linear model is numerically challenging, and some
novel techniques are introduced here in order to obtain a robust algorithm. In this context, the role
of log-concavity for numerical stability of EP is clarified. Moreover, a variant known as fractional
EP (or Power EP) (Minka, 2004) is shown to essentially overcome stability problems in the context
of underdetermined models, while standard EP seems inherently unworkable in these cases. This
observation about fractional EP is novel to our knowledge.

We apply our method to the problem of identifying gene regulatory networks from data obtained
through active experiments, disturbing the system in a controlled manner. Since such experiments
are expensive and time-consuming, a sequentially designed approach is clearly beneficial. Indeed,
our experiments on synthetic data, simulated using realistic setups, show clear advantages in using
Bayesian experimental design and sparsity priors over traditional approaches.

We also address the problem of sparse linear coding of natural images, optimising the codebook
by empirical Bayesian marginal likelihood maximisation. Since current hypotheses about the devel-
opment of early visual neurons in the brain are equivalent to a Bayesian sparse linear model setup
(Lewicki and Olshausen, 1999), our method is useful to test and further refine these.

There has been a lot of recent interest in signal processing in the problem of compressive sens-
ing (Candès et al., 2006; Donoho, 2006; Ji and Carin, 2007). We show how our framework directly

3. The reader may be puzzled about the parameterisation in terms of τ̃ = τ/σ. One reason for this is that it renders τ
scale-free: it does not depend on the scale of the response u. A more important reason is given in Section 3.5.
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addresses the key issues there, which are in fact optimal design problems, and we motivate applica-
tions.

The structure of this paper is as follows. In Section 2, the statistical notion of sparsity is ex-
plained and contrasted with notions currently dominant in machine learning. Furthermore, some
key applications of the sparse linear model are described. In Section 3, we show how to do approxi-
mate inference using the expectation propagation method. Optimal design is discussed in Section 4,
and an approximation to the marginal likelihood is given in Section 5. We show how to address
large-scale problems in Section 6. Experimental results are presented in Section 7. Our framework
is directly related to other approximate inference techniques in Section 8. The paper closes with a
discussion in Section 9.

Efficient and extendible code for the sparse linear model will be put into the public domain, as
part of the LHOTSE toolbox for adaptive statistical models.4

2. The Role of Sparsity. Applications

In this section, we clarify the statistical role of sparsity and motivate the Laplace prior (2) towards
this end. We also introduce the applications of interest in our work here: identification of gene net-
works, and sparse coding of natural images, and we give remarks about applications to compressive
sensing, which are subject to work in progress (Seeger and Nickisch, 2008). The importance of
optimal design and hyperparameter estimation are motivated using these examples.

2.1 The Role of Sparsity Priors

In order to obtain flexible inference methods, it often makes sense in statistics to employ models
with many more degrees of freedom than could uniquely be adapted given finite data. The resulting
under-determinedness (sometimes referred to as “ill-posedness”, “curse”, or other equally negative
terms) is broken by making additional assumptions, leading to the fact that some solutions are
preferred over others, although both fit the data equally well. The mechanics of this comes in
different variants, such as adding a penalty term (or regulariser) to a data-fit functional, or placing a
prior distribution over hypotheses. The underlying principles are, however, the same.

A fundamental regularisation idea is sparsity. For example, suppose a prediction function is a
linear combination of features. If knowledge of good (or optimal) features for a task is vague, it
makes sense to allow for a large number of candidates, then let the data decide which are relevant.
A sparsity prior (or regulariser) on the coefficients, for example in the sparse linear model (1) with
Laplace prior (2), leads to just that. It is important to contrast this with the different, frequently
used idea of forcing components to be uniformly small in size, so that the final predictor is a sum
of many (or all) features, with each giving a small but non-zero contribution. An example of the
latter is the linear model (1) with a Gaussian prior P(a), which due to conjugacy allows for a simple
analytical treatment (see O’Hagan, 1994, Chapter 9). Such a prior does not encode sparsity. The
Laplace distribution puts much more weight close to zero than the Gaussian, while still having
higher probabilities for large values. The implications are depicted in Figure 1, see also Tipping
(2001).

A sparsity prior embodies the bi-separation characteristic: such parameters a with many very
small components at the expense of few large ones are favoured over a whose components are

4. See www.kyb.tuebingen.mpg.de/bs/people/seeger/lhotse/.
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Gaussian Laplace Very Sparse Distribution

Figure 1: The entries of the parameter a can be given different prior distributions. Shown above are three
candidates, plotted jointly over the values of two entries: a Gaussian, a Laplace, and a “very
sparse” distribution (P(ai) ∝ exp(−τ|ai|0.4)). We show contour plots of density functions, where
areas of a specific color contain the same probability mass for each of the distributions. The
upper row shows prior distributions of unit variance, together with the likelihood for a single
measurement (a single linear constraint with Gaussian uncertainty). The lower row shows the
corresponding posterior distributions. Whereas the Gaussian prior is spherically distributed, the
other two shift probability mass towards the axes, so that more mass is given to sparse tuples
(with one entry close to zero). This effect is clearly visible in the posterior distributions, being
the normalised product of prior and likelihood. For the Gaussian prior, the areas close to the axes
have rather low mass. In comparison, the posterior for the Laplace prior is skewed, so that more
mass is concentrated close to the vertical axis. Both posteriors are log-concave and unimodal. The
posterior for the “very sparse” prior shows shrinkage towards the axes even more strongly, and
in terms of enforcing sparsity, this prior is preferable to the Laplacian. However, the posterior is
bimodal now, suggesting two different interpretations for the single observation. The number of
posterior modes can increase exponentially with the number of dimensions, so that sampling from
or even representing this distribution has combinatorial complexity in general. Figure by Florian
Steinke.

uniformly small throughout, but sizes are distributed regularly over this “range of smallness”. Under
the prior, most mass concentrates close to zero, but the tails are also comparatively heavy, allowing
for occasional large values. In fact, heavy tails are an essential feature of a sparsity prior, since
suppressing many components while still maintaining a flexible range of hypotheses is possible
only if some components are allowed to take dominant values. The opposite is true for traditional
Gaussian priors. Ishwaran and Rao (2005) call this bi-separation effect selective shrinkage, in that
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parameters are shrunk towards zero selectively, while a Gaussian prior leads to a more uniform
shrinkage. This characteristic is embodied even more strongly in sparsity priors other than the
Laplace, such as “spike-and-slab” (mixture of narrow and very wide Gaussian), Student’s t, or
distributions ∝ exp(−| · |α), α < 1, see also Figure 1. Among these, only the Laplace distribution
is log-concave, leading to a posterior whose log density is a concave function, thus has a single
local maximum. This simplifies and robustifies accurate inference computations significantly (see
Section 3.5). For a non-log-concave prior, posteriors tend to be multi-modal, spreading their mass
among many bumps, and accurate approximate inference can be a very hard problem. Furthermore,
existing variational inference methods are more prone to non-robust unstable behaviour if applied
to such models, and convergence or approximation errors can be hard to assess. Since we aim our
method to be robust and easy to use by non-experts, we concentrate on log-concave Laplace sparsity
priors in the sequel. The importance of log-concavity has been recognised in statistics and Markov
chain sampling (Pratt, 1981; Gilks and Wild, 1992; Park and Casella, 2005; Lovász and Vempala,
2003; Paninski, 2005), but has not received much attention so far in work on variational approximate
inference.

Our decision to prefer the Laplace sparsity prior over the conventional Gaussian choice, at the
expense of having to approximate inference and of introducing significant complications, is ulti-
mately validated by our experimental findings, where the Laplace prior yields large improvements
over the Gaussian setting (see Section 7.1). However, apart from failing to encode a sparsity bi-
separation, the Gaussian prior leads to other serious artifacts in the context of experimental design
with the linear model. For example, suppose we are interested in sequentially designing covariates
x for which responses u are queried (this is related to, but not the same setting we use here, see Sec-
tion 4), say by choosing a “location” t in a feature map x(t). It is well known and easily established
that the Bayesian optimal design is independent of the response measurements we obtain along the
way, it can in fact be computed beforehand. This fact seems absurd for many design problems, in-
cluding ours here, pointing out a shortcoming of the model-prior combination. In the gene network
identification problem (see Section 2.2 for notation), if we were to use a Gaussian prior, the poste-
rior covariances would be identical for all rows of A. This means that no matter what disturbance
experiments are done, the uncertainty in how gene i is influenced directly by the others, is the same
for all i! Since design decisions mainly hinge on these uncertainty estimates, such artifacts due to a
bad prior choice can lead to very suboptimal outcomes (see Section 7.1).

It is important to contrast our approach, and more generally the Bayesian statistical notion of
sparsity, with what some maximum a posteriori (MAP) treatments of the sparse linear model are
aiming to do. In the latter approach, which is very prominent in machine learning (Tibshirani, 1996;
Chen et al., 1999; Peeters and Westra, 2004), the mode â of the posterior P(a|X ,u) is found through
convex optimisation (recall that the log posterior is concave), and â is treated as posterior estimate
of a. â has the property that many components are exactly zero:5 the vector is sparse as such.
This is useful for applications which aim for such exact sparsity, say for reasons of algorithmic
efficiency. In contrast, in the Bayesian case, the posterior mass of all exactly sparse a (at least
one component exactly zero) is zero, because the posterior has a density w.r.t. Lebesgue measure.6

Not even commonly used Bayesian estimates of a, such as posterior mean or median, are exactly
sparse in general. From a Bayesian viewpoint this makes sense, since in the presence of finite data,

5. One can easily show that as σ2 → 0, no more than m components of â can be non-zero.
6. Spike-and-slab sparsity priors have been used which place point masses on zero. However, approximate inference

for such a setting is very challenging. Such priors are certainly not log-concave distributions.
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one should always have some remaining uncertainty in exact values of parameters. The role of a
sparsity prior in our situation is not to force many parameter values exactly to zero, but rather to
enforce a clear partition into a large set of parameters which are close to zero with high (posterior)
probability, and a small set which have significant mass on large values. Interestingly, following
this probabilistic notion of sparsity sometimes allows to uncover sparsity in parameters of higher
order that are of real interest, which is missed by MAP approaches. Our findings in Section 7.2 are
a nice example of this effect.

2.2 Gene Network Identification

Measuring m-RNA expression levels for many genes in parallel is affordable and widely done today
using DNA micro-arrays (DeRisi et al., 1997). One goal of such efforts is to recover regulatory
networks. For example, some genes may code for transcription factor proteins, which up-/down-
regulate the expression of other genes. In an active approach to network recovery, the evolution
of expression levels of n genes is modeled by a system of ordinary differential equations, which is
linearised at its steady state:

ẋ(t) = Ax(t)−u(t)+ ε(t), (3)

where x(t) is the deviation in expression from steady state, and ε(t) is white noise. A is the system
matrix, whose non-zero entries represent the edges of the network. u(t) is an external control,
allowing the active user to probe the unknown A. It is generally assumed that u(t) is small enough
not to drive the system out of its linearity region. Due to the noisy environment, it is typical to
restrict controls to be constant, u(t) ≡ u, and to measure the new steady state limt→∞ x(t) (Tegnér
et al., 2003). Such disturbances may be implemented biologically using gene switches (Gardner
et al., 2000), which puts further restrictions on allowable u.

The linear model of (1) captures this setup as follows. Suppose that m observations D = {xi, ui}
have been made, where ui is an external control, and xi is the corresponding difference between
steady state expression levels of the perturbed and the unperturbed system. We write U = (ui)

T ∈
R

m,n, X = (xi)
T ∈ R

m,n. We have that ui ∼ N(Axi,σ2I). If ai is the transpose of the i-th row of
A, this Gaussian likelihood decomposes into n factors, one for each ai. If the coefficients of A are
assumed to be independent Laplacian a priori, the posterior factorises accordingly:

P(A|D) = ∏
j

P(a j|D), P(a j|D) ∝ N(U ·, j|X a j,σ2I)∏
i

P(a j,i).

Thus, we have n independent sparse linear models, on which inference is done separately.
Since biological experiments involving gene switches are expensive and time-consuming, a key

requirement is to perform with as few data as possible, which is possible if biological prior knowl-
edge is encoded in P(A). Importantly, regulatory networks are observed to be sparsely connected,
that is, plausible A are sparse, a property which is directly represented in the sparse linear model.
A principled way of saving on the number of expensive experiments is optimal design, which in a
special case of interest here boils down to the question: given the current posterior belief and a set
of candidate controls u∗, which of these experiments renders most new information about A? Thus,
a “value of information” is sought which can be computed for each candidate u∗ without doing the
corresponding experiment. Optimal design is well developed in classical and Bayesian statistics
(Fedorov, 1972; Chaloner and Verdinelli, 1995; MacKay, 1991), and access to this methodology is
a key motivation for developing a good inference approximation here.
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2.3 Coding of Natural Images

A second application of the sparse linear model is concerned with linear coding of natural images
(Olshausen and Field, 1997; Lewicki and Olshausen, 1999), with the aim of understanding proper-
ties of visual neurons in the brain. Before we describe the setup, it is important to point out what
our motivation is here, since it deviates significantly from what is usually done in machine learning.
One approach in theoretical neuroscience is to formulate principles which can be described reason-
ably simply in mathematical terms, so that certain phenomena observed in experiments emerge if
only these principles are followed. Once such principles are established, one can think about neural
mechanisms implementing them. Also, if different principles lead to the same observed phenomena,
one can plan experiments to further discriminate between them. In machine learning, the problems
are known, and methods are compared with the aim of finding the best one, using an evaluation
score and methodology independent of the set of methods to ensure a fair comparison. If results are
not much different across methods, the most efficient one is usually preferred. In theoretical neu-
roscience,7 the outcomes are known, and simple “universal” principles to explain them are sought.
Once a principle is suggested, the aim is to devise a method following that principle as closely as
possible. If such a method can then successfully reproduce observed phenomena, the principle can
be established. In the context here, we are interested in testing a hypothesis put forward by Lewicki
and Olshausen (1999), which is formulated in Bayesian terms. We are not interested here in coding
images in the best possible way, and certainly not in how to do this with the highest computational
efficiency.

An image u ∈ R
m is modeled as u = X a + ε, where the columns of X are codebook vectors,

a ∈ R
n are basis coefficients, and ε ∼ N(0,σ2I) independently. Note that codebook vectors are also

referred to as filters, or basis functions. A central assumption on a is sparsity, which is especially
important in the underdetermined (or overcomplete) regime: m < n. The Bayesian approach via
the sparse linear model (1) has been suggested by Lewicki and Olshausen (1999), where the aver-
age coding cost of images under the model is put forward as criterion for ranking different code
matrices X . Their work aims to give a probabilistic interpretation to the findings of Olshausen and
Field (1997). In a Bayesian nomenclature, the average coding cost is the negative log marginal like-
lihood − logP(D), where P(D) = ∏ j P(u j), P(u j) =

R

P(u j|a j)P(a j)da j, and differences of these
for different X are log Bayes factors. In Section 5, we show how to obtain a good approximation to
− logP(D) through EP, which can be minimised w.r.t. the code matrix X in a gradient-based way.
This general idea is proposed by Lewicki and Olshausen (1999) as well, but they use a second-
order (Laplace) approximation to − logP(D), which is not suitable in case of a Laplace prior.8 In
the earlier approach of Olshausen and Field (1997), the learning of X is driven by point estimates
(or maximum a posteriori decoding), and a criterion different from the average coding cost is opti-
mised. This ignores posterior uncertainty in the decodings, and requires additional renormalisation
heuristics in order to learn a good code. Our approximation here implements the probabilistic hy-
pothesis of Lewicki and Olshausen (1999) fairly accurately, and can therefore be used to analyse
more closely which of the features found by Olshausen and Field (1997) are due to the minimi-
sation of average coding cost, versus which may rather be caused by particular characteristics of
their learning method. Note that maximisation of the marginal likelihood is an important empirical

7. Or, in fact, in most natural sciences, with the exception of Engineering and Computer Science.
8. The problem is that logP(a j) is not differentiable at the posterior mode â j , so that the matrix B in Lewicki and

Olshausen (1999) is not well-defined. See comments in Section 3.
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Bayesian way of estimating free hyperparameters, and Bayes factors are routinely used to compare
model setups, so our approximation will be useful in other applications of the sparse linear model
as well.

One of the key questions in natural image modelling is: under which conditions do basis vec-
tors emerge which are spatially oriented and localised, thus show properties which have been es-
tablished for the receptive fields of certain visual neurons? Given that the hypothesis of Lewicki
and Olshausen (1999) is taken for granted, the sparsity hypothesis can be tested using the sparse
linear model. Interestingly, other conditions brought forward (such as non-negativity) can also be
dealt with in principle using the linear model, with different priors on a. Technically, non-negativity
can be implemented by “cutting off” (and renormalising) a given prior density, which amounts
to replacing P(ai) by 2P(ai)I{ai≥0}. Importantly, if P(ai) is log-concave, so is this modification,
because logI{ai≥0} is (generalised) concave. For example, “cutting off” the Laplace distribution
results in the exponential distribution,9 which has been used in the context of image modelling by
Hojen-Sorensen et al. (2002). While exponential priors encode non-negativity and sparsity at the
same time, a cut-off Gaussian P(ai) = 2N(ai|0, τ̃−2)I{ai≥0} could be used to represent non-negativity
alone.

2.4 Bayesian Compressive Sensing

There has been a lot of recent interest in signal processing in the problem of compressive sensing
(Candès et al., 2006; Donoho, 2006). The idea is appealingly simple. Suppose a signal is measured
and then transferred over some channel or stored on some media. The second step almost always
includes lossy compression in practice, especially with signals such as images or sound, where the
loss may not be perceivable. Many of today’s codes are sparse: the signal is transformed one-to-
one, after which many coefficients are close to zero. These coefficients are then set to zero, and are
not transmitted or stored. The first sensing (or sampling) step is traditionally done in a way which
does not lead to loss of information, say by relying on the Nyquist/Shannon sampling theorem. The
question of compressive sensing is whether one can sample a signal in a more efficient, but lossy
way, so that the loss is part of that one encountered through subsequent compression anyway. The
main attractiveness is that if a lossy compression is used, compressive sensing does not add further
losses.

Although maybe not phrased in that way by much of the existing work, this is a classical problem
of experimental design. An approximate Bayesian variant of compressive sensing has been proposed
by Ji and Carin (2007), using sparse Bayesian learning (Tipping, 2001) to approximate the inference.
Most practical codes today are linear, in that y = Φa, where y is the signal (say, an image), Φ is
the code matrix (say, a Wavelet transform), and a are the coding coefficients. The code is designed
such that a is approximately sparse, in much the same sense as elaborated in Section 2.1. Typically,
Φ is one-to-one, even unitary. We then measure the signal linearly, that is, obtain u = Py +ε, where
P is a measurement matrix, u are the responses, and ε is noise due to measurement errors. Here,
P ∈ R

m,n with m < n (the savings promised by compressive sensing). If X = PΦ, this is exactly
the setup of the linear model (1). Furthermore, the sparsity of a is encoded via a Laplace prior,
motivating the sparse linear model for compressive sensing.

The measurement matrix P can be designed at will, where we are possibly limited to certain
parametric families, due to constraints from the measurement architecture or (for very large n)

9. For this reason, the Laplace distribution is sometimes called double exponential distribution.
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computational tractability (see Section 6). Anyway, we can design P row by row through an instance
of standard sequential experimental design described in Section 4. This has been proposed in Ji and
Carin (2007). Moreover, we can try to optimise P a priori over a large database of signals from the
domain of the application, in what turns out to be an interesting variant of the image coding problem
of Section 2.3. Here, the image code Φ is fixed, but P is to be learned.

Another point in which our approach differs from much of the existing work on compressive
sensing, has to do with the sparsity prior we employ. Namely, many theoretical results have been
obtained under the assumption that the signal y can be exactly sparsely coded, in that most coef-
ficients in the corresponding a are exactly zero. However, in many real-world applications, this
may be too strict an assumption. For example, the Wavelet transform of an image is virtually never
exactly sparse, but rather features the bi-separation characteristic discussed in Section 2.1: many
coefficients are very close to zero, and a subsequent quantisation leads to an image visually in-
distinguishable from y. Our sparsity prior concentrates on the bi-separation characteristic, without
enforcing exact sparseness, thus may be better suited to many compressive sensing applications than
the requirement of exact sparsity.

Results from experiments with different variants of compressive sensing are in preparation (joint
work with Hannes Nickisch) and will be presented in a later paper (Seeger and Nickisch, 2008).

3. Expectation Propagation for the Linear Model

Exact Bayesian inference is not analytically tractable for the sparse linear model. In this section,
we show how to apply the recently proposed expectation propagation (EP) method (Minka, 2001b;
Opper and Winther, 2000) to this problem, circumventing some caveats we have not seen being
addressed before. We begin with a high-level description, filling in the details further below. In
the case of EP for the sparse linear model, it turns out that some details concerning robustness are
essential for obtaining a practically useful method.

In EP, we compute a Gaussian approximation Q(a) to the posterior

P(a|D) ∝ N(u|X a,σ2I)P(a).

Here, the likelihood N(u|X a,σ2I) is Gaussian, and it is the non-Gaussian prior P(a) which forces
us to approximate Bayesian inference. Our restriction to Gaussian Q(a) is primarily done for prag-
matic reasons, since Bayesian computations such as marginalisation and conditioning can be done
analytically in this family, using standard matrix operations which can be computed robustly and
efficiently. However, in our case, the Gaussian approximation can be argued for more strongly than
in many others. Namely, recall that logP(a) is concave (2). Since the likelihood is a Gaussian
function of a, the true log posterior logP(a|D) is concave as well, thus has a single mode only.

If P(0)(a) := N(u|X a,σ2I) is the Gaussian likelihood (1), the true posterior is

P(a|D) ∝ P(0)(a)∏
i

ti(ai), ti(ai) =
τ̃
2

e−τ̃|ai|.

We refer to the ti as sites, and to P(0) as base measure. Note that the latter is not in general normal-
isable.

In order to motivate EP, note that an optimal Gaussian posterior approximation Q(a) (at least
in our context here) would be obtained by setting its mean and covariance to the true posterior
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statistics. However, this would require a n-dimensional non-Gaussian integration, which cannot at
present be done tractably. However, we are able to compute one-dimensional integrals involving a
single non-Gaussian site ti(ai). EP makes use of this capability in an iterative fashion, in order to
approximate the desired joint posterior moments. The EP posterior approximation has the form

Q(a) ∝ P(0)(a)∏
i

t̃i(ai),

where t̃i(ai|bi,πi) are Gaussian factors. Formally, one gets from the intractable P(a|D) to its Gaus-
sian approximation Q(a) by replacing each non-Gaussian ti(ai) by a Gaussian counterpart t̃i(ai).
This formal replacement introduces site parameters b, π ∈ R

n, and the EP algorithm is an iterative
method for adjusting these in turn.

In a single EP update, bi, πi are adjusted, while leaving all other site parameters the same.
Starting from the current Gaussian approximation Q, we compute the Gaussian cavity distribution
Q\i ∝ Qt̃−1

i by dividing out the site approximation t̃i(ai), then the non-Gaussian tilted distribution
P̂i ∝ Q\iti by multiplying in the true site ti(ai) instead, finally we update bi, πi such that the new Q′

has the same mean and covariance as P̂i. These single updates are iterated in some random ordering
over the sites until convergence.10 Thus, EP is inherently based on the idea of moment matching. In
other words, Q′ is chosen by minimising the relative entropy D[P̂i ‖·] over all Gaussians.

From an algorithmic viewpoint, several questions have to be addressed. First, how can we
represent the Gaussian Q(a), so that single EP updates are served well in terms of efficiency and
robustness? We will see that a good representation has to allow for the rapid “random-access”
extraction of marginals Q(ai), and we have to be able to efficiently and robustly update it after a
change of bi, πi. Second, how can the mean and variance of the non-Gaussian P̂i(ai) be computed
accurately? To address these questions, we need to introduce some notation and details.

Denote the family of unnormalised Gaussian measures by

NU(z|b,P) := exp

(

−1
2

zT Pz +bT z

)

,

P being positive semidefinite. Then, P(0)(a) = NU(a|σ−2b(0),σ−2Π(0)) with Π(0) = XT X , b(0) =
XT u. The site approximations are t̃i(ai) = NU(ai|σ−2bi,σ−2πi), so that Q is a Gaussian. In general
applications of EP, the πi can become negative, but this does not happen in the cases discussed
in this paper. We will show in Section 3.5 that for log-concave sites ti, all πi remain nonnegative
throughout the course of the EP algorithm.

Moreover, the reader may wonder why we restrict ourselves to t̃i(ai), instead of allowing for
general site approximations t̃i(a). Also, a careful reader may have noted that we are only concerned
about marginal distributions Q(ai) and P̂i(ai) during an EP update at ti. Importantly, all this does
not come with a loss of generality, as is shown in Section 3.1.

We initialise the algorithm with b = 0 and π = ε1, ε > 0. A useful heuristic is ε = τ2/2, making
sure that ti(ai) and t̃i(ai) have the same variance initially. In the case of the sparse linear model,
the implementation of EP is complicated in a fundamental way. If m < n (underdetermined case),
the base measure P(0)(a) is not normalisable, because Π(0) = XT X is singular. It is easily seen that

10. To our knowledge, little is known in general about convergence properties of EP, even with log-concave sites. Em-
pirically, we have never observed failure of convergence in the log-concave case, except for reasons of numerical
instability (see Section 3.3.1). Obtaining a formal convergence proof in this case remains a very important point for
future research.
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if any of the πi = 0, the resulting Q(a) is (in general) not a proper Gaussian either, so we have to
ensure that πi > 0 at all times. If m � n, we would like to represent the posterior Q in a way which
scales with m rather than n. We address these issues below in this section.

It is important to note that EP is not merely a local approximation, in that t̃i is somehow fitted to
ti locally. This would not be useful at all,11 because posterior mean and covariance are shaped jointly
by the non-Gaussian ti and the coupled Gaussian base measure. Loosely speaking, the likelihood
couples coefficients ai, so that the intentions of the prior factors ti(ai), namely to force their respec-
tive arguments towards zero, have to be weighted against each other in a very non-local procedure.12

After each EP update, although only a single site approximation is modified, its influence propa-
gates to all other sites, because they are coupled through the base measure. In fact, non-locality is
a central aspect of Bayesian inference which makes it so hard to compute, and inference is particu-
larly hard to do in models where strong long-range posterior dependencies are present which cannot
easily be predicted from local interactions only.

Finally, would it not be much simpler and more efficient to locate the true posterior mode
through convex optimisation (recall that the posterior is log-concave), then do a Laplace approx-
imation there, which amounts to expanding the log posterior density to second order around the
mode? Indeed, finding the mode can be done efficiently by solving a quadratic program (Tibshi-
rani, 1996). General problems with this approach include that the curvature around the mode may
not be characteristic of the target density, and that the mode may not be a good place to center a
Gaussian approximation at. In the case of the sparse linear model, the Laplace approximation is
not even a valid option, since it is not well-defined in the presence of a Laplace prior.13 Namely,
logP(ai) does not have a curvature at ai = 0. The posterior mode is guaranteed to contain at least
some zero components, so the curvature there is not defined. EP does not require P(ai) or logP(ai)
to be differentiable. On models where both methods can be applied, EP tends to improve upon a
Laplace approximation significantly, but is also typically more expensive (Minka, 2001a; Kuss and
Rasmussen, 2005).

3.1 Overview of Algorithm

In this section, we provide a schematic overview of the EP algorithm, filling in details in the sections
to come. Recall that EP iterates site updates at i ∈ {1, . . . ,n}, computing Q\i ∝ Qt̃−1

i and P̂i ∝ Q\iti,
then adjusting Q → Q′ such that Q′ has the same mean and covariance as P̂i. Since ti depends on ai

only, P̂i(a\i|ai) = Q\i(a\i|ai), where a\i := (a j) j 6=i, thus Q′(a\i|ai) = Q\i(a\i|ai). Therefore, an EP
update automatically results in the site approximation t̃i being a (Gaussian) function of ai only. It
also implies that in order to drive the EP update, all we need is the marginal distribution Q(ai). Just
as most other variational “message-passing” approximate inference methods, EP can be seen as an
iterative algorithm, improving estimates of the marginals Q(ai), i = 1, . . . ,n until convergence. An
EP update is local, in that its input is a marginal Q(ai) and it affects single site parameters bi,πi

only. However, this globally affects all other marginals, which have to be updated through Gaussian
propagation.

In common variational algorithms applied to discrete structured graphical models, such correc-
tions of marginal estimates are performed by passing messages along the graph. In our case, the

11. Our experiments comparing Laplace and Gaussian priors in Section 7.1 illustrate this fact very nicely.
12. Our arguments about locality assume that a neighborhood structure can be imposed on a, say neighboring pixels in

an image.
13. It is not known whether P. S. Laplace thought about this problem or even fixed it.
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Algorithm 1 Expectation propagation algorithm for sparse linear model.

Require: X , u, τ, σ2, η
b = 0. π = ε1. Compute initial representation of Q
repeat

for i ∈ {1, . . . ,n} (random order) do
Compute marginal Q(ai) = N(ai|hi,σ2ρi) from representation
Do (fractional) EP update: (bi,πi) → (b′i,π′

i)
Update representation of Q

end for
Refresh representation

until marginal estimates {Q(ai)} converged

fully coupled Gaussian factor P(0) plays the role of the graph, and the messages are replaced by a
posterior representation of Q(a) = N(a|h,σ2Σ). Just as with messages, the purpose of a represen-
tation is twofold: first, it needs to deliver mean and variance of an arbitrary marginal Q(ai) rapidly.
Second, we need to be able to update it efficiently after each EP update. Our representations are
given in Section 3.2, together with efficient update rules. Numerical errors can accumulate after
many updates, so the representation is refreshed (i.e., recomputed from scratch) after each O(n)
EP updates. An iteration of EP updates over all (or most of the) sites is referred to as sweep. The
structure of the EP approximate inference algorithm is given in Algorithm 1.

We close this section by remarking on the stopping rule we use in our EP implementation. One
could stop once the site parameters do not change significantly anymore. However, we are really
interested in the marginal means and variances, which in some cases are only weakly dependent on
certain site parameters. For example, a large πi means in general that the corresponding marginal
mean is nailed down with a small variance, and increasing πi further may have no large effect
on the marginal distribution. Let d(a,b) := |a− b|/max{|a|, |b|,10−3} and ∆i = max{d(h′i,hi),
σd(
√

ρ′
i,
√ρi)}, where Q(ui) = N(hi,σ2ρi) and Q′(ui) = N(h′i,σ2ρ′

i) are the posterior marginals
before and after an update at site i. We stop once maxi ∆i for a sweep over all sites is below some
threshold.

3.2 Posterior Representation

In this section, we develop a representation of the posterior approximation Q(a) = N(h,σ2Σ) which
allows efficient access to entries of h, diagΣ (marginal moments), and which can be updated ro-
bustly and efficiently for single site parameter changes (after EP updates). In fact, we propose two
different representations: a degenerate and a non-degenerate one. The former is only useful in
the underdetermined case (m < n), its updates are less numerically stable and more complicated,
but it scales as O(m2), while the non-degenerate one scales as O(n2). If m � n, the degenerate
representation leads to large computational savings.

We begin with the simpler non-degenerate representation:

Σ−1 = XT X +Π = LLT , γ := L−1(b(0) +b),

where Π := diagπ here and elsewhere. L ∈ R
n,n is the lower-triangular Cholesky factor (Horn and

Johnson, 1985). Recall that b(0) = XT u. Note that h = L−T γ. The marginal Q(ai) = N(hi,σ2ρi)
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is determined as hi = vT γ, ρi = ‖v‖2, where v = L−1δi. Here, δi is the Dirac unit vector with 1
at position i, and 0 elsewhere. This costs O(n2) (single back-substitution). After an EP update
bi → b′i, πi → π′

i, we have that

L′(L′)T = LLT +(π′
i −πi)δiδT

i , L′γ′ = Lγ +(b′i −bi)δi.

L′, γ′ are computed from L, γ using a Cholesky rank one update (downdate) for positive (negative)
π′

i −πi. This can be done in O(n2), we use a modification of the LINPACK routines dchud, dchdd
(Dongarra et al., 1979), see Seeger (2004) for details. The update (downdate) is not done if |π′

i −πi|
is too small. The reader may wonder why we do not represent and update Σ directly, using the
Woodbury formula (see below). However, this would be numerically less stable than the Cholesky
representation suggested here, and the operation count is the about the same.

In the underdetermined case m < n, another degenerate representation can be used, which leads
to large savings if m � n. We noted in Section 3 above that Q is well-defined only if all πi > 0. For
numerical stability (with the degenerate representation), we require that πi ≥ κ at all times, where
κ > 0 is a small constant (we use κ = 10−8 presently). This constraint is enforced in all EP updates.
We can use the Woodbury formula (Henderson and Searle, 1981) in order to write

Σ =
(

XT X +Π
)−1

= Π−1 −Π−1XT (I +X Π−1XT )−1
X Π−1.

We represent this via the lower-triangular Cholesky factor L in

LLT = I +X Π−1XT .

Furthermore, let γ := L−1X Π−1(b(0) +b), whence

h = Σ(b(0) +b) = Π−1
(

b(0) +b−XT L−T γ
)

,

thus both h and Σ are represented by L, γ. For not too small κ, this representation is numerically

stable. The marginal Q(ai) is obtained as ρi = π−1
i (1−π−1

i ‖v‖2), hi = π−1
i (b(0)

i +bi − vT γ), where
v := L−1x with x = X ·,i. After an EP update bi → b′i, πi → π′

i, the representation is modified as

follows. Let ∆1 := (b(0)
i +b′i)/π′

i − (b(0)
i +bi)/πi, ∆2 := (π′

i)
−1 −π−1

i . We have that

L′(L′)T = LLT +∆2xxT , L′γ′ = Lγ +∆1x.

Just as above, L′, γ′ can be computed from L, γ as a Cholesky rank one update/downdate, at the cost
of O(m2). We do not modify πi and the representation if |∆2| falls below some small threshold.

All in all, we can use a representation of Q whose size, as well as cost of a single site update,
is quadratic in the smaller of n and m. Beware that L, γ have different definitions in the two cases.
Note that we can also use the non-degenerate representation in the case m < n. In general, the
non-degenerate representation leads to more numerically stable computations (supposedly because
the Woodbury formula is not used), which are in fact more efficient in practice once m ≈ n/2.
We recommend to use the degenerate representation only if significant computational savings are
observed in practice.

In some experimental design applications, such as gene network identification considered here,
m � n initially, but m grows up to n/2 eventually. In such cases, one could be tempted to use the
degenerate representation initially, then switch to the non-degenerate one. In general, this does not
make sense, since the majority of the computational effort is spent in the later stages anyway, and
the non-degenerate representation should be used throughout.

772



BAYESIAN INFERENCE FOR SPARSE LINEAR MODEL

3.3 The EP Update

An EP update works by matching moments between a tilted and the new posterior distribution. For
an update at site i, we require the marginal Q(ai) = N(hi,σ2ρi) only, which is obtained from the
Q representation. The moment matching requires the computation of Gaussian expectations with
ti(ai), a univariate quadrature which in general is not an analytical computation.

If Q\i(ai) = N(h\i,σ2ρ\i), we have that

ρ\i =
ρi

1−ρiπi
, h\i =

hi −ρibi

1−ρiπi
.

If the degenerate representation is used, it is more stable to compute the cavity marginal directly.
Namely, if v := L−1X ·,i, then ρ\i = ‖v‖−2 −π−1

i and h\i = (b(0)
i − vT γ)/‖v‖2 +bi/πi.

Next, we need to compute mean and variance of P̂i(ai) = Z−1
i Q\i(ai)ti(ai), which we do as de-

scribed in Seeger (2003), Appendix C.1.3. Note that Zi = EQ\i [ti(ai)], and define βi :=
(d logZi)/(dh\i), νi := −(d2 logZi)/(dh2

\i). The concrete computation of βi,νi (or equivalently,

of the first and second moment of P̂i(ai)) can be done analytically for Laplace sites, but is not
straightforward due to issues of numerical stability, it is described in Appendix A. Then, the new
site parameters are given by

π′
i =

σ2νi

1−σ2νiρ\i
, b′i =

σ2(βi +h\iνi)

1−σ2νiρ\i
.

We show in Section 3.5 that νi ≥ 0, thus π′
i ≥ 0, due to the log-concavity of ti. If π′

i < κ and the
degenerate representation is used, we set π′

i = κ.
The numerical difficulties with the EP update for Laplace sites are remarkable, given that no

such problems occur in several other EP applications, for example Gaussian process classification
(GPC) with probit or logit noise (Minka, 2001b; Opper and Winther, 2000; Lawrence et al., 2003),
where less careful implementations still work fine, and even approximate Gaussian quadrature can
be used. Several early attempts of ours led to complete failure of the algorithm on realistic data
(in the underdetermined case), motivating the fairly elaborate solution in Appendix A. While we
cannot offer a firm explanation for this yet, our intuition is that the effect of Laplace prior sites on
the posterior is much stronger, trying to emulate the essentially discrete feature selection process
in a “unimodal” manner. Our findings also shed some sceptical light on proposals to implement a
generic toolbox for EP, applying Gaussian quadrature14 to do EP updates for general sites (Zoeter
and Heskes, 2005). In the gene network identification application, we ran into problems of numer-
ical instability coming from the combination of Laplace sites with very underdetermined coupling
factors P(0). We suspect these problems are inherent, and in our case could be handled only by
considering a modification of EP, as discussed just below.

3.3.1 FRACTIONAL EP UPDATES

We just mentioned the numerical difficulty of doing EP updates with Laplace sites in the strongly
underdetermined case m < n. A frequent cause of numerical problems with EP is sloppiness in

14. Gaussian quadrature would fail completely for sites like the Laplace, which are not smooth functions. A central
assumption with virtually all quadrature methods today is that the integrand up to a predefined weight function can
be closely approximated by a low-order polynomial. Note that Monte Carlo integration is usually not considered
useful for (low-dimensional) quadrature, due to its poor relative accuracy.
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the implementation. For example, representation updates based on the Woodbury formula are a
frequent source of accumulation of round-off and cancellation errors (see Section 3.2). The EP
update with Laplace sites is quite difficult to do in a stable way (see Appendix A).15 However, even
using all these careful measures did not allow us to run standard EP on many of the gene network
identification problems of Section 7.1 or on a fraction of the image coding problems of Section 7.2.
We think that these stability problems of EP are inherent for some tasks, giving some motivation
below. Fortunately, EP can be modified to use fractional updates, which in fact counter exactly
the numerical problems we face. While fractional EP has been suggested as alternative to standard
EP (Minka, 2004), its role for circumventing stability problems has not been noted so far to our
knowledge.

Recall from Section 3 that if we set all or most of the πi = 0 in the underdetermined case, the
variance of most marginals Q(ai) is infinite. We face this problem by ensuring that πi ≥ κ at all
times. Still, at least for some updates, the cavity marginal variance of Q\i(ai) is huge. This is
because we divide through the site approximation t̃i(ai), whose πi ≥ κ keeps the variance small.
The variance is not infinite due to the effect of the other π j ≥ κ and the coupling through P(0), but
in many underdetermined situations, this coupling is weak. We then try to do an EP update based
on a very wide cavity distribution Q\i(ai) and a quite narrow site ti(ai) (enforcing a strong sparsity
constraint requires a rather large τ). This is inherently difficult to do.

It would be better to make Q\i(ai) narrower and ti(ai) wider, which is exactly what happens
in fractional EP updates. Here, we obtain Q\i(ai) by dividing out only a fraction of t̃i(ai), and
P̂i(ai) by multiplying with only a fraction of ti(ai). This idea is fairly natural, simply imagine the
sites being replicated q times, then taken to the power of η = 1/q to obtain the original setup. The
only difference to standard EP is that we tie the parameters of the corresponding fractional site
approximation replicas. Of course, the idea is not limited to rational fractions. Some extensions
and theory of this method are discussed by Minka (2004). Another view on fractional EP is that
projections from standard EP’s P̂i to Q′ are done based not on the relative entropy (see Section 3),
but on an α-divergence depending on the fraction.

For the fraction parameter η ∈ (0,1], let Q\i ∝ Qt̃−η
i and P̂i ∝ Q\itη

i . We choose the new site
parameters b′i, π′

i such that the moments of P̂i and Q′ match. This can be incorporated into the
derivations above by setting b̃i = ηbi, π̃i = ηπi, and τ̃ = ητ. The cavity moments are computed as

ρ\i =
ρi

1−ρiηπi
, h\i =

hi −ρiηbi

1−ρiηπi
.

For the degenerate representation, a direct computation may be more stable:

ρ\i = π−1
i

R
1−ηR

, h\i = π−1
i

(

b(0)
i − vT γ
1−ηR

+bi

)

, R = 1−π−1
i ‖v‖2.

We then compute b̃′i, π̃′
i as above, using τ̃ = ητ instead of τ in the Laplace site, so that P̂i and

∝ Q\it̃i(·|b̃′i, π̃′
i) have the same moments. Fractional updates are easily implemented for sites ti(ai|τ)

with some hyperparameter τ, such that ti(ai|τ)η = ti(ai|ητ). The Laplace site is of this kind, if the
normalisation constant of τ/(2σ) is dropped (it does not affect mean or variance of P̂i). Note that in

15. It is even harder to do for certain non-log-concave sites. For example, the sparse linear model with Student’s t prior
would be very hard to address with standard EP (Malte Kuss, pers. comm.).
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general, tη
i is log-concave if ti is. Finally, the site parameters are updated as

b′i = (1−η)bi + b̃′i, π′
i = (1−η)πi + π̃′

i,

upon which P̂i and the new Q′ have the same moments.
Another idea of making EP run smoother on hard problems is damping (Minka, 2001a). There,

the full standard EP update is computed, but the site parameters are updated to a convex combination
of old and proposed new values. This addresses a quite contrary problem to ours here. Damping
is useful if EP update computations are stable, but lead to an improper new posterior, or the prop-
agation of the updated information fails. If EP is viewed as finding a saddle point of a free energy
approximation (Opper and Winther, 2005), damping can be understood as a step-size rule within
this process. It slows down convergence in general in situations where EP without damping works
fine, but the fixed points are not altered. Our problem is not solved by damping, since proposed new
values for the site parameters cannot even be computed.

Finally, the reader may wonder whether the problems with standard EP are due to a bad initial-
isation of the site parameters. While we have not analysed it in all details, we think the problem is
inherent. For example, we tried to run fractional EP to convergence, then start standard EP (with
η = 1) from the fractional fixed point. On critical cases, this fails about as fast as if started in the
usual way, often in the first sweep of standard EP.

3.4 Inclusion of a New Point

Suppose we would like to operate inference in the sparse linear model in a sequential manner, in
that new data points (x∗,u∗) become available over time. This is the case in sequential design
applications, since single experiments result in new measurements. In this section, we show how
the EP posterior representation is updated once a new point (x∗,u∗) is added to the current data set
D. The inclusion of (x∗,u∗) works in two stages. First, the Gaussian base measure is modified in
order to incorporate the new point. Second, EP updates are done until convergence. The mechanics
of the latter have been described above, so we can concentrate on the first stage here.

For the non-degenerate representation, let v := L−1x∗. The change of b(0) results in γ̃ = γ +
u∗v. Since L′(L′)T = LLT + x∗xT

∗ , L′, γ′ is obtained from L, γ̃ by a rank one Cholesky update (see
Section 3.2). The cost is O(n2).

For the degenerate representation, let X ′ = (XT , x∗)T ∈R
m+1,n and u′ = (uT , u∗)T ∈R

m+1. Since
b(0) = XT u, we have that b(0)′ = b(0) + u∗x∗. Let l := L−1X Π−1x∗. Then, γ̃ = γ + u∗l incorporates
the update of b(0). Next, LLT grows by a row/column ((Ll)T , 1+ xT

∗ Π−1x∗)T . Therefore, L′, γ′ are
obtained from L, γ̃ by a Cholesky extension, as described in Seeger (2004). The cost of the inclusion
is O(m2).

3.5 Some Consequences of Log-concavity

A nonnegative function f (x) is log-concave if

f (λx1 +(1−λ)x2) ≥ f (x1)
λ f (x2)

1−λ

for all x1, x2, and λ ∈ [0,1]. f (x) is log-concave iff log f (x) is concave as a generalised function,
which can take on the value −∞, see Boyd and Vandenberghe (2002), Sect. 3.5. We call a distribu-
tion log-concave, if its density exists and is log-concave. In this section, we show some implications
of log-concave sites for the numerical stability of EP.
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Gaussians are clearly log-concave, so models of the sort considered here are log-concave if the
sites are (products of log-concave functions are log-concave). For example, Laplace sites ti(ai) are
log-concave, while Student’s t sites are not. A direct consequence is that for log-concave sites, the
posterior is log-concave, so its unique mode can be found by convex optimisation. Log-concavity
is stronger than unimodality though. For example, all upper level sets (areas enclosed by con-
tours) of the posterior are convex sets. Intuitively, log-concave distributions are “simple”, although
strong consequences of this fact for variational approximate inference methods are not known to
our knowledge.16 Our main result is the following theorem.

Theorem 1 Let EP be applied to a model with true posterior of the form

P(a|D) ∝ P(0)(a)∏
i

ti(ai),

where P(0)(a) is a joint unnormalised Gaussian factor, and the sites ti(ai) are log-concave. Suppose
the site parameters πi are initialised to non-negative values. Then, all EP updates are computable
(in exact arithmetic), and all πi remain non-negative throughout.

The proof is given in Appendix A.1. The theorem holds just as well for general sites ti(a)
with corresponding site approximations t̃i(a) = NU(σ−2bi,σ−2Πi), if “πi ≥ 0” is replaced by “Πi

positive semidefinite”. It hinges on a fundamental marginalisation theorem for log-concave func-
tions due to Prékopa, see Bogachev (1998). Namely, suppose that f (x,y) is jointly log-concave
in (x,y), x ∈ R

p, y ∈ R
q. Then

R

f (x,y)dy is log-concave in x. Theorem 1 implies that EP can
be implemented in a numerically stable way. Namely, the non-negativity of all πi ensures that the
representations introduced in Section 3.2 can be updated in a stable manner. The situation for some
applications with non-log-concave sites is much less satisfactory. It is usually not possible to keep
all πi positive anymore, without making significant approximation errors (Minka, 2001a). Full EP
updates lead to erratic behaviour or cannot even be done, and damping has to be used, leading to
slower convergence. Negative entries πi can lead to very ill-conditioned Cholesky factors in the
representations, resulting in large errors at each update.

Our theorem also implies that for applications where EP is started with π = 0, for example Gaus-
sian process classification, we have that the entropy H[Q] of the posterior decreases monotonically
during the first sweep. Namely, the entropy is log |Σ| up to constants, which is decreasing in every
single πi. Minka (2001a) notes that the first sweep of EP is equivalent to a method called assumed
density filtering (Kushner and Budhiraja, 2000), so our theorem has implications for this method as
well.17

Another interesting consequence of log-concavity holds for the sparse linear model, independent
of whether EP is used for approximate inference or not. It serves to motivate the parameterisation
of the Laplace sites (2) in terms of τ̃ = τ/σ. Up to additive constants, logP(u,a) has the form

(2m+n) logσ−1 − 1
2
‖u/σ−X a/σ‖2 − τ∑

i

|ai/σ|,

16. In contrast, MCMC sampling from log-concave distributions has been proven to be computationally efficient (Lovász
and Vempala, 2003).

17. The entropy H[Q] can increase in later sweeps of EP (this happens regularly, not only in special cases). This is
why we need to consider Cholesky downdates in Section 3.2, and shows that H[Q] alone cannot be used to prove
convergence of EP.
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which is jointly concave in (φ,σ−1), where φ := a/σ. This fact has been noted in Park and Casella
(2005). In fact, even P(u,a)σ is log-concave in (φ,σ−1), since 2m+n ≥ 1. The marginal likelihood
P(u) is a crucial criterion when it comes to hyperparameter optimisation or Bayesian tests (see
Section 5). Now,

P(u) =
Z

P(u,a)da =
Z

P(u,a)σdφ,

and by the marginalisation theorem, P(u) is log-concave in σ−1. This implies that if all other
hyperparameters are fixed, the empirical Bayesian maximisation of logP(u) w.r.t. the noise variance
σ2 is in fact a convex problem with a unique solution. Unfortunately, this property does not extend
to other hyperparameters such as τ or X . On a practitioner’s level, it is interesting to relate this fact
to a scheme mapping out the entire regularisation path of Lasso (or, equivalently, an SVM) (Hastie
et al., 2004). In either case, adjusting one hyperparameter trading off prior and likelihood given all
others is shown to be simple. Here, as there, this gives some reassurance if σ2 is adapted along with
other parameters (see Section 7.2).

We close this section by some technical side comments for readers interested in details, all others
may skip this paragraph. We require results from Section 5. We just showed that the exact logP(u)
is concave in σ−1, but how about the EP approximation of this quantity, called L in Section 5? To
answer this question, we first have to establish that L is well-defined and continuous as a function
of σ2 in the first place. Now, L is defined in terms of the site parameters at convergence, and
the EP algorithm has not been proven to always converge uniquely. Opper and Winther (2005)
show that L is a proper approximate free energy as function of b, π, but the site parameters at
convergence are only a saddle point thereof. Using tools such as the implicit function theorem,
one can argue that L(σ2) is well-defined across some range, but does this hold globally across all
σ2? If the dependence of the site parameters on σ2 is ignored locally, then L is log-concave in
σ−1, following similar arguments as above. We know from Section 5 that for computing the first
derivative w.r.t. σ2, the site parameters can be assumed constant, but this is not true in general for
the second derivative (which would characterise concavity). Clearly, there is more work needed to
gain a better understanding of such properties of the implicitly defined EP approximate free energy
L.

4. Sequential Optimal Design

The role of sequential optimal design18 for saving on expensive experiments has already been moti-
vated in Section 2. The topic is well-researched in classical and Bayesian statistics (Fedorov, 1972;
Chaloner and Verdinelli, 1995). A variant is known in machine learning as active learning19 (Seung
et al., 1992). We follow MacKay (1991) here, whose setting is closest to ours.

In the sparse linear model, a typical design problem can be formulated as follows. Given a set
of candidate points x∗, at which of these should a corresponding target value u∗ be sampled in order
to obtain as much new information about the unknown a as possible? Assuming (for the moment)
that u∗ is known for a x∗, natural scores quantify the decrease in posterior uncertainty or gain in

18. Optimal design is a fixed term in statistics for a methodology, in which designs are optimised. We have no intention
of claiming that any of the methods presented here solve problems in an optimal way, in fact they usually do not. In
the context of this paper, optimal design and experimental design mean the same thing.

19. Confusingly, active learning is also used for the related, but not identical setup, where data comes in sequentially,
and the method has to decide which cases to incorporate versus which to ignore. We are not interested here in this
latter setting.
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information from the current posterior Q to the novel Q′ which is obtained by including (x∗,u∗) into
the data set D. In this paper, we concentrate on the information gain D[Q′ ‖Q] = EQ′ [logQ′− logQ].
A large information gain means that Q′ is different from Q, thus much novel information is gained
from (x∗,u∗). Now, u∗ is not known for the candidates x∗. Bayesian methodology dictates that
u∗ is averaged over its current posterior Q(u∗|x∗,D) =

R

P(u∗|x∗,a)Q(a|D)da. Since Q(a|D) is
Gaussian for our approximation, the posterior over u∗ is Gaussian as well. A natural score for x∗
is the expected information gain EQ(u∗|x∗,D)[D[Q′ ‖Q]]. This one-dimensional integral can easily be
approximated using Gaussian quadrature.

However, optimal design for the gene network application of Section 2 does not fall into this
standard category and requires some additional thoughts. The goal is to score the utility of inclusion
of candidate controls u∗, given current data D (and posterior Q). Among a list of candidates, the
highest-scoring u∗ is then subjected to a new experiment in order to obtain x∗, whence (u∗,x∗) are
included to form D′ = D∪{(u∗,x∗)} and a new posterior Q′. Here, the posterior is a product of
independent factors for the rows of A, so that for given (x∗,u∗), the information gain is the sum of
D[Q′ ‖Q] over the posterior factors, where (x∗,u∗, j) is appended to D for the j-th factor.

More importantly, it is x∗ which is unknown, rather than u∗ in the standard setup. While
Q(u∗|x∗,D) is a Gaussian in our setup, Q(x∗|u∗,D) =

R

P(x∗|u∗,A)Q(A|D)dA is not a simple
distribution. However, we can easily sample from it by first drawing A ∼ Q(A|D), then20 x∗ =
A−1(u∗−ε), ε ∼ N(0,σ2I). Sampling from Q(A|D) is discussed in Appendix B.2. Our information
gain score in the gene network application is

S(u∗;D) = EQ(x∗|u∗,D)

[

D[Q′ ‖Q]
]

,

where the expectation is approximated by using a number of independent samples x∗.
Going back to the standard setup, for fixed (u∗,x∗), Q′ is obtained from the current Q by first

modifying the base measure P(0) corresponding to the inclusion, then updating the site parameters
b, π. The problem with this is that the EP updates are expensive, so only few candidates could be
scored for each inclusion.21 A simpler and much cheaper alternative is to approximate the informa-
tion gain by modifying P(0) only, but keeping the old site parameters, when defining Q′ in D[Q′ ‖Q].
In other words, for the purpose of scoring, we treat the model as purely linear-Gaussian, with Q
as “effective Gaussian prior”. This simple score can be computed very efficiently and reliably, so
many candidates can be scored. Details are given in Section 4.1. Recall that the score for the gene
network setup is the sum of information gains for the posteriors of each row of A.

Once a candidate is chosen for inclusion, a true experiment is done in order to obtain a complete
new data point. In the standard setup, this means drawing u∗, given x∗, but in the gene network
setting, we determine x∗ for given control u∗. The new information is then included by a posterior
update, as described in Section 3.4, and the site parameters are driven to new convergence by the
EP algorithm.

Note that the fact that we approximate the true posterior P(a|D) by a Gaussian Q(a), as well
as use Q′ with the same site parameters as Q, means that we merely approximate the information
gain, and at present we cannot give useful approximation guarantees, beyond our empirical demon-
strations that good designs are usually found. However, our use of Gaussian Q and a simple update

20. We use a LU decomposition of A. The cost of O(n3) may be prohibitive for large n (although the same A sample can
be used to score all candidates), in which case we would recommend sparsifying A and using a sparse matrix solver.

21. One idea would be to update few sites only after each inclusion. The extension described in Section 6.3 could be
used to implement this, which is however not done here.
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Q → Q′ means that our information gain approximation can be computed robustly, which, as noted
in Section 1, is often as important for experimental design as is high approximation accuracy.

4.1 Simple Information Gain

The simple information gain score is D[Q′ ‖Q], where Q is the current posterior, and Q′ is obtained
from Q by including (x∗,u∗) into the base measure P(0) as discussed in Section 3.4, but leaving the
site parameters b, π at their old value. The relative entropy between Gaussians is well known:

D[N(h′,σ2Σ′)‖N(h,σ2Σ)] =
1
2

log |M |+ 1
2

tr
(

M−1 − I
)

+
1
2

σ−2(h′−h)T Σ−1(h′−h), M := (Σ′)−1Σ.

(4)

Importantly, in our case we have that (Σ′)−1 = Σ−1 + x∗xT
∗ , so that M = I + x∗xT

∗ Σ has a simple
form. This allows us to compute the simple information gain very efficiently. Details are given in
Appendix B.1.

4.2 Marginal Criteria

The simple information gain scored discussed in the previous section measures the distance be-
tween the joint distributions Q and Q′ (before and after inclusion). However, inference schemes
such as expectation propagation (and other variational ones) are designed to approximate the pos-
terior marginals well. EP applied to models with Gaussian base distribution results in a full joint
posterior approximation Q, which can of course be used to make decisions or to compute informa-
tion scores, but very little is known about the quality of Q beyond its marginals. A careful approach
would therefore base experimental design scores on the marginals of Q only. On the other hand,
criteria based on the full joint posterior can be more powerful in order to distinguish between many
candidates.

For such marginal scores, we need to know how the marginals change after an update of P(0). Let
h, diagΣ be the current marginal moments. We need to compute h′, diagΣ′ after inclusion of (x∗,u∗)
(we only deal with the “simple” variant here, where no EP updates are done after the inclusion). Let
α = xT

∗ Σx∗, z∗ = Σx∗. By the Woodbury formula, we have that

Σ′ = Σ− (1+α)−1z∗zT
∗ .

The new h′ is given in Appendix B.1, where we also show how to compute z∗, α efficiently. The
marginal moments h, diagΣ have to be computed from the representation before each scoring round,
although another idea is developed in Section 6.

Interestingly, in initial gene network identification experiments, employing the sum of marginal
information gains worked less well than using the simple joint information gain of Section 4.1. In
this case, the latter seems to carry more useful information about the candidates. In other words, the
posterior correlations estimated by EP seem good enough to be useful here. Results with marginal
scores are not reported in this paper.

5. The Marginal Likelihood

Bayesian methodology requires that unobserved variables are marginalised over in order to do pre-
dictions or to make optimal decisions. However, in many situations this is not practically feasible
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for some variables. In the case of the sparse linear model, we can approximately integrate out the
parameters a using EP, but likelihood and prior depend on other hyperparameters still, namely σ2,
τ, and (parameters of) X . A surrogate widely accepted amongst Bayesian practitioners is to estimate
good values for the hyperparameters by maximising the marginal likelihood of the observed data.22

An approximation to the marginal likelihood may be obtained from EP. Details about this ap-
proximation can be found in Seeger (2005). As shown there, it is the same as the approximate free
energy proposed in Opper and Winther (2005). We give the derivation for fractional EP in general
(see Section 3.3.1), η ∈ (0,1]. Standard EP is obtained for η = 1. We have that

P(D) = P(u) =
Z n

∏
i=1

ti(ai)P
(0)(a)da. (5)

Recall that in EP, the sites ti are replaced by approximations t̃i of Gaussian form. Earlier on, we did
not bother with the normalisation constants of these approximations, but now we have to make them
explicit: ti(ai) → Cit̃i(ai), t̃i(ai) = NU(ai|σ−2bi,σ−2πi). Roughly speaking, EP works by making
the first and second order moments of the posterior marginals Q(ai) and the tilted distributions P̂i(ai)
equal for all i. In this line, we fix the Ci such that the normalisation constants are the same as well:

logCi = η−1(logZi − log Z̃i), Zi = EQ\i [ti(ai)
η] , Z̃i = EQ\i [t̃i(ai)

η] .

Here, Q\i ∝ Qt̃i(ai)
−η. The EP approximation L ≈ logP(u) is then obtained by replacing ti by Cit̃i

in (5). This results in

L =
n

∑
i=1

logCi +
1
2

(

log |Σ|+σ−2hT (b(0) +b)−σ−2‖u‖2 +(n−m) log(2πσ2)
)

. (6)

In order to maximise L, we require its gradient w.r.t. hyperparameters, which can be computed
exactly if EP is run to convergence, such that the moments of all Q(ai) and P̂i(ai) coincide. In
Seeger (2005), the following is shown:

∇θ(0)L = EQ[∇θ(0) logP(0)(a)], (7)

where θ(0) are the natural parameters of P(0). Furthermore, if α is a parameter of the site ti indepen-
dent of P(0), then

∂L
∂α

=
∂ logZi

∂α
= EP̂i

[

∂
∂α

log ti(ai)

]

. (8)

Note that this holds for fractional EP in general, if η ∈ (0,1]. The specialisations to our case are
given in Appendix C.

Note that the EP approximation L of logP(u) has an important consistency property. It is well
known that ∇θ(0) logP(u) = EP(a|D)[∇θ(0) logP(0)(a)], from which (7) is obtained by replacing the
true posterior by the EP approximation Q(a): the true gradient of the approximate criterion is the
approximate gradient of the true criterion. Another way to view this is to note that L depends
on hyperparameters directly as well as through the EP site parameters b, π, thus the gradient has
direct as well as indirect contributions. Importantly, the stationary conditions of EP at convergence

22. In work in progress, we show how the noise variance σ2 can be integrated out along with a using EP. This, however,
leads to a significantly more complicated and somewhat less robust algorithm. Details will be given in a later paper.
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imply that the latter contributions do vanish. In Seeger (2005), it is shown that (∂L)/(∂σ−2bi) =
(∂L)/(∂σ−2πi) = 0 at EP stationary points, which directly implies the simple formulae (7), (8). This
fact becomes clear if L is seen as approximate free energy (Opper and Winther, 2005) (although only
the case η = 1 is discussed there).

Note that the fraction η is a parameter of the approximation method, not a statistical variable or
hyperparameter. It is natural to ask for which η one would obtain the best approximation of logP(u).
Since L is not a bound on logP(u), we cannot directly optimise η. Useful theoretical insights about
fractional EP variational free energies for different η are not known to us. We will address this point
as part of an empirical comparative study, which is subject to future work. However, note that EP
cannot be run at all in a stable way for certain setups if η is (very close to) one (see Section 7.1).

6. Large-Scale Applications

A naive implementation of the EP algorithm for the sparse linear model requires O(n3) time for each
sweep and O(n2) memory, if the non-degenerate representation is used. While this is acceptable for
moderate sizes of n, like in the gene network identification application, it is certainly not feasible for
large n. In this section, we propose some ideas in order to apply our framework in such situations.

The dominant computation within our framework, both for experimental design and marginal
likelihood maximisation, is spent performing a sweep of EP updates. Naively, this is a loop over
all n sites (in random ordering). For each site i, the marginal Q(ai) has to be determined, and the
representation for doing so has to be updated afterwards. Time can be saved by doing less than
n updates per sweep, and by speeding up the marginal extraction or representation update. In a
sequential context such as experimental design, it is sensible to assume that many EP updates will
not lead to much change in Q, especially during later stages. A key problem is how to efficiently
detect the sites whose update would change the current posterior the most.

Furthermore, a large-scale application will normally not be generic, but comes with a lot of
structure already. For example, the design matrix X ∈R

m,n is often given implicitly, since its storage
alone would be too costly, and matrix-vector multiplications (MVMs) with X are often much more
efficient than O(nm). A key step in the direction of a large-scale implementation is to make sure
that such special structure is used optimally.

A motivating example for a large-scale application comes from compressive sensing (see Sec-
tion 2.4). Recall that X = PΦ, where Φ is a fixed coding matrix, and P is a measurement matrix
we can design. If the task deals with full images, n can be a million, and neither Φ nor P can be
stored as dense matrices, but have to be defined implicitly as linear mappings. For example, Φ could
be an orthonormal Wavelet code, and P could consist of m selected rows from the discrete cosine
transform (DCT) matrix. An MVM with Φ costs O(n), an MVM with P is O(nlogn), both much
faster than a naive O(nm) MVM for large m. Experiments with this setup are in preparation.

6.1 Matrix-free Updates

We already noted that storing X explicitly should not be necessary, if we have an efficient method to
compute MVMs with X and XT . For example, X could be of special structure, or it could be sparse
(most entries exactly zero). Suppose that m � n with very large n. In this case, the degenerate
representation of Q(a) is used, requiring O(m2) storage. Each EP update requires O(m2) and the
extraction of a column of X , in other words X δi, a single MVM (see Section 3.3). It is necessary to
refresh the representation now and then, which requires the computation of X Π−1XT for arbitrary
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positive πi. This can be reduced to computing X Π−1XT δi, i = 1, . . . ,m, corresponding to m MVMs
with X and XT each.

6.2 No Representation At All

It is in general not feasible to compute all required marginals on demand, just storing π, b, and the
data. A representation is used in order to do this feasibly, using the fact that each update leads to a
rank one modification only. Time is traded for memory, as explained in Section 3.2.

However, suppose that MVMs with X and X T can be done very efficiently. For an update at site
i, we require Q(ai) = N(hi,σ2ρi). Recall that Σ−1 = XT X +Π and h = Σ(b(0) +b). The quadratic
criterion

q(v) := δT
i v− (1/2)vT (XT X +Π)v

can be minimised using the linear conjugate gradients (LCG) algorithm (Saad, 1996), requiring a
MVM with XT X + Π per iteration, thus MVMs with X , X T , and O(n). At the minimum, we have
v∗ = Σδi and q(v∗) = ρi/2, whence hi = vT

∗ (b(0) +b).

We can also start from the degenerate representation and formulate the marginal computation as
quadratic minimisation over vectors of size m, where the system matrix is I + X Π−1XT . However,
both variants have the same cost of two MVMs per iteration, and their convergence behaviour should
be similar.

This method has the advantage of not requiring any representation at all. Apart from the archi-
tecture for computing X and X T MVMs, we need O(n) memory only. However, it is useful only
if LCG converges to satisfying accuracy rapidly (after many fewer than n iterations), and if single
MVMs can be done much faster than O(nm). Another drawback is that the marginal computations
are approximate only, and the error may well depend on the current π. Therefore, it is maybe most
sensible to combine it with a way of reducing the number of EP updates required, as is discussed
just below.

6.3 Keeping Marginal Moments Up-to-date

The suggestions so far try to speed up single EP update computations. However, if n is very large,
a major problem is that we cannot update all n sites in a sweep. For example, in the context of
experimental design, it is not affordable to update each site after each new data point inclusion.
Updates have to be done selectively on a subset. In this section, we indicate how this can be done.
See Seeger and Nickisch (2008) for a demonstration in practice.

Given the marginal Q(ai), an EP update at i is O(1), so its effect on Q(ai) can be measured
cheaply. The costly part (in the formulation used so far) is to extract the marginal from the repre-
sentation, and to update the latter. It is reasonable to assume that a small impact of an EP update on
the marginal Q(ai) implies that the whole posterior Q changes little, so site i need not be updated at
the moment.

In order to direct EP updates towards sites with maximum marginal impact, it is necessary
to keep all marginals Q(ai) up-to-date at all times. In other words, Q(ai) must be computable
in O(1) from the representation, for any i. With the representations of Section 3.2, this costs
O((min{n,m})2). We concentrate on the degenerate representation, which is more important in
the large-scale context (the non-degenerate case is also simpler). Let V := X T L−T , and define
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e1 = diagVV T , e2 = V γ. Given the latter vectors, each marginal can be computed in O(1):

ρ = Π−1(1−Π−1e1), h = Π−1(b(0) +b− e2).

We show how e1, e2 can be updated along with the representation. Recall Section 3.2, x = X ·,i.
We can compute ∆1, ∆2 and Q′(ai) in O(1), without knowing v = L−1x = (V i,·)T . If |∆2| or
D[Q′(ai)‖Q(ai)] is too small, the update is rejected. Otherwise, we compute v and w := L−T v, r :=
XT w. First, γ̃ = γ +∆1v. The Woodbury formula gives

(

L′(L′)T )−1
=
(

LLT )−1 − (∆−1
2 + e1,i)

−1wwT ,

so that e′1 = e1 − (∆−1
2 + e1,i)

−1r ◦ r, and

e′2 = V ′(L′)−1(Lγ̃) = e2 +(∆1 − (∆−1
2 + e1,i)

−1vT γ̃)r.

Now, vT γ̃ = e2,i +∆1‖v‖2 = e2,i +∆1e1,i, so that

e′2 = e2 +
∆1 −∆2e2,i

1+∆2e1,i
r.

Finally, L′,γ′ are obtained from L, γ̃ by a rank one Cholesky update as before. The cost is increased
by the computation of w and r, the latter requires a single MVM with X T .

The representation has to be recomputed now and then. Here, the computation of e1 is most
challenging, but can be reduced to doing m MVMs with X T (with the columns of L−T , obtained by
back-substitutions).

In an experimental design context, the representation has to be updated once new data points
(x∗,u∗) are included, as discussed in Section 3.4. Using the notation there, V is transformed to V ′

by appending the column v := l−1
∗ (x∗−XT L−T l), where (lT , l∗) is the new row of L′. Therefore,

e′1 = e1 + v ◦ v. Moreover, γ′ = ((γ +u∗l)T ,g∗)T for a scalar g∗, so that

e′2 = V (γ +u∗l)+g∗v = e2 +u∗x∗ +(g∗−u∗l∗)v.

The computation of v requires one MVM with X T .
Once every marginal is available in O(1) at all times, we can actively select which one to update

next. For a set of candidates i, we compute score values Si, selecting site argmaxi Si for the next
update. A possible score is Si = D[Q′(ai)‖Q(ai)]. Scoring all sites for each update is O(n), thus
prohibitive, so a set of scoring candidates J should be maintained and evolved. A simple rule, which
has been used in the context of sparse Gaussian process methods (Lawrence et al., 2003), works as
follows. Before each update, all sites in J are scored. The winner is chosen for the update, and is
removed from J, along with a fraction (say, 1/2) of the worst-scored ones. J is then filled up again
by drawing at random from {1, . . . ,n}\ J.

Finally, we note that it is possible in principle to maintain e1, e2, therefore the marginal mo-
ments, without storing a representation of size O(m2) at all. For example, the update after a
change of πi,bi is in terms of r = XT L−T v = VV T δi. Since VV T = Π − ΠΣΠ, we have that
r = πi(δi −ΠΣδi). We have shown above how to approximate Σδi by the LCG algorithm. Equiva-
lently, VV T = XT (I +X Π−1XT )−1X , so we can also compute r by LCG on a system of size m. In
principle, such a representation-free method can be used to address problems with large m. How-
ever, when working without a representation, we have no efficient possibility anymore to “refresh”

783



SEEGER

e1, e2 now and then. Moreover, using LCG is an additional source of approximation errors. The
danger is that (e1,e2) and (π,b) drift away from the relation that binds them with exact computa-
tions. Experiments assessing the usefulness of such a representation-free treatment in comparison
to a O(m2) representation are in preparation.

7. Experiments

In this section, we present experiments for gene regulatory network identification, for sparse coding
of natural images, and for compressive sensing.

7.1 Regulatory Network Identification

Our application of experimental design to gene network identification, using the sparse linear model,
has been described in Section 2.2. The material presented here is extracted from Steinke et al.
(2007), where all details omitted here can be found. The experiments were done by Florian Steinke.
Note that Matlab code is available23 for scientific use. The results given here can be reproduced
with this code.

In order to evaluate our method, we simulate the whole network identification process. First,
we generate a biologically inspired ground-truth network together with parameters for a numerical
simulator of nonlinear dynamics, respecting the network. We feed our method with a number of
candidate perturbations {u∗}, among which it can choose the experiments to be done. If (say) u∗ is
chosen, a corresponding x∗ is drawn from the simulator, and (u∗,x∗) is included into the posterior
Q(A) as new observation. We score the predictions from the current posterior against the true
network after each inclusion.

Our generator samples networks with a scale-free edge distribution, using n = 50 nodes with in-
degrees (excluding self-edges) in {0, . . . ,6}. An edge is activating with probability 1/2, inhibitory
otherwise. For a given network structure, we sample plausible interaction dynamics, using noisy
Hill-type kinetics inspired by the model of Kholodenko et al. (2002). Here, systems without a stable
fixed point are rejected.

The disturbance candidates u∗ were restricted to have a small number r of non-zero entries,
since a tightly controlled excitation or inhibition for many genes at the same time is unreasonably
expensive in practice. All non-zero elements have the same size, but a random sign, so that all u∗
have the same norm. We use a pool of 200 randomly generated candidates in general.

All results are averaged over 100 runs with independently drawn networks and systems. In the
comparative plots presented below, the different methods all run on the same data.

Our evaluation score measures the quality of the ranking of candidate edges, computed from
the posterior according to the probabilities Q({|ai j| > 0.1}). We modify a standard ROC curve
(true positive rate (TPR) as function of false positive rate (FPR)) by computing the area under the
ROC curve (AUC) only up to a number of false positives equal to the number of edges in the
true network. Namely, since true networks are sparse, there are many more non-edges than edges,
and only very small FPRs are acceptable at all. We denote our score as iAUC, it is normalised to
lie in [0,1]. For n = 50, the trivial method which outputs a random permutation as ranking, has
expected iAUC of 0.02. Furthermore, on average about 25% of the true edges are “undetectable”

23. See www.kyb.tuebingen.mpg.de/sparselinearmodel/. The code is joint work with Florian Steinke and Koji
Tsuda. If you use it as part of a scientific publication, please cite Steinke et al. (2007) (details are on the web site).
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after linearisation: their entries ai j are very close to zero, so they do not contribute to the dynamics
within the linearisation region. Such edges were excluded from the computation of iAUC.

Our method comes with two hyperparameters: the noise variance σ2, and the scale τ of the
Laplace prior. Given sufficient data, they could be estimated by the method described in Section 5,
but this is hard to do in an experimental design setting, where we start with very few observations.24

It is reasonable to assume that a good value for σ2 does not change too much between networks with
similar biological attributes, so that we can transfer it from a system whose dynamics are known, or
for which sufficiently many observations are already available. This transfer was simulated in our
experiments by generating 50 networks with data as mentioned above, then estimating σ2 from the
size of the ε residuals. The prior parameter τ was set by a simple heuristic described in Steinke et al.
(2007).

We used fractional EP with η = 1/2. Standard EP (i.e., η = 1) does not converge for the majority
of the inference tasks required. This problem is discussed in Section 3.3.1.

In Figure 2, we present reconstruction curves for our method versus competing techniques,
which lack novelties of our approach (experimental design, Laplace prior). Very clearly, experi-
mental; design helps to save on costly experiments. The effect is more pronounced for the Laplace
than for the Gaussian prior. The former is a better prior for the task, and it is usually observed that
improvements of designed over random experiments scale with the appropriateness of the model.
In this case, the iAUC level 0.9 is attained after 36 experiments with designed disturbances, yet
only after 50 measurements with randomly chosen ones, thus saving 30% of the experiments. In
fact, our results indicate that experimental design only realises its full potential together with the
non-Gaussian sparsity prior (see also Section 2.1).

In general, the model with Laplace prior does significantly better than with a Gaussian one.
Of course, τ for the Laplace and the variance for the Gaussian prior were selected independently,
specific to the prior. The difference is most pronounced at times when significantly less than n
experiments have been done and the linear system (3) is strongly underdetermined. This confirms
our arguments in favour of the Laplace prior (see Section 2.1).

The under-performance of the most direct variant LD of our method, up to about n/2 observa-
tions, is not yet completely understood. However, it has been repeatedly observed that aggressive
experimental design based on very little knowledge can perform worse than random data sampling,
if the model does not perfectly reflect the truth. On the other hand, it is important to note that LD
recovers completely from the initial under-performance, and from m = 25 onwards significantly
outperforms the random variant LR, so the initial design choices are not just plain wrong. We also
tested a hybrid strategy LM of starting with random, then switching to designed experiments. In this
particular application, starting from no knowledge about the network, an initial random exploration
seems to lead to most useful results early on, while not hurting a subsequent sequential design.

7.2 Sparse Coding of Natural Images

The application of the sparse linear model to image coding (Olshausen and Field, 1997; Lewicki and
Olshausen, 1999) is motivated in Section 2.3. Here, we present results of a study along the lines of
work reported by Olshausen and Field (1997).25 As is argued at length in Section 2.3, our goal here

24. One may be able to correct initial estimates of σ2, as more observations are made, and a method for doing so is
subject to future work.

25. Data and code used there was obtained from http://redwood.berkeley.edu/bruno/sparsenet/.
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Figure 2: Reconstruction curves for experiments (gene expression changes of 1%, SNR 100, r = 3
non-zeros per u). LD: Laplace prior, experimental design. LR: Laplace prior, random
experiments. GD: Gaussian prior, experimental design. GR: Gaussian prior, random
experiments. LM: Laplace prior, mixed selections (first 20 random, then designed). Error
bars show one standard deviation over runs. All visually discernible differences in mean
curves of different methods are significant under the t-test at level 1%.

is not to compare a range of models to find out which can code images better or learn codes more
efficiently, but rather to test the hypothesis put forward in Lewicki and Olshausen (1999), which
does not call for such a comparison. We extracted two data sets of r = 50000 image patches of size
12×12 by subsampling the 10 whitened natural scenes, using their Matlab code. One is for training,
the other for evaluation.26 We allow for a twice overcomplete basis, therefore m = 144, n = 288. We
also drew a random subsample of size 1000 from the test set, which was used in order to produce
curves over many codes. Recall that a code in our model is given by the matrix X , whose columns
are referred to as codebook vectors or filters.

26. The sets are not guaranteed to be completely distinct, although the extraction of the same patch during the different
sampling runs is unlikely.
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Before we describe the results, we should stress that the main aim at this point is to demon-
strate the efficiency and usefulness of our method on a learning problem of large scale. 41473
hyperparameters are learned here on a set of 50000 cases. Each update step requires approximate
inference on 100 models, each of which comes with 288 latent parameters. A more careful study
will explore the implications of our findings to neuroscience (early vision) and image coding. This
will entail a more refined learning schedule for our method, while our choices here are ad hoc and
did not receive much tuning. Moreover, we base our evaluation entirely on the EP marginal like-
lihood approximation on a test set. An independent MCMC evaluation of this criterion, using for
example annealed importance sampling together with hybrid Monte Carlo (which seems commonly
accepted, but is very expensive to run), is clearly needed in order to draw any scientific conclusions
(which we refrain from doing here). Such a study is subject to future work, and is not in the scope
of this paper.

As noted above, the approach of Olshausen and Field (1997) is to approximate inference by
maximum a posteriori (MAP): P(a j|u j,X ) ≈ δâ j(a j), where â j is the posterior mode. Since the
log posterior is concave, this mode is unique and can be found efficiently. In order to learn the
code X , they propose to impute their estimates in order to obtain a complete data set {(u j, â j)},
then to do maximum likelihood training. Since the estimate â j depends on the current X , this is an
iterative process. Their method will be called OF in the sequel. In contrast to this, we follow the
hypothesis of Lewicki and Olshausen (1999) and learn X by maximising the EP approximation to
the log marginal likelihood logP(D|X ) (see Section 5). While Lewicki and Olshausen (1999) argue
that the method of Olshausen and Field (1997) can be seen as optimising a (different) surrogate to
logP(D|X ) as well, ours is a much better approximation in general.27. Our method will be called
EP here.

We had to modify their code in a minimal way, in order for it to run automatically on a given
fixed training set. Our changes are detailed in Appendix E. Just as with our own method, we did
not attempt to refine parameters for their code here.

The code of Olshausen and Field (1997) performs stochastic gradient descent on batches of size
|B| = 100. We use a similar approach, which works as follows. The criterion − logP(D|X ) is a
sum of independent parts, one for each image. Let φ := −∑ j∈B L j be the EP approximation to this
criterion, evaluated over a batch of size |B| (here, L j is the EP log marginal likelihood approximation
on image j). The update rule for X is

X ′ = X −D′, D′ = 0.85D +ξX XT ∇X φ,

where ξ > 0 is the learning rate. The pre-multiplication of the gradient by X X T is advantageous
for this application, as has been argued in the context of “natural gradient” learning. As opposed to
Olshausen and Field (1997) and Lewicki and Olshausen (1999), we adjust the noise variance σ2 in
the same way by minimising φ. If l := logσ2, a simple update rule is

l′ = l −d′, d′ = 0.85d +ξl∇lφ,

where ξl > 0 is a learning rate different from ξ. The learning rates are decreased in a reasonably
slow way,

ξ(t) =
A

B+ t
, ξl(t) =

Al

Bl + t
,

27. MCMC experiments to strengthen this claim are subject to future work.

787



SEEGER

where t is the number of updates so far, and A, B, Al , and Bl are free parameters (Bottou, 1998).
We can compare our update rule of X with the one used in Olshausen and Field (1997). It is

easy to see that the gradient of the exact log marginal likelihood is

∇X logP(u j|X ) = σ−2EP(a j|u j,X )[e ja
T
j ] = σ−2 ((u−X E[a j])E[a j]

T −X Cov[a j]
)

,

where e j := u j −X a j. If OF is seen as optimising an approximation thereof, then the expectation
over P(a j|u j,X ) is replaced by plugging in the mode â j (which is what we mean by “imputation”
above). In other words, the posterior mean E[a j] is replaced with the mode, and the second term
depending on the posterior covariance Cov[a j] is neglected altogether. Since the Laplace sparsity
prior leads to a posterior which is significantly skewed (towards coordinate axes, see Figure 1), mean
and mode tend to be quite different.28 In EP, the posterior expectations are replaced by EQ[·], where
Q = N(h,σ2Σ) is the EP posterior approximation (see Appendix C). In fact, running OF precisely
with the learning rule just stated does not work well in practice, and the neglectance of posterior
uncertainty in the learning rule is put forward as a reason for this in Lewicki and Olshausen (1999).
Olshausen and Field (1997) propose a heuristic renormalisation of the columns of X towards some
“desired variance” as remedy, and this seems an important feature in their code. This heuristic comes
with a number of parameters, which are fixed in their code to some values presumably optimised for
their data by hand. In contrast, EP comes with τ, σ2 only, and the latter can be adjusted automatically
as well,29 as is demonstrated here. Note that Lewicki and Olshausen (1999) suggest to approximate
Cov[a j] by the Laplace method in order to improve on the OF learning rule. However, as noted in
Section 3, this method is not well-defined in case of the sparse linear model. Code implementing
the proposal of Lewicki and Olshausen (1999) is not publicly available.

We can draw an analogy between the difference of learning X in OF and EP to current practices
in speech recognition (Rabiner and Juang, 2003). Given a trained system, the recognition (or decod-
ing) is done by searching for the most likely sequence, in what is called Viterbi decoding. However,
training the system should be done by expectation Maximisation (EM), where the latent sequence
is integrated out using inference. This is about what EP does here, with the difference that inference
in hidden Markov models used for speech is analytically tractable, but has to be approximated here
(by EP). However, since EM training is still computationally demanding, most speech recognition
systems use Viterbi training today, where just as in OF the most likely (MAP) sequence is imputed
instead of doing inference. While EM training is known to produce better recognisers on the same
data, MAP training is still preferred for reasons of computational efficiency.

Our setup is as follows. We ran all methods on the same training data set, starting from the
same initial code (drawn at random). For OF, learning rate and renormalisation heuristic parameters
were left unchanged in their code. We used the values 0.1, 0.2, 0.4, 0.6962 for τ, and 0.006, 0.01
for σ2. The values τ = 0.6962, σ2 = 0.01 come from the OF code, while σ2 = 0.006 is closer to
values ultimately preferred by the EP runs. All methods were run for 10000 batch updates, thus 20
sweeps over all images (in random ordering, different for each sweep). OF was run30 separately for
each of the eight (τ,σ2) variants. On the other hand, for the EP runs, σ2 was adjusted along with
X as described above, and only τ was provided (the initial value for σ2 was 0.002). The following

28. As discussed in Section 2.1, the mode â j has many components which are exactly zero, which does not hold for the
mean.

29. We could adjust τ in the same way with EP, but this is not done here. As noted in Section 3.5, the optimisation of σ2

should behave better.
30. We also ran OF with τ = 0.05, which gave bad results not reported here.

788



BAYESIAN INFERENCE FOR SPARSE LINEAR MODEL

τ = 0.1 τ = 0.2 τ = 0.4 τ = 0.69
σ2 OF EP OF EP OF EP OF EP

0.006 -27.09 -80.04 -68.17 -80.04 -35.91 -80.05 92.73 -80.04
0.01 -2.329 -63.37 -53.53 -63.47 -43.69 -63.63 60.44 -63.80

Table 1: EP negative log marginal likelihood (EP average coding cost) per image, evaluated on the
full test set (50000 cases), for different methods after 10000 batch updates of learning X .
OF: Olshausen/Field; EP: our method.

learning rate schedule parameters31 were used: A = 0.79, B = 0.79 ·103, Al = 0.79 ·10−5, Bl = B.
This means that ξ decreases from 10−3 to 7.32 ·10−5, and ξl from 10−8 to 7.32 ·10−10.

We compare methods in general by evaluating the EP negative log marginal likelihood approxi-
mation on the test set, normalised by the number of images. This is equivalent to the EP approxima-
tion of the average coding cost per image (Lewicki and Olshausen, 1999) (smaller is better). For all
but the final codes (after 10000 updates), we do this evaluation on the subset of size 1000. In order
to evaluate test scores or to learn X (EP variants only), we need to perform EP inference on each
image separately. To this end, we intended to use standard EP initially (η = 1, see Section 3.3.1),
but ran into severe numerical problems on a significant number of images,32 as described in Sec-
tion 3.3.1. This led us to use fractional EP with η = 0.9 instead, which is the basis for all learning
and test score evaluation results presented in this section.

learning curves along 10000 batch updates are shown in Figure 3 (using the test subset), and final
EP negative log marginal likelihoods per image on the full test are given in Table 1. To recapitulate,
the figures show average coding costs per image under the codes learned by the different methods,
where τ and σ2 are fixed for the evaluation. While OF was provided with τ, σ2, EP only received τ
during learning and had to adjust σ2 alongside the code matrix X . We see from Figure 3 (upper left)
that for the learning rate schedule used here, EP grows σ2 smoothly from 0.002 to about 0.005.

Note that in the Bayesian viewpoint of image coding, all hyperparameters of a model work
together in order to represent a data distribution (of image patches u) well, that is the code X , but
also τ and the noise variance σ2. In other words, code and noise variance are dependent. The EP
runs settle at around σ2 = 0.005, so the codes X found by them do better at σ2 = 0.006 than at
σ2 = 0.01. The results for EP seem to not much depend on τ, but the situation is quite different
for OF. At τ = 0.2, the OF codes do well in comparison to the EP ones, and the lower σ2 = 0.006
is preferred as well. For τ = 0.1 or τ = 0.4, they do significantly worse, and the preferred value is

31. These values were chosen after few initial runs, but not optimised over. Only for ξl(0) did we compare runs, looking
at learning curves on the training set. For ξl(0) = 10−9, σ2 hardly changed at all, while for ξl(0) = 10−7, σ2 increased
sharply to above 0.02, then descended slowly towards 0.01.

32. None of these problems happened with fractional EP, η = 0.9. However, there is a pattern to these failures, indicating
that further analysis would be valuable. In general, during learning X , EP convergence was harder to attain when
the code was already optimised, with structural features emerging in the filters. While X could still be learned with
τ = 1, the test set log marginal likelihood evaluations for these codes could not be computed for many patches (using
EP with η = 1). We evaluated these scores using EP with η = 0.9, finding very similar results (not shown here) than
with the codes learned using η = 0.9. The reason for not simply abandoning standard EP for more robust fractional
variants in general is based on arguments concerning alpha-divergences (Minka, 2004) (no hard theory is available
to settle this issue, to our knowledge), apart from the somewhat more appealing motivation that can be given for
standard EP (Opper and Winther, 2000).
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Figure 3: learning curves along 10000 batch updates. Upper left: Noise variance σ2 for EP (differ-
ent prior scales τ). Others: EP − logP(D)/r on test subset (r = 1000); τ = 0.1 (middle
left), τ = 0.6962 (middle right), τ = 0.2 (lower left), τ = 0.4 (lower right).

σ2 = 0.01 for τ = 0.4. Finally, poor results33 are obtained by OF with τ = 0.6962, as well as with

33. We re-ran this case several times, in the way described in Appendix E, always obtaining the same poor results.

790



BAYESIAN INFERENCE FOR SPARSE LINEAR MODEL

τ = 0.05 (not shown here). The learning curve behaviour of the EP runs is much smoother than for
OF, suggesting that the former optimisation problem is better behaved.

OF, τ=0.2, σ2=0.006 OF, τ=0.2, σ2=0.01

EP, τ=0.2 EP, τ=0.4

OF, τ=0.4, σ2=0.006 OF, τ=0.4, σ2=0.01

Figure 4: Final codes (after 10000 batch updates). Filters are ordered by descending ‖X ·,i‖, row-
major ordering. Filters with ‖X ·,i‖ > (3%)max j ‖X ·, j‖ have white frame, black other-
wise.
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τ = 0.1 τ = 0.2 τ = 0.4 τ = 0.69
σ2 EP[96] EP[288] EP[95] EP[288] EP[96] EP[288] EP[94] EP[288]

0.006 -81.41 -80.04 -81.41 -80.04 -81.41 -80.05 -81.41 -80.04
0.01 -64.74 -63.37 -64.84 -63.47 -65.18 -63.63 -65.18 -63.80

Table 2: EP negative log marginal likelihood (EP average coding cost) per image, evaluated on the
full test set (50000 cases), where X has been learned by EP. EP[288]: All X columns
(copied from Table 1); EP[94–96]: Only X columns of significant size.

The final codes for different setups are given in Figure 4. The most distinctive difference be-
tween EP and OF codes is that for the latter, the filters do not differ much in size,34 while there
is a clear size signature in the codes found by EP: about 96 filters have significant sizes, while the
remaining ones are about two orders of magnitude smaller. In the panels of Figure 4, filters with
‖X ·,i‖ larger than three percent of the maximum value are surrounded by white frames. For EP,
these are 94–96 of 288 columns of X . In Table 2, we show EP average coding costs for the full test
set, given that only the filters of significant size are used. These are even slightly lower than for the
respective models using all columns of X .

We see that for the given task, codes attaining the lowest average cost are in fact undercomplete.
A Bayesian method (such as EP here) removes unnecessary dimensions by default, through what
has been called automatic relevance determination (see also Section 8.1). This does not happen for
the OF method, which is not Bayesian and ignores covariances when learning X . We also note that
in the codes found by OF, the filters of largest size are non-localised gratings, while all filters of
significant size found by EP are localised and oriented. Both the smaller number of filters required
and the strict localisation properties can be explained by noting that each image patch is explained
probabilistically in EP, following Lewicki and Olshausen (1999), while in OF, this has to be done
using a deterministic sparse encoding. In an update of X , each image only affects a small number
of filters. It is then not too surprising that additional non-localised filters emerge in OF. If the
hypothesis of Lewicki and Olshausen (1999) is taken for granted, these filters should be interpreted
as artifacts of its improper implementation.

Note that the OF method runs much faster than EP. Finding â j is a quadratic program (Tib-
shirani, 1996), which can be solved efficiently. Our EP code for the experiments here is “naive”,
in that all sites are visited in random ordering, no further efforts (such as the ones described in
Section 6.3) are done. However, the arguments in Olshausen and Field (1997) and Lewicki and
Olshausen (1999) do not call for a method which can be run very efficiently on a digital computer.
A model is suggested which, in simple terms such as independence, linearity, and sparsity, could
account for the formation of early visual neuron’s receptive fields. The hypothesis of Lewicki and
Olshausen (1999) is equivalent to a Bayesian perspective, where inference is a core requirement for
improving the code, in much the same way as in EM for speech recognition, or graphical model
learning in general. For both OF and EP, filters of significant size are localised, oriented gratings.
However, our EP method more accurately implements the hypothesis of Lewicki and Olshausen
(1999) than the algorithm of Olshausen and Field (1997), and leads to qualitatively different find-

34. Their renormalisation heuristic keeps them at similar, yet not at equal sizes.
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ings: the data calls for a significantly undercomplete, therefore rather compact code, a fact that is not
picked up by the OF method at all (Berkes et al., 2008, report similar findings with an approximate
Bayesian method). Moreover, OF uses a significant number of non-localised filters, which are not
present among the vectors of significant size found by EP. A more careful study based on our frame-
work will shed light on what relevant properties in the codes can be explained by the probabilistic
hypothesis of Lewicki and Olshausen (1999), versus which findings should rather be attributed to
their particular computational method (maximum a posteriori, winner-takes-all X updates, variance
renormalisation heuristic, etc.).

Apart from learning codes with EP, we can also use the log marginal likelihood approximation
of EP in order to compare codes obtained by other methods. In Bayesian terms, such a comparison
is done by computing Bayes factors, which is comparable to hypothesis testing. Moreover, for a
fixed code X and data {u j}, the noise variance σ2 can be optimised by EP, in what is suggested to
be a robust process in Section 3.5.

7.3 Compressive Sensing

In this section, we present results for a compressive sensing toy example. The motivation behind
this application was given in Section 2.4. Results from a larger set of experiments, including some
large-scale applications (see Section 6), are given in a later paper (Seeger and Nickisch, 2008). The
experiments have been done by Hannes Nickisch.

In our toy experiment, the signal y ∈ R
n is sparse itself, so the coding matrix Φ is the identity.

We have n = 512. Measurements are taken as u = Py + ε, where P (or X here) is the measurement
matrix, and ε is Gaussian noise with standard deviation σ = 0.005. We compare methods where the
measurement projections P are optimised in a sequential row-by-row manner, with methods where
P is drawn uniformly at random on the unit hypersphere. In any case, the projections (i.e., rows of
P) are constrained to have unit norm. The signal y is created by drawing k = 20 non-zero positions
at random. The non-zero yi are drawn at random from {−1,+1} (uniform spikes), or according
to a density35 with support R \ (−0.21,0.21) (non-uniform spikes). Examples for such signals are
shown in Figure 5.

50 100 150 200 250 300 350 400 450 500
−1

0

1

50 100 150 200 250 300 350 400 450 500
−1

0

1

Figure 5: Examples for signal y. Top: uniform spikes. Bottom: non-uniform spikes.

The sequential experimental design of rows of P is a special case of the standard design setup
of Section 4. Namely, among all p j of unit norm, select the one which leads to minimum expected
entropy E[H[Q′]], where Q′ is the posterior after inclusion of p j, and the expectation is w.r.t. Q(u j),

35. Namely, yi = α(r +0.25sgnr), r ∼ N(0,1), where α = (5/4+
√

2/π−2/π)−1/2 ≈ 0.84, so that Var[yi] = 1.
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u j being the new measurement. Note that H[Q′] is in fact independent of u j, since Q′ is Gaussian.
Moreover, one can show that this criterion is equivalent to the expected information gain in this
case (MacKay, 1991). A simple argument shows that the eigenvector for the largest eigenvalue of
Σ solves this problem, where Q = N(h,σ2Σ) is the current posterior. This eigenvector can be found
by the power method.

We compare the following methods. Our design approach based on EP is called EP opt. The
method suggested by Ji and Carin (2007) is called RVM opt (P designed) or RVM rand (P random).
They select P in the same way as we do, but making use of their approximate posterior, which
they obtain as a variant of sparse Bayesian learning (SBL) (Tipping, 2001) (RVM refers to the
most commonly used variant of SBL). The method most frequently used in compressive sensing
applications so far is basis pursuit (Chen et al., 1999), where y is estimated by minimising ‖y‖1 =

∑i |yi|, subject to X y = u. Note that this corresponds to MAP estimation in the sparse linear model
if σ2 → 0 (noiseless case). This can be formulated as a linear program. L1 and BP here use two
different implementations.36 For all methods, the first 40 rows of P are drawn at random. If ŷ
denotes the best prediction of y from the measurements u (the mean of Q for our method and the
RVM variants), the error is measured as ‖ŷ−y‖/‖y‖, where ‖ ·‖ is the Euclidean norm. Results are
shown in Figure 6.
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Figure 6: Results for compressive sensing toy example comparison. Left: uniform spikes. Right:
non-uniform spikes. Averaged over 100 runs, shown are means and standard deviations
(latter only for EP and RVM). See text for details.

Further experiments are required in order to draw definite conclusions, such are in preparation.
We note that our EP method outperforms all others, and that random methods in general perform
worse than the ones using experimental design. Moreover, our method clearly performs much better
than the method of Ji and Carin (2007), while theirs is somewhat faster. Notably, our method
also performs more robustly across runs than theirs. Moreover, the methods trying to approximate
Bayesian inference in general perform better than basis pursuit on this task. The latter is certainly
significantly faster than any of the other methods here, but its suboptimal performance on the same
fixed data, and more importantly the lack of an experimental design framework, clearly motivates
considering approximate Bayesian inference for compressive sensing as well.

36. L1 is l1-magic from www.acm.caltech.edu/l1magic/, and BP is from SparseLab sparselab.stanford.edu/.
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8. Related Approximate Inference Methods

In this section, we put EP for the sparse linear model into perspective by directly comparing it to
other proposed methods of approximate inference. We rely on Palmer et al. (2006), who provide
a somewhat more general discussion, but EP is not mentioned there. Before we start, we remind
the reader that by “approximate inference” method, we mean a technique which delivers a use-
ful approximation of marginal (or even joint) posteriors, and ideally can also be used in order to
approximate the marginal likelihood. This is important in the context of the sparse linear model,
where many methods rather try to find a maximally sparse solution of the noisy system (1), without
addressing the former points. A study, comparing the methods discussed here in terms of approx-
imation quality of marginals and of the marginal likelihood, is subject to future work. Note that
none of these methods has been applied to the experimental design problem we address here (to our
knowledge), with the exception of SBL (Ji and Carin, 2007).

8.1 Sparse Bayesian Learning

The idea of automatic relevance determination (ARD) has been proposed by Neal (1996). It is a
variant of empirical Bayesian marginal likelihood maximisation (see Section 5). In the context of
the sparse linear model, only a few components of a are typically relevant for describing the data,
all others could be set to zero. ARD works by placing a prior N(ai|0,σ2π−1

i ) on ai, where πi is a
scale parameter, then maximising the marginal likelihood P(u,π) w.r.t. π. Here, πi can be given a
heavy-tailed hyperprior. The Occam’s razor effect embedded in empirical Bayes (MacKay, 1992)
leads to πi becoming large for irrelevant components ai: a model with few relevant components is
simpler than one with many, and if both describe the data well, the former is preferred under ARD.

ARD has been applied to the sparse linear model by Tipping (2001), where the method was
called sparse Bayesian learning (SBL). The derivation there makes use of scale mixture decom-
positions (Gneiting, 1997; Palmer et al., 2006) for the non-Gaussian prior sites. Namely, many
univariate symmetric distributions can be represented in the form P(ai) = E[N(ai|0,σ2π−1

i )], with
some distribution over πi. Tipping uses Student’s t sparsity priors P(ai), for which πi has a Gamma
distribution. However, a direct comparison with the sparse linear model used here requires Laplace
priors.

The Laplace density has the following scale mixture decomposition (Park and Casella, 2005;
Gneiting, 1997):

τ̃
2

e−τ̃|ai| = E[N(ai|0,σ2π−1
i )], πi ∼ λπ−2

i e−λ/πiI{πi>0} = IG(1,λ), λ =
τ2

2
. (9)

Note that the scale distribution of πi does not have mean or variance. With Π = diagπ, we have

P(u,π) =
Z

P(0)(a)N(a|0,σ2Π−1)da|Π|−2λne−λ1T (π−1),

which has the same form as in our framework. Here, bi = 0, and the πi have a different interpretation
as scale hyperparameters. The marginal likelihood P(u) is obtained by integrating out π, which
cannot be done tractably. Instead, a maximum a posteriori (MAP) approximation is done in SBL:
we find a maximiser π̂ of P(u,π), then approximate P(u) ≈ P(u, π̂). This is a joint non-convex
optimisation problem, so all we can hope for is a local maximum. Faul and Tipping (2002) propose
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the simple sequential technique of maximising P(u,π) one πi at a time. This results in the following
update rule, as is shown in Appendix D.1:

π′
i =

√

9+4τ2β−3
2β

, β = ρi +σ−2h2
i = σ−2EQ[a2

i ]. (10)

Confusingly, this is in fact not the method used in the experiments of Tipping (2001). This point is
clarified at the end of this section.

Comparing SBL to our EP method, we note that the former does not require quadrature, but
merely simple analytical updates. The πi remain positive, and the method is numerically stable.
SBL can be implemented using the same representation as ours. While b = 0 here, this does not
lead to simplifications in representations or updates. In fact, both methods can share much of the
same code, they differ only in how πi → π′

i is computed for each site i. The marginal likelihood
approximation resulting from SBL is P(u, π̂). Just as for EP, this is not a bound on P(u) (see
Section 5).

Note that a variant of SBL with the Laplace prior has been proposed by Figueiredo (2003).
However, they were interested in the MAP solution argmaxa P(a|D) rather than in an approximation
to the posterior, which allowed them to integrate out the πi by EM. Note also that SBL for the linear
model with Student’s t prior has been applied to gene network identification by Rogers and Girolami
(2005), although they did not consider experimental design.

While a direct comparison is subject to future work, we note that SBL is certainly simpler to
implement for the sparse linear model. Some safeguards required to make EP run in a numerically
robust way, are not needed with SBL. On the other hand, EP is of course more general, since SBL
is limited to non-Gaussian sites with a scale mixture decomposition. For example, non-symmetrical
distributions such as classification likelihoods cannot be used.

There is at least the following worrying fact about SBL as approximation to Bayesian inference.
We have used the scale mixture decomposition of the Laplace density (9) in terms of πi, but we could
just as well have chosen the one based on si = π−1

i , with an exponential distribution on si. Doing
so, we obtain an entirely different method, which did much worse than the variant derived here in
initial experiments and in fact fails badly as approximation to Bayesian inference, since predictive
variances are orders of magnitude too small. Furthermore, this “variant” of SBL converges exceed-
ingly slowly in the si, while the method given here runs quite fast. Nevertheless, both variants are
motivated in the same way: scale mixture decomposition, followed by a MAP approximation. The
problem is that the latter, much in contrast to exact Bayesian inference (or, in fact, to expectation
propagation), is not invariant to reparameterisations. The one chosen by Tipping (2001) certainly
works well, at least in terms of delivering sparse solutions, but with others, SBL can fail badly. This
important ambiguity has been noted by Wipf et al. (2004).

Finally, we note that there is some confusion about what exactly constitutes SBL, started in part
by somewhat unclear formulations in Tipping (2001). In the paper, a method for finding maximally
sparse solutions to the noisy linear system (1) is proposed. While the motivation is clearly Bayesian,
the fact that a Student’s t sparsity prior is used, is mentioned only in order to explain the favourable
results. In fact, the “prior” actually used for πi is ∝ 1/πi, resulting in P(ai) ∝ 1/|ai|. Both are
not normalisable as distributions. Our interest is in approximate Bayesian inference, with an eye
towards experimental design, so we cannot consider such uninformative priors. We take the freedom
here to interpret SBL as introducing scale mixture parameters πi, followed by a MAP approximation
w.r.t. π, at the expense of actually not covering the algorithm used in the experiments of Tipping
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(2001). Wipf et al. (2004) show that the latter algorithm can in fact be interpreted as an instance of
direct site bounding (see Section 8.2), which at first sight has little to do with scale mixtures, but
see Palmer et al. (2006).

We would not stress this point if there was little difference in practice between (what we refer
to as) SBL and direct site bounding (or other variants of the theme). However, initial comparative
experiments with the sparse linear model show very significant differences in approximation qual-
ity. All these techniques find local maxima of P(u|π) f (π). Contrary to what seems to be widely
believed among practitioners, the form of f really matters. From our experience, the quality of ap-
proximate inference as well as the speed of convergence of sequential optimisation depend strongly
on f . Wipf et al. (2007) show that the capability of the method estimating the correct relevant subset
also hinges dominantly on the choice of f . Beyond that, the dependence on f of the quality of the
covariance estimate, centrally important for experimental design, has not been analysed at all to our
knowledge.

8.2 Direct Site Bounding. Variational Mean Field Bayes

A direct approach for obtaining an easily computable lower bound on the log marginal likelihood
logP(u) works by lower-bounding the sites ti(ai) by terms of Gaussian form. A powerful way
of obtaining global lower bounds of simple form is exploiting convexity (Jaakkola, 1997). We
can apply this approach to the sparse linear model with Laplace prior, which results in a method
proposed by Girolami (2001). The general idea in the context of non-Gaussian linear models is
noted in Palmer et al. (2006).

For the Laplace (2), we have that log ti(ai) = −τ̃
√

a2
i + log(τ̃/2), which is convex in a2

i . A
global tight lower bound is obtained using Legendre-Fenchel duality (Boyd and Vandenberghe,
2002), resulting in

e−τ̃|ai| = sup
πi>0

NU(ai|0,σ−2πi)e
−(τ2/2)π−1

i .

We can plug in the r.h.s. for ti(ai), then integrate out a in order to obtain a lower bound on logP(u).

The outcome is quite similar to SBL, where ti is replaced by the same term times (2π)−1/2τπ−3/2
i .

Since the ratio does not depend on a, we have that

P(u) ≥ PGiro(u;π) = (2π)−n/2τn|Π|−3/2PSBL(u,π),

Following Appendix D.1, it is clear that the update of πi, keeping all others fixed, results in a
quadratic equation with the positive solution

π′
i =

τ
√

β
, β = ρi +σ−2h2

i = σ−2EQ[a2
i ].

While SBL does not render a bound on logP(u), Girolami’s method does so by construction.
Note that SBL and direct site bounding lead to quite similar replacements for ti, if applied to the
linear model with Laplace prior. The same is true if a Student’s t prior is used, as has been observed
by Wipf et al. (2004). Somewhat ironically, the modification in the latter case is precisely the result
of the “uninformative limit” taken in Tipping (2001), which also seems to work best in practice.
This point is discussed at the end of Section 8.1. Palmer et al. (2006) give the precise relationship
between SBL and direct site bounding (called “integral case” and “convex case” there), showing
that if ti admits a scale mixture decomposition, it can also be bounded via Legendre duality.
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Note that for the same (β, τ), π′
i is smaller for the SBL update than for the direct site bounding

one. Namely,

π′
SBL,i = π′

Giro,i ×
(√

1+α−
√

α
)

, α = 9/(4τ2β).

The ratio is smallest for small β, so Girolami’s method chooses much larger πi for the components
which are “switched off”, in that EQ[a2

i /σ2] ≈ 0. It is thus more aggressively aiming for sparse
solutions. In initial comparative experiments, Girolami’s method outperformed SBL on the sparse
linear model significantly in terms of the quality of inference approximation. Especially, the SBL
marginal likelihood approximation turned out to be poor. A larger comparative study, from which
conclusions can be drawn, is subject to future work.

A comparison between approximate inference techniques would be incomplete without includ-
ing variational mean field Bayes (VMFB) (Attias, 2000; Ghahramani and Beal, 2001), maybe the
most well known variational technique in the moment. It is also simply known as “variational
Bayes” (see www.variational-bayes.org), although we understand this term as encompassing
other variational methods for Bayesian inference as well, such as EP, SBL, direct site bounding,
and others more. The distinctive feature of VMFB, previously known as “structured mean field”, is
the use of the generic mean field lower bound, as reviewed in Appendix D.2. VMFB for the sparse
linear model is equivalent to direct site bounding, as has been shown in Palmer et al. (2006), and as
is discussed in more detail in Appendix D.2. This equivalence holds as well for linear models with
many other symmetric priors, for example Student’s t.

8.3 Markov Chain Monte Carlo

While variational approximations are fairly established in machine learning, the dominant methods
for approximating Bayesian inference in statistics are Markov chain Monte Carlo (MCMC) simu-
lations (Neal, 1993; Gilks et al., 1996). In these techniques, a Markov chain over latent variables
of interest (and possibly additional auxiliary ones) is simulated, whose stationary distribution is the
desired posterior.

A simple MCMC method for the sparse linear model with Laplace prior has been proposed by
Park and Casella (2005). They employ the scale mixture representation (9), introducing the scale pa-
rameters π as auxiliary variables alongside a. Their method is an instance of block Gibbs sampling,
in that a is resampled given π, and vice versa. For simplicity, we denote the true posterior P(. . . |D)
by Q in this section only. Now, the full conditional distribution Q(a|π) is simply N(a|h,σ2Σ), with
h, Σ defined as usual in terms of π (as in SBL above, b = 0 here), a Gaussian we can sample from
easily (see Appendix B.2).

Next, the πi are independent under Q(π|a), with

Q(πi|a) ∝ π−3/2
i exp

(

−a2
i σ−2(

√
2λσ2/|ai|−πi)

2

2πi

)

∝ π−3/2
i exp

(

−λ̃(πi − µ̃)2

2µ̃2πi

)

,

with µ̃ =
√

2λσ2/|ai|, λ̃ = 2λ = τ2. This density is the inverse Gaussian, which can be sampled
from easily (see Chhikara and Folks, 1989, Section 4.5). The normalisation constant is (λ/π)1/2.

Note that, just as with SBL and direct site bounding, we can use our existing EP code in order
to implement this method as well. The πi are resampled, instead of being updated deterministically.
While they could be updated sequentially, Park and Casella (2005) consider joint updates which
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tend to have better mixing properties. The representation, now maintaining the true Q(a|π), has to
be recomputed from scratch after each π update, so that each step costs O(n min{m,n}2).

This sampler is certainly very simple to implement, especially with our representation code in
place. Park and Casella (2005) give some arguments about the favourable role of log-concavity
of Q(a) for the sampler.37 These are empirical, and even if good theoretical properties of MCMC
samplers for log-concave posteriors have been established (Lovász and Vempala, 2003), these are
different from the method considered here. Initial experiments with the sampler gave good results,
although some erratic jumps in π components can be observed. The main cause of failure of block
Gibbs samplers is the presence of strong dependencies between a and π. A more definite statement
would require a comparison between this method and another sampler not based on scale variables.

The main advantage of MCMC over variational approximations is that it has no approximation
bias in principle, if the chain is run for an unbounded amount of steps. In contrast, variational
methods such as EP do have such a bias, which cannot be diminished by simply running them for
longer.38 It is also the case that simple variants of MCMC are typically fairly easy to implement,
for example there are hardly ever problems with numerical stability. A main drawback of MCMC
applied to problems of the sort considered here is that significantly more running time is required in
order to obtain solutions of similar accuracy. Another major disadvantage is that a lot of expertise
is required in order to run MCMC in a proper way. There are no convergence diagnostics which
are easy to use or, in fact, are generally widely accepted. Most machine learning applications, such
as the ones considered here, require methods which can be run robustly by users without extensive
training in diagnosing Markov chain convergence. This problem becomes severe in the context of
experiment design, where new decisions have to be done continuously, and even an expert would
be hard pressed trying to diagnose proper convergence for all MCMC runs in between. Another
drawback of MCMC is that while samples of the posterior are obtained, these cannot be used in a
simple way in order to obtain a good estimate of the log marginal likelihood logP(u) (see Section 5).
While the method of Chib (1995) proposes just that, it failed catastrophically in toy experiments of
rather small scale with the sampler considered here, even if an excessive number of steps was used.
This failure is interesting, given that the posterior is a log-concave (unimodal) distribution.

9. Discussion

We have shown how to perform accurate approximate Bayesian inference in the linear model with
Laplace prior efficiently, by means of expectation propagation, and how this can be used to address
tasks such as optimal design and hyperparameter estimation. The importance of numerical stability
is raised for EP, and several means of improving robustness are proposed. Some implications of
log-concavity for EP, and for approximate inference in general, have been shown.

The optimal design capability has been demonstrated for the application of gene regulatory
network identification, where the sparsity prior was found to be essential in order to realise very
significant gains. It is also motivated by preliminary experiments in the area of compressive sensing.
Marginal likelihood optimisation has been used in order to optimise sparse codes for natural images,

37. They sample jointly over (a,σ2), noting that Q(a,σ2) is log-concave in the transformation of (a,σ2) described in
Section 3.5.

38. Many variational methods allow for the choice of approximation families of varying complexity. For example, EP can
be run with exponential families beyond the Gaussian, and even the case of Gaussian Q can potentially be improved
by considering joint updates of blocks of sites. This requires the computation of multivariate non-Gaussian integrals,
which is hard to do accurately, and is not done here.
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in what constitutes an application of approximate inference on a large scale. Our experiments have
been driven by a robust, efficient, and general implementation, which will be made available for
scientific use.

9.1 Related Work

The sparse linear model (1) is of high practical relevance in statistics and machine learning, and
has received a lot of attention. Some approximate inference techniques related to ours have been
reviewed in Section 8. It is noted there that the computational representations and their robust
update rules developed here, are required for these just as well.

The idea of L1 regularisation of least squares has been used in very many contexts. The max-
imum a posteriori (MAP) treatment of the sparse linear model has been proposed as Lasso (Tib-
shirani, 1996) and as basis pursuit (Chen et al., 1999) (the latter for σ2 → 0). While the Lasso
results in a quadratic program, basis pursuit is a linear programming problem. The prime advantage
of an MAP treatment is that fitting to fixed data can be done very efficiently, in fact significantly
faster than running EP until convergence. Very recently, several strong properties of the Lasso, ba-
sis pursuit, or other convex programming formulations of sparse estimation have been established,
showing that in certain regimes they perfectly reconstruct very sparse signals in a minimax sense
(Donoho and Elad, 2003; Candès et al., 2006; Wainwright, 2006). On the other hand, MAP as an
approximation to Bayesian inference is fairly poor in this case. As noted in Section 3, a direct
Laplace approximation is not well-defined for the sparse linear model. Even if this obvious problem
was not present, the fact that there are many more variables than observations, renders the usual
justification for Laplace’s method obsolete. We have demonstrated a few advantages of going the
full Bayesian way properly in this paper, such as optimal design based on uncertainty estimates,
or marginal likelihood hyperparameter estimation. The MAP approximation for the sparse linear
model has been applied to the gene network identification problem by Peeters and Westra (2004),
but they did not address the problem of optimal design.

A general framework for EP on a class of hybrid models has been proposed by Zoeter and Hes-
kes (2005). EP updates are done generically using Gaussian quadrature. Based on our findings here,
EP for the sparse linear model with Laplace prior is very sensitive to the accuracy of EP updates,
and the Gauss-Hermite rule would not lead to a working solution here. The generic proposal of con-
verting between natural and moment parameterisation stated there is known to be unstable even in
purely Gaussian models such as the Kalman filter, while our representation updates are essentially
stable for log-concave sites. Also, the generality is quite restricted, in that they assume a fully fac-
torised distribution family F , which would not include joint Gaussians Q we consider here. Thus,
while the prospect of a generic EP implementation is intriguing, important special cases such as
Laplace or other sparsity prior sites, or joint Gaussian factors, would have to be treated as special
cases. It remains to be seen whether the techniques to improve EP’s numerical properties proposed
here, are useful in this more general context as well.

Technically, our framework is quite related to the Independent Component Analysis method of
Hojen-Sorensen et al. (2002), using Adaptive TAP (Opper and Winther, 2000) in order to estimate
mean and covariance of the sources.39 In fact, EP can be seen as particularly efficient way of
searching for an ADATAP fixed point. They address the sparse image coding problem with the
sparse linear model, but do not consider optimal design applications. Our approach is different to

39. What is meant is the posterior covariance of the sources, since in ICA, they are assumed to be independent a priori.

800



BAYESIAN INFERENCE FOR SPARSE LINEAR MODEL

theirs in several important points. Their paper approaches a larger range of problems. On the other
hand, they do not employ the natural EP marginal likelihood approximation we use here, but rather
a variational bound. The study of Kuss and Rasmussen (2005) has indicated the superior quality of
the EP approximation in a different, but related situation. Second, their image coding experiments
are fairly small in scale, and they do not report any of the numerical problems we encountered, or
in fact propose special measures to deal with such. Their paper treats numerically benign cases
such as classification with logistic or probit likelihood alongside challenging (Laplace) or (in our
opinion) highly problematic ones (Student’s t; exponential power with exponent < 1), essentially
recommending the same generic computations (which do not work, to the best of our knowledge
and experience, in the situations we were interested in here).

9.2 Future Work

We have commented in Section 2.3 on the application of our method to the problem of learning and
analysing image codes (Olshausen and Field, 1997; Lewicki and Olshausen, 1999), with the aim
of understanding properties of visual neurons in the brain. In this context, the sparse linear model
has been proposed as a useful setup, in which codes can be learned by maximising the marginal
likelihood. The marginal likelihood approximation of Section 5 is more accurate than the one
used by Lewicki and Olshausen (1999), and it will be interesting to test their hypothesis using our
framework. A study with similar aims is given in Berkes et al. (2008), using variational mean field
Bayes to approximate inference.

Other interesting applications lie in the area of compressive sensing. Some potential ones have
been motivated in Section 2.4, and results will be reported in a later paper (Seeger and Nickisch,
2008). In this context, the large scale techniques motivated in Section 6 will be explored. Our
preliminary findings in Section 7.3 indicate that approximate Bayesian inference and experimental
design hold significant promises for compressive sensing, where so far approaches based on L1-
penalised estimation and random designs seem to predominate.

As detailed in Section 8, our EP framework is closely related to several other established meth-
ods of approximate inference. We plan to do a large, comparative study on several different tasks
and data sets, where ground truth computations will be done via computationally intensive MCMC.
We are not aware of existing comparative studies encompassing several approximate inference tech-
niques for the sparse linear model.

Our experiences with the sparse linear model on the image coding problem (or with very un-
derdetermined gene network identification settings) suggest that in some relevant cases, numerical
stability issues seem to be inherently present in EP (i.e., are not just due to a bad implementation).
These need to be understood much better, before we can seriously talk about generic EP solutions
(Zoeter and Heskes, 2005), comparable to BUGS (Spiegelhalter et al., 1995) for Gibbs sampling
or VIBES (Bishop and Winn, 2003) for variational mean field Bayes, both of which do not pose
big problems of numerical stability. The sparse linear model seems a good test bed for such stud-
ies, different to the Gaussian process classification problem, which is numerically rather harmless.
Since log-concavity helps in the important special case of fully Gaussian posterior approximations,
its role needs to be understood better. Again, the Laplace prior of the sparse linear model will be
important there, being “just about log-concave”. Also, “cut-off” sites enforcing non-negativity, or
more generally linear constraints (see Section 2.3), will play an important role there, not even being
supported on all of R.
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In the MCMC approach of Park and Casella (2005), the noise variance σ2 is integrated out
along with the parameters a. This is possible (approximately) with EP as well, by choosing Q
from an exponential family over (a,σ2), which is not purely Gaussian. We have already done
initial experiments with this extension, which will be reported in a later paper. In comparison to
the method given here, the extension treats σ2 as nuisance variable in a proper Bayesian fashion.
It does not have to be chosen by other means, such as marginal likelihood maximisation. Much of
the treatment of a, such as the representation of Q(a|σ2), or the analytical EP update w.r.t. ai, is
inherited from the framework given here. As an extension of EP beyond the case of fully Gaussian
approximations, the extension is important as test bed for theoretical analyses. On the other hand,
the extension is somewhat more complicated to implement, furthermore some of the numerical
robustness of our method here is lost. For example, Theorem 1 does not hold for non-Gaussian
Q. Moreover, the integration over σ2 required by the EP updates cannot be done analytically, and
approximate Gauss-Laguerre quadrature has to be used.

The Bayesian sparse linear model may have many other applications, given that its MAP variants
(Lasso, basis pursuit) are very widely used. EP has also been applied to approximate inference in
generalised linear models, where the likelihood is not Gaussian anymore, but comes from another
exponential family. An application of this sparse generalised linear model to analysing neuronal
spiking data is given in Seeger et al. (2007a) and Gerwinn et al. (2008), see also Qi et al. (2004). In
this context, efficient online optimisation of experimental stimuli is an important task as well (Lewi
et al., 2007).

The recent empirical success of EP in many different applications renders it important to gain
a firm understanding of this technique. Some of the many relevant open questions are: For which
models does the (single loop) EP algorithm provably converge? For which models is there no more
than a single fixed point? How good is an EP approximation in terms of the marginals, and beyond
that in terms of the covariance estimate? Numerical stability is an important issue for EP, which
does not arise with most other approximate inference techniques. For which models can we expect
numerical difficulties, and why? The step towards fractional EP may improve numerical properties
of the method in general, but how do fractional EP approximations compare to the standard EP
fixed points? Finally, how can EP fixed points be found for very large n, when the current practice
of visiting each site in turn becomes unpractical?
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Appendix A. Details for the EP Update

In this section, we collect details concerning the EP update described in Section 3.3.
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The Laplace site is ti(a) = exp(−τ̃|a|), τ̃ = τ/σ > 0. Note that elsewhere, a prefactor of τ̃/2 is
used, which means that the value for Zi to be computed here has to be multiplied post hoc.40 We
need to compute moments Ik = EN(h,ρ)[a

kti(a)], k = 0,1,2, where we write a = ai, h = h\i, ρ = ρ\i

for simplicity. W.l.o.g., we can assume that τ̃ = 1. Then, I0 = Ĩ0(h)+ Ĩ0(−h), where some algebra
gives

Ĩ0(h) := E
[

I{a≥0}e−a]= exp(ρ/2−h)(1−Φ(ρ1/2 −hρ−1/2)),

where Φ denotes the cumulative distribution function of N(0,1). Now, from the definition of Ĩ0, it
is easy to see that Ĩ0(|h|) ≥ Ĩ0(−|h|), so that

log I0 = log Ĩ0(|h|)+ log

(

1+
Ĩ0(−|h|)
Ĩ0(|h|)

)

can be computed in a stable manner. In the following, we make use of the well known asymptotic
expansion

1−Φ(x) ∼ N(x)x−1 (1−1x−2 (1−3x−2 (1−5x−2 (1−7x−2(. . .)
))))

.

If F(x) := log(1−Φ(x)), we use the asymptotic expansion up to 1−7x−2 for x > 5, while computing
F(x) exactly otherwise.41 It is interesting to note that the simpler approximation 1−Φ(x)≈ N(x)/x
is insufficient and leads to complete failure of EP on most tasks.

With this in mind, we have that log Ĩ0(|h|) = ρ/2−|h|+F(ρ1/2 −|h|ρ−1/2), and

R :=
Ĩ0(−|h|)
Ĩ0(|h|)

= exp
(

2|h|+F(ρ1/2 + |h|ρ−1/2)−F(ρ1/2 −|h|ρ−1/2)
)

.

For example, if ρ1/2 −|h|ρ−1/2 > 5, we use the tail approximation for both F terms. Namely, if the
approximation is 1−Φ(x) ≈ N(x)x−1g(x), we end up with

R =
(ρ−|h|)g(ρ1/2 + |h|ρ−1/2)

(ρ+ |h|)g(ρ1/2 −|h|ρ−1/2)
.

Note that in general, R ∈ (0,1].
Next, I1 = Ĩ1(h)− Ĩ1(−h), with

Ĩ1(h) := E
[

I{a≥0}ae−a]= (h−ρ)Ĩ0(h)+ρ1/2 exp(ρ/2−h)E
[

I{s≥ρ1/2−hρ−1/2}s
]

,

where s ∼ N(0,1). Using (dN(s))/ds = −sN(s), we have that E[I{s≥s0}s] = N(s0). Furthermore,

exp(ρ/2±h)N(ρ1/2 ±hρ−1/2) = N(hρ−1/2),

which does not depend on sgnh. Therefore, the mean of P̂i(a) is

ĥ =
I1

I0
=

(h−ρ)Ĩ0(h)− (−h−ρ)Ĩ0(−h)

I0
= h+ρ

Ĩ0(−h)− Ĩ0(h)

I0

= h+ρ(sgnh)
(

1−2(1+R)−1) .

40. The reason for dropping this prefactor is that we want to deal with the case of fractional sites (see Section 3.3.1) t η
i

by simply replacing τ by ητ.
41. The C math library provides log1p(x) = log(1+ x), which is accurate for small |x|.
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Since I1/I0 = h+ρβi, we have that

βi = (sgnh)
(

1−2(1+R)−1) . (11)

Next, I2 = Ĩ2(h)+ Ĩ2(−h), where some algebra gives

Ĩ2(h) := E
[

I{a≥0}a2e−a]

= (ρ2 −h2)Ĩ0(h)+2hĨ1(h)−2ρ3/2N(hρ−1/2)+ρexp(ρ/2−h)E
[

I{s≥ρ1/2−hρ−1/2}s2
]

= (h−ρ)2Ĩ0(h)+2ρ1/2N(hρ−1/2)(h−ρ)+ρexp(ρ/2−h)E
[

I{s≥ρ1/2−hρ−1/2}s2
]

.

Using s2N(s) = N(s)− (dsN(s))/ds, we see that

ρexp(ρ/2−h)E
[

I{s≥ρ1/2−hρ−1/2}s2
]

= ρĨ0(h)+ρ(ρ1/2 −hρ−1/2)N(hρ−1/2).

Together, we have

Ĩ2(h) = (h2 +ρ2 +ρ−2hρ)Ĩ0(h)+ρ1/2N(hρ−1/2)(h−ρ),

thus

I2 = (h2 +ρ2 +ρ)I0 −2ρh(Ĩ0(h)− Ĩ0(−h))−2ρ3/2N(hρ−1/2).

Using that βi = (Ĩ0(−h)− Ĩ0(h))/I0 and ĥ = h+ρβi, some algebra gives that

I2

I0
= ρ+ρ2 +h2 +2h(ĥ−h)−2ρ3/2N(hρ−1/2)I−1

0 .

Therefore, the variance of P̂i(a) is

ρ̂ =
I2

I0
− ĥ2 = −h2 +(2h− ĥ)ĥ+ρ+ρ2 −2ρ3/2N(hρ−1/2)I−1

0

= ρ+ρ2(1−β2
i )−2ρ3/2N(hρ−1/2)I−1

0 ,

since (2h− ĥ)ĥ = h2 − (ρβi)
2. Since ρ̂ = ρ(1−ρνi), we have that

νi = β2
i −1+(πρ/2)−1/2 exp

(

− h2

2ρ
− log I0

)

.

Finally, in order to incorporate τ̃ 6= 1, we note that this simply means plugging in h = τ̃h\i, ρ =
τ̃2ρ\i above, and multiplying βi by τ̃, νi by τ̃2. Note that Zi = I0 = EQ\i [ti(ai)] is not required for
the EP update itself, but has to be evaluated if an approximation to the marginal likelihood P(D) is
sought (see Section 5; recall that Zi as computed here has to be multiplied with the prefactor τ̃/2 of
ti which we omitted).
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A.1 The Role of Log-concavity

In this section, we give the proof of Theorem 1. Recall the definition of log-concavity and the
marginalisation theorem of Prékopa from Section 3.5. For an update at site i, we can assume
that Q\i(ai) is a proper Gaussian. We begin by showing that Zi = EQ\i [ti(ai)] is log-concave in

h\i. Namely, logQ\i is jointly concave in (ai,h\i) (being a negative quadratic in ai − h\i), so that
ti(ai)Q\i(ai|h\i) is log-concave in (ai,h\i). Then, Zi(h\i) is log-concave by the marginalisation the-
orem. Therefore, νi = −(∂2 logZi)/(∂h2

\i) ≥ 0 (see Section 3.3). The variance of P̂i is σ2ρ′
i, where

ρ′
i = ρ\i(1−σ2νiρ\i). Since ti is bounded with support of positive measure, this variance exists and

is positive, implying that 1−σ2νiρ\i ∈ (0,1]. But π′
i = σ2νi/(1−σ2νiρ\i)≥ σ2νi ≥ 0, so π′

i remains
nonnegative throughout.

Appendix B. Details for Sequential Design

In this section, we collect details for the sequential design application of the sparse linear model.

B.1 The Simple Information Gain Score

The simple information gain is introduced in Section 4.1. Recall the Gaussian relative entropy from
(4), and the fact that M = I +x∗xT

∗ Σ. Thus, if α := 1+xT
∗ Σx∗, then log |M |= logα, using the relation

|I +VW T | = |I +W TV |. Furthermore, the Woodbury formula (Henderson and Searle, 1981) gives
M−1 = I −α−1x∗xT

∗ Σ, so that tr(M−1 − I) = α−1 −1.
Finally, b̃

′
= b̃ +u∗x∗, where b̃ = b(0) +b (see Section 3.4), so that

h′ =
(

Σ−α−1Σx∗xT
∗ Σ
)(

b̃ +u∗x∗
)

= h +α−1(u∗− xT
∗ h)Σx∗,

and
(h′−h)T Σ−1(h′−h) = (α−1)α−2(u∗− xT

∗ h)2.

Altogether, the simple information gain score is

S(x∗,u∗) =
1
2

(

logα+
α−1

α

(

−1+α−1
(

u∗− xT
∗ h

σ

)2
))

.

We need to compute α and xT
∗ h. In the degenerate case, let v = L−1X Π−1x∗, then α = 1 +

xT
∗ Π−1x∗−‖v‖2, and xT

∗ h = xT
∗ Π−1(b(0) +b)−vT γ. In the non-degenerate case, let v = L−1x∗, then

α = 1+‖v‖2, and xT
∗ h = vT γ.

The marginal criteria of Section 4.2 require the computation of z∗ = Σx∗. In the non-degenerate
case, z∗ = L−T v. In the degenerate case, z∗ = Π−1(x∗−XT L−T v).

B.2 Sampling A

We need to sample from Q(A|D) in order to approximate the expected information gain, as noted
in Section 4. Let Q(a) be the posterior over a row of A, based on the representation given in Sec-
tion 3.2, and let n ∼ N(0, I). In the non-degenerate case, a = L−T (σn + γ) is distributed according
to N(h,σ2Σ).

Sampling is more difficult in the degenerate case. Let

I +X Π−1XT = U DUT
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be the spectral decomposition, where D is diagonal and nonnegative, and U ∈ R
m,m is orthonormal.

We make the ansatz
c =

(

I −Π−1XTU RUT X
)

Π−1/2n

with diagonal R. E[ccT ] = Σ gives (D − I)R2 − 2R + D−1 = 0, which is solved by R =
diag(1/(

√
di(

√
di +1)))i. Finally, a = σc +h.

Appendix C. The Marginal Likelihood

In this section, we derive the EP marginal likelihood approximation and its gradient w.r.t. model
parameters. Recall the discussion of Section 5, the definition of L is given in (6). First, logCi =
η−1(logZi − log Z̃i). The computation of logZi is discussed in Appendix A. Some algebra (Seeger,
2005) gives

log Z̃i =
1
2

(

log(1−ηπiρi)−
ηπih2

i −2hiηbi +ρi(ηbi)
2

σ2(1−ηπiρi)

)

,

where Q(ai) = N(ai|hi,σ2ρi).
We begin with ∇X L and ∂L/∂σ−2 (both parameters of P(0)), using (7). Since σ2 also features

explicitly in the sites ti, the derivative is the sum of two parts, and we deal with the second part
below.

d logP(0)(a) = tr
(

σ−2eaT )T
(dX )+

1
2

(

mσ2 −‖e‖2)(dσ−2), e := u−X a.

If Q(a) = N(h,σ2Σ), then

EQ

[

d logP(0)(a)
]

= tr
(

σ−2 f hT −X Σ
)T

(dX )− 1
2

(

‖ f ‖2 +σ2 trX ΣXT −mσ2)(dσ−2),

f := EQ[e] = u−X h.

Now, trX ΣXT = tr(I −ΣΠ) = n− (diagΣ)T π, so that

dL = tr
(

σ−2 f hT −X Σ
)T

(dX )− 1
2

(

‖ f ‖2 −σ2(diagΣ)T π +(n−m)σ2)(dσ−2).

The derivative w.r.t. τ̃ = τ/σ is computed using (8). We have that (d/d τ̃) log ti(ai) = −|ai|+1/τ̃, so
we need to compute

EP̂i
[−|ai|] = −Z−1

i EQ\i [|ai|ti(ai)],

which is of similar from to I1 in Appendix A. In the notation used there, if Î1 = Ĩ1(h)+ Ĩ1(−h), then
Î1/I0 =−ρ−βih+2ρ1/2N(hρ−1/2)I−1

0 . Plugging in h = τ̃h\i, ρ = τ̃2ρ\i, and dividing by τ̃, we have
that

−Z−1
i EQ\i [|ai|ti(ai)] = τ̃ρ\i +βih\i −2ρ1/2

\i N(h\iρ
−1/2
\i )I−1

0 ,

where βi is given by (11) (it is not multiplied by τ̃). Finally, dτ̃ = σ−1(dτ)+ 1
2 τσ(dσ−2), whereby

we can complete the derivative w.r.t. σ−2 as well.
As an aside, there is a subtle issue concerning the derivative w.r.t. σ2. Seeger (2005) shows that

indirect dependencies on hyperparameters through the site parameters do not have to be taken into
account when computing the gradient. But if the derivative of (6) w.r.t. σ2 is computed, keeping
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bi, πi constant, the result is different from ours here. This is explained by our non-standard param-
eterisation of site parameters in the present paper. Namely, what is referred to as site parameters in
Seeger (2005), are in fact the σ−2bi, σ−2πi here, not bi, πi. If the former are kept constant, a direct
differentiation of (6) renders our result here.

Appendix D. Related Approximate Inference Techniques

In this section, we give details on the approximate inference techniques discussed in Section 8.

D.1 Sparse Bayesian Learning

Recall Section 8.1. In order to compute the marginal likelihood P(u,π), we note that

P(0)(a)N(a|0,σ2Π−1) =(2πσ2)−m/2e−(σ−2/2)‖u‖2
(2πσ2)−n/2|Π|1/2

NU(a|σ−2b(0),σ−2(XT X +Π)),

so that with h = Σb(0), Σ−1 = XT X +Π, some algebra gives

2 logP(u,π) = σ−2hT b(0) + log |Σ|− τ21T (π−1)+C,

where C = −3log |Π|−m log(2πσ2)−σ−2‖u‖2 +2n log(τ2/2).
We need to maximise logP(u,π) w.r.t. πi, keeping all other π j fixed. Then, dΠ = (dπi)δiδT

i ,
and let logP(u,π) = (1/2)ψ +C. Furthermore, Q(ai) = N(ai|hi,σ2ρi), that is, ρi = Σi,i. Now,
d log |Π +XT X | = ρi(dπi), and dσ−2hT b(0) = −σ−2h2

i (dπi), so that

dψ =

(

−σ−2h2
i −3π−1

i −ρi +
τ2

π2
i

)

dπi.

Equating this to zero results in a quadratic equation for πi, whose nonnegative solution is given by
(10).

D.2 Variational Mean Field Bayes

The variational mean field Bayesian (VMFB) framework is a fairly generic approach to variational
inference. It starts from the classical variational characterisation of inference (Wainwright and
Jordan, 2003):

logP(u) = sup
Q

EQ
[

logP(u,a,σ2,π)− logQ(a,σ2,π)
]

, (12)

then relaxes the problem by imposing factorisation constraints on allowable Q (the optimal uncon-
strained choice for Q is the true posterior).42 The variational characterisation is also known as
mean field lower bound, because it is the defining feature of (structured) mean field approximations
(Jordan et al., 1997).

Once appropriate factorisation assumptions are placed on Q, the feasible set can be written
analytically in terms of factors from these families, and the right hand side of (12) and its gradient

42. Here, we introduce the scale parameters πi by employing the scale mixture representation (9). VMFB works for
models which can be represented exclusively in terms of exponential family distributions, which is often possible
by introducing latent variables. One could possibly choose another representation of the Laplace sites, whence the
equivalence of VMFB and direct site bounding would not hold, but this is not done here.
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can be computed easily. Furthermore, this expression now lower bounds logP(u), because the
maximisation is over the subset of factorising Q. On the other hand, the optimisation over factorising
Q is not convex in general, and usually only a local optimum is found. Moreover, even the global
maximum is the minimiser of D[Q‖P(·|D)] over factorising Q (this is also the slack in the lower
bound), so that Q does not in general have the same marginal moments as P(·|D). The latter would
be obtained by minimising D[P(·|D)‖Q] over factorising Q, but not even local minima of the latter
can be found by any tractable method currently known.

For fixed σ2, it has been shown in Palmer et al. (2006) that VMFB is strongly equivalent to
Girolami’s method of Section 8.2, in that the variational parameters, their updates, and the logP(u)
lower bound are the same. We make the factorisation assumption Q(a,π) = Q(a)Q(π). The result-
ing lower bound on logP(u) is optimised by updating the factors in turn, fixing the corresponding
other one. If we fix Q(π), the maximiser is Q(a) = N(h,σ2Σ), where h, Σ are defined as usual, but
plugging in EQ[π] for π. If Q(a) is kept fixed, then the maximiser is

Q(π) ∝ eEQ(a,σ2)[logP(π|a,σ2,u)] ∝ P(π)eEQ(a,σ2)[logP(a|σ2,π)]
,

which decomposes w.r.t. the πi. The form is given in Section 8.3, namely logQ(πi) =C+logπ−3/2
i −

(π2
i E[a2

i σ−2]+2λ)/(2πi), which is inverse Gaussian with mean µ̃ = τ/
√

E[a2
i σ−2] and λ̃ = τ2. A se-

quential VMFB variant iterates over the sites, updating π′
i = τ/

√

E[a2
i σ−2]. This is algorithmically

equivalent the direct site bounding method of Section 8.2.

Appendix E. Modifications of Olshausen/Field Code

We compare our method against the one proposed by Olshausen and Field (1997), using their code
which can be obtained at http://redwood.berkeley.edu/bruno/sparsenet/. Since the code
is written for interactive use, we had to modify it in order to work for our study, which compares
fully automatic methods.

First, our modification accepts a fixed training set of r = 50000 image patches, while the original
code extracts patches on the fly.43 A sweep over the whole set consists of 500 batch updates, where
batches are drawn at random without replacement. 20 sweeps are done in total.

The code comes with several parameters. A study of the code reveals that noise var is our
σ2, beta is our τ̃ = τ/σ, and sigma is set to one. There is a learning rate parameter eta, which
the documentation recommends to set by hand, starting with η = 5, reducing it towards η = 1 (the
default value in the code). We chose the following schedule: η = 5,4,3 for 100, η = 2 for 500, then
η = 1 for the remaining 9200 updates.
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Abstract
In this paper we develop a theoretical analysis of the performance of sampling-based fitted value it-
eration (FVI) to solve infinite state-space, discounted-reward Markovian decision processes (MDPs)
under the assumption that a generative model of the environment is available. Our main results
come in the form of finite-time bounds on the performance of two versions of sampling-based FVI.
The convergence rate results obtained allow us to show that both versions of FVI are well behav-
ing in the sense that by using a sufficiently large number of samples for a large class of MDPs,
arbitrary good performance can be achieved with high probability. An important feature of our
proof technique is that it permits the study of weighted Lp-norm performance bounds. As a result,
our technique applies to a large class of function-approximation methods (e.g., neural networks,
adaptive regression trees, kernel machines, locally weighted learning), and our bounds scale well
with the effective horizon of the MDP. The bounds show a dependence on the stochastic stability
properties of the MDP: they scale with the discounted-average concentrability of the future-state
distributions. They also depend on a new measure of the approximation power of the function
space, the inherent Bellman residual, which reflects how well the function space is “aligned” with
the dynamics and rewards of the MDP. The conditions of the main result, as well as the concepts
introduced in the analysis, are extensively discussed and compared to previous theoretical results.
Numerical experiments are used to substantiate the theoretical findings.

Keywords: fitted value iteration, discounted Markovian decision processes, generative model,
reinforcement learning, supervised learning, regression, Pollard’s inequality, statistical learning
theory, optimal control

1. Introduction

During the last decade, reinforcement learning (RL) algorithms have been successfully applied to
a number of difficult control problems, such as job-shop scheduling (Zhang and Dietterich, 1995),
backgammon (Tesauro, 1995), elevator control (Crites and Barto, 1997), machine maintenance (Ma-
hadevan et al., 1997), dynamic channel allocation (Singh and Bertsekas, 1997), or airline seat al-
location (Gosavi, 2004). The set of possible states in these problems is very large, and so only
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algorithms that can successfully generalize to unseen states are expected to achieve non-trivial per-
formance. The approach in the above mentioned works is to learn an approximation to the optimal
value function that assigns to each state the best possible expected long-term cumulative reward
resulting from starting the control from the selected state. The knowledge of the optimal value
function is sufficient to achieve optimal control (Bertsekas and Tsitsiklis, 1996), and in many cases
an approximation to the optimal value function is already sufficient to achieve a good control per-
formance. In large state-space problems, a function approximation method is used to represent the
learnt value function. In all the above successful applications this is the approach used. Yet, the
interaction of RL algorithms and function approximation methods is still not very well understood.

Our goal in this paper is to improve this situation by studying one of the simplest ways to
combine RL and function approximation, namely, using function approximation in value iteration.
The advantage of studying such a simple combination is that some technical difficulties are avoided,
yet, as we will see, the problem studied is challenging enough to make its study worthwhile.

Value iteration is a dynamic programming algorithm which uses ‘value backups’ to generate
a sequence of value functions (i.e., functions defined over the state space) in a recursive manner.
After a sufficiently large number of iterations the obtained function can be used to compute a good
policy. Exact computations of the value backups require computing parametric integrals over the
state space. Except in a few special cases, neither such exact computations, nor the exact representa-
tion of the resulting functions is possible. The idea underlying sampling-based fitted value iteration
(FVI) is to calculate the back-ups approximately using Monte-Carlo integration at a finite number of
points and then find a best fit within a user-chosen set of functions to the computed values. The hope
is that if the function set is rich enough then the fitted value function will be a good approximation
to the next iterate, ultimately leading to a good policy. A large number of successful experimen-
tal works concerned algorithms that share many similarities with FVI (e.g., Wang and Dietterich,
1999; Dietterich and Wang, 2002; Lagoudakis and Parr, 2003; Jung and Uthmann, 2004; Ernst et al.,
2005; Riedmiller, 2005). Hence, in this paper we concentrate on the theoretical analysis of FVI, as
we believe that such an analysis can yield to useful insights into why and when sampling-based ap-
proximate dynamic programming (ADP) can be expected to perform well. The relative simplicity
of the setup allows a simplified analysis, yet it already shares many of the difficulties that one has
to overcome in other, more involved scenarios. (In our followup work we studied other variants
of sampling-based ADP. The reader interested in such extensions should consult the papers Antos
et al. (2006, 2007, 2008).)

Despite the appealing simplicity of the idea and the successful demonstrations of various sampling-
based ADP algorithms, without any further considerations it is still unclear whether sampling-based
ADP, and in particular sampling-based FVI is indeed a “good” algorithm. In particular, Baird (1995)
and Tsitsiklis and Van Roy (1996) gave simple counterexamples showing that FVI can be unstable.
These counterexamples are deceptively simple: the MDP is finite, exact backups can be and are
computed, the approximate value function is calculated using a linear combination of a number of
fixed basis functions and the optimal value function can be represented exactly by such a linear com-
bination. Hence, the function set seems sufficiently rich. Despite this, the iterates diverge. Since
value iteration without projection is well behaved, we must conclude that the instable behavior is
the result of the errors introduced when the iterates are projected onto the function space. Our aim
in this paper is to develop a better understanding of why, despite the conceivable difficulties, prac-
titioners often find that sampling-based FVI is well behaving and, in particular, we want to develop
a theory explaining when to expect good performance.
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The setting studied in this paper is as follows: We assume that the state space is a compact
subset of a Euclidean space and that the MDP has a finite number of actions. The problem is to
find a policy (or controller) that maximizes the expectation of the infinite-horizon, discounted sum
of rewards. We shall assume that the solver can sample any transition from any state, that is, that
a generative model (or simulator) of the environment is available. This model has been used in a
number of previous works (e.g., Kearns et al., 1999; Ng and Jordan, 2000; Kakade and Langford,
2002; Kakade, 2003). An extension of the present work to the case when only a single trajectory is
available for learning is published elsewhere (Antos et al., 2006).

We investigate two versions of the basic algorithm: In the multi-sample variant a fresh sample
set is generated in each iteration, while in the single-sample variant the same sample set is used
throughout all the iterations. Interestingly, we find that no serious degradation of performance
results from reusing the samples. In fact, we find that when the discount factor is close to one then
the single-sample variant can be expected to be more efficient in the sense of yielding smaller errors
using fewer samples. The motivation of this comparison is to get prepared for the case when the
samples are given or when they are expensive to generate for some reason.

Our results come in the form of high-probability bounds on the performance as a function of
the number of samples generated, some properties of the MDP and the function class used for
approximating the value functions. We will compare our bounds to those available in supervised
learning (regression), where alike bounds have two terms: one bounding the bias of the algorithm,
while the other bounding the variance, or estimation error. The term bounding the bias decreases
when the approximation power of the function class is increased (hence this term is occasionally
called the approximation error term). The term bounding the variance decreases as the number of
samples is increased, but increases when the richness of the function class is increased.

Although our bounds are similar to bounds of supervised learning, there are some notable dif-
ferences. In regression estimation, the approximation power of the function set is usually measured
w.r.t. (with respect to) some fixed reference class G :

d(G ,F ) = sup
g∈G

inf
f∈F

‖ f −g‖.

The reference class G is typically a classical smoothness class, such as a Lipschitz space. This
measure is inadequate for our purposes since in the counterexamples of Baird (1995) and Tsitsiklis
and Van Roy (1996) the target function (whatever function space it belongs to) can be approximated
with zero error, but FVI still exhibits unbounded errors. In fact, our bounds use a different charac-
terization of the approximation power of the function class F , which we call the inherent Bellman
error of F :

d(T F ,F ) = sup
g∈F

inf
f∈F

‖ f −T g‖.

Here T is the Bellman operator underlying the MDP (capturing the essential properties of the MDP’s
dynamics) and ‖ · ‖ is an appropriate weighted p-norm that is chosen by the user (the exact defini-
tions will be given in Section 2). Observe that no external reference class is used in the definition
of d(T F ,F ): the inherent Bellman error reflects how well the function space F is ‘aligned’ to the
Bellman operator, that is, the dynamics of the MDP. In the above-mentioned counterexamples the
inherent Bellman error of the chosen function space is infinite and so the bound (correctly) indicates
the possibility of divergence.

The bounds on the variance are closer to their regression counterparts: Just like in regression
our variance bounds depend on the capacity of the function space used and decay polynomially
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with the number of samples. However, the rate of decay is slightly worse than the corresponding
rate of (optimal) regression procedures. The difference comes from the bias of approximating the
maximum of expected values by the maximum of sample averages. Nevertheless the bounds still
indicate that the maximal error of the procedure in the limit when the number of samples grows
to infinity converges to a finite positive number. This in turn is controlled by the inherent Bellman
error of the function space.

As it was already hinted above, our bounds display the usual bias-variance tradeoff: In order
to keep both the approximation and estimation errors small, the number of samples and the power
of the function class has to be increased simultaneously. When this is done in a principled way, the
resulting algorithm becomes consistent: It’s error in the limit disappears for a large class of MDPs.
Consistency is an important property of any MDP algorithm. If an algorithm fails to prove to be
consistent, we would be suspicious about its use.

Our bounds apply only to those MDPs whose so-called discounted-average concentrability of
future-state distributions is finite. The precise meaning of this will be given in Section 5, here we
note in passing that this condition holds trivially in every finite MDP, and also, more generally, if the
MDP’s transition kernel possesses a bounded density. This latter class of MDPs has been considered
in many previous theoretical works (e.g., Chow and Tsitsiklis, 1989, 1991; Rust, 1996b; Szepesvári,
2001). In fact, this class of MDPs is quite large in the sense that they contain hard instances. This
is discussed in some detail in Section 8. As far as practical examples are concerned, let us mention
that resource allocation problems will typically have this property. We will also show a connection
between our concentrability factor and Lyapunov exponents, well known from the stability analysis
of dynamical systems.

Our proofs build on a recent technique proposed by Munos (2003) that allows the propagation
of weighted p-norm losses in approximate value iteration. In contrast, most previous analysis of
FVI relied on propagating errors w.r.t. the maximum norm (Gordon, 1995; Tsitsiklis and Van Roy,
1996). The advantage of using p-norm loss bounds is that it allows the analysis of algorithms that
use p-norm fitting (in particular, 2-norm fitting). Unlike Munos (2003) and the follow-up work
(Munos, 2005), we explicitly deal with infinite state spaces, the effects of using a finite random
sample, that is, the bias-variance dilemma and the consistency of sampling-based FVI.

The paper is organized as follows: In the next section we introduce the concepts and notation
used in the rest of the paper. The problem is formally defined and the algorithms are given in
Section 3. Next, we develop finite-sample bounds for the error committed in a single iteration
(Section 4). This bound is used in proving our main results in Section 5. We extend these results to
the problem of obtaining a good policy in Section 6, followed by a construction that allows one to
achieve asymptotic consistency when the unknown MDP is smooth with an unknown smoothness
factor (Section 7). Relationship to previous works is discussed in details in Section 8. An experiment
in a simulated environment, highlighting the main points of the analysis is given in Section 9. The
proofs of the statements are given in the Appendix.

2. Markovian Decision Processes

A discounted Markovian Decision Process (discounted MDP) is a 5-tuple (X ,A ,P,S,γ), where X
is the state space, A is the action space, P is the transition probability kernel, S is the reward
kernel and 0 < γ < 1 is the discount factor (Bertsekas and Shreve, 1978; Puterman, 1994). In this
paper we consider continuous state space, finite action MDPs (i.e., |A | < +∞). For the sake of
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simplicity we assume that X is a bounded, closed subset of a Euclidean space, R
d . The system of

Borel-measurable sets of X shall be denoted by B(X ).
The interpretation of an MDP as a control problem is as follows: Each initial state X0 and action

sequence a0,a1, . . . gives rise to a sequence of states X1,X2, . . . and rewards R1,R2, . . . satisfying, for
any B and C Borel-measurable sets the equalities

P(Xt+1 ∈ B|Xt = x,at = a) = P(B|x,a),

and
P(Rt ∈C|Xt = x,at = a) = S(C|x,a).

Equivalently, we write Xt+1 ∼ P(·|Xt ,a), Rt ∼ S(·|Xt ,a). In words, we say that when action at is
executed from state Xt = x the process makes a transition from x to the next state Xt+1 and a reward,
Rt , is incurred. The history of the process up to time t is Ht = (X0,a0,R0, . . . ,Xt−1,at−1,Rt−1,Xt).
We assume that the random rewards {Rt} are bounded by some positive number R̂max, w.p. 1 (with
probability one).1

A policy is a sequence of functions that maps possible histories to probability distributions over
the space of actions. Hence if the space of histories at time step t is denoted by Ht then a policy
π is a sequence π0,π1, . . ., where πt maps Ht to M(A), the space of all probability distributions
over A .2 ‘Following a policy’ means that for any time step t given the history x0,a0, . . . ,xt the
probability of selecting an action a equals πt(x0,a0, . . . ,xt)(a). A policy is called stationary if πt

depends only on the last state visited. Equivalently, a policy π = (π0,π1, . . .) is called stationary
if πt(x0,a0, . . . ,xt) = π0(xt) holds for all t ≥ 0. A policy is called deterministic if for any history
x0,a0, . . . ,xt there exists some action a such that πt(x0,a0, . . . ,xt) is concentrated on this action.
Hence, any deterministic stationary policy can be identified by some mapping from the state space
to the action space and so in the following, at the price of abusing the notation and the terminology
slightly, we will call such mappings policies, too.

The goal is to find a policy π that maximizes the expected total discounted reward given any
initial state. Under this criterion the value of a policy π and a state x ∈ X is given by

V π(x) = E

[
∞

∑
t=0

γ tRπ
t |X0 = x

]
,

where Rπ
t is the reward incurred at time t when executing policy π. The optimal expected total

discounted reward when the process is started from state x shall be denoted by V ∗(x); V ∗ is called
the optimal value function and is defined by V ∗(x) = supπV π(x). A policy π is called optimal if
it attains the optimal values for any state x ∈ X , that is if V π(x) = V ∗(x) for all x ∈ X . We also
let Q∗(x,a) denote the long-term total expected discounted reward when the process is started from
state x, the first executed action is a and it is assumed that after the first step an optimal policy is
followed. Since by assumption the action space is finite, the rewards are bounded, and we assume
discounting, the existence of deterministic stationary optimal policies is guaranteed (Bertsekas and
Shreve, 1978).

1. This condition could be replaced by a standard moment condition on the random rewards (Györfi et al., 2002) without
changing the results.

2. In fact, πt must be a measurable mapping so that we are allowed to talk about the probability of executing an action.
Measurability issues by now are well understood and hence we shall not deal with them here. For a complete
treatment the interested reader is referred to Bertsekas and Shreve (1978).
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Let us now introduce a few function spaces and operators that will be needed in the rest of the
paper. Let us denote the space of bounded measurable functions with domain X by B(X ). Further,
the space of measurable functions bounded by 0 < Vmax < +∞ shall be denoted by B(X ;Vmax). A
deterministic stationary policy π : X → A defines the transition probability kernel Pπ according to
Pπ(dy|x) = P(dy|x,π(x)). From this kernel two related operators are derived: a right-linear operator,
Pπ· : B(X ) → B(X ), defined by

(PπV )(x) =
Z

V (y)Pπ(dy|x),

and a left-linear operator, ·Pπ : M(X ) → M(X ), defined by

(µPπ)(dy) =
Z

Pπ(dy|x)µ(dx).

Here µ ∈ M(X ) and M(X ) is the space of all probability distributions over X .
In words, (PπV )(x) is the expected value of V after following π for a single time-step when

starting from x, and µPπ is the distribution of states if the system is started from X0 ∼ µ and policy
π is followed for a single time-step. The product of two kernels Pπ1 and Pπ2 is defined in the natural
way:

(Pπ1Pπ2)(dz|x) =
Z

Pπ1(dy|x)Pπ2(dz|y).

Hence, µPπ1Pπ2 is the distribution of states if the system is started from X0 ∼ µ, policy π1 is fol-
lowed for the first step and then policy π2 is followed for the second step. The interpretation of
(Pπ1Pπ2V )(x) is similar.

We say that a (deterministic stationary) policy π is greedy w.r.t. a function V ∈ B(X ) if, for all
x ∈ X ,

π(x) ∈ argmax
a∈A

{
r(x,a)+ γ

Z

V (y)P(dy|x,a)

}
,

where r(x,a) =
R

zS(dz|x,a) is the expected reward of executing action a in state x. We assume that
r is a bounded, measurable function. Actions maximizing r(x,a)+ γ

R

V (y)P(dy|x,a) are said to be
greedy w.r.t. V . Since A is finite the set of greedy actions is non-empty for any function V .

Define operator T : B(X ) → B(X ) by

(TV )(x) = max
a∈A

{
r(x,a)+ γ

Z

V (y)P(dy|x,a)

}
, V ∈ B(X ).

Operator T is called the Bellman operator underlying the MDP. Similarly, to any stationary deter-
ministic policy π there corresponds an operator T π : B(X ) → B(X ) defined by

(T πV )(x) = r(x,π(x))+(PπV )(x).

It is well known that T is a contraction mapping in supremum norm with contraction coefficient
γ: ‖TV −TV ′‖∞ ≤ γ‖V −V ′‖∞. Hence, by Banach’s fixed-point theorem, T possesses a unique
fixed point. Moreover, this fixed point turns out to be equal to the optimal value function, V ∗. Then
a simple contraction argument shows that the so-called value-iteration algorithm,

Vk+1 = TVk,
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with arbitrary V0 ∈ B(X ) yields a sequence of iterates, Vk, that converge to V ∗ at a geometric rate.
The contraction arguments also show that if |r(x,a)| is bounded by Rmax > 0 then V ∗ is bounded
by Rmax/(1− γ) and if V0 ∈ B(X ;Rmax/(1− γ)) then the same holds for Vk, too. Proofs of these
statements can be found in many textbooks such as in that of Bertsekas and Shreve (1978).

Our initial set of assumptions on the class of MDPs considered is summarized as follows:

Assumption A0 [MDP Regularity] The MDP (X ,A ,P,S,γ) satisfies the following conditions: X
is a bounded, closed subset of some Euclidean space, A is finite and the discount factor γ satis-
fies 0 < γ < 1. The reward kernel S is such that the immediate reward function r is a bounded
measurable function with bound Rmax. Further, the support of S(·|x,a) is included in [−R̂max, R̂max]
independently of (x,a) ∈ X ×A .

Let µ be a distribution over X . For a real-valued measurable function g defined over X , ‖g‖p,µ
is defined by ‖g‖p

p,µ =
R

|g(x)|pµ(dx). The space of functions with bounded ‖·‖p,µ-norm shall be
denoted by Lp(X ;µ).

3. Sampling-based Fitted Value Iteration

The parameters of sampling-based FVI are a distribution, µ ∈ M(X ), a function set F ⊂ B(X ), an
initial value function, V0 ∈ F , and the integers N,M and K. The algorithm works by computing a
series of functions, V1,V2, . . . ∈ F in a recursive manner. The (k + 1)th iterate is obtained from the
kth function as follows: First a Monte-Carlo estimate of TVk is computed at a number of random
states (Xi)1≤i≤N :

V̂ (Xi) = max
a∈A

1
M

M

∑
j=1

[
RXi,a

j + γVk(Y
Xi,a
j )

]
, i = 1,2, . . . ,N.

Here the basepoints, X1, . . . ,XN , are sampled from the distribution µ, independently of each other.
For each of these basepoints and for each possible action a ∈ A the next states, Y Xi,a

j ∈ X , and

rewards, RXi,a
j ∈ R, are drawn via the help of the generative model of the MDP:

Y Xi,a
j ∼ P(·|Xi,a),

RXi,a
j ∼ S(·|Xi,a),

( j = 1,2, . . . ,M, i = 1, . . . ,N). By assumption, (Y Xi,a
j ,RXi,a

j ) and (Y
Xi′ ,a

′

j′ ,R
Xi′ ,a

′

j′ ) are independent of
each other whenever (i, j,a) 6= (i′, j′,a′). The next iterate Vk+1 is obtained as the best fit in F to the
data (Xi,V̂ (Xi))i=1,2,...,N w.r.t. the p-norm based empirical loss

Vk+1 = argmin
f∈F

N

∑
i=1

| f (Xi)−V̂ (Xi)|
p. (1)

These steps are iterated K > 0 times, yielding the sequence V1, . . . ,VK .
We study two variants of this algorithm: When a fresh sample is generated in each iteration, we

call the algorithm the multi-sample variant. The total number of samples used by the multi-sample
algorithm is thus K×N×M. Since in a single iteration only a fraction of these samples is used, one
may wonder if it were more sample efficient to use all the samples in all the iterations.3 We shall call

3. Sample-efficiency becomes an issue when the sample generation process is not controlled (the samples are given) or
when it is expensive to generate the samples due to the high cost of simulation.
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the version of the algorithm the single-sample variant (details will be given in Section 5). A possible
counterargument against the single-sample variant is that since the samples used in subsequent
iterations are correlated, the bias due to sampling errors may get amplified. One of our interesting
theoretical findings is that the bias-amplification effect is not too severe and, in fact, the single-
sample variant of the algorithm is well behaving and can be expected to outperform the multi-sample
variant. In the experiments we will see such a case.

Let us now discuss the choice of the function space F . Generally, F is selected to be a finitely
parameterized class of functions:

F = { fθ ∈ B(X ) |θ ∈ Θ}, dim(Θ) < +∞.

Our results apply to both linear ( fθ(x) = θT φ(x)) and non-linear ( fθ(x) = f (x;θ)) parameterizations,
such as wavelet based approximations, multi-layer neural networks or kernel-based regression tech-
niques. Another possibility is to use the kernel mapping idea underlying many recent state-of-the-art
supervised-learning methods, such as support-vector machines, support-vector regression or Gaus-
sian processes (Cristianini and Shawe-Taylor, 2000). Given a (positive definite) kernel function
K , F can be chosen as a closed convex subset of the reproducing-kernel Hilbert-space (RKHS)
associated to K . In this case the optimization problem (1) still admits a finite, closed-form solution
despite that the function space F cannot be written in the above form for any finite dimensional
parameters space (Kimeldorf and Wahba, 1971; Schölkopf and Smola, 2002).

4. Approximating the Bellman Operator

The purpose of this section is to bound the error introduced in a single iteration of the algorithm.
There are two components of this error: The approximation error caused by projecting the iterates
into the function space F and the estimation error caused by using a finite, random sample.

The approximation error can be best explained by introducing the metric projection operator:
Fix the sampling distribution µ ∈ M(X ) and let p ≥ 1. The metric projection of TV onto F w.r.t.
the µ-weighted p-norm is defined by

ΠF TV = argmin
f∈F

‖ f −TV‖p,µ .

Here ΠF : Lp(X ;µ) → F for g ∈ Lp(X ;µ) gives the best approximation to g in F .4 The approx-
imation error in the kth step for V = Vk is dp,µ(TV,F ) = ‖ΠF TV −TV‖p,µ. More generally, we
let

dp,µ(TV,F ) = inf
f∈F

‖ f −TV‖p,µ .

Hence, the approximation error can be made small by selecting F to be large enough. We shall
discuss how this can be accomplished for a large class of MDPs in Section 7.

4. The existence and uniqueness of best approximations is one of the fundamental problems of approximation theory.
Existence can be guaranteed under fairly mild conditions, such as the compactness of F w.r.t. ‖·‖p,µ, or if F is finite
dimensional (Cheney, 1966). Since the metric projection operator is needed for discussion purposes only, here we
simply assume that ΠF is well-defined.
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Let us now turn to the discussion of the estimation error. In the kth iteration, given V = Vk, the
function V ′ = Vk+1 is computed as follows:

V̂ (Xi) = max
a∈A

1
M

M

∑
j=1

[
RXi,a

j + γV (Y Xi,a
j )

]
, i = 1,2, . . . ,N, (2)

V ′ = argmin
f∈F

N

∑
i=1

∣∣ f (Xi)−V̂ (Xi)
∣∣p , (3)

where the random samples satisfy the conditions of the previous section and, for the sake of sim-
plicity, we assume that the minimizer in Equation (3) exists.

Clearly, for a fixed Xi, maxa 1/M ∑M
j=1(R

Xi,a
j + γV (Y Xi,a

j )) → (TV )(Xi) as M → ∞ w.p.1. Hence,

for large enough M, V̂ (Xi) is a good approximation to (TV )(Xi). On the other hand, if N is big
then for any ( f ,g) ∈ F ×F , the empirical p-norm loss, 1/N ∑N

i=1( f (Xi)− g(Xi))
p, is a good ap-

proximation to the true loss ‖ f −g‖p
p,µ. Hence, we expect to find the minimizer of (3) to be close

to the minimizer of ‖ f −TV‖p
p,µ. Since the function xp is strictly increasing for x > 0, p > 0, the

minimizer of ‖ f −TV‖p
p,µ over F is just the metric projection of TV on F , hence for N,M big, V ′

can be expected to be close to ΠF TV .
Note that Equation (3) looks like an ordinary p-norm function fitting. One difference though is

that in regression the target function equals the regressor g(x) = E[V̂ (Xi)|Xi = x], whilst in our case
the target function is TV and TV 6= g. This is because

E

[
max
a∈A

1
M

M

∑
j=1

[
RXi,a

j + γV (Y Xi,a
j )

] ∣∣∣Xi

]
≥ max

a∈A
E

[
1
M

M

∑
j=1

[
RXi,a

j + γV (Y Xi,a
j )

] ∣∣∣Xi

]
.

In fact, if we had an equality here then we would have no reason to set M > 1: in a pure regres-
sion setting it is always better to have a completely fresh pair of samples than to have a pair where
the covariate is set to be equal to some previous sample. Due to M > 1 the rate of convergence with
the sample size of sampling-based FVI will be slightly worse than the rates available for regression.

Above we argued that for N large enough and for a fixed pair ( f ,g) ∈ F ×F , the empirical
loss will approximate the true loss, that is, the estimation error will be small. However, we need
this property to hold for V ′. Since V ′ is the minimizer of the empirical loss, it depends on the
random samples and hence it is a random object by itself and so the argument that the estimation
error is small for any fixed, deterministic pair of functions cannot be used with V ′. This is, however,
the situation in supervised learning problems, too. A simple idea developed there is to bound the
estimation error of V ′ by the worst-case estimation error over F :

∣∣∣∣∣
1
N

N

∑
i=1

|V ′(Xi)−g(Xi)|
p −
∥∥V ′−g

∥∥p
p,µ

∣∣∣∣∣≤ sup
f∈F

∣∣∣∣∣
1
N

N

∑
i=1

| f (Xi)−g(Xi)|
p −‖ f −g‖p

p,µ

∣∣∣∣∣ .

This inequality holds w.p. 1 since for any random event ω, V ′ = V ′(ω) is an element of F . The
right-hand side here is the maximal deviation of a large number of empirical averages from their
respective means. The behavior of this quantity is the main focus of empirical process theory and
we shall use the tools developed there, in particular Pollard’s tail inequality (cf., Theorem 5 in
Appendix A).

When bounding the size of maximal deviations, the size of the function set becomes a major
factor. When the function set has a finite number of elements, a bound follows by exponential tail

823



MUNOS AND SZEPESVÁRI

inequalities and a union bounding argument. When F is infinite, the ‘capacity’ of F measured
by the (empirical) covering number of F can be used to derive an appropriate bound: Let ε >

0, q ≥ 1, x1:N def
= (x1, . . . ,xN) ∈ X N be fixed. The (ε,q)-covering number of the set F (x1:N) =

{( f (x1), . . . , f (xN)) | f ∈ F } is the smallest integer m such that F (x1:N) can be covered by m balls
of the normed-space (RN ,‖ · ‖q) with centers in F (x1:N) and radius N1/qε. The (ε,q)-covering
number of F (x1:N) is denoted by Nq(ε,F (x1:N)). When q = 1, we use N instead of N1. When
X1:N are i.i.d. with common underlying distribution µ then E

[
Nq(ε,F (X1:N))

]
shall be denoted

by Nq(ε,F ,N,µ). By Jensen’s inequality N p ≤ Nq for p ≤ q. The logarithm of Nq is called the
q-norm metric entropy of F . For q = 1, we shall call logN 1 the metric entropy of F (without any
qualifiers).

The idea underlying covering numbers is that what really matters when bounding maximal
deviations is how much the functions in the function space vary at the actual samples. Of course,
without imposing any conditions on the function space, covering numbers can grow as a function
of the sample size.

For specific choices of F , however, it is possible to bound the covering numbers of F indepen-
dently of the number of samples. In fact, according to a well-known result due to Haussler (1995),
covering numbers can be bounded as a function of the so-called pseudo-dimension of the function
class. The pseudo-dimension, or VC-subgraph dimension VF + of F is defined as the VC-dimension
of the subgraphs of functions in F .5 The following statement gives the bound that does not depend
on the number of sample points:

Proposition 1 (Haussler (1995), Corollary 3) For any set X , any points x1:N ∈ X N , any class F
of functions on X taking values in [0,L] with pseudo-dimension VF + < ∞, and any ε > 0,

N (ε,F (x1:N)) ≤ e(VF + +1)

(
2eL

ε

)VF +

.

For a given set of functions F let a + F denote the set of functions shifted by the constant a:
a+F = { f +a | f ∈ F }. Clearly, neither the pseudo-dimension nor covering numbers are changed
by shifts. This allows one to extend Proposition 1 to function sets with functions taking values in
[−L,+L].

Bounds on the pseudo-dimension are known for many popular function classes including lin-
early parameterized function classes, multi-layer perceptrons, radial basis function networks, sev-
eral non-and semi-parametric function classes (cf., Niyogi and Girosi, 1999; Anthony and Bartlett,
1999; Györfi et al., 2002; Zhang, 2002, and the references therein). If q is the dimensionality of the
function space, these bounds take the form O(log(q)), O(q) or O(q logq).6

Another route to get a useful bound on the number of samples is to derive an upper bound on the
metric entropy that grows with the number of samples at a sublinear rate. As an example consider
the following class of bounded-weight, linearly parameterized functions:

FA = { fθ : X → R | fθ(x) = θT φ(x), ‖θ‖q ≤ A}.

5. The VC-dimension of a set system is defined as follows (Sauer, 1972; Vapnik and Chervonenkis, 1971): Given a set
system C with base set U we say that C shatters the points of A ⊂ U if all possible 2|A| subsets of A can be obtained
by intersecting A with elements of C . The VC-dimension of C is the cardinality of the largest subset A ⊂ U that can
be shattered.

6. Again, similar bounds are known to hold for the supremum-norm metric entropy.
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It is known that for finite-dimensional smooth parametric classes their metric entropy scales with
dim(φ) < +∞. If φ is the feature map associated with some positive definite kernel function K then
φ can be infinite dimensional (this class arises if one ‘kernelizes’ FVI). In this case the bounds due
to Zhang (2002) can be used. These bound the metric entropy by dA2B2/ε2e log(2N + 1), where B
is an upper bound on supx∈X ‖φ(x)‖p with p = 1/(1−1/q).7

4.1 Finite-sample Bounds

The following lemma shows that with high probability, V ′ is a good approximation to TV when
some element of F is close to TV and if the number of samples is high enough:

Lemma 1 Consider an MDP satisfying Assumption A0. Let Vmax = Rmax/(1− γ), fix a real number
p ≥ 1, integers N,M ≥ 1, µ ∈ M(X ) and F ⊂ B(X ;Vmax). Pick any V ∈ B(X ;Vmax) and let V ′ =
V ′(V,N,M,µ,F ) be defined by Equation (3). Let N0(N) = N

(
1
8

( ε
4

)p
,F ,N,µ

)
. Then for any

ε,δ > 0, ∥∥V ′−TV
∥∥

p,µ ≤ dp,µ(TV,F )+ ε

holds w.p. at least 1−δ provided that

N > 128

(
8Vmax

ε

)2p(
log(1/δ)+ log(32N0(N))

)
(4)

and

M >
8(R̂max + γVmax)

2

ε2

(
log(1/δ)+ log(8N|A |)

)
. (5)

As we have seen before, for a large number of choices of F , the metric entropy of F is independent
of N. In such cases Equation (4) gives an explicit bound on N and M. In the resulting bound, the
total number of samples per iteration, N ×M, scales with ε−(2p+2) (apart from logarithmic terms).
The comparable bound for the pure regression setting is ε−2p. The additional quadratic factor is the
price to pay because of the biasedness of the values V̂ (Xi).

The main ideas of the proof are illustrated using Figure 1 (the proof of the Lemma can be found
in Appendix A). The left-hand side of this figure depicts the space of bounded functions over X ,
while the right-hand side figure shows a corresponding vector space. The spaces are connected by

the mapping f 7→ f̃
def
= ( f (X1), . . . , f (XN))T . In particular, this mapping sends the set F into the set

F̃ = { f̃ | f ∈ F }.
The proof goes by upper bounding the distance between V ′ and TV in terms of the distance

between f ∗ and TV . Here f ∗ = ΠF TV is the best fit to TV in F . The choice of f ∗ is motivated
by the fact that V ′ is the best fit in F to the data (Xi,V̂ (Xi))i=1,...,N w.r.t. the p-norm ‖·‖p. The
bound is developed by relating a series of distances to each other: In particular, if N is large then
‖V ′−TV‖p

p,µ and ‖Ṽ ′− T̃V‖p
p are expected to be close to each other. On the other hand, if M is

large then V̂ and T̃V are expected to be close to each other. Hence, ‖Ṽ ′− T̃V‖p
p and ‖Ṽ ′− V̂‖p

p are
expected to be close to each other. Now, since Ṽ ′ is the best fit to V̂ in F̃ , the distance between Ṽ ′

and V̂ is not larger than the distance between the image f̃ of an arbitrary function f ∈ F and V̂ .
Choosing f = f ∗ we conclude that the distance between f̃ ∗ and V̂ is not smaller than ‖Ṽ ′−V̂‖p

p.

7. Similar bounds exist for the supremum-norm metric entropy.
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(B(X ), ‖ · ‖p,µ)

F

V ′

f∗
TV

(RN , ‖ · ‖p)

F̃

˜TV

f̃∗

Ṽ ′

V̂

Figure 1: Illustration of the proof of Lemma 1 for bounding the distance of V ′ and TV in terms of
the distance of f ∗ and TV , where f ∗ is the best fit to TV in F (cf., Equations 2, 3). For a
function f ∈ B(X ), f̃ = ( f (X1), . . . , f (XN))T ∈ R

N . The set F̃ is defined by { f̃ | f ∈ F }.
Segments on the figure connect objects whose distances are compared in the proof.

Exploiting again that M is large, we see that the distance between f̃ ∗ and V̂ must be close to that
of between f̃ ∗ and T̃V , which in turn must be close to the Lp(X ;µ) distance of f ∗ and TV if N is
big enough. Hence, if ‖ f ∗−TV‖p

p,µ is small then so is ‖V ′−TV‖p
p,µ.

4.2 Bounds for the Single-Sample Variant

When analyzing the error of sampling-based FVI, we would like to use Lemma 1 for bounding the
error committed when approximating TVk starting from Vk based on a new sample. When doing
so, however, we have to take into account that Vk is random. Yet Lemma 1 requires that V , the
function whose Bellman image is approximated, is some fixed (non-random) function. The problem
is easily resolved in the multi-sample variant of the algorithm by noting that the samples used in
calculating Vk+1 are independent of the samples used to calculate Vk. A formal argument is presented
in Appendix B.3. The same argument, however, does not work for the single-sample variant of the
algorithm when Vk+1 and Vk are both computed using the same set of random variables. The purpose
of this section is to extend Lemma 1 to cover this case.

In formulating this result we will need the following definition: For F ⊂ B(X ) let us define

FT− = { f −T g | f ∈ F ,g ∈ F }.

The following result holds:

Lemma 2 Denote by Ω the sample-space underlying the random variables {Xi}, {Y Xi,a
j }, {RXi,a

j },
i = 1, . . . ,N, j = 1, . . . ,M,a ∈ A . Then the result of Lemma 1 continues to hold if V is a random
function satisfying V (ω) ∈ F , ω ∈ Ω provided that

N = O(V 2
max (1/ε)2p log(N (cε,FT−,N,µ)/δ))

and
M = O((R̂max + γVmax)

2/ε2 log(N|A |N (c′ε,F ,M,µ)/δ)),
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where c,c′ > 0 are constants independent of the parameters of the MDP and the function space F .

The proof can be found in Appendix A.1. Note that the sample-size bounds in this lemma are similar
to those of Lemma 1, except that N now depends on the metric entropy of FT− and M depends on
the metric entropy of F . Let us now give two examples when explicit bounds on the covering
number of FT− can be given using simple means:

For the first example note that if g : (R×R,‖ · ‖1) → R is Lipschitz8 with Lipschitz constant G
then the ε-covering number of the space of functions of the form h(x) = g( f1(x), f2(x)), f1 ∈ F1,
f2 ∈ F2 can be bounded by N (ε/(2G),F1,n,µ)N (ε/(2G),F2,n,µ) (this follows directly from the
definition of covering numbers). Since g(x,y) = x− y is Lipschitz with G = 1, N (ε,FT−,n,µ) ≤
N (ε/2,F ,n,µ)N (ε/2,FT ,n,µ). Hence it suffices to bound the covering numbers of the space
FT = {T f | f ∈ F }. One possibility to do this is as follows: Assume that X is compact, F =
{ fθ|θ ∈ Θ}, Θ is compact and the mapping H : (Θ,‖·‖) → (B(X ),L∞) defined by H(θ) = fθ
is Lipschitz with coefficient L. Fix x1:n and consider N (ε,FT (x1:n)). Let θ1,θ2 be arbitrary.
Then |T fθ1(x)−T fθ2(x)| ≤ ‖T fθ1 −T fθ2‖∞ ≤ γ‖ fθ1 − fθ2‖∞ ≤ γL‖θ1 −θ2‖. Now assume that C =
{θ1, . . . ,θm} is an ε/(Lγ)-cover of the space Θ and consider any n ≥ 1, (x1, . . . ,xn) ∈ X n, θ ∈ Θ. Let
θi be the nearest neighbor of θ in C. Then,

∥∥(T fθ)(x1:n)− (T fθi)(x
1:n)
∥∥

1 ≤ n‖T fθ −T fθi‖∞ ≤ nε.
Hence, N (ε,FT (x1:n)) ≤ N (ε/(Lγ),Θ).

Note that the mapping H can be shown to be Lipschitzian for many function spaces of interest.
As an example let us consider the space of linearly parameterized functions taking the form fθ = θT φ
with a suitable basis function φ : X → R

dφ . By the Cauchy-Schwarz inequality,
∥∥θT

1 φ−θT
2 φ
∥∥

∞ =
supx∈X |〈θ1 −θ2,φ(x)〉| ≤ ‖θ1 −θ2‖2 supx∈X ‖φ(x)‖2. Hence, by choosing the `2 norm in the space
Θ, we get that θ 7→ θT φ is Lipschitz with coefficient ‖‖φ(·)‖2‖∞ (this gives a bound on the metric
entropy that is linear in dφ).

5. Main Results

For the sake of specificity, let us reiterate the algorithms. Let V0 ∈ F . The single-sample variant of
sampling-based FVI produces a sequence of function {Vk}0≤k≤K ⊂ F satisfying

Vk+1 = argmin
f∈F

N

∑
i=1

∣∣∣ f (Xi)−max
a∈A

1
M

M

∑
j=1

[
RXi,a

j + γVk(Y
Xi,a
j )

]∣∣∣
p
. (6)

The multi-sample variant is obtained by using a fresh set of samples in each iteration:

Vk+1 = argmin
f∈F

N

∑
i=1

∣∣∣ f (Xk
i )−max

a∈A

1
M

M

∑
j=1

[
R

Xk
i ,a,k

j + γVk(Y
Xk

i ,a,k
j )

]∣∣∣
p
. (7)

Let πk be a greedy policy w.r.t. Vk. We are interested in bounding the loss due to using policy
πk instead of an optimal one, where the loss is measured by a weighted p-norm:

Lk = ‖V ∗−V πk‖p,ρ .

Here ρ is a distribution whose role is to put more weight on those parts of the state space where
performance matters more. A particularly sensible choice is to set ρ to be the distribution over the

8. A mapping g between normed function spaces (B1,‖ · ‖) and (B2,‖ · ‖) is Lipschitz with factor C > 0 if ∀x,y ∈ B1,
‖g(x)−g(y)‖ ≤ ‖x− y‖.
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states from which we start to use πk. In this case if p = 1 then Lk measures the expected loss. For
p > 1 the loss does not have a similarly simple interpretation, except that with p → ∞ we recover
the supremum-norm loss. Hence increasing p generally means that the evaluation becomes more
pessimistic.

Let us now discuss how we arrive at a bound on the expected p-norm loss. By the results of the
previous section we have a bound on the error introduced in any given iteration. Hence, all we need
to show is that the errors do not blow up as they are propagated through the algorithm. Since the
previous section’s bounds are given in terms of weighted p-norms, it is natural to develop weighted
p-norm bounds for the whole algorithm. Let us concentrate on the case when in all iterations the
error committed is bounded. Since we use weighted p-norm bounds, the usual supremum-norm
analysis does not work. However, a similar argument can be used.

The sketch of this argument is as follows: Since we are interested in developing a bound on
the performance of the greedy policy w.r.t. the final estimate of V ∗, we first develop a pointwise
analogue of supremum-norm Bellman-error bounds:

(I − γPπ)(V ∗−V π) ≤ γ(Pπ∗
−Pπ)(V ∗−V ).

Here V plays the role of the final value function estimate, π is a greedy policy w.r.t. V , and V π

is its value-function. Hence, we see that it suffices to develop upper and lower bounds on V ∗−V
with V = VK . For the upper estimate, we use that V ∗ − TVk = TV ∗ − TVk = T π∗

V ∗ − T πkVk ≤
T π∗

V ∗−T π∗
Vk = γPπ∗

(V ∗−Vk). Hence, if Vk+1 = TVk − εk then V ∗−Vk+1 ≤ γPπ∗
(V ∗−Vk)+ εk.

An analogous reasoning results in the lower bound V ∗−Vk+1 ≥ γPπk(V ∗−Vk)+ εk. Here πk is a
policy greedy w.r.t. Vk. Now, exploiting that the operator Pπ is linear for any π, iterating these
bounds yields upper and lower bounds on V ∗ −VK as a function of {εk}k. A crucial step of the
argument is to replace T , the non-linear Bellman operator by linear operators (Pπ, for suitable π)
since propagating errors through linear operators is easy, while in general, it is impossible to do
the same with non-linear operators. Actually, as we propagate the errors, it is not hard to foresee
that operator products of the form PπK PπK−1 . . .Pπk enter our bounds and that the error amplification
caused by these product operators is the major source of the possible increase of the error.

Note that if a supremum-norm analysis were followed (p = ∞), we would immediately find that
the maximum amplification by these product operators is bounded by one: Since, as it is well known,
for any policy π, |

R

V (y)P(dy|x,π(x))| ≤
R

|V (y)|P(dy|x,π(x))≤‖V‖∞
R

P(dy|x,π(x))= ‖V‖∞, that
is, ‖Pπ‖∞ ≤ 1. Hence

‖PπK . . .Pπk‖∞ ≤ ‖PπK‖∞ . . .‖Pπk‖∞ ≤ 1,

and starting from the pointwise bounds, one recovers the well-known supremum-norm bounds by
just taking the supremum of the bounds’ two sides. Hence, the pointwise bounding technique yields
as tight bounds as the previous supremum-norm bounding technique. However, since in the algo-
rithm only the weighted p-norm errors are controlled, instead of taking the pointwise supremum, we
integrate the pointwise bounds w.r.t. the measure ρ to derive the desired p-norm bounds provided
that the induced operator-norm of these operator products w.r.t. weighted p-norms can be bounded.
One simple assumption that allows this is as follows:

Assumption A1 [Uniformly stochastic transitions] For all x ∈ X and a ∈ A , assume that P(·|x,a) is
absolutely continuous w.r.t. µ and the Radon-Nikodym derivative of P w.r.t. µ is bounded uniformly
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with bound Cµ:

Cµ
def
= sup

x∈X ,a∈A

∥∥∥∥
dP(·|x,a)

dµ

∥∥∥∥
∞

< +∞.

Assumption A1 can be written in the form P(·|x,a) ≤ Cµµ(·), an assumption that was intro-
duced by Munos (2003) in a finite MDP context for the analysis of approximate policy iteration.
Clearly, if Assumption A1 holds then for p ≥ 1, by Jensen’s inequality, |

R

V (y)P(dy|x,π(x))|p ≤
R

|V (y)|pP(dy|x,π(x)) ≤
R

Cµ|V (y)|pdµ(dy), hence ‖PπV‖p,ρ ≤ C1/p
µ ‖V‖p,µ and thus ‖Pπ‖p,ρ ≤

C1/p
µ . Note that when µ is the Lebesgue-measure over X then Assumption A1 becomes equivalent

to assuming that the transition probability kernel P(dy|x,a) admits a uniformly bounded density.
The noisier the dynamics, the smaller the constant Cµ. Although Cµ < +∞ looks like a strong re-
striction, the class of MDPs that admit this restriction is still quite large in the sense that there are
hard instances in it (this is discussed in detail in Section 8). However, the above assumption cer-
tainly excludes completely or partially deterministic MDPs, which might be important, for example,
in financial applications.

Let us now consider another assumption that allows for such systems, too. The idea is that for
the analysis we only need to reason about the operator norms of weighted sums of the product of
arbitrary stochastic kernels. This motivates the following assumption:

Assumption A2 [Discounted-average concentrability of future-state distributions] Given ρ, µ, m≥ 1
and an arbitrary sequence of stationary policies {πm}m≥1, assume that the future-state distribution
ρPπ1Pπ2 . . .Pπm is absolutely continuous w.r.t. µ. Assume that

c(m)
def
= sup

π1,...,πm

∥∥∥∥
d(ρPπ1Pπ2 . . .Pπm)

dµ

∥∥∥∥
∞

(8)

satisfies
Cρ,µ

def
= (1− γ)2 ∑

m≥1

mγm−1c(m) < +∞.

We shall call c(m) the m-step concentrability of a future-state distribution, while we call Cρ,µ the
discounted-average concentrability coefficient of the future-state distributions.
The number c(m) measures how much ρ can get amplified in m steps as compared to the reference
distribution µ. Hence, in general we expect c(m) to grow with m. In fact, the condition that Cρ,µ is
finite is a growth rate condition on c(m). Thanks to discounting, Cρ,µ is finite for a reasonably large
class of systems: In fact, we will now argue that Assumption A2 is weaker than Assumption A1 and
that Cρ,µ is finite when the top-Lyapunov exponent of the MDP is finite.

To show the first statement it suffices to see that c(m)≤Cµ holds for any m. This holds since by
definition for any distribution ν and policy π, νPπ ≤Cµµ. Then take ν = ρPπ1 . . .Pπm−1 and π = πm

to conclude that ρPπ1 . . .Pπm−1Pπm ≤Cµµ and so c(m) ≤Cµ.
Let us now turn to the comparison with the top-Lyapunov exponent of the MDP. As our start-

ing point we take the definition of top-Lyapunov exponent associated with sequences of finite di-
mensional matrices: If {Pt}t is sequence of square matrices with non-negative entries and {yt}t

is a sequence of vectors that satisfy yt+1 = Ptyt then, by definition, the top-Lyapunov exponent is
γ̂top = limsupt→∞(1/t) log+(‖yt‖∞). If the top-Lyapunov exponent is positive then the associated
system is sensitive to its initial conditions (unstable). A negative top-Lyapunov exponent, on the
other hand, indicates that the system is stable; in case of certain stochastic systems the existence
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of strictly stationary non-anticipating realizations is equivalent to a negative Lyapunov exponent
(Bougerol and Picard, 1992).9

Now, one may think of yt as a probability distribution over the state space and the matrices as the
transition kernels. One way to generalize the above definition to controlled systems and infinite state
spaces is to identify yt with the future state distribution when the policies are selected to maximize
the growth rate of ‖yt‖∞. This gives rise to γ̂top = limsupm→∞

1
m logc(m), where c(m) is defined

by (8).10 Then, by elementary arguments, we get that if γ̂top < log(1/γ) then ∑m≥0 mpγmc(m) < ∞.
In fact, if γ̂top ≤ 0 then C(ρ,ν) < ∞. Hence, we interpret C(ρ,ν) < +∞ as a weak stability condition.

Since Assumption A1 is stronger than Assumption A2 in the proofs we will proceed by first
developing a proof under Assumption A2. The reason Assumption A1 is still considered is that
it will allow us to derive supremum-norm performance bounds even though in the algorithm we
control only the weighted p-norm bounds.

As a final preparatory step before the presentation of our main results, let us define the inherent
Bellman error associated with the function space F (as in the introduction) by

dp,µ(T F ,F ) = sup
f∈F

dp,µ(T f ,F ).

Note that dp,µ(T F ,F ) generalizes the notion of Bellman errors to function spaces in a natural
way: As we have seen the error in iteration k depends on dp,µ(TV̂k,F ). Since V̂k ∈ F , the inherent
Bellman error gives a uniform bound on the errors of the individual iterations.11

The next theorem is the main result of the paper. It states that with high probability the final
performance of the policy found by the algorithm can be made as close to a constant times the
inherent Bellman error of the function space F as desired by selecting a sufficiently high number of
samples. Hence, sampling-based FVI can be used to find near-optimal policies if F is sufficiently
rich:

Theorem 2 Consider an MDP satisfying Assumption A0 and A2. Fix p ≥ 1, µ ∈ M(X ) and let
V0 ∈ F ⊂ B(X ;Vmax). Then for any ε,δ > 0, there exist integers K,M and N such that K is linear
in log(1/ε), logVmax and log(1/(1− γ)), N, M are polynomial in 1/ε, log(1/δ), log(1/(1− γ)),
Vmax, R̂max, log(|A |), log(N (cε(1− γ)2/(C1/p

ρ,µ γ),F ,N,µ)) for some constant c > 0, such that if the
multi-sample variant of sampling-based FVI is run with parameters (N,M,µ,F ) and πK is a policy
greedy w.r.t. the Kth iterate then w.p. at least 1−δ,

‖V ∗−V πK‖p,ρ ≤
2γ

(1− γ)2 C1/p
ρ,µ dp,µ(T F ,F )+ ε.

If, instead of Assumption A2, Assumption A1 holds then w.p. at least 1−δ,

‖V ∗−V πK‖∞ ≤
2γ

(1− γ)2 C1/p
µ dp,µ(T F ,F )+ ε.

Further, the results continue to hold for the single-sample variant of sampling-based FVI with
the exception that N depends on log(N (cε,FT−,N,µ)) and M depends on log(N (c′ε,F ,M,µ)) for
appropriate c,c′ > 0.

9. The lack of existence of such solutions would probably preclude any sample-based estimation of the system.
10. Here we allow the sequence of policies to be changed with each m. It is an open question is a single sequence of

policies would give the same result.

11. More generally, dp,µ(G ,F )
def
= supg∈G dp,µ(g,F )

def
= supg∈G inf f∈F ‖g− f‖p,µ.
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The proof is given in Appendix B. Assuming that the pseudo-dimension of the function-space F
is finite as in Proposition 1, a close examination of the proof gives the following high-probability
bound for the multi-sample variant:

‖V ∗−V πK‖p,ρ ≤
2γ

(1− γ)2 C1/p
ρ,µ dp,µ(T F ,F )+O(γKVmax)

+ O

{(
VF +

N
(log(N)+ log(K/δ))

)1/2p

+

(
1
M

(log(N|A |)+ log(K/δ))

)1/2
}

. (9)

Here N,M,K are arbitrary integers and the bound holds w.p. 1 − δ. The first term bounds the
approximation error, the second arises due to the finite number of iterations, while the last two
terms bound the estimation error.

This form of the bound allows us to reason about the likely best choice of N and M given
a fixed budget of n = K × N × M samples (or n̂ = N × M samples per iteration). Indeed, op-
timizing the bound yields that the best choice of N and M (apart from constants) is given by
N = (VF +)1/(p+1)n̂p/(p+1), M = (n̂/VF +)1/(p+1), resulting in the bound (n/(KVF +))−1/(2p+2) for
the estimation error, disregarding logarithmic terms. Note that the choice of N,M does not influ-
ence the other error terms.

Now, let us consider the single-sample variant of FVI. A careful inspection of the proof results in
an inequality identical to (9) just with the pseudo-dimension of F replaced by the pseudo-dimension
of F − and 1/M replaced by VF +/M. We may again ask the question of how to choose N,M, given
a fixed-size budget of n = N ×M samples. The formulae are similar to the previous ones. The
resulting optimized bound on the estimation error is (n/(VF −VF +))−1/(2p+2). It follows that given
a fixed budget of n samples provided that K > VF − the bound for the single-sample variant is better
than the one for the multi-sample variant. In both cases a logical choice is to set K to minimize the
respective bounds. In fact, the optimal choice turns out to be K ∼ 1/ log(1/γ) u 1/(1− γ) in both
cases. Hence as γ approaches one, the single-sample variant of FVI can be expected to become more
efficient, provided that everything else is kept the same. It is interesting to note that as γ becomes
larger the number of times the samples are reused increases, too. That the single-sample variant
becomes more efficient is because the variance reduction effect of sample reuse is stronger than the
increase of the bias. Our computer simulations (Section 9) confirm this experimentally.

Another way to use the above bound is to make comparisons with the rates available in non-
parametric regression: First, notice that the approximation error of F is defined as the inherent
Bellman error of F instead of using an external reference class. This seems reasonable since we are
trying to find an approximate fixed point of T within F . The estimation error, for a sample size of
n, can be seen to be bounded by O(n−1/(2(p+1))), which for p = 2 gives O(n−1/6). In regression, the
comparable error (when using a bounding technique similar to ours) is bounded by n−1/4 (Györfi
et al., 2002). With considerably more work, using the techniques of Lee et al. (1996) (see also
Chapter 11 of Györfi et al., 2002) in regression it is possible to get a rate of n−1/2, at the price of
multiplying the approximation error by a constant larger than one. It seems possible to use these
techniques to improve the exponent of N from −1/2p to −1/p in Equation (9) (at the price of
increasing the influence of the approximation error). Then the new rate would become n−1/4. This
is still worse than the best possible rate for non-parametric regression. The additional factor comes
from the need to use the samples to control the bias of the target values (i.e., that we need M → ∞).
Thus, in the case of FVI, the inferior rate as compared with regression seems unavoidable. By
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switching from state value functions to action-value functions it seems quite possible to eliminate
this inefficiency. In this case the capacity of the function space would increase (in particular, in
Equation (9) VF + would be replaced by |A |VF +).

6. Randomized Policies

The previous result shows that by making the inherent Bellman error of the function space small
enough, we can ensure a close-to-optimal performance if one uses a policy greedy w.r.t. the last
value-function estimate, VK . However, the computation of such a greedy policy requires the evalua-
tion of some expectations, whose exact values are however often difficult to compute. In this section
we show that by computations analogous to that used in obtaining the iterates we can compute a
randomized near-optimal policy based on VK .

Let us call an action a α-greedy w.r.t. the function V and state x, if

r(x,a)+ γ
Z

V (y)P(dy|x,a) ≥ (TV )(x)−α.

Given VK and a state x ∈ X we can use sampling to draw an α-greedy action w.p. at least 1−λ
by executing the following procedure: Let Rx,a

j ∼ S(·,x,a), Y x,a
j ∼ P(·|x,a), j = 1,2, . . . ,M′ with

M′ = M′(α,λ) and compute the approximate value of a at state x using

QM′(x,a) =
1

M′

M′

∑
j=1

[
Rx,a

j + γVK(Y x,a
j )
]
.

Let the policy πK
α,λ : X → A be defined by

πK
α,λ(x) = argmax

a∈A
QM′(x,a).

The following result holds:

Theorem 3 Consider an MDP satisfying Assumptions A0 and A2. Fix p ≥ 1, µ ∈ M(X ) and let

V0 ∈ F ⊂ B(X ;Vmax). Select α = (1− γ)ε/8, λ = ε
8

(1−γ)
Vmax

and let M′ = O(|A |R̂2
max log(|A |/λ)/α2).

Then, for any ε,δ > 0, there exist integers K,M and N such that K is linear in log(1/ε), logVmax and
log(1/(1−γ)), N, M are polynomial in 1/ε, log(1/δ), 1/(1−γ), Vmax, R̂max, log(|A |), log(N (cε(1−
γ)2/C1/p

ρ,µ ),F ,µ))) for some c > 0, such that if {Vk}
K
k=1 are the iterates generated by multi-sample

FVI with parameters (N,M,K,µ,F ) then for the policy πK
α,λ as defined above, w.p. at least 1− δ,

we have ∥∥∥V ∗−V πK
α,λ

∥∥∥
p,µ

≤
4γ

(1− γ)2C1/p
ρ,µ dp,µ(T F ,F )+ ε.

An analogous result holds for the supremum-norm loss under Assumptions A0 and A1 with Cρ,µ

replaced by Cµ.

The proof can be found in Appendix C.
A similar result holds for the single-sample variant of FVI. We note that in place of the above

uniform sampling model one could also use the Median Elimination Algorithm of Even-Dar et al.
(2002), resulting in a reduction of M′ by a factor of log(|A |). However, for the sake of compactness
we do not explore this option here.
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7. Asymptotic Consistency

A highly desirable property of any learning algorithm is that as the number of samples grows to
infinity, the error of the algorithm should converge to zero; in other words, the algorithm should
be consistent. Sampling based FVI with a fixed function space F is not consistent: Our previous
results show that in such a case the loss converges to 2γ

(1−γ)2 C1/p
ρ,µ dp,µ(T F ,F ). A simple idea to

remedy this situation is to let the function space grow with the number of samples. In regression the
corresponding method was proposed by Grendander (1981) and is called the method of sieves. The
purpose of this section is to show that FVI combined with this method gives a consistent algorithm
for a large class of MDPs, namely for those that have Lipschitzian rewards and transitions. It is
important to emphasize that although the results in this section assume these smoothness conditions,
the method itself does not require the knowledge of the smoothness factors. It is left for future work
to determine whether similar results hold for larger classes of MDPs.

The smoothness of the transition probabilities and rewards is defined w.r.t. changes in the initial
state: ∀(x,x′,a) ∈ X ×X ×A ,

‖P(·|x,a)−P(·|x′,a)‖ ≤ LP
∥∥x− x′

∥∥α
,

|r(x,a)− r(x′,a)| ≤ Lr
∥∥x− x′

∥∥α
.

Here α,LP,Lr > 0 are the unknown smoothness parameters of the MDP and ‖P(·|x,a)−P(·|x′,a)‖
denotes the total variation norm of the signed measure P(·|x,a)−P(·|x′,a).12

The method is built on the following observation: If the MDP is smooth in the above sense
and if V ∈ B(X ) is uniformly bounded by Vmax then TV is L = (Lr + γVmaxLP)-Lipschitzian (with
exponent 0 < α ≤ 1):

|(TV )(x)− (TV )(x′)| ≤ (Lr + γVmaxLP)‖x− x′‖α, ∀x,x′ ∈ X .

Hence, if Fn is restricted to Vmax-bounded functions then T Fn
def
= {TV |V ∈ Fn} contains L-Lipschitz

Vmax-bounded functions only:

T Fn ⊂ Lip(α;L,Vmax)
def
= { f ∈ B(X ) | ‖ f‖∞ ≤Vmax, | f (x)− f (y)| ≤ L‖x− y‖α }.

By the definition of dp,µ,

dp,µ(T Fn,Fn) ≤ dp,µ(Lip(α;L,Vmax),Fn).

Hence if we make the right-hand side converge to zero as n → ∞ then so will do dp,µ(T Fn,Fn). The
quantity, dp,µ(Lip(α;L,Vmax),Fn) is nothing but the approximation error of functions in the Lips-
chitz class Lip(α;L,Vmax) by elements of Fn. Now, dp,µ(Lip(α;L,Vmax),Fn) ≤ dp,µ(Lip(α;L),Fn),
where Lip(α;L) is the set of Lipschitz-functions with Lipschitz constant L and we exploited that
Lip(α,L) = ∪Vmax>0Lip(α;L,Vmax). In approximation theory an approximation class {Fn} is said to
be universal if for any α,L > 0,

lim
n→∞

dp,µ(Lip(α;L),Fn) = 0.

12. Let µ be a signed measure over X . Then the total variation measure, |µ| of µ is defined by |µ|(B) = sup ∑∞
i=1 |µ(Bi)|,

where the supremum is taken over all at most countable partitions of B into pairwise disjoint parts from the Borel sets
over X . The total variation norm ‖µ‖ of µ is ‖µ‖ = |µ|(X ).
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For a large variety of approximation classes (e.g., approximation by polynomials, Fourier basis,
wavelets, function dictionaries) not only universality is established, but variants of Jackson’s theo-
rem give us rates of convergence of the approximation error: dp,µ(Lip(α;L),Fn) = O(Ln−α) (e.g.,
DeVore, 1997).

One remaining issue is that classical approximation spaces are not uniformly bounded (i.e., the
functions in them do not assume a uniform bound), while our previous argument showing that the
image space T Fn is a subset of Lipschitz functions critically relies on that Fn is uniformly bounded.
One solution is to use truncations: Let TVmax be the truncation operator,

TVmaxr =

{
sign(r)Vmax, if |r| > Vmax,

r, otherwise.

Now, a simple calculation shows that

dp,µ(Lip(α;L)∩B(X ;Vmax),TVmaxFn) ≤ dp,µ(Lip(α;L),Fn),

where TVmaxFn = {TVmax f | f ∈ Fn}. This, together with Theorem 2 gives rise to the following result:

Corollary 4 Consider an MDP satisfying Assumptions A0 and A2 and assume that both its imme-
diate reward function and transition kernel are Lipschitzian. Fix p ≥ 1, µ ∈ M(X ) and let {Fn},
be a universal approximation class such that the pseudo-dimension of TVmaxFn grows sublinearly
in n. Then, for each ε,δ > 0 there exist an index n0 such that for any n ≥ n0 there exist integers
K,N,M that are polynomial in 1/ε,log(1/δ), 1/(1− γ), Vmax, R̂max, log(|A |), and V(TVmax Fn)+ such
that if VK is the output of multi-sample FVI when it uses the function set TVmaxFn and Xi ∼ µ then
‖V ∗−V πK‖p,ρ ≤ ε holds w.p. at least 1− δ. An identical result holds for ‖V ∗−V πK‖∞ when As-
sumption A2 is replaced by Assumption A1.

The result extends to single-sample FVI as before.
One aspect in which this corollary is not satisfactory is that solving the optimization problem

defined by Equation (1) over TVmaxFn is computationally challenging even when Fn is a class of
linearly parameterized functions and p = 2. One idea is to do the optimization first over Fn and
then truncate the obtained functions. The resulting procedure can be shown to be consistent (cf.,
Chapter 10 of Györfi et al., 2002, for an alike result in a regression setting).

It is important to emphasize that the construction used in this section is just one example of
how our main result may lead to consistent algorithms. An immediate extension of the present
work would be to target the best possible convergence rates for a given MDP by using penalized
estimation. We leave the study of such methods for future work.

8. Discussion of Related Work

Sampling based FVI has roots that date back to the early days of dynamic programming. One of the
first examples of using value-function approximation methods is the work of Samuel who used both
linear and non-linear methods to approximate value functions in his programs that learned to play the
game of checkers (Samuel, 1959, 1967). At the same time, Bellman and Dreyfus (1959) explored
the use of polynomials for accelerating dynamic programming. Both in these works and also in
most later works (e.g., Reetz, 1977; Morin, 1978) FVI with representative states was considered.
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Of these authors, only Reetz (1977) presents theoretical results who, on the other hand, considered
only one-dimensional feature spaces.

FVI is a special case of approximate value iteration (AVI) which encompasses any algorithm
of the form Vt+1 = TVt + εt , where the errors εt are controlled in some way. If the error terms,
εt , are bounded in supremum norm, then a straightforward analysis shows that asymptotically, the
worst-case performance-loss for the policy greedy w.r.t. the most recent iterates can be bounded
by 2γ

(1−γ)2 supt≥1 ‖εt‖∞ (e.g., Bertsekas and Tsitsiklis, 1996). When Vt+1 is the best approximation

of TVt in F then supt≥1 ‖εt‖∞ can be upper bounded by the inherent Bellman error d∞(T F ,F ) =

sup f∈F infg∈F ‖g−T f‖∞ and we get the loss-bound 2γ
(1−γ)2 d∞(T F ,F ). Apart from the smoothness

factors (Cρ,µ, Cµ) and the estimation error term, our loss-bounds have the same form (cf., Equa-
tion 9). In particular, if µ is absolutely continuous w.r.t. the Lebesgue measure then letting p → ∞
allows us to recover these previous bounds (since then C1/p

µ dp,µ(T F ,F ) → d∞(T F ,F )). Further,
we expect that the p-norm bounds would be tighter since the supremum norm is sensitive to outliers.

A different analysis, originally proposed by Gordon (1995) and Tsitsiklis and Van Roy (1996),
goes by assuming that the iterates satisfy Vt+1 = ΠTVt , where Π is an operator that maps bounded
functions to the function space F . While Gordon (1995) and Tsitsiklis and Van Roy (1996) consid-
ered the planning scenario with known dynamics and making use of a set of representative states,
subsequent results by Singh et al. (1995), Ormoneit and Sen (2002) and Szepesvári and Smart
(2004) considered less restricted problem settings, though none of these authors presented finite-
sample bounds. The main idea in these analyses is that the above iterates must converge to some
limit V∞ if the composite operator ΠT is a supremum-norm contraction. Since T is a contraction,
this holds whenever Π is a supremum-norm non-expansion. In this case, the loss of using the policy
greedy w.r.t. V∞ can be bounded by 4γ

(1−γ)2 εΠ, where εΠ is the best approximation to V ∗ by fixed

points of Π: εΠ = inf f∈F :Π f= f ‖ f −V ∗‖∞ (e.g., Tsitsiklis and Van Roy, 1996, Theorem 2).

In practice a special class of approximation methods called averagers are used (Gordon, 1995).
For these methods Π is guaranteed to be a non-expansion. Kernel regression methods, such as
k-nearest neighbors smoothing with fixed centers, tree based smoothing (Ernst et al., 2005), or
linear interpolation with a fixed set of basis functions such as spline interpolation with fixed knots
all belong to this class. In all these examples Π is a linear operator and takes the form Π f =
α + ∑n

i=1(Li f )φi with some function α, appropriate basis functions, φi, and linear functionals Li

(i = 1,2, . . . ,n). One particularly interesting case is when Li f = f (xi) for some points {xi}, φ0 ≥ 0,
∑i φi ≡ 1, α ≡ 0, (Π f )(xi) = f (xi) and (φi(x j))i j has full rank. In this case all members of the space
spanned by the basis functions {φi} are fixed points of Π. Hence εΠ = d∞(span(φ1, . . . ,φn),V ∗) and
so the loss of the procedure is directly controlled by the size of Fn = span(φ1, . . . ,φn).

Let us now discuss the choice of the function spaces in averagers and sampling-based FVI.
In the case of averagers, the class is restricted, but the approximation requirement, making εΠ
small, seems to be easier to satisfy than the corresponding requirement which asks for making the
inherent Bellman residual of the function space Fn small. We think that in the lack of knowledge
of V ∗ this advantage might be minor and can be offset by the larger freedom to choose Fn (i.e.,
nonlinear, or kernel-based methods are allowed). In fact, when V ∗ is unknown one must resort
to the generic properties of the class of MDPs considered (e.g., smoothness) in order to find the
appropriate function space. Since the optimal policy is unknown, too, it is not quite immediate that
the fact that only a single function (that depends on an unknown MDP) must be well approximated
should be an advantage. Still, one may argue that the self-referential nature of the inherent Bellman-

835



MUNOS AND SZEPESVÁRI

error makes the design for sampling-based FVI harder. As we have shown in Section 7, provided
that the MDPs are smooth, designing these spaces is not necessarily harder than designing a function
approximator for some regression task.

Let us now discuss some other related works where the authors consider the error resulting from
some Monte-Carlo procedure. One set of results closely related to the ones presented here is due
to Tsitsiklis and Roy (2001). These authors studied sampling-based fitted value iteration with lin-
ear function approximators. However, they considered a different class of MDPs: finite horizon,
optimal stopping with discounted total rewards. In this setting the next-state distribution under the
condition of not stopping is uncontrolled—the state of the market evolves independently of the de-
cision maker. Tsitsiklis and Roy (2001) argue that in this case it is better to sample full trajectories
than to generate samples in some other, arbitrary way. Their algorithm implements approximate
backward propagation of the values (by L2 fitting with linear function approximators), exploiting
that the problem has a fixed, finite horizon. Their main result shows that the estimation error con-
verges to zero w.p. 1 as the number of samples grows to infinity. Further, a bound on the asymptotic
performance is given. Due to the special structure of the problem, this bound depends only on how
well the optimal value function is approximated by the chosen function space. Certainly, because
of the known counterexamples (Baird, 1995; Tsitsiklis and Van Roy, 1996), we cannot hope such a
bound to hold in the general case.

The work presented here builds on our previous work. For finite state-space MDPs, Munos
(2003, 2005) considered planning scenarios with known dynamics analyzing the stability of both
approximate policy iteration and value iteration with weighted L2 (resp., Lp) norms. Preliminary
versions of the results presented here were published in Szepesvári and Munos (2005). Using tech-
niques similar to those developed here, recently we have proved results for the learning scenario
when only a single trajectory of some fixed behavior policy is known (Antos et al., 2006). We know
of no other work that would have considered the weighted p-norm error analysis of sampling-based
FVI for continuous state-space MDPs and in a discounted, infinite-horizon settings.

One work where the author studies fitted value iteration and which comes with a finite-sample
analysis is by Murphy (2005), who, just like Tsitsiklis and Roy (2001), studied finite horizon prob-
lems with no discounting.13 Because of the finite-horizon setting, the analysis is considerable sim-
pler (the algorithm works backwards). The samples come from a number of independent trajectories
just like in the case of Tsitsiklis and Roy (2001). The error bounds come in the form of performance
differences between a pair of greedy policies: One of the policies from the pair is greedy w.r.t. the
value function returned by the algorithm, while the other is greedy w.r.t. to some arbitrary ‘test’
function from the function set considered in the algorithm. The derived bound shows that the num-
ber of samples needed is exponential in the horizon of the problem and is proportional to ε−4, where
ε is the desired estimation error. The approximation error of the procedure, however, is not consid-
ered: Murphy suggests that the optimal action-value function could be added at virtually no cost to
the function sets used by the algorithm. Accordingly, her bounds scale only with the complexity of
the function class and do not scale directly with the dimensionality of the state space (just through

13. We learnt of the results of Murphy (2005) after submitting our paper. One interesting aspect of this paper is that
the results are presented for partially observable problems. However, since all value-function approximation methods
introduce state aliasing anyway, results worked out for the fully observable case carry through to the limited feedback
case without any change except that the approximation power of the function approximation method is further limited
by the information that is fed into the approximator. Based on this observation one may wonder if it is possible to get
consistent algorithms that avoid an explicit ‘state estimation’ component. However, this remains the subject of future
work.
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the complexity of the function class). One interpretation of this is that if we are lucky to choose a
function approximator so that the optimal value function (at all stages) can be represented exactly
with it then the rate of convergence can be fast. In the unlucky case, no bound is given. We will
come back to the discussion of worst-case sample complexity after discussing the work by Kakade
and Langford (Kakade and Langford, 2002; Kakade, 2003).

The algorithm considered by Kakade and Langford is called conservative policy iteration (CPI).
The algorithm is designed for discounted infinite horizon problems. The general version searches in
a fixed policy space, Π, in each step an optimizer picking a policy that maximizes the average of the
empirical advantages of the previous policy at a number of states (basepoints) sampled from some
distribution. These advantages could be estimated by sampling sufficiently long trajectories from
the basepoints. The policy picked this way is mixed into the previous policy to prevent performance
drops due to drastic changes, hence the name of the algorithm.

Theorems 7.3.1 and 7.3.3 Kakade (2003) give bounds on the loss of using the policy returned by
this procedure relative to using some other policy π (e.g., a near-optimal policy) as a function of the
total variation distance between ν, the distribution used to sample the basepoints (this distribution
is provided by the user), and the discounted future-state distribution underlying π when π is started
from a random state sampled from ν (dπ,ν). Thus, unlike in the present paper the error of the
procedure can only be controlled by finding a distribution that minimizes the distance to dπ,γ, where
π is a near-optimal policy. This might be as difficult as the problem of finding a good policy.
Theorem 6.2 in Kakade and Langford (2002) bounds the expected performance loss under ν as a
function of the imprecision of the optimizer and the Radon-Nykodim derivative of dπ∗,ν and dπ0,ν,
where π0 is the policy returned by the algorithm. However this result applies only to the case when
the policy set is unrestricted, and hence the result is limited to finite MDPs.

Now let us discuss the worst-case sample complexity of solving MDPs. A very simple obser-
vation is that it should be impossible to get bounds that scale polynomially with the dimension of
the state-space unless special conditions are made on the problem. This is because the problem of
estimating the value function of a policy in a trivial finite-horizon problem with a single time step is
equivalent to regression. Hence known lower bounds for regression must apply to RL, as well (see
Stone, 1980, 1982 and Chapter 3 of Györfi, Kohler, Krzyżak, and Walk, 2002 for such bounds). In
particular, from these bounds it follows that the minimax sample complexity of RL is exponential
in the dimensionality of the state space provided the class of MDPs is large enough. Hence, it is not
surprising that unless very special conditions are imposed on the class of MDPs considered, FVI
and its variants are subject to the curse-of-dimensionality. One way to help with this exponential
scaling is when the algorithm is capable of taking advantage of the possible advantageous properties
of the MDP to be solved. In our opinion, one major open problem in RL is to design such methods
(or to show that some existing method possesses this property).

The curse-of-dimensionality is not specific to FVI variants. In fact, a result of Chow and Tsit-
siklis (1989) states the following: Consider a class of MDPs with X = [0,1]d . Assume that for
any MDP in the class, the transition probability kernel underlying the MDP has a density w.r.t. the
Lebesgue measure and these densities have a common upper bound. Further, the MDPs within
the class are assumed to be uniformly smooth: for any MDP in the class the Lipschitz constant of
the reward function of the MDP is bounded by an appropriate constant and the same holds for the
Lipschitz constant of the density function. Fix a desired precision, ε. Then, any algorithm that is
guaranteed to return an ε-optimal approximation to the optimal value function must query (sample)
the reward function and the transition probabilities at least Ω(1/εd)-times, for some MDP within the
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class considered. Hence, even classes of smooth MDPs with uniformly bounded transition densities
have very hard instances.

The situation changes dramatically if one is allowed to interleave computations and control. In
this case, building on the random-discretization method of Rust (1996b), it is possible to achieve
near-optimal behavior by using a number of samples per step that scales polynomially in the impor-
tant quantities (Szepesvári, 2001). In particular, this result shows that it suffices to let the number
of samples scale linearly in the dimensionality of the state space. Interestingly, this result holds for
a class of MDPs that subsumes the one considered by Chow and Tsitsiklis (1989). The random-
discretization method requires that the MDPs in the class satisfy Assumption A1 with a common
constant and also the knowledge of the density underlying the transition probability kernel. When
the density does not exist or is not known, it could be estimated. However, estimating conditional
density functions itself is also subject to the curse of dimensionality, hence, the advantage of the
random-discretization method melts away in such situations, making sampling-based FVI a viable
alternative. This is the case indeed, since the results presented here require weaker assumptions on
the transition probability kernel (Assumption A2) and thus apply to a broader class of problems.

Another method that interleaves computations and control is the sparse trajectory-tree method of
Kearns et al. (1999). The sparse trajectory-tree method builds a random lookahead tree to compute
sample based approximation to the values of each of the actions available at the current state. This
method does not require the knowledge of the density underlying the transition probability kernel,
nor does it require any assumptions on the MDP. Unfortunately, the computational cost of this
method scales exponentially in the ‘ε-horizon’, logγ(Rmax/(ε(1−γ))). This puts severe limits on the
utility of this method when the discount factor is close to one and the number of actions is moderate.
Kearns et al. (1999) argue that without imposing additional assumptions (i.e., smoothness) on the
MDP the exponential dependency on the effective horizon time is unavoidable (a similar dependence
on the horizon shows up in the bounds of Murphy, 2005 and Kakade, 2003).

9. Simulation Study

The purpose of this section is to illustrate the tradeoffs involved in using FVI. Since identical or very
similar algorithms have been used successfully in many prior empirical studies (e.g., Longstaff and
Shwartz, 2001; Haugh, 2003; Jung and Uthmann, 2004), we do not attempt a thorough empirical
evaluation of the algorithm.

9.1 An Optimal Replacement Problem

The problem used as a testbed is a simple one-dimensional optimal replacement problem, described
for example by Rust (1996a). The system has a one-dimensional state. The state variable, xt ∈
R+, measures the accumulated utilization of a product, such as the odometer reading on a car.
By convention, we let xt = 0 denote a brand new product. At each time step, t, there are two
possible decisions: either keep (at = K) or replace (at = R) the product. This latter action implies
an additional cost C of selling the existing product and replacing it by a new one. The transition to
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a new state occurs with the following exponential densities:

p(y|x,K) =

{
βe−β(y−x), if y ≥ x;

0, if y < x,

p(y|x,R) =

{
βe−βy, if y ≥ 0;

0, if y < 0.

The reward function is r(x,K) = −c(x), where c(x) represents the cost of maintaining the product.
By assumptions, c is monotonically increasing. The reward associated with the replacement of the
product is independent of the state and is given by r(x,R) = −C− c(0).

The optimal value function solves the Bellman optimality equation:

V ∗(x) = max
[
− c(x)+ γ

Z ∞

x
p(y|x,K)V ∗(y)dy,−C− c(0)+ γ

Z ∞

0
p(y|x,R)V ∗(y)dy

]
.

Here the first argument of max represents the total future reward given that the product is not re-
placed, while the second argument gives the total future reward provided that the product is replaced.
This equation has a closed form solution:

V ∗(x) =

{
R x

x
c′(y)
1−γ (1− γe−β(1−γ)(y−x))dy− c(x)

1−γ , if x ≤ x;
−c(x)
1−γ , if x > x,

Here x is the unique solution to

C =
Z x

0

c′(y)
1− γ

(1− γe−β(1−γ)y)dy.

The optimal policy is π∗(x) = K if x ∈ [0,x], and π∗(x) = R if x > x.

9.2 Results

We chose the numerical values γ = 0.6, β = 0.5, C = 30, c(x) = 4x. This gives x ' 4.8665 and the
optimal value function, plotted in Figure 2, is

V ∗(x) =

{
−10x+30(e0.2(x−x) −1), if x ≤ x;

−10x, if x > x.

We consider approximation of the value function using polynomials of degree l. As suggested
in Section 7, we used truncation. In order to make the state space bounded, we actually consider a
problem that closely approximates the original one. For this we fix an upper bound for the states,
xmax = 10 � x, and modify the problem definition such that if the next state y happens to be outside
of the domain [0,xmax] then the product is replaced immediately, and a new state is drawn as if action
R were chosen in the previous time step. By the choice of xmax,

R ∞
xmax

p(dy|x,R) is negligible and
hence the optimal value function of the altered problem closely matches that of the original problem
when it is restricted to [0,xmax].

We chose the distribution µ to be uniform over the state space [0,xmax]. The transition density
functions p(·|x,a) are bounded by β, thus Assumption A1 holds with Cµ = βxmax = 5.

Figure 2 illustrates two iterates (k = 2 and k = K = 20) of the multi-sample version of sampling-
based FVI: the dots represents the points {(Xn,V̂M,k+1(Xn))}1≤n≤N for N = 100, where Xi is drawn
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Optimal value function

−48.67

x=0 x=10x=4.867

0

Sampled points

V2

V20

Figure 2: Illustration of two iteration steps of Sampling based FVI (up: k = 2, down: k = 20). The
dots represent the pairs (Xi,V̂M,k(Xi)), i = 1, . . . ,N based on M = 10 sampled transitions
per basepoint and N = 100 basepoints. The grey curve is the best fit among polynomials
of degree l = 4. The thin black curve is the optimal value function.

from µ and {V̂M,k+1(Xn)}1≤n≤N is computed using (2) with V = Vk and M = 10 samples. The grey
curve is the best fit (minimizing the least square error to the data, that is, p = 2) in F (for l = 4) and
the thin black curve is the optimal value function.

Figure 3 shows the L∞ approximation errors ||V ∗−VK ||∞ for different values of the degree l of
the polynomial regression, and different values of the number of basepoints N and the number of
sampled next states M. The number of iterations was set to K = 20. The reason that the figure shows
the error of approximating V ∗ by VK (i.e., εK = ‖V ∗−VK‖∞) instead of ‖V ∗−V πK‖∞ is that in this
problem this latter error converges very fast and thus is less interesting. (The technique developed
in the paper can be readily used to derive a bound on the estimation error of V ∗.) Of course, the
performance loss is always upper bounded (in L∞-norm) by the approximation error, thanks to the
well-known bound (e.g., Bertsekas and Tsitsiklis, 1996): ||V ∗−V πK ||∞ ≤ 2/(1− γ)||V ∗−VK ||∞.

From Figure 3 we observe when the degree l of the polynomials increases, the error decreases
first because of the decrease of the inherent approximation error, but eventually increases because
of overfitting. This graph thus illustrates the different components of the bound (9) where the
approximation error term dp,µ(T F ,F ) decreases with l (as discussed in Section 7) whereas the
estimation error bound, being a function of the pseudo-dimension of F , increases with l (in such a
linear approximation architecture VF + equals the number of basis function plus one, that is, VF + =

l + 2) with rate O
((

l+2
N

)1/2p)
+ O(1/M1/2), disregarding logarithmic factors. According to this

bound, the estimation error decreases when the number of samples increases, which is corroborated
by the experiments that show that overfitting decreases when the number of samples N,M increases.
Note that truncation never happens except when the degree of the polynomial is very large compared
with the number of samples.
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Figure 3: Approximation errors ||V ∗ −VK ||∞ of the function VK returned by sampling-based FVI
after K = 20 iterations, for different values of the polynomials degree l, for N = 100,
M = 10 (plain curve), N = 100, M = 100 (dot curve), and N = 1000, M = 10 (dash
curve) samples. The plotted values are the average over 100 independent runs.

In our second set of experiments we investigated whether in this problem the single-sample or
the multi-sample variant of the algorithm is more advantageous provided that sample collection is
expensive or limited in some way.

Figure 4 shows the distributional character of VK −V ∗ as a function of the state. The order of
the fitted polynomials is 5. The solid (black) curve shows the mean error (representing the bias)
for 50 independent runs, the dashed (blue) curves show the upper and lower confidence intervals
at 1.5-times the observed standard deviation, while the dash-dotted (red) curves show the mini-
mum/maximum approximation errors. Note the peak at x: The value function at this point is non-
smooth, introducing a bias that converges to zero rather slowly (the same effect in Fourier analysis
is known as the Gibbs phenomenon). It is also evident from the figure that the approximation error
near the edges of the state space is larger. In polynomial interpolation for the uniform arrangements
of the basepoints, the error actually blows up at the end of the intervals as the order of interpolation
is increased (Runge’s phenomenon). A general suggestion to avoid this is to increase the denseness
of points near the edges or to introduce more flexible methods (e.g., splines). In FVI the edge effect
is ultimately washed out, but it may still cause a considerable slow down of the procedure when the
behavior of the value-function near the boundaries is critical.
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Figure 4: Approximation errors for the multi-sample (left figure) and the single-sample (right) vari-
ants of sampling based FVI. The figures show the distribution of errors for approximating
the optimal value function as a function of the state, as measured using 50 independent
runs. For both version, N = 100, K = 10. However, for the multi-sample variant M = 10,
while for the single-sample variant M = 100, making the total number of samples used
equal in the two cases.

Now, as to the comparison of the single- and multi-sample algorithms, it should be apparent
from this figure that for this specific setup, the single-sample variant is actually preferable: The bias
does not seem to increase much due to the reuse of samples, while the variance of the estimates
decreases significantly.

10. Conclusions

We considered sampling-based FVI for discounted, large (possibly infinite) state space, finite-action
Markovian Decision Processes when only a generative model of the environment is available. In
each iteration, the image of the previous iterate under the Bellman operator is approximated at a
finite number of points using a simple Monte-Carlo technique. A regression method is used then to
fit a function to the data obtained. The main contributions of the paper are performance bounds for
this procedure that holds with high probability. The bounds scale with the inherent Bellman error of
the function space used in the regression step, and the stochastic stability properties of the MDP. It is
an open question if the finiteness of the inherent Bellman error is necessary for the stability of FVI,
but the counterexamples discussed in the introduction suggest that the inherent Bellman residual of
the function space should indeed play a crucial role in the final performance of FVI. Even less is
known about whether the stochastic stability conditions are necessary or if they can be relaxed.

We argued that by increasing the number of samples and the richness of the function space at
the same time, the resulting algorithm can be shown to be consistent for a wide class of MDPs. The
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derived rates show that, in line with our expectations, FVI would typically suffer from the curse-of-
dimensionality except when some specific conditions (extreme smoothness, only a few state vari-
ables are relevant, sparsity, etc.) are met. Since these conditions could be difficult to verify a priori
for any practical problem, adaptive methods are needed. We believe that the techniques developed
in this paper may serve as a solid foundations for developing and studying such algorithms.

One immediate possibility along this line would be to extend our results to penalized empirical
risk minimization when a penalty term penalizing the roughness of the candidate functions is added
to the empirical risk. The advantage of this approach is that without any a priori knowledge of the
smoothness class, the method allows one to achieve the optimal rate of convergence (see Györfi
et al., 2002, Section 21.2).

Another problem left for future work is to improve the scaling of our bounds. An important
open question is to establish tight lower bounds for the rate of convergence for value-function based
RL methods.

There are other ways to improve the performance of our algorithm that are more directly related
to specifics of RL. Both Tsitsiklis and Roy (2001) and Kakade (2003) argued that µ, the distribution
used to sample the states should be selected to match the future state distribution of a (near-)optimal
policy. Since the only way to learn about the optimal policy is by running the algorithm, one idea
is to change the sampling distribution by moving it closer to the future-state distribution of the
most recent policy. The improvement presumably manifests itself by decreasing the term including
Cρ,µ. Another possibility is to adaptively choose M, the number of sampled next states based on the
available local information like in active learning, hoping that this way the sample-efficiency of the
algorithm could be further improved.
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Appendix A. Proof of Lemma 1

In order to prove Lemma 1 we use the following inequality due to Pollard:

Theorem 5 (Pollard, 1984) Let F be a set of measurable functions f : X → [0,K] and let ε > 0, N
be arbitrary. If Xi, i = 1, . . . ,N is an i.i.d. sequence taking values in the space X then

P

(
sup
f∈F

∣∣∣∣∣
1
N

N

∑
i=1

f (Xi)−E [ f (X1)]

∣∣∣∣∣> ε

)
≤ 8E

[
N (ε/8,F (X1:N))

]
e−

Nε2

128K2 .

Here one should perhaps work with outer expectations because, in general, the supremum of an
uncountably many random variables cannot be guaranteed to be measurable. However, since for
specific examples of function space F , measurability can typically be established by routine sepa-
rability arguments, we will altogether ignore these measurability issues in this paper.
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Now, let us prove Lemma 1 that stated the finite-sample bound for a single iterate.
Proof Let Ω denote the sample space underlying the random variables. Let ε′′ > 0 be arbitrary and
let f ∗ be such that ‖ f ∗−TV‖p,µ ≤ inf f∈F ‖ f −TV‖p,µ + ε′′. Define ‖·‖p,µ̂ by

‖ f‖p
p,µ̂ =

1
N

N

∑
i=1

| f (Xi)|
p.

We will prove the lemma by showing that the following sequence of inequalities hold simultane-
ously on a set of events of measure not smaller than 1−δ:

∥∥V ′−TV
∥∥

p,µ ≤
∥∥V ′−TV

∥∥
p,µ̂ + ε′ (10)

≤
∥∥V ′−V̂

∥∥
p,µ̂ +2ε′ (11)

≤
∥∥ f ∗−V̂

∥∥
p,µ̂ +2ε′ (12)

≤ ‖ f ∗−TV‖p,µ̂ +3ε′ (13)

≤ ‖ f ∗−TV‖p,µ +4ε′ (14)

= dp,µ(TV,F )+4ε′ + ε′′.

It follows then that ‖V ′−TV‖p,µ ≤ inf f∈F ‖ f −TV‖p,µ +4ε′ + ε′′ w.p. at least 1−δ. Since ε′′ > 0
was arbitrary, it also follows that ‖V ′−TV‖p,µ ≤ inf f∈F ‖ f −TV‖p,µ +4ε′ w.p. at least 1−δ. Now,
the Lemma follows by choosing ε′ = ε/4.

Let us now turn to the proof of (10)–(14). First, observe that (12) holds due to the choice of V ′

since
∥∥V ′−V̂

∥∥
p,µ̂ ≤

∥∥ f −V̂
∥∥

p,µ̂ holds for all functions f from F and thus the same inequality holds
for f ∗ ∈ F , too.

Thus, (10)–(14) will be established if we prove that (10), (11), (13) and (14) all hold w.p. at
least 1−δ′ with δ′ = δ/4. Let

Q = max(
∣∣∣
∥∥V ′−TV

∥∥
p,µ −

∥∥V ′−TV
∥∥

p,µ̂

∣∣∣ ,
∣∣∣‖ f ∗−TV‖p,µ −‖ f ∗−TV‖p,µ̂

∣∣∣).

We claim that
P
(
Q > ε′

)
≤ δ′, (15)

where δ′ = δ/4. From this, (10) and (14) will follow.
In order to prove (15) note that for all ω ∈ Ω, V ′ = V ′(ω) ∈ F . Hence,

sup
f∈F

∣∣∣‖ f −TV‖p,µ −‖ f −TV‖p,µ̂

∣∣∣≥
∣∣∣
∥∥V ′−TV

∥∥
p,µ −

∥∥V ′−TV
∥∥

p,µ̂

∣∣∣

holds pointwise in Ω. Therefore the inequality

sup
f∈F

∣∣∣‖ f −TV‖p,µ −‖ f −TV‖p,µ̂

∣∣∣> Q (16)

holds pointwise in Ω, too and hence

P
(
Q > ε′

)
≤ P

(
sup
f∈F

∣∣∣‖ f −TV‖p,µ −‖ f −TV‖p,µ̂

∣∣∣> ε′
)

.
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We claim that

P

(
sup
f∈F

∣∣∣‖ f −TV‖p,µ −‖ f −TV‖p,µ̂

∣∣∣> ε′
)

≤ P

(
sup
f∈F

∣∣∣‖ f −TV‖p
p,µ −‖ f −TV‖p

p,µ̂

∣∣∣> (ε′)p

)
.

(17)
Consider any event ω such that

sup
f∈F

∣∣∣‖ f −TV‖p,µ −‖ f −TV‖p,µ̂

∣∣∣> ε′.

For any such event, ω, there exist a function f ′ ∈ F such that
∣∣∣
∥∥ f ′−TV

∥∥
p,µ −

∥∥ f ′−TV
∥∥

p,µ̂

∣∣∣> ε′.

Pick such a function. Assume first that ‖ f ′−TV‖p,µ̂ ≤ ‖ f ′−TV‖p,µ. Hence, ‖ f ′−TV‖p,µ̂ + ε′ <
‖ f ′−TV‖p,µ. Since p ≥ 1, the elementary inequality xp +yp ≤ (x+y)p holds for any non-negative
numbers x,y. Hence we get ‖ f ′−TV‖p

p,µ̂ + εp ≤ (‖ f ′−TV‖p,µ̂ + ε)p < ‖ f ′−TV‖p
p,µ and thus

∣∣∣
∥∥ f ′−TV

∥∥p
p,µ̂ −

∥∥ f ′−TV
∥∥p

p,µ

∣∣∣> εp.

This inequality can be shown to hold by an analogous reasoning when ‖ f ′−TV‖p,µ̂ > ‖ f ′−TV‖p,µ.
Inequality (17) now follows since

sup
f∈F

∣∣∣‖ f −TV‖p
p,µ −‖ f −TV‖p

p,µ̂

∣∣∣≥
∣∣∣
∥∥ f ′−TV

∥∥p
p,µ −

∥∥ f ′−TV
∥∥p

p,µ̂

∣∣∣ .

Now, observe that ‖ f −TV‖p
p,µ = E [|( f (X1)− (TV )(X1))|

p], and ‖ f −TV‖p
p,µ̂ is thus just the sam-

ple average approximation of ‖ f −TV‖p
p,µ. Hence, by noting that the covering number associated

with { f −TV | f ∈ F } is the same as the covering number of F , calling for Theorem 5 results in

P

(
sup
f∈F

∣∣∣‖ f −TV‖p
p,µ −‖ f −TV‖p

p,µ̂

∣∣∣> (ε′)p

)
≤ 8E

[
N ( (ε′)p

8 ,F (X1:N))
]

e
− N

2

(
1
8

(
ε′

2Vmax

)p)2

.

By making the right-hand side upper bounded by δ′ = δ/4 we find a lower bound on N, displayed
in turn in (4). This finishes the proof of (15).

Now, let us prove inequalities (11) and (13). Let f denote an arbitrary random function such that
f = f (x;ω) is measurable for each x ∈ X and assume that f is uniformly bounded by Vmax. Making
use of the triangle inequality

∣∣∣‖ f −g‖p,µ̂ −‖ f −h‖p,µ̂

∣∣∣≤ ‖g−h‖p,µ̂ ,

we get that
∣∣∣‖ f −TV‖p,µ̂ −

∥∥ f −V̂
∥∥

p,µ̂

∣∣∣≤
∥∥TV −V̂

∥∥
p,µ̂ . (18)

Hence, it suffices to show that
∥∥TV −V̂

∥∥
p,µ̂ ≤ ε′ holds w.p 1−δ′.
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For this purpose we shall use Hoeffding’s inequality (Hoeffding, 1963) and union bound argu-
ments. Fix any index i (1 ≤ i ≤ N). Let K1 = R̂max +γVmax. Then, by assumption RXi,a

j +γV (Y Xi,a
j )∈

[−K1,K1] holds w.p. 1 and thus by Hoeffding’s inequality,

P

(∣∣∣∣∣E
[

RXi,a
1 + γV (Y Xi,a

1 ) |X1:N
]
−

1
M

M

∑
j=1

RXi,a
j + γV (Y Xi,a

j )

∣∣∣∣∣> ε′ |X1:N

)
≤ 2e

− 2M(ε′)2

K2
1 , (19)

where X1:N = (X1, . . . ,XN). Making the right-hand side upper bounded by δ′/(N|A |) we find a lower
bound on M (cf., Equation 5). Since

∣∣(TV )(Xi)−V̂ (Xi)
∣∣≤ max

a∈A

∣∣∣∣∣E
[

RXi,a
1 + γV (Y Xi,a

1 ) |X1:N
]
−

1
M

M

∑
j=1

[
RXi,a

j + γV (Y Xi,a
j )

]∣∣∣∣∣

it follows by a union bounding argument that

P
(∣∣(TV )(Xi)−V̂ (Xi)

∣∣> ε′ |X1:N)≤ δ′/N,

and hence another union bounding argument yields

P

(
max

i=1,...,N

∣∣(TV )(Xi)−V̂ (Xi)
∣∣p > (ε′)p |X1:N

)
≤ δ′.

Taking the expectation of both sides of this inequality gives

P

(
max

i=1,...,N

∣∣(TV )(Xi)−V̂ (Xi)
∣∣p > (ε′)p

)
≤ δ′.

Hence also

P

(
1
N

N

∑
i=1

∣∣(TV )(Xi)−V̂ (Xi)
∣∣p > (ε′)p

)
≤ δ′

and therefore by (18),

P

(∣∣∣‖ f −TV‖p,µ̂ −
∥∥ f −V̂

∥∥
p,µ̂

∣∣∣> ε′
)
≤ δ′

Using this with f = V ′ and f = f ∗ shows that inequalities (11) and (13) each hold w.p. at least
1−δ′. This finishes the proof of the lemma.

Now, let us turn to the proof of Lemma 2, which stated a finite-sample bound for the single-
sample variant of the algorithm.

A.1 Proof of Lemma 2

Proof The proof is analogous to that of Lemma 1, hence we only give the differences. Up to (16)
the two proofs proceed in an identical way, however, from (16) we continue by concluding that

sup
g∈F

sup
f∈F

∣∣∣‖ f −T g‖p,µ −‖ f −T g‖p,µ̂

∣∣∣> Q
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holds pointwise in Ω. From this point onward, sup f∈F is replaced by supg, f∈F throughout the proof
of (15): The proof goes through as before until the point where Pollard’s inequality is used. At
this point, since we have two suprema, we need to consider covering numbers corresponding to the
function set FT− = { f −T g | f ∈ F ,g ∈ F }.

In the second part of the proof we must also use Pollard’s inequality in place of Hoeffding’s. In
particular, (19) is replaced with

P

(
sup
g∈F

∣∣∣∣∣E
[

RXi,a
1 + γg(Y Xi,a

1 ) |X1:N
]
−

1
M

M

∑
j=1

RXi,a
j + γg(Y Xi,a

j )

∣∣∣∣∣> ε′
∣∣∣X1:N

)

≤ 8E
[
N (ε′/8,F+(Z1:M

i,a ))
]

e
−M(ε′)2

128K2
1 ,

where Z j
i,a = (RXi,a

j ,Y Xi,a
j ). Here F+ = {h : R×X →R |h(s,x) = sI{|s|≤Vmax}+ f (x) for some f ∈F }.

The proof is concluded by noting that the covering numbers of F+ can be bounded in terms of the
covering numbers of F using the arguments presented after the Lemma at the end of Section 4.

Appendix B. Proof of Theorem 2

The theorem states PAC-bounds on the sample size of sampling-based FVI. The idea of the proof
is to show that (i) if the errors in each iteration are small then the final error will be small when K,
the number of iterations is high enough and (ii) the previous results (Lemma 1 and 2) show that the
errors stay small with high probability in each iteration provided that M,N is high enough. Putting
these results together gives the main result. Hence, we need to show (i).

First, note that iteration (7) or (6) may be written

Vk+1 = TVk − εk

where εk, defined by εk = TVk −Vk+1, is the approximation error of the Bellman operator applied to
Vk due to sampling. The proof is done in two steps: we first prove a statement that gives pointwise
bounds (i.e., the bounds hold for any state x ∈ X ) which is then used to prove the necessary L p

bounds. Parts (i) and (ii) are connected in Sections B.3, B.4.

B.1 Pointwise Error Bounds

Lemma 3 We have

V ∗−V πK ≤ (I − γPπK )−1
{

∑K−1
k=0 γK−k

[
(Pπ∗

)K−k +PπK PπK−1 . . .Pπk+1
]
|εk| (20)

+γK+1
[
(Pπ∗

)K+1 +(PπK PπK−1 . . .Pπ0)
]
|V ∗−V0|

}
.

Proof Since TVk ≥ T π∗
Vk, we have

V ∗−Vk+1 = T π∗
V ∗−T π∗

Vk +T π∗
Vk −TVk + εk ≤ γPπ∗

(V ∗−Vk)+ εk,

from which we deduce by induction

V ∗−VK ≤
K−1

∑
k=0

γK−k−1(Pπ∗
)K−k−1εk + γK(Pπ∗

)K(V ∗−V0). (21)
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Similarly, from the definition of πk and since TV ∗ ≥ T πkV ∗, we have

V ∗−Vk+1 = TV ∗−T πkV ∗ +T πkV ∗−TVk + εk ≥ γPπk(V ∗−Vk)+ εk.

Thus, by induction,

V ∗−VK ≥
K−1

∑
k=0

γK−k−1(PπK−1PπK−2 . . .Pπk+1)εk + γK(PπK−1PπK−2 . . .Pπ0)(V ∗−V0). (22)

Now, from the definition of πK , T πKVK = TVK ≥ T π∗
VK , and we have

V ∗−V πK = T π∗
V ∗−T π∗

VK +T π∗
VK −TVK +T πKVK −T πKV πK

≤ γPπ∗
(V ∗−VK)+ γPπK (VK −V ∗ +V ∗−V πK )

(I − γPπK )(V ∗−V πK ) ≤ γ(Pπ∗
−PπK )(V ∗−VK),

and since (I − γPπK ) is invertible and its inverse is a monotonic operator14 (we may write (I −
γPπK )−1 = ∑m≥0 γm(PπK )m), we deduce

V ∗−V πK ≤ γ(I − γPπK )−1(Pπ∗
−PπK )(V ∗−VK)

Now, using (21) and (22),

V ∗−V πK ≤ (I − γPπK )−1
{

∑K−1
k=0 γK−k

[
(Pπ∗

)K−k −PπK PπK−1 . . .Pπk+1
]
εk

+γK+1
[
(Pπ∗

)K+1 − (PπK PπK−1 . . .Pπ0)
]
(V ∗−V0)

}

from which (20) follows by taking the absolute value of both sides.

B.2 Lp Error Bounds

We have the following approximation results.

Lemma 4 For any η > 0, there exists K that is linear in log(1/η) (and logVmax) such that, if the
Lp(µ) norm of the approximation errors is bounded by some ε (‖εk‖p,µ ≤ ε for all 0 ≤ k < K) then

• Given Assumption A1 we have

‖V ∗−V πK‖∞ ≤
2γ

(1− γ)2C1/p
µ ε+η. (23)

• Given Assumption A2 we have

‖V ∗−V πK‖p,ρ ≤
2γ

(1− γ)2C1/p
ρ,µ ε+η. (24)

14. An operator T is monotonic if for any x ≤ y, T x ≤ Ty.
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Note that if ‖εk‖∞ ≤ ε then letting p → ∞ we get back the well-known, unimprovable supremum-
norm error bounds

limsup
K→∞

‖V ∗−V πK‖∞ ≤
2γ

(1− γ)2 ε

for approximate value iteration (Bertsekas and Tsitsiklis, 1996). (In fact, by inspecting the proof
below it turns out that for this the weaker condition, limsupk→∞ ‖εk‖∞ ≤ ε suffices, too.)
Proof We have seen that if A1 holds then A2 also holds, and for any distribution ρ, Cρ,µ ≤ Cµ.
Thus, if the bound (24) holds for any ρ then choosing ρ to be a Dirac at each state proves (23). Thus
we only need to prove (24).

We may rewrite (20) as

V ∗−V πK ≤
2γ(1− γK+1)

(1− γ)2

[
K−1

∑
k=0

αkAk|εk|+αKAK |V
∗−V0|

]
,

with the positive coefficients

αk =
(1− γ)γK−k−1

1− γK+1 , for 0 ≤ k < K, and αK =
(1− γ)γK

1− γK+1 ,

(defined such that they sum to 1) and the probability kernels:

Ak =
1− γ

2
(I − γPπK )−1[(Pπ∗

)K−k +PπK PπK−1 . . .Pπk+1
]
, for 0 ≤ k < K,

AK =
1− γ

2
(I − γPπK )−1[(Pπ∗

)K+1 +PπK PπK−1 . . .Pπ0
]
.

We have:

‖V ∗−V πK‖p
p,ρ =

Z

ρ(dx)|V ∗(x)−V πK (x)|p

≤

[
2γ(1− γK+1)

(1− γ)2

]p Z

ρ(dx)

[
K−1

∑
k=0

αkAk|εk|+αKAK |V
∗−V0|

]p

(x)

≤

[
2γ(1− γK+1)

(1− γ)2

]p Z

ρ(dx)

[
K−1

∑
k=0

αkAk|εk|
p +αKAK |V

∗−V0|
p

]
(x),

by using two times Jensen’s inequality (since the sum of the coefficients αk, for k ∈ [0,K], is 1, and
the Ak are positive linear operators with Ak1 = 1) (i.e., convexity of x → |x|p).

The term |V ∗ −V0| may be bounded by 2Vmax. Now, under Assumption A2, ρAk ≤ (1 −
γ)∑m≥0 γmc(m+K − k)µ and we deduce

‖V ∗−V πK‖p
p,ρ ≤

[
2γ(1− γK+1)

(1− γ)2

]p
[

K−1

∑
k=0

αk(1− γ) ∑
m≥0

γmc(m+K − k)‖εk‖
p
p,µ +αK(2Vmax)

p

]
.
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Replace αk by their values, and from the definition of Cρ,µ, and since ‖εk‖p,µ ≤ ε, we have:

‖V ∗−V πK‖p
p,ρ ≤

[
2γ(1− γK+1)

(1− γ)2

]p [ (1− γ)2

1− γK+1

∑
m≥0

K−1

∑
k=0

γm+K−k−1c(m+K − k)εp +
(1− γ)γK

1− γK+1 (2Vmax)
p
]

≤

[
2γ(1− γK+1)

(1− γ)2

]p[
1

1− γK+1Cρ,µεp +
(1− γ)γK

1− γK+1 (2Vmax)
p
]

Thus there is K linear in log(1/η) and logVmax such that

γK <

[
(1− γ)2

4γVmax
η
]p

such that the second term is bounded by ηp, thus,

‖V ∗−V πK‖p
p,ρ ≤

[
2γ

(1− γ)2

]p

Cρ,µεp +ηp

thus

‖V ∗−V πK‖p,ρ ≤
2γ

(1− γ)2C1/p
ρ,µ ε+η

B.3 From Pointwise Expectations to Conditional Expectations

We will need the following lemma in the proof of the theorem:

Lemma 5 Assume that X ,Y are independent random variables taking values in the respective mea-
surable spaces, X and Y . Let f : X ×Y → R be a Borel-measurable function such that E [ f (X ,Y )]
exists. Assume that for all y ∈ Y , E [ f (X ,y)] ≥ 0. Then E [ f (X ,Y )|Y ] ≥ 0 holds, too, w.p.1.

This lemma is an immediate consequence of the following result, whose proof is given for the sake
of completeness:

Lemma 6 Assume that X ,Y are independent random variables taking values in the respective mea-
surable spaces, X and Y . Let f : X ×Y → R be a Borel-measurable function and assume that
E [ f (X ,Y )] exists. Let g(y) = E [ f (X ,y)]. Then E [ f (X ,Y )|Y ] = g(Y ) holds w.p.1.

Proof Let us first consider the case when f has the form f (x,y) = I{x∈A}I{y∈B}, where A⊂X , B⊂Y
are measurable sets. Write r(x) = I{x∈A} and s(y) = I{y∈B}. Then E [ f (X ,Y )|Y ] = E [r(X)s(Y )|Y ] =
r(Y )E [s(X)|Y ] since s(Y ) is Y -measurable. Since X and Y are independent, so are s(X) and Y and
thus E [s(X)|Y ] = E [s(X)]. On the other hand, g(y) = E [r(X)s(y)] = s(y)E [r(X)], and thus it in-
deed holds that E [ f (X ,Y )|Y ] = g(Y ) w.p.1. Now, by the additivity of expectations the same relation
holds for sums of functions of the above form and hence, ultimately, for all simple functions. If f
is nonnegative valued then we can find a sequence of increasing simple functions fn with limit f .
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By Lebesgue’s monotone convergence theorem, gn(y)
def
= E [ fn(X ,y)] → E [ f (X ,y)](= g(y)). Fur-

ther, since Lebesgue’s monotone convergence theorem also holds for conditional expectations, we
also have E [ fn(X ,Y )|Y ]→E [ f (X ,Y )|Y ]. Since gn(Y ) = E [ fn(X ,Y )|Y ]→E [ f (X ,Y )|Y ] w.p.1., and
gn(Y ) → g(Y ) w.p.1., we get that g(Y ) = E [ f (X ,Y )|Y ] w.p.1. Extension to an arbitrary function
follows by decomposing the function into its positive and negative parts.

B.4 Proof of Theorem 2

Proof Let us consider first the multi-sample variant of the algorithm under Assumption A2. Fix
ε,δ > 0. Let the iterates produced by the algorithm be V1, . . . ,VK . Our aim is to show that by
selecting the number of iterates, K and the number of samples, N,M large enough, the bound

‖V ∗−V πK‖p,ρ ≤
2γ

(1− γ)2 C1/p
ρ,µ dp,µ(T F ,F )+ ε (25)

holds w.p. at least 1−δ. First, note that by construction the iterates Vk remain bounded by Vmax. By
Lemma 4, under Assumption A2, for all those events, where the error εk = TVk −Vk+1 of the kth
iterate is below (in Lp(µ)-norm) some level ε0, we have

‖V ∗−V πK‖p,ρ ≤
2γ

(1− γ)2C1/p
ρ,µ ε0 +η, (26)

provided that K = Ω(log(1/η)). Now, choose ε′ = (ε/2)(1−γ)2/(2γC1/p
ρ,µ ) and η = ε/2. Let f (ε,δ)

denote the function that gives lower bounds on N,M in Lemma 1 based on the value of the desired
estimation error ε and confidence δ. Let (N,M) ≥ f (ε′,δ/K). One difficulty is that Vk, the kth
iterate is random itself, hence Lemma 1 (stated for deterministic functions) cannot be applied di-
rectly. However, thanks to the independence of samples between iterates, this is easy to fix via the
application of Lemma 5.

To show this let us denote the collection of random variables used in the kth step by Sk. Hence,
Sk consists of the N basepoints, as well as |A |×N ×M next states and rewards. Further, introduce
the notation V ′(V,Sk) to denote the result of solving the optimization problem (2)–(3) based on the
sample Sk and starting from the value function V ∈ B(X ). By Lemma 1,

P

(∥∥V ′(V,Sk)−TV
∥∥

p,µ ≤ dp,µ(TV,F )+ ε′
)
≥ 1−δ/K.

Now let us apply Lemma 5 with X := Sk, Y := Vk and f (S,V ) = I{‖V ′(V,S)−TV‖p,µ≤dp,µ(TV,F )+ε′} −

(1−δ/K). Since Sk is independent of Vk the lemma can indeed be applied. Hence,

P

(∥∥V ′(Vk,Sk)−TVk
∥∥

p,µ ≤ dp,µ(TVk,F )+ ε′|Vk

)
≥ 1−δ/K.

Taking the expectation of both sides gives P

(
‖V ′(Vk,Sk)−TVk‖p,µ ≤ dp,µ(TVk,F )+ ε′

)
≥ 1 −

δ/K. Since V ′(Vk,Sk) = Vk+1, εk = TVk −Vk+1, we thus have that

‖εk‖p,µ ≤ dp,µ(TV,F )+ ε′ (27)

holds except for a set of bad events Bk of measure at most δ/K.
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Hence, inequality (27) holds simultaneously for k = 1, . . . ,K, except for the events in B = ∪kBk.
Note that P(B)≤ ∑K

k=1 P(Bk)≤ δ. Now pick any event in the complementer of B. Thus, for such an
event (26) holds with ε0 = dp,µ(TV,F )+ ε′. Plugging in the definitions of ε′ and η we obtain (25).

Now assume that the MDP satisfies Assumption A1. As before, we conclude that (27) holds
except for the events in Bk and with the same choice of N and M, we still have P(B) = P(∪kBK)≤ δ.

Now, using (23) we conclude that except on the set B, ‖V ∗−V πK‖∞ ≤ 2γ
(1−γ)2 C1/p

ρ,µ dp,µ(T F ,F )+ ε,
concluding the first part of the proof.

For single-sample FVI the proof proceeds identically, except that now one uses Lemma 2 in
place of Lemma 1.

Appendix C. Proof of Theorem 3

Proof We would like to prove that the policy defined in Section 6 gives close to optimal perfor-
mance. Let us prove first the statement under Assumption A2.

By the choice of M′, it follows using Hoeffding’s inequality (see also Even-Dar et al., 2002,
Theorem 1) that πK

α,λ selects α-greedy actions w.p. at least 1−λ.

Let πK
α be a policy that selects α-greedy actions. A straightforward adaptation of the proof of

Lemma 5.17 of Szepesvári (2001) yields that for all state x ∈ X ,

|V πK
α,λ(x)−V πK

α (x)| ≤
2Vmaxλ
1− γ

. (28)

Now, use the triangle inequality to get
∥∥∥V ∗−V πK

α,λ

∥∥∥
p,ρ

≤
∥∥∥V ∗−V πK

α

∥∥∥
p,ρ

+
∥∥∥V πK

α −V πK
α,λ

∥∥∥
p,ρ

.

By (28), the second term can be bounded by 2Vmaxλ
1−γ , so let us consider the first term.

A modification of Lemmas 3 and 4 yields the following result, the proof of which will be given
at the end of this section:

Lemma 7 The following bound
∥∥∥V ∗−V πK

α

∥∥∥
p,ρ

≤ 21−1/p
[

2γ
(1− γ)2C1/p

ρ,µ max
0≤k<K

‖εk‖p,µ +η+
α

1− γ

]
(29)

holds for K such that γK <
[

(1−γ)2

4γVmax
η
]p

.

Again, let f (ε,δ) be the function that gives the bounds on N,M in Lemma 1 for given ε and δ and set
(N,M)≥ f (ε′,δ/K) for ε′ to be chosen later. Using the same argument as in the proof of Theorem 2
and Lemma 1 we may conclude that ‖εk‖p,µ ≤ dp,µ(TVk,F )+ ε′ ≤ dp,µ(T F ,F )+ ε′ holds except
for a set Bk with P(Bk) ≤ δ/K.

Thus, except on the set B = ∪kBk of measure not more than δ,
∥∥∥V ∗−V πK

α,λ

∥∥∥
p,ρ

≤ 21−1/p
[

2γ
(1− γ)2C1/p

ρ,µ
(
dp,µ(T F ,F )+ ε′

)
+η+

α
1− γ

]
+

2Vmaxλ
1− γ

≤

[
4γ

(1− γ)2C1/p
ρ,µ dp,µ(T F ,F )+

4γ
(1− γ)2C1/p

ρ,µ ε′ +2η+
2α

1− γ

]
+

2Vmaxλ
1− γ

.
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Now define α = ε(1− γ)/8, η = ε/8, ε′ = ε
4

(1−γ)2

4γ C−1/p
ρ,µ and λ = ε

4
(1−γ)
2Vmax

to conclude that

∥∥∥V ∗−V πK
α,λ

∥∥∥
p,ρ

≤
4γ

(1− γ)2C1/p
ρ,µ dp,µ(T F ,F )+ ε

holds everywhere except on B. Also, just like in the proof of Theorem 2, we get that under Assump-
tion A1 the statement for the supremum norm holds, as well.

It thus remained to prove Lemma 7:
Proof [Lemma 7] Write 1 for the constant function that equals to 1. Since πK

α is α-greedy w.r.t. VK ,
we have TVK ≥ T πK

αVK ≥ TVK −α1. Thus, similarly to the proof of Lemma 3, we have

V ∗−V πK
α = T π∗

V ∗−T π∗
VK +T π∗

VK −TVK +TVK −T πK
αVK +T πK

αVK −T πK
αV πK

α

≤ γPπ∗
(V ∗−VK)+ γPπK

α (VK −V ∗ +V ∗−V πK
α )+α1

≤ (I − γPπK
α )−1

[
γ(Pπ∗

−PπK
α )(V ∗−VK)

]
+

α1
1− γ

,

and by using (21) and (22), we deduce

V ∗−V πK
α ≤ (I − γPπK

α )−1
{

∑K−1
k=0 γK−k

[
(Pπ∗

)K−k +PπK
α PπK−1 . . .Pπk+1

]
|εk|

+γK+1
[
(Pπ∗

)K+1 +(PπK
α PπK PπK−1 . . .Pπ1)

]
|V ∗−V0|

}
+ α1

1−γ .

Now, from the inequality |a+b|p ≤ 2p−1(|a|p + |b|p), we deduce, by following the same lines as in
the proof of Lemma 4, that

∥∥∥V ∗−V πK
α

∥∥∥
p

p,ρ
≤ 2p−1

{[
2γ

(1− γ)2

]p

Cρ,µ( max
0≤k<K

‖εk‖p,µ)
p +ηp +

[
α

1− γ

]p}
,

and Lemma 7 follows.
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Abstract
This paper introduces a new PAC transductive error bound for classification. The method uses in-
formation from the training examples and inputs of working examples to develop a set of likely
assignments to outputs of the working examples. A likely assignment with maximum error deter-
mines the bound. The method is very effective for small data sets.
Keywords: error bound, transduction, nearest neighbor, dynamic programming

1. Introduction

An error bound based on VC dimension (Vapnik and Chervonenkis, 1971; Vapnik, 1998) uses uni-
form bounds over the largest number of assignments possible from a class of classifiers, based on
worst-case arrangements of training and working examples. However, as the number of training
examples grows, the probability that training error is a good approximation of working error is so
great that the VC error bound succeeds in spite of using uniform bounds based on worst-case as-
sumptions about examples. Also, it is easy to compute VC bounds for any number of examples,
assuming the VC dimension for the class is known. This makes VC bounds useful and convenient
for large data sets, that is, data sets having thousands of examples. However, VC error bounds have
some drawbacks: they are ineffective for smaller data sets, and they do not apply to some classifiers,
such as nearest neighbor classifiers.

Transductive inference (Vapnik, 1998) is a training method that uses information provided by
inputs of working examples in addition to information provided by training examples. The idea is to
develop the best classifier for the inputs of the specific working examples at hand rather than develop
a classifier that is good for general inputs and then apply it to the working examples. Transductive
inference improves on general VC bounds by using the actual working example inputs, instead of a
worst-case arrangement of inputs, to find the number of different assignments that classifiers in each
training class can produce. The bounds are then used to select among classes, mediating a tradeoff
between small classes that are more likely to have good generalization and large classes that are
more likely to capture the dynamics of the training data.

The error bound presented here is designed to provide error bounds for data sets so small that
other bounds are ineffective. Like transductive inference, the error bound presented here uses infor-
mation provided by the inputs of the working examples in addition to information provided by the
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training examples. But it also uses information provided by the training procedure rather than just
the class of all classifiers that can be produced by the training procedure. However, it requires more
computation than VC bounds. In fact, the required computation grows so quickly with data set size
that the bound is practical only for small data sets. (Nearest neighbor classifiers are an exception to
this limitation; this paper contains an efficient method to compute bounds for them.)

Normally, algorithm designers are concerned about how computation grows as problem size
increases, focusing on asymptotic behavior as problem size goes to infinity. This paper does not
focus on what happens as data set size goes to infinity—there are already many effective bounds for
large data sets. This paper focuses on how much information we can wring out of small data sets.
Small data sets do occur in practice, for example in early stage drug tests in medicine and in setting
prices and making markets for ad-matching systems that have to deal with tiny markets out in the
long tail of information domains. In short, there is “plenty of room at the bottom” for improved
error bounds.

The error bound in this paper is based on the fact that if the training and working examples are
generated independently and identically distributed (i.i.d.), then each partition of the complete set of
training and working examples into a training set and a working set is equally likely. Several error
bounds for machine learning are based on this principle. Examples include VC error bounds (Vapnik
and Chervonenkis, 1971; Cristianini and Shawe-Taylor, 2000, Section 4.2, p. 55), error bounds
for support vector machines (Vapnik, 1998, Chapter 8, pp. 339-343), compression-based error
bounds (Littlestone and Warmuth, 1986), and uniform error bounds based on constraints imposed
by patterns of agreement and disagreement among classifiers over the working inputs (Bax, 1999).
For some other ways of developing and using this idea, refer to Audibert (2004), Blum and Langford
(2003), Catoni (2003), Catoni (2004), Derbeko et al. (2003), and El-Yaniv and Gerzon (2005).

This paper is organized as follows. Section 2 introduces concepts and notation for the error
bound. Section 3 presents the error bound. Section 4 introduces sampled filters, which reduce com-
putation required for the bound. Section 5 analyzes speed and storage requirements for filters based
on all partitions and for sampled filters. Section 6 introduces filters based on virtual partitioning,
which do not require explicit computation over multiple partitions of the data into different training
and working sets. Section 7 gives an efficient algorithm to compute an error bound for a 1-nearest
neighbor classifier. Section 8 presents test results comparing bounds produced by different filters
on a set of problems. Section 9 is a discussion of possible directions for future research.

2. Concepts and Notation

This paper concerns validation of classifiers learned from examples. Each example Z = (X, Y)
includes an input X and a class label Y ∈ {0,1}. We observe

(X1,Y1), ...,(Xt ,Yt),Xt+1, ...,Xt+w

that is, inputs and outputs of t training examples and just the inputs of w working examples. (We
will use T to denote the set of training examples and W to denote the set of working examples.) A
classifier g, which is a mapping from the input space for X to {0,1}, is developed using the observed
data. Then classifier g is used to predict the working example outputs Yt+1, . . . , Yt+w associated
with Xt+1, . . . , Xt+w.

For any sequence of examples
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c = (x1,y1), ...(xt+w,yt+w) (1)

from the joint space of inputs and labels, define the error to be

Ec =
1
w

t+w

∑
i=t+1

I(g(xi) 6= yi),

where I is the indicator function—one if the argument is true and zero otherwise. Let

C = Z1, ...,Zt+w.

Examples in this complete sequence Z1 = (X1,Y1), . . . , Zt+w = (Xt+w,Yt+w) are assumed to be
drawn i.i.d. from an unknown joint distribution of inputs and labels.

The goal is to produce a PAC (probably approximately correct) bound on EC, the error on
complete sequence C.

The bounds in this paper consider different possible assignments to the unknown labels of the
working set examples and use permutations of the complete sequence. So we introduce some no-
tation around assignments and permutations. For any assignment a ∈ {0,1}w and any permutation
σ of {1, . . . , t+w}, let C(a, σ) be the sequence that results from assigning labels to the working
examples in C:

∀i ∈ {1, ...,w} : Yt+i = ai,

then permuting the sequence according to σ. Let T(a, σ) be the set consisting of the first t examples
in C(a, σ). Let W(a, σ) be the set consisting of the last w examples in C(a, σ). Let g(a, σ) be the
classifier produced by applying the training procedure with T(a, σ) as the training set and W(a, σ)
as the working set. Let E(a, σ) be the error of g(a, σ) over W(a, σ); in other words, let E(a, σ) be the
error E as defined in Equation (1) that would result from using C(a, σ) as the complete sequence.

Let a* be the actual (unknown) labels of the working examples. Let Id be the identity permuta-
tion. Then

EC = E(a∗, Id).

3. First Error Bound and Algorithm

Section 3.1 presents the error bound. Section 3.2 shows how to compute the bound over partitions
instead of permutations. Section 3.3 presents the algorithm for computing the bound.

3.1 Bound

Let Id be the identity permutation. Define a likely set

L = {a ∈ {0,1}w|P[E(a,σ) ≥ E(a, Id)] > δ} ,

where the probability is over the uniform distribution of permutations σ of {1, . . . , t+w}. The bound
is
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max
a ∈ L

E(a, Id). (2)

Theorem 3.1
With probability at least 1−δ,

E(a∗, Id) ≤
max
a ∈ L

E(a, Id), (3)

where the probability is over random complete sequences drawn i.i.d. from a joint input-label dis-
tribution.

Proof of Theorem 3.1
If a* ∈ L, then Equation (3) holds. So it suffices to show that

PC(a∗ /∈ L) ≤ δ,

where subscript C denotes probability over the distribution of complete sequences C. By the defini-
tion of L, the LHS is

= PC[Pσ[E(a∗,σ) ≥ E(a∗, Id)] ≤ δ|C],

where subscript σ denotes probability over the uniform distribution of permutations σ of {1, . . . ,
t+w}. Convert the probability over the distribution of complete sequences to an integral over com-
plete sequences:

Z

C
I(Pσ[E(a∗,σ) ≥ E(a∗, Id)] ≤ δ|C)p(C)dC,

where p(C) is the pdf of C. Since each permutation of a complete sequence is equally likely, we
can replace the integral over complete sequences by an integral over sequences Q of t+w examples
followed by an average over permutations σ′ of Q to form complete sets:

=
Z

Q

1
(t +w)! ∑

σ′

I(Pσ[E(a∗,σ) ≥ E(a∗,σ′)] ≤ δ|C = σ′Q)p(Q)dQ. (4)

For each set Q, only δ (t+w)! or fewer permutations σ′ can rank in the top δ (t+w)! of all (t+w)!
permutations for any statistic, including the statistic E(a*, σ). So,

∀Q : ∑
σ′

I(Pσ[E(a∗,σ) ≥ E(a∗,σ′)] ≤ δ|Q) ≤ δ(t +w)!.

Substitute this inequality into Equation (4), to show it is

≤
Z

Q

1
(t +w)!

δ(t +w)!p(Q)dQ.

Cancel terms (t+w)! and integrate to get δ, completing the proof.
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3.2 From Permutations to Partitions

For each assignment a ∈ {0,1}w and each size-t subset S of {1, . . . , t+w}, let T(a, S) be the set (or
multi-set) of examples in C(a, Id) indexed by entries of S, and let W(a, S) be the remaining examples
in C(a, Id). Refer to the pair T(a, S) and W(a, S) as the partition induced by S. Let g(a, S) be the
classifier that results from training with T(a, S) as the training set and W(a, S) as the working set.
Let E(a, S) be the error of g(a, S) over W(a, S).

For each permutation σ of {1, . . . , t+w}, let σi be the position in C(a, Id) of the example in
position i in C(a, σ). Note that

{σ1, ...,σt} = S ⇒ (T (a,σ),W (a,σ)) = (T (a,S),W (a,S)) .

For each S, there is the same number, t!w!, of permutations σ with {σ1, . . . , σt} = S, because there
are t! ways to order the elements of S in σ1, . . . , σt and w! ways to order the remaining elements
of {1, . . . , t+w} in σt+1, . . . , σt+w. Since there is this t!w!-to-one mapping from permutations σ
to subsets S with E(a, σ) = E(a, S), the probability over permutations in the definition of L can be
replaced by the following probability over partitions induced by subsets S :

L = {a ∈ {0,1}w|PS[E(a,S) ≥ E(a,S∗)] > δ},

where the probability is uniform over size-t subsets S of {1, . . . , t+w}, and S* = {1, . . . , t}. Hence,
we can compute errors E(a, S) over size-t subsets S rather than over all permutations in order to
compute bound in Equation (2).

3.3 Algorithm

Given an array C of t training examples followed by w working examples and a bound failure prob-
ability ceiling δ, Algorithm 3.3.1 returns a valid error bound with probability at least 1− δ. The
procedure E(a, S, C), which is not shown, computes E(a, S) by assigning a to the labels of the last
w entries in C, training a classifier using the entries of C indicated by S as the training set and the
remaining entries as the working set, and returning the error of that classifier over that working set.

Algorithm 3.3.1

procedure bound(C, delta)
// Variable bound stores the running max of errors for likely assignments.
bound := 0;

// Try all assignments.
for (a in {0,1}ˆw)

// Check if error is high enough to be a new max.
if (E(a, {1, ..., t}, C) > bound)
// Variable f[i] stores the frequency of E(a, S) = i/w.
f[0 ... w] = 0;
// Find error frequencies.
for (S subset of {1, ..., t+w} with |S|=t) f[E(a, S, C)]++;
// Variable tail stores the frequency of error
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// greater than for S={1, ..., t}.
tail := 0;
// Sum the tail.
for (i=E(a, {1, ..., t}, C) to w) tail += f[i];
// If assignment is likely, increase bound.
if (tail > delta) bound := E(a, {1, ..., t}, C);

end if
end for

return bound;
end procedure

4. Sampled Filters and Ranking with Random Tie Breaking

The goal is to reject from L as many false assignments a as possible among those that have E(a,
Id) > E(a*, Id), while only rejecting a* in a fraction δ or fewer of cases. The bound process in the
previous section rejects assignments a for which E(a, S*) is abnormally high among errors E(a, S)
over subsets S of {1, . . . , t+w}, that is, among partitions of the complete sequence into training and
working sets. For each assignment a, the process is equivalent to ranking all subsets S in order of
E(a, S), finding the fraction of subsets that outrank S*, even with S* losing all ties, and rejecting a
if the fraction is δ or less. Call this filter the complete filter, because it compares S* to all subsets
S. This section introduces alternative filters that do not require computation over all subsets and a
random tie breaking process that ranks S* fairly among subsets S having the same error instead of
having S* lose all ties.

4.1 Sampled Filters

The complete filter is expensive to compute. To motivate thinking about alternative filters, note that
any filter that accepts a* into L with probability at least 1-δ produces a valid bound. For example,
a filter that simply makes a random determination for each assignment, accepting it into L with
probability 1-δ, independent of any data about the problem at hand, still produces a valid error
bound. Of course, this random filter is unlikely to produce a strong bound, because it does not
preferentially reject assignments a that have high error E(a, S*).

The following sampled filter, based on errors E(a, S) over a random sample of subsets S, re-
jects assignments with high error E(a, S*), and it is less expensive to compute than the complete
filter. For each assignment a, generate a sample of n size-t subsets S of {1, . . . , t+w}. Generate
the sample by drawing subsets i.i.d. with replacement based on a uniform distribution over subsets,
or generate the sample by drawing subsets i.i.d. without replacement based on a distribution that is
uniform over subsets other than S* and has zero probability for S*. After drawing the sample by
either method, add S* to the sample. Then use the sample in place of the set of all subsets S in the
algorithm, that is, accept assignment a if the fraction of subsets S in the sample with E(a, S) at least
E(a, S*) is greater than δ . Like the complete filter, this sampled filter has probability at most δ of
rejecting the true assignment. Here is the proof for sampling with replacement. The proof for sam-
pling without replacement is similar, and it is outlined after the proof for sampling with replacement.
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Theorem 4.1.1
Let R be the set of all size-t subsets of {1, . . . , t+w}. Let M be a set (or multi-set) of entries

from R, drawn i.i.d. with replacement based on a uniform distribution over R. Let

LM =
{

a ∈ {0,1}w|PS∈M∪{S∗}[E(a,S) ≥ E(a,S∗)] > δ
}

where the probability is uniform over all sets S in M. Then, with probability at least 1−δ,

E(a∗,S∗) ≤
max

a ∈ LM
E(a,S∗), (5)

where the probability is over random complete sequences C drawn i.i.d. from a joint input-label
distribution and over random subset samples M.

Proof of Theorem 4.1.1
If a* ∈ LM , then Equation (5) holds. So we will show

PC,M(a∗ /∈ LM) ≤ δ, (6)

where the probability is over the joint distribution of complete sequences C and subset samples M.
By the definition of LM, the LHS is

= PC,M[PS∈M∪{S∗}[E(a∗,S) ≥ E(a∗,S∗)] ≤ δ|C].

Convert the probability over C into an integral over sequences Q of t+w examples, followed by a
probability over permutations σ′ of Q to form complete sets:

Z

Q
Pσ′,M[PS∈M∪{S∗}[E(a∗,S) ≥ E(a∗,S∗)] ≤ δ|C = σ′Q]p(Q)dQ, (7)

where the first probability is over a joint distribution of σ′ and M, with σ′ drawn uniformly at random
from permutations of t+w elements and independently of M. For any fixed sequence Q, consider the
expression from within Equation (7):

Pσ′,M[PS∈M∪{S∗}[E(a∗,S) ≥ E(a∗,S∗)] ≤ δ|C = σ′Q]. (8)

Define multi-set

H(Q) = {E(a∗,S)|S ∈ M∪{S∗}} .

Random draws of σ′ and M make H(Q) a multi-set of random values drawn i.i.d. from a uniform
distribution over the set

U(Q) = {E(a∗,S)|S ⊆ {1, ..., t +w}∧ |S| = t} .

Since the elements of H(Q) are drawn i.i.d., the probability that E(a*, S*) ranks in the top δ |H(Q)|of
the positions in a ranking of entries in H(Q) is at most δ. Note that Equation (8) is this probability.
So

∀Q : Pσ′,M[PS∈M∪{S∗}[E(a∗,S) ≥ E(a∗,S∗)] ≤ δ|C = σ′Q] ≤ δ.
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Substitute this inequality into Equation (7), showing that the LHS of Equation (6) is

≤
Z

Q
δp(Q)dQ.

Integrate to get δ, completing the proof.
Now consider the case of sampling subsets without replacement:

Theorem 4.1.2
Let R′ be the set of all size-t subsets of {1, . . . , t+w}, except for S*. Let M ′ be a set of entries

from R′, drawn i.i.d. without replacement based on a uniform distribution over R′. Let

LM′ =
{

a ∈ {0,1}w|PS∈M′∪{S∗}[E(a,S) ≥ E(a,S∗)] > δ
}

,

where the probability is uniform over all sets S in M ′. Then, with probability at least 1 − δ,

E(a∗,S∗) ≤
max

a ∈ LM′
E(a,S∗),

where the probability is over random complete sequences C drawn i.i.d. from a joint input-label
distribution and over random subset samples M.

Proof of Theorem 4.1.2
The proof is almost the same as the proof of Theorem 4.1.1, substituting M ′ for M. The set

H(Q) becomes a set of random variables drawn i.i.d. from U(Q) without replacement, rather than
with replacement. But with or without replacement, the probability that E(a*, S*) ranks in the top δ
|H(Q)|of the positions in a ranking of entries in H(Q) is at most δ. Otherwise, the proof is the same.

4.2 Random Tie Breaking

Both the complete filter and the sampled filter accept an assignment if the fraction of a set of subsets
S with E(a, S) at least E(a, S*) is greater than δ. In essence, if other subsets S have the same error
as S*, then this rule errs on the side of safety by treating those subsets S as having greater error than
S*. This ensures that the bound is valid, but it makes the bound weaker than necessary. To close the
gap, use random tie breaking to rank S* at random among the subsets S that have E(a, S) = E(a, S*).
Let k be the number of subsets S with the same error as S*, including S* itself. Generate an integer
uniformly at random in [1,k] to be the number of subsets S with the same error that rank at or above
S* after random tie breaking. If that number plus the number of subsets S with error greater than for
S* is a larger fraction of the partitions than δ, then accept the assignment.

5. Speed and Storage Requirements for Complete and Sampled Filters

Consider the storage requirements for the bound process. Since the maximum error E(a, S) over
assignments in L is obtained by maintaining a running maximum as assignments are added to L,
there is no need to store L explicitly. So the storage requirements are mild, including space for a
data set, for two classifiers, and for training a classifier.

Using the complete filter to produce a bound requires time to train
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O(2w
(

t +w
t

)

)

classifiers. Using the sampled filter instead requires time to train

O(2wn)

classifiers, where n is the number of sample partitions per assignment. Both types of filters can be
computed in parallel, using different machines to filter different sets of assignments, each keeping
a running maximum of E(a, S*) over accepted assignments, and then finishing by fanning in the
maximum over the machines.

To reduce computation, evaluate assignments a for membership in L in decreasing order of E(a,
S*). When the first assignment a is accepted into L, return E(a, S*) as the error bound, and stop.
To order assignments by E(a, S*), train a classifier g, and apply it to each input in W to form the
assignment with zero error. Invert that assignment to form the assignment with maximum error.
Invert single elements of that assignment to produce assignments with the next greatest error rates.
Then invert pairs of elements, then triples, etc. (This technique reduces computation only by a small
fraction when the bound is effective; the reduction is only about half for an error bound of 0.5 and
even less for smaller error bounds. On the other hand, it does contribute to “fast failure” when the
bound is not effective.)

6. Virtual Partitions

Section 6.1 introduces the virtual partition filter. Section 6.2 describes the leave-one-out filter.
Section 6.3 presents scoring functions. Section 6.4 suggests a scoring function for support vector
machines.

6.1 Virtual Partition Filter

Define a general likely set Lh, based on some function h:

Lh = {a ∈ {0,1}w|PS[h(a,S) ≥ h(a,S∗)] > δ} ,

where the probability is over subsets S of {1, . . . , t+w}. Define a general error bound

Eh(a,S) =
max

a ∈ Lh
E(a,S∗).

If the filter

PS[h(a,S) ≥ h(a,S∗)] > δ

can be computed for each assignment a without explicitly computing h(a, S) over some subsets S,
then we call it a virtual partition filter.
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6.2 Leave-One-Out Filter

For example, let h(a, S) be the number of leave-one-out errors in W(a, S). (A leave-one-out error is
an example in C(a) that has a different label than the closest other example in C(a), with distance
based on some metric over the input domain.) A filter based on leave-one-out errors excludes
assignments a that cause an improbably large fraction of the leave-one-out errors in C(a) to be
in the working set. Frequencies of leave-one-out errors in W(a, S) over subsets S can be computed
without explicitly iterating over the subsets. The frequencies have a hypergeometric distribution—if
there are m leave-one-out errors in C(a), then

PS[h(a,S) = j] =

(

m
j

)(

t +w−m
w− j

)

(

t +w
w

) ,

where the probability is uniform over size-t subsets S of {1, . . . , t+w}.
Compute the filter for each assignment as follows. Set the labels of Zt+1, . . . , Zt+w according to

a. Then compute the number of leave-one-out errors in C(a); call it m. Next, compute frequencies:

∀ j ∈ {max(0,m− t), ...,min(w,m)} : f j =

(

m
j

)(

t +w−m
w− j

)

.

Let j*=h(a,S*), that is, the number of leave-one-out errors in W(a, S*). Let

v =
min(w,m)

∑
j= j∗

f j.

For random tie breaking, subtract from v a number drawn uniformly at random from [0, f j∗−1].Then
divide by the number of partitions:

(

t +w
w

)

.

If the result is δ or less, then reject assignment a.

6.3 Scoring Functions

In general, let s be a scoring function on examples in C(a) that returns an integer. Let

h(a,S) = ∑
Z∈W (a,S)

s(Z).

Let n(Z) be the nearest neighbor to Z in T∪W–{Z}. For example, when counting leave-one-out
errors,

s(Z) =

{

1 i f n(Z).y 6= Z.y
0 otherwise

where .y after an example denotes the output, Y, for the example.
Another useful scoring function counts leave-one-out errors caused by example Z:
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s(Z) = |{Q ∈ T ∪W |n(Q) = Z and Q.y 6= Z.y}| .

For scoring functions, such as this one, that have a range other than {0,1}, the hypergeometric
distribution does not apply. However, dynamic programming allows efficient computation of the
frequencies, as follows. Let

ci jk ≡

∣

∣

∣

∣

∣

{

A ⊆ {1, ..., i}| |A| = j and ∑
b∈A

s(Zb) = k

}∣

∣

∣

∣

∣

,

that is, the number of size-j subsets of the first i examples in C(a) that have sum of scores k. The
base cases are

∀( j,k) : c0 jk = 0

except

c000 = 1,

and

∀k < 0 : ci jk = 0.

The recurrence is

ci jk = ci−1, j,k + ci−1, j−1,k−s(i),

where s(i) is the score of example i. The frequencies are:

PS[h(a,S) = k] = ct+w,w,k.

Computing an error bound using virtual partitions requires O(2w poly(t+w)) time because the scor-
ing function is computed for each of the 2w assignments. (This assumes O(poly(t+w)) time to
compute the filter for each assignment.) The computation requires O(poly(t+w)) space since each
assignment can be filtered without reference to others, and the maximum error of a likely assignment
can be maintained using a single variable.

6.4 Scoring Functions for SVMs

Now consider filters with virtual partitions for support vector machines (SVMs). A leave-one-
out filter can require much computation—for each assignment, training separate SVMs with each
example held out in order to compute the number of leave-one-out errors. Joachims discovered a
method to bound the number of leave-one-out errors based on the results of training a single SVM
on all examples. The method is called εα-estimation (Joachims, 2002, Ch. 5). Computing the
εα-estimator involves producing a set of examples that are potential leave-one-out errors. The set
can be used as the basis for a filter that is binary-valued—each example in the set scores one and
each other example scores zero. The εα-estimation procedure can also be used as the basis of a
more complex filter, because it computes scores for examples before using a threshold to determine
which ones are in the set. So the scores (or discretized scores) can be used directly as the scoring
function for a filter.
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7. Efficient Computation of Error Bounds for 1-Nearest Neighbor Classifiers

When using virtual partitions based on leave-one-out errors to produce an error bound for a 1-
nearest neighbor classifier, there is a way to avoid iterating over all assignments to compute the
bound. Avoiding this iteration leads to an efficient method to compute an error bound for a 1-
nearest neighbor classifier, that is, a method that requires time polynomial in the size of the problem.
This section begins with some preliminary concepts before presenting the recurrences and dynamic
programming algorithm. Next there is a small example to illustrate the algorithm. Then there are
details on how to compute the recurrences efficiently. This section ends with a note on how to
extend the algorithm to improve the bounds by allowing random tie breaking for ranking.

7.1 Preliminaries and Concepts

To begin, ensure that each example has a unique nearest neighbor by randomly perturbing the inputs
of examples that tie to be nearest neighbors to any example. Perturb by so little that no new nearest
neighbor can be introduced. Repeat until each example has a unique minimum distance to another
example.

Lemma 7.1.1
This form of random tie breaking makes it impossible for a cycle of three or more examples to

have each example in the cycle the nearest neighbor of the next.
The proof is by contradiction. Let n(Z) be the nearest neighbor of example Z in T ∪W −{Z}.

Suppose there is a cycle of examples Z1, . . . , Zm, Z1 with m > 2 and each example the nearest
neighbor of the next, that is,

∀i ∈ {1, ...,m} : Zi = n(Zi+1),

and

Zm = n(Z1)

Let d be the distance metric over example inputs. Then

d(Z1,Z2) ≤ ... ≤ d(Zm,Z1) ≤ d(Z1,Z2).

For cycles greater than length two, the tie breaking makes equality impossible. So we have

d(Z1,Z2) < ... < d(Zm,Z1) < d(Z1,Z2).

Having the same distance on the left and right implies that the distance from the first example to the
second is greater than itself, which is impossible, completing the proof.

Let G be a directed graph with each example in Z1, . . . , Zt+w a node and with edges

{(n(Z1),Z1), ...,(n(Zt+w),Zt+w)},

that is, an edge to each example from its nearest neighbor. By Lemma 7.1.1, G has no cycles of
length greater than two. So G is a directed tree or forest, plus some directed edges that complete
length two cycles by going back along tree edges. Let F be a directed forest created by removing
from G one edge from each two-cycle. The algorithm to efficiently compute an error bound uses
dynamic programming, starting at the leaves of F and working up to the root or roots.
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7.2 Recurrences and Algorithm

Let F(k) be the subtree of F rooted at example Zk, that is, Zk and all nodes that can be reached by
following directed sequences of edges from Zk. Let A(i,j,k) be the subset of assignments in {0,1}w

that have i leave-one-out errors among the training examples in F(k) and j leave-one-out errors
among the working examples of F(k). Let n(Z,T) be the nearest neighbor of example Z among the
training examples. Define

ei jky =
max

a ∈ A(i, j,k)
|{Z ∈ F(k)∩W |Z.y = y and Z.y 6= n(Z,T ).y}| ,

that is, it is the maximum number of working examples in the subtree of F rooted at example Zk

that are misclassified by their nearest training examples, with the maximum being over assignments
that have i leave-one-out errors on the training examples in the subtree, j leave-one-out errors on the
working examples in the subtree, and label y on example Zk. If there are no such assignments, then
define

ei jky = −1,

to signify that the value is “undefined.”
The base cases are leaves of F. For a leaf example Zk that is in T and has label y,

e00ky = 0,

and, for all other combinations of i, j, and y,

ei jky = −1.

For a leaf example Zk that is in W and has label y,

e00ky = 0,

e0,0,k,1−y = 1,

and, for all other combinations of i, j, and y,

ei jky = −1.

Before defining the general recurrence, we first define some terms that express how interactions
between examples and their parent examples in F influence the numbers of leave-one-errors in T
and W and the error. Let Zi be an example, Let yi = Zi.y, let Zk be the parent of Zi in F, and let yk =
Zk.y. Define

cT (i,yi,k,yk) =

{

1 Zi ∈ T and yi 6= yk

0 otherwise
, (9)

to count whether Zk having label yk causes example Zi to be a leave-one-out error in T. Define

dT (i,yi,k,yk) =

{

1 Zk ∈ T,yi 6= yk, and Zi = n(Zk)
0 otherwise

, (10)
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to count whether example Zk having label yk causes example Zk to be a leave-one-out error in T.
Define

cW (i,yi,k,yk) =

{

1 Zi ∈W and yi 6= yk

0 otherwise
, (11)

to count whether example Zk having label yk causes example Zi to be a leave-one-out error in W if
it has label yi. Define

dW (i,yi,k,yk) =

{

1 Zk ∈W,yi 6= yk, and Zi = n(Zk)
0 otherwise

, (12)

to count whether example Zi having label yi causes example Zk to be a leave-one-out error in W if it
has label yk. Define nT (Z) to be the nearest neighbor of example Z in T. Define

h(k,yk) =

{

1 Zk ∈W and yk 6= nT (Zk).y
0 otherwise

,

to count whether example Zk having label yk causes example Zk to be misclassified by its nearest
training example.

Let r(Z) be the parent of example Z in F. Define

B(k) ≡ {b|r(Zb) = Zk} ,

that is, B(k) is the set of positions in C of the children of Zk in F. Let yb = Zb.y. Then

ei jky = max
{

(ib, jb,b,yb) : b ∈ B(k),eib jbbyb 6= −1
}

s.t.
∑b∈B(k)[ib + cT (b,yb,k,y)+dT (b,yb,k,y)] = i, and
∑b∈B(k)[ jb + cW (b,yb,k,y)+dW (b,yb,k,y)] = j

h(k,yk)+ ∑
b∈B(k)

eib jbbyb . (13)

Let A(i,j) be the subset of assignments in {0,1}w that have i leave-one-out errors on training exam-
ples and j leave-one-out errors on working examples. Define

vi j ≡ max
a∈A(i, j)

|{Z ∈W |Z.y 6= n(Z,T ).y}| ,

that is, the maximum error over assignments that have i leave-one-out errors on training examples
and j leave-one-out errors on working examples. If there are no such assignments, then let

vi j = 0.

Define

B ≡ {b|Zb is a root o f F} .

Then

vi j = max
{

(ib, jb,b,yb) : b ∈ B,eib jbbyb 6= −1
}

s.t.
∑b∈B ib = i,and

∑b∈B jb = j

∑
b∈B

eib jbbyb .
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Let ui j be the probability that j or more leave-one-out errors are in W(S) for a random size-t subset
S of {1, . . . , t+w}, given that there are i+j leave-one-out errors in T∪W. Then

ui j =
min(w,i+ j)

∑
z= j

(

i+ j
z

)(

t +w− i− j
w− z

)

(

t +w
w

) . (14)

For a given δ, the value

max
ui j≥δ

vi j (15)

bounds the number of working examples misclassified by their training examples, with probability
at least 1-δ.

Note that the recurrence for each term ei jky depends on terms ei jby for all b∈B(k). So produce an
ordering σk on examples in C that places all children before their parents in F. Compute terms ei jky

in that order, to ensure that each term is computed prior to computing any term that depends on it.
Next compute terms vi j based on terms ei jby for all b∈B. Then compute values ui j using Equation
(14), and compute the bound according to Equation (15).

7.3 Example of Computing Values ei jky

Consider a small example to demonstrate the recurrence for ei jky. Use the following examples:

example input output set
0 11.1 0 T
1 12.3 1 T
2 15.6 ? W

The graph G of nearest neighbors has edges (0,1), (1,0), and (1,2). Removing the first edge produces
a tree F, with node 1 as root and the other nodes as leaves. An ordering that places children before
parents in F is (0, 2, 1). So compute terms ei jky for k = 0, then k = 2, then k = 1.

For k = 0, node 0 is a leaf in F. Since example 0 is in T and has output y0 = 0,

e0000 = 0,

meaning that, in the single-node subtree consisting of node 0, there are no leave-one-out errors in T
or in W, and there are no examples in W misclassified by nearest neighbors in T. For all other i, j,
and y

ei j0y = −1.

For k = 2, node 2 is a leaf in F. Since example 2 is in W, it may have output y2 = 0 or y2 = 1. If y2 =
0, then example 2 is misclassified by its nearest neighbor in T, which is example 1. So

e0020 = 1.

If y2 = 1, then example 2 is properly classified by example 1, so
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e0021 = 0.

For k = 1, example 1 is in T, and y1 = 1. Node 1 has two children in G—nodes 0 and 2. For child
node 0, only the term e000 is defined. For child node 2, terms e0020 and e0021 are defined. Each pair
of terms with one from each child node can produce a term for node 1.

Begin with the pair e000 and e0020. Relationships between node 1 and each child node contribute
to the term. For the relationship between node 1 and node 0, the values are n = 0, yn = 0, k = 1, and
yk = 1. With these arguments:

1. cT (0,0,1,1) = 1 because example 1 (the parent) misclassifies example 0 (the child), causing a
leave-one-out error in T.

2. dT (0,0,1,1) = 1 because example 0 (the child) misclassifies example 1 (the parent), causing a
leave-one-out error in T.

3. cW (0,0,1,1) = 0 and dW (0,0,1,1) = 0 because neither example is in W.

For the relationship between node 1 and node 2, the values are n = 2, yn = 0, k = 1, and yk = 1.
With these arguments:

1. cT (2,0,1,1) = 0 because example 2 (the child) is not in T.

2. dT (2,0,1,1) = 0 because example 2 (the child) does not classify example 1 (the parent).

3. cW (2,0,1,1) = 1 because example 1 (the parent) misclassifies example 2 (the child), causing a
leave-one-out error in W.

4. dW (2,0,1,1) = 0 because example 1 (the parent) is not in W.

The resulting term has

i = [i0 + cT (0,0,1,1)+dT (0,0,1,1)]+ [i2 + cT (2,0,1,1)+dT (2,0,1,1)]

= [0+1+1]+ [0+0+0] = 2

and

j = [ j0 + cW (0,0,1,1)+dW (0,0,1,1)]+ [ j2 + cW (2,0,1,1)+dW (2,0,1,1)]

= [0+0+0]+ [0+1+0] = 1.

So the term is e2111. The value is

e2111 = h(1,1)+ e0000 + e0020 = 0+0+1 = 1.

(The value of h(1,1) is zero since example 1 is not in W.) The value e2111 = 1 means that, in the
subtree of F rooted at node 1, that is, in F, it is possible to have two leave-one-out errors in T, one
leave-one-out error in W, and one example in W misclassified by its nearest neighbor in T.

Now consider the other pair of terms from children, e0000 and e0021. The relationship between
node 1 and node 0 is the same as for the previous pair. The relationship between node 1 and node 2
changes because now y2 = 1, so n = 2, yn = 1, k = 1, and yk = 1. With these arguments:
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1. cT (2,1,1,1) = 0 because example 2 (the child) is not in T.

2. dT (2,1,1,1) = 0 because example 2 (the child) does not classify example 1 (the parent).

3. cW (2,1,1,1) = 0 because example 1 (the parent) properly classifies example 2 (the child),
causing no leave-one-out error in W.

4. dW (2,1,1,1) = 0 because example 1 (the parent) is not in W.

The resulting term has

i = [i0 + cT (0,0,1,1)+dT (0,0,1,1)]+ [i2 + cT (2,1,1,1)+dT (2,1,1,1)]

= [0+1+1]+ [0+0+0] = 2

and

j = [ j0 + cW (0,0,1,1)+dW (0,0,1,1)]+ [ j2 + cW (2,1,1,1)+dW (2,1,1,1)]

= [0+0+0]+ [0+0+0] = 0.

So the term is e2011. The value is

e2011 = h(1,1)+ e0000 + e0021 = 0+0+0 = 0,

which means that it is possible to have two leave-one-out errors in T, zero leave-one-out errors in
W, and zero examples in W misclassified by nearest neighbors in T. Other than e2111 and e2011, for
all other i, j, and y

ei j1y = −1.

This completes the computation of ei jky values for this problem.

7.4 Efficient Computation

The bound can be computed using storage and time O(poly(t+w)). Computing values ei jky and vi j

directly from the recurrences is inefficient. First consider values ei jky. Recurrence (13) handles
terms for all children of example Zk at the same time. To improve efficiency, accumulate terms from
one child at a time, as follows. Define e••ky to be the “slice” of values with the specified k and y and
all values of i and j. To compute each slice, iterate through children Zb of Zk, using a slice-sized
array prev to store the accumulation over terms from children before Zb and a slice-sized array next
to store the accumulation of terms from children up to and including Zb. In other words, when the
iteration begins for child Zb∗ , previ j is the value that ei jky would have if the subtree in F rooted at k
had children

[

{b∈B(k)|b<b∗}

Zb.

And when the iteration ends for child Zb∗ , nexti j is the value that ei jky would have if the subtree in F
rooted at k had children
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[

{b∈B(k)|b≤b∗}

Zb.

Compute the iteration for child Zb∗ according to the recurrence:

nexti j = max
(ia, ja,ib∗ , jb∗ ,yb∗) : previa ja 6= −1,eib∗ jb∗b∗yb∗

6= −1,
ia + ib∗ + cT (b∗,yb∗ ,k,y)+dT (b∗,yb∗ ,k,y) = i,and

ja + jb∗ + cW (b∗,yb∗ ,k,y)+dW (b∗,yb∗ ,k,y) = j.

previa ja + eib∗ jb∗b∗yb∗
.

The base cases for this recurrence are the definitions for values of prev for the first child. By the
definition of prev, these values should treat Zk as a leaf in F. So use the base case values given
previously for terms ei jky for leaves in F to initialize prev.

Algorithm 7.4.1 computes an error bound efficiently. The inputs are:

1. Z – An array of examples, ordered such that children in F come before their parents. (The
variables Z[k].x and Z[k].y store (Xk, Yk), the input and output for example k.)

2. B – An array of arrays B, with B[k] the array of indices b such that Z[b] is a child of Z[k] in
F.

3. R – An array of indices b such that Z[b] is a root in F.

4. u – An array with u[i][j] = ui j as defined in Equation (14).

5. delta – The acceptable probability of the bound being invalid, δ.

The algorithm uses subprocedures:

1. cT, dT, cW, and dW – As defined in Equations (9) to (12).

2. nT – Returns the nearest neighbor to an example among examples in T, that is, nT (Z).

Algorithm 7.4.1

procedure bound(Z, B, R, u, delta)
e[0...t][0...w][0...t+w][0...1] := -1;

// Initialize all e[][][][] values to 1.

// Compute slices, one for each example and assignment to the
// label of the example.
for ((k, yk) in {0,...,t+w} x {0,1})

if (Z[k] in T and yk != Z[k].y) continue;
// Impossible assignment, so skip it.

prev[0...t][0...w] := -1;
next[0...t][0...w] := -1;

// Initialize prev[0][0].
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if (Z[k] in T) prev[0][0] := 0;
if (Z[k] in W)
Z[k].y = yk;
if (nT(Z[k]) != Z[k].y) prev[0][0] := 1; else prev[0][0] := 0;

end if

// Compute the contribution for each child b of k in F.
for ((b, yb) in B[k] x {0,1})
if (Z[b] in T and yb != Z[b].y) continue;
// impossible assignment, so skip it.

if (Z[b] in W) Z[b].y := yb;
di := cT(b,k) + dT(b,k);
dj := cW(b,k) + dW(b,k);

for ((i, j) in {0,...,t} x {0,...,w} such that e[i][j][b][yb] != -1)
for ((ii, jj) in {0,...,t} x {0,...,w} such that prev[ii][jj] != -1)

next[ii + i + di][jj + j + dj] = max(next[ii + i + di][jj + j + dj],
prev[ii][jj] + e[i][j][b][yb]);

end for (ii, jj)
end for (i, j)

// Prepare to compute contribution for next child b of k in F.
prev := next;
next[0...t][0...w] := -1;

end for (b, yb)

// Copy the slice into e[][][][].
for ((i, j) in {0,...,t}x{0,...,w}) e[i][j][k][yk] = prev[i][j];

end for (k, yk)

// Combine roots: treat each root as a child of a virtual super-root.
prev[0...t][0...w] := -1;
next[0...t][0...w] := -1;

prev[0][0] := 0; // The virtual super-root introduces no errors.

// Accumulate terms over roots b in R.
for ((b, i, j) in R x {0,...,t} x {0,,w})

m := max(e[i][j][b][0], e[i][j][b][1]);

if (m!=-1)
for ((ii, jj) in {0,...,t} x {0,...,w} such that prev[ii][jj]!=-1)
next[ii + i][jj + j] := max(next[ii + i][jj + j], prev[ii][jj] + m);

end for (ii, jj)
end if
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prev = next;
next[0...t][0...w] := -1;

end for (b, i, j)

// Maximize v over feasible u to produce a bound on error count.
v = prev;

mx := 0;

for ((i, j) in {0,...,t}x{0,...,w})
if (u[i][j] >= delta) mx = max(mx, v[i][j])

end for (i, j)

return mx;
end procedure

Appendix A contains Java code to compute error bounds by this procedure. The code uses
O(t2w2(t+w)) time and O(tw(t+w)) storage. Appendix A also contains a note on how to use less
storage.

7.5 Random Tie Breaking for Ranking

Random tie breaking for ranking, as defined in Section 4 and applied to virtual partitions in Section
6, cannot be applied to the bound returned by the algorithm above. The error count that is the bound
corresponds to an assignment that maximizes the error of using training examples to classify work-
ing examples, subject to the constraints that there are i leave-one-out errors on training examples,
there are j leave-one-out errors on working examples, and the counts i and j make the assignment
likely even without random tie breaking. It is valid to apply random tie breaking to the assignment
behind the error count that is a candidate for the bound, as explained in Section 6. However, if
random tie breaking declares the assignment unlikely, then we are left without a next candidate for
the bound.

To use random tie breaking, the algorithm needs to store all candidates rather than just the
maximum error count candidate in each variable ei jky and vi j. So instead of storing a single max-
imum value in each variable, store a vector indexed by error counts, with values indicating how
many partial assignments (for variables ei jky) or assignments (for variables vi j) produce each error
count. Follow the structure of the maximization algorithm, but replace maximization by accumulat-
ing candidates. Compute values ui j as in the maximization algorithm above, and use those values
to determine which vectors vi j count potentially likely candidates for the bound. (Only the combi-
nations of i and j that are likely without random tie breaking are potentially likely with random tie
breaking.) . Then iterate through possible error counts, in descending order. For each error count,
for each candidate counted by a vector of potentially likely candidates, apply random tie breaking
to the candidate. If the candidate is likely, then return it as the bound.
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8. Tests

This section presents results of tests for bounding methods developed in this paper. First there are
tests comparing different bounding methods. Next, there are tests to examine the joint frequencies
of errors and error bounds. Then there are tests to explore the effect of working set size on error
bounds.

8.1 Comparing Bounding Methods

Here are results of tests to compare different bounding methods on 1-nearest neighbor classification
for different types of data. The different bounding methods are:

1. Complete – Use the complete filter.

2. 100 – Use a sample filter with 100 sample partitions.

3. 1000 – Use a sample filter with 1000 sample partitions.

4. 10,000 – Use a sample filter with 10,000 sample partitions.

5. LOO – Use virtual partitioning, with a filter that scores one for each leave-one-out error.

6. Double – Use virtual partitioning, with a filter that scores one for each example that is mis-
classified by both of its two nearest neighbors in T∪W.

All bounding methods use ranking with random tie breaking, as explained in Sections 4 and 6.
The sample filters draw partitions without replacement.

For each type of data, there is a table of results. Each row holds results for a different value of the
bound certainty parameter δ. The first column of each table shows errors from using training data
as a 1-nearest neighbor classifier on working data. The other columns show differences between the
bounds on error and actual error for different bounding methods.

Each cell shows a mean and standard deviation over 1000 trials. The cells in the “Error” column
show mean and standard deviation of errors. The cells in subsequent columns show mean and
standard deviation of difference between bound and error. For example, suppose the error has mean
0.3 and standard deviation 0.4, and a bounding method has mean 0.1 and standard deviation 0.0.
This indicates that the error averages 0.3 over the 1000 trials, and the error varies quite a bit, but the
bound is always exactly 0.1 greater than the actual error.

Note that the standard deviations displayed in cells are standard deviations of the values over
1000 trials. They are not standard deviations of the estimates of the means of values over 1000 trials,
that is, their large sizes do not indicate uncertainty about the accuracy of the means. Since there
are 1000 trials, those standard deviations are about 1/33 of the ones shown, indicating that most
differences in means for different bounding methods in the tests below are statistically significant.

Each row of each table is based on the same 1000 trials, but different rows are based on different
sets of trials. For each trial, a size t+w subset of examples is selected at random from a data set. A
size-t subset is selected at random to form the training set T, and the remaining w examples form the
working set W. The error is computed, and each bounding method is applied to (T,W) to compute an
error bound. The error is subtracted from each bound, and the differences are accumulated into the
statistics for the bounding methods. In each row, we show the least mean among bounding methods
in bold print.
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δ Error Complete 100 1000 10,000 LOO Double
0.1 0.0±0.0 0.21±0.096 0.23±0.10 0.21±0.097 0.21±0.10 0.25±0.18 0.11±0.24
0.2 0.0±0.0 0.068±0.11 0.085±0.12 0.068±0.11 0.072±0.11 0.10±0.18 0.079±0.20
0.3 0.0±0.0 0.0085±0.045 0.011±0.050 0.0065±0.04 0.007±0.041 0.042±0.14 0.051±0.16

Table 1: Bound Methods Compared on Iris Data

All tests ran on an Apple Macintosh, with dual 1.42 GHz PowerPC processors and 512 MB of
RAM. The longest-running tests were for the data set involving diabetes among Pima Indians, with
t = 200 training examples and w = 15 working examples. The tests for δ = 0.1, δ = 0.2, and δ = 0.3
ran concurrently, taking about a day and a half for the 3000 trials, or about a minute per trial.

8.1.1 IRIS DATA

Table 1 has results for a data set involving iris classification. The data set is from the repository
of data sets for machine learning maintained by the University of California at Irvine, which is
available online. The data set contains examples for three types of iris; we use only the examples
for the first two types in order to have binary classification problems. This leaves 100 examples,
with 50 from each class. Each example has four input dimensions. We use t = 40 training examples
and w = 4 working examples for each trial. The iris data are easy to classify, as indicated by the fact
that the errors are always zero.

For δ = 0.1, the best method is virtual partitioning with a filter based on whether the two nearest
neighbors to an example both misclassify the example. To understand why this filter is effective
for data sets that are easy to classify, imagine a lone working example in the midst of many train-
ing examples that all have the same label. Suppose an assignment gives the opposite label to the
working example. The two nearest neighbors are both training examples with the other label, so
the filter recognizes the working example. On the other hand, even if the working example is the
nearest neighbor of several training examples, the filter ignores the fact that the working example
misclassifies those examples, because their next-nearest neighbors are other training examples with
the same label. Contrast this with a filter based on leave-one-out errors. This filter would recognize
the incorrectly labeled working example, but it would also recognize any nearby training examples
that had the working example as nearest neighbor.

The best method for δ = 0.2 uses a complete filter. The best method for δ = 0.3 uses a sample
size of 1000. For all values of δ, methods using sampled filters based on 1000 and 10,000 partitions
perform about as well as the method using a complete filter—the differences between them are not
statistically significant. The method using a sampled filter based on 100 partitions performs slightly
worse, indicating that using fewer samples for ranking allows into the likely set some assignments
with high error on the working set that would be rejected by using more samples. In general, more
samples give stronger bounds, but at the cost of added computation.

8.1.2 DIABETES DATA

Table 2 has results for data involving diabetes in Pima Indians. This data set is also from the UC
Irvine repository. The inputs have different scales, so we normalize the data, translating and scaling
each input dimension to make each input dimension have mean zero and standard deviation one.
There are 768 examples, with 500 from one class and 268 from another. There are eight input
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δ Error 100 1000 LOO
0.1 0.32 ± 0.12 0.23 ± 0.13 0.20±0.13 0.26 ± 0.15
0.2 0.31 ± 0.12 0.16 ± 0.13 0.15±0.13 0.20 ± 0.16
0.3 0.31 ± 0.12 0.12 ± 0.13 0.11±0.13 0.16 ± 0.15

Table 2: Bound Methods Compared On Diabetes Data

δ Error 100 1000 LOO Double
0.1 0.070 ± 0.085 0.22 ± 0.11 0.20±0.10 0.27 ± 0.14 0.29 ± 0.17
0.2 0.060 ± 0.074 0.13 ± 0.094 0.12±0.093 0.19 ± 0.14 0.22 ± 0.17
0.3 0.068 ± 0.080 0.084 ± 0.097 0.074±0.096 0.13 ± 0.14 0.18 ± 0.17

Table 3: Bound Methods Compared on Data with a Linear Class Boundary

δ Error 100 1000 LOO Double
0.1 0.18 ± 0.13 0.27 ± 0.15 0.24±0.14 0.31 ± 0.17 0.39 ± 0.12
0.2 0.18 ± 0.12 0.17 ± 0.14 0.16±0.14 0.22 ± 0.17 0.32 ± 0.18
0.3 0.16 ± 0.11 0.12 ± 0.13 0.11±0.13 0.18 ± 0.17 0.28 ± 0.18

Table 4: Bound Methods Compared on Data with a Nonlinear Class Boundary

dimensions. We use t = 200 training examples and w = 15 working examples for each trial. We use
1-nearest neighbor classification.

The error indicates that this is a challenging data set for 1-nearest neighbor classification; even
a classifier that always returns the label of the class with 500 examples of the 768 in the data would
have average error about 0.35. The bounding method that uses 1000 partitions in a sampled filter
performs best for all three values of δ. On average, that method adds error rate margins of 20% for
δ = 0.1, about 15% for δ = 0.2, and about 11% for δ = 0.3.

8.1.3 DATA WITH A LINEAR CLASS BOUNDARY

Table 3 has results for randomly generated data. The data consist of 1100 examples drawn uniformly
at random from a three-dimensional input cube with length one on each side. The class label is zero
if the input is from the left half of the cube and one if the input is from the right half of the cube.
For these tests, there are t = 100 training examples and w = 10 working examples, using 1-nearest
neighbor classification. Once again, the method that uses a sample filter with 1000 partitions in the
sample outperforms the other methods in the test. On average, the method adds error rate margins
of 20% for δ = 0.1, about 12% for δ = 0.2, and about 7.5% for δ = 0.3.

8.1.4 DATA WITH A NONLINEAR CLASS BOUNDARY

Table 4 shows results for randomly generated data with a nonlinear class boundary. The data have
the same characteristics as in the previous test, except that each class label is determined by the
XOR of whether the input is in the left half of the cube, the bottom half of the cube, and the front
half of the cube. In other words, the cube is cut into eight sub-cubes, and each sub-cube has a
different class than the three sub-cubes with which it shares a side. This class scheme adds some
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Bound
Error 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 1 17 95 45 4
0.1 41 187 88 1
0.2 1 35 190 66 2
0.3 1 19 95 36
0.4 10 34 8
0.5 1 14 4
0.6 2 2 1
0.7
0.8
0.9
1.0

Table 5: Bounds vs. Errors for δ = 0.1

error. As in the previous test, the method that uses a sample filter with 1000 partitions in the sample
outperforms the other methods in the test. The method adds error rate margins that are higher than
for the previous test, that is, about 24% for δ = 0.1, about 16% for δ = 0.2, and about 11% for δ =
0.3.

8.1.5 COMPARISON TO BOUNDS BASED ON VC DIMENSION

The test results in tables 1 to 4 show that error bounds based on worst likely assignments can be
effective for small data sets. Compare these bounds to error bounds based on VC dimension (Vapnik
and Chervonenkis, 1971), as follows. Suppose that we train linear classifiers on the training sets for
our tests. To simplify our analysis, assume that all trained classifiers are consistent, that is, they
have zero error on their training data. This consistency assumption produces stronger VC bounds,
allowing us to use the bound formula (Cristianini and Shawe-Taylor, 2000, p. 56):

2
t

(

d log
2et
d

+ log
2
δ

)

,

where t is the number of training examples, d is the VC dimension, which is one more than the
number of input dimensions for linear classifiers, and δ is the allowed probability of bound failure.
Let δ = 0.3. For the iris problem, t = 40 and d = 5, producing bound 1.5. For the diabetes problem,
t = 200, d = 9, and the bound is 0.65. For the problems with randomly generated data, t = 100, d =
4, and the bound is 0.62. Compare these bounds to those for δ = 0.3 in tables 1 to 4.

8.2 Joint Frequencies of Errors and Error Bounds

Tables 5, 6, and 7 show bound versus error for 1000 trials using the same XOR-based random data
generator used in the previous test and the same classification method, 1-nearest neighbor. These
results are for a sampled filter with 1000 sample partitions. Errors are listed down the left column,
and error bounds are listed across the top. The value in each cell is the number of trials that have
the error indicated by the row and the bound indicated by the column. Cells with value zero are left
blank.
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Bound
Error 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 11 95 52 4
0.1 22 166 110 4
0.2 22 168 102 7
0.3 12 93 61 1
0.4 4 29 18
0.5 1 12 4
0.6
0.7 1 1
0.8
0.9
1.0

Table 6: Bounds vs. Errors for δ = 0.2

Bound
Error 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 43 87 14
0.1 5 99 200 22 2
0.2 1 96 164 25
0.3 2 56 91 10 1
0.4 2 26 33 4
0.5 5 7 2
0.6 2
0.7 1
0.8
0.9
1.0

Table 7: Bounds vs. Errors for δ = 0.3

Bound Margin
δ < 0.0( f ailure) 0.0 (exact) +0.1 +0.2

0.1 3.1% 5.8% 13.8% 26.8%
0.2 6.4% 13.3% 25.1% 28.0%
0.3 11.0% 19.6% 27.3% 26.9%

Table 8: Frequencies of Bound Margins

The diagonal from the top left to the bottom right contains cells for which the error and the
bound are the same. Cells below this diagonal indicate bound failure—the bound is less than the
actual error. Cells above indicate bounds above actual errors. Note how the cloud of values moves
toward the diagonal as δ progresses from 0.1 to 0.3.
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w 1000 LOO Double
3 0.20 ± 0.16 0.23 ± 0.22 0.073±0.21
4 0.21 ± 0.10 0.27 ± 0.18 0.13±0.25
5 0.22±0.084 0.31 ± 0.19 0.23 ± 0.25
6 0.24±0.087 0.35 ± 0.18 0.30 ± 0.21
7 0.26±0.078 0.39 ± 0.18 0.34 ± 0.21
8 0.29±0.074 0.44 ± 0.17 0.38 ± 0.21
9 0.31±0.076 0.47 ± 0.18 0.40 ± 0.22
10 0.33±0.074 0.52 ± 0.17 0.45 ± 0.22

Table 9: Bounds vs. Number of Working Examples for δ = 0.1

Table 8 summarizes the frequencies of bound margins, that is, of differences between bound
and error. A bound margin less than zero means the bounding method fails, supplying an invalid
error bound. From the failure column in Table 8, observe that the actual frequency of bound failure
is significantly less than δ, the allowed rate of failure. The subsequent columns indicate differences
between bound and actual error: exact match, over by 0.1, and over by 0.2.

Suppose we define bound failure as a negative margin and bound success as a valid bound within
0.2 of actual error. Then for δ = 0.1, we have about 3% failure and about 46% success. For δ = 0.2,
we have about 6% failure and about 66% success. For δ = 0.3, we have 11% failure and about 74%
success.

8.3 Working Set Sizes and Bounds

The next results are from tests to explore how working set sizes affect error bounds. In general, since
the bounding methods rely on training examples to constrain the set of likely assignments and hence
to constrain the error bound, having more training examples and fewer working examples produces
stronger bounds. These tests illustrate this effect and compare it over some bounding methods.

These tests use the iris classification data. The bounding methods are a sampled filter with
1000 sample partitions (1000), virtual partitioning with a leave-one-out filter (LOO), and virtual
partitioning with a filter that scores one for each example misclassified by both of its two nearest
neighbors (Double). For δ = 0.1, δ = 0.2, and δ = 0.3, the number of training examples is held
constant at t = 40 while the number of working examples w varies from three to 10.

Table 9 shows results for δ = 0.1, with the lowest mean score for a bounding method in each
row in bold. Note that the double-error method is better than the other two methods for small
working sets, but not for larger ones. Recall that the double-error method is most effective when
each working example has as nearest neighbors training examples that agree with one another. As
working set sizes increase, it becomes more likely that working examples become nearest neighbors
of other working examples, weakening the double-error filter.

Table 10 shows results for δ = 0.2, with the lowest mean score for a bounding method in each
row in bold. A variety of methods perform well for small working sets, but the sampled filter method
works best for larger working sets.

Table 11 shows results for δ = 0.3, with the lowest mean score for a bounding method in each
row in bold. For these tests, the sampled filter method performed best for all working set sizes.
Compare values in this table to values in the previous two tables. Notice that the performance of
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w 1000 LOO Double
3 0.027±0.090 0.040 ± 0.15 0.047 ± 0.17
4 0.063±0.11 0.11 ± 0.18 0.074 ± 0.20
5 0.11 ± 0.10 0.16 ± 0.19 0.10±0.21
6 0.14±0.074 0.21 ± 0.18 0.16 ± 0.24
7 0.15±0.067 0.26 ± 0.19 0.22 ± 0.26
8 0.17±0.074 0.31 ± 0.19 0.24 ± 0.25
9 0.19±0.071 0.35 ± 0.19 0.29 ± 0.25
10 0.22±0.068 0.40 ± 0.18 0.33 ± 0.25

Table 10: Bounds vs. Number of Working Examples for δ = 0.2

w 1000 LOO Double
3 0.0017±0.024 0.018 ± 0.11 0.040 ± 0.16
4 0.0083±0.045 0.043 ± 0.15 0.057 ± 0.17
5 0.027±0.069 0.068 ± 0.16 0.077 ± 0.17
6 0.047±0.075 0.11 ± 0.18 0.10 ± 0.19
7 0.070±0.075 0.16 ± 0.19 0.14 ± 0.22
8 0.088±0.065 0.20 ± 0.19 0.18 ± 0.23
9 0.11±0.061 0.24 ± 0.20 0.24 ± 0.24
10 0.13±0.064 0.29 ± 0.19 0.27 ± 0.23

Table 11: Bounds vs. Number of Working Examples for δ = 0.3

the sampled filter method improves noticeably as δ increases. In contrast, the performance of the
double-error filter does not change much with δ, especially for small working sets.

9. Discussion

This paper introduces a new method to compute an error bound for applying a classifier based on
training examples to a set of working examples with known inputs. The method uses information
from the training examples and inputs of working examples to develop a set of likely assignments to
outputs of the working examples. A likely assignment with maximum error determines the bound.
The method is very effective for small data sets.

In the bounds, filters translate training examples and inputs of working examples into constraints
on the assignments to outputs of the working examples. Several filters are introduced in this paper.
The complete filter is simple and direct; it evaluates each assignment by comparing the error caused
by the training/working partition at hand to the errors caused by all other training/working partitions,
rejecting the assignment as unlikely if the error for the partition at hand is especially large. The
complete filter is effective because it optimizes directly over the error on the partition at hand,
which is the basis for the bound. The sampled filter is an easier-to-compute variant that uses only a
subset of training/working partitions rather than computing error for all of them. With a sufficient
number of samples, the sampled filter performs about as well as the complete filter.

Filters based on virtual partitions reduce computation by not computing errors over partitions
for each assignment. The tradeoff is that filters for virtual partitions rely on indirect measures of
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whether assignments are likely. This paper introduces a filter based on leave-one-out error and
presents an algorithm based on that filter to efficiently compute an error bound for 1-nearest neigh-
bor classification. This paper also introduces a filter based on whether the two nearest neighbors
both misclassify an example. Tests show that this filter can be more effective than the complete
filter for problems with little classification error and small numbers of working examples.

Directions for future research include:

1. Develop and analyze new filters for use with virtual partitions, to compete with the leave-one-
out and double-error filters presented here.

2. Analyze how training set size, working set size, and properties of the data influence the
bounds, with the goal of developing new filters that target different types of problems.

3. Develop efficient algorithms for nearest neighbor classifiers using virtual partitioning with
filters beyond the leave-one-out filter.

4. Develop efficient algorithms to compute error bounds using virtual partitioning for classi-
fiers other than nearest neighbor classifiers, such as condensed and edited nearest neighbors
classifiers (Devroye et al., 1996) and support vector machines (Vapnik, 1998).

5. Explore how to use efficient bounds for nearest neighbor classifiers to indirectly produce
bounds for other types of classifiers. For example, for support vector machines, first bound
nearest neighbor error. Then use the bound to constrain assignments, and bound the support
vector machine error by the maximum error over the constrained set of assignments.

6. Consider using alternatives to the set of sister partitions in the complete and sampled filters.
For example, with 100 training examples and 10 working examples, partition the training
examples into blocks of 10 examples each. Treating the working examples as another block,
there are 11 blocks. Each partition that has one block as the working examples and the
remaining blocks as the training examples is equally likely. So these partitions can be used in
place of the sister partitions. As another example, with 10 training examples and 10 working
examples, pair off each working example with a different training example. Each partition
that has one of each pair in the working examples and the other in the training examples is
equally likely. So these partitions can be used in place of the sister partitions.
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Appendix A. Java Code to Compute Error Bounds for 1-Nearest Neighbor Classifiers

The excerpt of Java code below uses the approach described in Section 7.4 to efficiently compute
all ei jky in methods computePossibilities and computeSlice. (Array a in the code plays the role of
array prev in Section 7.4, and array b plays the role of array next.) The same technique is used to
compute all vij in method combineRoots. Each root is treated as a child of a virtual “super-root”.
The method named bound is included to give an overview of the computation.
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public class VirtualPartitionBounder
{
Problem p; // Handles examples, labels, neighbors, memberships in T and W.
int[][][][] e; // e[i][j][k][y]’s.
int[][] a; // a[i][j]’s to accumulate a slice over children.
int[][] b; // b[i][j]’s to accumulate a slice over children.
int[] order; // Ordering of examples with children in F before parents
int[][] children; // children[k][] is a list of children of k in F
int[] roots; // Examples that are roots in F

/**
* Constructor.
**/

public VirtualPartitionBounder(Problem p)
{

this.p = p;
this.e = new int[p.sizeT()+1][p.sizeW()+1][p.sizeTuW()][2];
this.a = new int[p.sizeT()+1][p.sizeW()+1];
this.b = new int[p.sizeT()+1][p.sizeW()+1];

}

/**
* Returns a bound on the number of errors on W by T, with probability
* of bound failure at most delta.
**/

public int bound(double delta)
{

int[][] v = computePossibilities();

double[][] u = computeTails();

int m = 0;

for (int i=0; i<u.length; i++)
for (int j=0; j<u[i].length; j++)
{
if (u[i][j]>=delta) m = max(m, v[i][j]);

}

return m;
}

/**
* Compute e-values by the slice, then combine roots to compute v-values.
**/

887



BAX AND CALLEJAS

public int[][] computePossibilities()
{

computeOrderChildrenAndRoots();
// Compute members order, children, and roots.

clearE(); // Set all e[i][j][k][y] to -1.

// Loop through slices.
for (int i=0; i<order.length; i++)
{
int k = order[i];

for (int yk=0; yk<2; yk++) computeSlice(k, yk, children[k]);
}

combineRoots(); // Use slices for roots to compute v-values.

return a;
}

/**
* Computes a slice e[][][k][yk] by accumulating terms over children.
**/

private void computeSlice(int k, int yk, int[] kids)
{

clearA(); // Set all a[i][j] to -1.
clearB(); // Set all b[i][j] to -1.

// Set intial values in a by treating k as a leaf in F.
if (p.inT(k)) // Example k is in T.
{
if (yk!=p.getLabel(k)) return; // Impossible label on k.
else a[0][0] = 0; // Correct label on k.

}
else // Example k is in W.
{
p.setLabel(k, yk); // Assign label yk to k.

if (p.isMisclassifiedByT(k)) a[0][0] = 1;
else a[0][0] = 0;

}

// Accumulate terms over children.
for (int look=0; look<kids.length; look++)
{
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int n = kids[look]; // Get child.

for (int yn=0; yn<2; yn++) // Label child.
{
if (p.inT(n) && yn!=p.getLabel(n)) continue;
if (p.inW(n)) p.setLabel(n, yn);

int di = p.cT(n,k) + p.dT(n,k);
int dj = p.cW(n,k) + p.dW(n,k);

for (int i=0; i<e.length; i++)
for (int j=0; j<e[i].length; j++)
if (e[i][j][n][yn]!=-1)
{

for (int ii=0; ii<a.length; ii++)
for (int jj=0; jj<a[ii].length; jj++)
if (a[ii][jj]!=-1)
{

b[ii+i+di][jj+j+dj] = max(b[ii+i+di][jj+j+dj],
a[ii][jj] + e[i][j][n][yn]);

}
}

}

copyBToA(); // Copy b to a before handling the next child.
clearB(); // Set all b[i][j] to -1.

}

insertAIntoE(k, yk);
}

/**
* Combine roots to compute v-values. Treat each root as a child
* of a virtual super-root.
**/

private void combineRoots()
{

clearA(); // Set all a[i][j] to -1.
clearB(); // Set all b[i][j] to -1.

a[0][0] = 0; // The super-root introduces no errors.

// Accumulate terms over roots.
for (int look=0; look<roots.length; look++)
{
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int n = roots[look]; // Get root.

for (int i=0; i<e.length; i++)
for (int j=0; j<e[i].length; j++)
{

int v = max(e[i][j][n][0], e[i][j][n][1]);

if (v!=-1)
for (int ii=0; ii<a.length; ii++)

for (int jj=0; jj<a[ii].length; jj++)
if (a[ii][jj]!=-1)
b[ii+i][jj+j] = max(b[ii+i][jj+j],

a[ii][jj] + v);
}

copyBToA(); // Copy b to a before handling the next root.
}

}
}

Now consider the storage and time requirements for this technique. The storage is dominated
by the array e, which has size O(tw(t+w)). The time is dominated by the nested loops in methods
computePossibilities, computeSlice, and combineRoots. Examine the nested loops in computeSlice
that run for each child and possible y-value for the child. The nesting is four deep, with two loops of
size t+1 and two of size w+1. So, for each child-parent relationship, the time is O(t2w2). Note that
the loops for each root in combineRoots are similar to those for each child in computeSlice. Since
each of the t+w examples is a child of one example in F or a root in F, and there are at most two
possible y-values for each example, the total time is O(t2w2(t+w)).

To reduce storage, discard the slice for each example after using it to compute the slice for the
parent of the example in F. To reduce storage and time in most cases, store a list of nonnegative val-
ues for each slice rather than storing the slice in array form with all the −1’s included. Then iterate
over those lists rather than all pairs (i,j) and (ii,jj) in methods computeSlice and combineRoots.
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Abstract

In graphical modelling, a bi-directed graph encodes marginal independences among random vari-
ables that are identified with the vertices of the graph. We show how to transform a bi-directed
graph into a maximal ancestral graph that (i) represents the same independence structure as the
original bi-directed graph, and (ii) minimizes the number of arrowheads among all ancestral graphs
satisfying (i). Here the number of arrowheads of an ancestral graph is the number of directed edges
plus twice the number of bi-directed edges. In Gaussian models, this construction can be used for
more efficient iterative maximization of the likelihood function and to determine when maximum
likelihood estimates are equal to empirical counterparts.

Keywords: ancestral graph, covariance graph, graphical model, marginal independence, maxi-
mum likelihood estimation, multivariate normal distribution

1. Introduction

In graphical modelling, bi-directed graphs encode marginal independences among random vari-
ables that are identified with the vertices of the graph (Pearl and Wermuth, 1994; Kauermann, 1996;
Richardson, 2003). In particular, if two vertices are not joined by an edge, then the two associated
random variables are assumed to be marginally independent. For example, the graph G in Figure
1, whose vertices are to be identified with a random vector (X1,X2,X3,X4), represents the pair-
wise marginal independences X1⊥⊥X3, X1⊥⊥X4, and X2⊥⊥X4. While other authors (Cox and Wer-
muth, 1993, 1996; Edwards, 2000) have used dashed edges to represent marginal independences,
the bi-directed graphs we employ here make explicit the connection to path diagrams (Wright, 1934;
Koster, 1999).

Gaussian graphical models for marginal independence, also known as covariance graph models,
impose zero patterns in the covariance matrix, which are linear hypotheses on the covariance matrix
(Anderson, 1973). The graph in Figure 1, for example, imposes σ13 = σ14 = σ24 = 0. An estimation
procedure designed for covariance graph models is described in Drton and Richardson (2003); see
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G 1 2 3 4 Gmin 1 2 3 4

Figure 1: A bi-directed graph G with (unique) minimally oriented graph Gmin.

also Chaudhuri et al. (2007). Other recent work involving these models includes Mao et al. (2004)
and Wermuth et al. (2006).

In this paper we employ the connection between bi-directed graphs and the more general ances-
tral graphs with undirected, directed, and bi-directed edges (Section 2). For the statistical motivation
of ancestral graphs see Richardson and Spirtes (2002); for causal interpretation see Richardson and
Spirtes (2003). We show how to construct a maximal ancestral graph Gmin, which we call a min-
imally oriented graph, that is Markov equivalent to a given bi-directed graph G and such that the
number of arrowheads is minimal (Sections 3–4). Two ancestral graphs are Markov equivalent if the
independence models associated with the two graphs coincide; see for example Roverato (2005) for
some recent results on Markov equivalence of different types of graphs. The number of arrowheads
is the number of directed edges plus twice the number of bi-directed edges. Minimally oriented
graphs provide useful nonparametric information about Markov equivalence of bi-directed, undi-
rected and directed acyclic graphs. For example, the graph G in Figure 1 is not Markov equivalent
to an undirected graph because Gmin is not an undirected graph, and G is not Markov equivalent to
a DAG because Gmin contains a bi-directed edge. The graph G in Figure 1 has a unique minimally
oriented graph but in general, minimally oriented graphs are not unique. Our construction procedure
(Algorithm 14) involves a choice of a total order among the vertices. Varying the order one may
obtain all minimally oriented graphs (Theorem 17).

For covariance graph models, minimally oriented graphs allow one to determine when the max-
imum likelihood estimate of a variance or covariance is available explicitly as its empirical coun-
terpart (Section 5). For example, since no arrowheads appear at the vertices 1 and 4 in the graph
Gmin in Figure 1, the maximum likelihood estimates of σ11 and σ44 must be equal to the empiri-
cal variances of X1 and X4, respectively. The likelihood function for covariance graph models may
be multi-modal, though simulations suggest this only occurs at small sample sizes, or under mis-
specification (Drton and Richardson, 2004a). However, when a minimally oriented graph reveals
that a parameter estimate is equal to an empirical quantity (such as σ11 and σ44 in the above exam-
ple) then even if the likelihood function is multi-modal this parameter will take the same value at
every mode. Perhaps most importantly, minimally oriented graphs allow for computationally more
efficient maximum likelihood fitting; see Remark 24 and the example in Section 5.3.

2. Ancestral Graphs and Their Global Markov Property

This paper deals with simple mixed graphs, which feature undirected (v−w), directed (v→ w) and
bi-directed edges (v↔ w) under the constraint that there is at most one edge between two vertices.
In this section we give a formal definition of these graphs and discuss their Markov interpretation.
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2.1 Simple Mixed Graphs

Let E = { /0,−,←,→,↔} be the set of possible edges between an ordered pair of vertices; /0 denot-
ing that there is no edge. A simple mixed graph G = (V,E) is a pair of a finite vertex set V and an
edge map E : V ×V → E . The edge map E has to satisfy that for all v,w ∈V ,

(i) E(v,v) = /0, that is, there is no edge between a vertex and itself,

(ii) E(v,w) = E(w,v) if E(v,w) ∈ {−,↔},

(iii) E(v,w) =→ ⇐⇒ E(w,v) =←.

In the sequel, we write v−w ∈ G, v→ w ∈ G, v← w ∈ G or v↔ w ∈ G if E(v,w) equals −, →,
← or↔, respectively. If E(v,w) 6= /0, then v and w are adjacent. If there is an edge v← w ∈ G or
v↔ w ∈G then there is an arrowhead at v on this edge. If there is an edge v→ w ∈G or v−w ∈G
then there is a tail at v on this edge. A vertex w is in the boundary of v, denoted by bd(v), if v
and w are adjacent. The boundary of vertex set A⊆V is the set bd(A) = [∪v∈Abd(v)]\A. We write
Bd(v) = bd(v)∪{v} and Bd(A) = bd(A)∪A. An induced subgraph of G over a vertex set A is the
mixed graph GA = (A,EA) where EA is the restriction of the edge map E on A×A. The skeleton of
a simple mixed graph is obtained by making all edges undirected.

In a simple mixed graph a sequence of adjacent vertices (v1, . . . ,vk) uniquely determines the
sequence of edges joining consecutive vertices vi and vi+1, 1 ≤ i ≤ k− 1. Hence, we can define a
path π between two vertices v and w as a sequence of distinct vertices π = (v,v1, . . . ,vk,w) such that
each vertex in the sequence is adjacent to its predecessor and its successor. A path v→ ·· · → w
with all edges of the form→ and pointing toward w is a directed path from v to w. If there is such
a directed path from v to w 6= v, or if v = w, then v is an ancestor of w. We denote the set of all
ancestors of a vertex v by An(v) and for a vertex set A⊆V we define An(A) = ∪v∈AAn(v). Finally,
a directed path from v to w together with an edge w→ v ∈ G is called a directed cycle.

Important subclasses of simple mixed graphs are illustrated in Figure 2. Bi-directed, undirected
and directed graphs contain only one type of edge. Directed acyclic graphs (DAGs) are directed
graphs without directed cycles. These three types of graph are special cases of ancestral graphs
(Richardson and Spirtes, 2002).

Definition 1 A simple mixed graph G is an ancestral graph if it holds that

(i) G does not contain any directed cycles;

(ii) if v−w ∈ G, then there does not exist u such that u→ v ∈ G or u↔ v ∈ G;

(iii) if v↔ w ∈ G, then v is not an ancestor of w.

2.2 Global Markov Property for Ancestral Graphs

Ancestral graphs can be given an independence interpretation, known as the global Markov property,
by a graphical separation criterion called m-separation (Richardson and Spirtes, 2002, §3.4). An
extension of Pearl’s (1988) d-separation for DAGs, m-separation uses the notion of colliders. A
non-endpoint vertex vi on a path is a collider on the path if the edges preceding and succeeding vi on
the path both have an arrowhead at vi, that is, vi−1→ vi← vi+1, vi−1→ vi↔ vi+1, vi−1↔ vi← vi+1

or vi−1↔ vi↔ vi+1 is part of the path. A non-endpoint vertex that is not a collider is a non-collider
on the path.
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Figure 2: Simple mixed graphs. (i) A bi-directed graph, (ii) an undirected graph, (iii) a DAG, (iv)
an ancestral graph.

Definition 2 A path π between vertices v and w in a simple mixed graph G is m-connecting given
a possibly empty set C ⊆V \{v,w} if (i) every non-collider on π is not in C, and (ii) every collider
on π is in An(C). If no path m-connects v and w given C, then v and w are m-separated given C.
Two non-empty and disjoint sets A and B are m-separated given C⊆V \ (A∪B), if any two vertices
v ∈ A and w ∈ B are m-separated given C.

Let G = (V,E) be an ancestral graph whose vertices index a random vector (Xv | v ∈ V ). For
A ⊆ V , let XA be the subvector (Xv | v ∈ A). The global Markov property for G states that XA is
conditionally independent of XB given XC whenever A, B and C are pairwise disjoint subsets such
that A and B are m-separated given C in G. Subsequently, we denote such conditional independence
using the shorthand A⊥⊥B | C that avoids making the probabilistic context explicit. The global
Markov property, when applied to each of the graphs in Figure 2 in turn, implies (among other
independences) that:

(i) v⊥⊥y and w⊥⊥x;

(ii) v⊥⊥y | {w,x} and w⊥⊥x | {v,y};

(iii) v⊥⊥y | {w,x} and w⊥⊥x | v;

(iv) v⊥⊥y | x and w⊥⊥x | v.

If G is a bi-directed graph, then the global Markov property states the marginal independence
v⊥⊥w if v and w are not adjacent. In a multivariate normal distribution such pairwise marginal inde-
pendences hold iff all independences stated by the global Markov property for G hold (Kauermann,
1996). Without any distributional assumption, Richardson (2003, §4) shows that the independences
stated by the global Markov property of a bi-directed graph hold iff certain (not only pairwise)
marginal independences hold; see also Matúš (1994). Two ancestral graphs G1 and G2 are Markov
equivalent if they have the same vertex set and the global Markov property states the same indepen-
dences for G1 as for G2.

The graphs in Figure 2 have the property that for every pair of non-adjacent vertices v and w
there exists some subset C such that the global Markov property states that v⊥⊥w | C. Ancestral
graphs with this property are called maximal. If an ancestral graph G is not maximal, then there
exists a unique Markov equivalent maximal ancestral graph Ḡ that contains all the edges present in
G. Moreover, any edge in Ḡ that is not present in G is bi-directed (Richardson and Spirtes, 2002,
§3.7).

The following facts are easily established; see also Richardson and Spirtes (2002).
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Lemma 3 (i) Markov equivalent maximal ancestral graphs have the same skeleton.

(ii) If Ḡ is an ancestral graph that is Markov equivalent to a maximal ancestral graph G and has
the same skeleton as G, then Ḡ is also a maximal ancestral graph.

(iii) Bi-directed, undirected and directed acyclic graphs are maximal ancestral graphs.

2.3 Boundary Containment

In the subsequent Sections 3 and 4 we will construct maximal ancestral graphs that are Markov
equivalent to a given bi-directed graph. Via Theorem 5 below, the following property plays a crucial
role in these constructions.

Definition 4 A simple mixed graph G has the boundary containment property if for all distinct
vertices v,w ∈V the presence of an edge v−w implies that Bd(v) = Bd(w) and the presence of an
edge v→ w in G implies that Bd(v)⊆ Bd(w).

In the Appendix we present lemmas on the structure of m-connecting paths in graphs with the
boundary containment property. These lemmas yield the following key result.

Theorem 5 If Ḡ is an ancestral graph that has the same skeleton as a bi-directed graph G, then G
and Ḡ are Markov equivalent iff Ḡ has the boundary containment property.

Proof Two vertices are adjacent in G iff they are adjacent in Ḡ. Therefore, G and Ḡ are Markov
equivalent iff it holds that two non-adjacent vertices v and w are m-connected given C ⊆V in G iff
they are m-connected given C in Ḡ.

(=⇒:) Suppose Ḡ does not have the boundary containment property, that is, there exists an edge
v−w ∈ Ḡ or an edge v→ w ∈ Ḡ such that Bd(v) 6⊆ Bd(w). Choose u ∈ Bd(v) \Bd(w). Since u
and w are not adjacent, they are m-separated given C = /0 in G. In Ḡ, however, the path (u,v,w)
m-connects u and w given C = /0. Hence, G and Ḡ are not Markov equivalent.

(⇐=:) First, let v and w be non-adjacent vertices that are m-connected given C ⊆ V in Ḡ. By
Lemma 29, there is a path π̄ = (v,v1, . . . ,vk,w) that m-connects v and w given C in Ḡ and is such
that v1, . . . ,vk are colliders with {v1 . . . ,vk} ⊆C. Since G is a bi-directed graph, the corresponding
path π = (v,v1, . . . ,vk,w) in G also m-connects v and w given C.

Conversely, let v and w be non-adjacent vertices that are m-connected given C ⊆ V in G. Let
π = (v0,v1, . . . ,vk,vk+1) m-connect v = v0 and w = vk+1 given C in G such that no shorter path
m-connects v and w given C. Then v1, . . . ,vk are colliders, {v1 . . . ,vk} ⊆ C, and vi−1 and vi+1,
i = 1, . . . ,k, are not adjacent in G. (This is a special case of Lemmas 27 and 29 because a bi-directed
graph trivially satisfies the boundary containment property.) It follows that, for all i = 1, . . . ,k−1,
vi−1 ∈ Bd(vi) but vi−1 /∈ Bd(vi+1), and similarly vi+2 /∈ Bd(vi) but vi+2 ∈ Bd(vi+1). This implies
that Bd(vi) 6⊆ Bd(vi+1) and Bd(vi) 6⊇ Bd(vi+1) for all i = 1, . . . ,k− 1. Since Ḡ has the boundary
containment property, it must hold that vi↔ vi+1 ∈ Ḡ for all i = 1, . . . ,k−1. Therefore, v2, . . . ,vk−1

are colliders on the path π̄ = (v,v1, . . . ,vk,w) in Ḡ. Similarly, it follows that v2 ∈ Bd(v1) \Bd(v),
which entails Bd(v1) 6⊆ Bd(v). Thus, v1 is a collider on π̄. Analogously, we can show that vk is a
collider on π̄, which yields that π̄ is a path in Ḡ that m-connects v and w given C.
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3. Simplicial Graphs

In this section we show how simplicial vertex sets of a bi-directed graph can be used to construct
a Markov equivalent maximal ancestral graph by removing arrowheads from certain bi-directed
edges. Simplicial sets are also important in other contexts such as collapsibility (Madigan and
Mosurski, 1990; Kauermann, 1996; Lauritzen, 1996, §2.1.3, p.121 and 219) and triangulation of
graphs (Jensen, 2001, §5.3).

Definition 6 A vertex v ∈ V is simplicial, if Bd(v) is complete, that is, every pair of vertices in
Bd(v) are adjacent. Similarly, a set A⊆V is simplicial, if Bd(A) is complete.

Simplicial vertices can be characterized in terms of boundary containment as follows.

Proposition 7 A vertex v ∈V is simplicial iff Bd(v)⊆ Bd(w) for all w ∈ Bd(v).

If an edge between v and w has an arrowhead at v, then we say that we drop the arrowhead at v
when either v← w is replaced by v−w or v↔ w is replaced by v→ w.

Definition 8 Let G be a bi-directed graph. The simplicial graph Gs is the simple mixed graph
obtained by dropping all the arrowheads at simplicial vertices of G.

For the graph from Figure 1, Gs is equal to the depicted graph Gmin; additional examples are given
in Figure 3. Parts (i) and (ii) of the next lemma show that simplicial graphs have the boundary
containment property.

Lemma 9 Let v and w be adjacent vertices in a simplicial graph Gs. Then

(i) if v−w ∈ Gs, then Bd(v) = Bd(w);

(ii) if v→ w ∈ Gs, then Bd(v) ( Bd(w);

(iii) if v↔ w ∈ Gs, then each of Bd(v) = Bd(w), Bd(v) ( Bd(w), and Bd(v) 6⊆ Bd(w) 6⊆ Bd(v)
might be the case.

Proof (i) and (ii) follow from Proposition 7. For (iii) see, respectively, the graphs Gs
1, Gs

2 in Figure
3, and Gs = Gmin in Figure 1.

Theorem 10 The simplicial graph Gs of a bi-directed graph G is a maximal ancestral graph that is
Markov equivalent to G.

Proof By Lemma 3, Theorem 5 and Lemma 9, it suffices to show that Gs is an ancestral graph.
This, however, follows from Lemma 11 below.

Lemma 11 If G is an ancestral graph that has the boundary containment property, then dropping
all arrowheads at simplicial vertices of G yields an ancestral graph.
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Figure 3: Bi-directed graphs with simplicial and minimally oriented graphs.

Proof Let Ḡ be the graph obtained by dropping the arrowheads at simplicial vertices. First, suppose
v→ w ∈ Ḡ or v↔ w ∈ Ḡ but that there is a path π from w to v that is a directed path in Ḡ. Since
there are no arrowheads at simplicial vertices in Ḡ, no vertex on π including the endpoints v and w
can be simplicial. This implies that π is a directed path from w to v in G. However, since v→ w ∈G
or v↔ w ∈ G, this is a contradiction to G being ancestral. We conclude that Ḡ satisfies conditions
(i) and (iii) of Definition 1.

Next, suppose v−w∈ Ḡ but that there exists another vertex u such that u→ v∈ Ḡ or u↔ v∈ Ḡ.
It follows that v is not simplicial. Since G is ancestral, this implies that v→ w ∈ G which in turn
implies that Bd(v) ⊆ Bd(w) because G has the boundary containment property. The set Bd(v) is
not complete because v is not simplicial. Thus Bd(w) is not complete, that is, w is not a simplicial
vertex. However, this is a contradiction to the fact that v→ w ∈ G but v−w ∈ Ḡ. Thus, Ḡ is indeed
an ancestral graph.

Proposition 12 A bi-directed graph G is Markov equivalent to an undirected graph iff the simplicial
graph Gs induced by G is an undirected graph iff G is a disjoint union of complete (bi-directed)
graphs.

Proof If Gs is an undirected graph, then by Theorem 10, G is Markov equivalent to an undirected
graph, namely Gs. Conversely, assume that there exists an undirected graph U that is Markov
equivalent to G. Necessarily, G and U have the same skeleton (recall Lemma 3). By Theorem 5, U
has the boundary containment property, which implies that every vertex is simplicial and thus that
Gs is an undirected graph (and equal to U).

The simplicial graph Gs is an undirected graph iff the vertex set of the inducing bi-directed
graph G can be partitioned into pairwise disjoint sets A1, . . . ,Aq such that (a) if v ∈ Ai, 1 ≤ i ≤ q,
and w ∈ A j, 1 ≤ j ≤ q, are adjacent, then i = j, and (b) all the induced subgraphs GAi , i = 1, . . . ,q
are complete graphs (Kauermann, 1996).
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Under multivariate normality, a bi-directed graph that is Markov equivalent to an undirected
graph represents a hypothesis that is linear in the covariance matrix as well as in its inverse. The
general structure of such models is studied in Jensen (1988).

4. Minimally Oriented Graphs

The simplicial graph Gs sometimes may be a DAG. For example, the graph u↔ v↔ w has the
simplicial graph u→ v← w. However, there exist bi-directed graphs that are Markov equivalent to
a DAG and yet the simplicial graph contains bi-directed edges. For example, the graph G1 in Figure
3 is Markov equivalent to the DAG Gmin

1 in the same Figure. Hence, some arrowheads may be
dropped from bi-directed edges in a simplicial graph while preserving Markov equivalence. In this
section we construct maximal ancestral graphs from which no arrowheads may be dropped without
destroying Markov equivalence.

4.1 Definition and Construction

The following definition introduces the key object of this section.

Definition 13 Let G be a bi-directed graph. A minimally oriented graph of G is a graph Gmin that
satisfies the following three properties:

(i) Gmin is a maximal ancestral graph;

(ii) G and Gmin are Markov equivalent;

(iii) Gmin has the minimum number of arrowheads of all maximal ancestral graphs that are
Markov equivalent to G. Here the number of arrowheads of an ancestral graph G with d
directed and b bi-directed edges is defined as arr(G) = d +2b.

By Lemma 3, a minimally oriented graph Gmin has the same skeleton as the underlying bi-
directed graph G. According to Theorem 5, Gmin has the boundary containment property. Examples
of minimally oriented graphs are shown in Figure 3. Given the small number of vertices of these
graphs the claim that these graphs are indeed minimally oriented graphs can be verified directly. The
example of graph G1 in Figure 3 also illustrates that minimally oriented graphs are not unique. By
symmetry, reversing the direction of the edge v→ w in the depicted Gmin

1 yields a second minimally
oriented graph for G1.

We now turn to the problem of how to construct a minimally oriented graph. Define a relation
on the vertex set V of the given bi-directed graph G by letting v 4B w if v = w or if Bd(v) ( Bd(w)
in G. The relation 4B is a partial order and can thus be extended to a total order ≤ on V such that
the strict boundary containment Bd(v) ( Bd(w) implies that v < w. In general, the choice of such
an extension to a total order is not unique.

Algorithm 14 Let G be a bi-directed graph, and≤ a total order on V that extends the partial order
4B obtained from strict boundary containment. Create a new graph Gmin

< as follows:

(a) find the simplicial graph Gs of G;
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(b) set Gmin
< = Gs;

(c) replace every bi-directed edge v↔ w ∈ Gmin
< with Bd(v)⊆ Bd(w) and v < w by the directed

edge v→ w.

The notation Gmin
< indicates the dependence of this graph on both the bi-directed graph G and

the total order ≤. Clearly, by Theorem 5, in order for Gmin
< to be a minimally oriented graph it is

necessary that it satisfies the boundary containment property. The next lemma shows that this is
true.

Lemma 15 Let G be a bi-directed graph and Gmin
< the graph constructed in Algorithm 14. It then

holds that

(i) if v−w is an undirected edge in Gmin
< , then Bd(v) = Bd(w);

(ii) if v→ w is a directed edge in Gmin
< , then Bd(v)⊆ Bd(w);

(iii) v↔ w is a bi-directed edge in Gmin
< iff Bd(v) 6⊆ Bd(w) 6⊆ Bd(v).

Proof (i) follows directly from Lemma 9(i) because it follows from Algorithm 14 that Gmin
< and Gs

contain the same undirected edges.
(ii) If the edge v→ w is already present in Gs, then Bd(v) ( Bd(w) according to Lemma 9(ii).

If v→ w is not already present in Gs, then v < w and Bd(v)⊆ Bd(w).
(iii) Suppose v and w are two adjacent vertices such that Bd(v) 6⊆Bd(w) 6⊆Bd(v). Then v↔w in

Gs and this edge cannot be replaced by a directed edge in step (c) of Algorithm 14. For the converse,
consider two adjacent vertices v and w such that Bd(v) ⊆ Bd(w). (The other case is symmetric.)
If v < w, then according to the definition of the simplicial graph and step (c) of Algorithm 14 the
edge between v and w in Gmin

< cannot have an arrowhead at v and thus cannot be bi-directed. If
v > w, then Bd(v) = Bd(w) because Bd(v) ( Bd(w) would imply v < w. It follows that the edge
between v and w in Gmin

< cannot be bi-directed as the arrowhead at w would be removed in step (c).

By Lemma 15(iii), v↔ w ∈ Gmin
< iff there exist vertices x ∈ bd(v) \ {w} and y ∈ bd(w) \ {v}

such that the induced subgraph G{x,y,v,w} equals one of the two graphs shown in Figure 4. Graphs
that do not contain the four-cycle from Figure 4(ii) as an induced subgraph are known as chordal
or decomposable and play an important role in graphical modelling (Lauritzen, 1996). Graphs not
containing the path from Figure 4(i) as an induced subgraph are called cographs and have favorable
computational properties (Brandstädt et al., 1999). For instance, cographs can be recognized in
linear time (Corneil et al., 1985).

Theorem 16 The graph Gmin
< constructed in Algorithm 14 is a minimally oriented graph for the

bi-directed graph G.

Proof We verify the conditions (i) and (iii) of Definition 13. This is sufficient because Gmin
< has

the boundary containment property (Lemma 15) and thus condition (i) implies condition (ii) by
Theorem 5.

(i) Gmin
< is a maximal ancestral graph:

By Lemma 3 it suffices to show that Gmin
< is an ancestral graph. Let v and w be adjacent vertices
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Figure 4: Induced subgraphs for which no arrowhead can be dropped from edge v↔ w.

such that v−w ∈ Gmin
< . This is equivalent to v−w ∈ Gs, and it follows that there does not exist an

arrowhead at v or w; compare the proof of Theorem 10. Furthermore, Gmin
< does not contain any

directed cycles because Algorithm 14 ensures that the presence of a directed edge v→ w ∈ Gmin
<

implies v < w in the total order. Finally, assume that there exists v↔w∈Gmin
< . Then there cannot be

a directed path from v to w, since by Lemma 15(ii) this would imply Bd(v)⊆ Bd(w), contradicting
Lemma 15(iii).

(iii) Gmin
< has the minimal number of arrowheads:

Let Ḡ be a maximal ancestral graph that is Markov equivalent to the (bi-directed) graph G, which
requires that Ḡ and G, and thus also Gmin

< have the same skeleton. Assume that arr(Ḡ) < arr(Gmin
< ).

Then either (a) there exists v→ w ∈Gmin
< such that v−w ∈ Ḡ or (b) there exists v↔ w ∈Gmin

< such
that v→ w ∈ Ḡ or v−w ∈ Ḡ.

Case (a): If v→ w ∈ Gmin
< , then w cannot be simplicial. Hence, there exist two vertices x,y ∈

bd(w) that are not adjacent in Gmin
< , and thus not adjacent in G; (v = x is possible). The global

Markov property of G states that x⊥⊥y. Since Ḡ is an ancestral graph and v−w ∈ Ḡ, however, there
may not be any arrowheads at w on the edges between x and w, and y and w in Ḡ. Therefore, x and
y are m-connected given /0 in Ḡ, which yields that the global Markov property of Ḡ does not imply
x⊥⊥y; a contradiction.

Case (b): Suppose v↔ w ∈ Gmin
< but there is no arrowhead at v on the edge between v and w

in Ḡ. By Lemma 15(iii) there exists x ∈ bd(v) \Bd(w) such that x and w are not adjacent in Gmin
< .

Thus x and w are not adjacent in G and x⊥⊥w is stated by the global Markov property for G. In
Ḡ, however, v is a non-collider on the path (x,v,w) and thus this path m-connects x and w given /0,
which yields that the global Markov property of Ḡ does not imply x⊥⊥w; a contradiction.

The next result shows that our construction of minimally oriented graphs is complete in the sense
that every minimally oriented graph can be obtained as the output of Algorithm 14 by appropriate
choice of a total order on the vertex set.

Theorem 17 If Gmin is a minimally oriented graph for a bi-directed graph G, then there exists a
total order ≤ on the vertex set such that Gmin = Gmin

< .

Proof The graph Gmin is an ancestral graph and thus contains no directed cycles. Hence, the directed
edges in Gmin yield a partial order 4D on the vertex set V in which v 4D w if v = w or if there is a
directed path from v to w. Define the relation 4BD by letting v 4BD w if v 4B w or v 4D w. Clearly,
v 4BD v, that is, the relation is reflexive. We claim that the relation is in fact a partial order.

By Theorem 5, Gmin has the boundary containment property such that Bd(v)⊆Bd(w) if v 4D w.
Consequently, if v 6= w then v 4D w implies w 64B v and v 4B w implies w 64D v. This implies that
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4BD is anti-symmetric. In order to verify transitivity, it suffices to consider three distinct vertices
satisfying v 4D w 4B u or v 4B w 4D u. In the former case Bd(v) ⊆ Bd(w) ( Bd(u), and in the
latter case Bd(v) ( Bd(w) ⊆ Bd(u). In both cases Bd(v) ( Bd(u) such that v 4B u, which implies
the required conclusion v 4BD u.

We can now choose a total order ≤ on V that extends the partial order 4BD and thus extends
both 4B and 4D. Let Gmin

< be the output of Algorithm 14 when the bi-directed graph G and the
chosen total order ≤ are given as the input. We claim that Gmin = Gmin

< .
First note that if v is a simplicial vertex of G, then there are no arrowheads at v in Gmin. Oth-

erwise, we could drop all arrowheads at simplicial vertices in Gmin to obtain an ancestral graph
(Lemma 11) with fewer arrowheads. The new graph would have the boundary containment property
and thus be Markov equivalent to G (by Theorem 5). This would contradict the assumed minimality
of Gmin.

The observation about simplicial vertices implies that an undirected edge in the simplicial graph
Gs is also an undirected edge in Gmin. Conversely, if v−w ∈ Gmin then there may not be an ar-
rowhead at v on any other edge, and likewise for w, because Gmin is ancestral. Since Gmin has
the boundary containment property, it follows from Proposition 7 that both v and w are simplicial
vertices. This implies that v−w ∈ Gs and we conclude that Gmin and Gs have the same undirected
edges. By construction, the same holds for Gmin

< and Gs. Hence, Gmin and Gmin
< have the same

undirected edges.
Suppose v→w∈Gmin. Then Bd(v)⊆Bd(w) because Gmin has the boundary containment prop-

erty. Moreover, v < w because the total order ≤ extends 4D. It follows that v→ w ∈ Gmin
< . In other

words, every directed edge in Gmin is also in Gmin
< . This together with the fact that Gmin and Gmin

<

have the same skeleton and the same number of arrowheads, arr(Gmin) = arr(Gmin
< ), implies that

Gmin = Gmin
< .

4.2 Markov Equivalence Results

The following corollary is an immediate consequence of Proposition 12 because a minimally ori-
ented graph Gmin is an undirected graph iff Gs is an undirected graph.

Corollary 18 Let Gmin be a minimally oriented graph for a bi-directed graph G. If G is Markov
equivalent to an undirected graph U, then Gmin = U is the unique minimally oriented graph of G.

A minimally oriented graph also reveals whether the original bi-directed graph is Markov equiv-
alent to a DAG.

Theorem 19 Let Gmin be a minimally oriented graph for a bi-directed graph G. Then G is Markov
equivalent to a DAG iff Gmin contains no bi-directed edges.

Proof Let G be a bi-directed graph such that Gmin contains no bi-directed edges. If A ⊆ V is a
simplicial set, then the induced subgraph (Gmin)A is undirected and complete (this follows directly
from Theorem 17 and Algorithm 14). Let A1, . . . ,Aq be the inclusion-maximal simplicial sets of G.
Let D be a directed graph obtained by replacing each induced subgraph (Gmin)Ai , i = 1, . . . ,q, by a
complete DAG. Then D itself is acyclic, which can be seen as follows: First, since Gmin does not
contain any directed cycles, a directed cycle π in D must involve a vertex v ∈ ∪q

i=1Ai. Let v ∈ A j.
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Since the induced subgraphs DAi , i = 1, . . . ,q, are all acyclic, π must also involve a vertex not in
A j. Therefore, there exists an edge x→ w on π such that w ∈ A j and x 6∈ A j. Since the sets Ai are
inclusion-maximal simplicial sets, no vertex in Ai, i 6= j, is adjacent to any vertex in A j. Hence,
x 6∈ ∪q

i=1Ai, which implies that the edge x→ w is also present in Gmin. This is a contradiction to w
being a simplicial vertex.

Two vertices are adjacent in Gmin iff they are adjacent in D. Moreover, D has the boundary
containment property because Gmin has this property, and if u→ ū in D then either u→ ū in Gmin

or u− ū in Gmin. It thus follows from Theorem 5 that D is Markov equivalent to Gmin and G.
Conversely, suppose that v↔ w ∈ Gmin and for a contradiction, that G is Markov equivalent

to a DAG D. Note that D must have the same skeleton as G (and Gmin). By Lemma 15(iii), there
exist two different vertices x ∈ bd(v) \ {w} and y ∈ bd(w) \ {v} such that, by the Markov property
of G, x⊥⊥w and v⊥⊥y. Hence, v and w must be colliders on the paths (x,v,w) and (v,w,y) in D,
respectively. This is impossible in the DAG D.

Theorem 19 can be shown to be equivalent to a Markov equivalence result stated without proof
in Theorem 1 in Pearl and Wermuth (1994). This latter theorem requires ‘no chordless four-chain’,
which must be read as excluding graphs with induced subgraphs that are either of the graphs in Fig-
ure 4. Under this condition, Pearl and Wermuth (1994) also state that a Markov equivalent DAG can
be constructed from the (undirected) skeleton of G by introducing directed and bi-directed edges
in an operation they term ‘sink orientation’, and turning remaining undirected edges into directed
ones. The sink orientation of the graph G1 in Figure 3 has the directed edges of Gs

1 but an undirected
edge v−w. Thus sink orientation need not yield an ancestral graph. The bi-directed graphical mod-
els considered in Theorem 19 also appear in the construction of generalized Wishart distributions
(Letac and Massam, 2007, Theorem 2.2). In that context the models are called homogeneous and
characterized in terms of Hasse diagrams.

As the next result reveals, bi-directed graphs that are Markov equivalent to DAGs exhibit a
structure that corresponds to a multivariate regression model. The graphs can also be termed chordal
cographs; compare the paragraph before Theorem 16.

Proposition 20 Let Gmin be a minimally oriented graph for a connected bi-directed graph G. If
Gmin contains no bi-directed edges, then the set A of all simplicial vertices is non-empty, the in-
duced subgraph (Gmin)A is a disjoint union of complete undirected graphs, the induced subgraph
(Gmin)V\A is a complete DAG, and an edge v→ w joins any two vertices v ∈ A and w 6∈ A in Gmin.

Proof For two adjacent vertices v and w in Gmin, Lemma 15(i)-(ii) implies that Bd(v) ⊆ Bd(w) or
Bd(w) ⊆ Bd(v). Hence, we can list the vertex set as V = {v1, . . . ,vp} such that Bd(vi) ⊆ Bd(v j)
if vi and v j are adjacent and i ≤ j. It follows that v1 ∈ A and thus A 6= /0. Let A1, . . . ,Aq be the
inclusion-maximal simplicial sets of G. Then (Gmin)A equals the union of the disjoint complete
undirected graphs (Gmin)A1 , . . . ,(G

min)Aq . Since Gmin is an ancestral graph, (Gmin)V\A is a DAG.
We prove the remaining claims by induction on |V \ A|. If |V \ A| = 0, then the connected

graph Gmin is a complete undirected graph and there is nothing to show. Let |V \A| ≥ 1. It fol-
lows that vp ∈ V \ A. If the shortest path between some vertex vi1 and vp in G is of the form
vi1 ↔ . . .↔ vik ↔ vp, then i1 < · · · < ik < p and Bd(vi1) ⊆ ·· · ⊆ Bd(vik) ⊆ Bd(vp), which is eas-
ily shown by induction on k. However, since vi1 ∈ Bd(vi1) it must in fact hold that vi1 and vp are
adjacent. Hence, there is an edge between every vertex v ∈ V \ {vp} and vp, which for v ∈ A is of

904



GRAPHICAL GAUSSIAN COVARIANCE MODELS

the form v→ vp because clearly vp 6∈ A. The proof is finished by combining what we learned about
vp with the induction assumption applied to the induced subgraph GW with W = {v1, . . . ,vp−1}.
Note that for v,w ∈W , the inclusion BdG(v)⊆ BdG(w) implies that BdGW (v)⊆ BdGW (w). Thus by
Lemma 15 and Theorem 16, (GW )min does not contain any bi-directed edges.

5. Maximum Likelihood Estimation in Gaussian Models

In this section we consider the Gaussian covariance models associated with bi-directed graphs and
demonstrate that the graphical constructions from Sections 3 and 4 can be employed for more effi-
cient computation of maximum likelihood estimates.

5.1 Covariance Graphs and Gaussian Ancestral Graph Models

Let G be a bi-directed graph, and

P(G) =
{

Σ ∈ RV×V | Σ = (σvw) sym. pos. def., σvw = 0 ∀(v,w) : v↔ w /∈ G
}

be the cone of symmetric positive definite matrices with zero pattern induced by G. The covariance
graph model associated with G is the family of multivariate normal distributions N(G) =

(

N (0,Σ) |
Σ ∈ P(G)

)

. It can be shown that every distribution in N(G) satisfies all conditional independences
stated by the global Markov property for the bi-directed graph G (Kauermann, 1996, Prop. 2.2).
Conversely, if a distribution N (0,Σ) satisfies the global Markov property for G, then Σ ∈ P(G).

Let S ∈ RV×V be the empirical covariance matrix computed from an i.i.d. sample drawn from
some unknown distribution N (0,Σ) ∈ N(G), that is, the (v,w)-th entry in S is the dot-product of
the vectors of observations for the v-th and w-th variables divided by the sample size n. The log-
likelihood function `S,n : P(G)→ R of N(G) can be written as

`S,n(Σ) =−
n|V |

2
log(2π)−

n
2

log |Σ|−
n
2

tr
(

Σ−1S
)

.

If S is positive definite then the global maximum of `S,n over P(G) exists. The likelihood equations
obtained by setting to zero the partial derivatives of `S,n with respect to the non-restricted entries in
Σ take on the form

(Σ−1)vw = (Σ−1SΣ−1)vw ∀v,w ∈V : v = w or v↔ w ∈ G; (1)

compare Anderson and Olkin (1985, §2.1.1). A matrix Σ̂(S) ∈ P(G) that solves (1) is a solution
to the likelihood equations of N(G). Since subsequent theorems on the structure of the likelihood
equations are obtained via Gaussian ancestral graph models, we briefly review the parametrization
of these models.

Let G be an ancestral graph and unG ⊆ V the set of vertices v that are such that any edge with
endpoint v has a tail at v. By Definition 1(i), v−w ∈ G implies v,w ∈ unG, and v↔ w ∈ G implies
that v,w /∈ unG. Let Λ be a symmetric positive definite unG×unG matrix such that Λvw 6= 0 only if
v = w or v−w ∈ G. Let Ω be a symmetric positive definite (V \unG)× (V \unG) matrix such that
Ωvw 6= 0 only if v = w or v↔ w ∈ G. Finally, let B be a V ×V matrix such that Bvw 6= 0 only if
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w→ v ∈ G. Define the symmetric positive definite matrix

Σ(Λ,B,Ω) = (I−B)−1
(

Λ−1 0
0 Ω

)

(I−B)−T, (2)

where I is the identity matrix.
Let N(G) be the Gaussian ancestral graph model associated with G, that is, the family of all

centered normal distributions that are globally Markov with respect to G. As shown in Richardson
and Spirtes (2002, §8), the normal distribution N (0,Σ) with Σ = Σ(Λ,B,Ω) defined in (2) is in
N(G). Conversely, if G is maximal, then for any N (0,Σ) ∈ N(G) there exist unique Λ,Ω,B of the
above type such that Σ = Σ(Λ,B,Ω). (Note that Richardson and Spirtes, 2002, use B for what is
here denoted by I−B).

Since a bi-directed graph G and a minimally oriented graph Gmin are Markov equivalent and
maximal, the parametrization map for Gmin, (Λ,B,Ω) 7→ Σ(Λ,B,Ω), has image equal to P(G). By
Richardson and Spirtes (2002, Theorem 8.14, Lemma 8.22), we obtain the following Lemma.

Lemma 21 Let G be a bi-directed graph. The covariance matrix Σ(Λ,B,Ω) solves the likelihood
equations of N(G) iff (Λ,B,Ω) solves the likelihood equations of N(Gmin).

5.2 Empirical Maximum Likelihood Estimates

Using the graphical results established earlier, we can show that over simplicial sets a solution to
the likelihood equations (1) agrees with its empirical counterpart in S.

Theorem 22 Let G be a bi-directed graph with associated covariance graph model N(G). If A⊆V
is simplicial, S is a symmetric positive definite matrix, and Σ̂(S)∈P(G) is a solution to the likelihood
equations (1), then Σ̂(S)A×A = SA×A.

Proof By Theorem 10, the covariance graph model N(G) and the Gaussian ancestral graph model
N(Gs) based on the simplicial graph Gs are equal. Let N(Gs) be parametrized by the precision
matrix Λ, the matrix of regression coefficients B and the covariance matrix Ω as described in §5.1.
In particular, it follows from Richardson and Spirtes (2002, Lemma 8.4) that if Σ = Σ(Λ,B,Ω), then
(Λ−1)A×A = ΣA×A.

The inclusion-maximal simplicial sets A1, . . . ,Aq of G form a partition of unGs . The induced
subgraphs Gs

Ai
, i = 1, . . . ,q, are complete undirected graphs. It follows that Λ is a block-diagonal

matrix such that Λvw = 0 if there does not exist an inclusion-maximal simplicial set Ai such that
v,w ∈ Ai. Now the discussion in Richardson and Spirtes (2002, §8.5) and Lemma 21 imply that
every solution to the likelihood equations for Λ, B, Ω in the Gaussian ancestral graph model
N(Gs) satisfies that (Λ̂−1)Ai×Ai = SAi×Ai for all i = 1, . . . ,q. Since A ⊆ A j for some j, it holds
that Σ̂A×A = (Λ̂−1)A×A = SA×A.

Our graphical constructions also provide information on when maximum likelihood estimates
of conditional parameters are equal to their empirical counterparts. The conditional parameters we
consider are the regression coefficients and conditional variance for the conditional distribution of
variable v given its parents pa(v) = {w ∈V | w→ v ∈ Gmin} in a minimally oriented graph Gmin. If
pa(v) = /0, then conditioning variable v on pa(v) is understood to yield the marginal distribution of
v.
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Theorem 23 Let Gmin be a minimally oriented graph for a bi-directed graph G, S a symmetric
positive definite matrix, and Σ̂(S) ∈ P(G) a solution to the likelihood equations (1). If v is a vertex
such that there is no vertex w with v↔ w ∈ Gmin, then the regression coefficients for v given pa(v)
are

Σ̂(S)v×pa(v)
[

Σ̂(S)pa(v)×pa(v)
]−1

= Sv×pa(v)
(

Spa(v)×pa(v)
)−1

, (3)

and that the conditional variance for v given pa(v) is

Σ̂(S)vv− Σ̂(S)v×pa(v)
[

Σ̂(S)pa(v)×pa(v)
]−1Σ̂(S)pa(v)×v =

Svv−Sv×pa(v)
(

Spa(v)×pa(v)
)−1

Spa(v)×v. (4)

Proof If pa(v) = /0, then v is a simplicial vertex, and the claim reduces to Σ̂(S)vv = Svv, which follows
from Theorem 22. Otherwise, using the parametrization of N(Gmin), it follows from Richardson and
Spirtes (2002, Theorem 8.7) that if Σ = Σ(Λ,B,Ω), then

Σv×pa(v)
[

Σpa(v)×pa(v)
]−1

= Bv×pa(v)

and
Σvv−Σv×pa(v)

[

Σpa(v)×pa(v)
]−1Σpa(v)×v = Ωvv.

If Λ̂, B̂, Ω̂ solve the likelihood equations for N(Gmin), then B̂v×pa(v) and Ω̂vv solve the likelihood
equations of the model in which all parameters in Λ, B, Ω except for Bv×pa(v) and Ωvv are held
fixed. It follows from Drton and Richardson (2004b, §§5.1-2) that B̂v×pa(v) and Ω̂vv are equal to the
empirical expressions on the right hand side of (3) and (4), respectively. Applying Lemma 21 yields
the claim.

Remark 24 Iterative Conditional Fitting is a special purpose algorithm for maximum likelihood
estimation in covariance graph models (Drton and Richardson, 2003; Chaudhuri et al., 2007). How-
ever, it does not exploit the results of Theorems 22 and 23. On the other hand, if one runs the
ancestral graph extension of iterative conditional fitting described in Drton and Richardson (2004b)
on a minimally oriented graph, then unnecessary computations are avoided by implicitly exploiting
Theorems 22 and 23. This is illustrated in the example in Section 5.3.

If a bi-directed graph G has a minimally oriented graph Gmin without bi-directed edges then G
is Markov equivalent to a DAG (Theorem 19) and the likelihood equations have a unique solution
that is a rational function of the empirical covariance matrix S. However, this is no longer true if
there is a bi-directed edge in Gmin. In this case, G contains one of the two graphs in Figure 4 as a
subgraph; compare Lemma 15(iii). Solving the likelihood equations for the bi-directed four-chain in
Figure 4(i) is equivalent to computing the roots of a quintic polynomial. There exist data for which
this quintic has exactly three real roots (Drton and Richardson, 2004a). Galois theory (Stewart,
1989, Lemma 14.7) implies that for these data the quintic is unsolvable by radicals, that is, the
roots of the quintic and thus the solutions to the likelihood equations cannot be computed from the
data in finitely many steps involving addition, subtraction, multiplication, division, or taking r-th
roots. (Geiger et al., 2006, obtain similar results in the context of undirected graphs). Similarly,
solving the likelihood equations of the bi-directed four-cycle in Figure 4(ii) corresponds to solving
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GAL7 GAL10 GAL1 GAL3 GAL2 GAL80 GAL11 GAL4

GAL7 1.000 0.91 0.88 0.50 0.81 0.21 -0.07 -0.08
GAL10 0.910 1.000 0.92 0.46 0.87 0.26 -0.08 -0.07
GAL1 0.880 0.920 1.000 0.39 0.87 0.28 -0.10 -0.10
GAL3 0.489 0.447 0.374 0.998 0.44 0.20 -0.18 0.12
GAL2 0.807 0.865 0.865 0.422 0.991 0.26 -0.18 -0.03
GAL80 0.224 0.271 0.297 0.191 0.280 1.001 0.08 0.23
GAL11 0 0 0 -0.208 -0.103 0 1.022 0.24
GAL4 0 0 0 0 0.038 0.209 0.255 0.987

Table 1: Gene expression data. Empirical correlation matrix (above diagonal) and maximum like-
lihood estimate (below diagonal). The italicized diagonal entries are ratios between maxi-
mum likelihood and empirical variance estimates.

a polynomial equation system of degree 17. This can be verified in computer algebra systems such
as Singular (Greuel et al., 2005); see also Drton and Sullivant (2007, §5). It is natural to conjecture
that there exist data for which this system is also unsolvable by radicals.

5.3 Example: Gene Expression Measurements

The application of covariance graph models to gene expression data has been promoted in Butte
et al. (2000). For illustration, we select data from microarray experiments with yeast strands (Gasch
et al., 2000). We focus on eight genes involved in galactose utilization. Expression measurements
for all eight genes are available in n = 134 experiments, for which the empirical correlation matrix
is shown in the upper-diagonal part of Table 1.

For these data, the covariance graph model induced by the graph G in Figure 5(i) has a deviance
of 8.87 over 8 degrees of freedom, which indicates a good model fit; the p-value computed using
a chi-square distribution is 0.35. Figure 5(ii) shows the unique minimally oriented graph Gmin.
The maximum likelihood estimate obtained by fitting the model to the correlation matrix is shown
in the lower-diagonal part of Table 1; note that this estimate is not a correlation matrix (not all
the italicized diagonal entries are equal to one). As predicted by Theorem 22, the submatrix over
GAL1, GAL7, and GAL10 equals the respective submatrix in the empirical correlation matrix. The
regression coefficients for the regression of GAL2 on all remaining variables are identical when
computed from the maximum likelihood versus the empirical estimate (Theorem 23).

The use of a minimally oriented graph Gmin leads to a considerable gain in computational effi-
ciency in the iterative calculation of the maximum likelihood estimate Σ̂. With the identity matrix as
starting value, iterative conditional fitting (Remark 24) on the original bi-directed graph G performs
eight multiple regressions per iteration and converges after 103 iterations. Using the same starting
value and termination criterion, iterative conditional fitting on Gmin converges after only 5 itera-
tions and requires only five multiple regressions per iteration (for the genes GAL2, GAL3, GAL4,
GAL11, and GAL80), of which the one for GAL2 has to be executed only in the first iteration.

As in any application of covariance graph models, one might question the assumption of Gaus-
sianity. Indeed there are 10 experiments in which the measurements for the genes GAL1, GAL7,
GAL10 and GAL80 come out to be large negative values, and one in which GAL7 alone takes such
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(i)

GAL7

GAL10

GAL1

GAL3

GAL2

GAL80

GAL11

GAL4

(ii)

GAL7

GAL10

GAL1

GAL3

GAL2

GAL80

GAL11

GAL4

Figure 5: (i) Bi-directed graph G for gene expression measurements, (ii) the unique minimally ori-
ented graph Gmin.

a value. These appear to be outliers (standardized values between -3 and -5), possibly produced
by thresholding, as some values are identical. However, the measurements for the other genes are
well within the range of the observations for the remaining 123 experiments. Thus it is unclear
whether removing these 11 experiments from consideration is appropriate. If the 11 experiments
are removed, then the correlations among GAL1, GAL7 and GAL10 decrease to values between
0.38 and 0.60, the latter value is the maximum of all correlations. Nevertheless the deviance for G
only changes slightly to 10.09 (p-value 0.26). The iterative conditional fitting algorithm based on
G now converges after only 20 iterations rather than 103. However, this is still four times as many
iterations as required in iterative conditional fitting based on the minimally oriented graph Gmin;
recall that in addition each iteration is also simpler.

The original correlation matrix in Table 1 exhibits an apparent similarity of the rows for GAL1,
GAL7 and GAL10; this is also reflected in the graph G in which these variables form a complete
set and have the same spouses. Such symmetry could be investigated further via a group symmetry
model (Andersson and Madsen, 1998).

6. Conclusion

We showed how to remove a maximal number of arrowheads from the edges of a bi-directed graph
G such that one obtains a maximal ancestral graph Gmin that is Markov equivalent to G. The graph
Gmin, called a minimally oriented graph, reveals whether G is Markov equivalent to an undirected
graph, and also whether G is Markov equivalent to a DAG.

For the (Gaussian) covariance graph model associated with G, a minimally oriented graph Gmin

yields an alternative parametrization that provides insight into likelihood inference. The structure of
the arrowheads in Gmin allowed us to identify parts of the covariance matrix for which the maximum
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likelihood estimates are equal to their empirical counterparts (this applies to all solutions to the
likelihood equations if, as occasionally happens, there is more than one solution). This makes it
possible to avoid or speed up iterative estimation of the full covariance matrix. We also saw that the
maximum likelihood estimator of the covariance matrix in a covariance graph model is a rational
function of empirical covariance matrix if Gmin contains no bi-directed edge. This is similar to
the results that identify decomposable models as the sub-class of all log-linear and all covariance
selection models (Dempster, 1972) for which the maximum likelihood estimator is available in
closed form.

Drton and Richardson (2008) formulate binary models based on the Markov property of bi-
directed graphs. For these models, the maximum likelihood estimator is available in closed form
if the model-inducing graph is Markov equivalent to a DAG. Moreover, we verified that in the
example of the graph G in Figure 1, the maximum likelihood estimates of the marginal distributions
of X1 and X4 are equal to the corresponding empirical proportions. We thus believe that analogs to
the Gaussian results established here will hold in discrete models, but a general parametrization of
discrete ancestral graph models is required to fully access the potential of the results obtained in this
paper.
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Appendix A. Connecting Paths and Boundary Containment

In this appendix we prove results about graphs that satisfy the boundary containment property from
Definition 4. These results are used in the proof of Theorem 5.

Let v and w be two fixed distinct vertices that are m-connected given C ⊆V \{v,w} in a simple
mixed graph G. Define ΠG(v,w|C) to be the set of paths that m-connect v and w given C in G, and
let Πmin

G (v,w|C) be the set of paths that are of minimal length among the paths in ΠG(v,w|C).

Lemma 25 If a simple mixed graph G satisfies the boundary containment property, vi−1, vi and
vi+1 are three consecutive vertices on a path π in G, and vi is a non-collider on π, then vi−1 and vi+1

are adjacent.

Proof If vi is a non-collider, then the edge between vi and vi−1 or the edge between vi and
vi+1 must have a tail at vi. Suppose, without loss of generality, that the latter is the case. Then
Bd(vi)⊆ Bd(vi+1) and thus vi−1 ∈ Bd(vi+1), which is the claim.

Lemma 26 Let G be a simple mixed graph, and π = (v,v1, . . . ,vk,w) ∈ΠG(v,w|C). Let v0 = v and
vk+1 = w. If vi is a non-endpoint vertex on π and there is an arrowhead at vi on the edge between
vi−1 and vi, then either (i) vi ∈An(C) or (ii) the path (vi,vi+1, . . . ,vk,w) is a directed path from vi to
w.
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Proof Suppose the result is false. Let v j be the vertex closest to w satisfying the antecedent of the
Lemma, but not the conclusion. If v j is a collider, then by definition of m-connection, v j ∈ An(C),
which is a contradiction. If v j is a non-collider then v j → v j+1 on π. If v j+1 = w, if v j+1 ∈ An(C),
or if (v j+1, . . . ,vk,w) is a directed path from v j+1 to w, then clearly v j satisfies the conclusion of the
Lemma, which is a contradiction. But if v j+1 /∈ An(C) and (v j+1, . . . ,vk,w) is not a directed path
from v j+1 to w then v j+1 satisfies the conditions on v j, but is closer to w, again a contradiction.

Lemma 27 If G is an ancestral graph that satisfies the boundary containment property and π =
(v,v1, . . . ,vk,w) ∈Πmin

G (v,w|C) then no non-consecutive vertices on π are adjacent.

Proof Let v0 = v and vk+1 = w, and suppose for a contradiction that there are non-consecutive
vertices on the path π which are adjacent. Let (vp,vq), p<q, be a pair of adjacent vertices which
are furthest apart on the path, that is, (p,q) maximizes the distance |r− s| among pairs of indices of
adjacent vertices vr and vs on the path. Since π is of minimal length, either v 6= vp or w 6= vq.

Suppose that v 6= vp. By definition of (p,q), vp−1 is not adjacent to vq. Consequently, by Lemma
25, vp is a collider on (vp−1,vp,vq), and thus the edge between vp−1 and vp has an arrowhead at
vp. It then follows by Lemma 26 that either vp ∈ An(C) or (vp,vp+1, . . . ,vk,w) is a directed path
from vp to w. In the latter case vp ∈ An(vq), but there is an arrowhead at vp on the edge between
vp and vq, which contradicts that G is ancestral. Hence vp ∈ An(C). If vq = w then the path
(v,v1, . . . ,vp,vq = w) is m-connecting given C and shorter than π. Hence vq 6= w. It then follows by
the same argument that vq is a collider on (vp,vq,vq+1) and in An(C). However, this also leads to a
contradiction since then the path (v,v1, . . . ,vp,vq,vq+1, . . . ,vk,w) is both m-connecting given C and
shorter than π.

The case where w 6= vq may be argued symmetrically.

Corollary 28 If G is an ancestral graph that satisfies the boundary containment property and
π = (v = v0,v1, . . . ,vk,vk+1 = w) ∈ Πmin

G (v,w|C), then all the non-endpoint vertices v1, . . . ,vk are
colliders on π.

Proof This follows directly from Lemma 27 and Lemma 25.

Even though all non-endpoints on a path of the type described in Corollary 28 in Πmin
G (v,w|C)

are colliders, not all non-endpoints must be in the set C. For example, in the graph Gmin
2 from Figure

3, the path (x,v,y) m-connects x and y given {w} since the collider v is an ancestor of w. However,
as the next Lemma shows, there will always exist a path in Πmin

G (v,w|C) such that all non-endpoints
are colliders in C. In Gmin

2 from Figure 3, the path (x,w,y) m-connects x and y given {w}.

Lemma 29 If G is an ancestral graph that satisfies the boundary containment property, and π =
(v = v0,v1, . . . ,vk,vk+1 = w) ∈ Πmin

G (v,w|C) is such that no other path in Πmin
G (v,w|C) has more

non-endpoint vertices in C than π, then all non-endpoint vertices v1, . . . ,vk on π are colliders that
are in C.

Proof By Corollary 28, all non-endpoints v1, . . . ,vk are colliders. Assume that there exists vi /∈C,
1≤ i≤ k. Since π ∈ΠG(v,w|C), and thus vi ∈An(C), there exists c ∈C such that vi→ ·· ·→ c ∈G.
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In particular, c 6= vi−1 and c 6= vi+1 because vi is ancestral neither to vi−1 nor to vi+1. The boundary
containment property and the fact that G does not contain directed cycles imply that vi→ c ∈G. By
Lemma 25, G contains edges between c and both vi−1 and vi+1. Since the edge between vi−1 and vi

has an arrowhead at vi and vi → c ∈ G, the edge between vi−1 and c must have an arrowhead at c
because otherwise the fact that G is an ancestral graph would be contradicted. Similarly, the edge
between vi+1 and c must have an arrowhead at c. If vi−1→ c, then vi 6= v, vi−2 is adjacent to c and
by the same argument as above there must be an arrowhead at c on the edge between vi−2 and c.
Repeating this argument yields that there exists a vertex v`, ` ≤ i− 1, such that either v`↔ c ∈ G,
or v` = v and v→ c. The same arguments also imply that there exists a vertex v j, j ≥ i + 1, such
that either v j ↔ c ∈ G, or v j = w and w→ c. Therefore, the path (v,v1, . . . ,v`,c,v j, . . . ,vk,w) is in
ΠG(v,w|C) and is either shorter than π or of equal length but with more non-endpoint vertices in C.
This contradicts the choice of π and therefore the assumption of a non-endpoint on π that is not in
C must be false.
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Abstract

We investigate robustness properties for a broad class of support vector machines with non-smooth
loss functions. These kernel methods are inspired by convex risk minimization in infinite dimen-
sional Hilbert spaces. Leading examples are the support vector machine based on the ε-insensitive
loss function, and kernel based quantile regression based on the pinball loss function. Firstly, we
propose with the Bouligand influence function (BIF) a modification of F.R. Hampel’s influence
function. The BIF has the advantage of being positive homogeneous which is in general not true
for Hampel’s influence function. Secondly, we show that many support vector machines based on
a Lipschitz continuous loss function and a bounded kernel have a bounded BIF and are thus robust
in the sense of robust statistics based on influence functions.

Keywords: Bouligand derivatives, empirical risk minimization, influence function, robustness,
support vector machines

1. Introduction

The goal in non-parametric regression is to estimate a functional relationship between an
� d-valued

input random variable X and an
�

-valued output random variable Y , under the assumption that the
joint distribution P of (X ,Y ) is (almost) completely unknown. In order to model this relationship
one typically assumes that one has a training data set Dtrain =

(

(x1,y1), . . . ,(xn,yn)
)

from indepen-
dent and identically distributed (i.i.d.) random variables (Xi,Yi), i = 1, . . . ,n, which all have the
distribution P. Informally, the aim is to build a predictor f :

� d →
�

based on these observations
such that f (X) is a good approximation of Y . To formalize this aim one uses a continuous loss
function L : Y ×

�
→ [0,∞) that assesses the quality of a prediction f (x) for an observed output y

by L(y, f (x)). We follow the convention that the smaller L(y, f (x)) is, the better the prediction is.
The quality of a predictor f is measured by the L-risk RL,P( f ) := EPL(Y, f (X)) which of course is
unknown, because P is unknown. One tries to find a predictor whose risk is close to the minimal
risk, that is to the Bayes risk R ∗

L,P := inf{R L,P( f ) ; f :
� d →

�
measurable}. One way to build a

non-parametric predictor f is to use a support vector machine (SVM) which finds a minimizer fP,λ

c©2008 Andreas Christmann and Arnout Van Messem.
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of the regularized risk
R reg

L,P,λ( f ) := EPL(Y, f (X))+λ‖ f‖2
H , (1)

where λ > 0 is a regularization parameter to reduce the danger of overfitting, H is a reproducing
kernel Hilbert space (RKHS) of a measurable kernel k : X ×X → R, and L is a measurable, convex
loss function in the sense that L(y, ·) :

�
→ [0,∞) is convex for all y ∈ Y , see Vapnik (1998) and

Schölkopf and Smola (2002). Since (1) is strictly convex in f , the minimizer fP,λ is unique if it
exists. We denote the canonical feature map by Φ : H → H , Φ(x) := k(·,x). The reproducing
property gives f (x) = 〈 f ,Φ(x)〉H for all f ∈ H and x ∈ X . A kernel k is bounded, if ‖k‖∞ :=
sup{

√

k(x,x) : x ∈ X} < ∞. Using the reproducing property and ‖Φ(x)‖H =
√

k(x,x), one obtains
the well-known inequalities

‖ f‖∞ ≤ ‖k‖∞ ‖ f‖H and ‖Φ(x)‖∞ ≤ ‖k‖∞ ‖Φ(x)‖H ≤ ‖k‖2
∞ (2)

for f ∈ H and x ∈ X . The Gaussian radial basis function kernel defined by kRBF(x,x′) = exp(−‖x−
x′‖2/γ2), γ > 0, is bounded and universal on every compact subset of

� d (Steinwart, 2001) which
partially explains its popularity. The corresponding RKHS of this kernel has infinite dimension.
Of course, R reg

L,P,λ( f ) is not computable, because P is unknown. However, the empirical distribution

D = 1
n ∑n

i=1 δ(xi,yi) corresponding to the training data set Dtrain can be used as an estimator of P. Here
δ(xi,yi) denotes the Dirac distribution in (xi,yi). If we replace P by D in (1), we obtain the regularized
empirical risk

R reg
L,D,λ( f ) := EDL

(

Y, f (X)
)

+λ‖ f‖2
H .

An empirical SVM fD,λn
with λn > 0 and λn → 0 if n→∞, is called L-risk consistent if RL,P( fD,λn

)→
R ∗

L,P in probability for n → ∞.
Traditionally, research in nonparametric regression is often based on the least squares loss

LLS(y, t) := (y− t)2. The least squares loss function is convex in t, is useful to estimate the con-
ditional mean function, and is advantageous from a numerical point of view, but LLS is not Lipschitz
continuous. From a practical point of view there are situations in which a different loss function is
more appropriate. (i) In some situations one is actually not interested in modeling the conditional
mean, but in fitting a conditional quantile function instead. For this purpose the convex pinball
loss function Lτ−pin(y, t) := (τ− 1)(y− t), if y− t < 0, and Lτ−pin(y, t) := τ(y− t), if y− t ≥ 0, is
used, where τ ∈ (0,1) specifies the desired conditional quantile, see Koenker and Bassett (1978)
and Koenker (2005) for parametric quantile regression and Takeuchi et al. (2006) for nonparamet-
ric quantile regression. (ii) If the goal is to estimate the conditional median function, then the
ε-insensitive loss given by Lε(y, t) := max{|y− t| − ε,0}, ε ∈ (0,∞), promises algorithmic advan-
tages in terms of sparseness compared to the L1-loss function LL1(y, t) = |y− t|, see Vapnik (1998)
and Schölkopf and Smola (2002). (iii) If the regular conditional distribution of Y given X = x
is known to be symmetric, basically all invariant loss functions of the form L(y, t) = ψ(r) with
r = y− t, where ψ :

�
→ [0,∞) is convex, symmetric and has its only minimum at 0, can be used

to estimate the conditional mean, see Steinwart (2007). In this case a less steep loss function such
as the Lipschitz continuous Huber loss function given by Lc−Huber(y, t) := ψ(r) = r2/2, if |r| ≤ c,
and ψ(r) = c|r|− c2/2, if |r| > c for some c ∈ (0,∞), may be more suitable if one fears outliers in
y-direction, see Huber (1964) and Christmann and Steinwart (2007).

The deeper reason to consider Lipschitz continuous loss functions is the following. One strong
argument in favor of SVMs is that they are L-risk consistent under weak assumptions, that is SVMs
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are able to “learn”, but it is also important to investigate the robustness properties for such statistical
learning methods. In almost all cases statistical models are only approximations to the true random
process which generated a given data set. Hence the natural question arises what impact such
deviations may have on the results. J.W. Tukey, one of the pioneers of robust statistics, mentioned
already in 1960 (Hampel et al., 1986, p. 21): “A tacit hope in ignoring deviations from ideal models
was that they would not matter; that statistical procedures which were optimal under the strict
model would still be approximately optimal under the approximate model. Unfortunately, it turned
out that this hope was often drastically wrong; even mild deviations often have much larger effects
than were anticipated by most statisticians.”

Let us consider T (P) := R reg
L,P,λ( f ), with P a probability measure, as a mapping T : P 7→R reg

L,P,λ( f ).
In robust statistics we are interested in smooth and bounded functions T , because this will give stable
regularized risks within small neighborhoods of P. If an appropriate derivative ∇T (P) of T (P) is
bounded, then the function T (P) cannot increase or decrease unlimited in small neighborhoods of
P. Several notions of differentiability have been used for this purpose.

Let us therefore take a look at the following results from Averbukh and Smolyanov (1967, 1968),
Fernholz (1983) and Rieder (1994) on various notions of differentiation to clarify the connections
between these notions. For every pair of normed real vector spaces (X ,Y ) let a subset S(X ,Y ) of the
functions from X to Y be given. The following conditions are imposed on this system S , which will
provide the (Landau) o remainder of the first-order Taylor approximation of an S -differentiation:
(i) ρ(0) = 0, ρ ∈ S(X ,Y ), (ii) S(X ,Y ) is a real vector subspace of all functions from X to Y , (iii)
S(X ,Y )∩L(X ,Y ) = {0} where L(X ,Y ) is the space of continuous linear mappings from X to Y ,
and 0 stands for the zero operator and (iv) moreover, in case X =

�
, it is required that S(

�
,Y ) =

{ρ :
�

→ Y | limt→0 ρ(t)/t = 0}. If S fulfills (i) to (iv), then some mapping T : X → Y is called
S -differentiable at x if there exists some A ∈ L(X ,Y ) and ρ ∈ S(X ,Y ) such that for all h ∈ X ,
T (x+h) = T (x)+Ah+ρ(h). The continuous linear mapping ∇S T (x) = A is called S -derivative of
T at x. The set of all functions T : X → Y which are S -differentiable at x is denoted by DS (X ,Y ;x).
From conditions (ii) and (iii) it is seen that the S -derivative ∇S T (x) is uniquely defined. Condition
(iv) ensures that S -differentiability in case X =

�
coincides with the usual notion of differentiability.

The function T 7→ ∇S T (x) is a linear mapping from DS (X ,Y ;x) to L(X ,Y ).

S -differentiations may be constructed in a special way by means of coverings C , whose elements
are naturally assumed to be bounded sets C (so that th → 0 uniformly for h ∈C as t → 0). For every
normed real vector space X let a covering CX of X be given which consists of bounded subsets of
X . If Y is another normed real vector space, define SC (X ,Y ) = {ρ : X → Y | limt→0 suph∈C

‖ρ(th)‖
t =

ρ(0) = 0 ∀C ∈ CX}. Then the class SC satisfies the conditions (i) to (iv). With X ranging through all
normed real vector spaces, we can then define the following concepts of differentiation by varying
the covering CX . Gâteaux-differentiation is defined by the choices CGX = {C ⊂ X |C finite}. For
Hadamard-differentiation, CHX = {C ⊂ X |C compact} and Fréchet-differentiation uses the cover-
ing CFX = {C ⊂ X |C bounded}. The three differentiations will be indicated by the corresponding
authors’ initials. From these definitions it is clear that ∇F implies ∇H which implies ∇G. It can be
shown that ∇H is actually the weakest S -derivative which fulfills the chain rule.

One general approach to robustness (Hampel, 1968, 1974) is the one based on influence func-
tions which are related to Gâteaux-derivatives. Let M1 be the set of probability distributions on
some measurable space (Z,B(Z)) and let H be a reproducing kernel Hilbert space. The influence
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function (IF) of T : M1 → H at a point z ∈ Z for a distribution P is defined as

IF(z;T,P) = lim
ε↓0

T ((1− ε)P+ εδz)−T (P)

ε
, (3)

if the limit exists. Within this approach robust estimators are those which have a bounded influence
function.1 The influence function is neither supposed to be linear nor continuous. If the influence
functions exists for all points z∈ Z and if it is continuous and linear, then the IF is a special Gâteaux-
derivative.

Christmann and Steinwart (2004, 2007) and Steinwart and Christmann (2008b) showed that
SVMs have a bounded influence function in binary classification and in regression problems pro-
vided that the kernel is bounded and continuous, L is twice Fréchet-differentiable w.r.t. the second
argument, and the first and second F-derivative of L is bounded. Hence Lipschitz continuous loss
functions are of special interest from a robustness point of view. An example of a loss function with
these properties is the logistic loss given by Llog(y, t) := − log

(

4Λ(y− t)(1−Λ(y− t))
)

, y, t ∈
�

,
where Λ(y− t) = 1/

(

1+e−(y−t)
)

. However the important special cases Lε, Lτ−pin, and Lc−Huber are
excluded in these results, because these loss functions are not everywhere Fréchet-differentiable.

The present paper tries to fill this gap: we will propose in Definition 1 an alternative to the
influence function. This alternative is based on Bouligand-derivatives whereas Hampel’s influence
function was defined having Gâteaux-derivatives in mind. The second goal of this paper is to use
this new notion of robustness to show that SVMs for regression are robust in this sense even if the
loss function has no Fréchet-derivative.

Let us now recall some facts on Bouligand-derivatives and strong approximation of functions.
For the rest of the introduction let X , Y , W , and Z be normed linear spaces, and we consider
neighborhoods N (x0) of x0 in X , N (y0) of y0 in Y , and N (w0) of w0 in W . Let F and G be
functions from N (x0)×N (y0) to Z, h1 and h2 functions from N (w0) to Z, f a function from
N (x0) to Z and g a function from N (y0) to Z. A function f approximates F in x at (x0,y0),
written as f ∼x F at (x0,y0), if F(x,y0)− f (x) = o(x− x0). Similarly, g ∼y F at (x0,y0) if
F(x0,y)− g(y) = o(y− y0). A function h1 strongly approximates h2 at w0, written as h1 ≈ h2 at
w0, if for each ε > 0 there exists a neighborhood N (w0) of w0 such that whenever w and w′ belong
to N (w0),

∥

∥

(

h1(w)−h2(w)
)

−
(

h1(w′)−h2(w′)
)∥

∥ ≤ ε‖w−w′‖. A function f strongly approxi-
mates F in x at (x0,y0), written as f ≈x F at (x0,y0), if for each ε > 0 there exist neighborhoods
N (x0) of x0 and N (y0) of y0 such that whenever x and x′ belong to N (x0) and y belongs to N (y0)
we have

∥

∥

(

F(x,y)− f (x)
)

−
(

F(x′,y)− f (x′)
)∥

∥ ≤ ε‖x− x′‖. Strong approximation amounts to re-
quiring h1 − h2 to have a strong Fréchet-derivative of 0 at w0, though neither h1 nor h2 is assumed
to be differentiable in any sense. A similar definition is made for strong approximation in y. We
define strong approximation for functions of several groups of variables, for example G ≈(x,y) F
at (x0,y0), by replacing W by X ×Y and making the obvious substitutions. Note that one has both
f ≈x F and g ≈y F at (x0,y0) exactly if f (x)+g(y) ≈(x,y) F at (x0,y0).

Recall that a function f : X → Z is called positive homogeneous if

f (αx) = α f (x) ∀α ≥ 0, ∀x ∈ X .

Following Robinson (1987) we can now define the Bouligand-derivative. Given a function f from
an open subset X of a normed linear space X into another normed linear space Z, we say that

1. In the following we use the term “robust” in this sense, unless otherwise stated.
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f is Bouligand-differentiable at a point x0 ∈ X , if there exists a positive homogeneous function
∇B f (x0) : X → Z such that

f (x0 +h) = f (x0)+∇B f (x0)(h)+o(h). (4)

We can write (4) also as

lim
h→0

∥

∥ f (x0 +h)− f (x0)−∇B f (x0)(h)
∥

∥

Z /‖h‖X = 0. (5)

Let F : X ×Y → Z, and suppose that F has a partial B-derivative2 ∇B
1 F(x0,y0) with respect to x at

(x0,y0). We say ∇B
1 F(x0,y0) is strong if F(x0,y0)+∇B

1 F(x0,y0)(x−x0) ≈x F at (x0,y0). Robinson
(1987) showed that the chain rule holds for Bouligand-derivatives. Let f be a Lipschitzian function
from an open set Ω ⊂

� m to
� k, x0 ∈ Ω, and f B-differentiable at x0. Let g be a Lipschitzian

function from an open set Γ ⊂
� k, with f (x0) ∈ Γ, to

� l be B-differentiable at f (x0). Then g◦ f is
B-differentiable at x0 and ∇B(g ◦ f )(x0) = ∇Bg

(

f (x0)
)

◦∇B f (x0). The fact that B-derivatives, just
as F- and H-derivatives, fulfill the chain rule is no contradiction to the before mentioned fact that
H-differentiability is the weakest S -differentiation which fulfills the chain rule (Rieder, 1994, p. 4)
because the B-derivative is not necessarily a continuous linear function.

In general Gâteaux- and Bouligand-differentiability are not directly comparable, because B-
derivatives are by definition positive homogeneous, but not necessarily linear. We will show that
the existence of the BIF implies the existence of the IF and that in that case BIF=IF. Please note that
this in general does not imply that the IF is a Gâteaux-derivative.

In this paper, we will prove that many SVMs based on Lipschitz continuous loss functions have
a bounded Bouligand influence function. To formulate our results we will use Bouligand-derivatives
in the sense of Robinson (1991) as defined above. These directional derivatives were to our best
knowledge not used in robust statistics so far, but are successfully applied in approximation theory
for non-smooth functions. Section 2 covers our definition of the Bouligand influence function (BIF)
and contains the main result which gives the BIF for support vector machines based on a bounded
kernel and a B-differentiable Lipschitz continuous convex loss function. In Section 3 it is shown
that this result covers the loss functions Lε, Lτ−pin, Lc−Huber, and Llog as special cases. Section 4
contains the conclusions. All proofs are given in the Appendix.

2. Main Result

This section contains our two main results: the definition of the Bouligand influence function and
a theorem which shows that a broad class of support vector machines based on a Lipschitz contin-
uous, but not necessarily Fréchet-differentiable loss function have a bounded Bouligand influence
function. We denote the set of all probability distributions on some measurable space (Z,B(Z)) by
M1 and let H be a Hilbert space.

Definition 1 The Bouligand influence function (BIF) of the function T : M1 → H for a distribu-
tion P in the direction of a distribution Q 6= P is the special Bouligand-derivative (if it exists)

lim
ε↓0

∥

∥T
(

(1− ε)P+ εQ
)

−T (P)−BIF(Q;T,P)
∥

∥

H
ε

= 0. (6)

2. Throughout the paper we will denote partial B-derivatives of f by ∇B
1 f , ∇B

2 f , ∇B
2,2 f := ∇B

2

(

∇B
2 f

)

etc.
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The BIF has the interpretation that it measures the impact of an infinitesimal small amount of
contamination of the original distribution P in the direction of Q on the quantity of interest T (P). It
is thus desirable that the function T has a bounded BIF.

Note that (6) is indeed a special B-derivative, because we consider the directions h = ε(Q−P)
and x0 = P. If Q equals the Dirac distribution δz in a point z ∈ Z, that is δz({z}) = 1, we write
BIF(z;T,P). The choice of the metric on M1 is not important for the definition of the BIF, because
‖ε(Q−P)‖= ε‖Q−P‖ and ‖Q−P‖ is a positive constant. For the norm of total variation we obtain
for example,

lim
ε(Q−P)↓0

∥

∥T
(

P+ ε(Q−P)
)

−T (P)−BIF(Q;T,P)
∥

∥

H
‖ε(Q−P)‖tv

= 0,

(cf., Equation 5). Since ε(Q−P) → 0 iff ε → 0 and by assumption Q 6= P we obtain (6).
The Bouligand influence function is a modification of the influence function given by (3). Recall

that the Gâteaux-derivative of some mapping f at a point x0 equals ∇G f (x0)(h) = limε↓0
(

f (x0 +
εh)− f (x0)

)

/ε if it exists for every h ∈ X . Hence the influence function is the special Gâteaux-
derivative with Q = δz and h = δz − P, if the IF is continuous and linear. However, the BIF is
always positive homogeneous because it is a Bouligand-derivative, which is in general not true for
the influence function. As will be shown in (13), this property leads to the result that for α ≥ 0 and
h := ε(Q−P) the asymptotic bias T ((1−αε)P+αεQ)−T (P) equals αBIF(Q;T,P)+o(h).

The following simple calculations clarify the connection between the BIF and the IF. In general
we have for B-derivatives with h = εh̃, where ε ∈ (0,∞) and h̃ ∈ X with 0 < ‖h̃‖ ≤ 2,

0 = lim
h→0

‖ f (x0 +h)− f (x0)−∇B f (x0)(h)‖

‖h‖

= lim
ε↓0

‖ f (x0 + εh̃)− f (x0)− ε∇B f (x0)(h̃)‖

ε‖h̃‖

= lim
ε↓0

∥

∥

∥

f (x0 + εh̃)− f (x0)

ε
−∇B f (x0)(h̃)

∥

∥

∥
.

Hence limε↓0
(

f (x0 + εh̃)− f (x0)
)

/ε = ∇B f (x0)(h̃). In particular we obtain for Q 6= P and taking
0 < ‖Q−P‖ ≤ 2 into account that, if BIF(Q;T,P) exists, then BIF(Q;T,P) = limε↓0

(

T ((1− ε)P+
εQ)−T (P)

)

/ε, which is the definition of the IF, if we choose Q = δz.
We can now give a general result on the BIF of the support vector machine T (P) := fP,λ. We re-

strict attention to Lipschitz continuous loss functions, because the growth behavior of L plays an im-
portant role to obtain consistency and robustness results as was shown by Christmann and Steinwart
(2007). For notational convenience we shall often write ∇B

2 L(Y, f (X)) instead of ∇B
2 L(Y, ·)( f (X)),

because f (X) ∈
�

. We will sometimes explicitly write “·” for multiplication to avoid misunder-
standings.

Theorem 2 Let X ⊂
� d and Y ⊂

�
be closed sets, H be a RKHS with a bounded, continuous kernel

k, fP,λ ∈ H , and L : Y ×
�
→ [0,∞) be a convex loss function which is Lipschitz continuous w.r.t. the

second argument with uniform Lipschitz constant |L|1 := supy∈Y |L(y, ·)|1 ∈ (0,∞). Further, assume
that L has measurable partial B-derivatives w.r.t. to the second argument with

κ1 := sup
y∈Y

∥

∥∇B
2 L(y, ·)

∥

∥

∞ ∈ (0,∞) , κ2 := sup
y∈Y

∥

∥∇B
2,2L(y, ·)

∥

∥

∞ < ∞ . (7)
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Let δ1 > 0, δ2 > 0, Nδ1( fP,λ) := { f ∈ H ;
∥

∥ f − fP,λ
∥

∥

H < δ1}, λ > 1
2 κ2 ‖k‖3

∞, and P,Q be probability
measures3 on

(

X×Y,B(X×Y )
)

with EP|Y |< ∞ and EQ|Y |< ∞. Define G : (−δ2,δ2)×Nδ1( fP,λ)→
H ,

G(ε, f ) := 2λ f +E(1−ε)P+εQ∇B
2 L(Y, f (X)) ·Φ(X) , (8)

and assume that ∇B
2 G(0, fP,λ) is strong. Then the Bouligand influence function of T (P) := fP,λ in

the direction of Q 6= P exists,

BIF(Q;T,P) = S−1(
EP∇B

2 L(Y, fP,λ(X)) ·Φ(X)
)

(9)

−S−1(
EQ∇B

2 L(Y, fP,λ(X)) ·Φ(X)
)

, (10)

where S : H → H with

S(·) := ∇B
2 G(0, fP,λ)(·) = 2λ idH (·)+EP∇B

2,2L(Y, fP,λ(X)) · 〈Φ(X), ·〉H Φ(X),

and BIF(Q;T,P) is bounded.

Remark 3 We additionally show that under the assumptions of Theorem 2 we have:

1. For some χ and each f ∈Nδ1( fP,λ), G(· , f ) is Lipschitz continuous on (−δ2,δ2) with Lipschitz
constant χ.

2. G has partial B-derivatives with respect to ε and f at (0, fP,λ).

3. ∇B
2 G(0, fP,λ)(h− fP,λ) lies in a neighborhood of 0 ∈ H , ∀h ∈ Nδ1( fP,λ).

4. d0 := infh1,h2∈Nδ1
( fP,λ)− fP,λ ;h1 6=h2

‖∇B
2 G(0, fP,λ)(h1)−∇B

2 G(0, fP,λ)(h2)‖H
‖h1−h2‖H

> 0 .

5. For each ξ > d−1
0 χ there exist constants δ3,δ4 > 0, a neighborhood Nδ3( fP,λ) :=

{ f ∈ H ;
∥

∥ f − fP,λ
∥

∥

H < δ3}, and a function f ∗ : (−δ4,δ4) → Nδ3( fP,λ) satisfying

v.1) f ∗(0) = fP,λ.

v.2) f ∗ is Lipschitz continuous on (−δ4,δ4) with Lipschitz constant | f ∗|1 = ξ.

v.3) For each ε ∈ (−δ4,δ4) is f ∗(ε) the unique solution of G(ε, f ) = 0 in Nδ3( fP,λ).

v.4) ∇B f ∗(0)(u) =
(

∇B
2 G(0, fP,λ)

)−1 (

−∇B
1 G(0, fP,λ)(u)

)

, u ∈ (−δ4,δ4).

The function f ∗ is the same as in the implicit function theorem by Robinson (1991), see
Theorem 7.

Remark 4 It will be shown that κ2 = 0 for L = Lε and L = Lτ−pin and thus the regularization
condition only states that λ > 1

2 κ2 ‖k‖3
∞ = 0.

3. Because X and Y are assumed to be closed, P can be split up into the marginal distribution PX and the regular
conditional probability P( · |x), x ∈ X , on Y . Same for Q.

921



CHRISTMANN AND VAN MESSEM

Note that S can be interpreted as the (Bouligand-)Hessian of the regularized risk, see (14) and
(17). Further the formula in (9) and (10) is similar to the one obtained by Christmann and Stein-
wart (2007) for the IF of T (P) = fP,λ. The difference is that we used B-derivatives instead of
F-derivatives, because we allow non-smooth L.

Note that the first summand of the BIF given in (9) does not depend on the contaminating
distribution Q. In contrast to that, the second summand of the BIF given in (10) depends on Q and
consists of two factors. The first factor depends on the partial B-derivative of the loss function, and
is hence bounded due to (7). For many loss functions this factor depends only on the residual term
y− fP,λ(x). The second factor is the feature map Φ(x) which is bounded, because k is bounded. For
the Gaussian RBF kernel we expect that the second factor is not only bounded, but that the impact
of Q 6= P on the BIF is approximately local, because k(x,x′) converges exponentially fast to zero if
||x− x′||2 is large.

3. Examples

In this section we show that our main theorem covers some SVMs widely used in practice. The
following result treats SVMs based on the ε-insensitive loss function or Huber’s loss function for
regression, and SVMs based on the pinball loss function for nonparametric quantile regression.
These loss functions have uniformly bounded first and second partial B-derivatives w.r.t. the second
argument, see the Appendix.

Corollary 5 Let X ⊂
� d and Y ⊂

�
be closed, and P,Q be distributions on X ×Y with EP|Y | < ∞

and EQ|Y | < ∞.

1. For L ∈ {Lτ−pin,Lε}, assume that for all δ > 0 there exist positive constants ξP, ξQ, cP, and
cQ such that for all t ∈

�
with |t − fP,λ(x)| ≤ δ‖k‖∞ the following inequalities hold for all

a ∈ [0,2δ‖k‖∞] and x ∈ X:

P
(

Y ∈ [t, t +a]
∣

∣x
)

≤ cPa1+ξP and Q
(

Y ∈ [t, t +a]
∣

∣x
)

≤ cQa1+ξQ . (11)

2. For L = Lc−Huber, assume for x ∈ X:

P
(

Y ∈
{

fP,λ(x)− c, fP,λ(x)+ c
}∣

∣x
)

= Q
(

Y ∈
{

fP,λ(x)− c, fP,λ(x)+ c
}∣

∣x
)

= 0 . (12)

Then the assumptions of Theorem 2 are valid: BIF(Q;T,P) of T (P) := fP,λ exists, is given by (9) to
(10), and is bounded.

For the somewhat smoother Huber loss function we only need to exclude by (12) that the con-
ditional probabilities of Y given X with respect to P and Q have no point probabilities at the two
points fP,λ(x)−c and fP,λ(x)+c. Therefore, for this loss function Q can be a Dirac distribution and
in this case we have BIF = IF.

For the pinball loss function some calculations give

BIF(Q;T,P) =
1

2λ

Z

X

(

P
(

Y ≤ fP,λ(x)
∣

∣x
)

− τ
)

Φ(x)dPX(x)

−
1

2λ

Z

X

(

Q
(

Y ≤ fP,λ(x)
∣

∣x
)

− τ
)

Φ(x)dQX(x),
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if the BIF exists. We expect the first integral to be small, because fP,λ(x) approximates the τ-quantile
of P(· |x) and even rates of convergence are known (Steinwart and Christmann, 2008a,b). As will
become clear from the proof, (11) and (12) guarantee that the regular conditional probabilities P(· |x)
and Q(· |x) do not have large point masses at those points where the Lipschitz continuous loss
function L is not F-differentiable or in small neighborhoods around these points. Even for the case
of parametric quantile regression, that is for L = Lτ−pin, λ = 0 and the unbounded linear kernel
k(x,x′) := 〈x,x′〉, some assumptions on the distribution P seem to be necessary for the existence
of the IF, see Koenker (2005, p. 44). He assumes that P has a continuous density which is strictly
positive where needed.

Nevertheless, the question arises whether Theorem 2 and Corollary 5 can be shown without any
assumption on the distributions P and Q. This is—at least with the techniques we used—not possible
for non-smooth loss functions as the following counterexample shows. Let us consider kernel based
quantile regression based on the Gaussian RBF kernel, that is L = Lτ−pin, k = kRBF , and λ > 0.
Hence the set D of discontinuity points of ∇B

2 L is D = {0}. Fix x ∈ X and y,y∗ ∈ Y with y 6= y∗.
Define P = δ(x,y) and Q = δ(x,y∗). Consider f1, f2 ∈ Nδ1( fP,λ) with f1(x) 6= f2(x), y− f1(x) > 0,
y− f2(x) < 0, y∗− f1(x) > 0, and y∗− f2(x) < 0. Hence, ∇B

2 L(y, f1(x)) = ∇B
2 L(y∗, f1(x)) = −τ and

∇B
2 L(y, f2(x)) = ∇B

2 L(y∗, f2(x)) = 1−τ. Note that ∇B
2,2L(y, t) = 0 for all y, t ∈

�
. We thus obtain for

the H -norm in (19) that
∥

∥E(1−ε)P+εQ
(

∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))
)

·Φ(X)
∥

∥

H = ‖Φ(x)‖H > 0 .
Hence ∇B

2 G(0, fP,λ) is not strong in this special case, because ‖Φ(x)‖H is in general greater than
ε∗ ‖ f1 − f2‖H for arbitrarily small values of ε∗.

Now we shall show for Llog that the assumptions (11) or (12) are not needed to obtain a bounded
BIF. It is easy to see that Llog is strictly convex w.r.t. the second argument and Fréchet-differentiable
with ∇F

2 Llog(y, t) = 1− 2Λ(y− t), ∇F
2,2Llog(y, t) = 2Λ(y− t)[1−Λ(y− t)], and ∇F

2,2,2Llog(y, t) =
−2Λ(y− t)[1−Λ(y− t)][1− 2Λ(y− t)]. Obviously, these partial derivatives are bounded for all
y, t ∈

�
. Furthermore, κ1 = supy∈ � |∇F

2 Llog(y, ·)|1 = 1/2 and κ2 = supy∈ � |∇F
2,2Llog(y, ·)|1 ≤ 1/2,

because an everywhere F-differentiable function g is Lipschitz continuous with |g|1 = ||∇Fg||∞ if
∇Fg is bounded.

Corollary 6 Let X ⊂
� d and Y ⊂

�
be closed, L = Llog, and P,Q be distributions on X ×Y with

EP|Y | < ∞ and EQ|Y | < ∞. Then the assumptions of Theorem 2 are valid, and BIF(Q;T,P) of
T (P) := fP,λ exists, is given by (9) to (10), and BIF(Q;T,P) is bounded.

Corollary 6 is of course also valid for empirical distributions Dn and Qm consisting of n and m
data points, because no specific assumptions on P and Q are made.

The influence function of T (P) = fP,λ based on Llog and error bounds of the type
∥

∥T
(

(1− ε)P+ εδ(x,y)−T (P)
)∥

∥

H ≤ c∗ ε

where the constant c∗ is known and depends only on P, Q := δ(x,y), and λ, were recently derived
by Christmann and Steinwart (2007). We like to mention that Corollary 6 shows that this influence
function is even a Bouligand-derivative, hence positive homogeneous in h = ε(Q−P). Therefore,
we immediately obtain from the existence of the BIF that the asymptotic bias of SVMs has the form

f(1−αε)P+αεQ,λ − fP,λ = T (P+αh)−T (P)

= αBIF(Q;T,P)+o(αh) (13)

= α
(

T (P+h)−T (P)+o(h)
)

+o(αh)

= α
(

f(1−ε)P+εQ,λ − fP,λ
)

+o(αε(Q−P)), α ≥ 0.
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This equation nicely describes the behavior of the asymptotic bias term f(1−ε)P+εQ,λ − fP,λ if we
consider the amount αε of contamination instead of ε.

4. Discussion

Bouligand-derivatives and strong Bouligand-derivatives were successfully used in approximation
theory, see for example Clarke (1983), Robinson (1987, 1991), Ip and Kyparisis (1992), and the
references cited therein. To our best knowledge however, these concepts were not used so far to
investigate robustness properties of statistical operators.

Therefore, we defined the Bouligand influence function (BIF) as a modification of the influence
function (IF), the latter being related to Gâteaux-derivatives and a cornerstone of robust statistics,
see Hampel (1974), Hampel et al. (1986), and Maronna et al. (2006). If the BIF exists, then it is
identical to the IF. The BIF is a positive homogeneous function by definition. This is in general not
true for the IF. We used the BIF to show that support vector machines for regression, which play an
important role in modern statistical learning theory, are robust in the sense of influence functions,
if a bounded continuous kernel is used and if the convex loss function is Lipschitz continuous and
twice Bouligand-differentiable, but not necessarily twice Fréchet-differentiable. The result covers
the important special cases of SVMs based on the ε-insensitive, Huber or logistic loss function for
regression, and kernel based quantile regression based on the pinball loss function. The IF of SVMs
based on the logistic loss was recently derived by Christmann and Steinwart (2007) and Steinwart
and Christmann (2008b).

From our point of view, the Bouligand-derivative is a promising concept for robust statistics
for the following reason. Many robust estimators proposed in the literature are implicitly defined
as solutions of minimization problems where the objective function or loss function is continuous
or Lipschitz continuous, but not necessarily twice Fréchet-differentiable. Examples are not only
SVMs treated in this paper, but also M-estimators of Huber-type and certain maximum likelihood
estimators under non-standard conditions. Bouligand-differentiation nicely fills the gap between
Fréchet-differentiation, which is too strong for many robust estimators, and Gâteaux-differentiation
which is the basis for the robustness approach based on influence functions. Bouligand-derivatives
fulfill a chain rule and a theorem of implicit functions which is in general not true for Gâteaux-
derivatives.
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Appendix A. Proofs

This appendix contains all the proofs of the previous sections.

A.1 Proofs for the Results in Section 2

For the proof of Theorem 2 we shall use the following implicit function theorem for B-derivatives,
see Robinson (1991, Cor. 3.4). For a function f from a metric space (X ,dX) to another metric space
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(Y,dY ), we define

δ( f ,X) = inf{dY
(

f (x1), f (x2)
)

/dX(x1,x2) | x1 6= x2; x1, x2 ∈ X} .

Theorem 7 Let Y be a Banach space and X and Z be normed linear spaces. Let x0 and y0 be points
of X and Y , respectively, and let N (x0) be a neighborhood of x0 and N (y0) be a neighborhood of
y0. Suppose that G is a function from N (x0)×N (y0) to Z with G(x0,y0) = 0. In particular, for
some φ and each y ∈ N (y0), G(·,y) is assumed to be Lipschitz continuous on N (x0) with mod-
ulus φ. Assume that G has partial B-derivatives with respect to x and y at (x0,y0), and that: (i)
∇B

2 G(x0,y0)(·) is strong. (ii) ∇B
2 G(x0,y0)(y− y0) lies in a neighborhood of 0 ∈ Z, ∀y ∈ N (y0). (iii)

δ(∇B
2 G(x0,y0),N (y0)− y0) =: d0 > 0. Then for each ξ > d−1

0 φ there are neighborhoods U of x0

and V of y0, and a function f ∗ : U →V satisfying (a) f ∗(x0) = y0. (b) f ∗ is Lipschitz continuous on
N (x0) with modulus ξ. (c) For each x ∈U, f ∗(x) is the unique solution in V of G(x,y) = 0. (d) The

function f ∗ is B-differentiable at x0 with ∇B f ∗(x0)(u) =
(

∇B
2 G(x0,y0)

)−1 (

−∇B
1 G(x0,y0)(u)

)

.

We will also need the following consequence of the open mapping theorem, see Lax (2002,
p. 170).

Theorem 8 Let X and Y be Banach spaces, A : X →Y be a bounded, linear, and bijective function.
Then the inverse A−1 : Y → X is a bounded linear function.

The key ingredient of our proof of Theorem 2 is of course the map G :
�
×H → H defined

by (8). If ε < 0 the integration is w.r.t. a signed measure. The H -valued expectation used in the
definition of G is well-defined for all ε ∈ (δ2,δ2) and all f ∈ Nδ1( fP,λ), because κ1 ∈ (0,∞) by (7)
and ‖Φ(x)‖∞ ≤ ‖k‖2

∞ < ∞ by (2). For F- and B-derivatives holds a chain rule and F-differentiable
functions are also B-differentiable. For ε ∈ [0,1] we thus obtain

G(ε, f ) =
∂R reg

L,(1−ε)P+εQ,λ

∂H
( f ) = ∇B

2 R reg
L,(1−ε)P+εQ,λ( f ) . (14)

Since f 7→ R reg
L,(1−ε)P+εQ,λ( f ) is convex and continuous for all ε ∈ [0,1] equation (14) shows that we

have G(ε, f ) = 0 if and only if f = f(1−ε)P+εQ,λ for such ε. Hence

G(0, fP,λ) = 0 . (15)

We shall show that Theorem 7 is applicable for G and that there exists a B-differentiable function
ε 7→ fε defined on a small interval (−δ2,δ2) for some δ2 > 0 satisfying G(ε, fε) = 0 for all ε ∈
(−δ2,δ2). From the existence of this function we shall obtain BIF(Q;T,P) = ∇B fε(0).

Proof of Theorem 2. The existence of fP,λ follows from the convexity of L and the penalizing term,
see also Christmann and Steinwart (2007, Prop. 8). The assumption that G(0, fP,λ) = 0 is valid by
(15). Let us now prove the results of Remark 3 parts 1 to 5.
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Remark 3 part 1. For f ∈ H fixed let ε1,ε2 ∈ (−δ2,δ2). Using ‖k‖∞ < ∞ and (15) we obtain

∣

∣E(1−ε1)P+ε1Q∇B
2 L(Y, f (X)) ·Φ(X)−E(1−ε2)P+ε2Q∇B

2 L(Y, f (X)) ·Φ(X)
∣

∣

=
∣

∣(ε1 − ε2)EQ−P∇B
2 L(Y, f (X)) ·Φ(X)

∣

∣

≤ |ε1 − ε2|
Z

∣

∣∇B
2 L(y, f (x)) ·Φ(x)

∣

∣ d|Q−P|(x,y)

≤ |ε1 − ε2|
Z

sup
y∈Y

|∇B
2 L(y, f (x))| sup

x∈X
|Φ(x)|d|Q−P|(x,y)

≤ |ε1 − ε2|‖Φ(x)‖∞ sup
y∈Y

∥

∥∇B
2 L(y, ·)

∥

∥

∞

Z

d|Q−P|(x,y)

≤ 2 ‖k‖2
∞ sup

y∈Y

∥

∥∇B
2 L(y, ·)

∥

∥

∞ |ε1 − ε2|

= 2 ‖k‖2
∞ κ1 |ε1 − ε2| < ∞ .

Remark 3 part 2. We have

∇B
1 G(ε, f ) = ∇B

1

(

E(1−ε)P+εQ∇B
2 L(Y, f (X)) ·Φ(X)

)

= ∇B
1

(

EP∇B
2 L(Y, f (X)) ·Φ(X)+ εEQ−P∇B

2 L(Y, f (X)) ·Φ(X)
)

= EQ−P∇B
2 L(Y, f (X)) ·Φ(X)

= EQ∇B
2 L(Y, f (X)) ·Φ(X)−EP∇B

2 L(Y, f (X)) ·Φ(X) . (16)

This expectation exists due to (2) and (7). Furthermore, we obtain

∇B
2 G(0, fP,λ)(h)+o(h)

= G(0, fP,λ +h)−G(0, fP,λ)

= 2λh+EP∇B
2 L(Y,( fP,λ(X)+h(X))) ·Φ(X)−EP∇B

2 L(Y, fP,λ(X)) ·Φ(X)

= 2λh+EP

(

∇B
2 L

(

Y,( fP,λ(X)+h(X))
)

−∇B
2 L

(

Y, fP,λ(X)
)

)

·Φ(X) .

This expectation exists, as the term ∇B
2 L

(

Y,( fP,λ(X)+h(X))
)

−∇B
2 L

(

Y, fP,λ(X)
)

is bounded due to
(2), (7), and ‖k‖∞ < ∞. Using 〈Φ(X), ·〉H ∈ H , we get

∇B
2 G(0, fP,λ)(·) = 2λidH (·)+EP∇B

2,2L(Y, fP,λ(X)) · 〈Φ(X), ·〉H Φ(X) . (17)

Note that EP∇B
2,2L

(

Y, f (X)
)

= ∇B
2 EP∇B

2 L
(

Y, f (X)
)

, because

∇B
2 EP∇B

2 L
(

Y, f (X)
)

−EP∇B
2,2L

(

Y, f (X)
)

= EP
(

∇B
2 L(Y,( f (X)+h(X)))−∇B

2 L(Y, f (X))
)

−EP∇B
2,2L(Y, f (X))+o(h)

= EP
(

∇B
2 L(Y,( f (X)+h(X)))−∇B

2 L(Y, f (X))−∇B
2,2L(Y, f (X))

)

+o(h) = o(h)

by definition of the B-derivative.
Remark 3 part 3. Let Nδ1( fP,λ) be a δ1-neighborhood of fP,λ. Because H is a RKHS and hence a

vector space it follows for all h∈Nδ1( fP,λ) that
∥

∥ fP,λ −h−0
∥

∥

H ≤ δ1 and hence h− fP,λ ∈Nδ1(0)⊂
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H . Note that ∇B
2 G(0, fP,λ)( ·) computed by (17) is a mapping from H to H . For ξ := h− fP,λ we

have ‖ξ‖H ≤ δ1 and the reproducing property yields

∇B
2 G(0, fP,λ)(ξ) = 2λξ+EP∇B

2,2L(Y, fP,λ(X)) ·ξΦ(X).

Using (2) and (7) we obtain

∥

∥2λξ+EP∇B
2,2L(Y, fP,λ(X)) ·ξΦ(X)−0

∥

∥

H

≤ 2λ‖ξ‖H +
∥

∥EP∇B
2,2L(Y, fP,λ(X)) ·ξΦ(X)

∥

∥

H

≤ 2λ‖ξ‖H + sup
y∈Y

∥

∥∇B
2,2L(y, ·)

∥

∥

∞ ‖ξ‖∞ ‖Φ(x)‖∞

≤ 2λ‖ξ‖H +κ2 ‖ξ‖H ‖k‖3
∞

≤
(

2λ+κ2 ‖k‖3
∞
)

δ1 ,

which shows that ∇B
2 G(0, fP,λ)(h− fP,λ) lies in a neighborhood of 0 ∈ H , for all h ∈ Nδ1( fP,λ).

Remark 3 part 4. Due to (17) we have to prove that

d0 := inf
f1 6= f2

∥

∥

∥
2λ( f1 − f2)+EP∇B

2,2L
(

Y, fP,λ(X)
)

· ( f1 − f2)Φ(X)
∥

∥

∥

H
‖ f1 − f2‖H

> 0 .

If f1 6= f2, then (2), (7), and λ > 1
2 κ2 ‖k‖3

∞ yield that

∥

∥2λ( f1 − f2)+EP∇B
2,2L

(

Y, fP,λ(X)
)

· ( f1 − f2)Φ(X)
∥

∥

H /‖ f1 − f2‖H

≥
(

‖2λ( f1 − f2)‖H −
∥

∥EP∇B
2,2L(Y, fP,λ(X)) · ( f1 − f2)Φ(X)

∥

∥

H

)

/‖ f1 − f2‖H

≥ 2λ−κ2 ‖k‖3
∞ > 0

by our assumption, which gives the assertion.
Remark 3 part 5. The assumptions of Robinson’s implicit function theorem, see Theorem 7,

are valid for G due to the results of Remark 3 parts 1 to 4 and the assumption that ∇B
2 G(0, fP,λ) is

strong. This gives part 5.
The result of Theorem 2 now follows from inserting (16) and (17) into Remark 3 part 5(v.4).

Using (7) we see that S is bounded. The linearity of S follows from its definition and the inverse of
S does exist by Theorem 7. If necessary we can restrict the range of S to S(H ) to obtain a bijective
function S∗ : H → S(H ) with S∗( f ) = S( f ) for all f ∈ H . Hence S−1 is also bounded and linear by
Theorem 8. This gives the existence of a bounded BIF specified by (9) and (10).

A.2 Calculations for the Results in Section 3

For the proof of Corollary 5 we need the partial B-derivatives for the three loss functions and also
have to check that ∇B

2 G(0, fP,λ) is strong. We shall compute the partial B-derivatives for these loss
functions in advance.
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A.2.1 ε-INSENSITIVE LOSS

We shall show for the ε-insensitive loss L = Lε that

∇B
2 L(y, t)(h) =















−h if {t < y− ε} or {y− t = ε,h < 0}
0 if {y− ε < t < y+ ε} or {y− t = ε,h ≥ 0}

or {y− t = −ε,h < 0}
h if {t > y+ ε} or {y− t = −ε,h ≥ 0}

and ∇B
2,2L(y, t)(h) = 0.

For the derivation of ∇B
2 L(y, t) we need to consider 5 cases.

1. If t > y+ ε, we have t +h > y+ ε as long as h is small enough. Therefore,

∇B
2 L(y, t)(h)+o(h) = L(y, t +h)−L(y, t) = t +h− y− ε− (t − y− ε) = h.

2. If t < y− ε, we have t +h < y+ ε if h is sufficiently small. Thus

∇B
2 L(y, t)(h)+o(h) = y− t −h− ε− (y− t − ε) = −h.

3. If y− t ∈ (−ε,ε) we have y− t − h ∈ (−ε,ε) for h → 0. This yields ∇B
2 L(y, t)(h)+ o(h) =

0−0 = 0.

4. If y− t = ε we have to consider 2 cases. If h ≥ 0 and small, then −ε < y− t−h < ε and hence
∇B

2 L(y, t)(h)+o(h) = 0−0 = 0.
If h < 0, we have y− t −h > ε and thus

∇B
2 L(y, t)(h)+o(h) = y− t −h− ε−0 = −h.

5. If y− t = −ε we have again to consider 2 cases. If h ≥ 0, we have y− t −h < −ε. Hence

∇B
2 L(y, t)(h)+o(h) = t +h− y− ε−0 = h.

If h < 0, we get −ε < y− t −h < ε which gives ∇B
2 L(y, t)(h)+o(h) = 0−0 = 0.

This gives the assertion for the first partial B-derivative. Using the same reasoning we obtain
∇B

2,2L(y, t)(h) = 0.

A.2.2 PINBALL-LOSS

It will be shown that for the pinball loss L = Lτ−pin we get

∇B
2 L(y, t)(h) =

{

(1− τ)h if {y− t < 0} or {y− t = 0,h ≥ 0}
−τh if {y− t > 0} or {y− t = 0,h < 0}

and ∇B
2,2L(y, t)(h) = 0.

For the calculation of ∇B
2 L(y, t) we consider 3 cases.
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1. If y− t < 0 we have y− t −h < 0 for sufficiently small values of |h|. Hence

∇B
2 L(y, t)(h)+o(h) = L(y, t +h)−L(y, t)

= (τ−1)(y− t −h)− (τ−1)(y− t) = (1− τ)h.

2. If y− t > 0 we have y− t −h > 0 for sufficiently small values of |h| which yields

∇B
2 L(y, t)(h)+o(h) = τ(y− t −h)− τ(y− t) = −τh.

3. Assume y− t = 0. If y− t −h < 0 we have

∇B
2 L(y, t)(h)+o(h) = (1− τ)h.

If y− t −h > 0 it follows

∇B
2 L(y, t)(h)+o(h) = τ(y− t −h)− τ(y− t) = −τh.

Together this gives the assertion for ∇B
2 L(y, t)(h). In the same way we get ∇B

2,2L(y, t)(h) = 0.

A.2.3 HUBER LOSS

It will be shown that for the Huber loss L = Lc−Huber we have

∇B
2 L(y, t)(h) =

{

−csign(y− t)h if |y− t| > c
−(y− t)h if |y− t| ≤ c

and

∇B
2,2L(y, t)(h) =







h if {y− t = c,h ≥ 0} or {y− t = −c,h < 0}
or {|y− t| < c}

0 if else .

For the derivation of ∇B
2 L(y, t) we consider the following 5 cases.

1. Let y− t = c. If h ≥ 0 or y− t −h ≤ c then

∇B
2 L(y, t)(h)+o(h) = L(y, t +h)−L(y, t)

=
1
2
(y− t −h)2 −

1
2
(y− t)2 = −(y− t)h+

h2

2
.

If h < 0 or y− t −h > c > 0 we have

∇B
2 L(y, t)(h)+o(h) = c|y− t −h|−

c2

2
−

1
2
(y− t)2

= c(y− t −h)−
c2

2
−

c2

2
= c(c−h)− c2 = −(y− t)h.
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2. Now we consider the case y− t = −c. If h ≥ 0 or y− t −h ≤−c < 0 we obtain

∇B
2 L(y, t)(h)+o(h) = c|y− t −h|−

c2

2
−

1
2
(y− t)2

= c(c+h)−
c2

2
−

c2

2
= −(y− t)h.

If h < 0 or y− t −h > −c we get

∇B
2 L(y, t)(h)+o(h) =

1
2
(y− t −h)2 −

1
2
(y− t)2 = −(y− t)h+

h2

2
.

3. If y− t > c, we have y− t −h > c and thus

∇B
2 L(y, t)(h)+o(h) = c|y− t −h|−

c2

2
− c|y− t|+

c2

2
= c(y− t −h)− c(y− t) = −ch = −csign(y− t)h.

4. If y− t < −c, we have y− t −h < −c and obtain analogously to (iii) that

∇B
2 L(y, t)(h)+o(h) = c|y− t −h|−

c2

2
− c|y− t|+

c2

2
= c(−y+ t +h)− c(−y+ t) = ch = −csign(y− t)h.

5. If −c < y− t < c, then −c < y− t −h < c and

∇B
2 L(y, t)(h)+o(h) =

1
2
(y− t −h)2 −

1
2
(y− t)2 = −(y− t)h+

h2

2
.

This gives the assertion for ∇B
2 L(y, t)(h). Only the first two cases, where y− t =±c, were necessary

to compute, since in the other 3 parts the function is already F-differentiable, and thus also B-
differentiable. For the second partial B-derivative we consider 3 cases.

1. Assume y− t = c. If y− t −h < c then

∇B
2,2L(y, t)(h)+o(h) = ∇B

2 L(y, t +h)−∇B
2 L(y, t) = −(y− t −h)− (−(y− t)) = h.

If y− t −h > c then ∇B
2,2L(y, t)(h)+o(h) = −c− (−(y− t)) = 0.

2. Assume y− t = −c. If y− t −h < −c we obtain ∇B
2,2L(y, t)(h)+o(h) = c− (−(y− t)) = 0.

If y− t −h > −c then

∇B
2,2L(y, t)(h)+o(h) = −(y− t −h)− (−(y− t)) = h.

3. Assume that |y− t| 6= c. Then ∇B
2 L(y, t + h) = ∇B

2 L(y, t). The difference, and consequently
∇B

2,2L(y, t)(h) = 0.
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This gives the assertion for Huber’s loss function.
Proof of Corollary 5. Now that we have shown that these loss functions have bounded first and
second partial B-derivatives, we are ready to check if ∇B

2 G(0, fP,λ) is strong in these cases. Recall
that ∇B

2 G(0, fP,λ) is strong, if for all ε∗ > 0 there exist a neighborhood Nδ1( fP,λ) and an interval
(−δ2,δ2) with δ1,δ2 > 0 such that for all f1, f2 ∈ Nδ1( fP,λ) and for all ε ∈ (−δ2,δ2) we have

∥

∥

(

G(ε, f1)−g( f1)
)

−
(

G(ε, f2)−g( f2)
)∥

∥

H ≤ ε∗ ‖ f1 − f2‖H , (18)

where

g( f ) = 2λ fP,λ(X)+EP∇B
2 L

(

Y, fP,λ(X)
)

·Φ(X)+ 2λ idH ( f (X)− fP,λ(X))

+EP∇B
2,2L

(

Y, fP,λ(X)
)

· 〈( f (X)− fP,λ(X)),Φ(X)〉H Φ(X) , f ∈ H .

Fix ε∗ > 0. Obviously, (18) is valid for f1 = f2. For the rest of the proof we therefore fix arbitrary
functions f1, f2 ∈ Nδ1( fP,λ) with f1 6= f2. We obtain for the term on the left hand side of (18) that

∥

∥

∥

(

2λ f1(X)+E(1−ε)P+εQ∇B
2 L(Y, f1(X)) ·Φ(X)

−2λ fP,λ(X)−EP∇B
2 L(Y, fP,λ(X)) ·Φ(X)

−2λ( f1(X)− fP,λ(X))−EP∇B
2,2L(Y, fP,λ(X)) · ( f1(X)− fP,λ(X))Φ(X)

)

−
(

2λ f2(X)+E(1−ε)P+εQ∇B
2 L(Y, f2(X)) ·Φ(X)

−2λ fP,λ(X)−EP∇B
2 L(Y, fP,λ(X)) ·Φ(X)

−2λ( f2(X)− fP,λ(X))−EP∇B
2,2L(Y, fP,λ(X)) · ( f2(X)− fP,λ(X))Φ(X)

)∥

∥

∥

H

=
∥

∥

∥
E(1−ε)P+εQ

(

∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))
)

·Φ(X) (19)

−EP∇B
2,2L(Y, fP,λ(X)) · ( f1(X)− f2(X))Φ(X)

∥

∥

∥

H

≤ |1− ε|
∥

∥

∥
EP

(

∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))

−∇B
2,2L(Y, fP,λ(X)) · ( f1(X)− f2(X))

)

Φ(X)
∥

∥

∥

H

+|ε|
∥

∥

∥
EQ

(

∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))
)

·Φ(X)
∥

∥

∥

H

+|ε|
∥

∥

∥
EP∇B

2,2L(Y, fP,λ(X)) · ( f1(X)− f2(X))Φ(X)
∥

∥

∥

H
=: |1− ε|A+ |ε|B+ |ε|C . (20)

We shall show that (20) is bounded from above by ε∗ ‖ f1 − f2‖H . When we look at the first par-
tial B-derivatives of our loss functions, we see that we can separate them in 2 cases: for Lε and
Lτ−pin there are one or more discontinuities in ∇B

2 L, whereas ∇B
2 L is continuous for Lc−Huber. Re-

call that the set D of points where Lipschitz continuous functions are not Fréchet-differentiable,
has Lebesgue measure zero by Rademacher’s theorem (Rademacher, 1919). Define the function
h
(

y, f1(x), f2(x)
)

:= ∇B
2 L

(

y, f1(x)
)

− ∇B
2 L

(

y, f2(x)
)

. For L ∈ {Lε,Lτ−pin}, denote the set of dis-
continuity points of ∇B

2 L by D. Take f1, f2 ∈ Nδ1( fP,λ). For ∇B
2 L(Y, fP,λ(x)) /∈ D we obtain

∇B
2 L(Y, f1(x)) = ∇B

2 L(Y, f2(x)) for sufficiently small δ1 and hence h(y, f1(x), f2(x)) = 0. If, on
the other hand, ∇B

2 L(Y, fP,λ(x)) ∈ D and f1(x) < fP,λ(x) < f2(x) or f2(x) < fP,λ(x) < f1(x), then
∇B

2 L(Y, f1(x)) 6= ∇B
2 L(Y, f2(x)) and hence h(y, f1(x), f2(x)) 6= 0. Define m = 2|D|.
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A.2.4 PINBALL LOSS

Using the first part of this proof we see that for the pinball loss L = Lτ−pin we obtain
|h(y, f1(x), f2(x))| ≤ c1, with c1 = 1, D = {0}, m = 2, and ∇B

2,2L(y, t) = 0, for all t ∈
�

. For all
f ∈ Nδ1( fP,λ) we get

| f (x)− fP,λ(x)| ≤
∥

∥ f − fP,λ
∥

∥

∞ ≤ ‖k‖∞
∥

∥ f − fP,λ
∥

∥

H ≤ ‖k‖∞ δ1 . (21)

Further
| f1(x)− f2(x)| ≤ ‖ f1 − f2‖∞ ≤ ‖k‖∞ ‖ f1 − f2‖H ≤ 2‖k‖∞ δ1 . (22)

Using (21), (22), and (11) we obtain

A =
∥

∥EP(∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))) ·Φ(X)
∥

∥

H
≤ EP|h(Y, f1(X), f2(X))| |Φ(X)|

≤ ‖k‖2
∞ EP|h(Y, f1(X), f2(X))|1{h6=0}

≤ ‖k‖2
∞ c1P

(

∇B
2 L(Y, f1(X)) 6= ∇B

2 L(Y, f2(X))
)

= ‖k‖2
∞

(

P
(

{Y − f1(X) < 0}∧{Y − f2(X) > 0}
)

+P
(

{Y − f2(X) < 0}∧{Y − f1(X) > 0}
)

)

= ‖k‖2
∞

Z

X
P
(

Y ∈ ( f2(x), f1(x)) |x
)

+P
(

Y ∈ ( f1(x), f2(x)) |x
)

dPX(x)

= ‖k‖2
∞

Z

X
P
(

Y ∈ ( f2(x), f2(x)+ [ f1(x)− f2(x)]) |x
)

+P
(

Y ∈ ( f1(x), f1(x)+ [ f2(x)− f1(x)]) |x
)

dPX(x)

≤ m‖k‖2
∞

Z

X
cP| f1(x)− f2(x)|

1+ξPdPX(x)

≤ m‖k‖2
∞ cP ‖ f1 − f2‖

1+ξP
∞

≤ mcP ‖k‖3+ξP
∞ ‖ f1 − f2‖

1+ξP

H ,

where PX denotes the marginal distribution of X . Similar calculations give that B ≤ mcQ ‖k‖3+ξQ
∞

‖ f1 − f2‖
1+ξQ

H . We obtain C = 0, because ∇B
2,2L(Y, fP,λ(X)) = 0. Hence, the term in (20) is less than

or equal to

|1− ε|mcP ‖k‖3+ξP
∞ ‖ f1 − f2‖

1+ξP

H + |ε|mcQ ‖k‖3+ξQ
∞ ‖ f1 − f2‖

1+ξQ

H

=
(

|1− ε|cP ‖k‖ξP
∞ ‖ f1 − f2‖

ξP

H + |ε|cQ ‖k‖ξQ
∞ ‖ f1 − f2‖

ξQ

H
)

m‖k‖3
∞ ‖ f1 − f2‖H

≤ ε∗‖ f1 − f2‖H ,

where ε∗ = (|1− ε|cP ‖k‖ξP
∞ 2ξPδξP

1 + |ε|cQ ‖k‖ξQ
∞ 2ξQδξQ

1 )m‖k‖3
∞ .

A.2.5 ε-INSENSITIVE LOSS

The proof for the ε-insensitive loss L = Lε is analogous to the proof for Lτ−pin, but with c1 = 2,
D = {−ε,+ε}, m = 4 and thus we must consider 4 cases instead of 2 where h(y, f1(x), f2(x)) 6= 0.
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A.2.6 HUBER LOSS

For Huber’s loss function L = Lc−Huber we have |∇B
2,2L(y, t)| ≤ 1 := c2 and h(y, f1(x), f2(x)) is

bounded by c1 = 2c. Let us define

h∗(y, fP,λ(x), f1(x), f2(x)) := ∇B
2 L(y, f1(x))−∇B

2 L(y, f2(x))

−∇B
2,2L(y, fP,λ(x)) · ( f1(x)− f2(x)).

Somewhat tedious calculations show that there are 8 cases where h∗(y, fP,λ(x), f1(x), f2(x)) 6= 0
and 6 cases where h∗(y, fP,λ(x), f1(x), f2(x)) = 0. In each of the 8 cases, y − fP,λ(x) ∈ {−c,c}
and |h∗(y, fP,λ(x), f1(x), f2(x))| ≤ | f1(x)− f2(x)|. Due to symmetry of the Huber loss function, the
calculations are quite similar, therefore we only consider here some cases.

If −c < Y − fP,λ(x) < c, then ∇B
2,2L(Y, fP,λ(x)) · ( f1(x)− f2(x)) = f1(x)− f2(x) and for suffi-

ciently small δ1, ∇B
2 L(Y, f1(x)) = −(Y − f1(x)) and ∇B

2 L(Y, f2(x)) = −(Y − f2(x)). A small calcu-
lation shows that h∗(Y, fP,λ(x), f1(x), f2(x)) = 0.

By straightforward calculations we also obtain that h∗(Y, fP,λ(x), f1(x), f2(x)) = 0 for the fol-
lowing 5 cases:

1. Y − fP,λ(x) < −c or Y − fP,λ(x) > c,

2. Y − fP,λ(x) = −c and fP,λ(x) > f2(x) > f1(x),

3. Y − fP,λ(x) = −c and f1(x) > f2(x) > fP,λ(x),

4. Y − fP,λ(x) = c and fP,λ(x) > f2(x) > f1(x),

5. Y − fP,λ(x) = c and f1(x) > f2(x) > fP,λ(x).

If Y − fP,λ(x) = −c and f1(x) > fP,λ(x) > f2(x), we get ∇B
2 L(Y, f1(X)) = c, ∇B

2 L(Y, f2(x)) =
−(Y − f2(x)) and ∇B

2,2L(Y, fP,λ(x)) · ( f1(x)− f2(x)) = 0. Hence,

h∗(Y, fP,λ(x), f1(x), f2(x)) = c+Y − f2(x) = fP,λ(x)− f2(x) 6= 0,

since f2(x) < fP,λ(x).
Analogously, some calculations show that h∗(Y, fP,λ(x), f1(x), f2(x)) 6= 0 for the following 7

cases:

1. Y − fP,λ(x) = −c and f2(x) > fP,λ(x) > f1(x),

2. Y − fP,λ(x) = −c and fP,λ(x) > f1(x) > f2(x),

3. Y − fP,λ(x) = −c and f2(x) > f1(x) > fP,λ(x),

4. Y − fP,λ(x) = c and f1(x) > fP,λ(x) > f2(x),

5. Y − fP,λ(x) = c and f2(x) > fP,λ(x) > f1(x),

6. Y − fP,λ(x) = c and fP,λ(x) > f1(x) > f2(x),

7. Y − fP,λ(x) = c and f2(x) > f1(x) > fP,λ(x).
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Using (12) in (20) we get for the term A in (20) that

A =
∥

∥EPh∗(Y, fP,λ(X), f1(X), f2(X))Φ(X)
∥

∥

H

≤ ‖k‖2
∞

Z

|h∗(y, fP,λ(x), f1(x), f2(x))|1{h∗ 6=0}dP(x,y)

≤ ‖k‖2
∞

Z

| f1(x)− f2(x)|P
(

Y ∈ {−c+ fP,λ(x),c+ fP,λ(x)}
∣

∣x
)

dPX(x) = 0.

Also C =
∥

∥

∥
EP∇B

2,2L(Y, fP,λ(X)) · ( f1(X)− f2(X))Φ(X)
∥

∥

∥

H
≤ κ2 ‖k‖3

∞ ‖ f1 − f2‖H . One can compute

the analogous terms to A and C, say A(Q) and C(Q), respectively, where the integration is with
respect to Q instead of P. Combining these expressions we obtain

B =
∥

∥EQ(∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))) ·Φ(X)
∥

∥

H

≤ EQ
∣

∣∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))−

∇B
2,2L(Y, fP,λ(X)) · ( f1(X)− f2(X))

∣

∣ |Φ(X)|

+EQ
∣

∣∇B
2,2L(Y, fP,λ(X)) · ( f1(X)− f2(X))

∣

∣ |Φ(X)|

= A(Q)+C(Q) ≤ κ2 ‖k‖3
∞ ‖ f1 − f2‖H .

Hence, the term in (20) is less than or equal to ε∗ ‖ f1 − f2‖H where ε∗ = 2|ε|κ2 ‖k‖3
∞. This gives the

assertion, because |ε| can be chosen arbitrarily small.

Proof of Corollary 6. Both partial F-derivatives ∇F
2 Llog(y, t) = 1− 2Λ(y− t) and ∇F

2,2Llog(y, t) =
2Λ(y− t)[1−Λ(y− t)] are clearly bounded, because Λ(z) ∈ (0,1), z ∈

�
. We only have to show

that ∇B
2 G(0, fP,λ) is strong for L = Llog, that is that the term in (19) is bounded by ε∗ ‖ f1 − f2‖H for

arbitrary chosen ε∗ > 0. A Taylor expansion gives for arbitrary y, t1, t2 ∈
�

that

Λ(y− t2) = Λ(y− t1)+(t1 − t2)Λ(y− t1)
(

1−Λ(y− t1)
)

+O((t1 − t2)
2). (23)

Combining (2), (21), (22), and (23) we obtain
∣

∣EP
(

∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))−∇B
2,2L(Y, fP,λ) · ( f1(X)− f2(X))

)

Φ(X)
∣

∣

≤ 2‖k‖2
∞ EP

∣

∣Λ(Y − f2(X))−Λ(Y − f1(X))

−Λ(Y − fP,λ(X))(1−Λ(Y − fP,λ(X))
(

f1(X)− f2(X)
)∣

∣

≤ 2‖k‖2
∞ EP

∣

∣

(

f1(X)− f2(X)
)[

Λ(Y − f1(X))(1−Λ(Y − f1(X)))

−Λ(Y − fP,λ(X))(1−Λ(Y − fP,λ(X)))
]

+O(( f1(X)− f2(X))2)
∣

∣

≤ 2‖k‖2
∞ EP

(

‖ f1 − f2‖∞
∣

∣Λ(Y − f1(X))(1−Λ(Y − f1(X))) (24)

−Λ(Y − fP,λ(X))(1−Λ(Y − fP,λ(X)))
∣

∣+ c3 ‖ f1 − f2‖
2
∞
)

.

A Taylor expansion around fP,λ(x) shows that Λ(y− f1(x))(1−Λ(y− f1(x))) equals

Λ(y− fP,λ(x))(1−Λ(y− fP,λ(x)))

+
(

fP,λ(x)− f1(x)
)

Λ(y− fP,λ(x))(1−Λ(y− fP,λ(x)))(1−2Λ(y− fP,λ(x)))

+ O(( f1(x)− fP,λ(x))
2) .
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Using this expansion and (2), (21), and (22) it follows that the term in (24) is bounded by

2‖k‖2
∞ EP

(

‖ f1 − f2‖∞ (
∥

∥ f1 − fP,λ
∥

∥

∞ /4+ c4δ2
1 ‖k‖2

∞)+ c3 ‖ f1 − f2‖
2
∞
)

≤ ‖k‖4
∞

(

δ1/2+2c4δ2
1 ‖k‖∞ +4c3δ1

)

‖ f1 − f2‖H . (25)

Using the Lipschitz continuity of ∇B
2 L(y, ·), (2), and (23) we obtain

|ε|EQ−P
∣

∣

(

∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))
)

·Φ(X)
∣

∣

≤ |ε|‖k‖2
∞ E|Q−P|

∣

∣∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))
∣

∣

≤ |ε|‖k‖3
∞ ‖ f1 − f2‖H . (26)

Combining (25) and (26) shows that the term in (19) is bounded by ε∗ ‖ f1 − f2‖H with the positive
constant ε∗ = ‖k‖3

∞
(

δ1 ‖k‖∞ /2 + 2c4δ2
1 ‖k‖2

∞ + 4c3δ1 ‖k‖∞ + |ε|
)

, where δ1 > 0 and ε > 0 can be
chosen as small as necessary.
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Abstract
Many complex control problems require sophisticated solutions that are not amenable to traditional
controller design. Not only is it difficult to model real world systems, but often it is unclear what
kind of behavior is required to solve the task. Reinforcement learning (RL) approaches have made
progress by using direct interaction with the task environment, but have so far not scaled well to
large state spaces and environments that are not fully observable. In recent years, neuroevolution,
the artificial evolution of neural networks, has had remarkable success in tasks that exhibit these
two properties. In this paper, we compare a neuroevolution method called Cooperative Synapse
Neuroevolution (CoSyNE), that uses cooperative coevolution at the level of individual synaptic
weights, to a broad range of reinforcement learning algorithms on very difficult versions of the
pole balancing problem that involve large (continuous) state spaces and hidden state. CoSyNE is
shown to be significantly more efficient and powerful than the other methods on these tasks.

Keywords: coevolution, recurrent neural networks, non-linear control, genetic algorithms, exper-
imental comparison

1. Introduction

In many decision making processes such as manufacturing, aircraft control, and robotics researchers
are faced with the problem of controlling systems that are highly complex and unstable. A controller
or agent must be built that observes the state of the system, or environment, and outputs a control
signal that affects future states of the environment in some desirable way.

The problem with designing or programming such controllers by direct engineering methods
is twofold: (1) The environment is often non-linear and noisy so that it is impossible to obtain
the kind of accurate and tractable mathematical model required by these methods. (2) The task is
complex enough that there is very little a priori knowledge of what constitutes a reasonable, much
less optimal, control strategy.

These two problems have compelled researchers to explore methods based on Dynamic Pro-
gramming, for example Reinforcement Learning (RL; Sutton and Barto, 1998). Instead of trying to
pre-program a response to every likely situation, an agent learns the utility of being in each state
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(i.e., a value-function) from a reward signal it receives while interacting directly with the environ-
ment. In principle, RL methods can solve these problems: they do not require a mathematical model
(i.e., the state transition probabilities) of the environment and can solve many problems where ex-
amples of correct behavior are not available. However, in practice, they have not scaled well to large
state spaces or tasks where the state of the environment is not fully observable to the agent. This is a
serious problem because the real world is continuous (i.e., there are an infinite number of states) and
artificial agents, like natural organisms, are necessarily constrained in their ability to fully perceive
their environment.

More recently, methods for evolving artificial neural networks or neuroevolution have shown
promising results on continuous, partially observable tasks (Gomez, 2003; Nolfi and Parisi, 1995;
Yamauchi and Beer, 1994). Our previous method, Enforced SubPopulations, is a particularly ef-
fective neuroevolution algorithm that has been a applied successfully to many domains (Perez-
Bergquist, 2001; Lubberts and Miikkulainen, 2001; Greer et al., 2002; Whiteson et al., 2003; Bryant
and Miikkulainen, 2003; Gomez et al., 2001; Grasemann and Miikkulainen, 2005), including the
real world reinforcement learning task of finless rocket control (Gomez and Miikkulainen, 2003).
The goal of this paper is to present a new algorithm that builds on ESP called Cooperative Synapse
Neuroevolution (CoSyNE), and compare it to a wide range of other learning systems in a setting
that is both challenging and practical. To this end, we have chosen a set of pole balancing tasks
ranging from the trivial to versions that are extremely difficult for some of todays most advanced
methods.

The paper is organized as follows: in Section 2, we discuss the general neuroevolution paradigm.
In Section 3, the underlying approach used by CoSyNE, cooperative coevolution is described. In
Section 4, the CoSyNE algorithm is presented. Section 5 presents our experiments comparing
CoSyNE with value function, policy search, and other evolutionary methods. Sections 6 and 7
provide some discussion of our overall results, and conclusions.

2. Neuroevolution

The basic idea of Neuroevolution (NE; Yao, 1999) is to search the space of neural network policies
directly using a genetic algorithm. In contrast to ontogenetic learning involving a single agent that
learns incrementally (i.e., value-based RL), NE uses a population of solutions. The individual solu-
tions are not modified during evaluation; instead, adaptation arises through repeatedly recombining
the population’s most fit individuals in a kind of collective or phylogenetic learning. The population
gradually improves as a whole until a sufficiently fit individual is found.

In NE, neural network specifications are encoded in string representations or chromosomes (see
Figure 1). A chromosome can encode any relevant network parameter including synaptic weight
values, number of processing units, connectivity (topology), learning rate, etc. These network geno-
types are then evolved in a sequence of generations. Each generation each genotype is mapped to
its network phenotype (i.e., the actual network), and then evaluated in the problem environment
and awarded a fitness score that quantifies its performance in some desirable way. After this eval-
uation phase, genotypes are selected from the population according to fitness through a variety of
possible schemes (e.g., fitness proportional, linear ranking, tournament selection, etc.), and then
mated through crossover and possibly mutated to form new genotypes that usually replace the least
fit members of the population. This cycle repeats until a sufficiently fit network is found, or some
other stopping criteria is met.
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 Genetic fitness
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Figure 1: Neuroevolution. Each chromosome is transformed into a neural network phenotype and
evaluated on the task. The agent receives input from the environment (observation) and
propagates it through its neural network to compute an output signal (action) that affects
the environment. At the end of the evaluation, the network is assigned a fitness according
to its performance. The networks that perform well on the task are mated to generate new
networks.

NE approaches differ primarily in how they encode neural network specifications into genetic
strings. Direct encoding schemes represent the parameters explicitly on the chromosome as binary
or real numbers that are mapped directly to the phenotype (Belew et al., 1991; Jefferson et al., 1991;
Moriarty, 1997; Gomez, 2003; Stanley and Miikkulainen, 2002). Indirect encodings operate at a
higher level of abstraction. Some simply provide a coarse description such as delineating a neuron’s
receptive field (Mandischer, 1993) or connective density (Harp et al., 1989), while others are more
algorithmic, providing growth rules in the form of graph generating grammars (Kitano, 1990; Voigt
et al., 1993; Gruau et al., 1996b). These schemes have the advantage that very large networks can
be represented without requiring large chromosomes. Our CoSyNE method is a direct encoding
method that does not evolve topology.

By searching the space of policies directly, NE can be applied to reinforcement learning prob-
lems without using a value function—neural network controllers map observations from the envi-
ronment directly to actions. This mapping is potentially powerful: neural networks are universal
function approximators that can generalize and tolerate noise. Networks with feedback connections
(i.e., recurrent networks) can maintain internal state extracted from a history of inputs, allowing
them to solve partially observable tasks. By evolving these networks instead of training them,
NE avoids the problem of vanishing error gradients that affect recurrent network learning algo-
rithms (Hochreiter et al., 2001). For NE to work, the environment need not satisfy any particular
constraints—it can be continuous and partially observable. All that concerns a NE system is that
the network representations be large enough to solve the task and that there is an effective way to
evaluate the relative quality of candidate solutions.
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Algorithm 1: Cooperative Coevolution (n, m)

Initialize {P1, . . . ,Pn}1

repeat2

repeat3

for j = 1 to n do // construct complete solution4

xi j = Select(Pj)5

x ⇐ xi j // add subgenotype to complete solution6

end7

Evaluate(x)8

until enough solutions evaluated9

for i = 1 to n do // each subpopulation reproduces independently10

Recombine(Pi)11

end12

until solution is found13

3. Cooperative Coevolution

In natural ecosystems, organisms of one species compete and/or cooperate with many other different
species in their struggle for resources and survival. The fitness of each individual changes over time
because it is coupled to that of other individuals inhabiting the environment. As species evolve
they specialize and co-adapt their survival strategies to those of other species. This phenomenon of
coevolution has been used to encourage complex behaviors in GAs.

Most coevolutionary problem solving systems have concentrated on competition between species
(Darwen, 1996; Pollack et al., 1996; Paredis, 1994; Miller and Cliff, 1994; Rosin, 1997). These
methods rely on establishing an “arms race” where each species produces stronger and stronger
strategies for the others to defeat. This is a natural approach for problems such as game-playing
where often an optimal opponent is not available.

A very different kind of coevolutionary model emphasizes cooperation. Cooperative coevolu-
tion is motivated, in part, by the recognition that the complexity of difficult problems can be re-
duced through modularization (e.g., the human brain; Grady, 1993). In cooperative coevolutionary
algorithms the species represent solution components. Each individual forms a part of a complete
solution but need not represent anything meaningful on its own. The components are evolved by
measuring their contribution to complete solutions and recombining those that are most beneficial
to solving the task.

Algorithm 1 outlines the basic operation of a generic cooperative coevolutionary algorithm.
The first parameter n specifies the number of species (components) that will be coevolved. Each
species has its own subpopulation Pi, i = 1..n, containing m subgenotypes, xi j ∈ Pi, j = 1..m which
are initialized with random values (line 1). Assuming complete solutions of fixed size, n determines
the granularity at which the coevolutionary search is conducted.

Next, some number of complete solutions are constructed and evaluated (lines 3-9). A complete
solution x is formed by combining one subgenotype, selected according to some policy, from each of
the subpopulations. Usually, the string representations of each subgenotype are simply concatenated
in a predefined order to form a single chromosome. Each x is evaluated in the problem environment
and a fitness score is assigned to each constituent subgenotype. Since the number of evaluations per
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Figure 2: Convergence speed for varying numbers of species. Each row shows a PCA projection
of 128-dimensional chromosomes at different generations during an evolutionary run op-
timizing a very simple multi-modal test function. All three runs start with the same set
of complete solution (see first column). In row 1, the solutions are not coevolved be-
cause each genotype is a complete solution. In row 2, 8 species are coevolved (i.e., have
to be combined to form a the complete solutions shown in the plots), and in row 3, 64
species are coevolved. The more species there are to cooperate, the longer it takes for the
evolution to converge.

generation can exceed m, subgenotypes can participate in more that one evaluation per generation.
Therefore, the fitness score of each xi j at the end of a generation is some function of the raw fitness
scores accumulated over multiple evaluations, and is considered a subjective measure because it is
coupled with that of its collaborators, in contrast to an objective measure that only depends on the
individual itself (Wiegand, 2003). The exact number of evaluations per subgenotype depends on the
collaboration scheme employed by a particular algorithm. One common approach, for example, is
simply to evaluate each subgenotype in n trials, and then take the average or best fitness.

Once enough evaluations have been performed, each subpopulation is recombined to form new
subgenotypes, as in a normal GA.

Early work in this area was done by Holland and Reitman (1978) in Classifier Systems. A
population of rules was evolved by assigning a fitness to each rule based on how well it interacted
with other rules. This approach has been used in learning neural network classifiers, in coevolution
of cascade correlation networks, and in coevolution of radial basis functions (Eriksson and Olsson,
1997; Horn et al., 1994; Paredis, 1995; Whitehead and Choate, 1995). More recently, Husbands and
Mill (1991) and Potter and De Jong (1995) developed a method called Cooperative Coevolutionary
GA (CCGA) in which each of the species is evolved independently in its own population. As
in Classifier Systems, individuals in CCGA are rewarded for making favorable contributions to
complete solutions, but members of different populations (species) are not allowed to mate. A
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Figure 3: The CoSyNE method for neuroevolution. On the left, the figure shows and example
population consisting of six subpopulations, P1..P6, each containing m weight values. To
create a network, first the weights at a given index in each subpopulation are collected
into a chromosome x, then the weights are mapped to their corresponding synapses in a
predefined network architecture with six connections, shown at right.

particularly powerful idea is to combine cooperative coevolution with neuroevolution so that the
benefits of evolving neural networks can be enhanced further through improved search efficiency.

Much of the motivation for using the cooperative coevolutionary approach is based on the in-
tuition that many problems may be decomposable into weakly coupled low-dimensional subspaces
that can be searched semi-independently by separate species (Wiegand et al., 2001; Jansen and Wie-
gand, 2003, 2004; Panait et al., 2006). Our experience shows that there may be another, complemen-
tary, explanation as to why cooperative coevolution in many cases outperforms single-population
algorithms. Figure 2 compares the convergence behavior of the same initial population of complete
solutions using different number of species: 1, 8, and 64. Each point represents a 128-dimensional
chromosome projected onto 2-D using Principal Component Analysis. The chromosomes are coe-
volved to optimize a continuous multi-modal test function1 with 128 randomly distributed maxima
that represent valid solutions. As the number of species increases, the selection of subgenotypes for
reproduction becomes less greedy, causing the search points that are evaluated each generation to
converge more slowly, providing more paths toward better solutions (not shown). In a normal evolu-
tionary algorithm, a subgenotype suffers the fate of the complete solution to which it is attached. If
the complete solution performs with high fitness, the subgenotype is retained in the population, even
if it is not ultimately beneficial to the search; if it is less fit then this potentially useful component (if
combined with other subgenotypes in the population) is lost. This diversity sustaining mechanism
is exploited fully in the CoSyNE algorithm, introduced next.

1. The URL is http://www.cs.uwyo.edu/˜wspears/multi.kennedy.html.
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Algorithm 2: CoSyNE (n,m,Ψ)

Initialize P = {P1, . . . ,Pn}1

repeat2

for j = 1 to m do3

x j ⇐ (x1 j, . . . ,xn j) // form complete solution4

Evaluate(x j,Ψ)5

end6

O ⇐ Recombine(P )7

for i = 1 to n do8

Sort(Pi)9

for k = 1 to l do // replace least fit weights with10

xi,m−k ⇐ oik // weights from offspring nets11

end12

for j = 1 to m do13

prob(xi j) ⇐ F(P , i, j) // assign probability to each weight14

if rand() < prob(xi j) then15

mark(xi j) // mark weight for permutation probabilistically16

end17

end18

PermuteMarked(Pi) // see Figure 419

end20

until solution is found21

4. Cooperative Synapse Neuroevolution (CoSyNE)

Previous Cooperative Coevolution NE methods decomposed networks at the neuron level (Mori-
arty, 1997; Potter and De Jong, 1995; Gomez, 2003). This is a natural approach dictated by pheno-
typic structure: networks consist of multiple processing units that function in parallel. In contrast,
CoSyNE evolves at the lowest possible level of granularity, the level of the individual synaptic
weight. For each network connection, there is a separate subpopulation consisting of real valued
weights. Like neuron-level methods such as ESP, networks are constructed by selecting one member
from each subpopulation and plugging them into a predefined network topology.

Algorithm 2 describes the CoSyNE algorithm in pseudocode. First (line 1), a population P con-
sisting of n subpopulations Pi, i = 1..n, is created, where n is the number of synaptic weights in the
networks to be evolved, determined by a user-specified network architecture Ψ. Each subpopulation
is initialized to contain m real numbers, xi j = Pi j ∈ Pi, j = 1..m, chosen from a uniform probability
distribution in the interval [−α,α]. The population is thereby represented by an n×m matrix.

CoSyNE then loops through a sequence of generations until a sufficiently good network is
found (lines 2-21). Each generation starts by constructing a complete network chromosome x j =
(x1 j,x2 j, . . . ,xn j) from each row in P . The m resulting chromosomes are transformed into networks
by assigning their weights to their corresponding synapses, in Ψ (line 4; see Figure 3).

After all of the networks have been evaluated (line 5) and assigned a fitness, the top quarter
with the highest fitness (i.e., the parents) are recombined (line 7) using crossover and mutation.
Recombination produces a pool of offspring O consisting of l new network chromosomes ok, where
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Figure 4: Probabilistic permutations. On the left is the set of subpopulations before permutation.
The colored boxes are denote those genotypes that have been marked for permutation
based on Equation 1. As the individuals are sorted by fitness within each subpopulation,
notice that the less fit individuals have a higher probability of being permuted. On the
right, the marked individuals have been permuted among themselves with each subpopu-
lation. All unmarked genotypes remain part of the same complete solution.

oik = Oik ∈ Oi, i = 1..n,k = 1..l, and Oi is the offspring subpopulation corresponding to Pi. The
subpopulations are then sorted by fitness (line 9), and the weights from the new networks are added
to P by replacing the least fit weights in their corresponding subpopulation (i.e., the P with the same
index i; lines 10-11).

At this point the algorithm functions as a conventional neuroevolution system that evolves com-
plete network chromosomes. In order to coevolve the synaptic weights, the subpopulations are
permuted so that each weight forms part of a potentially different network in the next generation.
Permutation is performed probabilistically. First, weights are marked randomly according to prob-
abilities assigned by a user-defined function F() (lines 14-17). Then the marked weights are per-
muted amongst themselves (see Figure 4). The function F() can be anything from as simple as
prob(xi j) = 1.0,∀i, j, in which case all weights are permuted, or more sophisticated:

prob(xi j) = 1− n

√

f (xi j)− f min
i

f max
i − f min

i

(1)

where f (xi j) is the fitness of subgenotype (weight) xi j, and f min
j and f max

j are, respectively, the fitness
of the least and most fit individuals in subpopulation i. In this case, the probability of disrupting the
network x j is inversely proportional to its relative fitness, so that weight combinations that receive
high fitness are more likely to be preserved, while those with low fitness are more likely to be
disrupted and their constituents used to search for new complete solutions. In the experiments below,
the simpler function that permutes all weights, except for the newly inserted offspring weights, was
found to work well.

The basic CoSyNE framework does not specify how the weights are grouped in the complete
solution chromosomes (i.e., which entry in the chromosome corresponds to which synapse) or which
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Figure 5: The double pole balancing system. Both poles must be balanced simultaneously by
applying a continuous force to the cart. The system becomes more difficult to control as
the poles assume similar lengths and if the velocities are not provided to the controller.
The figure is a snapshot of a 3D real-time simulation.

genetic operators are used. In the implementation used in this paper, the weights of each neuron are
grouped together (i.e., form a substring) and are separated into adjacent input, output, and recurrent
weight segments, and the neuron substrings are concatenated together in a fixed order. For the
genetic operators, we use multi-point crossover where 1-point crossover is applied to each neuron
segment of the chromosome to generate two offspring, and mutation where each weight in P has a
probability of being perturbed by Cauchy distributed noise with zero mean α = 0.3.

5. Experiments

We compared CoSyNE to a broad range of learning algorithms on a sequence of increasingly dif-
ficult versions of the pole balancing task. This scheme allows us to compare methods at different
levels of task complexity, exposing the strengths and limitations of each method with respect to
specific challenges introduced by each succeeding task.

5.1 The Pole Balancing Problem

The basic pole balancing or inverted pendulum system consists of a pole hinged to a wheeled cart
on a finite stretch of track. The objective is to apply a force to the cart at regular intervals such that
the pole is balanced indefinitely and the cart stays within the track boundaries. This task has been a
popular artificial learning testbed for over 30 years (Michie and Chambers, 1968; Anderson, 1989;
Jang, 1992; Lin and Mitchell, 1992; Whitley et al., 1993) because it requires solving the temporal
credit assignment problem, and is a good surrogate for a more general class of unstable control
problems such as bipedal robot walking, and rocket guidance.

This long history notwithstanding, it turns out that the basic pole balancing problem can be
solved easily by random search. To make it challenging for artificial learners, a variety of extensions
to the basic pole-balancing task have been suggested. (Wieland, 1991) presented several variations
that can be grouped into two categories: (1) modifications to the mechanical system itself, such as

945



GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

adding a second pole either next to or on top of the other, and (2) restricting the amount of state
information that is given to the controller; for example, only providing the cart position and the
pole angle. The first category makes the task more difficult by introducing non-linear interactions
between the poles. The second makes the task non-Markov, requiring the controller to employ short
term memory to disambiguate underlying process states. Together, these extensions represent a
family of tasks that can effectively test algorithms designed to learn control policies.

The sequence of comparisons presented below begins with a single pole version and then moves
on to progressively more challenging variations culminating in a version where two separate poles
of different length must be balanced simultaneously without the benefit of velocity information (see
Appendix A for the equations of motion).

5.2 Other Methods

CoSyNE was compared to eight ontogenetic methods and seven phylogenetic methods in the pole
balancing domain:

5.2.1 ONTOGENETIC METHODS

Random Weight Guessing (RWG) where the network weights are chosen at random (i.i.d.) from
a uniform distribution. This approach is used to give an idea of how difficult each task is to
solve by simply guessing a good set of weights.

Policy Gradient RL (PGRL; Sutton et al., 2000) where sampled Q-values are used to differentiate
the performance of a given policy with respect to its parameters. The policy was implemented
using a feed-forward neural network with one hidden layer.

Recurrent Policy Gradients (RPG; Wierstra et al., 2007) where a stochastic policy is represented
by a Long Short-Term Memory network (LSTM; Hochreiter and Schmidhuber, 1997) trained
with BackPropagation Through Time (Werbos, 1990). The gradient of the expected future
reward over all possible state trajectories with respect to the policy parameters is calculated by
Monte Carlo approximation. To reduce variance in the approximation, a baseline representing
the expected average reward is used.

Value and Policy Search (VAPS; Meuleau et al., 1999) extends the work of Baird and Moore
(1999) to policies that can make use of memory. The algorithm uses stochastic gradient de-
scent to search the space of finite policy graph parameters. A policy graph is a state automaton
that consists of nodes labeled with actions that are connected by arcs labeled with observa-
tions. When the system is in a particular node, the action associated with that node is taken
and the underlying Markov environment transitions to the next observation that determines
which arc is followed to the next action node.

Q-learning with MLP (Q-MLP): This method is the basic Q-learning algorithm (Watkins and
Dayan, 1992) that uses a Multi-Layer Perceptron (i.e., a feed-forward artificial neural net-
work) to map state-action pairs to values Q(s,a). The input layer of the network has one unit
per state variable and one unit per action variable. The output layer consists of a single unit
indicating the Q-value. Values are learned through gradient descent on the prediction error
using the backpropagation algorithm. This kind of approach has been studied widely with
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success in tasks such as pole-balancing (Lin and Mitchell, 1992), pursuit-evasion games (Lin,
1992), and backgammon (Tesauro, 1992).

Sarsa(λ) with Case-Based function approximator (SARSA-CABA; Santamaria et al., 1998):
This method consists of the Sarsa on-policy Temporal Difference control algorithm with el-
igibility traces that uses a case-based memory to approximate the Q-function. The memory
explicitly records state-action pairs (i.e., cases) that have been experienced by the controller.
The value of a new state-action pair not in the memory is calculated by combining the val-
ues of the k-nearest neighbors. A new case is added to the memory whenever the current
query point is further than a specified density threshold, td away from all cases already in
the memory. The case-based memory provides a locally-linear model of the Q-function that
concentrates its resources on the regions of the state space that are most relevant to the task
and expands its coverage dynamically according to td .

Sarsa(λ) with CMAC function approximator (SARSA-CMAC; Santamaria et al., 1998): This is
the same as SARSA-CABA except that it uses a Cerebellar Model Articulation Controller
(CMAC; Albus, 1975; Sutton, 1996) instead of a case-based memory to represent the Q-
function. The CMAC partitions the state-action space with a set of overlapping tilings. Each
tiling divides the space into a set of discrete features which maintain a value. When a query is
made for a particular state-action pair, its Q-value is returned as the sum of the value in each
tiling corresponding to the feature containing the query point. SARSA-CABA and SARSA-
CMAC have both been applied to the pendulum swing-up task and the double-integrator task.

Adaptive Heuristic Critic (AHC; Anderson, 1987): uses a learning agent composed of two com-
ponents: an actor (policy) and a critic (value-function), both of which are implemented using
a feed-forward neural network trained with a variant of backpropagation.

The three value-function based methods (SARSA-CABA, SARSA-CMAC, and Q-MLP) each
use a different kind of function approximator to represent a Q-function that can generalize across
the continuous space of state-action pairs. Although these approximators can compute a value for
any state-action pair, they do not implement true continuous control since the policy is not explicitly
stored. Instead, continuous control is approximated by discretizing the action space at a resolution
that is adequate for the problem. In order to select the optimal action a for a given state s, a one-step
search in the action space is performed. The control agent selects actions according to an ε-greedy
policy: with probability 1− ε, 0 ≤ ε < 1, the action with the highest value is selected, and with
probability ε, the action is random. This policy allows some exploration so that information can
be gathered for all actions. In all simulations the controller was tested every 20 trials with ε=0 and
learning turned off to determine whether a solution had been found.

5.2.2 PHYLOGENETIC METHODS

Symbiotic, Adaptive Neuro-Evolution (SANE; Moriarty, 1997) is a cooperative coevolutionary
method that evolves two different populations simultaneously: a population of neurons and a
population of network blueprints that specify how the neurons are combined to form complete
networks. Each generation of networks is formed both using the blueprints and at random.
Neurons that combine to form good networks receive high fitness, and are recombined in a
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single population. Blueprints that result in favorable neuron combinations are also recom-
bined to search for even better combinations.

Conventional Neuroevolution (CNE) is our implementation of single-population Neuroevolution
similar to the algorithm used in Wieland (1991). In this approach, each chromosome in the
population represents a complete neural network. CNE differs from Wieland’s algorithm in
that (1) the network weights are encoded with real instead of binary numbers, (2) it uses rank
selection, and (3) it uses burst mutation. CNE is like ESP except that it evolves at the network
level instead of the neuron level, and therefore provides a way to isolate the performance
advantage of cooperative coevolution (ESP) over a single population approach (CNE).

Evolutionary Programming (EP; Saravanan and Fogel, 1995) is a general mutation-based evo-
lutionary method that can be used to search the space of neural networks. Individuals are
represented by two n-dimensional vectors (where n is the number of weights in the network):
~x contains the synaptic weight values for the network, and~δ is a vector of standard deviation
values of ~x. A network is constructed using the weights in ~x, and offspring are produced by
applying Gaussian noise to each element~x(i) with standard deviation~δ(i), i ∈ {1..n}.

Cellular Encoding (CE; Gruau et al., 1996a,b) uses Genetic Programming (GP; Koza, 1991) to
evolve graph-rewriting programs. The programs control how neural networks are constructed
out of “cells.” A cell represents a neural network processing unit (neuron) with its input
and output connections and a set of registers that contain synaptic weight values. A network
is built through a sequence of operations that either copy cells or modify the contents of
their registers. CE uses the standard GP crossover and mutation to recombine the programs
allowing evolution to automatically determine an appropriate architecture for the task and
relieve the investigator from this often trial-and-error undertaking.

Covariance Matrix Adaptation Evolutionary Strategies (CMA-ES; Hansen and Ostermeier
2001) evolves the covariance matrix of the mutation operator in evolutionary strategies. The
results in the pole-balancing domain were obtained from Igel (2003).

NeuroEvolution of Augmenting Topologies (NEAT; Stanley and Miikkulainen, 2002; Stanley
2004) is another NE method that evolves topology as well as synaptic weights, but unlike CE
it uses a direct encoding. NEAT starts with a population of minimal networks (i.e., no hid-
den units) that can increase in complexity by adding either new connections or units through
mutation. Every time a new gene appears, a global innovation number is incremented and
assigned to that gene. Innovation numbers allow NEAT to keep track of the historical origin
of every gene in the population so that (1) crossover can be performed between networks with
different topologies, and (2) the networks can be grouped into “species” based on topological
similarity.

Whenever two networks are recombined, the genes in both chromosomes with the same in-
novation numbers are lined up. Those genes that do not match are either disjoint or excess,
depending on whether they occur within or outside the range of the other parent’s innovation
numbers, and are inherited from the more fit parent.

The number of disjoint and excess genes is used to measure the distance between genomes.
Using this distance, the population is divided into species so that individuals compete primar-
ily within their own species instead of with the population at large. This way, topological
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Figure 6: Neural network control of the pole balancing system. At each time step the network
receives the current state of the cart-pole system (x, ẋ,θ1, θ̇1,θ2, θ̇2) through its input layer.
For the feed-forward networks (a) used in the Markov tasks (1a and 2a), the input layer
activation is propagated forward through the hidden layer of neurons to the output unit
which indicates force to be applied to the cart. For the recurrent networks (b) used in
the non-Markov tasks (1b and 2b), the neurons do not receive the velocities (ẋ, θ̇1, θ̇2),
instead they must use their feedback connections to determine which direction the poles
are moving. For the single pole version the network only has inputs for the cart and long
pole.

innovations are protected and have time to optimize their structure before they have to com-
pete with other species in the population.

Enforced SubPopulations (ESP; Gomez and Miikkulainen, 1997) is similar to SANE in that it
uses cooperative coevolution at the neuron level, but, instead of using blueprints, the neuron
population is split into disjoint subpopulations, one for each hidden unit in the network ar-
chitecture being evolved. Instead of selecting neurons from a single population, as in SANE,
to form networks, networks consist of one neuron from each subpopulation. During repro-
duction, neuron genotypes are only mated with members of their own subpopulation, and
offspring remain in their parents’ subpopulation.

For Q-MLP, SANE, CNE, ESP, and CoSyNE, experiments were run using our own code. For
PGRL, AHC, SARSA, publicly available code from Grudic (2000), Anderson (1987), and Santa-
maria et al. (1998), was used respectively, modified for the pole-balancing domain. The parameter
settings for each of these methods are listed in Appendix B. For VAPS, EP, CMA-ES, NEAT, and
CE, the results were taken from the papers cited above. Data was not available for all methods on
all tasks: however, in all such cases the method is shown to be significantly weaker already in a
previous, easier task.

5.3 Task Setup

The pole balancing environment was implemented using a realistic physical model with friction, and
fourth-order Runge-Kutta integration with a step size of 0.01s (see Appendix A for the equations of
motion and parameters used). The state variables for the system are the following:
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x : position of the cart.
ẋ : velocity of the cart.

θi : angle of the i-th pole (i = 1,2).
θ̇i : angular velocity of the i-th pole.

Figure 6 shows how the network controllers interact with the pole balancing environment. At
each time-step (0.02 seconds of simulated time) the network receives the state variable values scaled
to [-1.0, 1.0]. This input activation is propagated through the network to produce a signal from the
output unit that represents the amount of force used to push the cart. The force is then applied and
the system transitions to the next state which becomes the new input to the controller. This cycle is
repeated until a pole falls or the cart goes off the end of the track. In keeping with the setup in prior
work (e.g., Wieland, 1991; Gruau et al., 1996b) we restrict the force to be no less than ±1/256×10
Newtons so that the controllers cannot maintain the system in unstable equilibrium by outputting a
force of zero when the poles are vertical.

The following four task configurations of increasing difficulty were used:
1. One Pole

(a) Complete state information
(b) Incomplete state information

2. Two Poles

(a) Complete state information
(b) Incomplete state information

Task 1a is the classic one-pole configuration. In 1b, the controller only has access to two of the
four state variables: it does not receive the velocities (ẋ, θ̇). In 2a, the system now has a second pole
next to the first, making the state-space 6-dimensional. Task 2b, like 1b, is non-Markov with the
controller only seeing x,θ1, and θ2. Fitness was determined by the number of time steps a network
could keep both poles within a specified failure angle from vertical and the cart between the ends of
the track. The failure angle was 12 ◦ and 36 ◦ for the one and two pole tasks, respectively. For the
one-pole tasks, the initial pole angle was set to 4.0 ◦ from vertical. For the two-pole tasks, the initial
angle of the long pole was 4.0 ◦, and the short pole was vertical. A task was considered solved if a
network could do this for 100,000 time steps, which is equal to over 30 minutes in simulated time.
CoSyNE evolved networks with one hidden unit, 20 weights per subpopulation for the 1-pole tasks,
and 30 weights for the 2-pole tasks. Mutation was set to 0.3 for all experiments, which means that
each weight in a new network have a 30% chance of being perturbed with Cauchy distributed noise.
The initial weight range was [−10,10]. All simulations were run on a 1.5GHz Intel Xeon.

5.4 Results: Balancing One Pole

Balancing one pole is a relatively easy problem that gives us a performance baseline before moving
on to the much harder two-pole task. It has also been solved with many other methods and therefore
serves to put the results in perspective with prior literature.

5.4.1 COMPLETE STATE INFORMATION

Table 1 shows the results for the single pole balancing task with complete state information. The re-
sults show that simply choosing weights at random (RWG) is sufficient to solve this task efficiently.
CoSyNE was the only method that solved the task in fewer evaluations.
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Method Evaluations CPU time (sec)
AHC 189,500 95
PGRL 28,779 1,163
Q-MLP 2,056 53
SARSA-CMAC 540 487
SARSA-CABA 965 1,713
RPG (863) —
CMA-ES 283 —
CNE 352 5
SANE 302 5
NEAT 743 7
ESP 289 4
RWG 199 2

CoSyNE 98 1

Table 1: One pole with complete state information. Comparison of various learning methods
on the basic pole balancing problem with continuous control. Results for all methods are
averages of 50 runs.

With the exception of RWG, there is a clear divide between the performance of the ontoge-
netic and phylogenetic methods, especially in terms of CPU time. For the value-based, ontogenetic
methods, evaluating and updating values can be computationally expensive. The value-function ap-
proximator must be evaluated O(|A|) times per state transition to determine the best action-value
estimate, where A is a finite set of actions. Q-MLP and AHC have a notable CPU time advantage
over SARSA because their value functions are represented compactly by neural networks which can
be evaluated quickly, while the CMAC and case-based memory are coarse-codings have memory
requirements and evaluation cost grow exponentially with the dimensionality of the state space.

In contrast, evolutionary methods do not update any agent parameters during interaction with
the environment and only need to evaluate a function approximator once per state transition since
the policy is represented explicitly.

PGRL is also quite slow as each update to the policy requires sampling O(|A|T ) trajectories,
where T is the number of state transitions in the initial trajectory of each update. RPG performed
best of the ontogenetic methods, but it must be noted that the criteria for success in the referenced
work (Wierstra et al., 2007) was 10K steps instead of the 100K steps used with all the other methods
(hence the parentheses in all tables for this method).

This task poses very little difficulty for the NE methods. However, NEAT required more than
twice as many evaluations as CNE, SANE, and ESP because it explores different topologies that
initially behave poorly and require time to develop. For this task the speciation process is an
overkill—the task can be solved more efficiently by devoting resources to searching for weights
only. All observed performance differences are statistically significant (p < 0.01) except between
CNE, SANE and ESP.
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Method Evaluations CPU time
VAPS (500,000) (5days)
SARSA-CABA 15,617 6,754
SARSA-CMAC 13,562 2,034
Q-MLP 11,331 340
RWG 8,557 3

RPG (1,893) —
NEAT 1,523 15
SANE 1,212 6
CNE 724 15
ESP 589 11
CoSyNE 127 2

Table 2: One pole with incomplete state information. The table shows the number of evaluations,
CPU time, and success rate of the various methods. Results are the average of 50 simula-
tions, and all differences are statistically significant (p < 0.01). The results for VAPS are
in parenthesis since only a single unsuccessful run according to our criteria was reported
by Meuleau et al. (1999).

5.4.2 INCOMPLETE STATE INFORMATION

This task is identical to the first task except the controller only senses the cart position x and pole
angle θ. Therefore, the underlying states {x, ẋ,θ, θ̇} are hidden and the networks need to be recurrent
so that the velocities can be computed internally using feedback connections. This makes the task
significantly harder since it is more difficult to control the system when the concomitant problem of
velocity calculation must also be solved. We were unable to solve this task with AHC and PGRL.

To allow Q-MLP and the SARSA methods to solve this task, we extended their inputs to include
the immediately previous cart position, pole angle, and action (xt−1,θt−1,at−1) in addition to xt ,θt ,
and at . This delay window of depth 1 is sufficient to disambiguate process states (Lin and Mitchell,
1992). For VAPS, the state-space was partitioned into unequal intervals, 8 for x and 6 for θ, with
the smaller intervals being near the center of the value ranges (Meuleau et al., 1999).

Table 2 compares the various methods in this task. The table shows the number of evaluations
and average CPU time for the successful runs.

The results for VAPS are in parenthesis in the table because only a single run was reported by
Meuleau et al. (1999). It is clear, however, that VAPS is the slowest method in this comparison,
only being able to balance the pole for around 1 minute of simulated time after several days of
computation (Meuleau et al., 1999). The evaluations and CPU time for the SARSA methods are
the average of the successful runs only (out 29 of 50 for SARSA-CMAC and 35 out of 50 for
SARSA-CABA). Of the value-function methods, Q-MLP fared the best, reliably solving the task
and doing so much more rapidly than SARSA. Since both the CMAC and the cased-based memory
are local function approximators, they require a dense sampling of the state space to obtain good
value estimate. The MLP, being a global function approximator, is able to learn values for a whole
set of states every time a state is updated. This property has been considered undesirable in some
domains because updates at one state can disrupt or unlearn values at distant states. Because the
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relatively simple form of the optimal value function for this task, the MLP accelerates learning by
providing “useful” information about more of the state space on each update which is especially
useful to bootstrap learning at the beginning when there is virtually no information about the value
of most states. For more complicated value functions, the potential for instability in the MLP could
give local representations the advantage (Boyan and Moore, 1995).

The performance of the five evolutionary methods degrades only slightly compared to the pre-
vious task. CoSyNE, CNE, and ESP were two orders of magnitude faster than VAPS and SARSA,
one order of magnitude faster than Q-MLP, and approximately twice as fast as SANE and NEAT.
CoSyNE was able to balance the pole for over 30 minutes of simulated time usually within 2 seconds
of learning CPU time, and do so reliably.

The results on these first two tasks show that the single pole environment is not very challenging.
A large part of the search space represents successful solutions, so that simply choosing points at
random (i.e., RWG) can compete favorably with other ontogenetic approaches that start at one point
and then must make relatively small incremental changes to reach a solution, without not getting
stuck in a local minimum.

5.5 Results: Balancing Two Poles

The double pole problem is a better test environment for these methods, representing a significant
jump in difficulty. Here the controller must balance two poles of different lengths (1m and 0.1m)
simultaneously. The second pole adds two more dimensions to the state-space (θ2, θ̇2) and non-
linear interactions between the poles.

5.5.1 COMPLETE STATE INFORMATION

For this task, CoSyNE was compared with Q-MLP, CNE, SANE, ESP, NEAT, and the published re-
sults of RPG, EP, and CMA-ES. Despite extensive experimentation with many different parameter
settings, we were unable to get the SARSA methods to solve this task within 12 hours of computa-
tion.

Table 3 shows the results for the two-pole configuration with complete state information. Q-
MLP compares very well to the NE methods with respect to evaluations, in fact, better than on
task 1b, but again lags behind SANE, ESP and NEAT by nearly an order of magnitude in CPU
time. ESP and NEAT are statistically even in terms of evaluations, requiring roughly three times
fewer evaluations than SANE. In terms of CPU time, ESP has a slight but statistically significant
(p < 0.01) advantage over NEAT. This is an interesting result because the two methods take such
different approaches to evolving neural networks. NEAT is based on searching for an optimal
topology, whereas ESP, like CoSyNE, optimizes a single, general topology (i.e., fully recurrent
networks). At least in the difficult versions of the pole balancing task, the performance of these two
approaches is very similar.

CMA-ES required the fewest number of evaluations, 59 less than CoSyNE on average, although
we do not have the CMA-ES run data to test for statistical significance.

5.5.2 INCOMPLETE STATE INFORMATION

Although the previous task is difficult, the controller has the benefit of complete state information.
In this task, as in task 1b, the controller does not have access to the velocities, that is, it does not
know how fast or in which direction the poles are moving.
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Method Evaluations CPU time
RWG 474,329 70

EP 307,200 —
CNE 22,100 73
SANE 12,600 37
Q-MLP 10,582 153
RPG (4,981) —
NEAT 3,600 31
ESP 3,800 22
CoSyNE 954 4
CMA-ES 895 —

Table 3: Two poles with complete state information. The table shows the number of pole bal-
ancing attempts (evaluations) and CPU time required by each method to solve the task.
Evolutionary Programming data is taken from Saravanan and Fogel (1995), CMA-ES from
Igel (2003). Q-MLP, CNE, SANE, NEAT, ESP, CoSyNE data are the average of 50 sim-
ulations, and all differences are statistically significant (p < 0.01) except the number of
evaluations for NEAT and ESP.

Gruau et al. (1996b) were the first to tackle the two-pole problem without velocity information.
Although they report the performance for only one simulation, we include their results to put the
performance of the other methods in greater perspective. None of the value-function methods we
tested made noticeable progress on the task after approximately 12 hours of computation. Therefore,
in this task, only the evolutionary methods are compared.

To accommodate a comparison with CE, controllers were evolved using both the standard fitness
function used in the previous tasks and also the “damping” fitness function used by Gruau et al.
(1996b). The damping fitness is the weighted sum of two separate fitness measurements (0.1 f1 +
0.9 f2) taken over a simulation of 1000 time steps:

f1 = t/1000,

f2 =











0 if t < 100
(

0.75

∑t
i=t−100(|xi|+|ẋi|+|θi

1|+|θ̇i
1|)

)

otherwise,

where t is the number of time steps the poles were balanced out of the first 1000 steps. This complex
fitness is intended to force the network to compute the pole velocities, and avoid solutions that
balance the poles by merely swinging them back and forth (i.e., without calculating the velocities).

Table 4 compares the “surviving” methods for both fitness functions. To determine when the
task was solved for the damping fitness function, the best controller from each generation was tested
using the standard fitness to see if it could balance the poles for 100K time steps. The results for CE
are in parenthesis in the table because only a single run was reported by Gruau et al. (1996b).

Using the damping fitness, CMA-ES, ESP, CNE, NEAT, and CoSyNE required two orders of
magnitude fewer evaluations than CE. ESP was three times faster than CNE using either fitness
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Method Evaluations
Standard fitness Damping fitness

RWG 415,209 1,232,296

CE — (840,000)
SANE 262,700 451,612
CNE 76,906 87,623
ESP 7,374 26,342
NEAT — 6,929
RPG (5,649) —
CMA-ES 3,521 6,061
CoSyNE 1,249 3,416

Table 4: Two poles with incomplete state information. The table shows the number of evaluations
for CNE, NEAT, and ESP using the standard fitness function (middle column), and using
the damping fitness function (right column). Results are the average of 50 simulations for
all methods except CE which is from a single run. All results are statistically significant
(p < 0.01) .

function, with CNE failing to solve the task about 40% of the time, and NEAT, using small popu-
lations of size 16 (Stanley, 2004) performed nearly as well as CMA-ES (damping function). RPG
was the only ontogenetic method to make significant progress in this task, again, however, only up
to 10K time-steps of balancing.

On this most difficult task CoSyNE outperformed the next best method, CMA-ES, by a factor
of two on both fitness functions.

6. Discussion

The results of the comparisons show that the phylogenetic methods (i.e., neuroevolution) are more
efficient on this set of tasks than the ontogenetic methods. In the single pole tasks, the value-based
ontogenetic methods were outperformed by random search. Our hope is that these results will help
put an end to the use of this task for evaluating artificial learning systems. On the more difficult
two-pole tasks, only Q-MLP was able to solve the completely observable version (task 2a), and
none of the ontogenetic methods could solve the partially observable one (task 2b). In contrast, all
of the neuroevolution methods scaled up to the most difficult tasks, with CMA-ES and CoSyNE
leading the pack.

The most challenging of the tasks exhibit many of the dimensions of difficulty found in real
world control problems: (1) continuous state and action spaces, (2) partial observability, and (3)
non-linearity. The first two are problematic for value-based reinforcement learning methods because
they either complicate the representation of the value function or the access to it. Neuroevolution
deals with them by evolving recurrent networks; the networks can compactly represent arbitrary
temporal, non-linear mappings. The success of CoSyNE on tasks of this complexity suggests that
it can be applied to the control of real systems that manifest similar properties—specifically, non-
linear, continuous systems such as aircraft control, satellite detumbling, and robot bipedal walking.
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Other types of environments that are discrete or discontinuous, such as game-playing, job-shop
scheduling, and resource allocation may be better served by other learning or optimization strate-
gies.

The CoSyNE implementation used in this paper permuted all members of a subpopulation each
generation. This means that it is possible for the networks evaluated in a given generation to not
contain any combinations of weights found in the networks of the previous generation. While this
maximizes the amount of exploration performed by sampling new networks, good weight com-
binations may be lost that could lead to a solution more efficiently. This aggressive exploration
could become a problem for large networks, such as those that use very high-dimensional vision
inputs. Future work will begin by investigating schemes for assigning permutation probabilities to
weights (e.g., fitness proportional) in order to retain potential useful building blocks in the system
and facilitate search in larger network spaces.

7. Conclusion

Reinforcement learning can in principle be used to control real world systems, but conventional
methods scale poorly to large state-spaces and non-Markov environments. In this paper, we have
shown that for a set of benchmark tasks that exhibit many of the key dimensions of difficulty found
in real world control problems, neuroevolution in general, and CoSyNE in particular, can solve
these problems much more reliably and efficiently than non-evolutionary reinforcement learning
approaches.

Appendix A. Pole-balancing Equations

The equations of motion for N unjointed poles balanced on a single cart are

ẍ =
F −µcsgn(ẋ)+∑N

i=1 F̃i

M +∑N
i=1 m̃i

,

θ̈i = −
3

4li
(ẍcosθi +gsinθi +

µpiθ̇i

mili
),

where F̃i is the effective force from the ith pole on the cart,

F̃i = miliθ̇2
i sinθi +

3
4

mi cosθi(
µpiθ̇i

mili
+gsinθi),

and m̃i is the effective mass of the ith pole,

m̃i = mi(1−
3
4

cos2 θi).

Parameters used for the single pole problem:
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Sym. Description Value

x Position of cart on track [-2.4,2.4] m
θ Angle of pole from vertical [-12,12] deg.
F Force applied to cart -10,10 N
l Half length of pole 0.5m

M Mass of cart 1.0 kg
m Mass of pole 0.1 kg

Parameters for the double pole problem.

Sym. Description Value

x Position of cart on track [-2.4,2.4] m
θ Angle of pole from vertical [-36,36] deg.
F Force applied to cart [-10,10] N
li Half length of ith pole l1 = 0.5m

l2 = 0.05m
M Mass of cart 1.0 kg
mi Mass of ith pole m1 = 0.1 kg

m2 = 0.01 kg
µc Coefficient of friction 0.0005

of cart on track
µp Coefficient of friction 0.000002

if ith pole’s hinge

Appendix B. Parameter Settings Used in Pole Balancing Comparisons

Below are the parameters used to obtain the results for Q-MLP, SARSA-CABA, SARSA-CMAC,
CNE, SANE, ESP, and NEAT. The parameters for VAPS (Meuleau et al., 1999), RPG (Wierstra
et al., 2007), CMA-ES (Igel, 2003), EP (Saravanan and Fogel, 1995), and CE2 (Gruau et al., 1996b)
along with a detailed description of each method can be found in the cited papers.

Table 5 describes the parameters common to all of the value function methods.

Parameter Description

ε greediness of policy
α learning rate
γ discount rate
λ eligibility

Table 5: All parameters have a range of (0,1).
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Q-MLP

Parameter Task
1a 1b 2a

ε 0.1 0.1 0.05
α 0.4 0.4 0.2
γ 0.9 0.9 0.9
λ 0 0 0

For all Q-MLP experiments the Q-function network had 10 hidden units and the action space was
quantized into 26 possible actions: ±0.1,0.25,0.5,1,2,3,4,5,6,7,8,9,10.

SARSA-MLP

Parameter Task
1a 1b 2a

ε 0.1 0.1 0.05
α 0.4 0.4 0.1
γ 0.9 0.9 0.9
λ 0 0 0.3

For all Q-MLP experiments the Q-function network had 10 hidden units and the action space was
quantized into 26 possible actions: ±0.1,0.25,0.5,1,2,3,4,5,6,7,8,9,10.

SARSA-CABA

Parameter Task
1a 1b

τd 0.03 0.03
τx

k 0.05 0.05
τu

k 0.1 0.1
ε 0.05 0.05
α 0.4 0.1
γ 0.99 0.99
λ 0.4 0.4

τd is the density threshold, τx
k and τu

k are the smoothing parameters for the input and output spaces,
respectively. See Santamaria et al. (1998) for a more detailed description of the Case-Based Memory
architecture.
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SARSA-CMAC

Parameter Task
1a 1b

ε 0.05 0.05
α 0.4 0.1
γ 0.9 0.9
λ 0.5 0.3

No. of tilings 45: 50 :
10 based on x, ẋ,θ1 10 based on xt ,xt−1,θt

5 based on x,θ 10 based on x,θt ,θt−1

5 based on x, θ̇ 5 based on xt ,θt

5 based on ẋ, θ̇ 5 based on xt−1,θt−1

5 based on x 5 based on xt

5 based on ẋ 5 based on xt−1

5 based on θ 5 based on θt

5 based on θ̇ 5 based on θt−1

where xt and θt are the cart position and pole angle at time t. Each variable was divided in to 10
intervals in each tiling. For a more complete explanation of the CMAC architecture see Santamaria
et al. (1998).

SANE

Parameter Task
1(a,b) 2(a,b)

no. of neurons 100 200
no. of blueprints 50 100
evals per generation 200 400
size of networks 5 7

The mutation rate for all runs was set to 10%.

CNE

Parameter Task
1a 1b 2a 2b

no. of networks 200 200 400 1000
size of networks 5 5 5 rand [1..9]
burst threshold 10 10 10 15

The mutation rate for all runs was set to 40%. Burst threshold is the number of generations after
which burst mutation is activated if the best network found so far is not improved upon. CNE
evaluates each of the networks in its population once per generation.
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ESP

Parameter Task
1a 1b 2a 2b

network type FF FR FF FR
initial no. of subpops 5 5 5 5
size of subpopulations 20 20 40 100
evals per generation 200 200 400 1000
burst threshold 10 10 10 5

The mutation rate for all runs was set to 40%. Burst threshold is the number of generations after
which burst mutation is activated if the best network found so far is not improved upon. FF denotes
a feed-forward network, whereas FR denotes a fully recurrent network.
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Abstract
Pointwise consistent, feasible procedures for estimating contemporaneous linear causal structure
from time series data have been developed using multiple conditional independence tests, but no
such procedures are available for non-linear systems. We describe a feasible procedure for learning
a class of non-linear time series structures, which we call additive non-linear time series. We show
that for data generated from stationary models of this type, two classes of conditional independence
relations among time series variables and their lags can be tested efficiently and consistently us-
ing tests based on additive model regression. Combining results of statistical tests for these two
classes of conditional independence relations and the temporal structure of time series data, a new
consistent model specification procedure is able to extract relatively detailed causal information.
We investigate the finite sample behavior of the procedure through simulation, and illustrate the
application of this method through analysis of the possible causal connections among four ocean
indices. Several variants of the procedure are also discussed.

Keywords: conditional independence test, contemporaneous causation, additive model regression,
Granger causality, ocean indices

1. Introduction

For stationary time series of four or more dimensions, Swanson and Granger (1997) proposed to
determine contemporaneous causation—causal influences occurring more rapidly than the sampling
interval of the time series data—by regressing each time series variable on all lags of all variables
considered and using the residuals to test for vanishing partial correlations. Using search procedures
for directed acyclic graphical linear models, in particular, the PC algorithm (Spirtes et al., 2000),
Bessler et al. (2002), Demiralp and Hoover (2003), and Hoover (2005) generalized Swanson and
Granger’s procedure to allow specification searches for contemporaneous linear systems among all
partial orderings of the dependencies among the variables. Moneta (2003) derived the correction
needed for the fact that the correlations are obtained from residuals of a regression, and applied it to
a set of cointegrated variables.

All these methods are designed for linear systems with joint Normal distributions, and allow
neither unrecorded (latent) common causes nor feedbacks. One source of these limitations is the
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search algorithm used by all of these procedures, PC, which is known to be consistent only in the
absence of feedback relations and latent common causes. In principle, some of these difficulties
can be met by replacing PC with related algorithms: the FCI algorithm (Spirtes et al., 2000), which
allows latent variables, or an algorithm due to Richardson and Spirtes (1999) that allows linear
feedback relations, though no algorithm is available that is consistent for search for linear causal
models when both latent variables and feedback may be present.

More fundamentally, PC and related algorithms require conditional independence information
about the random variables as input, and are therefore limited to distribution families for which
conditional independence tests of arbitrary order are available, such as Multinomial and Normal
distributions. (Another group of causal inference algorithms that are based on model scores, such
as Bayesian posteriors, are unable to handle either latent variables or feedbacks, except under ex-
tra constraints (Silva et al., 2006; Drton et al., 2006). For non-Gaussian linear models with latent
variables, independent component analysis based algorithms (Hoyer et al., 2006) could be more
informative than PC and FCI.) Extending the PC and related algorithms based on conditional inde-
pendence constraints to a larger class of systems that includes nonlinear continuous models requires
more general conditional independence tests. We begin by considering some of the difficulties
involved with finding such tests.

In theory, using nonparametric density estimation, we can test conditional independence for
any set of random variables which have a joint density with respect to the Lebesgue measure. For
example, let the joint density of {X ,Y,Z} be fXY Z(x,y,z), the joint density of {X ,Z} be fXZ(x,z),
the joint density of {Y,Z} be fY Z(y,z), and the marginal density of Z be fZ(z). We could test if
X and Y are independent given Z by testing if the Hellinger distance between fXY Z(x,y,z) fZ(z)
and fXZ(x,z) fYZ(y,z) is 0. For example, Su and White (2007) propose a conditional independence
test for stationary time series satisfying certain conditions, based on a weighted Hellinger distance
between fX |Y Z(x;y,z) and fX |Z(x;z), where fX |Y Z(x;y,z) and fX |Z(x;z) are densities of the conditional
distributions of X given {Y,Z} and Z respectively. However, this approach requires nonparametric
density estimation of multivariate distributions, which is subject to the curse of dimensionality: as
the number of variables increases, the data points become sparse rapidly in the space spanned by
the variables.

Baek and Brock (1992) and Hiemstra and Jones (1994) proposed a nonparametric method in-
tended for Granger causality testing of nonlinear time series. Consider a bivariate time series
{Xt ,Yt}, t = 1, · · ·, let X

m
t = (Xt , · · · ,Xt+m−1) for some m, they proposed to test if X

m
t and Y

b
t−b

are independent given X
a
t−a by testing the following null hypothesis:

P
(

‖Xm
t −X

m
s ‖∞ < e | ‖Xa

t−a−X
a
s−a‖∞ < e, ‖Y b

t−b−Y
b

s−b‖∞ < e
)

= P
(

‖Xm
t −X

m
s ‖∞ < e | ‖Xa

t−a−X
a
s−a‖∞ < e

)

.

Unfortunately, only under some specific conditions is the above null hypothesis equivalent to
the hypothesis that X

m
t is independent of Y

b
t−b given X

a
t−a (Diks and Panchenko, 2006).

Bell et al. (1996) considered additive model regression (Hastie and Tibshirani, 1990) for condi-
tional independence tests in their study of nonlinear Granger causality. An additive model assumes
that the response variable Y is a linear combination of univariate smooth functions of predictors
X = {X1, · · · ,Xp} plus an independent error term. That is:
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Y =
p

∑
i=1

fi(Xi)+ ε (1)

where it is possible that fi(Xi) = 0 for some i ∈ {1, · · · , p}. Assuming Equation (1), additive model
regression could be used to test if the response variable Y and some predictors Xa ⊆X are inde-
pendent conditional on the other predictors Xb = X \Xa, because Y is independent of Xa given
Xb if and only if E[Y |X] is constant in Xa}.

Additive regression works well as a conditional independence test in the study of Granger
causality when no contemporaneous causation is allowed among time series, because the only type
of conditional independence relations to be tested is the one described above. For example, in Bell
et al. (1996), two additive models were fitted: one model for estimating the conditional expectation
of a variable XT+1 given its T lags {X1, X2, · · ·, XT}, another for conditional expectation of XT+1

given {X1, X2, · · ·, XT} and {Y1, Y2, · · ·, YT}. The F test was used to compare these two regression
models: if the test failed to reject the first model, XT+1 was judged independent of {Y1, Y2, · · ·, YT}
given {X1, X2, · · ·, XT}.

However, the use of additive model regression as a general purpose nonlinear conditional inde-
pendence test is problematic, even for variables that are known to be related via additive models.
Generally speaking, it is not always valid to use additive model regression to test conditional in-
dependence relations other than those between the response variable and some predictors given the
other predictors. First, in some cases, additive model regression may miss some conditional de-
pendencies. Consider a causal system with two exogenous variables X1 and X2, and an endogenous
variable Y such that Y = X2

1 + X2
2 + εY , where X1,X2 and εY are independent Gaussian variables.

Although the predictors X1 and X2 are dependent given the response variable Y , the conditional
expectation of X1 given Y and X2 estimated using additive model regression will be constant in X2.
Second, even worse, in some cases additive model regression may miss some conditional indepen-
dencies. Consider a system with two exogenous variables X1 and X2, and five endogenous variables
W = X1 + X2 + εW , Y = W 2 + εY , U = log(X1)+ εU , V = log(X2)+ εV , and Z = U +V + εZ . Al-
though the two response variables Y and Z are independent conditional on the predictors X1 and X2,
Z will be present in the conditional expectation of Y given {X1,X2,Z} estimated by additive model
regression. (Note that Y contains a term 2X1X2, and eZ = eεU +εV +εZ X1X2.)

Nevertheless, additive model regression has some very attractive features. First, and probably
most importantly, it is not subject to the curse of dimensionality. In fact, Stone (1985) shows that the
rate of convergence for an additive model regression is the same as that for a univariate smoother,
which is much faster than a general multidimensional nonparametric regression method. The second
major advantage of additive model regression is that it is possible to identify the contribution of each
predictor to the response variable, thus allowing an intuitive interpretation of the fitted models.

In the following sections, we define a additive non-linear time series model by imposing lin-
ear constraints only among contemporaneous variables. We show that two families of conditional
independence relations can be tested consistently among variables in a additive non-linear time se-
ries model using additive model regression. That is, asymptotically, additive model regression will
neither miss any conditional independence relations nor report any spurious conditional indepen-
dence relations when applied to data generated from a additive non-linear time series model to test
those two families of conditional independence relations. We propose an inference procedure for
nonlinear time series data that requires only information about these two families of conditional
independence relations.
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2. Additive Non-linear Time Series Models

Below we present the definition of a family of nonlinear time series models for which additive model
regression based conditional independence test is possible. Here Xt is a p dimensional observed
time series, Ut a q dimensional unobserved time series, and εt a p dimensional white noise.
Definition: A p dimensional time series {X}t = {· · ·, X1, · · ·, XT , · · ·}, where Xt = {Xt,1, · · · ,Xt,p},
is generated from a lag T additive non-linear model if it satisfies the following conditions:

C1 For i = 1, · · · , p,

Xt,i = ∑
1≤ j≤p, j,i

c j,iXt, j + ∑
1≤k≤p,1≤l≤T

fk,i,l(Xt−l,k)+
q

∑
m=1

bm,iUt,m + εt,i (2)

where bm,i’s and c j,i’s are constants, and fk,i,l’s are smooth univariate functions

C2 · · · ,ε1,1, · · · ,ε1,p,ε2,1, · · · ,εt,i, · · · and · · · ,U1,1, · · · ,U1,q,U2,1, · · · ,Ut, j, · · · are jointly indepen-
dent, with εt,i ∼ N(0,σ2

1,i) and Ut, j ∼ N(0,σ2
2, j).

C3 There is a k and an i such that fk,i,T (·) , 0

C4 There is no sequence of indices { j1, j2, · · · , jm} such that c j1, j2 , c j2, j3 , · · ·, c jm−1, jm , c jm, j1 are
all nonzero.

The model is additive because Equation (2) includes both linear terms and arbitrary smooth
terms. It is also recursive in the sense that given an initialization of Xt−T , · · · ,Xt−1, all the later
points in the time series, starting from Xt , can be generated inductively.

A additive non-linear model can be causally interpreted in the following way:

• Xt, j is a direct cause of Xt,i if and only if c j,i , 0 in Equation (2), (for the definition of direct
cause, see Spirtes et al., 2000; Pearl, 2000);

• Xt−l, j is a direct cause of Xt,i if and only if f j,i,l(·) , 0 in Equation (2);

• Latent common causes are allowed only for variables in the same time tier, and Xt,i and Xt, j

have a latent common cause Ut,m if and only if there is an m such that bm,ibm, j , 0.

Note that both Ut and εt are multi-dimensional Gaussian white noise and both are unobserved.
However, for i = 1, · · · , p, εt,i can only be a direct cause of Xt,i, where for m = 1, · · · ,q, Ut,m

can be a direct cause of several variables in Xt .

• Condition C4 means that no contemporaneous feedback is allowed. If condition C4 is vio-
lated, Xt, jm would be a direct cause of Xt, j1 , while at the same time Xt, j1 would be a (possibly
indirect) cause of Xt, jm .

Note that using results of Richardson and Spirtes (1999) the method described in Section 3
can be modified to allow contemporaneous feedback.

A additive non-linear model can be represented by a directed graph consisting of nodes for
XT+1,1, · · · ,XT+1,p and their direct causes, and directed edges between nodes for the direct influences
between the corresponding variables. We call this graph a unit causal graph for the corresponding
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Figure 1: Unit causal graph and repetitive causal graph

time series. A unit causal graph can be extended to a repetitive causal graph by including all
the variables in X1, · · ·, XT+1. Moreover, if there is an edge between XT+1,i and Xt, j, where
1≤ t ≤ T +1, then similar edges will be added between XT+1−l, j and Xt−l,i for 1≤ l ≤ t−1. Figure
1 shows a unit causal graph and a segment of the corresponding repetitive graph. (The circled
variables are latent variables.) In the remaining part of this paper, all time series causal models are
represented by unit causal graphs.

Additive non-linear time series models make it possible to use the additive regression method,
which is not subject to the curse of dimensionality, to test conditional independence for nonlinear
time series. For a time series {X}t generated from a lag T additive non-linear model, the following
holds:

Proposition 1: Let X1
t and X2

t be any two distinct entries of random vector Xt , X
c
t any subset,

possibly empty, of Xt \ {X1
t ,X2

t }, and X
d
t any subset, possibly empty, of Xt \ {X1

t }. Let X
l =

{Xt−T , · · · ,Xt−1}, and X
e = X

l \{Xt−i, j} for some Xt−i, j ∈X
l .
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• For any x
d
t and x

l , conditional on X
d
t = x

d
t and X

l = x
l , X1

t has a normal distribution
N(µ1|a,σ2

1|a) such that µ1|a is a linear combination of x
d
t and smooth univariate functions of

entries of x
l , and σ1|a is independent of t, x

l and x
d
t . Thus, X1

t is independent of Xt−i, j

conditional on X
e and X

d
t if and only if µ1|a, the conditional expectation of X 1

t given X
d
t =

x
d
t and X

l = x
l , is constant in xl, j.

• For any x2
t , x

c
t and x

l , conditional on X2
t = x2

t , X
c
t = x

c
t , and X

l = x
l , X1

t has a normal
distribution N(µ1|b,σ2

1|b) such that µ1|b is a linear combination of x2
t , xc

t , and smooth univariate

functions of entries of x
l , and σ1|b is constant in t, x2

t , x
c
t , and x

l . Thus, X1
t is independent

of X2
t conditional on X

c
t and X

l if and only if, µ1|b, the conditional expectation of X 1
t given

X2
t = x2

t , X
c
t = x

c
t , and X

l = x
l , is constant in x2

t .

Proposition 1 implies that it is possible to use additive model regression to test the following two
types of conditional independence relations among variables in a additive non-linear model. First,
we can test if X1

t and X2
t are independent conditional on X

c
t and X

l by estimating the conditional
expectation of X1

t given {X2
t } ∪X

c
t ∪X

l using additive model regression, and check if X 2
t is a

significant predictor for X1
t using statistical tests such as the F test (Bell et al., 1996) or the BIC

scores (Huang and Yang, 2004). Similarly, if Xt−i, j is not a significant predictor for X 1
t in the additive

model regression of X1
t against X

l and X
d
t , we would say X1

t and Xt−i, j are independent conditional
on X

d
t and X

e.
To make the above tests valid, we also need the assumption that additive model regression

is an (asymptotically) consistent estimator of conditional expectations such as E[X 1
t |X

d
t ,X l] and

E[X1
t |X

2
t ,Xc

t ,X l]. Fortunately, it has been shown that, given a stationary nonlinear time series
{X}t , nonparametric estimation of the conditional mean E[Xt |Xt−1, · · · ,Xt−T ] is asymptotically
consistent and/or asymptotically normal, provided certain conditions are satisfied (Robinson, 1983;
Truong and Stone, 1992; Chen and Tsay, 1993; Tjøstheim and Auestad, 1994; Härdle et al., 1997;
Cai and Masry, 2000; Huang and Yang, 2004). Generally speaking, besides some regularity condi-
tions on the density of Xt ∪X

l and smoothness condition on E[Xt |X
l], {X}t should satisfy some

form of α mixing condition. {X}t is α mixing if for some α(n)→ 0,

sup{|P(A∩B)−P(A)P(B)| : A ∈ Ft ,B ∈ Gn+t} ≤ α(n)

where Ft is the σ-field generated by Xt ,Xt−1, · · ·, and Gn+t the σ-field generated by Xt+n,Xt+n+1,
· · · .

A concept closely related to α mixing is geometric ergodicity. A stationary time series {X}t is
geometrically ergodic if there is a function M(x) < ∞ and a constant ρ < 1 such that for all x:

sup
A
|P(Xn ∈ A|X0 = x)−π(A)| ≤M(x)ρn

where π is the stationary distribution of {X}t . For stationary time series, geometric ergodicity
implies α mixing for an α(n) of exponential rate (Davydov, 1973). Sufficient conditions for a
nonlinear time series to be geometrically ergodic can be found in Chan and Tong (1994), An and
Huang (1996), and Cline and Pu (1999). In particular, Xia and An (1999) provides a set of sufficient
conditions for the geometric ergodicity of time series generated by projection pursuit models, of
which our additive non-linear model is a special case.
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3. A Causal Inference Algorithm

Consider a time series {X}t = {X1, · · · ,Xt , · · ·} are generated from a lag T additive non-linear
model. Let X

l = {Xt−1, · · · ,Xt−T}, X1
t and X2

t be any two entries of Xt , X
b
t be any subset, possi-

bly empty, of Xt \{X1
t }, X

c
t be any subset, possibly empty, of Xt \{X1

t ,X2
t }, Xt−i, j any variable in

X
l , and X

e = X
l \{Xt−i, j}. Using additive model regression, we can test two types of conditional

independence relations: 1), if X 1
t and X2

t are independent given X
c
t and X

l , and 2), if X1
t and Xt−i, j

are independent given X
b
t and X

e. These pieces of information are not generally sufficient for
currently available causal inference algorithms, such as the PC and FCI, to be informative: these
procedures require (in the worst case) complete conditional independence information. However,
starting from the same principle behind the PC and FCI algorithms, we describe a procedure that
requires only these two types of conditional independence information. The procedure, which is ca-
pable of producing very informative causal structures, takes advantage of the constraints on possible
causal relations among the random variables imposed by additive non-linear models, for example,
Xt2,k cannot be a cause of Xt1, j if t1 < t2, no latent common cause exists for Xt2,k and Xt1, j if t1 , t2,
etc.

The following propositions are needed to justify our procedure. We assume familiarity with
notions from the graphical modeling literature, including the notion of d-separation (Pearl, 2000),
and faithfulness (Spirtes et al., 2000). In summary:

Formally a causal graph G is defined as an ordered pair 〈V ,E〉, where V is the set of variables
in G, and E the set of edges in G. An edge e in E is again defined as an ordered pair 〈Vi,Vj〉,
where Vi and V j are two variables in V . Given an edge e = 〈Vi,Vj〉 in graph G, we say that Vi is a
direct cause of V j in G. The subgraph Gm induced by Vm, where Vm is a subset of V , is defined
as an ordered pair 〈Vm,En〉 such that an edge e = 〈Vi,Vj〉 is in En if and only if e is in E and the
two variables {Vi,Vj} are both in Vm. A vertex is a collider on an undirected path in a directed
acyclic graph (DAG) if and only if it is the second member of both of two edges on the path, that
is, two edges on the path are directed into it. Two vertices X , Y (representing random variables)
are d-separated with respect to a set Z of vertices if and only if every undirected path between the
variables contains a collider having no directed path into a member of Z or contains a non-collider
that is a member of Z. A joint distribution on the variables (vertices) of a DAG is faithful if and
only if all conditional independence relations follow from the d-separation property applied to the
DAG.

In the three propositions below, {X1, · · · ,Xt , · · ·} form a time series generated from a lag T
additive non-linear model, X

l = {Xt−1, · · · ,Xt−T}, X1
t and X2

t are any two entries of Xt , and
X

e = X
l \{Xt−i, j} for some Xt−i, j ∈X

l

Proposition 2: The d-separation relations among the variables in Xt conditional on X
l in a repet-

itive causal graph Gc are the same as the d-separation relations among the variables in Xt in the
subgraph of Gc induced by Xt .

Proof: See Moneta (2003), proposition 4. �

Proposition 3: Consider a time series {X}t = {X1, · · · ,Xt , · · ·} generated from a lag T additive
non-linear model. Let X

l = {Xt−1, · · · ,Xt−T}, X1
t and X2

t be any two entries of Xt . Assuming
faithfulness, if there is a variable Xt−i, j ∈X

l such that X2
t and Xt−i, j are independent conditional on

X
e = X

l \{Xt−i, j}, but Xt−i, j and X1
t are not independent conditional on X

e, then X1
t is not a cause

of X2
t .
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Proof: Suppose X1
t is a cause of X2

t , then there must be a directed path P′ from X1
t to X2

t such
that each vertex on P′ is in Xt . If Xt−i, j and X1

t are dependent given X
e, there must be a path P

d-connecting Xt−i, j and X1
t given X

e. Thus, no variable in X
e is a non-collider on path P, and all

the colliders on path P must be observed ancestors of X
e, hence must be in X

e. (Note that the
set of observed ancestors of X

e is either X
e or X

e ∪{Xt−i, j}). This implies that P must be into
X1

t , because otherwise either P would be a direct path from X 1
t to Xt−i, j, which is not allowed, or

there must be a collider on P that is both a descendant of X 1
t and an element of X

e, which also is
impossible. By appending the direct path P′ to P, we get a path d-connecting Xt−i, j and X2

t given
X

e, which is a contradiction. �
Proposition 4: Consider a time series {X}t = {X1, · · · ,Xt , · · ·} generated from a lag T additive
non-linear model. Let X

l = {Xt−1, · · · ,Xt−T}, X1
t be any entry of Xt , Xt−i, j be any variable in X

l ,
X

d
t be the set of all observed contemporary direct causes of X 1

t , and X
e = X

l \{Xt−i, j}. Assuming
faithfulness, Xt−i, j and X1

t are dependent conditional on X
d
t and X

e if and only if:

• either Xt−i, j is a direct cause of X1
t ,

• or there is a path P between X 1
t and Xt−i, j, with 〈W1, · · ·, Wm〉 being the set of observed

variables on P between X1
t and Xt−i, j and ordered along the direction from X 1

t to Xt−i, j, such
that:

1. Wi ∈Xt for i = 1, · · · ,m;

2. X1
t and W1 have a latent common cause;

3. if Wi ∈X
d
t then Wi is a collider on P;

4. Wi is a (possibly indirect) cause of X 1
t for i = 1, · · · ,m;

5. Xt−i, j is a direct cause of Wm.

Proof: The if part of the proposition is trivial, here we only prove the only if part.
Suppose Xt−i, j is not a direct cause of X1

t , then there is a path P d-connecting Xt−i, j and X1
t

conditional on X
d
t and X

e. Let W = 〈W1, · · · ,Wm〉 be the set of observed variables on P between
X1

t and Xt−i, j, ordered along the direction from X 1
t to Xt−i, j.

To show that Wi ∈Xt for i = 1, · · · ,m, we note that if W j is the first element in W such that
Wj <Xt , it must belong to X

e, where W j−1 is in Xt . Because there is no observed variable between
Wj−1 and W j on P, by the definition of additive non-linear models, there must be a direct edge from
Wj to Wj−1 on P (let X1

t =W0 when j = 1). This means that W j is not a collider on P, hence P cannot
d-connect X1

t and Xt−i, j conditional on X
e and X

d
t , which contradicts our assumption. Using the

same argument, given that Wm ∈Xt , it is easy to see that Xt−i, j must be a direct cause of Wm.
Next we show that W1 and X1

t must have a latent common cause. Assume that there is no latent
common cause for W1 and X1

t . Because there is no observed variable between W1 and X1
t on P, they

must be adjacent on P, hence there must be a direct causal relation between X 1
t and W1. Consider

the two alternative cases:

• First, suppose that W1 is a direct cause of X1
t . Then W1 ∈X

d
t , and is a non-collider on P,

hence P cannot d-connecting Xt−i, j and X1
t conditional on X

d
t and X

e.
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• Second, suppose X1
t is a direct cause of W1. Then there must be a variable Wi for some

i ≥ 1 such that the subpath {X 1
t ,W1, · · · ,Wi} of P is a directed path from X 1

t to Wi, and Wi

is a collider on P. This would imply that Wi has to be a cause of X1
t , for otherwise neither

Wi nor any of its descendants belong to X
d
t , which means that P cannot d-connect X 1

t and
Xt−i, j conditional on X

e and X
d
t . But allowing Wi to be a cause of X1

t would make the path
X1

t ,W1, · · · ,Wi,X1
t a directed cycle, which is impossible.

It is obvious that if Wi ∈X
d
t , then it must be a collider on P. To show that Wi is a cause of X1

t ,
we note that if W j is a collider on P, it must be a cause of X 1

t , for otherwise neither W j nor any of
its descendants belongs to X

d
t , hence P cannot d-connect X 1

t and Xt−i, j conditional on X
e and X

d
t .

Therefore Wi must be a cause of X1
t , because it is either a collider on P, or a cause of a collider on

P. �
Given propositions 2, 3, and 4, we propose a three-step procedure for inference to unit causal

graphs from time series data generated by additive non-linear models. The output of this causal
inference procedure is a Partial Ancestral Graph (PAG). Roughly speaking, a PAG is a graph con-
sisting of a list of vertices representing observed random variables, and 3 types of end points, −,
◦, and >, which are combined to form the following 4 types of edges representing causal relations
between random variables.

• X → Y means that X is a (possibly indirect) cause of Y .

• X ↔ Y means that there is a latent variable Z that is a (possibly indirect) cause of both X and
Y .

• X �→ Y means either X → Y or X ↔ Y .

• X�Y means either X →Y , or Y �→ X . In other words, X�Y means that X and Y cannot
be d-separated by any other observed variables.

For detailed explanation of PAGs, see Spirtes et al. (2000). Following Spirtes et al. (2000), we
also use * as a meta symbol to represent any of the three end points.

Below is a constraint based additive non-linear time series causal inference procedure for non-
linear time series with latent common causes. The conditional independence information required
by the procedure can be obtained using additive model regression based conditional independence
tests mentioned in the previous section. Here we assume that the time series data satisfies various
conditions for the asymptotic consistency and normality of the additive model estimator, and that an
upper bound Tmax on the unknown true lag number T of the additive non-linear model has been set,
either using the procedures in Tjøstheim and Auestad (1994) or Huang and Yang (2004), or based on
background knowledge. So long as Tmax is no less than T , the following procedure asymptotically
obtains a correct PAG. Of course, choosing a Tmax much higher than T will reduce the efficiency of
the procedure.

The symbols in the following procedure are defined in the same way as in the beginning of this
section, except that X

l is redefined as X
l = {Xt−1, · · · ,Xt−Tmax}.

1. Identify contemporary causal relations

(a) For all choices of X1
t , X2

t , and X
c
t , determine if X1

t is independent of X2
t conditional on

X
c
t and X

l .
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(b) Treat the above conditional independence relations as if they were conditional indepen-
dence relations between X 1

t and X2
t given X

c
t .

• Feed these conditional independencies to a causal inference algorithm allowing
presence of latent common causes, such as the FCI algorithm. Derive the PAG for
the contemporary causal structure among variables in Xt . Call this PAG πt .

• For all choices of X1
t , identify the set of possible contemporaneous direct causes

of X1
t , where X2

t is a possible contemporaneous direct cause of X 1
t if in πt either

X2
t �( X1

t , or X2
t �→ X1

t , or X2
t → X1

t . Denote by PCDC(X1
t ) the set of possible

contemporaneous direct causes of X 1
t .

2. Identify lagged causal relations.

(a) Create a new graph π f such that the vertices in π f are {Xt ,Xt−1, · · · ,Xt−T}, and the
edges in π f are exactly the same as the edges in πt .

(b) For all choices of X1
t , Xt−i, j, and X

b
t , determine if X1

t and Xt−i, j are independent given
X

e and X
b
t

• For all choices of X1
t , identify the set of possible lagged direct causes of X 1

t , where
a lagged variable Xt−i, j is a possible lagged direct cause of X 1

t if for all X
d
t ⊆

PCDC(X1
t ), Xt−i, j and X1

t are dependent given X
d
t and X

e. Denote by PLDC(X1
t )

the set of possible lagged direct causes of X 1
t

• For all choices of X1
t , identify the set of permanent lagged predictors of X 1

t , where
Xt−i, j is a permanent lagged predictor of X 1

t if for all X
b
t ⊆ (Xt \ {X1

t }), Xt−i, j

and X1
t are dependent given X

b
t and X

e. Denote by PLP(X1
t ) the set of permanent

lagged predictors of X1
t

(c) Add edges representing the lagged causes of each variable in Xt to π f :

i. For all choices of X1
t , add an edge Xt−i, j→ X1

t to π f if Xt−i, j ∈ PLP(X1
t ).

ii. For all choices of X1
t , add an edge Xt−i, j → X1

t to π f if Xt−i, j ∈ PLDC(X1
t ), and

Xt−i, j is not adjacent to any other variable in π f .

3. Orient the contemporary PAG according to the following rule:

(a) Repeat the following procedure until no more changes can be made to π f .

i. If Xt−i, j→ X1
t �∗X

2
t is in π f , and Xt−i, j and X2

t are not adjacent, then:
If Xt−i, j and X2

t are independent given X
e, but dependent given X 1

t and X
e, then

orient the edge between X 1
t and X2

t as X1
t ←∗X

2
t

ii. If Xt−i, j→ X1
t �∗X

2
t is in π f , and Xt−i, j and X2

t are not adjacent, then:
If Xt−i, j and X2

t are dependent conditional on X
e, but independent conditional on

X1
t and X

e, then orient the edge between X 1
t and X2

t as X1
t → X2

t

(b) Apply the orientation step of FCI algorithm to further orient the contemporary PAG π f .

Proposition 2 provides justification for the first step in this procedure, proposition 3 the third
step. Proposition 4 is needed for the second step, as we can see that the set of contemporaneous
direct causes of a variable X 1

t is a subset of PCDC(X1
t ), thus by proposition 4 we have:
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Lagged direct causes of X1
t ⊆ PLP(X1

t )⊆ PLDC(X1
t ) ⊆ Lagged causes of X1

t

Note that step 2(c) is designed to make the procedure more robust.

The complexity of the above procedure is primarily determined by step 1(a), where k2k−1 addi-
tive model regressions are performed to test the conditional independence relations required by the
later steps.

We want to emphasize that the above procedure can be modified in various ways to accommo-
date changes in the assumptions about the time series data generating models. In the last section
(Section 6) of this paper, we discuss in details about different extensions of the above procedure.

4. Simulation Study

In this section, we conduct a simple simulation study to evaluate the performance of the additive
non-linear causal inference algorithm presented in Section 3. In particular, we would like to see
if the additive non-linear algorithm can provide a viable solution to the problem of nonlinear time
series causal inference. For comparison, we also apply a causal inference procedure designed for
linear time series to the simulated data. Because there is no currently available efficient automated
causal inference algorithm for linear time series with contemporaneous causal relations, the linear
procedure used for comparison actually is an extension of our additive non-linear causal inference
procedure under the assumption that the time series data are generated from linear models. (Bessler
et al. 2002, Demiralp and Hoover 2003, Moneta 2003 and Hoover 2005 discussed efficient ways
of identifying the contemporaneous causal pattern, that is, the Markov equivalence classes (MEC)
of the causal graphs for contemporaneous variables assuming causal sufficiency. However, their
procedures are not complete because, when the MEC consists of multiple contemporaneous causal
graphs, these procedures all require further background information to uniquely identify the con-
temporaneous causal graph before proceeding to derive the causal pattern for both contemporaneous
and lagged variables. Oxley et al. (2004) provides a less efficient algorithm for linear time series
that treats a k-dimensional lag p structural vector autoregressive model (SVAR(p)) as a linear causal
model with k(p+1) variables.) The linear procedure differs from the additive non-linear algorithm
only in step 1: unlike the original algorithm which uses additive regression to test conditional inde-
pendence, the linear procedure uses linear regression instead.

We use the Mersenne Twister algorithm implemented in java package RngPack (version 1.1a)
for random number generation, and the gam function in the R package gam (version 0.97) for addi-
tive model regression.

The simulated data are generated from the four causal structures shown in Figure 2. Note that
in this simulation study the true PAGs happen to have no circles, and can be represented by the
same graphs in Figure 2. The chain-like contemporaneous causal structure is chosen to evaluate
the ability of our algorithm to identify the direction of those contemporaneous causal relations that
could not be detected using previous algorithms (Bessler et al., 2002; Demiralp and Hoover, 2003;
Moneta, 2003; Hoover, 2005). For each causal structure, we consider the following four types of
models, characterized by the type of functional relations between an effect variable and its direct
causes:
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Figure 2: Causal graphs and true PAGs of simulation data

• Trigonometric lag models: Each contemporaneous variable is a linear combination of other
contemporaneous variables and univariate trigonometric functions of lagged variables. For
example, in one model, we have:

Yt = 0.5Xt + sin(2Yt−1)− cos(10Zt−2)+ εY .

• Polynomial lag models: Each contemporaneous variable is a linear combination of other
contemporaneous variables and univariate polynomial functions of lagged variables. For ex-
ample, in one model, we have:

Yt = 0.5Xt +0.3Y 2
t−1−0.1Z3

t−2 + εY .

• Linear lag models: Each contemporaneous variable is a linear combination of other contem-
poraneous variables and lagged variables. For example, in one model, we have:

Yt = 0.5Xt +0.3Yt−1−0.1Zt−2 + εY .

• Trigonometric contemporaneous models: Each contemporaneous variable is a linear combi-
nation of univariate trigonometric functions of other contemporaneous variables and lagged
variables. For example, in one model, we have:

Yt = cos(Xt)+ sin(2Yt−1)− cos(10Zt−2)+ εY .
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Note that these models do not belong to the family of additive non-linear time series models,
for they violate the assumption C1.

In total we have 16 data generating models, with 12 of them being additive non-linear time
series models (including 4 linear time series models). For each of the 16 models, we generate 4
random time series data sets of length 200, 500, 1000, and 2000 respectively. For each data set, we
run both the additive non-linear procedure and the linear procedure. The upper bound Tmax of the
true lag number T is set to 3 for all simulations, (T is equal to 2 for 12 of the data generating models
based on casual structure (A), (B), and (C) in Figure 2, and 1 for the other 4 models based on casual
structure (D)). The learned PAGs are compared with the true PAGs, which are also represented by
the graphs in Figure 2.

The additive non-linear procedure presented in Section 3 requires, for each contemporane-
ous variable, say Xt , the following two types of conditional independence information: (1) if Xt

is independent of another contemporaneous variable, say Yt , given all the lagged variables L =
{Xt−2,Xt−1,Yt−2, Yt−1, Zt−2, Zt−1} and a subset of the remaining contemporaneous variables, say,
{Zt}; and (2), if Xt is independent of a lagged variable, say Xt−1, given all the other lagged variables
and a subset of contemporaneous variables, say, {Zt}. These conditional independence relations are
tested by checking if E[Xt |L,Zt ] is constant in Yt or Xt−1 respectively. For example, to test if Xt−1 is
present in E[Xt |L,Zt ], we follow Huang and Yang (2004) by starting from a model A, where Xt is
regressed against L and Zt , and searching for a submodel of A with the lowest BIC score. If Xt−1 is
present in this submodel with lowest BIC score, it is present in E[Xt |L,Zt ]. Otherwise, it is not.

The simulation results are summarized in Figure 3. Each of the four panes in Figure 3 summa-
rizes the results of 16 simulated time series data sets generated from the same type of models. We
use the average error rates to evaluate the performance of the two algorithms. The definitions of
the various error rates are similar to those in Spirtes and Meek (1995). Consider a p dimensional
time series data. An edge omission error occurs when two variables are adjacent in the true PAG
but not in the learned PAG. An edge commission error occurs when two variables are adjacent in
the learned PAG but absent in the true PAG.

The edge omission error rate is defined as:

Eo =
Number of edge omission errors
Number of edges in the true PAG

.

The edge commission error rate is defined as:

Ec =
Number of edge commission errors

Maximum number of possible edge commission errors
.

When inferring causal structure from a p dimensional time series data set, if the upper bound of the
true lag number is set to Tmax, the maximum number of possible edge commission errors is equal to:

p2Tmax +
p(p−1)

2
−Number of edges in the true PAG

where p2Tmax + p(p−1)/2 is the maximum number of edges can be found in the unit causal graph
for any p-dimension lag Tmax time series model.

The solid lines in each pane of Figure 3 represent the average omission error rates for different
time series lengths; the dotted lines represent the average commission error rates. Blue lines with
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Figure 3: Error rate for edge discovery

circles represent results obtained by the additive non-linear algorithm, red lines with triangles the
results by the linear procedure.

The pane with label “Trig Contemp” gives the results for data generated from the trigonometric
contemporaneous models. We choose these models in the simulation study precisely because they
lie outside of the family of additive non-linear time series models, for they violate the functional
assumption (C1) in the definition of additive non-linear time series models. The simulation results
suggest that, when the assumption C1 is violated, the additive non-linear algorithm can still discover
most of the edges. However, as the length of time series increases, the average number of extra edges
also increases, apparently because the data generating models are not additive non-linear time series
models. The linear procedure is not satisfactory, missing most of the edges in the true models.
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The panes labeled with “Trig Lag” and “Poly Lag” show the results for trigonometric lag models
and polynomial lag models, both of which are genuine additive non-linear time series models. The
additive non-linear algorithm performs very well for the trigonometric lag models, but less than
satisfactory for polynomial lag models. Its performance for polynomial lag models, however, does
improve as the length of time series increases. The linear procedure performs poorly in both cases,
missing at least half of the edges.

The pane with label “Lin Lag” provides the results for linear lag models. Given that a linear
lag model is simply a linear time series model, which is a special case of additive non-linear time
series model, we expect that both algorithms should perform very well, as they do. This, on the one
hand, suggests that the linear procedure is a good choice for linear time series causal inference, on
the other hand, implies that the additive non-linear algorithm does not suffer from overfitting.

We also compare the average error rates for orientation of the edges among contemporaneous
variables by the additive non-linear algorithm and the linear procedure. Suppose Xt and Yt are
adjacent in both the learned PAG and the true PAG, an arrowhead omission error occurs if the edge
is oriented as Xt ∗→Yt in the true PAG, but as Xt ∗—Yt or Xt ∗( Yt in the learned PAG. Similarly, an
arrowhead commission error occurs if the edge is oriented as Xt —∗ Yt or Xt �∗Yt in the true PAG,
but as Xt ←∗Yt in the learned PAG. Let E be the set of edges among contemporaneous variables
in the true PAG such that the pairs of variables connected by these edges are also adjacent in the
learned PAG. The arrowhead omission error rate is defined as:

Ao =
Number of arrowhead omission errors

∑e∈E Number of arrowheads in e
.

The arrowhead commission error rate is defined as:

Ac =
Number of arrowhead commission errors

∑e∈E Number of non-arrowheads in e
.

In Figure 4, the solid lines in each pane represent the average arrowhead omission error rates;
the dotted lines represent the average arrowhead commission error rates. As in Figure 3, blue
lines with circles represent results obtained by the additive non-linear algorithm, red lines with
triangles the results by the linear procedure. (Note that in the top two panels labeled respectively
with “Trig Contemp” and “Trig Lag”, the lines representing omission error and commission error for
the additive non-linear algorithm overlap. In the bottom two panels labeled respectively with “Poly
Lag” and “Lin Lag”, the lines representing commission error for the additive non-linear algorithm
and the linear algorithm overlap.)

There are two more scores to measure how close a learned PAG is to the true PAG, that is,
the tail omission error rate and the tail commission error rate. Suppose Xt and Yt are adjacent
in both the learned PAG and the true PAG, a tail omission error occurs if the edge is oriented as
Xt → Yt in the true PAG, but as Xt �∗Yt in the learned PAG. A tail commission error occurs if the
edge is oriented as Xt �∗Yt in the true PAG, but as Xt → Yt in the learned PAG. Note that these
definitions are stated so that an arrowhead commission/omission error will not be counted again
as a tail omission/commission error. Because there is no circle in the true PAGs in this simulation
study, we can only compute the tail omission errors for the learn PAGs, shown in Figure 5. The tail
omission error rate is defined as:

To =
Number of tail omission errors

∑e∈E Number of tails in e
.
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Figure 4: Error rate for edge orientation: Arrowhead

The additive non-linear algorithm gives excellent results. For example, for the data sets gen-
erated from additive non-linear models, that is, the trigonometric lag models, the polynomial lag
models, and linear lag models, the additive non-linear algorithm makes no arrowhead commission
errors. The linear procedure performs quite well for polynomial lag models and linear lag models.

Although the scope of this simulation study is very limited, we can get some general idea about
the performance of our additive non-linear casual inference algorithm. If we count the number of
variables in a p dimensional lag T additive non-linear time series model as p(T + 1), then roughly
speaking, for longer time series, (80 or more observations per variable), the additive non-linear
algorithm outperforms the linear procedure in all situations, including cases where the true model is
more complex than the additive non-linear model and cases where the true model is a linear model.
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Figure 5: Error rates for edge orientation: Tail

For shorter time series, (less than 40 observations per variable), the additive non-linear model is
still better in general, but may be not as good as the linear procedure in some cases. Our suggestion
is that, for longer time series always choose the additive non-linear algorithm. For shorter time
series, if computational cost is critical, the linear procedure is a reasonable choice; otherwise we
still recommend the additive non-linear algorithm, or better yet, try both of them.

5. Case Study: Ocean Climate Indices

To illustrate the application of the additive non-linear causal inference algorithm for nonlinear time
series, we use it to study the causal relations among some ocean climate indices.
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Climate teleconnections are associations of geospatially remote climate phenomena produced
by atmospheric and oceanic processes. The most famous, and first established teleconnection, is the
association of the El Nino/Southern Oscillation (ENSO) with the failure of monsoons in India. A
variety of associations have been documented among sea surface temperatures (SST), atmospheric
pressure at sea level (SLP), land surface temperatures (LST) and precipitation over land areas. Since
the 1970s data from a sequence of satellites have provided monthly (and now daily) measurements
of such variables, at resolutions as small as 1 square kilometer. Measurements in particular spatial
regions have been clustered into time indexed indices for the regions, usually by principal com-
ponents analysis, but also by other methods. Climate research has established that some of these
phenomena are exogenous drivers of others, and has sought physical mechanisms for the telecon-
nections. We consider here whether constraints on such mechanisms can be obtained by data-driven
model selection from time series of ocean indices.

Our data set consists of the following 4 ocean climate indices, recorded monthly from 1958 to
1999, each forming a time series of 504 time steps:

SOI Southern Oscillation Index: Sea Level Pressure (SLP) anomalies between Darwin and Tahiti

WP Western Pacific: Low frequency temporal function of the ‘zonal dipole’ SLP spatial pattern
over the North Pacific.

AO Arctic Oscillation: First principal component of SLP poleward of 20◦ N

NAO North Atlantic Oscillation: Normalized SLP differences between Ponta Delgada, Azores and
Stykkisholmur, Iceland

To check stationarity, we conduct the augmented Dickey-Fuller (ADF) test. ADF tests for all 4
time series reject the null hypothesis that the tested series has a unit root against the alternative that
the series is stationary, with p values of the tests smaller than 0.01. As a complementary to ADF
tests, we also conduct the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. For all 4 time series,
KPSS tests with lag truncation parameter set to 12 fail to reject the null hypothesis that the tested
series is (trend) stationary against the unit root alternative, with p values of the tests higher than
0.1. We also plot the autocorrelations for the 4 time series to check if the data satisfies the strong
mixing condition (Figure 6). The idea is that, if a time series satisfies the strong mixing condition,
its autocorrelation should decrease rapidly as the lag increases. From the plot, the auto correlations
of SOI do not decrease as quickly as for other indices, but they become insignificant when the lag
is above 12 months.

We assume that the 4 indices are generated from a lag 12 additive non-linear model. The choice
of 12 is partly based on the fact that the ocean indices are monthly data. Another concern is that
with a length of 504, the data would be too sparse for a model with a much longer lag. As in the
simulation study, the R package gam (version 0.97) is used in this analysis. We first remove any
linear trend from the data, then, following the causal inference procedure presented in Section 3,
derive a causal structure represented by a PAG for the 4 ocean climate indices. Figure 7 gives the
learned causal structure.

Because of the relative shorter length of the ocean indices data (10 observations per variable for
a lag 12 model), it is worth conducting another inference on the 4 ocean indices using the linear
procedure. The resulting causal structure is given in Figure 8.
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Figure 6: Autocorrelation plot for 4 times series

Without a gold standard, it is hard to say which method gives the more accurate information
in this case. But the graph obtained using the linear procedure is likely to miss some nonlinear
dependencies. For example, an arrow from SOIt−1 to AOt is present in Figure 7, but absent from
Figure 8. It turns out, when regressing AOt against SOIt−1, AOt−1 and NAOt−1 using additive model
regression, the estimated influence of SOIt−1 on AOt is clearly nonlinear (see Figure 9, where the
contribution of SOIt−1 to AOt is plotted as a smooth univariate function of SOIt−1). This is not
surprising given the complexity of the processes represented by the ocean climate indices, and illus-
trates the need of causal inference procedures that can be applied to data generated from nonlinear
models.

6. Discussion

Methods of causal inference, first developed in the machine learning literature, have been success-
fully applied to many diverse fields, including biology, medicine, and sociology (Pearl, 2000; Spirtes
et al., 2000). An essential and distinct feature of these methods is that they require comparatively
less domain knowledge about the system to be studied.
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Figure 7: Causal connections among 4 ocean climate indices, using the additive non-linear algo-
rithm

Figure 8: Causal connections among 4 ocean climate indices, using the linear procedure

This study extends the application of causal inference to nonlinear time series data. We present
a new procedure that combines semi-automated model search for causal structure with additive
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Figure 9: Nonlinear relation between SOIt−1 and AOt

model regression methods. The particular example is to ocean climate indices, but the component
procedures have been individually applied to econometric data with some success, suggesting that
the criteria for successful application of the joint procedures are statistical and causal rather than
domain specific.

Our approach is modular, and its two main components, that is, conditional independence testing
and causal model search, could be replaced by other comparable methods. Thus, with appropriate
data generated from appropriate mechanisms, related analyses could be conducted under weaker or
alternative assumptions. Below we briefly discuss several possible extensions of our method:

6.1 Nonstationary Nonlinear Time Series

In most of this paper we assume that the nonlinear time series are stationary, only because it has
been shown that for stationary nonlinear time series data satisfying certain conditions, nonparamet-
ric regression is asymptotically consistent. The algorithm and propositions proposed in this paper
do not require stationarity. However, to apply our algorithm to nonstationary nonlinear time series
data, we must find an efficient regression method to estimate the conditional expectations and con-
duct conditional independence tests. Cointegration analysis is not suitable for this purpose, because
it is mainly designed for and applicable to cointegrated linear time series (Engle and Granger, 1987;
Johansen, 1991). However, recent studies on applying nonparametric regression methods to nonsta-
tionary time series data (Phillips and Park, 1998; Karlsen and Tjøstheim, 2001; Bandi and Phillips,
2003; Karlsen et al., 2005) seem promising. Not surprisingly, the convergence rate of nonparametric
regression for nonstationary time series data may be slower than that of stationary data.
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6.2 Feedback Models

The original definition of additive non-linear models in Section 2 does not allow any feedback
among contemporaneous variables (see condition C4). To represent mutual influences among con-
temporary variables, we can remove condition C4 from the original definition. We also have to
drop the U terms in Equation 2 because the currently available algorithm capable of handling feed-
backs (Richardson and Spirtes, 1999) does not work in the presence of latent common causes. The
resulting definition defines a additive non-linear feedback model, which, compared to the additive
non-linear model, allows feedback, but not latent common causes. Propositions 1, 2, and 3 still hold
for the new model, proposition 4 needs some modification:
Proposition 4’: Let X

b
t be the set of all contemporary direct causes of X 1

t . Assuming there is no
latent common cause, Xt−i, j and X1

t are dependent conditional on X
b
t and X

e if and only if either
Xt−i, j is either a direct cause of X1

t , or a direct cause of a contemporaneous cause of X 1
t .

The only change needed in the causal inference procedure to handle data generated from ad-
ditive non-linear feedback models is, in step 1(b), that the FCI algorithm should be replaced by a
consistent causal inference algorithm capable of outputting cyclic graphs, such as the one proposed
in Richardson and Spirtes (1999).

6.3 Score Based Search Procedure

The causal inference procedure presented in Section 3 is constraint based. That is, the procedure re-
quires explicit conditional independence information as input, (although each conditional indepen-
dence constraint is obtained using a BIC score based model selection procedure). As we mentioned
in Section 3, the main advantage of this procedure and its modified version is that they can handle
the presence of latent common causes or feedbacks in the contemporaneous causal structure. (Drton
et al. 2006 provides a maximum likelihood estimation algorithm that allows the computation of BIC
scores for certain types of linear models with correlated error terms, though not for the contempo-
raneous causal structure of a additive non-linear model.) If we are willing to exclude feedbacks and
latent common causes, a simple two-step score based procedure can be used to infer causal infor-
mation from data generated by additive non-linear models. In the first step, a score based algorithm,
such as the GES algorithm (Meek, 1996; Chickering, 2002a,b), is applied to the residuals of additive
model regression of contemporaneous variables against all lags to obtain a causal pattern represent-
ing a Markov equivalence class πt of directed acyclic graphs for the contemporaneous variables. In
the second step, for each directed acyclic graph G belonging to the Markov equivalence class πt , we
generate a time series causal model M and compute its BIC score in the following way:

• Each contemporaneous variable X i
t is regressed against its parents in G and all the lagged

variables X
l . The BIC score method proposed in Huang and Yang (2004) is used to identify

the best submodel (with the lowest BIC score si). The significant predictors of X i
t in that best

submodel are direct causes of X i
t in causal model M.

• The BIC score of causal model M is ∑i si.

The causal model with the best (lowest) BIC score then is returned as the result of the score
based casual inference algorithm.
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Abstract
SHARK is an object-oriented library for the design of adaptive systems. It comprises methods for
single- and multi-objective optimization (e.g., evolutionary and gradient-based algorithms) as well
as kernel-based methods, neural networks, and other machine learning techniques.

Keywords: machine learning software, neural networks, kernel-methods, evolutionary algorithms,
optimization, multi-objective-optimization

1. Overview

SHARK is a modular C++ library for the design and optimization of adaptive systems. It serves as
a toolbox for real world applications and basic research in computational intelligence and machine
learning. The library provides methods for single- and multi-objective optimization, in particular
evolutionary and gradient-based algorithms, kernel-based learning methods, neural networks, and
many other machine learning techniques. Its main design criteria are flexibility and speed. Here
we restrict the description of SHARK to its core components, albeit the library contains plenty of
additional functionality. Further information can be obtained from the HTML documentation and
tutorials. More than 60 illustrative example programs serve as starting points for using SHARK.

2. Basic Tools—Rng, Array, and LinAlg

The library provides general auxiliary functions and data structures for the development of machine
learning algorithms. The Rng module generates reproducible and platform independent sequences
of pseudo random numbers, which can be drawn from 14 predefined discrete and continuous para-
metric distributions. The Array class provides dynamical array templates of arbitrary type and di-
mension as well as basic operations acting on these templates. LinAlg implements linear algebra
algorithms such as matrix inversion and singular value decomposition.

3. ReClaM—Regression and Classification Methods

The goal of the ReClaM module is to provide machine learning algorithms for supervised classi-
fication and regression in a unified, modular framework. It is built like a construction kit, where
the main building blocks are adaptive data processing models, error functions, and optimization
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Figure 1: Almost all ReClaM objects are inherited from one of the three base classes Model,
ErrorFunction, and Optimizer. The optimizer has access to the parameter vector w
of the model f : R

n ×R
p → R

m, (x,w) 7→ fw(x), to minimize a scalar error function E.
For gradient-based optimization, the error function provides the derivative dE/dw based
on d f /dw. In many cases we can speed up the computation of dE/dw by a factor of m
by using aT d f /dw, where a is a vector of coefficients dependent on the error function.

algorithms (see Figure 1). The superclasses representing these components communicate through
fixed interfaces. Problem definition and solution are clearly separated. A problem is defined by a
model defining a parametric family of candidate hypotheses, and a possibly regularized error func-
tion to minimize (and, of course, sample data). It is usually solved with an (iterative) optimization
algorithm, which adapts the model parameters in order to minimize the error function evaluated on
the given data set. Additional error functions and data sets can then be used to test the resulting
performance. This clear structure makes ReClaM easy to use and extend.

ReClaM focuses on kernel methods and neural networks. It offers a variety of predefined net-
work models including feed-forward and recurrent multi-layer perceptron networks, radial basis
function networks, and CMACs. Several gradient-based optimization algorithms are available for
network training and general purpose optimization including the conjugate gradient method, the
BFGS algorithm, and improved Rprop (Igel and Hüsken, 2003).

In the remainder of this section we present the realization of kernel-based learning in more
detail. The library offers kernelized versions of several learning machines from nearest neighbor
classifiers and simple Gaussian processes to different flavors of support vector machines. These
algorithms operate on general kernel objects and users can supply new kernel functions easily. At
the time of writing, ReClaM provides the fastest support vector machine (SVM) implementation for
dense large-scale learning problems. The SVM training automatically switches between the most
efficient SMO-like algorithms available depending on the current problem size (Fan et al., 2005;
Glasmachers and Igel, 2006).

On top of these models, ReClaM defines meta-models for model selection of kernel and regular-
ization parameters. It offers more objective functions and optimization methods for model selection
than any other library. Objective functions include leave-one-out and cross validation errors, radius-
margin quotient, kernel-target alignment, and the span bound (Chapelle et al., 2002; Glasmachers
and Igel, 2005; Igel et al., 2007a). For optimization, nested grid-search and evolutionary kernel
learning are supported, and efficient gradient-based optimization is available whenever possible.
For both model training and model selection, we make use of ReClaM’s superclass architecture to
describe and solve the optimization problems. For example, a gradient-based optimization algorithm
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may decrease a radius-margin quotient in order to adapt the hyperparameters of an SVM, where in
each iteration an SVM model is trained by a special quadratic program optimizer to determine the
margin.

To reduce the complexity of SVMs and Gaussian processes after training, algorithms for ap-
proximating the solutions in feature space are implemented (Romdhani et al., 2004; Suttorp and
Igel, 2007).

4. EALib and MOO-EALib—Evolutionary Single- and Multi-objective Optimization

The evolutionary algorithms module (EALib) implements classes for stochastic direct optimization
using evolutionary computing, in particular genetic algorithms and evolution strategies (ESs). Evo-
lutionary algorithms (EAs) maintain populations (i.e., multi-sets) of candidate solutions. In the
EALib structure, instances of the class Population contain instances of Individual consisting of
one or more Chromosomes, which can have different types. Numerous variation (i.e., mutation and
recombination) operators for different types of chromosomes, for example real-valued or binary
vectors, are available. The user has the choice between many different deterministic and stochastic
selection mechanisms operating on population level.

The MOO-EALib extends the EALib to evolutionary multi-objective (i.e., vector valued) opti-
mization (EMO). The goal of EMO is usually to approximate the set of Pareto-optimal solutions,
where a solution is Pareto-optimal if it cannot be improved in one objective without getting worse
in another one. To our knowledge, the MOO-EALib module makes SHARK one of the most compre-
hensive libraries for EMO. The efficient implementation of measures for quantifying the quality of
sets of candidate solutions is a strong argument for the MOO-EALib.

In SHARK we put an emphasis on variable-metric ESs for real-valued optimization. Thus, the
most recent implementation of the covariance matrix adaptation ES (CMA-ES; Hansen et al., 2003)
and its EMO counterpart (Igel et al., 2007b) are included. We do not know any C++ toolbox for
EAs that comes close to the EALib in terms of flexibility and quality of algorithms for continuous
optimization.

5. Availability and Requirements

The C++ source code is available from http://shark-project.sourceforge.net under GNU
Public License and compiles under MS Windows, Linux, Solaris, and MacOS X. No third-party
libraries are required, except Qt and Qwt for graphical examples.
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editors, International Conference on Artificial Neural Networks (ICANN 2007), volume 4668 of
LNCS, pages 139–148. Springer-Verlag, 2007.

996



Journal of Machine Learning Research 9 (2008) 997-1017 Submitted 8/07; Revised 1/08; Published 6/08

Hit Miss Networks with Applications to Instance Selection

Elena Marchiori ELENAM@CS.RU.NL

Department of Computer Science
Radboud University
Nijmegen, The Netherlands

Editor: Leon Bottou

Abstract

In supervised learning, a training set consisting of labeled instances is used by a learning algo-
rithm for generating a model (classifier) that is subsequently employed for deciding the class label
of new instances (for generalization). Characteristics of the training set, such as presence of noisy
instances and size, influence the learning algorithm and affect generalization performance. This pa-
per introduces a new network-based representation of a training set, called hit miss network (HMN),
which provides a compact description of the nearest neighbor relation over pairs of instances from
each pair of classes. We show that structural properties of HMN’s correspond to properties of training
points related to the one nearest neighbor (1-NN) decision rule, such as being border or central point.
This motivates us to use HMN’s for improving the performance of a 1-NN classifier by removing in-
stances from the training set (instance selection). We introduce three new HMN-based algorithms
for instance selection. HMN-C, which removes instances without affecting accuracy of 1-NN on the
original training set, HMN-E, based on a more aggressive storage reduction, and HMN-EI, which ap-
plies iteratively HMN-E. Their performance is assessed on 22 data sets with different characteristics,
such as input dimension, cardinality, class balance, number of classes, noise content, and pres-
ence of redundant variables. Results of experiments on these data sets show that accuracy of 1-NN
classifier increases significantly when HMN-EI is applied. Comparison with state-of-the-art editing
algorithms for instance selection on these data sets indicates best generalization performance of
HMN-EI and no significant difference in storage requirements. In general, these results indicate that
HMN’s provide a powerful graph-based representation of a training set, which can be successfully
applied for performing noise and redundance reduction in instance-based learning.

Keywords: graph-based training set representation, nearest neighbor, instance selection for instance-
based learning

1. Introduction

In supervised learning, a machine learning algorithm is given a training set, consisting of training
examples called labeled instances (here called also points). Each instance consists of an input
vector of values, one for each variable of the learning task, and has assigned a class label. A
machine learning algorithm uses the training set to generate a so-called model that is subsequently
used for deciding the class label of (classify) new instances. In particular, the 1-NN rule classifies
an unknown point into the class of the nearest of the training set points. This rule does not rely
on knowledge of the underlying data distribution (non-parametric classification). Moreover, for
all distributions, its probability of error is bounded above by twice the Bayes’ probability of error
(Cover and Hart, 1967).

c©2008 Elena Marchiori.
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A central issue in 1-NN classification, and more generally in instance-based learning, concerns
storage requirements. The basic 1-NN rule stores all training instances, hence can be slow when
classifying new instances. Moreover, when the training set contains noisy instances, generalization
accuracy can be negatively affected if these instances are stored as well (see Wilson and Martinez,
2000). Instance selection algorithms tackle these issues by selecting a subset of the training set
in order to reduce storage and possibly also enhance accuracy of the 1-NN rule on new instances
(generalization performance).

In this paper we introduce a new graph-based representation of a training set, called Hit Miss
Network. In an HMN, nodes are instances of the considered training set. Edges are defined as follows:
for each node x and for each class, there is a directed edge from x to its nearest neighbor among
training set instances belonging to that class. Thus HMN represents a ’more specific’ nearest neighbor
relation, namely between points from each pair of classes. Exact computation of HMN has quadratic
time complexity. This bound can be reduced by using metric trees or other spatial data structures
(Grother et al., 1997).

We show that structural properties of HMN’s correspond to properties of training instances related
to the decision boundary of the 1-NN rule, such as being border or central point. These observations
motivate the use of HMN for performing instance selection for the 1-NN rule. We introduce three new
instance selection algorithms. The first algorithm, called HMN-C, discards instances corresponding
to nodes of the HMN with no incoming edges (zero in-degree nodes). We prove that instance selec-
tion by means of this algorithm does not change the 1-NN classification of instances in the original
training set. The second algorithm, called HMN-E, employs a more aggressive deletion strategy,
removing a larger number of training instances, including those with zero in-degree. The last al-
gorithm, called HMN-EI, applies iteratively HMN-E. These algorithms have the desirable properties
of being order-independent and of having quadratic time complexity, which can be reduced using
metric trees or other spatial data structures.

We assess effectiveness of the proposed algorithms with respect to generalization performance
of the 1-NN rule and storage requirements, using 22 data sets with different characteristics, such as
input dimension, cardinality, class balance, number of classes, noise content, and presence of redun-
dant variables. Results of experiments show that HMN-EI improves significantly average accuracy
of the 1-NN rule, and achieves significantly better performance than HMN-C and HMN-E. Experi-
ments on the same data sets are conducted with the following three algorithms, which have been
analyzed in Brighton and Mellish’s paper on advances in instance selection (Brighton and Mel-
lish, 2002). Edited Nearest Neighbor (E-NN), designed for noise reduction (Wilson, 1972), and two
state-of-the-art editing algorithms: Iterative Case Filtering (ICF) (Brighton and Mellish, 1999) and
the best of the Decremental Reduction Optimization algorithms introduced in Wilson and Martinez
(1997) (DROP3). Comparison of the results shows that HMN-EI achieves best accuracy, with storage
requirements similar to those of ICF and DROP3.

These results indicate that HMN’s provide a powerful graph-based representation of training sets,
with local structural graph properties useful for analyzing and enhancing 1-NN-based classification.

1.1 Related Work

Graphs have been successfully used for representing relations between points of a given data set,
such as functional interaction between proteins (protein-protein interaction networks) or proximity
(nearest neighbor graphs) (Dorogovtsev and Mendes, 2003). Graph representations in the context of
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1-NN instance-based learning mainly use proximity graphs. Proximity graphs are defined as graphs
in which points close to each other by some definition of closeness are connected (Barnett, 1976).
The nearest neighbor graph (NNG) is a typical example of proximity graph, where each vertex is a
data point that is joined by an edge to its nearest neighbor. The minimum spanning tree (MST) is also
a proximity graph. Graph-based applications to instance-based learning algorithms mainly use the
Gabriel graph (GG). Exact computation of the Gabriel graph is cubic in the number of nodes. Both
the NNG and MST are subgraphs of the GG. The GG is a subgraph of the Delaunay Triangulation (DT),
the dual of the Voronoi diagram. The Voronoi diagram and correspondingly the DT of a point set
capture all the proximity information about the point set because they represent the original 1-NN
rule decision boundary.

There are two main differences between the above proximity graphs and HMN’s. First, HMN’s
explicitly use the class label of points in the definition of edges. As a consequence, while the above
proximity graphs can be applied to any data set, HMN’s are specifically defined for labeled data.
Second, HMN’s are directed graphs, while the above proximity graphs are not.

A class of directed proximity graphs, called class cover catch digraphs (CCCD’s) has been intro-
duced in Marchette et al. (2003), which provide a graph-based representation of one (target) class
versus a different (non-target) class. In a CCCD of two such classes, nodes are the target instances
and the maximal covering balls centered on each target instance, where a maximal covering ball of
a target point is the ball centered in that point with maximum radius, which does not contain any
non-target point. Each maximal covering ball is connected to its center by a directed edge.

CCCD’s have been used for translating the so-called ’constrained class cover problem’ (CCCP) to
a problem on directed graphs. The CCCP amounts to find a minimum cardinality set of open covering
balls with centers in target class points whose union covers the target class and does not contain any
point of the non-target class.

The problem of finding an optimal solution to an instance of the CCCP has been shown to be
equivalent to the one of finding a minimum cardinality dominating set in a general digraph. For
CCCD’s with points on Euclidean L2 metric space, the problem can be solved in O(nm) time, with
n and m equal to the number of target and non-target points, respectively. Further information
about analysis of CCCD’s and their application to classification can be found in DeVinney and Priebe
(2005), DeVinney and Priebe (2006) and D.J. Marchette and Priebe (2005).

While both HMN’s and CCCD are directed graphs, they describe different relations: HMN’s describe
the nearest neighbor relation between points of each pair of classes, while CCCD’s describe the
relation between maximal covering balls and target instances of one class.

Representations of a data set based on proximity graphs have been used to define algorithms
for reducing the size of the training set (for instance, Bhattacharya, 1982), for removing noisy
instances (for instance, Sánchez et al., 1997), and for detecting critical instances close to the decision
boundary (for instance, Bhattacharya and Kaller, 1998), in order to improve storage and accuracy
of 1-NN.

In particular, in Toussaint et al. (1984) a so-called Voronoi condensed data set is introduced,
obtained by discarding all those points whose Voronoi cell shares a face with those cells that con-
tain points of the same class. The 1-NN decision boundary is then characterized by the union of
the common faces of the Voronoi diagram between Voronoi cell neighbors of different classes. The
resulting instance selection algorithm produces a decision-boundary consistent set. Voronoi con-
densing does not reduce the number of points to a great extent and its computational complexity in
higher dimensions is exponential in the number of dimensions (Toussaint et al., 1984).
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Faster algorithms for instance selection based on the GG and the Reduced Neighborhood graph
(Jaromczyk and Toussaint, 1992) have been proposed, for instance in Bhattacharya and Kaller
(1998), Bhattacharya et al. (2005), Bhattacharya (1982), Mukherjee (2004) and Sánchez et al.
(1997). In particular, in Bhattacharya et al. (2005) a specific data-structure for efficient compu-
tation of approximate Gabriel neighbor is proposed. Moreover, three instance selection algorithms
are considered: Gabriel-Graph algorithm, ICF, and a so-called Hybrid. Hybrid incorporates E-NN,
ICF, and the Gabriel graph rule. Specifically, it consists of the sequential application of a modified
version of E-NN based on approximate Gabriel neighbor, a condensing step using Gabriel graph
rule, and a filtering step of ICF. The authors provide a rather short discussion of results, and do not
test the difference in quality of the average results of the algorithms.

For a thorough survey of graph-based methods for nearest neighbor classification, the reader is
referred to Toussaint (2002).

The rest of the paper is organized as follows. After introducing the terminology used throughout
the paper, the next section defines HMN’s and discusses their properties. Section 3 presents a brief
review of instance selection methods. Section 4 introduces HMN-C, HMN-E and HMN-EI. Section 5
describes experiments. Finally, in Section 6, we conclude and point to future work.

1.2 Terminology

The following notions and terms will be used in the sequel.
- X : a training set,
- L = 1, . . . ,c: class labels of X
- x: an element of X ,
- |X |: the number of elements (cardinality) of X ,
- Xi: the set of points of X with label i,
- label(x): the class label of x,
- 1-NN(x, l): the nearest neighbor of x among those points (different from x) with label l,
- G: a directed graph with nodes representing elements of X ,
- e = (x,y): an edge of G, with x the vertex from which e is directed and y the vertex to which e is
directed,
- d(x): the number of edges where x occurs (the degree of x),
- d(G): the total number of edges of G (the degree of G),
- in-degree of x: the number of edges pointing to x,

2. Hit Miss Networks

Suppose X consists of points from c different classes. In an HMN of X , a directed edge from point
x to y is defined if y is the nearest neighbor of x in the class of y. Thus each point x has c outgoing
edges, one for each class. When the classes of x and y are the same, we call x a hit of y, otherwise a
miss of y . The name hit miss network is derived from these terms.

Definition 2.1 (Hit Miss Network) The Hit Miss Network of X, HMN(X), is a directed graph G =
(V,E) with

• V = X and
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Figure 1: HMN graph of the training set for an artificial classification problem. Hit- and miss-degree
of each node is written on the left and right side of the node, respectively.

• E = {(x,1-NN(x, l)) for each x ∈ X and l ∈ L}.

Definition 2.2 (Hit, Miss Points) Let G = HMN(X). A hit of x (respectively, miss of x) is any point
y such that e = (y,x) is an edge of G and label(y) = label(x) (respectively, label(y) 6= label(x) ).

We call hit-degree (respectively miss-degree) of x the number of hit (respectively miss) nodes
of x. Hit(x) (respectively Miss(x)) denotes the set of hit (respectively miss) nodes of x.

Figure 1 shows the HMN of the training set for a toy binary classification task. Observe that the
two points with zero in-degree are relatively isolated and far from points of the opposite class, while
points with high miss-degree are closer to points of the opposite class and to the 1-NN decision
boundary.

Computing HMN requires quadratic time complexity in the number of points. Nevertheless, by
using metric trees or other spatial data structures this bound can be reduced. For instance, using
kd trees, whose construction takes time proportional to n log(n), nearest neighbor search exhibits
approximately O(n1/2) behavior (Grother et al., 1997). A recent fast all nearest neighbor algorithm
for applications involving large point-clouds is introduced in Sankaranarayanan et al. (2007).

By construction, the degree of G, and the degree d(x) of a node x ∈ V satisfy the following
properties:

d(G) = c · |X |
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and

c ≤ d(x) ≤ |X |+ c−1.

HMN’s describe the nearest neighbor relation over pairs of points from each pair of classes of the
training set. Formally, it is easy to check that

HMN(X) = ∪i, j,i6= j,i, j∈[1,c]HMN(Xi ∪X j).

Therefore, the HMN’s of pairs of classes can be constructed independently, supporting parallel
execution. Moreover, if a new class is added, one does not need to reconstruct the entire HMN, but
the HMN, between the new class and each of the other ones.
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Figure 2: A XOR problem data set (left) and plot of sorted in-degrees (y-axis) of nodes (x-axis), in
decreasing order, of the corresponding HMN graph (right).

Figure 2 shows a training set for a XOR classification task, and the sorted in-degrees of its HMN
graph. The in-degree distribution seems to follow a Power law, where very few nodes have high
in-degree. If we randomly permute the class labels of the training set then the degree distribution
changes, with lower in-degree values and more nodes having small in-degree (cf., Figure 3).

These observations indicate that the local structure of HMN provides information about properties
of the training points, and motivate us to use HMN’s for defining a new instance selection technique.
Before that, in the next section we review briefly instance selection algorithms.

3. Instance Selection Algorithms

In instance-based learning, the training set is stored, and the machine learning algorithm computes
a distance between the new instance and the stored ones in order to classify new instances. In
particular, in the one nearest neighbor algorithm (1-NN) the class label of a new instance is the one
of the stored instance with minimum distance.
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Figure 3: Training points of a XOR problem data set with labels randomly permuted (left figure)
and plot of in-degrees, sorted in decreasing order, obtained by applying HMN (right figure).

Instance selection techniques, here also called editing techniques, select a subset of the training
set in order to improve the storage and possibly the generalization performance of an instance-based
learning algorithm. In this paper we focus on the 1-NN classifier.

Research on instance selection started with the seminal work of Hart (1968). Subsequent re-
search focussed mainly on three types of training set condensation techniques (Brighton and Mel-
lish, 2002): competence preservation, competence enhancement, and hybrid approaches.

• Competence preservation algorithms compute a training set consistent subset by removing ir-
relevant points that do not affect the classification accuracy of the training set (see for instance
Angiulli, 2007; Dasarathy, 1994).

• Competence enhancement methods remove noisy points in order to increase classifier accu-
racy. Noise reduction techniques can remove exception instances or border instances which
cannot be distinguished from true noise by the technique, hence can possibly affect negatively
the generalization performance of the classifier that uses only the selected instances (see for
instance Vezhnevets and Barinova, 2007; Wilson, 1972).

• Hybrid methods aim at finding a subset of the training set that is both noise free and does
not contain irrelevant points (for instance, Brighton and Mellish, 2002; Wilson and Martinez,
1997). Alternative methods use prototypes instead of instances of the training set (see for
instance Pekalska et al., 2006).

In Wilson and Martinez (2000), Wilson and Martinez present a comprehensive survey of con-
cepts and issues related to reduction techniques for instance-based learning algorithms, including a
thorough experimental comparison of algorithms. Other, more recent surveys of instance selection
techniques are Brighton and Mellish (2002), Jankowski and Grochowski (2004a) and Jankowski
and Grochowski (2004b).
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In particular, in Brighton and Mellish (2002) the authors compare experimentally Edited Nearest
Neighbor (E-NN) and the state-of-the-art editing algorithms Iterative Case Filtering (ICF) and Decre-
mental Reduction Optimization Procedure 3 (DROP3). E-NN is an algorithm generally considered in
comparative experimental analysis of editing methods mainly because it provides useful information
on the amount of ’noisy’ instances contained in the considered data sets, and on the improvement
of accuracy obtained by their removal. Iterative Case Filtering uses E-NN as pre-processing noise
reduction step, followed by an iterative procedure for deleting ’superfluous points’. Also DROP3
begins with the application of a simple noise reduction step, followed by another simple type of
heuristic for discarding ’superfluous points’.

Results of an extensive comparative experimental analysis performed in Wilson and Martinez
(2000) and in Brighton and Mellish (2002) indicate that ICF and DROP3 are cutting-edge instance
selection algorithms, achieving best K-NN accuracy and storage reduction on a large number of
learning tasks over many other editing methods. These algorithms, together with E-NN, are de-
scribed in more detail below and used to assess comparatively the performance of the HMN-based
editing algorithms we propose.

3.1 Edited Nearest Neighbor

Wilson (1972) introduced the Edited Nearest Neighbor (E-NN), where each point x is removed from
X if it does not agree with the majority of its K nearest neighbors. This editing rule removes noisy
points as well as points close to the decision boundary, yielding to smoother decision boundaries.

3.2 Iterative Case Filtering

In Brighton and Mellish (1999) the Iterative Case Filtering algorithm (ICF) was proposed, which
first applies E-NN iteratively until it cannot remove any point, and next iteratively removes other
points as follows. At each iteration, all points for which the so-called reachability set is smaller
than the coverage one are deleted. The reachability of a point x consists of the points inside the
largest hyper-sphere containing only points of the same class as x. The coverage of x is defined as
the set of points that contain x in their reachability set.

3.3 Decremental Reduction Optimization

The family of Decremental Reduction Optimization (DROP) algorithms was first introduced by Wil-
son and Martinez (1997), and further extended and analyzed in Wilson and Martinez (2000). It
consists of five algorithms DROP1-5. DROP1 is the basic removal rule, which removes a point x from
X if the accuracy of the K-NN rule on the set of its associates does not decrease. Each point has a list
of K nearest neighbors and a list of associates, which are updated each time a point is removed from
X . A point y is an associate of x if x belongs to the set of K nearest neighbors of y. If x is removed
then the list of K nearest neighbors of each of its associates y is updated by adding a new neighbor
point z, and y is added to the list of associates of z. Moreover, for each of the K nearest neighbors y
of x, x is removed from the list of associates of y.

DROP2 is obtained from DROP1 by discarding the last update step, hence it considers all asso-
ciates in the entire training set when testing accuracy performance in the removal rule. Moreover,
the removal rule is applied to the points sorted in decreasing order of distance from their nearest
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neighbor from the other classes (nearest enemy). In this way, points furthest from their nearest
enemy are selected first.

DROP3 applies a pre-processing step which discards points of X misclassified by their K nearest
neighbors, and then applies DROP2.

DROP4 uses a stronger pre-processing step which discards points of X misclassified by their K
nearest neighbors if their removal does not hurt the classification of other instances.

Finally DROP5 modifies DROP2 by considering the reverse order of selection of points, in such
a way that instances are considered for removal beginning with instances that are nearest to their
nearest enemy.

DROP3 achieves the best mix of storage reduction and generalization accuracy of the DROP meth-
ods (see Wilson and Martinez, 2000). Moreover, results of experiments conducted in Wilson and
Martinez (1997, 2000) show that DROP3 achieves higher accuracy and smaller storage requirements
than several other methods, such as CNN (Hart, 1968), SNN (Ritter et al., 1975), E-NN (Wilson,
1972), the All k-NN method (Tomek, 1976), IB2, IB3 (Aha et al., 1991), and the Explore method
(Cameron-Jones, 1995). Therefore we use DROP3 and ICF as representatives of the state-of-the-art,
in order to assess the performance of the HMN-based editing algorithms introduced in the following
section.

4. Instance Selection with Hit Miss Networks

Zero in-degree nodes of HMN(X) include relatively isolated points, and points not too close to the
decision boundary. This is illustrated in the HMN-C sub-plot of Figure 5, where zero in-degree nodes
of the HMN for a XOR data set are highlighted in bold.

Zero in-degree nodes can be safely removed from X without affecting 1-NN classification of the
original training. Formally, we have the following result.

Proposition 4.1 Let S be obtained by removing from X all points with zero in-degree. Then S is a
decision-boundary consistent subset.

Proof
Suppose there exists x ∈ X s.t. 1-NN(x,X) = y, 1-NN(x,S) = y1 and l(y) 6= l(y1). Then y 6= y1

and y has been removed. So y has in-degree equal to 0.
From 1-NN(x,X) = y it follows that x is in Hit(y) or in Miss(y), hence the in-degree of y is at

least 1, which yields a contradiction.
Then l(y) 6= l(y1) was false. Hence S is a training set consistent subset.

We call HMN-C (HMN for training set Consistent instance selection) the algorithm that removes
from the training set all instances with zero in-degree.

HMN-C does not remove noisy instances, which are in general close to the class decision bound-
ary. Therefore, a more aggressive removal strategy is adopted in the following instance selection
heuristic algorithm, called HMN-E (HMN for Editing), which compares the hit- and miss-degree of
each node for deciding whether to remove it.

Pseudo-code of this algorithm is given in Figure 1. HMN-E is based on four if-then rules, de-
scribed below.
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(1) compute HMN(X)
(2) for x in X
(3) if wl(x) ∗ |Miss(x)|+ ε > (1−wl(x))∗ |Hit(x)|
(4) flag x for removal (rule R1)
(5) end if
(6) end for
(7) XR1,remove = {x ∈ X with flag for removal}
(8) for l in 1 . . .c
(9) Le f tl = {x 6∈ XR1,remove | l(x) = l}
(10) if |Le f tl| < 4
(11) unflag {z ∈ XR1,remove | l(z) = l, in-degree(z) > 0} (rule R2)
(12) end if
(13) end for
(14) for x in XR1,remove

(15) if c > 3 and |Miss(x)| < c/2 and in-degree(x) > 0
(16) unflag x (rule R3)
(17) end if
(18) if |Hit(x)| ≥ |Xl(x)|/4
(19) unflag x (rule R4)
(20) end if
(21) end for
(22) remove from X all x with flag for removal

Figure 4: Pseudo-code of HMN-E algorithm. Input: training set X . Output: subset of X .

1. The first rule removes x if its miss-degree is greater or equal than its hit-degree, that is
|Miss(x)| ≥ |Hit(x)|. This amounts to discard a point when it is isolated (that is, has zero
in-degree), as well as when it has more ’miss’ than ’hit’ points.

In order to deal with unbalanced data sets, the terms of the inequality are weighted by the
fraction of points of the same and other classes, respectively, resulting in rule R1 (lines 3-5 in
Figure 1) which removes a point x from X if

wl(x) ∗ |Miss(x)|+ ε > (1−wl(x))∗ |Hit(x)|, (1)

where wl(x) = |{z | l(z) = l(x)}|/|X | and ε < 1 (ε = 0.1 is used in our experiments).

2. On small data sets, application of R1 could remove too many points of one class. Rule R2
(lines 10-12 in Figure 1) handles this case. It checks if the size of a class becomes too
small after application of R1. In such a case all points of that class having positive in-degree
are added. The threshold used in the rule is set in such a way that the minimum size of a
condensed class becomes equal to 4. We consider this to be a reasonable class storage lower
bound for the condensed 1-NN rule.

3. Suppose for simplicity each class has equal size (|X |/c). Then |Miss(x)| ≤ (c−1)2|X |
c , and

|Hit(x)| ≤ |X |/c − 1. This |Miss(x)|’s upper bound grows linearly with the number c of
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classes, while the |Hit(x)|’s upper bound depends on c in an inversely linear way. Therefore
|Miss(x)| is more likely to grow faster than |Hit(x)| in the presence of many classes. This
justifies the introduction of the heuristic Rule R3 (lines 15-17 in Figure 1), which deals with
data sets having more than three classes. For more than three classes, a point x with in-degree
greater than 0 is added if it has a low number of ’miss’ points, low with respect to c. Here we
use as threshold half of the total number of classes.

4. Points with many ’hits’ are closer to the ’centroid’ of the class, hence are considered to be
relevant for discriminating the classes, even when they are close to points of other classes.
This case is implemented in rule R4 (lines 18-20 in Figure 1) which adds x if it is the ’hit’ of
at least 25% of the points of its class.

Rules R2 - R4 are ’rules of thumb’. The threshold in each of these rules has been fixed to a
value considered reasonable, and has not been tuned on each specific data set. These rules could be
improved by means of parameter tuning or domain knowledge on the specific data distribution of
the learning task.

In order to remove more “redundant” points, HMN-E can be applied iteratively as follows: repeat
the application of HMN-E until the generalization accuracy of 1-NN on the original training set with
the reduced set decreases. We call this algorithm HMN-E Iterated (HMN-EI).

Observe that the three HMN-based editing algorithms are order independent, that is, their output
does not depend on the order in which training points are processed. Moreover, by construction,
points removed by HMN-C are also removed by HMN-E, and points removed by HMN-E are also
removed by HMN-EI.

4.1 Comparison of the Methods on the XOR Problem

Figure 5 shows application of the considered editing algorithms to the training set of a XOR classi-
fication task. Points removed by an algorithm are shown in bold. As expected, points removed by
E-NN are close to the decision boundary. ICF and DROP3 delete also ’safe’ points far from the deci-
sion boundary (in order to enhance storage requirements). HMN-C removed points ’locally’ isolated,
while HMN-E removes also ’safe’ points as well as points close to the decision boundary. Its iterated
version HMN-EI selects very few points far from the decision boundary. The figures do not show
any other apparent set-theoretic relationship between the subsets of points removed by the methods.

Figure 6 plots the sorted in-degrees of the considered XOR training set, where in-degree of
points removed by a method are marked with triangles. As expected, points removed by ICF and
not already deleted by E-NN have low in-degree. The majority of points removed by E-NN have
high in-degree, showing the tendency of ’noisy’ points to have high in-degree. HMN-E removes
more points with high in-degree than E-NN, and it selects points with low, but not zero, degree.
While HMN-EI selects only points with in-degree 1 and 2, ICF and DROP3 select also points of
higher degree. On this example, HMN-EI achieves best storage reduction.

5. Experiments

The following seven algorithms are considered: 1-NN (no instance selection), HMN-C, HMN-E, HMN-EI,
E-NN, ICF, and DROP3. In order to assess their comparative performance, we implemented the above
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Figure 5: Effect of the algorithms on a XOR problem training set: removed points are shown with
filled markers. Top row, from left to right: E-NN, ICF, DROP3. Bottom row, from left to
right: HMN-C, HMN-E and HMN-EI.

algorithms and conducted extensive experiments on 22 Machine Learning benchmark data sets. All
algorithms are tested using one neighbor.

The performance measures here used are (average) test accuracy of the classifier and (average)
percentage of the training set removed by the method.

5.1 Data Sets

The following 22 publicly available benchmark data sets used in previous studies on model selection
for (semi)supervised learning, are considered.
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Figure 6: In-degree of nodes of the HMN built on the considered XOR training set, sorted in decreas-
ing order. The in-degree of points removed by an algorithm are marked with triangles.
Top row, from left to right: E-NN, ICF, DROP3. Bottom row, from left to right: HMN-C,
HMN-E and HMN-EI.

1. Raetsch’s binary classification benchmark data sets have been used in Rätsch et al. (2001):
they consists of 1 artificial and 12 real-life data sets from the UCI, DELVE and STATLOG
benchmark repositories.

For each experiment, the 100 (20 for Splice and Image) partitions of each data set into
training and test set available in the repository are here used.

2. Chapelle’s benchmark data sets used in Chapelle and Zien (2005) are from two artificial
binary classification and three real-life multi-class classification problems. Specifically, g50c
and g10n are generated from two standard normal multi-variate Gaussians. In g50c, the labels
correspond to the Gaussians, and the means are located in 50-dimensional space such that the
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Bayes’ error is 5%. In contrast, g10n is a deterministic problem in 10 dimensions, where the
decision function traverses the centers of the Gaussians, and depends on only two of the input
dimensions.

The three real world data sets are Coil20, consisting of gray-scale images of 20 different
objects taken from different angles, in steps of 5 degrees, Uspst, the test data part of the
USPS data on handwritten digit recognition, and Text consisting of the classes ’mac’ and
’mswindows’ of the Newsgroup20 data set.

For each experiment, the 10 partitions of each data set into training and test set available in
the repository are used.

3. Finally, we consider four standard benchmark data sets from the UCI Machine Learning
repository: Iris, Bupa, Pima, and Breast-W.

For each experiment, 100 partitions of each data set into training and test set are used. Each
partition randomly divides the data set into training and test set, equal to 80% and 20% of the
data, respectively.

Thus the benchmark data consists of 3 artificial data sets (Banana, g50c, g10n) and 19 real-
life ones, with different characteristics as shown in Table 1. In particular, Chapelle’s data sets are
balanced, that is, all classes are represented by similar number of points, while some of Raetsch’s
data sets are rather unbalanced.

5.2 Results

Cross validation is applied to each data set. For each partition of the data set, each editing algorithm
is applied to the training set X from which a subset S is returned. The one nearest neighbor classifier
that uses only points of S is applied to the test set. The average accuracy on the test set over the
given partitions is reported for each algorithm (cf., Table 2, Table 3). The average percentage of
instances that are excluded from S is also reported under the column with label R. Average and
median accuracy and training set reduction percentage for each algorithm over all the 22 data sets
is reported near the bottom of the Table.

We compare statistically HMN-EI with each of the other algorithms as follows.

• First a paired t-test on the cross validation results on each data set is applied, to assess whether
the average accuracy for HMN-EI is significantly different than each of the other algorithms.
In Tables 2, 3 a ’+’ indicates that HMN-EI’s average accuracy is significantly higher than the
other algorithm at a 0.05 significance level. Similarly, a ’-’ indicates that HMN-EI’s average
accuracy is significantly lower than the other algorithm at a 0.05 significance level. The row
labeled ’Sig.acc.+/-’ reports the number of times HMN-EI’s average accuracy is significantly
better and worse than each of the other algorithms at a 0.05 significance level. A paired t-test
is also applied to assess significance of differences in storage reduction percentages for each
experiment.

• Second, in order to assess whether differences in accuracy and storage reduction on all runs
of the entire group of data sets are significant, a non-parametric paired test, the Wilcoxon
Signed Ranks test1 is applied to compare HMN-EI with each of the other algorithms. A ’+’

1. We used ’wilcoxon’ Matlab routine by G. Cardillo.
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Data Set CL VA TR Cl.Inst. TE Cl.Inst.
Banana 2 2 400 212-188 4900 2712-2188
B.Cancer 2 9 200 140-60 77 56-21
Diabetis 2 8 468 300-168 300 200-100
German 2 20 700 478-222 300 222-78
Heart 2 13 170 93-77 100 57-43
Image 2 18 1300 560-740 1010 430-580
Ringnorm 2 20 400 196-204 7000 3540-3460
F.Solar 2 9 666 293-373 400 184-216
Splice 2 60 1000 525-475 2175 1123-1052
Thyroid 2 5 140 97-43 75 53-22
Titanic 2 3 150 104-46 2051 1386-66
Twonorm 2 20 400 186-214 7000 3511-3489
Waveform 2 21 400 279-121 4600 3074-1526

g50 2 50 550 252-248 50 23-27
g10n 2 10 550 245-255 50 29-21
Coil20 20 1024 1440 70 40 2
Text 2 7511 1946 959-937 50 26-24
Uspst 10 256 2007 267-201-169-192-137 50 6-5-9-4-3-3-4-5-5

-171-169-155-175

Iris 3 4 120 40-40-40 30 10-10-10
Bupa 2 6 276 119-157 69 26-43
Pima 2 8 615 398-217 153 102-51
Breast-W 2 9 546 353-193 137 91-46

Table 1: Data Sets used in the experiments. Raetsch’s benchmark repository available at
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm. Chapelle’s
one at http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/lds/. Four pop-
ular benchmark data sets from UCI Machine Learning repository available at
http://mlearn.ics.uci.edu/MLRepository.html. CL = number of classes, TR =
training set, TE = test set, VA = number of variables, Cl.Inst. = number of instances in
each class.

(respectively ’-’) in the row labeled ’Wilcoxon’ indicates that HMN-EI is significantly better
(respectively worse) than the other algorithm.

Results of Table 2 show that HMN-EI achieves best generalization accuracy, significantly better
than the one of 1-NN and of HMN-C. Moreover, HMN-EI outperforms significantly HMN-E with
respect to storage requirements and achieves similar generalization performance. For these reasons,
HMN-EI is chosen for further comparison with state-of-the-art editing algorithms.

5.3 Comparison with Other Algorithms

From the results of the experiments reported in Table 3 we derive the following observations.
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Data Set 1-NN HMN-C R HMN-E R HMN-EI R

Banana 86.4 + 85.6 + 19.7 + 88.2 + 38.5 + 88.6 57.9
B.Cancer 67.3 + 65.9 + 20.1 + 66.1 + 50.0 + 69.2 72.8
Diabetis 69.9 + 68.6 + 22.4 + 72.5 + 53.1 + 73.5 73.1
German 70.5 + 69.4 + 26.0 + 72.5 56.4 + 72.9 75.5
Heart 76.8 + 76.1 + 23.7 + 81.7 52.9 + 81.6 79.3
Image 96.6 - 96.1 - 23.7 + 94.8 - 41.1 + 92.7 57.3
Ringnorm 65.0 + 63.4 + 33.5 + 66.6 - 63.9 + 65.6 82.9
F.Solar 60.8 + 60.5 + 80.1 + 63.5 + 86.9 + 64.7 92.1
Splice 71.1 - 70.1 + 46.0 + 72.3 - 71.7 + 70.7 86.6
Thyroid 95.6 - 94.9 - 24.2 + 93.4 38.9 + 93.2 59.1
Titanic 67.0 + 66.9 + 79.6 + 70.9 + 84.9 + 76.0 94.7
Twonorm 93.3 + 92.8 + 39.4 + 95.7 60.4 + 95.9 83.5
Waveform 84.2 + 83.6 + 36.2 + 86.0 - 58.0 + 85.4 79.9

g50c 79.6 + 80.2 + 42.7 + 87.4 - 71.0 + 86.8 88.3
g10n 75.0 + 74.6 + 26.0 + 75.8 + 63.5 + 79.2 82.5
Coil20 100 - 100 - 6.7 + 100 - 10.4 + 99.5 15.0
Text 92.8 - 90.8 - 16.7 + 89.4 - 54.1 + 86.4 78.9
Uspst 94.6 - 94.6 - 12.5 + 94.4 - 20.3 + 93.6 29.8

Iris 95.5 95.0 24.7 + 95.1 38.7 + 95.4 75.2
Breast-W 95.7 + 95.5 + 50.7 + 97.1 54.9 + 96.9 71.8
Bupa 61.6 + 59.5 + 18.5 + 63.4 + 54.7 + 64.5 76.0
Pima 67.8 + 66.5 + 21.4 + 70.8 + 50.8 + 71.7 68.1

Average 80.3 79.6 31.6 81.7 53.4 82.2 71.8
Median 78.2 78.1 24.5 83.9 54.4 83.5 75.8
Sig.+/- 15/6 16/5 22/0 8/8 22/0 n/a n/a

Wilcoxon + + + ∼ + n/a n/a

Table 2: Results of experiments on ML benchmark data sets. Each column labeled with the name
of an algorithm reports its average test set accuracy on each data set. R = percentage of
training points removed. Best results are shown in bold. Average (Median) = average
(median) results over data sets. Sig.+/- = number of times HMN-EI average accuracy (stor-
age reduction) is significantly better (+) or significantly worse (-) than the other algorithm,
according to a paired t-test at 0.05 significance level. Wilcoxon = a ’+’ indicates HMN-EI
significantly better than the other algorithm at a 0.01 significance level according to a
Wilcoxon test for paired samples, ∼ indicates no significant difference.

• On the g50c data set, HMN-EI achieves highest average accuracy, significantly better than that
of all other methods. With an average error of about 13%, close to twice the Bayes probability
of error, HMN-EI performs almost optimally, and discards about 88% of the training data. This
shows effectiveness and robustness of this method with respect to the presence of noise (on
this type of classification task).
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Data Set HMN-EI R ICF R E-NN R DROP3 R

Banana 88.6 57.9 86.1 + 79.2 - 87.8 + 13.1 + 87.6 + 68.2 -
B.Cancer 69.2 72.8 67.0 + 79.0 - 69.4 33.3 + 69.7 - 72.9
Diabetis 73.5 73.1 69.8 + 83.1 - 72.6 + 30.3 + 72.3 + 73.4
German 72.9 75.5 68.6 + 82.2 - 73.0 30.1 + 72.0 + 74.3 +
Heart 81.6 79.3 76.7 + 80.9 - 80.6 + 23.1 + 80.2 + 72.1 +
Image 92.7 57.3 93.8 80.3 - 95.8 - 3.4 + 95.1 - 64.9 -
Ringnorm 65.6 82.9 61.2 + 85.5 - 54.8 + 35.3 + 54.7 + 80.6 +
F.Solar 64.7 92.1 61.0 + 52.0 + 61.3 + 39.8 + 61.4 + 93.8 -
Splice 70.7 86.6 66.3 + 85.5 + 68.4 + 28.3 + 67.6 + 79.01 +
Thyroid 93.2 59.1 91.9 + 85.6 - 94.0 - 4.0 + 92.7 + 65.7 -
Titanic 76.0 94.7 67.5 54.3 + 67.3 + 33.0 + 67.7 + 94.3
Twonorm 95.9 83.5 89.2 + 90.7 - 94.1 + 6.4 + 94.3 + 72.7 +
Waveform 85.4 79.9 82.1 86.8 - 85.4 15.7 + 84.9 + 73.6 +

g50c 86.8 88.3 82.2 + 56.3 + 82.2 + 19.7 + 82.8 + 77.7 +
g10n 79.2 82.5 73.0 + 53.9 + 74.0 + 22.8+ 75.0 + 71.4 +
Coil20 99.5 15.0 98.5 + 42.6 - 100 - 0.0 + 95.5 + 64.4 -
Text 86.4 78.9 88.2 - 68.8 + 91.6 - 7.7 + 88.0 - 66.7 +
Uspst 93.6 29.8 86.2 87.8 - 94.0 4.7 + 91.4 + 67.3 -

Iris 95.4 75.2 95.3 69.7 + 95.9 - 4.2 + 95.8 - 66.4 +
Breast-W 96.9 71.8 95.4 + 93.8 - 96.6 4.1 + 96.8 74.2 -
Bupa 64.5 76.0 60.9 + 74.3 + 63.2 + 38.1+ 63.1 + 73.8 +
Pima 71.7 68.1 67.9 + 78.7 - 69.7 + 32.4 + 69.4 + 73.3 -

Average 82.0 71.8 78.6 75.0 80.5 19.5 79.9 73.7
Median 83.5 75.8 79.4 79.8 81.4 21.25 81.5 73.1
Sig.+/- n/a n/a 16/2 7/15 12/5 22/0 17/4 11/8
Wilcoxon n/a n/a + ∼ + + + ∼

Table 3: Results of experiments on ML benchmark data sets of HMN-EI, ICF, Wilson’s editing, and
DROP3.

• On the g10n data set, HMN-EI achieves significantly better performance than that of the other
methods, indicating robustness to the presence of irrelevant variables (on this type of classifi-
cation task).

• On data sets with more than three classes, HMN-EI has worse storage requirements than the
other algorithms, but also generally higher accuracy, due to the more conservative editing
strategy (Rule 3) HMN-EI uses on data sets with many classes.

• Results of a paired t-test at a 0.05 significance level shows better accuracy performance of
HMN-EI over ICF, E-NN and DROP3 (cf., row Sig.+/-) on 15, 12, and 17 of the data sets,
and worse accuracy on 2, 5, and 4 data sets, respectively. Storage reduction of HMN-EI is
7, 22, and 11 times better, and 15, 0, and 8 worse, indicating better storage performance of
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ICF, according to this test. As shown, for instance, in Demsar (2006), comparison of the
performance of two algorithms based on the t-test is only indicative because the assumptions
of the test are not satisfied, and the Wilcoxon test is shown to provide more reliable estimates.

• Results of the non parametric Wilcoxon test for paired samples at a 0.01 significance level
indicate that the performance of HMN-EI on the entire set of classification tasks is signifi-
cantly better than each one of the other algorithms with respect to accuracy, and that there
is no significant difference in storage reduction between HMN-EI and state-of-the-art editing
algorithms (cf., last row of the table).

• The three best performing instance selection algorithms, DROP3, ICF and HMN-EI have quadratic
computational complexity in the number of instances (which can be reduced by using ad-hoc
data structures such as kd-trees). ICF and HMN-EI are in principle slower than the other
algorithms, due to their multiple passes over (selected) instances. Nevertheless, in our ex-
periments these algorithms require a small number of iterations (about 7 for ICF and 3 for
HMN-EI). Thus their computational complexity is not significantly worse than that of DROP3.

In summary, results of these experiments indicate effectiveness of HMN-based instance selection
and robustness of HMN-EI with respect to the presence of high number of variables, training exam-
ples, multiple classes, noise and irrelevant variables. Comparison with results obtained by E-NN,
ICF and DROP3 shows improved average accuracy and similar storage requirement of HMN-EI, ICF
and DROP3 on these data sets.

6. Conclusions and Future Work

This paper proposed a new graph-based representation of a training set and showed how local struc-
tural properties of nodes provide information about the closeness of the corresponding points to the
decision boundary of the 1-NN rule. We formalized these properties by means of the notions of Hit
and Miss set, and used such notions for defining three algorithms for 1-NN’s instance selection. We
proved that HMN-C removes instances without affecting the accuracy of the 1-NN rule on the orig-
inal training set (it computes a decision-boundary consistent subset). We showed that HMN-E and
HMN-EI remove more points than HMN-C, including those close to the decision boundary. Results of
extensive experiments indicated that HMN-EI significantly improves the generalization accuracy of
1-NN and reduces significantly its storage requirements.

We compared experimentally HMN-EI with a popular noise reduction algorithm (E-NN), and two
state-of-the-art editing algorithms (ICF and DROP3). Results of extensive experiments on 19 real-
life data sets and 3 artificial ones showed that HMN-EI achieved best average accuracy, and storage
reduction similar to that of ICF and DROP3. This indicates that simple local topological properties
of the proposed graph-based data set representation provide an effective tool for 1-NN’s instance
selection.

The design of condensing algorithms could also be based on an extension of HMN for describing
the K-nearest neighbor relation between each pair of classes. We conducted preliminary experi-
ments to investigate whether using more than one neighbor to classify new points affects the accu-
racy performance of the condensing algorithms here considered. Results of experiments on seven
UCI ML data setdata sets, using 3 and 5 neighbors for classifying new points, showed that HMN-EI
still achieves best average accuracy. In general, the generalization performance increased (of about
1%, 2%) when 3 and 5 neighbors were used.
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In this paper we use only the degree of nodes as mean for analyzing a training set in order to im-
proving 1-NN’s performance. It would be interesting to investigate whether other graph-theoretical
properties of HMN’s, such as information on path distance, clustering coefficient and diameter, pro-
vide useful information for studying and improving the 1-NN’s performance.

Other future work includes the use of HMN’s to tackle the following interesting problems: mea-
suring the difficulty of a learning task with respect to a given training set (see for instance Zighed
et al., 2002); enhancing classification techniques based on a notion of margin, such as Support Vec-
tor Machines (see for instance Shin and Cho, 2007); improving Boosting algorithms by means of
editing techniques (see for instance Vezhnevets and Barinova, 2007), and, more generally, tackling
over-fitting in supervised learning.
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Abstract

Regularization by the sum of singular values, also referred to as the trace norm, is a popular tech-
nique for estimating low rank rectangular matrices. In this paper, we extend some of the consis-
tency results of the Lasso to provide necessary and sufficient conditions for rank consistency of
trace norm minimization with the square loss. We also provide an adaptive version that is rank
consistent even when the necessary condition for the non adaptive version is not fulfilled.

Keywords: convex optimization, singular value decomposition, trace norm, consistency

1. Introduction

In recent years, regularization by various non Euclidean norms has seen considerable interest. In
particular, in the context of linear supervised learning, norms such as the `1-norm may induce
sparse loading vectors, that is, loading vectors with low cardinality or `0-norm. Such regularization
schemes, also known as the Lasso (Tibshirani, 1994) for least-square regression, come with efficient
path following algorithms (Efron et al., 2004). Moreover, recent work has studied conditions under
which such procedures consistently estimate the sparsity pattern of the loading vector (Yuan and
Lin, 2007; Zhao and Yu, 2006; Zou, 2006).

When learning on rectangular matrices, the rank is a natural extension of the cardinality, and the
sum of singular values, also known as the trace norm or the nuclear norm, is the natural extension
of the `1-norm; indeed, as the `1-norm is the convex envelope of the `0-norm on the unit ball (i.e.,
the largest lower bounding convex function) (Boyd and Vandenberghe, 2003), the trace norm is the
convex envelope of the rank over the unit ball of the spectral norm (Fazel et al., 2001). In practice,
it leads to low rank solutions (Fazel et al., 2001; Srebro et al., 2005) and has seen recent increased
interest in the context of collaborative filtering (Srebro et al., 2005), multi-task learning (Abernethy
et al., 2006; Argyriou et al., 2007; Abernethy et al., 2008) or classification with multiple classes
(Amit et al., 2007).

In this paper, we consider the rank consistency of trace norm regularization with the square
loss, that is, if the data were actually generated by a low-rank matrix, will the matrix and its rank
be consistently estimated? In Section 4, we provide necessary and sufficient conditions for the rank
consistency that are extensions of corresponding results for the Lasso (Yuan and Lin, 2007; Zhao
and Yu, 2006; Zou, 2006) and the group Lasso (Bach, 2008). We do so under two sets of sampling
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assumptions detailed in Section 3.2: a full i.i.d assumption and a non i.i.d assumption which is
natural in the context of collaborative filtering.

As for the Lasso and the group Lasso, the necessary condition implies that such procedures do
not always estimate the rank correctly; similar to the adaptive version of the Lasso and group Lasso
(Zou, 2006), we design an adaptive version to achieve n−1/2-consistency and rank consistency, with
no consistency conditions. Following Zou (2006), the adaptive version is based on a unregular-
ized least-squares estimates which is used to design appropriate reweighted matrices. Finally, in
Section 6, we present a smoothing approach to convex optimization with the trace norm, while in
Section 6.3, we show simulations on toy examples to illustrate the consistency results.

2. Notation

In this paper we consider various norms on vectors and matrices. On vectors x in R
d , we always

consider the Euclidean norm, that is, ‖x‖ = (x>x)1/2. On rectangular matrices in R
p×q, however,

we consider several norms, based on singular values (Stewart and Sun, 1990): the spectral norm
‖M‖2 is the largest singular value (defined as ‖M‖2 = supx∈Rq

‖Mx‖
‖x‖ ), the trace norm (or nuclear

norm) ‖M‖∗ is the sum of singular values, and the Frobenius norm ‖M‖F is the `2-norm of singular
values—also defined as ‖M‖F = (trM>M)1/2. In Appendix A and B, we review and derive relevant
tools and results regarding perturbation of singular values as well as the trace norm.

Given a matrix M ∈ R
p×q, vec(M) denotes the vector in R

pq obtained by stacking its columns
into a single vector; and A⊗B denotes the Kronecker product between matrices A ∈ R

p1×q1 and
B ∈R

p2×q2 , defined as the matrix in R
p1 p2×q1q2 , defined by blocks of sizes p2×q2 equal to ai jB. We

make constant use of the following identities: (B>⊗A)vec(X) = vec(AXB) and vec(uv>) = v⊗u.
For more details and properties, see Golub and Loan (1996) and Magnus and Neudecker (1998).
We also use the notation ΣW for Σ ∈ R

pq×pq and W ∈ R
p×q to design the matrix in R

p×q such that
vec(ΣW ) = Σvec(W ) (note the potential confusion with ΣW when Σ is a matrix with p columns).

We use the following standard asymptotic notations: a random variable Zn is said to be of order
Op(an) if for any η > 0, there exists M > 0 such that supn P(|Zn| > Man) < η. Moreover, Zn is said
to be of order op(an) if Zn/an converges to zero in probability, that is, if for any η > 0, P(|Zn|> ηan)
converges to zero. See Van der Vaart (1998) and Shao (2003) for further definitions and properties
of asymptotics in probability.

Finally, we use the following two conventions: lowercase for vectors and uppercase for matrices,
while bold fonts are reserved for population quantities.

3. Trace Norm Minimization

We consider the problem of predicting a real random variable z as a linear function of a matrix
M ∈ R

p×q, where p and q are two fixed strictly positive integers. Throughout this paper, we assume
that we are given n observations (Mi,zi), i = 1, . . . ,n, and we consider the following optimization
problem with the square loss:

min
W∈Rp×q

1
2n

n

∑
i=1

(zi − trW>Mi)
2 +λn‖W‖∗, (1)

where ‖W‖∗ denotes the trace norm of W .
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3.1 Special Cases

Regularization by the trace norm has numerous applications (see, e.g., Recht et al., 2007, for a
review); in this paper, we are particularly interested in the following two situations:

Lasso and group Lasso When xi ∈ R
m, we can define Mi = Diag(xi) ∈ R

m×m as the diagonal
matrix with xi on the diagonal. In this situation, the minimization of problem in Eq. (1) must lead to
diagonal solutions (indeed the minimum trace norm matrix with fixed diagonal is the corresponding
diagonal matrix, which is a consequence of Lemma 20 and Proposition 21) and for a diagonal
matrix the trace norm is simply the `1 norm of the diagonal. Once we have derived our consistency
conditions, we check in Section 4.5 that they actually lead to the known ones for the Lasso (Yuan
and Lin, 2007; Zhao and Yu, 2006; Zou, 2006).

We can also see the group Lasso as a special case; indeed, if xi j ∈ R
d j for j = 1, . . . ,m, i =

1, . . . ,n, then we define Mi ∈ R
(∑m

j=1 d j)×m as the block diagonal matrix (with non square blocks)
with diagonal blocks x ji, j = 1, . . . ,m. Similarly, the optimal Ŵ must share the same block-diagonal
form, and its singular values are exactly the norms of each block, that is, the trace norm is indeed
the sum of the norms of each group. We also get back results from Bach (2008) in Section 4.5.

Note that the Lasso and group Lasso can be seen as special cases where the singular vectors
are fixed. However, the main difficulty in analyzing trace norm regularization, as well as the main
reason for it use, is that singular vectors are not fixed and those can often be seen as implicit features
learned by the estimation procedure (Srebro et al., 2005). In this paper we derive consistency results
about the value and numbers of such features.

Collaborative filtering and low-rank completion Another natural application is collaborative
filtering where two types of attributes x and y are observed and we consider bilinear forms in x
and y, which can be written as a linear form in M = xy> (thus it corresponds to situations where
all matrices Mi have rank one). In this setting, the matrices Mi are not usually i.i.d. but exhibit
a statistical dependence structure outlined in Section 3.2. A special case here is when then no
attributes are observed and we simply wish to complete a partially observed matrix (Srebro et al.,
2005; Abernethy et al., 2006). The results presented in this paper do not immediately apply because
the dimension of the estimated matrix may grow with the number of observed entries and this
situation is out of the scope of this paper.

Multivariate linear supervised learning When predicting multiple variables, in the context of
multivariate linear regression (Yuan et al., 2007) or in the multiple category classification (Amit
et al., 2007), the trace norm allows to perform feature selection.

3.2 Assumptions

We make the following assumptions on the sampling distributions of M ∈ R
p×q for the problem in

Eq. (1). We let denote: Σ̂mm = 1
n ∑n

i=1 vec(Mi)vec(Mi)
> ∈ R

pq×pq, and we consider the following
assumptions:

(A1) Given Mi, i = 1, . . . ,n, the n values zi are i.i.d. and there exists W ∈ R
p×q such that for all

i, E(zi|M1, . . . ,Mn) = trW>Mi and var(zi|M1, . . . ,Mn) is a strictly positive constant σ2. W is
not equal to zero and does not have full rank.
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(A2) There exists an invertible matrix Σmm ∈ R
pq×pq such that E‖Σ̂mm − Σmm‖2

F = O(ζ2
n) for a

certain sequence ζn that tends to zero.

(A3) The random variable n−1/2 ∑n
i=1 εi vec(Mi) is converging in distribution to a normal distribu-

tion with mean zero and covariance matrix σ2Σmm.

Assumption (A1) states that given the input matrices Mi, i = 1, . . . ,n we have a linear prediction
model, where the loading matrix W is non trivial and rank-deficient, the goal being to estimate this
rank (as well as the matrix itself). We let denote W = UDiag(s)V> its singular value decomposition,
with U ∈ R

p×r , V ∈ R
q×r, and r ∈ (0,min{p,q}) denotes the rank of W. We also let denote

U⊥ ∈ R
p×(p−r) and V⊥ ∈ R

q×(q−r) any orthogonal complements of U and V.
We let denote εi = zi − trW>Mi and Σ̂Mz = 1

n ∑n
i=1 ziMi ∈ R

p×q, Σ̂Mε = 1
n ∑n

i=1 εiMi = Σ̂Mz −
Σ̂mmW ∈ R

p×q. We may then rewrite Eq. (1) as

min
W∈Rp×q

1
2

vec(W )>Σ̂mm vec(W )− trW>Σ̂Mz +λn‖W‖∗,

or, equivalently,

min
W∈Rp×q

1
2

vec(W −W)>Σ̂mm vec(W −W)− trW>Σ̂Mε +λn‖W‖∗.

The sampling assumptions (A2) and (A3) may seem restrictive, but they are satisfied in the
following two natural situations. The first situation corresponds to a classical full i.i.d problem,
where the pairs (zi,Mi) are sampled i.i.d:

Lemma 1 Assume (A1). If the matrices Mi are sampled i.i.d., z and M have finite fourth order
moments, and E

{

vec(M)vec(M)>
}

is invertible, then (A2) and (A3) are satisfied with ζn = n−1/2.

Note the further refinement when for each i, Mi = xiy>i and xi and yi are independent, which implies
that Σmm is factorized as a Kronecker product, of the form Σyy ⊗ Σxx where Σxx and Σyy are the
(invertible) second order moment matrices of x and y.

The second situation corresponds to a collaborative filtering situation where two types of at-
tributes are observed, for example, x and y, and for every pair (x,y) we wish to predict z as a bilinear
form in x and y: we first sample nx values for x, and ny values for y, and we select uniformly at ran-
dom a subset of n 6 nxny observations from the nxny possible pairs. The following lemma, proved
in Appendix C.1, shows that this set-up satisfies our assumptions:

Lemma 2 Assume (A1). Assume moreover that nx values x̃1, . . . , x̃nx are sampled i.i.d and ny values
ỹ1, . . . , ỹny are also sampled i.i.d. from distributions with finite fourth order moments and invertible
second order moment matrices Σxx and Σyy. Assume also that a random subset of size n of pairs
(ik, jk) in {1, . . . ,nx}×{1, . . . ,ny} is sampled uniformly, then if nx, ny and n tend to infinity, then

(A2) and (A3) are satisfied with Σmm = Σyy ⊗Σxx and ζn = n−1/2 +n−1/2
x +n−1/2

y .

3.3 Optimality Conditions

From the expression of the subdifferential of the trace norm in Proposition 21 (Appendix B), we can
identify the optimality condition for problem in Eq. (1), that we will constantly use in the paper:
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Proposition 3 The matrix W with singular value decomposition W = U Diag(s)V > (with strictly
positive singular values s) is optimal for the problem in Eq. (1) if and only if

Σ̂mmW − Σ̂Mz +λnUV> +N = 0,

with U>N = 0, NV = 0 and ‖N‖2 6 λn.

This implies notably that W and Σ̂mmW − Σ̂Mz have simultaneous singular value decompositions,
and the largest singular values are less than λn, and exactly equal to λn for the corresponding strictly
positive singular values of W . Note that when all matrices are diagonal (the Lasso case), we obtain
the usual optimality conditions (see also Recht et al., 2007, for further discussions).

4. Consistency Results

We consider two types of consistency; first, the regular consistency, that is, we want the probability
P(‖Ŵ −W‖ > ε) to tend to zero as n tends to infinity, for all ε > 0. We also consider the rank con-
sistency, that is, we want that P(rank(Ŵ ) 6= rank(W)) tends to zero as n tends to infinity. Following
the similar properties for the Lasso, the consistency depends on the decay of the regularization
parameter. Essentially, we obtain the following results:

a) if λn does not tend to zero, then the trace norm estimate Ŵ is not consistent;

b) if λn tends to zero faster than n−1/2, then the estimate is consistent and its error is Op(n−1/2)
while it is not rank-consistent with probability tending to one (see Section 4.1);

c) if λn tends to zero exactly at rate n−1/2, then the estimator is consistent with error Op(n−1/2)
but the probability of estimating the correct rank is converging to a limit in (0,1) (see Sec-
tion 4.2);

d) if λn tends to zero more slowly than n−1/2, then the estimate is consistent with error Op(λn)
and its rank consistency depends on specific consistency conditions detailed in Section 4.3.

The following sections will look at each of these cases, and state precise theorems. We then consider
some special cases, that is, factored second-order moments and implications for the special cases of
the Lasso and group Lasso.

The first proposition (proved in Appendix C.2) considers the case where the regularization pa-
rameter λn is converging to a certain limit λ0. When this limit is zero, we obtain regular consistency
(Corollary 5 below), while if λ0 > 0, then Ŵ tends in probability to a limit which is always different
from W:

Proposition 4 Assume (A1-3). Let Ŵ be a global minimizer of Eq. (1). If λn tends to a limit λ0 > 0,
then Ŵ converges in probability to the unique global minimizer of

min
W∈Rp×q

1
2

vec(W −W)>Σmm vec(W −W)+λ0‖W‖∗.

Corollary 5 Assume (A1-3). Let Ŵ be a global minimizer of Eq. (1). If λn tends to zero, then Ŵ
converges in probability to W.

We now consider finer results when λn tends to zero at certain rates, slower or faster than n−1/2, or
exactly at rate n−1/2.
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4.1 Fast Decay of Regularization Parameter

The following proposition—which is a consequence of standard results in M-estimation (Shao,
2003; Van der Vaart, 1998)—considers the case where n1/2λn is tending to zero, where we obtain
that Ŵ is asymptotically normal with mean W and covariance matrix n−1σ2Σ−1

mm, that is, for fast
decays, the first order expansion is the same as the one with no regularization parameter:

Proposition 6 Assume (A1-3). Let Ŵ be a global minimizer of Eq. (1). If n1/2λn tends to zero,
n1/2(Ŵ −W) is asymptotically normal with mean W and covariance matrix σ2Σ−1

mm.

We now consider the corresponding rank consistency results, when λn goes to zero faster than
n−1/2. The following proposition (proved in Appendix C.3) states that for such regularization pa-
rameter, the solution has rank strictly greater than r with probability tending to one and can thus not
be rank consistent:

Proposition 7 Assume (A1-3). If n1/2λn tends to zero, then P(rank(Ŵ ) > rank(W)) tends to one.

4.2 n−1/2-decay of the Regularization Parameter

We first consider regular consistency through the following proposition (proved in Appendix C.4),
then rank consistency (proposition proved in Appendix C.5):

Proposition 8 Assume (A1-3). Let Ŵ be a global minimizer of Eq. (1). If n1/2λn tends to a limit
λ0 > 0, then n1/2(Ŵ −W) converges in distribution to the unique global minimizer of

min
∆∈Rp×q

1
2

vec(∆)>Σmm vec(∆)− tr∆>A+λ0

[

trU>∆V+‖U>
⊥∆V⊥‖∗

]

,

where vec(A) ∈ R
pq is normally distributed with mean zero and covariance matrix σ2Σmm.

Proposition 9 Assume (A1-3). If n1/2λn tends to a limit λ0 > 0, then the probability that the rank
of Ŵ is different from the rank of W is converging to P(‖Λ− λ−1

0 Θ‖2 6 1) ∈ (0,1) where Λ ∈
R

(p−r)×(q−r) is defined in Eq. (3) (Section 4.3) and Θ ∈ R
(p−r)×(q−r) has a normal distribution with

mean zero and covariance matrix

σ2
(

(V⊥⊗U⊥)>Σ−1
mm(V⊥⊗U⊥)

)−1
.

The previous proposition ensures that the estimate Ŵ cannot be rank consistent with this decay of
the regularization parameter. Note that when we take λ0 small (i.e., we get closer to fast decays),
the probability P(‖Λ−λ−1

0 Θ‖2 6 1) tends to zero, while when we take λ0 large (i.e., we get closer
to slow decays), the same probability tends to zero or one depending on the sign of ‖Λ‖2 −1. This
heuristic argument is made more precise in the following section.

4.3 Slow Decay of Regularization Parameter

When λn tends to zero more slowly than n−1/2, the first order expansion is deterministic, as the
following proposition shows (proof in Appendix C.6):
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Proposition 10 Assume (A1-3). Let Ŵ be a global minimizer of Eq. (1). If n1/2λn tends to +∞ and
λn tends to zero, then λ−1

n (Ŵ −W) converges in probability to the unique global minimizer ∆ of

min
∆∈Rp×q

1
2

vec(∆)>Σmm vec(∆)+ trU>∆V+‖U>
⊥∆V⊥‖∗. (2)

Moreover, we have Ŵ = W+λn∆+Op(λn +ζn +λ−1
n n−1/2).

The last proposition gives a first order expansion of Ŵ around W. From Proposition 18 (Ap-
pendix B), we obtain immediately that if U>

⊥∆V⊥ is different from zero, then the rank of Ŵ is
ultimately strictly larger than r. The condition U>

⊥∆V⊥ = 0 is thus necessary for rank consistency
when λnn1/2 tends to infinity while λn tends to zero. The next lemma (proved in Appendix 11),
gives a necessary and sufficient condition for U>

⊥∆V⊥ = 0.

Lemma 11 Assume Σmm is invertible, and W = UDiag(s)V> is the singular value decomposition
of W. Then the unique global minimizer of

vec(∆)>Σmm vec(∆)+ trU>∆V+‖U>
⊥∆V⊥‖∗

satisfies U>
⊥∆V⊥ = 0 if and only if

∥

∥

∥

∥

(

(V⊥⊗U⊥)>Σ−1
mm(V⊥⊗U⊥)

)−1(

(V⊥⊗U⊥)>Σ−1
mm(V⊗U)vec(I)

)

∥

∥

∥

∥

2
6 1.

This leads to consider the matrix Λ ∈ R
(p−r)×(q−r) defined as

vec(Λ) =
(

(V⊥⊗U⊥)>Σ−1
mm(V⊥⊗U⊥)

)−1(

(V⊥⊗U⊥)>Σ−1
mm(V⊗U)vec(I)

)

, (3)

and the two weak and strict consistency conditions:

‖Λ‖2 6 1, (4)

‖Λ‖2 < 1. (5)

Note that if Σmm is proportional to identity, they are always satisfied because then Λ = 0. We can now
prove that the condition in Eq. (5) is sufficient for rank consistency when n1/2λn tends to infinity,
while the condition Eq. (4) is necessary for the existence of a sequence λn such that the estimate is
both consistent and rank consistent (which is a stronger result than restricting λn to be tending to
zero slower than n−1/2). The following two theorems are proved in Appendix C.8 and C.9:

Theorem 12 Assume (A1-3). Let Ŵ be a global minimizer of Eq. (1). If the condition in Eq. (5)
is satisfied, and if n1/2λn tends to +∞ and λn tends to zero, then the estimate Ŵ is consistent and
rank-consistent.

Theorem 13 Assume (A1-3). Let Ŵ be a global minimizer of Eq. (1). If the estimate Ŵ is consistent
and rank-consistent, then the condition in Eq. (4) is satisfied.

1025



BACH

As opposed to the Lasso, where Eq. (4) is a necessary and sufficient condition for rank consistency
(Yuan and Lin, 2007), this is not even true in general for the group Lasso (Bach, 2008). Looking
at the limiting case ‖Λ‖2 = 1 would similarly lead to additional but more complex sufficient and
necessary conditions, and is left out for future research.

Moreover, it may seem surprising that even when the sufficient condition Eq. (5) is fulfilled, that
the first order expansion of Ŵ , that is, Ŵ = W+λn∆+op(λn) is such that U>

⊥∆V⊥ = 0, but nothing
is said about U>

⊥∆V and U>∆V⊥, which are not equal to zero in general. This is due to the fact that
the first r singular vectors U and V of W+λn∆ are not fixed; indeed, the r first singular vectors (i.e.,
the implicit features) do rotate but with no contribution on U⊥V>

⊥. This is to be contrasted with the
adaptive version where asymptotically the first order expansion has constant singular vectors (see
Section 5).

Finally, in this paper, we have only proved whether the probability of correct rank selection tends
to zero or one. Proposition 9 suggests that when λnn1/2 tends to infinity slowly, then this probability
is close to P(‖Λ− λ−1

n n1/2Θ‖2 6 1), where Θ has a normal distribution with known covariance
matrix, which converges to one exponentially fast when ‖Λ‖2 < 1. We are currently investigating
additional assumptions under which such results are true and thus estimate the convergence rates of
the probability of good rank selection as done by Zhao and Yu (2006) for the Lasso.

4.4 Factored Second Order Moment

Note that in the situation where nx points in R
p and ny points in R

q are sampled i.i.d and a random
subset of n points in selected, then, we can refine the condition as follows (because Σmm = Σyy⊗Σxx):

Λ = (U>
⊥Σ−1

xx U⊥)−1U>
⊥Σ−1

xx UV>Σ−1
yy V⊥(V>

⊥Σ−1
yy V⊥)−1,

which is equal to (by the expression of inverses of partitioned matrices):

Λ = (U>
⊥ΣxxU)(U>ΣxxU)−1(V>ΣyyV)−1(V>ΣyyV⊥).

This also happens when Mi = xiy>i and xi and yi independent for all i.

4.5 Corollaries for the Lasso and Group Lasso

For the Lasso or the group Lasso, all proposed results in Section 4.3 should hold with the additional
conditions that W and ∆ are diagonal (block-diagonal for the group Lasso). In this situation, the
singular values of the diagonal matrix W = Diag(w) are the norms of the diagonal blocks, while
the left singular vectors are equal to the normalized versions of the block (the signs for the Lasso).
However, the results developed in Section 4.3 do not immediately apply since the assumptions
regarding the invertibility of the second order moment matrix is not satisfied. For those problems,
all matrices M that are ever considered belong to a strict subspace of R

p×q and we need to satisfy
invertibility on that subspace.

More precisely, we assume that all matrices M are such that vec(M) = Hx where H is a given
design matrix in R

pq×s where s is the number of implicit parameter and x ∈ R
s. If we replace the

invertibility of Σmm by the invertibility of H>ΣmmH, then all results presented in Section 4.3 are
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valid, in particular, the matrix Λ may be written as

vec(Λ) =
(

(V⊥⊗U⊥)>H(H>ΣmmH)−1H>(V⊥⊗U⊥)
)†

×
(

(V⊥⊗U⊥)>H(H>ΣmmH)−1H>(V⊗U)vec(I)
)

, (6)

where A† denotes the pseudo-inverse of A (Golub and Loan, 1996).
We now apply Eq. (6) to the case of the group Lasso (which includes the Lasso as a special case).

In this situation, we have M = Diag(x1, . . . ,xm) and each x j ∈ R
d j , j = 1, . . . ,m; we consider w as

being defined by blocks w1, . . . ,wm, where each w j ∈ R
d j . The design matrix H is such that Hw =

vec(Diag(w)) and the matrix H>ΣmmH is exactly equal to the joint covariance matrix Σxx of x =
(x1, . . . ,xm). Without loss of generality, we assume that the generating sparsity pattern corresponds
to the first r blocks. We can then compute the singular value decomposition in closed form as
U =

((Diag(wi/‖wi‖)i6r
0

)

, V =
(I

0

)

and s = (‖w j‖) j6r. If we let denote, for each j, O j a basis of

the subspace orthogonal to w j, we have: U⊥ =

(

Diag(Oi)i6r 0
0 I

)

and V⊥ =
(0

I

)

. We can put

these singular vectors into Eq. (6) and get (H>ΣmmH)−1H>(V⊗U)vec(I) = (Σ−1
xx )J∪Jc,JηJ, where

J = {1, . . . ,r} and ηJ is the vector of normalized w j, j ∈ J. Thus, for the group Lasso, we finally
obtain:

‖Λ‖2 =
∥

∥Diag
[

((Σ−1
xx )JcJc)−1(Σ−1

xx )Jc,JηJ
]∥

∥

2

=
∥

∥

∥
Diag

[

(Σxx)JcJ(Σxx)
−1
J,JηJ

]∥

∥

∥

2
by the partitioned matrices inversion lemma,

= max
i∈Jc

∥

∥ΣxixJΣ−1
xJxJ

ηJ
∥

∥ .

The condition on the invertibility of H>ΣmmH is exactly the invertibility of the full joint covari-
ance matrix of x = (x1, . . . ,xm) and is a standard assumption for the Lasso or the group Lasso (Yuan
and Lin, 2007; Zhao and Yu, 2006; Zou, 2006; Bach, 2008). Moreover the condition ‖Λ‖2 6 1 is
exactly the one for the group Lasso (Bach, 2008), where the pattern consistency is replaced by the
consistency for the number of non zero groups.

Note that we only obtain a result in terms of numbers of selected groups of variables and not
in terms of the identities of the groups themselves. However, because of regular consistency, we
know that at least the r true groups will be selected, and then correct model size is asymptotically
equivalent to the correct groups being selected.

5. Adaptive Version

We can follow the adaptive version of the Lasso to provide a consistent algorithm with no consis-
tency conditions such as Eq. (4) or Eq. (5). More precisely, we consider the least-square estimate
vec(ŴLS) = Σ̂−1

mm vec(Σ̂Mz). We have the following well known result for least-square regression:

Lemma 14 Assume (A1-3). Then n1/2(Σ̂−1
mm vec(Σ̂Mz)−vec(W)) is converging in distribution to a

normal distribution with zero mean and covariance matrix σ2Σ−1
mm.

We consider the singular value decomposition of ŴLS = ULS Diag(sLS)V>
LS, where sLS > 0. With

probability tending to one, min{p,q} singular values are strictly positive (i.e., the rank of ŴLS is
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full). We consider the full decomposition where ULS and VLS are orthogonal square matrices and the
matrix Diag(sLS) is rectangular. We complete the singular values sLS ∈ R

min{p,q} by n−1/2 to reach
dimensions p and q (we keep the same notation for both dimensions for simplicity).

For γ ∈ (0,1], we let denote

A = ULS Diag(sLS)
−γU>

LS ∈ R
p×p and B = VLS Diag(sLS)

−γV>
LS ∈ R

q×q,

two positive definite symmetric matrices, and, following the adaptive Lasso of Zou (2006), we
consider replacing ‖W‖∗ by ‖AWB‖∗—note that in the Lasso special case, this exactly corresponds
to the adaptive Lasso of Zou (2006). We obtain the following consistency theorem (proved in
Appendix C.10):

Theorem 15 Assume (A1-3). If γ ∈ (0,1], n1/2λn tends to 0 and λnn1/2+γ/2 tends to infinity, then
any global minimizer ŴA of

1
2n

n

∑
i=1

(zi − trW>Mi)
2 +λn‖AWB‖∗

is consistent and rank consistent. Moreover, n1/2 vec(ŴA −W) is converging in distribution to a
normal distribution with mean zero and covariance matrix

σ2(V⊗U)
[

(V⊗U)>Σmm(V⊗U)
]−1

(V⊗U)>.

Note the restriction γ 6 1 which is due to the fact that the least-square estimate ŴLS only estimates
the singular subspaces at rate Op(n−1/2). In Section 6.3, we illustrate the previous theorem on
synthetic examples. In particular, we exhibit some singular behavior for the limiting case γ = 1.

6. Algorithms and Simulations

In this section we provide a simple algorithm to solve problems of the form

min
W∈Rp×q

1
2

vec(W )>Σvec(W )− trW>Q+λ‖W‖∗, (7)

where Σ ∈ R
pq×pq is a positive definite matrix (note that we do not restrict Σ to be of the form

Σ = A⊗B where A and B are positive semidefinite matrices of size p× p and q× q). We assume
that vec(Q) is in the column space of Σ, so that the optimization problem is bounded from below
(and thus the dual is feasible). In our setting, we have Σ = Σ̂mm and Q = Σ̂Mz.

We focus on problems where p and q are not too large so that we can apply Newton’s method
to obtain convergence up to machine precision, which is required for the fine analysis of rank con-
sistency in Section 6.3. For more efficient algorithms with larger p and q, see Srebro et al. (2005);
Rennie and Srebro (2005) and Abernethy et al. (2006); Lu et al. (2008).

Because the dual norm of the trace norm is the spectral norm (see Appendix B), the dual is
easily obtained as

max
V∈Rp×q,‖V‖261

−1
2

vec(Q−λV )>Σ−1 vec(Q−λV ). (8)
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Figure 1: Spectral barrier functions: (left) primal function b(s) and (right) dual functions b∗(s).

Indeed, we have:

min
W∈Rp×q

1
2

vec(W )>Σvec(W )− trW>Q+λ‖W‖∗

= min
W∈Rp×q

max
V∈Rp×q,‖V‖261

1
2

vec(W )>Σvec(W )− trW>Q+λtrV>W

= max
V∈Rp×q,‖V‖261

min
W∈Rp×q

1
2

vec(W )>Σvec(W )− trW>Q+λtrV>W

= max
V∈Rp×q,‖V‖261

−1
2

vec(Q−λV )>Σ−1 vec(Q−λV ),

where strong duality holds because both the primal and dual problems are convex and strictly feasi-
ble (Boyd and Vandenberghe, 2003).

6.1 Smoothing

The problem in Eq. (7) is convex but non differentiable; in this paper we consider adding a strictly
convex function to its dual in Eq. (8) in order to make it differentiable, while controlling the increase
of duality gap yielded by the added function (Bonnans et al., 2003).

We thus consider the following smoothing of the trace norm, namely we define

Fε(W ) = max
V∈Rp×q,‖V‖261

trV>W − εB(V ),

where B(V ) is a spectral function (i.e., that depends only on singular values of V , equal to B(V ) =

∑min{p,q}
i=1 b(si(V )) where b(s) = (1 + s) log(1 + s)+ (1− s) log(1− s) if |s| 6 1 and +∞ otherwise

(si(V ) denotes the i-th largest singular values of V ). This function Fε may be computed in closed
form as:

Fε(W ) =
min{p,q}

∑
i=1

b∗(si(W )),

where b∗(s) = ε log(1 + ev/ε)+ ε log(1 + e−v/ε)−2ε log2. These functions are plotted in Figure 1;
note that |b∗(s)−|s|| is uniformly bounded by 2log2.
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We finally get the following pairs of primal/dual optimization problems:

min
W∈Rp×q

1
2

vec(W )>Σvec(W )− trW>Q+λFε/λ(W ),

max
V∈Rp×q,‖V‖261

−1
2

vec(Q−λV )>Σ−1 vec(Q−λV )− εB(V ).

We can now optimize directly in the primal formulation which is infinitely differentiable, using
Newton’s method. Note that the stopping criterion should be an ε × min{p,q} duality gap, as
the controlled smoothing also leads to a small additional gap on the solution of the original non
smoothed problem. More precisely, a duality gap of ε×min{p,q} on the smoothed problem, leads
to a gap of at most (1+2log2)ε×min{p,q} for the original problem.

6.2 Implementation Details

In this section, we provide details about the implementation of the estimation algorithm presented
earlier.

Derivatives of spectral functions Note that derivatives of spectral functions of the form B(W ) =

∑min{p,q}
i=1 b(si(W )), where b is an even twice differentiable function such that b(0) = b′(0) = 0, are

easily calculated as follows; Let U Diag(s)V> be the singular value decomposition of W . We then
have the following Taylor expansion (Lewis and Sendov, 2002):

B(W +∆) = B(W )+ tr∆>U Diag(b′(si))V
> +

1
2

p

∑
i=1

q

∑
j=1

b′(si)−b′(s j)

si − s j
(u>i ∆v j)

2,

where the vector of singular values is completed by zeros, and b′(si)−b′(s j)
si−s j

is defined as b′′(si) when
si = s j.

Choice of ε and computational complexity Following the common practice in barrier meth-
ods we decrease the parameter geometrically after each iteration of Newton’s method (Boyd and
Vandenberghe, 2003). Each of these Newton iterations has complexity O(p3q3). Empirically, the
number of iterations does not exceed a few hundreds for solving one problem up to machine pre-
cision. We are currently investigating theoretical bounds on the number of iterations through self
concordance theory (Boyd and Vandenberghe, 2003).

Start and end of the path In order to avoid to consider useless values of the regularization pa-
rameter and thus use a well adapted grid for trying several λ’s, we can consider a specific interval
for λ. When λ is large, the solution is exactly zero, while when λ is small, the solution tends to
vec(W ) = Σ−1 vec(Q).

More precisely, if λ is larger than ‖Q‖2, then the solution is exactly zero (because in this situa-
tion 0 is in the subdifferential). On the other side, we consider for which λ, Σ−1 vec(Q) leads to a
duality gap which is less than εvec(Q)>Σ−1 vec(Q), where ε is small. A looser condition is to take
V = 0, and the condition becomes λ‖Σ−1 vec(Q)‖∗ 6 εvec(Q)>Σ−1 vec(Q). Note that this is in the
correct order (i.e., lower bound smaller than upper bound ), because

vec(Q)>Σ−1 vec(Q) = 〈vec(Q),Σ−1 vec(Q)〉 6 ‖Σ−1 vec(Q)‖∗‖vec(Q)‖2.
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Figure 2: Examples of paths of singular values for ‖Λ‖2 = 0.49 < 1 (consistent, top) and ‖Λ‖2 =
4.78 > 1 (inconsistent, bottom) rank selection: regular trace norm penalization (left) and
adaptive penalization with γ = 1/2 (center) and γ = 1 (right). Estimated singular values
are plotted in plain, while population singular values are dotted.

This allows to design a good interval for searching for a good value of λ or for computing the
regularization path by uniform grid sampling (in log scale), or for numerical path following with
predictor-corrector methods such as used by Bach et al. (2004).

6.3 Simulations

In this section, we perform simulations on toy examples to illustrate our consistency results. We
generate random i.i.d. data X̃ and Ỹ with Gaussian distributions and we select a low rank ma-
trix W at random and generate Z = diag(X̃>WỸ ) + ε where ε has i.i.d components with normal
distributions with zero mean and known variance. In this section, we always use r = 2, p = q = 4,
while we consider several numbers of samples n, and several distributions for which the consistency
conditions Eq. (4) and Eq. (5) may or may not be satisfied.1

In Figure 2, we plot regularization paths for n = 103, by showing the singular values of Ŵ
compared to the singular values of W, in two particular situations (Eq. (4) and Eq. (5) satisfied and
not satisfied), for the regular trace norm regularization and the adaptive versions, with γ = 1/2 and
γ = 1. Note that in the consistent case (top), the singular values and their cardinalities are well
jointly estimated, both for the non adaptive version (as predicted by Theorem 12) and the adaptive

1. Simulations may be reproduced with MATLAB code available from http://www.di.ens.fr/˜fbach/
tracenorm/.
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versions (Theorem 15), while the range of correct rank selection increases compared to the adaptive
versions. However in the inconsistent case, the non adaptive regularizations scheme (bottom left)
cannot achieve regular consistency together with rank consistency (Theorem 13), while the adaptive
schemes can. Note the particular behavior of the limiting case γ = 1, which still achieves both
consistencies but with a singular behavior for large λ.

In Figure 3, we select the distribution used for the rank-consistent case of Figure 2, and compute
the paths from 200 replications for n = 102, 103, 103 and 105. For each λ, we plot the proportion of
estimates with correct rank on the left plots (i.e., we get an estimation of P(rank(Ŵ ) = rank(W)),
while we plot the logarithm of the average root mean squared estimation error ‖Ŵ −W‖ on the
right plot. For the three regularization schemes, the range of values with high probability of correct
rank selection increases as n increases, and, most importantly achieves good mean squared error
(right plot); in particular, for the non adaptive schemes (top plots), this corroborates the results from
Proposition 9, which states that for λn = λ0n−1/2 the probability tends to a limit in (0,1): indeed,
when n increases, the value λn which achieves a particular limit grows as n−1/2, and considering the
log-scale for λn in Figure 3 and the uniform sampling for n in log-scale as well, the regular spacing
between the decaying parts observed in Figure 3 is coherent with our results.

In Figure 4, we perform the same operations but with the inconsistent case of Figure 2. For the
non adaptive case (top plot), the range of values of λ that achieve high probability of correct rank
selection does not increase when n increases and stays bounded, in places where the estimation
error is not tending to zero: in the inconsistent case, the trace norm regularization does not manage
to solve the trade-off between rank consistency and regular consistency. However, for the adaptive
versions, it does, still with a somewhat singular behavior of the limiting case γ = 1.

Finally, in Figure 5, we consider 400 different distributions with various values of ‖Λ‖2 smaller
or greater than one, and computed the regularization paths with n = 103 samples. From the paths,
we consider the estimate Ŵ with correct rank and best distance to W and plot the best error versus
log10(‖Λ‖2). For positive values of log10(‖Λ‖2), the best error is far from zero, and the error grows
with the distance to zero; while for negative values, we get low errors with lower errors for small
log10(‖Λ‖2), corroborating the influence of ‖Λ‖2 described in Proposition 9.

7. Conclusion

We have presented an analysis of the rank consistency for the penalization by the trace norm, and
derived general necessary and sufficient conditions. This work can be extended in several interesting
ways: first, by going from the square loss to more general losses, in particular for other types
of supervised learning problems such as classification; or by looking at the collaborative filtering
setting where only some of the attributes are observed (Abernethy et al., 2006) and dimensions p
and q are allowed to grow. Moreover, we are currently pursuing non asymptotic extensions of the
current work, making links with the recent work of Recht et al. (2007) and of Meinshausen and Yu
(2006).

Appendix A. Tools for Analysis of Singular Value Decomposition

In this appendix, we review and derive precise results regarding singular value decompositions.
We consider W ∈ R

p×q and we let denote W = U Diag(s)V> its singular value decomposition with
U ∈R

p×r, V ∈R
q×r with orthonormal columns, and s∈R

r with strictly positive values (r is the rank
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Figure 3: Synthetic example where consistency condition in Eq. (5) is satisfied: probability of cor-
rect rank selection (left) and logarithm of the expected mean squared estimation error
(right), for several number of samples as a function of the regularization parameter, for
regular regularization (top), adaptive regularization with γ = 1/2 (center) and γ = 1 (bot-
tom).
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Figure 4: Synthetic example where consistency condition in Eq. (4) is not satisfied: probability
of correct rank selection (left) and logarithm of the expected mean squared estimation
error (right), for several number of samples as a function of the regularization parameter,
for regular regularization (top), adaptive regularization with γ = 1/2 (center) and γ = 1
(bottom).
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Figure 5: Scatter plots of log10(‖Λ‖2) versus the squared error of the best estimate with correct
rank (i.e., such that rank(Ŵ ) = r and ‖Ŵ −W‖ as small as possible). See text for details.

of W ). Note that when a singular value si is simple, that is, does not coalesce with any other singular
values, then the vectors ui and vi are uniquely defined up to simultaneous sign flips, that is, only
the matrix uiv>i is unique. However, when some singular values coalesce, then the corresponding
singular vectors are defined up to a rotation, and thus in general care must be taken and considering
isolated singular vectors should be avoided (Stewart and Sun, 1990). All tools presented in this
appendix are robust to the particular choice of the singular vectors.

A.1 Jordan-Wielandt Matrix

We use the fact that singular values of W can be obtained from the eigenvalues of the Jordan-

Wielandt matrix W̄ =

(

0 W
W> 0

)

∈ R
(p+q)×(p+q) (Stewart and Sun, 1990). Indeed this matrix

has eigenvalues si and −si, i = 1, . . . ,r, where si are the (strictly positive) singular values of W ,

with eigenvectors 1√
2

(

ui

vi

)

and 1√
2

(

ui

−vi

)

where ui,vi are the left and right associated singular

vectors. Also, the remaining eigenvalues are all equal to zero, with eigensubspace (of dimension p+

q−2r) composed of all

(

u
v

)

such that for all i ∈ {1, . . . ,r}, u>ui = v>vi = 0. We let denote Ū the

eigenvectors of W̄ corresponding to non zero eigenvalues in S̄. We have Ū = 1√
2

(

U U
V −V

)

and

S̄ = 1√
2

(

Diag(s) 0
0 −Diag(s)

)

and W̄ = Ū S̄Ū>, ŪŪ> =

(

UU> 0
0 VV>

)

, and Ūsign(S̄)Ū> =
(

0 UV>

VU> 0

)

.

A.2 Cauchy Residue Formula and Eigenvalues

Given the matrix W̄ , and a simple closed curve C in the complex plane that does not go through any
of the eigenvalues of W̄ , then

ΠC (W̄ ) =
1

2iπ

I

C

dλ
λI−W̄
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is equal to the orthogonal projection onto the orthogonal sum of all eigensubspaces of W̄ associated
with eigenvalues in the interior of C (Kato, 1966). This is easily seen by writing down the eigenvalue
decomposition and the Cauchy residue formula ( 1

2iπ
H

C
dλ

λ−λi
= 1 if λi is in the interior int(C ) of C

and 0 otherwise), and:

1
2iπ

I

C

dλ
λI−W̄

=
2r

∑
i=1

ūi ū>i × 1
2iπ

I

C

dλ
λ− s̄i

= ∑
i, s̄i∈int(C )

uiu
>
i .

See Rudin (1987) for an introduction to complex analysis and Cauchy residue formula. Moreover,
we can obtain the restriction of W̄ onto a specific eigensubspace as:

W̄ΠC (W̄ ) =
1

2iπ

I

C

W̄dλ
λI−W̄

= − 1
2iπ

I

C

λdλ
λI−W̄

.

We let denote s1 and sr the largest and smallest strictly positive singular values of W ; if ‖∆‖2 < sr/2,
then W + ∆ has r singular values strictly greater than sr/2 and the remaining ones are strictly less
than sr/2 (Stewart and Sun, 1990). Thus, if we denote C the oriented circle of radius sr/2, ΠC (W̄ )
is the projector on the p+q−2r-dimensional null space of W̄ , and for any ∆ such that ‖∆‖2 < sr/2,
ΠC (W̄ + ∆̄) is also the projector on the p+q−2r-dimensional invariant subspace of W̄ + ∆̄, which
corresponds to the smallest eigenvalues. We let denote Πo(W̄ + ∆̄) that projector and Πr(W̄ + ∆̄) =
I−Πo(W̄ + ∆̄) the orthogonal projector (which is the projection onto the 2r-th principal subspace).

We can now find expansions around ∆ = 0 as follows:

Πo(W̄ + ∆̄)−Πo(W̄ ) =
1

2iπ

I

C
(λI−W̄ )−1∆̄(λI−W̄ − ∆̄)−1dλ

=
1

2iπ

I

C
(λI−W̄ )−1∆̄(λI−W̄ )−1dλ

+
1

2iπ

I

C
(λI−W̄ )−1∆̄(λI−W̄ )−1∆̄(λI−W̄ − ∆̄)−1dλ,

and

(W̄ + ∆̄)Πo(W̄ + ∆̄)−W̄Πo(W̄ ) = − 1
2iπ

I

C
λ(λI−W̄ )−1∆̄(λI−W̄ − ∆̄)−1dλ

= − 1
2iπ

I

C
λ(λI−W̄ )−1∆̄(λI−W̄ )−1dλ

− 1
2iπ

I

C
λ(λI−W̄ )−1∆̄(λI−W̄ )−1∆̄(λI−W̄ − ∆̄)−1dλ,

which lead to the following two propositions:

Proposition 16 Assume W has rank r and ‖∆‖2 < sr/4 where sr is the smallest positive singular
value of W. Then the projection Πr(W̄ ) on the first r eigenvectors of W̄ is such that

‖Πo(W̄ + ∆̄)−Πo(W̄ )‖2 6
4
sr
‖∆‖2

and

‖Πo(W̄ + ∆̄)−Πo(W̄ )− (I−ŪŪ>)∆̄Ū S̄−1Ū>−Ū S̄−1Ū>∆̄(I−ŪŪ>)‖2 6
8
s2

r
‖∆̄‖2

2.
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Proof For λ ∈ C we have: ‖(λI−W̄ )−1‖2 > 2/sr and ‖(λI−W̄ − ∆̄)−1‖2 > 4/sr, which implies

‖Πr(W̄ + ∆̄)−Πr(W̄ )‖2 6
1

2π

I

C
‖(λI−W̄ )−1‖2‖∆‖2‖(λI−W̄ − ∆̄)−1‖2

6

(

1
2π

2π
sr

2

)

‖∆‖2
2
sr

4
sr

.

In order to prove the other result, we simply need to compute:

1
2iπ

I

C
(λI−W̄ )−1∆̄(λI−W̄ )−1dλ = ∑

i, j

ūi ū>i ∆ ūj ū>j
1

2iπ

I

C

1
(λ− s̄i)(λ− s̄j)

dλ

= ∑
i, j

ūi ū>i ∆ ūj ū>j

(

1i/∈int(C )1 j∈int(C )

s̄i
+

1 j/∈int(C )1i∈int(C )

s̄j

)

= (I−ŪŪ>)∆̄Ū S̄−1Ū> +Ū S̄−1Ū>∆̄(I−ŪŪ>).

Proposition 17 Assume W has rank r and ‖∆‖2 < sr/4 where sr is the smallest positive singular
value of W. Then the projection Πr(W̄ ) on the first r eigenvectors of W̄ is such that

‖Πo(W̄ + ∆̄)(W̄ + ∆̄)−Πo(W̄ )W̄‖2 6 2‖∆‖2

and

‖Πo(W̄ + ∆̄)(W̄ + ∆̄)−Πo(W̄ )W̄ +(I−ŪŪ>)∆̄(I−ŪŪ>)‖2 6
4
sr
‖∆̄‖2

2.

Proof For λ ∈ C we have: ‖(λI−W̄ )−1‖2 > 2/sr and ‖(λI−W̄ − ∆̄)−1‖2 > 4/sr, which implies

‖Πr(W̄ + ∆̄)−Πr(W̄ )‖2 6
1

2π

I

C
|λ|‖(λI−W̄ )−1‖2‖∆‖2‖(λI−W̄ − ∆̄)−1‖2

6

(

1
2π

2π
sr

2

)

sr

2
‖∆‖2

2
sr

4
sr

.

In order to prove the other result, we simply need to compute:

− 1
2iπ

I

C
λ(λI−W̄ )−1∆̄(λI−W̄ )−1dλ = −∑

i, j

ūi ū>i ∆ ūj ū>j
1

2iπ

I

C

λ
(λ− s̄i)(λ− s̄j)

dλ

= −∑
i, j

ūi ū>i ∆ ūj ū>j
(

1i∈int(C )1 j∈int(C )

)

= −(I−ŪŪ>)∆̄(I−ŪŪ>).

The variations of Π(W̄ ) translates immediately into variations of the singular projections UU>

and VV>. Indeed we get that the first order variation of UU> is −(I−UU>)∆V S−1U> and the
variation of V is equal to −(I−VV>)∆>US−1V>, with errors bounded in spectral norm by 8

s2
r
‖∆‖2

2.

Similarly, when restricted to the small singular values, the first order expansion is (I−UU>)∆(I−
VV>), with error term bounded in spectral norm by 4

sr
‖∆‖2

2. Those results lead to the following
proposition that gives a local sufficient condition for rank(W +∆) > rank(W ):
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Proposition 18 Assume W has rank r < min{p,q} with ordered singular value decomposition W =
U Diag(s)V>. If 4

sr
‖∆‖2

2 < ‖(I−UU>)∆(I−VV>)‖2, then rank(W +∆) > r.

Appendix B. Some Facts about the Trace Norm

In this appendix, we review known properties of the trace norm that we use in this paper. Most of
the results are extensions of similar results for the `1-norm on vectors. First, we have the following
result:

Lemma 19 (Dual norm, Fazel et al., 2001) The trace norm ‖ · ‖∗ is a norm and its dual norm is
the operator norm ‖ · ‖.

Note that the dual norm N(W ) is defined as Boyd and Vandenberghe (2003):

N(W ) = sup
‖V‖∗61

trW>V.

This immediately implies the following result:

Lemma 20 (Fenchel conjugate) We have: max
W∈Rp×q

trW>V −‖W‖∗ = 0 if ‖V‖ 6 1 and +∞ other-

wise.

In this paper, we need to compute the subdifferential and directional derivatives of the trace
norm. We have from Recht et al. (2007) or Borwein and Lewis (2000):

Proposition 21 (Subdifferential) If W = U Diag(s)V> with U ∈ R
p×m and V ∈ R

q×m having or-
thonormal columns, and s ∈ R

m is strictly positive, is the singular value decomposition of W, then
‖W‖∗ = ∑m

i=1 si and the subdifferential of ‖ · ‖∗ is equal to

∂‖ · ‖∗(W ) =
{

UV> +M, such that ‖M‖2 6 1, U>M = 0 and MV = 0
}

.

This result can be extended to compute directional derivatives:

Proposition 22 (Directional derivative) The directional derivative at W = USV > is equal to:

lim
ε→0+

‖W + ε∆‖∗−‖W‖∗
ε

= trU>∆V +‖U>
⊥ ∆V⊥‖∗,

where U⊥ ∈ R
p×(p−m) and V⊥ ∈ R

q×(q−m) are any orthonormal complements of U and V .

Proof From the subdifferential, we get the directional derivative (Borwein and Lewis, 2000) as

lim
ε→0+

‖W + ε∆‖∗−‖W‖∗
ε

= max
V∈∂‖·‖∗(W )

tr∆>V

which exactly leads to the desired result.

The final result that we use is a bit finer as it gives an upper bound on the error in the previous
limit:
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Proposition 23 Let W =U Diag(s)V> the ordered singular value decomposition, where rank(W ) =
r, s > 0 and U⊥ and V⊥ be orthogonal complement of U and V ; then, if ‖∆‖2 6 sr/4:

∣

∣

∣
‖W +∆‖∗−‖W‖∗− trU>∆V −‖U>

⊥ ∆V⊥‖∗
∣

∣

∣
6 16min{p,q} s2

1

s3
r
‖∆‖2

2.

Proof The trace norm of ‖W + ∆‖∗ may be divided into the sum of the r largest and the sum of
the remaining singular values. The sums of the remaining ones are given through Proposition 17
by ‖U>

⊥ ∆V⊥‖∗ with an error bounded by min{p,q} 4
sr
‖∆‖2

2. For the first r singular values, we need
to upperbound the second derivative of the sum of the r largest eigenvalues of W̄ + ∆̄ with strictly
positive eigengap, which leads to the given bound by using the same Cauchy residue technique de-
scribed in Appendix A.

Appendix C. Proofs

In this appendix, we give the proofs of the results presented in the paper.

C.1 Proof of Lemma 2

We let denote S ∈ {0,1}nx×ny the sampling matrix; that is, Si j = 1 if the pair (i, j) is observed and
zero otherwise. We let denote X̃ and Ỹ the data matrices. We can write Mk = X̃>δik δ>jkỸ and:

1
n

n

∑
k=1

vec(Mk)vec(Mk)
> =

1
n

n

∑
k=1

(Ỹ ⊗ X̃)> vec(δik δ
>
jk)vec(δik δ

>
jk)

>(Ỹ ⊗ X̃)

=
1
n
(Ỹ ⊗ X̃)> Diag(vec(S))(Ỹ ⊗ X̃),

which leads to (denoting Σ̂xx = n−1
x X̃>X̃ and Σ̂yy = n−1

x Ỹ>Ỹ ):
(

1
n

n

∑
k=1

vec(Mk)vec(Mk)
>− Σ̂yy ⊗ Σ̂xx

)

=
1
n
(Ỹ ⊗ X̃)> Diag(vec(S−n/nxny))(Ỹ ⊗ X̃).

We can thus compute the squared Frobenius norm:
∥

∥

∥

∥

∥

1
n

n

∑
k=1

vec(Mk)vec(Mk)
>− Σ̂yy ⊗ Σ̂xx

∥

∥

∥

∥

∥

2

F

=
1
n2 trDiag(vec(S−n/nxny))(ỸỸ>⊗ X̃ X̃>)Diag(vec(S−n/nxny))(ỸỸ>⊗ X̃ X̃>)

=
1
n2 ∑

i, j,i′, j′
(Si j −n/nxny)(ỸỸ>⊗ X̃ X̃>)i j,i′ j′(Si′ j′ −n/nxny)(ỸỸ>⊗ X̃ X̃>)i j,i′ j′ .

We have, by properties of sampling without replacement (Hoeffding, 1963):

E(Si j −n/nxny)(Si′ j′ −n/nxny) = n/nxny(1−n/nxny) if (i, j) = (i′, j′),

E(Si j −n/nxny)(Si′ j′ −n/nxny) = −n/nxny(1−n/nxny)
1

nxny −1
if (i, j) 6= (i′, j′).
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This implies

E(‖1
n

n

∑
k=1

vec(Mk)vec(Mk)
>− Σ̂yy ⊗ Σ̂xx‖2

F |X̃ ,Ỹ )

=
1

nxnyn ∑
i, j

(ỸỸ>⊗ X̃ X̃>)2
i j,i j −

1
(nxny −1)nxnyn ∑

(i, j)6=(i′, j′)

(ỸỸ>⊗ X̃ X̃>)2
i j,i′ j′

6
2

nxnyn ∑
i, j

‖ỹ j‖4‖x̃i‖4.

This finally implies that

E

∥

∥

∥

∥

∥

1
n

n

∑
k=1

vec(Mk)vec(Mk)
>−Σyy ⊗Σxx

∥

∥

∥

∥

∥

2

F

6
4
n ∑

i, j

E‖x‖4
E‖y‖4 +2E‖Σ̂xx −Σxx‖2

FE‖Σ̂yy‖2
F +2E‖Σ̂yy −Σyy‖2

F‖Σxx‖2
F

6 CE‖x‖4
E‖y‖4 × (

1
n

+
1
ny

+
1
nx

),

for some constant C > 0. This implies (A2). To prove the asymptotic normality in (A3), we
use the martingale central limit theorem (Hall and Heyde, 1980) with sequence of σ-fields Fn,k =
σ(X̃ ,Ỹ ,ε1, . . . ,εk,(i1, j1), . . . ,(ik, jk)) for k 6 n. We consider ∆n,k = n−1/2εik jk y jk ⊗ xik ∈ R

pq as the
martingale difference. We have E(∆n,k|Fn,k−1) = 0 and

E(∆n,k∆>
n,k|Fn,k−1) = n−1σ2y jk y

>
jk ⊗ xik x

>
ik ,

with E(‖∆n,k)‖4) = O(n−2) because of the finite fourth order moments. Moreover,

n

∑
k=1

E(∆n,k∆>
n,k|Fn,k−1) = σ2Σ̂mm,

and thus tends in probability to σ2Σyy ⊗Σxx because of (A2). The assumptions of the martingale
central limit theorem are met, we have that ∑n

k=1 vec(∆n,k) is asymptotically normal with mean zero
and covariance matrix σ2Σyy ⊗Σxx, which concludes the proof.

C.2 Proof of Proposition 4

We may first restrict minimization over the ball {W, ‖W‖∗ 6 ‖Σ̂−1
mmΣ̂Mz‖∗} because the optimum

value is less than the value for W = Σ̂−1
mmΣ̂Mz. Since this random variable is bounded in probabil-

ity, we can reduce the problem to a compact set. The sequence of continuous random functions
W 7→ 1

2 vec(W −W)>Σ̂mm vec(W −W)− trW>Σ̂Mε + λn‖W‖∗ converges pointwise in probability
to W 7→ 1

2 vec(W −W)>Σmm vec(W −W)+ λ0‖W‖∗ with a unique global minimum (because Σmm

is assumed invertible). We can thus apply standard result of consistency in M-estimation (Van der
Vaart, 1998; Shao, 2003).
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C.3 Proof of Proposition 7

We consider the result of Proposition 6: ∆̂ = n1/2(Ŵ −W) is asymptotically normal with mean

zero and covariance σ2Σ−1
mm. By Proposition 18 in Appendix B, if 4n−1/2

sr
‖∆̂‖2

2 < ‖U>
⊥∆̂V⊥‖2, then

rank(Ŵ ) > r. For a random variable Θ with normal distribution with mean zero and covariance

matrix σ2Σ−1
mm, we let denote f (C) = P( 4C−1/2

sr
‖Θ‖2

2 < ‖U>
⊥ΘV⊥‖2). By the dominated convergence

theorem, f (C) converges to one when C → ∞. Let ε > 0, thus there exists C0 > 0 such that f (C0) >

1− ε/2. By the asymptotic normality result, P(
4C−1/2

0
sr

‖∆̂‖2
2 < ‖U>

⊥∆̂V⊥‖2) converges to f (C0) thus

∃n0 > 0 such that ∀n > n0, P(
4C−1/2

0
sr

‖∆̂‖2
2 < ‖U>

⊥∆̂V⊥‖2) > f (C0)− ε/2 > 1− ε, which concludes

the proof, because P( 4n−1/2

sr
‖∆̂‖2

2 < ‖U>
⊥∆̂V⊥‖2) > P(

4C−1/2
0
sr

‖∆̂‖2
2 < ‖U>

⊥∆̂V⊥‖2) as soon as n > C0.

C.4 Proof of Proposition 8

This is the same result as Fu and Knight (2000), but extended to the trace norm minimization, simply
using the directional derivative result of Proposition 22 and the epiconvergence theorem from Geyer
(1994, 1996). Indeed, if we denote Vn(∆) = vec(∆)>Σ̂mm vec(∆)− tr∆>n1/2Σ̂Mε + λ0n1/2(‖W +
n−1/2∆‖∗−‖W‖∗) and V (∆) = vec(∆)>Σmm vec(∆)− tr∆>A+λ0

[

trU>∆V+‖U>
⊥∆V⊥‖∗

]

, then for
each ∆, Vn(∆) converges in probability to V (∆), and V is strictly convex, which implies that it has
an unique global minimum; thus the epi-convergence theorem can be applied, which concludes the
proof.

Note that a simpler analysis using regular tools in M-estimation leads to Ŵ = W + n−1/2∆̂ +
op(n−1/2), where ∆̂ is the unique global minimizer of

min
∆∈Rp×q

1
2

vec(∆)>Σmm vec(∆)− tr∆>(n1/2Σ̂Mε)+λ0

[

trU>∆V+‖U>
⊥∆V⊥‖∗

]

,

that is, we can actually take A = n1/2Σ̂Mε (which is asymptotically normal with correct moments).

C.5 Proof of Proposition 9

We let denote ∆̂ = n1/2(Ŵ −W). We first show that limsupn→∞ P(rank(Ŵ ) = r) is smaller than the
proposed limit a. We consider the following events:

E0 = {rank(Ŵ ) = r}
E1 = {‖n−1/2∆̂‖2 < sr/2}

E2 =

{

4n−1/2

sr
‖∆̂‖2

2 < ‖U>
⊥∆̂V⊥‖2

}

.

By Proposition 18 in Appendix B, we have E1∩E2 ⊂Ec
0 , and thus it suffices to show that P(E1) tends

to one, while limsupn→∞ P(Ec
2) 6 a. The first assertion is a simple consequence of Proposition 8.

Moreover, by Proposition 8, ∆̂ converges in distribution to the unique global optimum ∆(A) of
an optimization problem parameterized by a vector A with normal distribution. For a given η > 0,
we consider the probability P(‖U>

⊥∆(A)V⊥‖2 6 η). For any A, when η tends to zero, the indicator
function 1‖U>

⊥∆(A)V⊥‖26η converges to 1‖U>
⊥∆(A)V⊥‖2=0, which is equal to 1‖Λ(A)‖26λ0

, where

vec(Λ(A)) =
(

(V⊥⊗U⊥)>Σ−1
mm(V⊥⊗U⊥)

)−1(

(V⊥⊗U⊥)>Σ−1
mm((V⊗U)vec(I)−vec(A))

)

.
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By the dominated convergence theorem, P(‖U>
⊥∆(A)V⊥‖2 6 η) converges to

a = P(‖Λ(A)‖2 6 λ0),

which is the proposed limit. This limit is in (0,1) because of the normal distribution has an invertible
covariance matrix and the set {‖Λ‖2 6 1} and its complement have non empty interiors.

Since ∆̂ = Op(1), we can instead consider E3 = { 4n−1/2

sr
M2 < ‖U>

⊥∆̂V⊥‖2} for a particular M,
instead of E2. Then following the same line or arguments than in Appendix C.3, we conclude that
limsupn→∞ P(Ec

3) 6 a, which concludes the first part of the proof.

We now show that liminfn→∞ P(rank(Ŵ ) = r) > a. A sufficient condition for rank consistency
is the following: we let denote Ŵ =USV> the singular value decomposition of Ŵ and we let denote
Uo and Vo the singular vectors corresponding to all but the r largest singular values. Since we
have simultaneous singular value decompositions, a sufficient condition is that rank(Ŵ ) > r and
∥

∥U>
o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

Vo
∥

∥

2 < λn(1−η). If ‖Λ(n1/2Σ̂Mε)‖ 6 λ0(1−η), then, by Lemma 11,
U>
⊥∆(n1/2Σ̂Mε)V⊥ = 0, and we get, using the proof of Proposition 8 and the notation Â = n1/2Σ̂Mε:

U>
o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

Vo = U>
o n−1/2 (Σ̂mm∆(Â)− Â

)

Vo +op(n
−1/2).

Moreover, because of regular consistency and a positive eigengap for W, the projection onto the
first r singular vectors of Ŵ converges to the projection onto the first r singular vectors of W (see
Appendix A), which implies that the projection onto the orthogonal is also consistent, that is, UoU>

o
converges in probability to U⊥U>

⊥ and VoV>
o converges in probability to V⊥V>

⊥. Thus:
∥

∥

∥
U>

o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

Vo

∥

∥

∥

2
=

∥

∥

∥
UoU>

o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

VoV>
o

∥

∥

∥

2

= n−1/2‖U⊥U>
⊥(Σ̂mm∆(Â)− Â)V⊥V>

⊥‖2 +op(n
−1/2)

= n−1/2‖Λ(A)‖2 +op(n
−1/2).

This implies that

lim inf
n→∞

∥

∥

∥
U>

o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

Vo

∥

∥

∥

2
< λn(1−η) > lim inf

n→∞
P(‖Λ(Â)‖2 6 λ0(1−η))

which converges to a when η tends to zero, which concludes the proof.

C.6 Proof of Proposition 10

This is the same result as Fu and Knight (2000), but extended to the trace norm minimization, simply
using the directional derivative result of Proposition 22. If we write Ŵ = W+λn∆̂, then ∆̂ is defined
as the global minimum of

Vn(∆) =
1
2

vec(∆)>Σ̂mm vec(∆)−λ−1
n tr∆>Σ̂Mε +λ−1

n (‖W+λn∆‖∗−‖W‖∗)

=
1
2

vec(∆)>Σmm vec(∆)+Op(ζn‖∆‖2
2)+Op(λ−1

n n−1/2)+ tr∆>Σ̂Mε

+trU>∆V+‖U>
⊥∆V⊥‖∗ +Op(λn‖∆‖2

2)

= V (∆)+Op(ζn‖∆‖2
2)+Op(λ−1

n n−1/2)+Op(λn‖∆‖2
2).
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More precisely, if Mλn < sr/2,

E sup
‖∆‖26M

|Vn(∆)−V (∆)| = cst×
(

M2
E‖Σ̂mm −Σmm‖F +Mλ−1

n E(‖Σ̂Mε‖2)1/2 +λnM2
)

= O(M2ζn +Mλ−1
n n−1/2 +λnM2).

Moreover, V (∆) achieves its minimum at a bounded point ∆0 6= 0. Thus, by Markov inequality the
minimum of Vn(∆) over the ball ‖∆‖2 < 2‖∆0‖2 is with probability tending to one strictly inside and
is thus also the unconstrained minimum, which leads to the proposition.

C.7 Proof of Proposition 11

The optimal ∆ ∈ R
p×q should be such that U>

⊥∆V⊥ has low rank, where U⊥ ∈ R
p×(p−r) and V⊥ ∈

R
q×(q−r) are orthogonal complements of the singular vectors U and V. We now derive the condition

under which the optimal ∆ is such that U>
⊥∆V⊥ is actually equal to zero: we consider the minimum

of 1
2 vec(∆)>Σmm vec(∆) + vec(∆)> vec(UV>) with respect to ∆ such that vec(U>

⊥∆V⊥) = (V⊥⊗
U⊥)> vec(∆) = 0. The solution of that constrained optimization problem is obtained through the
following linear system (Boyd and Vandenberghe, 2003):

(

Σmm (V⊥⊗U⊥)
(V⊥⊗U⊥)> 0

)(

vec(∆)
vec(Λ)

)

=

(

−vec(UV>)
0

)

,

where Λ ∈ R
(p−r)×(q−r) is the Lagrange multiplier for the equality constraint. We can solve explic-

itly for ∆ and Λ which leads to

vec(Λ) =
(

(V⊥⊗U⊥)>Σ−1
mm(V⊥⊗U⊥)

)−1(

(V⊥⊗U⊥)>Σ−1
mm(V⊗U)vec(I)

)

,

and
vec(∆) = −Σ−1

mm vec(UV>−U⊥ΛV>
⊥).

Then the minimum of the function F(∆) in Eq. (2) is such that U>
⊥∆V⊥ = 0 (and thus equal to

∆ defined above) if and only if for all Θ ∈ R
p×q, the directional derivative of F at ∆ in the direction

Θ is nonnegative, that is:

lim
ε→0+

F(∆+ εΘ)−F(∆)

ε
> 0.

By Proposition 22, this directional derivative is equal to

trΘ>(Σmm∆+UV>)+‖U>
⊥ΘV⊥‖∗ = trΘ>U⊥ΛV⊥ +‖U>

⊥ΘV⊥‖∗
= trΛ>U>

⊥ΘV⊥ +‖U>
⊥ΘV⊥‖∗.

Thus the directional derivative is always non negative if for all Θ′ ∈R
(p−r)×(q−r), trΛ>Θ′+‖Θ′‖∗ >

0, that is, if and only if ‖Λ‖2 6 1, which concludes the proof.

C.8 Proof of Theorem 12

Regular consistency is obtained by Corollary 5. We consider the problem in Eq. (2) of Proposi-
tion 10, where λnn1/2 → ∞ and λn → 0. Since Eq. (5) is satisfied, the solution ∆ indeed satisfies
U>
⊥∆V⊥ = 0 by Lemma 11.
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We have Ŵ = W + λn∆ + op(λn) and we now show that the optimality conditions are satis-
fied with rank r. From the regular consistency, the rank of Ŵ is, with probability tending to one,
larger than r (because the rank is lower semi-continuous function). We now need to show that
it is actually equal to r. We let denote Ŵ = USV> the singular value decomposition of Ŵ and
we let denote Uo and Vo the singular vectors corresponding to all but the r largest singular val-
ues. Since we have simultaneous singular value decompositions, we simply need to show that,
∥

∥U>
o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

Vo
∥

∥

2 < λn with probability tending to one. We have:

U>
o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

Vo = U>
o

(

λnΣ̂mm∆+op(λn)−Op(n
−1/2)

)

Vo

= λnU>
o (Σmm∆)Vo +op(λn).

Moreover, because of regular consistency and a positive eigengap for W, the projection onto the
first r singular vectors of Ŵ converges to the projection onto the first r singular vectors of W (see
Appendix A), which implies that the projection onto the orthogonal is also consistent, that is, UoU>

o
converges in probability to U⊥U>

⊥ and VoV>
o converges in probability to V⊥V>

⊥. Thus:

∥

∥

∥
U>

o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

Vo

∥

∥

∥

2
=

∥

∥

∥
UoU>

o

(

Σ̂mm(Ŵ −W)− Σ̂Mε
)

VoV>
o

∥

∥

∥

2

= λn‖U⊥U>
⊥(Σmm∆)V⊥V>

⊥‖2 +op(λn)

= λn‖Λ‖2 +op(λn).

This implies that that the last expression is asymptotically of magnitude strictly less than one, which
concludes the proof.

C.9 Proof of Theorem 13

We have seen earlier that if n1/2λn tends to zero and λn tends to zero, then Eq. (4) is necessary
for rank-consistency. We just have to show that there is a subsequence that does satisfy this. If
liminfλn > 0, then we cannot have consistency (by Proposition 6), thus if we consider a subse-
quence, we can always assume that λn tends to zero.

We now consider the sequence n1/2λn, and its accumulation points. If zero or +∞ is one of
them, then by Propositions 7 and 9, we cannot have rank consistency. Thus, for all accumulation
points (which are finite and strictly positive), by considering a subsequence, we are in the situation
where n1/2λn tends to +∞ and λn tends to zero, which implies Eq. (4), by definition of Λ in Eq. (3)
and Lemma 11.

C.10 Proof of Theorem 15

We let denote U r
LS and V r

LS the first r columns of ULS and VLS and Uo
LS and V o

LS the remaining columns;
we also denote sr

LS the corresponding first r singular values and so
LS the remaining singular values.

From Lemma 14 and results in the appendix, we get that ‖sr
LS − s‖2 = Op(n−1/2) and ‖so

LS‖2 =
Op(n−1/2) and ‖U r

LS(U
r
LS)

>−UU>‖2 = Op(n−1/2) and ‖V r
LS(V

r
LS)

>−VV>‖2 = Op(n−1/2). By writ-
ing ŴA = W+n−1/2∆̂A, ∆̂A is defined as the minimum of

1
2

vec(∆)>Σ̂mm vec(∆)−n1/2tr∆>Σ̂Mε +nλn

(

‖AWB+n−1/2A∆B‖∗−‖AWB‖∗
)

.
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We have:

AU = ULS Diag(sLS)
−γU>

LSU

= Ur
LS Diag(sr

LS)
−γ(Ur

LS)
>U+Uo

LS Diag(so
LS)

−γ(Uo
LS)

>U

= UDiag(s)−γ +Op(n
−1/2)+Op(n

−1/2nγ/2)

= UDiag(s)−γ +Op(n
−1/2nγ/2),

and

AU⊥ = ULS Diag(sLS)
−γU>

LSU⊥
= Ur

LS Diag(sr
LS)

−γ(Ur
LS)

>U⊥ +Uo
LS Diag(so

LS)
−γ(Uo

LS)
>U⊥

= U⊥ Diag(so
LS)

−γ +Op(n
γ/2−1/2)

= Op(n
γ/2).

Similarly we have: BV = VDiag(s)−γ + Op(n−1/2nγ/2) and BV = Op(nγ/2). We can decompose

any ∆ ∈ R
p×q as ∆ = (U U⊥)

(

∆rr ∆ro

∆or ∆oo

)

(V V⊥)>. We have assumed that λnn1/2nγ/2 tends to

infinity. Thus,

• if U>
⊥∆ = 0 and ∆V⊥ = 0 (i.e., if ∆ is of the form U∆rrV>),

nλn‖AWB+n−1/2A∆B‖∗−‖AWB‖∗ 6 λnn1/2‖A∆B‖∗
= λnn1/2‖Diag(s)−γ∆rr Diag(s)−γ‖∗

+Op(λnnγ/2)

= Op(λnn1/2)

tends to zero.

• Otherwise, nλn‖AWB + n−1/2A∆B‖∗−‖AWB‖∗ is larger than λnn1/2‖A∆B‖∗− 2‖AWB‖∗.
The term ‖AWB‖∗ is bounded in probability because we can write AWB = UDiag(s)1−2γV>+
Op(n−1/2+γ/2) and γ 6 1. Besides, λnn1/2‖A∆B‖∗ is tending to infinity as soons as any of
∆or, ∆ro or ∆rr are different from zero. Indeed, by equivalence of finite dimensional norms
λnn1/2‖A∆B‖∗ is larger than a constant times λnn1/2‖A∆B‖F , which can be decomposed in
four pieces along (U,U⊥) and (V,V⊥), corresponding asymptotically to ∆oo, ∆or, ∆ro or ∆rr.
The smallest of those terms grows faster than λnn1/2+γ/2, and thus tends to infinity.

Thus, since Σmm is invertible, by the epi-convergence theorem of Geyer (1994, 1996), ∆̂A con-
verges in distribution to the minimum of

1
2

vec(∆)>Σmm vec(∆)−n1/2tr∆>Σ̂Mε,

such that U>
⊥∆ = 0 and ∆V⊥ = 0. This minimum has a simple asymptotic distribution, namely ∆ =

UΘV> and Θ is asymptotically normal with mean zero and covariance matrix
σ2
[

(V⊗U)>Σmm(V⊗U)
]−1

, which leads to the consistency and the asymptotic normality.
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In order to finish the proof, we consider the optimality conditions which can be written as A∆B
and

A−1
(

Σ̂mm∆̂A −n1/2Σ̂Mε

)

B−1

having simultaneous singular value decompositions with proper decays of singular values, that is,
such that the first r are equal to λnn1/2 and the remaining ones are less than λnn1/2.

From the asymptotic normality we get that Σ̂mm∆̂A − n1/2Σ̂Mε is Op(1), we can thus consider
matrices of the form A−1ΘB−1 where Θ is bounded, the same way we considered matrices of the
form A∆B.

We have:

A−1U = ULS Diag(sLS)
γU>

LSU

= Ur
LS Diag(sr

LS)
γ(Ur

LS)
>U+Uo

LS Diag(so
LS)

γ(Uo
LS)

>U

= UDiag(s)γ +Op(n
−1/2),

and

A−1U⊥ = ULS Diag(sLS)
γU>

LSU⊥
= Ur

LS Diag(sr
LS)

γ(Ur
LS)

>U⊥ +Uo
LS Diag(so

LS)
γ(Uo

LS)
>U⊥

= Op(n
−1/2)+U⊥ Diag(so

LS)
γ,

with similar expansions for B−1V and B−1V⊥. We obtain the first order expansion:

A−1ΘB−1 = UDiag(s)γΘrr Diag(s)γV> +U⊥ Diag(so
LS)

γΘor Diag(s)γV>

+UDiag(s)γΘro Diag(so
LS)

γV>
⊥ +U⊥ Diag(so

LS)
γΘoo Diag(so

LS)
γV>

⊥

Because of the regular consistency, the first term is of the order of λnn1/2 (so that the first r sin-
gular values of Ŵ are strictly positive), while the three other terms have norms less than Op(n−γ/2)
which is less than Op(n1/2λn) by assumption. This concludes the proof.
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Abstract

A method is introduced to learn and represent similarity with linear operators in kernel induced
Hilbert spaces. Transferring error bounds for vector valued large-margin classifiers to the setting of
Hilbert-Schmidt operators leads to dimension free bounds on a risk functional for linear representa-
tions and motivates a regularized objective functional. Minimization of this objective is effected by
a simple technique of stochastic gradient descent. The resulting representations are tested on trans-
fer problems in image processing, involving plane and spatial geometric invariants, handwritten
characters and face recognition.

Keywords: learning similarity, similarity, transfer learning

1. Introduction

Similarity seems fundamental to perception and reasoning. The precise meaning of the word ”simi-
larity” however is elusive and a corresponding Google search reveals a plethora of definitions rang-
ing from ”the property of being similar” to the analyses of Wittgenstein, Russel or Carnap. This
is not surprising: Pairs of triangles may or may not be similar, two poems may induce similar or
radically different moods in similar people, pairs of wines, bird-calls, weather patterns, approaches
to cognitive science, movies and definitions of similarity themselves may each be similar or not
similar or similar to a varying degree. It is the very universality of the concept which explains the
lack of a universal definition, beyond the structural feature that similarity is a property possessed by
pairs of objects and the vague feeling that it is somehow related to geometric proximity.

What cannot be defined may still be learned. Even if we cannot explain the meaning of a
concept, as long as it has observable manifestations we can hope to infer models to predict future
observations. These models will generally be domain-dependent and not in the form of definitions,
but rather vectors of synaptic efficacies, transformation coefficients or other constructions which
often defy verbalization, they are more akin to feeling than to rationality and they will be judged by
their predictive power rather than by logical clarity and comprehensibility.

This paper introduces a technique to learn and to represent similarity, an analysis of generaliza-
tion performance, an algorithmic realization and some experimental results.

1.1 A General Framework

Assumption 1: There is a measurable space X and a probability measure ρ on X 2×{−1,1}, the
pair oracle.

c©2008 Andreas Maurer.
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The interpretation is as follows: X is the input space containing the objects in question. When-
ever we call the oracle it will return the triplet (x,x′,r) ∈ X 2×{−1,1} with probability ρ(x,x′,r).
If the oracle returns (x,x′,1) it asserts that x and x′ are similar, if it returns (x,x′,−1) it asserts that
x and x′ are dissimilar. The assumption that similarity is a binary property, which can only have
the values of true or false, is a simplification which can in principle be removed (see Section 4.1
below). Beyond this restriction arbitrary definitions of similarity can be substituted, we do not re-
quire ”obvious properties” such as ρ(x,x′,r) = ρ(x′,x,r) or ρ(x,x,−1) = 0. We will however use
an intuitive property of similarity, a kinship to closeness or geometric proximity, in the choice of
our hypothesis spaces below.

Assumption 2: X ⊂H, where H is a real separable finite- or infinite-dimensional Hilbert space,
and diam(X )≤ 1.

Either the inputs are already members of some Euclidean space (vectors of neural activations,
pixel vectors or vectors of feature-values), or we identify them with their images under some feature
map, which may be realized by some fixed pre-processor such as a fixed weight neural network or
by a positive definite kernel on X . In the more detailed description of the proposed algorithm and
experimental results we will be more explicit about these feature maps. The bound on the diameter
of the input space is a convenience for the statement of our theoretical results.

Assumption 3: There is a training sample

S =
((

x1,x
′
1,r1

)

, ...,
(

xm,x′m,rm
))

∈
(

X 2×{−1,1}
)m

,

generated in m independent, identical trials of ρ, that is, S∼ ρm.
The assumptions of independence and stationarity are crucial and very strong: The oracle is

without memory of our previous calls and not affected by the passage of time. It will not deliberately
help nor mislead the learner. The training sample contains all the information available to the learner
who wants to find a rule to predict the oracles behavior.

Definition 1: A pair hypothesis is a function f : X 2→{−1,0,1}. Its risk is

R( f ) = Pr
(x,x′,r)∼ρ

{

f
(

x,x′
)

6= r
}

.

The pair hypothesis attempts to predict the similarity value of a pair (x,x′) and its risk is its error
probability as measured by the pair oracle. We allowed the value 0 to account for the possibility
that f may refuse to make a decision. Any such refusal is counted as an error by the risk functional.

1.2 Risk Bounds and Regularized Objectives

So far we have only used the structural condition that similarity is a property possessed by pairs of
objects. In the choice of the hypothesis space we will follow the intuition that similarity is related
to closeness or geometrical proximity. We will consider hypotheses from the set

H =
{

fT :
(

x,x′
)

7→ sgn
(

1−
∥

∥T x−T x′
∥

∥

)

: T ∈ L0 (H)
}

,

where L0 (H) is the set of linear operators of finite rank on H. A transformation T ∈ L0 (H) thus
defines a hypothesis fT which regards a pair of inputs as similar if the distance between their re-
spective images under T is smaller than one, and as dissimilar if this distance is larger than one.
Fixing the threshold to one causes no loss of generality, because any other positive threshold could
be absorbed as a factor of the transformation.
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This choice of the hypothesis space combines the geometric connotation of similarity with the
simplicity of linear representations. The transformations which parametrize our hypothesis space
are in some ways more interesting and useful than the hypotheses themselves. A choice of T ∈
L0 (H) also implies a choice of the Mahalanobis distance d2 (x,x′) = 〈T ∗T (x− x′) ,x− x′〉 and the
positive semidefinite kernel κ(x,x′) = 〈T ∗T x,x′〉.

The risk of the hypothesis fT induces a risk functional on L0 (H)

R(T ) = R( fT ) = Pr
(x,x′,r)∼ρ

{

r
(

1−
∥

∥T x−T x′
∥

∥

2
)

≤ 0
}

.

Since we can write ‖T x−T x′‖2 = 〈T ∗T (x− x′) ,x− x′〉= 〈T ∗T,Qx−x′〉2, where Qx−x′ and 〈., .〉2 are
respectively the outer product operator and the Hilbert-Schmidt inner product (see Section 2.1), the
last expression is reminiscent of the risk of a classifier defined by a linear function thresholded at
1. This provides the intuition underlying the proposed technique: We will look for a linear large-
margin classifier whose weight vector is the positive operator T ∗T .

Let ψ : R→R, ψ≥ 1(−∞,0] with Lipschitz constant L. Given our training sample S = ((x1,x′1,r1),
...,(xm,x′m,rm)) we define the empirical risk estimate

R̂ψ (T,S) =
1
m

m

∑
i=1

ψ
(

ri

(

1−
∥

∥T
(

xi− x′i
)∥

∥

2
))

. (1)

We then have the following theorem, a proof of which will be given in Section 3.

Theorem 1 ∀δ > 0, with probability greater 1−δ in a sample S∼ ρm

∀T ∈ L0 (H) with ‖T ∗T‖2 ≥ 1

R(T )≤ R̂ψ (T,S)+
4L ‖T ∗T‖2 +

√

(1/2) ln(2‖T ∗T‖2 /δ)√
m

.

where ‖A‖2 = Tr (A∗A)1/2 is the Hilbert-Schmidt- or Frobenius- norm of A.

The theorem gives a high-probability-bound on the true risk valid for all transformations in
terms of the empirical risk estimate and a complexity term. Because of the uniform nature of the
bound, a principled approach could search for T ∈ L0 (H) to minimize the right side of the bound.
This is just what we propose to do, with two practical modifications:

• The term
√

(1/2) ln(2‖T ∗T‖2 /δ) is neglected, the one linear in ‖T ∗T‖2 being regarded as
the dominant contribution.

• The factor 4L is replaced by an adjustable regularization parameter λ > 0. This allows to
compensate the fact that the difficult estimates in such generalization bounds overestimate
the estimation error.

As a Lipschitz function ψ we use hγ, the hinge-loss with margin γ, which has the value 1− t/γ
for t < γ, and the value 0 otherwise. This leads to the regularized objective function

Λhγ,λ (T ) :=
1
m

m

∑
i=1

hγ

(

ri

(

1−
∥

∥T
(

xi− x′i
)∥

∥

2
))

+
λ‖T ∗T‖2√

m
,

which is convex in T ∗T . Details related to the minimization of Λγ,λ are given in Section 3.3. It
follows from the nature of the objective function that the minimizing operator will have rank ≤ m.
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1.3 The Multi-category Problem and Learning-to-learn

In many classification problems occurring in a complex environment a learner cannot hope to obtain
examples for all potential categories. An example is furnished by the recognition of human faces,
since nobody can be expected to ever see all the faces which possibly need to be distinguished in
the future and the total number of categories is itself uncertain.

Human learning appears to cope with these empirically deficient problems: In addition to the
recognition of the already known categories human learners develop meta-techniques to improve
the learning and recognition of future categories. As a child learns to recognize parents, family,
friends, neighbors, classmates and teachers it learns to memorize, recognize and distinguish faces
in general, an ability which leads to a reliable recall often already on the basis of a single training
image. The earlier learning process leading to an improvement of future learning performance is
often referred to as learning-to-learn or meta-learning.

The practical utility of such mechanisms for machine-learning is obvious, and theoretically well
founded models of learning-to-learn may also be interesting from the point of view of cognitive
science or psychology (see Robins, 1998; Thrun, 1998; Baxter, 1998 for surveys, theoretical and
experimental contributions).

Here we exploit the fact that partial empirical knowledge of some of the categories of a domain
implies partial empirical knowledge of an underlying principle of similarity. By a very crude oper-
ational definition similarity is a property of two phenomena which makes them belong to the same
category of some domain, and dissimilarity is the negation of similarity. Following this idea we can
define a pair oracle which regards pairs of inputs as similar if and only if they come with the same
label, use this oracle to generate a large number of examples and train our algorithm to obtain a
similarity rule, together with a representing operator T .

Subsequently, once a novel category is represented by a first example, any new phenomenon can
be classified as belonging to the given category if and only if it is similar to the representing example.
Let us call this decision rule the elementary verifier generated from the example. It follows from
our analysis, that we can be confident that a single randomly chosen example for a future (possibly
previously unseen) category will give an elementary verifier with expected error bounded by the
bound in Theorem 1. These constructions and some related questions will be discussed in Section
5.

A related concept is transfer, where a representation trained from the data-set of a training-
task is applied to facilitate the learning of another, presumably related, target-task. Corresponding
experiments were carried out on a number of problems in image recognition, such as the recognition
of handwritten characters, rotation and scale invariant character recognition and the recognition of
human faces. In all these cases the representations generated from the training-tasks yielded a
considerable performance improvement for single-sample nearest neighbor classifiers on the target-
tasks.

This paper is organized as follows: Section 2 gives notation and theoretical background, Sec-
tion 3 introduces operator valued large-margin classifiers and a corresponding algorithm to train
representations, Section 4 derives an alternative algorithm related to PCA, Section 5 discusses the
application of our method to meta-learning and transfer, Section 6 describes experimental results
and Section 7 gives a brief review of some related approaches in the literature.

A precursor of this paper appeared in the NIPS’06 workshop on ”Learning to Compare Exam-
ples” (Maurer, 2006c).
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2. Notation, Definitions and Preliminary Results

In this section we introduce some notation and necessary theoretical background. For the readers
convenience there is also an appendix with a tabular summary of most of the notation used in this
paper.

2.1 Hilbert Space and Hilbert Schmidt Operators

The letter H denotes a finite- or infinite-dimensional real, separable Hilbert space, with inner product
〈., .〉 and norm ‖.‖. Inner products and norms on other spaces will be identified with subscripts. If
(

S ,‖.‖S
)

is a generic normed space and E ⊆ S , we will use the notation

‖E‖S = sup
x∈E
‖x‖S .

If H ′ is another Hilbert space, with inner product 〈., .〉′ and norm ‖.‖′, then L∞ (H,H ′) denotes the
Banach space of linear transformations T : H→ H ′ such that

‖T‖∞ = sup
x∈H,‖x‖≤1

‖T x‖′ < ∞.

For T ∈L∞ (H,H ′) , Ker (T ) is the subspace {x : T x = 0} and T ∗ is the unique member of L∞ (H ′,H)
satisfying 〈T x,y〉′= 〈x,T ∗y〉, ∀x∈H,y∈H ′. If S⊂H then S⊥ is the subspace {x : 〈x,y〉= 0,∀y ∈ S}.
A transformation U ∈ L∞ (H,H ′) is called a partial isometry if ‖Ux‖= ‖x‖, ∀x ∈ Ker (U)⊥.

We write L∞ (H) = L∞ (H,H). An operator T ∈ L∞ (H) is called symmetric if T = T ∗ and
positive if it is symmetric and 〈T x,x〉 ≥ 0, ∀x ∈H. We use L∗∞ (H) and L+

∞ (H) to denote the sets of
symmetric and positive members of L∞ (H) respectively. For every T ∈L+

∞ (H) there is some unique
T 1/2 ∈ L+

∞ (H) with T = T 1/2T 1/2. Evidently for every T ∈ L∞ (H,H ′) we have T ∗T ∈ L+
∞ (H)

and we denote with |T | the positive operator (T ∗T )1/2. For every T ∈ L∞ (H,H ′) there is a polar
decomposition T = U |T | for a unique partial isometry U ∈ L∞ (H,H ′).

For V ⊆L∞ (H) we use the notation V ∗V =
{

T ∗T : T ∈ V
}

. The set of finite rank operators on
H is denoted by L0 (H). Any orthonormal basis establishes a one-to-one correspondence between
L0 (H) and

S∞
n=1 {T : H→ R

n : T linear}.
With L2 (H) we denote the real vector space of operators T ∈L∞ (H) satisfying ∑∞

i=1 ‖Tei‖2≤∞
for every orthonormal basis (ei)

∞
i=1 of H. The members of L2 (H) are compact and called Hilbert

Schmidt operators. For S,T ∈ L2 (H) and an orthonormal basis (ei) the series ∑i 〈Sei,Tei〉 is abso-
lutely summable and independent of the chosen basis. The number

〈S,T 〉2 = ∑
i

〈Sei,Tei〉

defines an inner product on L2 (H), making it a Hilbert space. We denote the corresponding norm
with ‖.‖2 (see Reed and Simon, 1980 for background on functional analysis). L ∗2 (H) and L+

2 (H)
denote the sets of symmetric and positive members of L2 (H) respectively. For every member of
L∗2 (H) there is a complete orthonormal basis of eigenvectors, and for T ∈ L ∗2 (H) the norm ‖T‖2 is
just the `2-norm of its sequence of eigenvalues. In the finite dimensional case the norm ‖T‖2 is the
Frobenius norm of the matrix of T in an orthonormal representation.

The set of d-dimensional, orthogonal projections in H is denoted with Pd . It is easy to verify
that Pd ⊂ L+

2 (H) and if P ∈ Pd then ‖P‖2 =
√

d and P2 = P.
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Definition 2 For x ∈ H define an operator Qx on H by Qxz = 〈z,x〉x, ∀z ∈ H.

The map x→ Qx is an embedding of H in L+
2 (H) which is homogeneous of degree two (i.e.,

Qλx = λ2Qx, λ ∈ R, x ∈ H). In matrix terminology Qx is the ’outer product’ of x with itself. The
following simple lemma is crucial for our proofs (see also Maurer, 2006b).

Lemma 3 Let x,y ∈ H and T ∈ L2 (H). Then
(i) Qx ∈ L+

2 (H) and ‖Qx‖2 = ‖x‖2 .

(ii) 〈Qx,Qy〉2 = 〈x,y〉2 .

(iii) 〈T,Qx〉2 = 〈T x,x〉.
(iv) 〈T ∗T,Qx〉2 = ‖T x‖2 .

(v) For α ∈ R, Qαx = α2Qx.

(vi) For P ∈ Pd we have ‖PT P‖2 ≤ ‖T‖2.

Proof For x = 0 all assertions are trivial. Otherwise extend x/‖x‖ to an orthonormal basis of H and
use this basis in the definition of 〈T,Qx〉2 to obtain 〈T,Qx〉2 = 〈T x/‖x‖ ,Qxx/‖x‖〉 =
‖x‖−2 〈T x,〈x,x〉x〉 = 〈T x,x〉, which is (iii). (ii),(iv) and the second half of (i) follow immedi-
ately, the first part of (i) then follows from (iii) with T = Qx. (v) is trivial. To prove (vi) com-
plete a basis {ei}i=1,..,d for the range of P to a basis ei for H to get ‖PT P‖2

2 = ∑i j

〈

PT Pei,e j
〉2

=

∑i, j≤d

〈

Tei,e j
〉2 ≤ ∑i j

〈

Tei,e j
〉2

= ‖T‖2
2.

2.2 Rademacher Complexities

To derive the uniform laws of large numbers we need for Theorem 1 we will use Rademacher
averages as complexity measures for function classes:

Definition 4 Let F be a real-valued function class on a space X . Let {σi : i ∈ {1, ...,m}} be
a collection of independent random variables, distributed uniformly in {−1,1}. The empirical
Rademacher complexity of F is the function R̂m (F ) defined on X m by

R̂m (F )(x) = Eσ

[

sup
f∈F

2
m

m

∑
i=1

σi f (xi)

]

.

If X = (Xi)
m
i=1 is a vector of X -valued independent random variables then the expected Rademacher

complexity of F is

Rm (F ) = EX

[

R̂m (F )(X)
]

.

Theorem 5 Let F be a [0,1]-valued function class on a space X , and X = (Xi)
m
i=1 a vector of

X -valued independent, identically distributed random variables. Fix δ > 0.
With probability greater than 1−δ we have for all f ∈ F

E [ f (X1)]≤
1
m

m

∑
i=1

f (Xi)+Rm (F )+

√

ln(1/δ)

2m
.
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We also have with probability greater than 1−δ for all f ∈ F , that

E [ f (X1)]≤
1
m

m

∑
i=1

f (Xi)+ R̂m (F )(X)+

√

9ln(2/δ)

2m
.

For a proof see Bartlett and Mendelson (2002) or Maurer (2006b). We will also use the following
result from Bartlett et al. (2005):

Theorem 6 Let F be a class of real-valued functions on a space X and suppose that ψ : R→ R

has Lipschitz constant L. Let ψ◦F ={ψ◦ f : f ∈ F }. Then R̂m (ψ◦F )≤ L R̂m (F ).

2.3 Bounds for Vector-valued Processes

In this section we review some bounds for vector valued processes and linear classifiers. The bounds
are not at all original (they are taken from Koltchinskii and Panchenko, 2002; Bartlett and Mendel-
son, 2002; Shawe-Taylor and Christianini, 2003), nor are they necessarily the tightest possible,
because they are uniformly valid on the chosen function classes (compare with Bartlett et al., 2005).
Because the proofs are easy we provide them for the readers convenience.

Using Lemma 3 all these results can be easily transferred from the Hilbert space H to the Hilbert
space L2 (H). This simple step, together the geometrical interpretation implied by Lemma 3 (iv), is
the principal theoretical contribution of this paper.

Lemma 7 Let V ⊂ H and F ={x ∈ H 7→ 〈x,v〉 : v ∈V}. Then for any x = (x1, ...,xm) ∈ Hm

R̂m (F )(x)≤ 2‖V‖
m

(

m

∑
i=1

‖xi‖2

)1/2

.

Proof From Schwartz’ and Jensen’s inequality and linearity we obtain

R̂m (F )(x) = Eσ

[

sup
v∈V

2
m

m

∑
i=1

σi 〈xi,v〉
]

= Eσ

[

sup
v∈V

2
m

〈

m

∑
i=1

σixi,v

〉]

≤ 2‖V‖
m

Eσ

[∥

∥

∥

∥

∥

m

∑
i=1

σixi

∥

∥

∥

∥

∥

]

≤ 2‖V‖
m



Eσ





∥

∥

∥

∥

∥

m

∑
i=1

σixi

∥

∥

∥

∥

∥

2








1/2

,

but by the properties of the σi we have Eσ [σiσ j] = δi j, so we get

Eσ





∥

∥

∥

∥

∥

m

∑
i=1

σixi

∥

∥

∥

∥

∥

2


=
m

∑
i=1

m

∑
j=1

Eσ [σiσ j]
〈

xi,x j
〉

=
m

∑
i=1

‖xi‖2 .
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Theorem 8 Let (X ,r) be a random variable with values in H×{−1,1} and let (X,r) = ((X1,r1) ,
...,(Xm,rm)) be a vector of m iid copies of (X ,r). Let ψ : R→R, ψ≥ 1(−∞,0] with Lipschitz constant
L and V ⊂ H. For v ∈V denote err(v) = Pr{sign(1−〈X ,v〉) 6= r} and

err̂ψ (v,(X,r)) =
1
m

m

∑
i=1

ψ(ri (1−〈Xi,v〉)) .

Let δ > 0. Then with probability greater than 1−δ we have for all v ∈V

err(v)≤ err̂ψ (v,(X,r))+
2L ‖V‖

m

(

m

∑
i=1

‖Xi‖2

)1/2

+

√

9ln(2/δ)

2m
.

If ‖X‖ ≤ 1 a.s. then with probability greater than 1−δ we have for all v ∈V that

err(v)≤ err̂ψ (v,(X,r))+
2L ‖V‖√

m
+

√

ln(1/δ)

2m
.

Proof If we can prove the Theorem for ψ : R→ [0,1], then it will follow for general ψ, because it
will also be true for min{ψ,1} which has Lipschitz constant bounded by L and err̂min{ψ,1} (v,(X,r))
≤err̂ψ (v,(X,r)). We can thus assume ψ : R → [0,1] and since ψ ≥ 1(−∞,0] we have R(v) =
E
[

1(−∞,0] (r (1−〈X ,v〉))
]

≤ E [ψ(r (1−〈X ,v〉))]. In view of Theorem 5 it therefore suffices to
prove that

R̂m (ψ◦F )(X)≤ 2L ‖V‖
m

(

m

∑
i=1

‖Xi‖2

)1/2

, (2)

where F is the function class

F ={(x,r) ∈ H×{−1,1} 7→ r (1−〈x,v〉) : v ∈V} .

By Theorem 6 we have R̂m (ψ◦F )≤ L R̂m (F ) and one verifies easily that R̂m (F ) = R̂m(x 7→ 〈x,v〉 :
v ∈V ), so (2) follows from Lemma 7.

To derive our bounds for hyperbolic PCA in Section 4 we need the following lemma. A similar
statement can be found in Shawe-Taylor and Christianini (2003).

Lemma 9 Let V,W ⊂ H be and suppose that X1, ...,Xm are independent, identically distributed,
zero-mean random variables with values in W. Then for ε and m such that ‖W‖‖V‖ <

√
mε we

have

Pr

{

sup
v∈V

∣

∣

∣

∣

∣

1
m

m

∑
i=1

〈v,Xi〉
∣

∣

∣

∣

∣

> ε

}

≤ exp

(

−(
√

mε−‖V‖‖W‖)2

2 |〈V,W 〉|2

)

.

Proof Consider the average X̄ = (1/m)∑m
1 Xi. With Jensen’s inequality and using independence we

obtain
(

E
[∥

∥X̄
∥

∥

])2 ≤ E

[

∥

∥X̄
∥

∥

2
]

=
1

m2

m

∑
i=1

E

[

‖Xi‖2
]

≤ ‖W‖2 /m.
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Now let f : W m→ R be defined by f (x) = supv∈V |(1/m)∑m
1 〈v,xi〉|. We have to bound the proba-

bility that f > ε. By Schwartz’ inequality and the above bound we have

E [ f (X)] = E

[

sup
v∈V

∣

∣

〈

v, X̄
〉∣

∣

]

≤ ‖V‖E
[∥

∥X̄
∥

∥

]

≤
(

1/
√

m
)

‖V‖‖W‖ . (3)

Let x∈W m be arbitrary and x′ ∈W m be obtained by modifying a coordinate xk of x to be an arbitrary
x′k ∈W . Then

∣

∣ f (x)− f
(

x′
)∣

∣≤ 1
m

sup
v∈V

∣

∣〈v,xk〉−
〈

v,x′k
〉∣

∣≤ 2
m
|〈V,W 〉| .

By (3) and the bounded-difference inequality (see McDiarmid, 1998) we obtain for t > 0

Pr

{

f (X) >
‖V‖‖W‖√

m
+ t

}

≤ Pr{ f (X)−E [ f (X)] > t} ≤ exp

(

−mt2

2 |〈V,W 〉|2

)

.

The conclusion follows from setting t = ε− (1/
√

m)‖V‖‖W‖

We will also use the following model-selection lemma taken from (Anthony and Bartlett, 1999,
Lemma 15.5):

Lemma 10 Suppose

{F (α1,α2,δ) : 0 < α1,α2,δ≤ 1}

is a set of events such that:
(i) For all 0 < α≤ 1 and 0 < δ≤ 1,

Pr{F (α,α,δ)} ≤ δ.

(ii) For all 0 < α1 ≤ α≤ α2 ≤ 1and 0 < δ1 ≤ δ≤ 1,

F (α1,α2,δ1)⊆ F (α,α,δ) .

Then for 0 < a,δ < 1,

Pr





[

α∈(0,1]

F (αa,α,δα(1−a))



≤ δ.

3. Operator Valued Large Margin Classifiers

In this section we derive our algorithm. We give a proof of Theorem 1, then discuss the derivation
of an objective functional and finally some issues related to its minimization.
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3.1 Generalization Bounds

We first give a version of Theorem 1 for a fixed hypothesis space given by Hilbert-Schmidt operators
of uniformly bounded norm and then derive from it a regularized version applying to all Hilbert-
Schmidt operators.

Recall that the pair oracle is a probability measure ρ on X 2×{−1,1}, the set of labeled pairs
(sometimes also called equivalence constraints; Bar-Hillel et al., 2005), and that we assumed the
input space X to be embedded in the Hilbert space H such that diam(X ) ≤ 1. We will apply
Theorem 8 to the Hilbert space L2 (H) instead of H and replace the random variable (X ,r) of
Theorem 8 by the random variable (Qx−x′ ,r) with values in L2 (H)×{−1,1}, where (x,x′,r) are
distributed according to the pair oracle ρ. The training sample S = ((x1,x′1,r1) , ...,(xm,x′m,rm))

corresponds to m independent realizations
((

Qx1−x′1
,r1

)

, ...,
(

Qxm−x′m ,rm
)

)

of this random variable.

Since diam(X )≤ 1 we have ‖Qx−x′‖2 = ‖x− x′‖2 ≤ 1 a.s. by virtue of Lemma 3 (i).
Recall the definition of the risk associated with a transformation T . Using Lemma 3 (iv) we

have

R(T ) = Pr
{

r
(

1−
∥

∥T x−T x′
∥

∥

2
)

≤ 0
}

= Pr{r (1−〈Qx−x′ ,T
∗T 〉2)≤ 0}

= err(T ∗T ) .

Here err(T ∗T ) (see Theorem 8) is the expected error of the linear classifier defined by the vector
T ∗T in L2 (H) thresholded at the value 1 and applied to a random labeled data point (Qx−x′ ,r) ∈
L2 (H)×{−1,1}. Also note that the empirical estimator (1) can be rewritten

R̂ψ (T,S) =
1
m

m

∑
i=1

ψ
(

ri

(

1−
〈

Qxi−x′i
,T ∗T

〉

2

))

.

With corresponding substitutions Theorem 8 becomes

Theorem 11 Let ψ : R→ R, ψ≥ 1(−∞,0] with Lipschitz constant L and V ⊂ L2 (H). Let δ > 0.
(i) With probability greater than 1−δ we have for all T ∈ L∞ (H) such that T ∗T ∈ V

R(T )≤ R̂ψ (T,S)+
2L
∥

∥V
∥

∥

2

m

(

m

∑
i=1

∥

∥Xi−X ′i
∥

∥

4

)1/2

+

√

9ln(2/δ)

2m
.

(ii) With probability greater than 1−δ we have for all T ∈ L∞ (H) such that T ∗T ∈ V

R(T )≤ R̂ψ (T,S)+
2L
∥

∥V
∥

∥

2√
m

+

√

ln(1/δ)

2m
.

Typically V would be a ball of some fixed radius, say c, about the origin in L2 (H), so that
∥

∥V
∥

∥

2 = c. Our application of the vector valued generalization Theorem 8 introduced a certain
looseness: Theorem 8 gives bounds on err(A) for all A ∈ V , while we only require the bounds for
those A ∈ V which are of the form A = T ∗T , that is we are only using the linear functionals in
V ∩L+

2 (H). This raises the question if we might not get much better bounds for V ∩L +
2 (H) than

for V . The following proposition shows that this will not work using Rademacher averages.
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Proposition 12 Let F and F + be the function classes on L2 (H) given by

F = {B ∈ L2 (H) 7→ 〈B,A〉2 : ‖A‖2 ≤ 1} ,
F + =

{

B ∈ L2 (H) 7→ 〈B,A〉2 : ‖A‖2 ≤ 1, A ∈ L+
2 (H)

}

.

Then R̂m (F +)≤ R̂m (F )≤ 4R̂m (F +) .

Proof The first inequality is obvious since F + ⊂ F (see Theorem 12 in Bartlett and Mendelson,
2002). Suppose ‖A‖2 ≤ 1. With A1 = (A+A∗)/2 and A2 = (A+A∗)/2 we can write A = A1 + A2

with Ai symmetric and ‖Ai‖2 ≤ 1. By symmetry of the Ai and the spectral theorem we can write
Ai = Ai1 − Ai2 with Ai j ∈ L+

2 (H) and
∥

∥Ai j
∥

∥

2 ≤ 1. So any f ∈ F can be written in the form
f = f11− f12 + f21− f22 with fi j ∈ F +, or F = F +−F + + F +−F +, whence the second in-
equality also follows from Theorem 12 in Bartlett and Mendelson (2002), or from an application of
the triangle inequality.

By stratification over balls in L2 (H) we arrive at a generalization bound valid for all bounded
operators. If specialized to L0 (H), the second conclusion below becomes Theorem 1 in the intro-
duction.

Theorem 13 Let ψ : R→ R, ψ≥ 1(−∞,0] with Lipschitz constant L and δ > 0.
1. With probability greater than 1−δ we have for all T ∈ L∞ (H)

R(T )≤ R̂ψ (T,S)+
4L ‖T ∗T‖2

m

(

m

∑
i=1

∥

∥Xi−X ′i
∥

∥

4

)1/2

+

√

9ln(4‖T ∗T‖2 /δ)

2m
.

2. With probability greater than 1−δ we have for all T ∈ L∞ (H)

R(T )≤ R̂ψ (T,S)+
4L ‖T ∗T‖2√

m
+

√

ln(2‖T ∗T‖2 /δ)

2m
.

Proof We will use Lemma 10. For α ∈ (0,1] let V (α) = {T ∈ L∞ (H) : ‖T ∗T‖2 ≤ 1/α} and
consider the events

F (α1,α2,δ) =
{

∃T ∈ V (α2) such that

R(T ) > R̂(T,S)+
2L

α1m

(

m

∑
i=1

∥

∥

∥QXi−X ′i

∥

∥

∥

2
)1/2

+

√

9ln(2/δ)

2m







.

By the first conclusion of Theorem 11 the events F (α1,α2,δ) satisfy hypothesis (i) of Lemma 10,
and it is easy to see that (ii) also holds. If we set a = 1/2 and replace α by 1/‖T ∗T‖2, then the
conclusion of Lemma 10 becomes the first conclusion above. The second conclusion is proved sim-
ilarly.
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3.2 The Objective Functional

Because of the complicated estimates involved, risk bounds such as Theorem 13 have a tendency to
be somewhat loose, so that a learning algorithm relying on naive minimization of the bounds may
end up with suboptimal hypotheses. On the other hand in the absence of other helpful information
such a bound provides a valuable guiding principle, as long as it is transformed to an objective
functional which can be minimized in practice and allows for a flexible parametrization of the slack
suspected in the bound.

Departing from the simpler of the two conclusions of Theorem 13, a naive approach would look
for some T ∈ L0 (H) to minimize the objective functional

R̂ψ (T,S)+
4L ‖T ∗T‖2√

m
+

√

ln(2‖T ∗T‖2 /δ)

2m
.

Our first modification is to discard the last term on the grounds that it will be dominated by second
one. This is only justified if we exclude extremely small values of the confidence parameter δ
and work with operators of reasonably large norm, so that ‖T ∗T‖2 is substantially greater than
√

ln‖T ∗T‖2 /δ. The new objective functional reads

R̂ψ (T,S)+
4L ‖T ∗T‖2√

m
.

Our second modification is to replace the factor 4L in the second term by an adjustable regularization
parameter λ > 0. On the one hand this just absorbs the Lipschitz constant L of the function ψ (which
is yet to be fixed), on the other hand it expresses the belief that ‖T ∗T‖2 /

√
m gives the right order

of the true estimation error. We will stick to this belief, even though it can be successfully argued
that it is naive, because the estimation error may decay much more rapidly than m−1/2 as shown by
Bartlett et al. (2005) and several other works. There were in fact experimental indications, that in
our case the decay is not much better than m−1/2, because the same value of λ appeared to work
very well for different applications with rather different values of m (see Section 6.1).

The objective functional now depends on ψ and λ and has the form

Λψ,λ (T,S) = R̂ψ (T,S)+
λ‖T ∗T‖2√

m
. (4)

We still have to fix the Lipschitz function ψ, satisfying ψ ≥ 1(−∞,0]. We want it to be as small as
possible to reduce slack, but it should be convex for practical reasons. It is easy to show that any
convex function ψ with ψ ≥ 1(−∞,0] and Lipschitz constant L satisfies ψ ≥ hL−1 , where hγ is the
hinge loss with margin γ > 0, defined by

hγ (t) =

{

1− t/γ if t ≤ γ
0 if t > γ .

We settle for the hinge loss, not only because it is optimal with respect to convexity, the Lipschitz
condition and the lower bound constraint, but because of its simplicity. Our final objective function
thus depends on the two parameters λ and γ and reads

Λhγ,λ (T,S) =
1
m

m

∑
i=1

hγ

(

ri

(

1−
∥

∥T xi−T x′i
∥

∥

2
))

+
λ‖T ∗T‖2√

m
,
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for a sample S = ((x1,x′1,r1) , ...,(xm,x′m,rm)) generated in m independent, identical trials of the pair
oracle ρ. The proposed algorithm searches for T ∈ L∞ (H) to minimize Λhγ,λ (T,S).

While the hinge loss is used in most of our experiments, there are other choices. It is inherent
to the problem of similarity learning that one is led to consider an asymmetric response to similar
and dissimilar examples (see, for example, the approaches of Bar-Hillel et al., 2005 and Xing et al.,
2002). This is implemented by making the Lipschitz function ψ dependent on the parameter r which
indicates similarity or dissimilarity. We thus consider two functions ψ1,ψ−1 : R→ R , ψi ≥ 1(−∞,0]

and the objective functional

Λψ1,ψ−1,λ (T,S) =
1
m

m

∑
i=1

ψri

(

ri

(

1−
∥

∥T
(

xi− x′i
)∥

∥

2
))

+
λ‖T ∗T‖2√

m
.

Note that our generalization bounds remain valid for the empirical risk estimate using ψ1 and ψ−1

as long as we use for L the Lipschitz constant of min{ψ1,ψ−1}. Using ψi = hγi we are effectively
considering an inside margin γ1, which applies to similar pairs, and an outside margin γ−1, which
applies to dissimilar pairs.

The use of different margins, or more generally different functions ψi in response to similar and
dissimilar examples is nonsensical from the point of view of our bounds, which would always as-
sume a smaller value if we used min{ψ1,ψ−1} to begin with. These bounds however were imported
from the inherently symmetric vector valued case to a situation which is inherently asymmetric, be-
cause 〈QX−X ′ ,T ∗T 〉2 = ‖T X−T X ′‖2 ≥ 0 for all possible solutions T . The asymmetric margins
may therefore have their merit and an instance of asymmetric margins is described in Section 4.

Even with symmetric margins the response will be asymmetrical: If we use γ = 1 (as in fact we
did in our experiments) every similar pair (xi,x′i) will make a contribution to the objective function
unless T xi = T x′i, whereas dissimilar pairs will only contribute if ‖T xi−T x′i‖

2 < 2, which can
exclude many examples of dissimilarity, in particular if the regularization parameter λ is small.

Why not use the trace-norm ‖T ∗T‖1 = ‖T‖2
2 as a regularizer? Since ‖T ∗T‖2 ≤ ‖T ∗T‖1 the

trace-norm could be substituted in our bounds and the regularization part of the algorithm in Table
1 below would simplify considerably if we used ‖T‖2

2 instead of ‖T ∗T‖2. Regularization with the
trace-norm is also believed to enforce sparsity in the sense of a low rank of T .

The trace-norm was not used for three reasons:

1. The bounds become looser upon substitution of ‖T ∗T‖1. While this is obvious, one could
argue, that there may be other bounds which work well with ‖T ∗T‖1. Besides, the idea of
minimizing bounds has to be approached with caution, so this argument is not decisive.

2. The trace-norm does not work as well in practice. In all experiments the trace norm was
tried and performance found to be slightly inferior (while still comparable) to the use of the
Hilbert-Schmidt norm ‖T ∗T‖2 (see Section 6).

3. Regularization with the trace norm can cause too much sparsity and instability of the learning
algorithm. This can be seen by simplifying the empirical part of the objective to be linear in
V = T ∗T (that this is a valid approximation is shown in Proposition 15 below). Then there is
an empirical operator A (made explicit in Section 4.2) such that an objective functional can
be written as

−〈V,A〉2 +λ‖T ∗T‖p
p ,
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to be minimized with positive operators V . In this case the minimizers can be given explicitly
in terms of A. For p = 2 (the Hilbert-Schmidt case) one finds that the minimizer is a multiple
of the positive part A+ of the empirical operator A (the source of the sparsity observed in
our experiments), and stable under small perturbations of the eigenvalues of A. For p = 1
however the minimizer V will be a multiple of the projection to the subspace spanned by
the eigenvectors corresponding to the largest positive eigenvalue of A. This space will be
generically one-dimensional, making it useless for many data-representations. If it is more
than one-dimensional then it will be unstable under perturbations of the eigenvalues of A.

3.3 Minimization of the Objective Functional

Throughout this section fix a sample S = ((x1,x′1,r1) , ...,(xm,x′m,rm)) and assume that ψ : R→R is
convex, satisfying ψ≥ 1(−∞,0]. For λ > 0 consider the functional Ωψ,λ : L+

2 (H)→ R

Ωψ,λ (A) =
1
m

m

∑
i=1

ψ
(

ri

(

1−
〈

Qxi−x′i
,A
〉

2

))

+
λ‖A‖2√

m
. (5)

Comparison with (4) reveals that Λψ,λ (T ) = Ωψ,λ (T ∗T ), so that any operator T is a minimizer of
Λψ,λ if and only if T ∗T is a minimizer of Ωψ,λ in L+

2 (H), a simple fact which has several important
consequences. Note that Ωψ,λ is convex if ψ is convex, and since L+

2 (H) is a convex set we obtain
a convex optimization problem. The situation somewhat resembles that of an SVM (in particular if
ψ is the hinge loss), but solutions cannot be sought in all of L2 (H) but must lie in the cone L+

2 (H),
a positivity constraint which makes the optimization problem quite different.

Denote with M the linear span of {xi− x′i : i = 1, ...,m} in H and define a map from Mm to
L+

2 (H) by

Av =
m

∑
i=1

Qvi where v = (v1, ...,vm) ∈Mm.

That Av ∈ L+
2 (H) follows from Lemma 3. We also define a linear transformation Tv : H → R

m by
setting

(Tvz)k = 〈z,vk〉 for k = 1, ...,m and z ∈ H. (6)

Then we have T ∗v Tv = Av. Also note that v↔ Tv establishes a continuous bijection between Mm and
the set of all linear transformations T : H→ R

m with M⊥ ⊆ Ker (T ).
Suppose we can find some v ∈ Mm such that Ωψ,λ (Av) ≤ Ωψ,λ (A) for all A ∈ L+

2 (H). Then
Λψ,λ (Tv) = Ωψ,λ (T ∗v Tv) = Ωψ,λ (Av) is also optimal, so Tv will be an optimal pre-processor and
we are done. To find such an optimal v ∈ Mm we plan to do gradient descent of Ωψ,λ (Av) in the
parameter v which automatically ensures the positivity constraint and keeps us comfortable in an
at most m-dimensional environment. Since Ωψ,λ (Av) is not generally convex in v, even if Ωψ,λ is
convex, one might worry about the existence of local minima.1 The following theorem excludes
this possibility:

Theorem 14 Assume that ψ is convex. For v∈Mm define Φ(v) = Ωψ,λ (Av). If Φ has a stable local
minimum at v ∈Mm then Av is a global minimizer of Ωψ,λ in L+

2 (H).

1. Recall that a real function f on a topological space X has a local minimum at x ∈ X if there is an open set O 3 x such
that f (x)≤ f (y) ∀y ∈ O
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Proof Abbreviate Ωψ,λ to Ω and use P to denote the orthogonal projection onto M. We first claim
that

∀A ∈ L+
2 (H) we have Ω(PAP)≤Ω(A) . (7)

This follows from
〈

Qxi−x′i
,PAP

〉

2
=
〈

Qxi−x′i
,A
〉

2
and Lemma 3 (vi) by inspection of (5). Next

consider the identity
{Av : v ∈Mm}=

{

PAP : A ∈ L+
2 (H)

}

. (8)

First note that the inclusion from left to right follows from Av = PAvP for v ∈ Mm. On the other
hand for any A ∈ L+

2 (H) all the eigenvectors of PAP with nonzero eigenvalues have to lie in M, and
enumerating the eigenvectors ei of PAP beginning with those in M (of which there can be at most
m) we have

PAPz =
m

∑
i=1

λi 〈z,ei〉ei =
m

∑
i=1

〈

z,λ1/2
i ei

〉

λ1/2
i ei =

m

∑
i=1

Q(
λ1/2

i ei

)z = Avz

for all z ∈ H, so that PAP ∈ {Av : v ∈Mm} which proves (8).
To prove the theorem let Φ attain a local minimum at v ∈Mm. We will assume that Ω does not

attain a global minimum at Av and derive a contradiction. We can write Av = T ∗v Tv, using (6). Since
Ω is convex it cannot even attain a local minimum at Av, so there is a sequence An ∈ L+

2 (H) such
that An→ Av and Ω(An) < Ω(Av). By continuity of multiplication also PAnP→ PAvP = Av, by (7)
Ω(PAnP) ≤ Ω(An) < Ω(Av) and by (8) there exists vn ∈Mm such that Avn = PAnP. We thus have
Avn → Av (this does not imply that vn→ v !) and Ω(Avn) < Ω(Av). By continuity of the square-root

A1/2
vn → A1/2

v = |Tv|. By polar decomposition we can write Tv =U |Tv|, where U is a partial isometry,

and define Tn : M→R
m by Tn =UA1/2

n . Then Tn→Uv |Tv|= Tv, so if wn is chosen such that Tn = Twn

we have wn→ v, but also Φ(wn) = Ω(T ∗n Tn) = Ω
(

A1/2
n U∗UA1/2

n

)

= Ω(An) < Ω(Av) = Φ(v), so

Φ cannot attain a local minimum at v.

Observe that this result justifies the gradient descent method in the presence of positivity con-
straints also for other convex loss functions besides the hinge loss. Nevertheless, it does not exclude
the existence of points with vanishing gradients away from the global minimum. While the probabil-
ity of arriving at these points during gradient descent is vanishing, the algorithm can still be slowed
down considerably in their neighborhood, a possibility which we have to be prepared for (although
it doesn’t seem to happen in practice). The theorem therefore only proves that the gradient descent
works, but not that it is efficient.

There is an alternative technique (see Xing et al., 2002) of iterative projections which avoids the
problem of vanishing gradients and stays more closely to the original convex optimization problem.
Briefly, one extends the functional Ω to all of L2 (H), so that the problem becomes equivalent to
an SVM, and then alternates between gradient descent in Ω, which is convex, and projections onto
L+

2 (H). The projection of an operator A ∈ L2 (H) to L+
2 (H) is effected by an eigen-decomposition

and reconstruction with all the negative eigenvalues set to zero, so that only the positive part of A is
retained. This method would also work for our objective functional, in fact for any convex objective
constrained to positive operators. Here this technique was not chosen, because it appeared that the
effort of the repeated eigen-decomposition might cancel the advantages of the method. Also the
proposed gradient descent, which is easily converted to an online algorithm, appeared more elegant
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Given sample S, regularization parameter λ, margin γ, learning rate θ
set λ′ = λ/

√

|S| and d = m
randomly initialize v = (v1, ...,vd)
repeat

Compute ‖Av‖2 =
(

∑i j

〈

vi,v j
〉2
)1/2

For i = 1, ...,d compute wi = 2‖Av‖−1
2 ∑ j

〈

vi,v j
〉

vi

Fetch (x,x′,r) randomly from sample S
For i = 1, ...,d compute ai← 〈vi,x− x′〉
Compute b← ∑d

i=1 a2
i

If r (1−b) < γ
then for i := 1, ...,d do vi← vi−θ

(

r
γ ai (x− x′)+λ′wi

)

else for i := 1, ...,d do vi← vi−θλ′wi

until convergence

Table 1: Learning algorithm

in its implicit adherence to the positivity constraint. The ultimate reason to stay with the proposed
technique was of course its practical success.

So our algorithm will randomly initialize the vector v ∈Mm and then follow the negative gradi-
ent of Φ, either for a specified number of steps or until some heuristic convergence criterion on the
value of Φ is met. Straightforward differentiation gives for the k-th component of the gradient of Φ
at v ∈Mm the expression

(∇Φ)k (v) =
−2
m

m

∑
i=1

ψ′
(

ri

(

1−
m

∑
j=1

a2
i j

))

riaik
(

xi− x′i
)

+
2λ

‖Av‖2
√

m

m

∑
j=1

〈

vk,v j
〉

v j,

where aik = 〈xi− x′i,vk〉 and ‖Av‖2 =
(

∑i, j

〈

vi,v j
〉2
)1/2

. In Table 1 we give a corresponding algo-

rithm of stochastic gradient descent for the case that ψ is the hinge-loss with margin γ.
In a simplified view, which disregards the regularization term (or if λ = 0), the algorithm will

modify T in an attempt to bring T xi and T x′i closer if xi and x′i are similar (i.e., ri = 1) and their
distance exceeds 1− γ, it will attempt to move T xi and T x′i further apart if xi and x′i are dissimilar
(i.e., ri =−1) and their distance is less than 1 + γ, and it will be indifferent to all other cases. This
procedure can also be interpreted in terms of the effect which the individual gradient steps have
on the level ellipsoid of the quadratic form induced by T ∗T . Figure 1 tries to shows the simple
geometrical intuition behind this construction.

There are two heuristic approximations to accelerate this algorithm. A simple time-saver is the
observation that the contribution of the regularization term to the gradient changes only very little
with small updates v. It therefore doesn’t need to be recomputed on every iteration, but it suffices
to compute it intermittently.

Also in the experiments reported below a singular value decomposition of the optimal operator
revealed that it was dimensionally sparse, in the sense that very few (generally less than 50) singular
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Figure 1: The effect of similar and dissimilar pairs on the level ellipsoid of the quadratic form
induced by T ∗T in the case of hinge loss with margin γ. If ‖T x−T x′‖ ≤ 1− γ for similar
or ‖T x−T x′‖ ≥ 1 + γ for dissimilar pairs there is no effect. If ‖T x−T x′‖ < 1 + γ for
similar pairs, the ellipsoid is compressed in a direction parallel to the line between x and
x′. If ‖T x−T x′‖ > 1− γ for dissimilar pairs, the ellipsoid is dilated. Regularization
corresponds to a shrinking of the ellipsoid.

values were significantly different from zero. This implies that Av can be well approximated by
some Aw where w ∈Md with d� m, and shows that the proposed algorithm effects a dimensional
reduction. It also suggests that one might try gradient descent in Md instead of Mm for d < m, which
causes a considerable acceleration if d ≈ 102 and m≥ 103. Of course the argument in Theorem 14
is then no longer valid, because finite dimensional constraints are not convex, so that local minima
might become a problem. In practice this never happened for d ≈ 102 and was observed only for
d ≤ 5. The heuristic is implemented by accordingly modifying the initialization d = m in Table 1.
In our experiments we used d = 100.

There is a simple practical use to an eigen-decomposition of the optimal Av returned by the
algorithm. The vi will in general not be orthogonal, the algorithm does not enforce this in any way).
If the decomposition reveals that only few eigenvalues of Av are significantly different from zero,
we can restrict ourselves to the span of the corresponding eigenvalues. This yields a representation
operator T with very low dimensional range, which is easier to compute and facilitates subsequent
processing.

By virtue of our dimension free bounds the algorithm is well suited for kernel implementations.
Note that the search space consists of vectors v = (v1, ...,vd) ∈Md which admit a linear representa-
tion

vi =
m

∑
j=1

αi
j

(

x j− x′j
)
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in terms of the training sample. To add two such v we just add the corresponding matrices αi
j, to

compute inner products we just use the kernel function on the input space. Substituting these rules
one finds that there is no problem in kernelization of the algorithm.

4. Similarity Regression and Hyperbolic PCA

In this section we consider some alternatives. The first is rather obvious and extends the method de-
scribed above to continuous similarity values. The other method is derived from the risk functional
R and has already been described in Maurer (2006a).

4.1 Similarity Regression

The bounds in Section 3.1 have straightforward extensions to the case, when the oracle measure
is not supported on X 2×{−1,1} but on X 2× [0,1], corresponding to a continuum of similarity
values, and ` : [0,1]×R→ R is a loss function such that `(y, .) has Lipschitz constant at most L for
all y ∈ [0,1]. The corresponding risk functional to be minimized would be

R′ (T ) = E(x,x′,r)∼ρ

[

`
(

r,
∥

∥T x−T x′
∥

∥

2
)]

.

If ` has the appropriate convexity properties, then an obvious modification of the proposed algorithm
can be used. With a least-squares loss function the square of the norm (an unavoidable feature of
our method) will lead to an overemphasis of large distances, probably an undesirable feature which
can be partially compensated by a redefinition of the loss function at the expense of a large Lipschitz
constant (e.g., with `(y, t) = (y− t)2 /(y− y0)

2 for some y0 > 0).
The possibilities of this type of similarity regression (or learning of metrics) remain to be ex-

plored.

4.2 Risk Bounds with Affine Loss Functions and Hyperbolic PCA

Consider again the case of a binary oracle (similar/dissimilar) and the task of selecting an operator
from some set V ⊂ L2 (H).

Proposition 15 Suppose 1 <
∥

∥V
∥

∥

∞ = c < ∞ and set η1 =−1 and η−1 = 1/
(

c2−1
)

. Then for all
T ∈ V

R(T )≤ 1+E(x,x′,r)∼ρ [ηr]−
〈

T ∗T,E(x,x′,r)∼ρ [ηrQx−x′ ]
〉

2
.

For a balanced oracle this becomes

R(T )≤ c2

2(c2−1)
−
〈

T ∗T,E(x,x′,r)∼ρ [ηrQx−x′ ]
〉

2
.

Proof Define real functions ψ1,ψ−1 by ψ1 (t) = 1−t and ψ−1 (t) = 1−t/
(

c2−1
)

. Since ‖x− x′‖≤
1 a.s. and by the definition of c we have for T ∈ V

1(−∞,0]

(

r
(

1−
∥

∥T X−T X ′
∥

∥

2
))

≤ ψr

(

r
(

1−
∥

∥T X−T X ′
∥

∥

2
))

a.s.

1066



LEARNING SIMILARITY

We also have for r ∈ {−1,1} that ψr (t) = 1+ rηrt, whence

R(T ) = E(x,x′,r)∼ρ

[

1(−∞,0]

(

r
(

1−
∥

∥T X−T X ′
∥

∥

2
))]

≤ E(x,x′,r)∼ρ

[

ψr

(

r
(

1−
∥

∥T X−T X ′
∥

∥

2
))]

= E(x,x′,r)∼ρ

[

1+ηr

(

1−
∥

∥T X−T X ′
∥

∥

2
)]

= 1+E(x,x′,r)∼ρ [ηr]−
〈

T ∗T,E(x,x′,r)∼ρ [ηrQx−x′ ]
〉

2
.

Since for a balanced oracle 1+E(x,x′,r)∼ρ [ηr] = c2/
(

2
(

c2−1
))

, the second conclusion is immedi-
ate.

Of course we can use the risk bounds of the previous section for an empirical estimator con-
structed from the Lipschitz functions ψ1,ψ−1 used in the proof above, corresponding to an inner
margin of 1 and an outer margin of c2−1 (see Section 3.1 and 3.2). The affine nature of these func-
tions however allows a different, more direct analysis and a different algorithmic implementation.

The operator
A := E(x,x′,r)∼ρ [ηrQx−x′ ]

is the expectation of the operator-valued random variable (x,x′,r) 7→ ηrQx−x′ . Minimizing the
bounds in Proposition 15 is equivalent to maximizing 〈T ∗T,A〉2, which is the only term depend-
ing on the operator T . Given the sample S = ((x1,x′1,r1) , ...,(xm,x′m,rm)) the obvious way to try this
is by maximizing the empirical counterpart

〈

T ∗T, Â
〉

2 where Â is the empirical operator

Â(S) =
1
m

m

∑
i=1

ηriQxi−x′i
. (9)

The next result addresses the issue of estimation. The result is similar to Theorem 13 but can be
obtained without the use of Rademacher averages.

Theorem 16 Under the above assumptions and if c≥ 2 we have for δ > 0 with probability greater
1−δ in the sample S that for all T ∈ V

∣

∣

〈

T ∗T, Â
〉

2−〈T
∗T,A〉2

∣

∣≤ 2√
m

(

sup
T∈V
‖T ∗T‖2 + c2

√

2ln(1/δ)

)

.

Proof Apply Lemma 9 to the L2 (H)-valued random variable ηrQx−x′ −E [ηrQx−x′ ]. The corre-
sponding substitutions give

Pr
{∣

∣

〈

T ∗T, Â
〉

2−〈T
∗T,A〉2

∣

∣> ε
}

≤ exp

(

−(
√

mε−2supT∈V ‖T ∗T‖2)
2

8c4

)

,

and the result follows from equating the right side to δ.

Of course an analogous result could have been obtained from Theorem 11.
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We now specialize the space of candidate operators to V =cPd where Pd is the set of d-
dimensional orthogonal projections. Then supT∈V ‖T ∗T‖2 = c2

√
d in the bound above. The op-

timization problem now is to maximize
〈

P, Â
〉

2 for P ∈ Pd which is done by projecting onto a
maximal eigenspace of Â, as shown by the following proposition.

Proposition 17 Suppose A∈ L2 (H) is symmetric with eigenvectors ei and corresponding eigenval-
ues λi. Suppose that d ∈ N and that the sum in the eigen-expansion of A can be ordered in such a
manner that λi ≥ λ j for all i≤ d < j. Then

max
P∈Pd

〈A,P〉2 =
d

∑
i=1

λi,

the maximum being attained by the projection onto the span of (ei)
d
i=1.

Proof let P ∈ Pd with v1, ...,vd being an orthonormal basis for the range of P. Then

〈A,P〉2 =
d

∑
j=1

d

∑
i=1

λi
〈

v j,ei
〉2

+
d

∑
j=1

∞

∑
i=d+1

λi
〈

v j,ei
〉2

≤
d

∑
i=1

λi

d

∑
j=1

〈

v j,ei
〉2

+λd

d

∑
j=1

(

∞

∑
i=d+1

〈

v j,ei
〉2

)

=
d

∑
i=1

λi

d

∑
j=1

〈

v j,ei
〉2

+λd

d

∑
i=1

(

1−
d

∑
j=1

〈

v j,ei
〉2

)

≤
d

∑
i=1

λi

d

∑
j=1

〈

v j,ei
〉2

+
d

∑
i=1

λi

(

1−
d

∑
j=1

〈

v j,ei
〉2

)

=
d

∑
i=1

λi,

which proves supP∈Pd
〈A,P〉2 ≤ ∑d

i=1 λi (this also follows directly from Horn’s theorem; Simon,

1979, Theorem 1.15). If P is the projection onto the span of (ei)
d
i=1 we can set v j = e j above and

obtain an equality.

This gives an alternative algorithm to the one described in Section 3: Fix a quantity c > 2 and
construct a matrix representation of the empirical operator Â given in (9). For some fixed target-
dimension d find the projection onto a d-dimensional dominant eigenspace of Â. We omit the rather
straightforward technical details concerning to the representation of Â and the implementation of a
kernel. Some of these issues are discussed in Maurer (2006a) where corresponding experiments are
reported.

There is an intuitive interpretation to this algorithm, which could be called hyperbolic PCA: The
empirical objective functional is proportional to

m
〈

P, Â
〉

2 =
m

∑
i=1

ηri

∥

∥Pxi−Px′i
∥

∥

2

=
1

c2−1 ∑
i:xi,x′i dissimilar

∥

∥Pxi−Px′i
∥

∥

2− ∑
i:xi,x′i similar

∥

∥Pxi−Px′i
∥

∥

2
.
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When similarity and dissimilarity are defined by class memberships, then maximizing this expres-
sion corresponds to maximizing inter-class- and minimizing intra-class variance, where the param-
eters 1/

(

c2−1
)

and the proportions of similar and dissimilar pairs control the trade-off between
these potentially conflicting goals. A similar proposal can be found in Thrun (1998). Typically
we have c� 1 so that 1/

(

c2−1
)

� 1, so that dissimilar pairs (’negative equivalence constraints’)
receive a much smaller weight than similar pairs, corresponding to the intuitive counting argument
given ba Bar-Hillel et al. (2005).

The method is similar to principal component analysis insofar as it projects to a principal
eigenspace of a symmetric operator. In contrast to PCA, where the operator in question is the
empirical covariance operator, which is always nonnegative, we will project to an eigenspace of an
empirical operator which is a linear combination of empirical covariances and generally not posi-
tive. While the quadratic form associated with the covariance has elliptic level sets, the empirical
operator induces hyperbolic level sets.

5. Applications to Multi-category Problems and Learning to Learn

In this section we apply similarity learning to problems where the nature of the application task
is partially or completely unknown, so that the available data is used for a preparatory learning
process, to facilitate future learning.

5.1 Classification Problems Involving a Large Number of Categories

A multi-category task τ with input space X is a pair τ = (Y ,µ) where Y is a finite or countable
alphabet of labels and µ a probability measure on X ×Y . We interpret µ(x,y) as the probability to
encounter the pattern x with label y. As usual we assume X to be embedded in the Hilbert space H.

Let τ = (Y ,µ) be such a task, T ∈L0 (H) and suppose that we are given a single labeled example
(x,y) ∈ X ×Y . Any classifier trained on this example alone and applied to another pattern x′ ∈ X
can sensibly only make the decisions ”x′ is of type y” or ”x′ is not of type y” or no decision at all.
Face verification is a case where such classifiers can be quite important in practice: Anyone having
to verify the identity of a person on the basis of a single photograph has to learn and generalize on
the basis of a single example image. A simple classifier using only the pseudo-metric induced by T
is the elementary verifier εT (x,y) which decides

x′ is of type y if ‖T (x− x′)‖< 1
undecided if ‖T (x− x′)‖= 1

x′ is not of type y if ‖T (x− x′)‖> 1
.

Relative to the task τ = (Y ,µ) it has the error probability (counting ’undecided’ as an error)

errτ (εT (x,y)) = Pr
(x′,y′)∼µ

{

r
(

y,y′
)(

1−
∥

∥T
(

x− x′
)∥

∥

)

≤ 0
}

,

where the function r : Y ×Y →{−1,1} quantifies equality and inequality: r (y,y′) = 1 if y = y′ and
r (y,y′) =−1 if y 6= y′.

There is a canonical pair oracle derived from the task τ. It is the probability measure ρτ on
X 2×{−1,1} given by

ρτ (A) = Pr
((x,y),(x′,y′))∼µ2

{(

x,x′,r
(

y,y′
))

∈ A
}

for A⊆ X 2×{−1,1} . (10)
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To generate a draw (x,x′,r) from ρτ make two independent draws of (x,y) and (x′,y′) from µ and
then return (x,x′,1) if y = y′ and (x,x′,−1) if y 6= y′. Then

E(x,y)∼µ [errτ (εT (x,y))] = Rρτ (T ) , (11)

so we can use the risk bounds in Sections 3.1 or 4.2 to bound the expected error of the elementary
verifier εT (x,y) under a random draw of the training example (x,y).

If there are many labels appearing approximately equally likely, then dissimilar pairs will be
sampled much more frequently than similar ones, resulting in a negative bias of elementary classi-
fiers. Similar unwanted effects have been noted by Xing et al. (2002) and Bar-Hillel et al. (2005).
This does not mean that our bounds are paradoxical, because the biased sampling corresponds to an
equally biased error measure: Under these circumstances the non-verifier which always asserts ”x′

is not of type y” would already have a small error.
This problem can be avoided by a simple balancing technique: In the computation of the error

of the elementary classifier εd (x,y) we assign different weights to the cases of false rejection and
false acceptance. Define a balanced error

err̄τ (εd (x,y)) =
1

2C1
Pr

(x′,y′)∼µ

{∥

∥T
(

x− x′
)∥

∥≥ 1 and y′ = y
}

+
1

2C−1
Pr

(x′,y′)∼µ

{∥

∥T
(

x− x′
)∥

∥≤ 1 and y′ 6= y
}

,

where C1 = µ2 {((x,y) ,(x′,y′)) : y′ = y} and C−1 = µ2 {((x,y) ,(x′,y′)) : y′ = y} are the probabilities
to obtain examples with equal and unequal labels respectively in two independent draws of µ. If we
define a balanced pair oracle ρ̄ by

ρ̄τ (A) =
ρτ
(

A∩X 2×{1}
)

2ρτ (X 2×{1}) +
ρτ
(

A∩X 2×{−1}
)

2ρτ (X 2×{−1}) ,

where ρτ is defined in (10) then one again verifies that

E(x,y)∼µ [err̄τ (εd (x,y))] = Rρ̄τ (T ) (12)

and that ρ̄τ returns similar and dissimilar pairs with equal probability. To generate a draw of (x,x′,r)
from ρ̄τ first draw (x,y) from µ and then flip a fair coin. On heads draw x′ from the class conditional
distribution of y and return (x,x′,1), on tails draw x′ from the conditional distribution for Y \{y} (or
continue to draw (x′,y′)∼ µ until y′ 6= y) and return (x,x′,−1).

Whichever of the two oracles we use: If we make m independent draws from it to obtain a
sample S = ((x1,x′1,r1) , ...,(xm,x′m,rm)) from which we generate the operator T according to the
algorithm derived in Section 3, then we are essentially minimizing a bound on the expected error
of elementary verifiers trained on future examples. In this way the proposed algorithm can be
considered an algorithm of learning to learn.

This is particularly interesting if m < |Y |, because we obtain performance guarantees for cate-
gories which we haven’t seen before. Consider for example the case where Y stands for a large
population of human individuals, and the inputs correspond to facial images. From a sample
S = ((x1,x′1,r1) , ...,(xm,x′m,rm)) we train an operator T and then use the elementary verifiers εT

for face-verification on the entire population. With methods similar to the balancing technique de-
scribed above the oracle can be also modified to achieve different desired penalties for false rejection
and false acceptance.
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5.2 Similarity as a Vehicle for Transfer

The face-verification system proposed above is somewhat naive from an economical point of view,
because the example-pairs have to be obtained independently, which means that we will need images
of approximately 3m/2 individuals (with balancing), all of which will probably have to be paid to
cooperate. It would be preferable to collect the data independently but conditional to a smaller
subpopulation Y ′⊂ Y with |Y ′|< m, so that multiple images can be gathered from each individual.
This effectively replaces the original task τ = (Y ,µ) with a subtask τ′ = (Y ′,µ′), where

µ′ (A) =
µ(A)

µ(X ×Y ′)
for A⊆ X ×Y ′.

Of course events which are independent w.r.t. µ are not independent w.r.t. µ′ and vice versa, so if
we sample independently from µ′ our generalization guarantees will only work for the task τ′. The
operator T generated from the sample drawn from µ′ may nonetheless work for the original task τ
corresponding to the entire population.

This points to a different method to apply the proposed algorithm: Use one task τ = (Y ,µ), the
training task, to draw the training sample and train the representation T , and apply T to the data of
the application task τ′ = (Y ′,µ′).

As the application task is unknown at the time of training T , this transfer mechanism may of
course fail. Deciding between success or failure however does not have the sample complexity
of learning, which is affected by a complexity penalty of the function class, but only the sample
complexity of validation, which can be determined from Hoeffdings inequality. If T has been trained
from τ and is subsequently tested on τ′ = (Y ′,µ′) then with probability greater 1− δ in an i.i.d.
sample S′ of size m drawn from µ′ we have

Rρτ′ (T )≤ R̂1(−∞,0]

(

T,S′
)

+

√

ln(1/δ)

2m
,

which is of course much better than the bounds in Theorem 11 (here R̂1(−∞,0]
(T,S′) is the empirical

risk of T on S′).
Of course this type of transfer can be attempted between any two binary classification tasks,

but its success normally requires a similarity of the pattern classes themselves. A classifier trained
to distinguish images of the characters ”a” and ”b” will be successfully applied to two classes of
images if these pattern classes have some resemblance of ”a” and ”b”. A representation of similarity
however can be successfully transferred if there is a similar notion of similarity applicable to both
problems. It is this higher conceptual level of similarity concepts that allows them to transcend
task-boundaries. This kind of ’meta-similarity” is for example present, when there is a common
process of data generation, as is the case when the tasks share an invariance property.

Suppose now that the learner has trained operators T1, ...,TK from the samples S1, ...,SK gathered
in past experience, with each Sk drawn iid from a corresponding multi-category task τk, and that
the learner is currently confronted with a new task τ′, for which a new sample S′ is available. A
simple union bound yields from Hoeffdings inequality the following standard result: ∀δ > 0 with
probability greater 1−δ in S′ we have that for every k ∈ {1, ...,K}

Rρτ′ (Tk)≤ R̂1(−∞,0]

(

Tk,S
′)+

√

lnK + ln(1/δ)

2m
.
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Let us assume that K is not too large. Minimizing R̂1(−∞,0]
(Tk,S′) over k is a simple algorithm which

does two things:

1. It finds the operator Tk∗ which optimally represents the data of τ′ for the purpose of recognition
on the basis of single training examples.

2. It classifies the new task τ into one of the K meta-categories defined by the old tasks τ1, ...,τK .
The classification is essentially carried out on the basis of compatibility of underlying notions
of similarity.

The more obvious practical aspect is the first, because Tk∗ can be put to use right away. There
are however interesting strategies for ”life long learning” (Thrun, 1998) where the mechanism of
task classification is also useful. If the optimal empirical risk R̂1(−∞,0]

(Tk,S′) is too large one could
use S′ to train T ′ which is appended to (T1, ...,TK) to reflect the fact that a new type of task has been
discovered. If R̂1(−∞,0]

(Tk,S′) is small on the other hand, one could merge the data S′ of the new task
with the data Sk∗ of the most closely matching task and retrain on S′∪Sk∗ to obtain an operator T ′′ to
replace Tk∗ for better generalization due to the larger sample size, and keep the number K constant.

In this context it should be noted, that ”multi-task learning”, the idea of pooling the data from
various tasks to achieve a smaller estimation error (see Caruana 1998; Baxter, 2000; Evgeniou et al.,
2004; Maurer 2006b), is easily implemented in the case of similarity learning by just concatenating
the samples S1 ∪ ...∪ SK and training. The concatenated sample corresponds to a draw from the
mixed pair oracle ρ = ∑ckρk with ck = |Sk|/∑i |Si|.

The proposed method has been derived from the objective of minimizing the risk functional R
which is connected to classification through the identities (11) and (12). It is therefore a principled
technique to train representations for future learning on the basis of a single example. While the
representation T can be used to preprocess data for other algorithms operating on larger future
training examples, there is reason to believe that it will be no longer optimal if there are more
examples. It is a challenging problem to define risk functionals giving optimality for algorithms
operating on other future sample sizes. While the algorithm proposed in Argyriou et al. (2006)
appears to have such properties, corresponding risk bounds are lacking and the relationship to the
current work remains to be explored.

6. Experiments

All the experiments reported concern transfer in machine vision where a representation trained on
one task is applied to another one. The experiments involved the recognition of randomly rotated-,
randomly scaled-, randomly rotated and scaled-, and handwritten characters, spatially rotated ob-
jects and face recognition. Below we briefly describe the parametrization of the training algorithm,
the various tasks tried and the parameters recorded in testing. An executable to reproduce most of
the experiments will be made available at the web-site www.andreas-maurer.eu.

6.1 Parametrization and Experimental Setup

All the experiments with character recognition used gray-scale images of 28× 28 pixels, corre-
sponding to 784-dimensional vectors. The images of the COIL100 database had 64×64, the images
of the ATT face database had 92× 112 pixels. Pixel vectors were normalized to unity, otherwise
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there was no preprocessing. The embedding in the Hilbert space H was effected by the Gaussian
RBF-kernel

〈x,y〉= κ(x,y) = (1/2)exp

(

−4

∣

∣

∣

∣

x
|x| −

y
|y|

∣

∣

∣

∣

2
)

,

where x and y are two images, |.| is the euclidean norm on pixel vectors and 〈., .〉 is the inner product
of the embedded vectors in the RKHS H (see, for example, Christianini and Shawe-Taylor, 2000,
for kernel techniques).

For all tasks involved in the experiments corresponding data-sets were generated and processed
in this kernel-representation.

In every transfer experiment there was a training task and an application- or test task, represented
by corresponding labeled data-sets. On the data-set of the training task the algorithm given in Table 1
was used, together with the accelerating heuristics in Section 3.3, to generate a representation T . All
the experiments reported below were carried out with margin γ = 1 and the regularization parameter
either λ = 0.005 (for the Hilbert-Schmidt norm ‖T ∗T‖2) or λ = 0.001 (for ‖T ∗T‖1 = ‖T‖2

2). These
values were determined by cross validation for problem of handwritten character recognition below
and reused in all the other experiments. Separately optimizing parameters for each experiment using
cross validation would only lead to an improvement of the results.

The gradient descent was carried out for 106 steps with a constant learning rate θ = 0.01. For
the training task we report the final values of the objective function Λ and the empirical risk R̂(T ) =
R̂1(−∞,0]

(T ). Another interesting property of T is its ’essential rank’ as the number of singular values
appreciably larger than 0. In the results below this is referred to as ’sparsity’ and given as the number
of singular values larger than 2% of the spectral norm.

The representation T is applied to the data-set of the application task, with pixel vectors equi-
dimensional to those in the training data-set. Application and training data-sets had no overlapping
categories.

On the application task we measured three properties related to the quality of the representation:

1. The empirical risk R̂(T ) = R̂1(−∞,0]
(T ) as an estimator for the true risk R(T ). This relates to

the theory above and to the performance of elementary verifiers.

2. The area under the ROC-curve (ROC area T ) for the distance as a detector of class-equality.
This can be regarded as an estimator for the probability that a pattern pair with equal labels is
represented at a closer distance than an independently chosen pair with different labels.

3. The error (error T ) of nearest neighbor classifiers when each category of the application task
is represented by a single example, averaged over 100 runs with randomly chosen examples.

Both of the latter two quantities were also measured for the unrepresented but normalized input
pixel vectors (ROC area input, error input). The values obtained using the trace-norm regularization
are given in parentheses.

It has been pointed out by a referee that the theory is not exactly applicable to the experiments,
because training sets and the test sets are not chosen iid from the same distribution. The experiments
were carried out in the present form to illustrate the utility of similarity for transfer. Separating the
same data-sets into sets of training- and test pairs would certainly have produced even better results.
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6.2 Training and Application Tasks

In some of the transfer experiments the training and application tasks shared a definitive class of
invariants, so that similarity of two pattern corresponds the existence of a transformation in the
class of invariants, which (roughly) maps one pattern to the other.

Rotation invariant character recognition. Randomly rotated images of printed alpha charac-
ters were used for the training set and randomly rotated images of printed digits were used for the
test set, the digit 9 being omitted for obvious reasons.

Scale invariant character recognition. Randomly scaled images of printed alpha characters
for the training, randomly scaled images of printed digits were used for the test set. Scaling ranged
over a factor of 2.

Rotation and scale invariant character recognition. Randomly rotated and scaled characters
for training, randomly rotated and scaled images of printed digits were used for the test set, the digit
9 being omitted for obvious reasons. Scaling ranged over a factor of 2, the digit 9 is omitted in the
test set.

Spatially rotation invariant object recognition. The COIL100 database contains images of
objects rotated about an axis at an angle 60◦ to the optical axis. Here the invariance transformations
which relate similar patterns cannot be explicitly computed from the images. The first 80 objects of
the database were taken for training, the remaining 20 for testing.

In the remaining experiments the underlying notion of similarity cannot be explicitly specified
and corresponds to a Gestalt-property of the domain in question.

Handwritten character recognition. The images of handwritten alpha characters from the
NIST database were used for training, the handwritten digits from the MNIST database for testing.

Face recognition. The first 35 images of the ATT database for training, the last 5 for testing.
Unfortunately the ATT database is at the same time very small and very clean and easy, so that the
results are not very conclusive. Attempts to obtain the potentially more interesting Purdue database
failed.

The images for the first three experiments are available on the web-site www.andreas-maurer.eu,
the others are publicly available.

6.3 Results for Transfer

The results are summarized in Tables 2 and 3. The various row headings will be explained in the
sequel.

In all experiments the representation T brings an improvement in recognition rates. This im-
provement is moderate (54% error downto 33% in the case of handwritten characters) to spectacular
(72% downto < 1% for plane rotations). The results on the COIL and ATT databases slightly im-
prove on the corresponding results in Fleuret and Blanchard, (2005) and Chopra et al. (2005), but
the margin is so small, that this may well be a statistical artifact. What is more remarkable is that our
results are at all comparable, because our method makes no assumption on the specific properties of
image data, such as high correlations for neighboring pixels: In contrast to the approaches described
in Chopra et al. (2005) and Fleuret and Blanchard (2005), our method would yield the same results
if the images were subjected to any fixed but unknown permutation of pixel indices.
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type of rotation scale rot.+scale
experiment invariance invariance invariance
training set alpha alpha alpha
nr of categories 20 52 20
nr of examples 2000 1560 4000
R̂(T ) 0.019 0.005 0.058
Λ(T ) 0.074 0.033 0.185
sparsity of T 9 42 7
test set digits \ 9 digits digits \ 9
nr of categories 9 10 9
nr of examples 900 300 1800
R̂(T ) 0.55 0.061 0.128
ROC area input 0.597 0.69 0.54
ROC area T 0.999 (0.999) 0.995 (0.99) 0.982 (0.972)
error input 0.716 0.508 0.822
error T 0.009 (0.011) 0.019 (0.035) 0.097 (0.127)

Table 2:

type of spatial rot. handw. face
experiment invariance Chars recognition
training set COIL ≤80 NIST ATT 1-35
nr of categories 80 52 35
nr of examples 2880 4160 350
R̂(T ) 0.003 0.038 0
Λ(T ) 0.024 0.314 0.022
sparsity of T 46 19 35
test set COIL ≥81 MNIST ATT 36-40
nr of categories 20 10 5
nr of examples 720 10000 50
R̂(T ) 0.379 0.183 0.045
ROC area input 0.845 0.728 0.934
ROC area T 0.989 (0.984) 0.9 (0.891) 0.997 (0.997)
error input 0.375 0.549 0.113
error T 0.093 (0.123) 0.335 (0.383) 0 (0)

Table 3:

6.4 One Experiment in Detail

To illustrate these experiments and results we will consider the example of combined rotation and
scale-invariance, corresponding to the last column in Table 2. Figure 2 shows some typical training
examples, of which there are 200 representing each of the 20 categories, making a total number of
4000.

The oracle presents the learner with pairs of these images together with a similarity value
r ∈ {−1,1}. Similar pairs are chosen from the same category (the same column in Fig. 2) dis-
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Figure 2: Randomly rotated and scaled alpha-characters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3: The 15 largest eigenvalues of T ∗T in proportion

Figure 4: Randomly rotated and scaled digits

similar ones from different categories (different columns). The pairs are chosen at random under
the constraint that similar pairs appear with equal frequency as dissimilar ones. These pairs are fed
as input to the stochastic gradient descent algorithm in Table 1. While there are O

(

106
)

pairs poten-
tially generated, only about 2000 of these can be statistically independent in terms of the generation
of the original sample.

The spectrum of T ∗T (Fig. 3) of the resulting operator T shows a marked decrease of singular
values, allowing the conclusion that the data characterizing rotation and scale invariant character
categories in the chosen Gaussian kernel representation is essentially only 5-dimensional. This ob-
served sparsity is not a consequence of the regularization with the Hilbert-Schmidt norm, because
an increase in the regularization parameter λ increases the essential rank of T (a different behav-
ior would be expected with a 1-norm regularizer), but an intrinsic property of the data which the
algorithm discovers.

The representation T is then applied to the recognition of digits. Fig. 4 exemplifies the test data.
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Figure 5: ROC curve for the metric as a feature for similarity. Transformed data solid, input data
dotted.

To measure the empirical risk R̂(T ) = R̂1(−∞,0]
(T ) we generate a random sequence of pairs as we

did with the training task above and average the relative rates of dissimilar pairs with ‖T x−T x′‖H ≤
1 and the rate of similar pairs with ‖T x−T x′‖H ≥ 1. Here the subscript H refers to the distance
in the RKHS. This gives the entry 0.128 in the row labeled by ’Risk T ’, so the representation T
organizes the data of rotation and scale invariant character categories into balls of diameter 1, up to
an error of about 13%.

To parametrize a potential verification system an ROC curve for the utility of the metric as a
feature for class equality is useful. Fig 5 shows these curves dotted for the metric ‖x− x′‖28×28
(where the distance is measured on the raw normalized pixel vectors in R

28×28) in red and solid
for ‖T x−T x′‖H . The areas under these curves correspond to the rows labeled ’ROC area input’
and ’ROC area T ’ respectively. The values in parentheses correspond to regularization with ‖T‖2

2,
which givel slightly inferior results.

Finally we measure the performance of a single-nearest neighbor classifier. A prototype is
selected randomly from each category. The images in either one of the rows in Fig. 4 could represent
such a ’training sample’. We then measure the performance of the corresponding 1-NN classifier on
the test set with the training data omitted. The error rates are averaged over 100 random selections
of the prototype set. These computations are carried out (with equal prototypes) for the metric
‖x− x′‖28×28 and the metric ‖T x−T x′‖H and give the entries in the rows ’error input’ and ’error
T ’ respectively. Again the values in parentheses correspond to regularization with ‖T‖2

2.

6.5 Classification of Tasks

We report some simple results concerning the recognition of task-families on the basis of the sim-
ilarity of underlying similarity concepts, as proposed in Section 5.2. In Table 4 we consider task-
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families with 28× 28 pixel data. These families share the properties of rotation invariance, scale
invariance, combined rotation and scale invariance and the property of being handwritten respec-
tively. The columns correspond to alpha-characters used to train representation, the rows to digits
used for testing. Each entry is the empirical risk R̂(T ) of the operator T trained from the alpha-task
heading the column, measured on the digit-task heading the row. The minimum in each row occurs

rotation scaling rot.+scaling handwritten
rotation 0.055 0.38 0.089 0.374
scaling 0.36 0.061 0.11 0.304
rot.+scaling 0.375 0.39 0.128 0.434
handwritten 0.4 0.336 0.35 0.18

Table 4:

on the diagonal, which shows that the underlying similarity property or invariance of a data-set is
reliably recognized. The margin of this minimum is weakened only for separate rotation and scale
invariances, because the representation for combined rotation and scale invariance also performs
reasonably well on these data-sets, although not as well as the specialized representations. Scale
invariant representations perform better on handwritten data than rotation invariant ones, probably
because scale invariance is more related to the latent invariance properties of handwritten characters
than full rotation invariance.

Given the nature of the algorithm, these results are perhaps not surprising, but they seem to point
in interesting new directions for the design of more autonomous systems of pattern recognition.

7. Related Work

A lot of work has been done to develop learning algorithms for data-representations with optimal
metric properties. Typically a heuristically derived objective function is optimized, and often there
is no discussion of generalization performance for high dimensional input data.

The classical method seems to be Linear Discriminant Analysis (LDA, Fukunaga, 1990) which
projects onto a dominant subspace of the matrix quotient of the inter-class and intra-class empirical
covariances. This can only work if the intra-class covariance operator is non-singular, and it will
work poorly even if it is non-singular, but has very small eigenvalues (a generic situation in high
dimensions), whence there have been several efforts to remedy the situation by optimization within
the null-space of the intra-class covariance operator (NLDA) or by simultaneous diagonalisation of
the intra- and inter-class covariances (OLDA). The stability problem inherent to the quotient ap-
proach is approached by a heuristic regularization prescription (ROLDA). These various extensions
to LDA are presented by Ye and Xiong (2006) and have been tested in an experimental situation
where the trained representation is combined with K-NN classification on the same task where the
representation was trained. The performance appears to be comparable to SVM.

LDA and its extensions can be best compared to the algorithm of hyperbolic PCA presented in
Section 4. In contrast to LDA hyperbolic PCA projects onto a dominant eigenspace of a weighted
difference and not the quotient of the inter- and intra-class covariances. For this reason hyperbolic
PCA is free of the stability problems of LDA and generalization guarantees are easily obtained.

An interesting technique has been proposed by Goldberger et al (2004). The desired represen-
tation is chosen to optimize the performance of a stochastic variant of K-NN classification on the
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represented data. The method, called Neighborhood Component Analysis (NCA) appears to admit
a regularized version, with essentially the same regularizer as in this work, and it seems possible
to obtain dimension-free generalization guarantees for the regularized version. Unfortunately the
optimization problem underlying NCA is not convex.

There is a certain kinship of NCA to the technique presented in this work, because both ap-
proaches depart from an objective defined by performance requirements of algorithms operating on
the represented data. The stochastic K-NN classifiers of NCA correspond to the elementary verifiers
(see Section 5) in our approach.

The problem of similarity learning from pair oracles similar to this paper has been considered
by several authors.

In the work of Bar-Hillel et al. (2005) the triplets (x,x′,r) generated by the oracle are called
equivalence constraints, positive if r = 1 and negative if r = −1. Their algorithm, called RCA for
Relevant Component Analysis, does not use negative equivalence constraints on the grounds that
these are less informative than positive ones, a claim supported by a simple counting argument. The
objective of RCA is essentially entropy maximization under the constraint that ”chunklets” of data
points belonging to the same class, as inferred from the positive equivalence constraints, remain
confined to balls of a fixed diameter. Under Gaussian assumptions there is a bound on the variance
of the RCA-estimator, but in general it is unclear if a representation optimizing the objective for one
data-set will also be nearly optimal for another one drawn from the same distribution.

Xing et al. (2002) use both positive and negative equivalence constraints and pose the following
optimization problem (in our notation) for a sample ((x1,x′1,r1) , ...,(xm,x′m,rm))

min
T

∑
i:ri=1

∥

∥T xi−T x′i
∥

∥

2
such that ∑

i:ri=−1

∥

∥T xi−T x′i
∥

∥≥ 1.

To solve this problem they propose an algorithm which enforces the positivity constraint for T ∗T by
alternating gradient descent and projection to the cone of positive operators by eigenvalue decom-
positions, a method which seems generally applicable when a convex objective is to be optimized
under a positivity constraint.

It is surprising that both in Bar-Hillel et al. (2005) and Xing et al. (2002) the existence of a
pair oracle to generate a sample of labeled pairs (or equivalence constraints) is implicitly assumed,
without attempting to directly predict this oracles behavior. If there is a process which generates
labeled examples (and this is what the equivalence constraints are) it seems natural to learn to predict
the labels.

This idea has already been proposed by Thrun and Mitchell (1995) (see also Thrun, 1998),
where also the obvious connection to transfer and meta-learning is mentioned. This work combines
this with the idea of representation learning, as also proposed by Thrun (1998).

Some authors (Chopra et al., 2005; Fleuret and Blanchard 2005) have considered the utility of
representation learning for the purpose of multi-category and multi-task pattern recognition on the
basis of single training examples. In contrast to the more general method introduced above, these
approaches are tailored to the special domain of image processing.

8. Conclusion

This work presented a technique to represent pattern similarity on the basis of data generated by a
domain dependent oracle. The method works well in multi-task and multi-category environments
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as a preparation for future learning with minimal training sets, such as a single training example or
a single training example per category.

A major theoretical problem is to explain the good performance of the method in the context of
transfer, a phenomenon which doesn’t seem to be completely understood.

Another important development would be a learning algorithm of optimal representations for
larger future sample sizes. It is conceivable that, in the context of learning-to-learn, the learner can
choose from a catalogue of previously trained representations on the basis of the size of the available
training sample. The representations trained by the proposed algorithm would then constitute only
one extreme entry in this catalogue, corresponding to a minimal sample size of one.

Appendix A. Notation Table

Notation Short Description Section
X input space, X ⊂ H,diam(X )≤ 1 1.1
ρ pair oracle. P-measure on X 2×{−1,1} 1.1
(x,x′,r) generic triplet (x,x′,r) ∈ X 2×{−1,1} 1.1
S training sample S ∈

(

X 2×{−1,1}
)m

,S∼ ρm 1.1
R(T ) risk of operator 1.2

= Pr
{

r
(

1−‖T x−T x′‖2
)

≤ 0
}

R̂ψ (T,S) empirical risk estimate for ψ≥ 1(−∞,0] 1.2

= 1
m ∑m

i=1 ψ
(

ri

(

1−‖T (xi− x′i)‖
2
))

R̂(T,S) empirical risk, R̂(T,S) = R̂1(−∞,0]
(T,S) 6.1

hγ hinge-loss with margin γ 1.2
λ regularization parameter 3.2
Λψ,λ (T,S) objective functional 3.2

Λψ,λ (T,S) = R̂ψ (T,S)+m−1/2λ‖T ∗T‖2
Ω convex objective, Ω(T ∗T ) = Λ(T ) 3.3
H real, separable Hilbert space 2.1
〈., .〉 and ‖.‖ inner product and norm on H 2.1
‖T‖∞ operator norm ‖T‖∞ = supx∈H,‖x‖≤1 ‖T x‖ 2.1
T ∗ adjoint of the operator T 2.1
L∞ (H) set of operators on H with ‖T‖∞ < ∞ 2.1
L∗∞ (H) {T ∈ L∞ (H) : T ∗ = T} 2.1
L+

∞ (H) {T ∈ L∗∞ (H) : 〈T x,x〉 ≥ 0,∀x ∈ H} 2.1
L0 (H) set of finite-rank operators on H 2.1
‖T‖2 Hilbert-Schmidt norm 2.1
L2 (H) set of operators on H with ‖T‖2 < ∞ 2.1
〈T,S〉2 inner product in L2 (H) 2.1
L∗2 (H), L+

2 (H) L∗∞ (H)∩L2 (H) and L+
∞ (H)∩L2 (H) resp. 2.1

Pd d-dimensional orthogonal projections in H 2.1
Qx, for x ∈ H the operator Qx (z) = 〈z,x〉x 2.1
‖E‖S , E ⊆ S maximal norm in E, that is, supx∈E ‖x‖S 2.1
R̂m (F ) empirical Rademacher complexity of F 2.2
σi Rademacher variables, uniform on {−1,1} 2.2
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Abstract
Feature ranking is a fundamental machine learning task with various applications, including fea-
ture selection and decision tree learning. We describe and analyze a new feature ranking method
that supports categorical features with a large number of possible values. We show that existing
ranking criteria rank a feature according to the training error of a predictor based on the feature.
This approach can fail when ranking categorical features with many values. We propose the Ginger
ranking criterion, that estimates the generalization error of the predictor associated with the Gini
index. We show that for almost all training sets, the Ginger criterion produces an accurate esti-
mation of the true generalization error, regardless of the number of values in a categorical feature.
We also address the question of finding the optimal predictor that is based on a single categori-
cal feature. It is shown that the predictor associated with the misclassification error criterion has
the minimal expected generalization error. We bound the bias of this predictor with respect to the
generalization error of the Bayes optimal predictor, and analyze its concentration properties. We
demonstrate the efficiency of our approach for feature selection and for learning decision trees in a
series of experiments with synthetic and natural data sets.
Keywords: feature ranking, categorical features, generalization bounds, Gini index, decision trees

1. Introduction

In this paper we address the problem of supervised feature ranking in the presence of categorical
features. Feature ranking mechanisms have various applications; For instance, they can be used
to define a filter for feature selection or as a splitting criterion for growing decision trees. In the
feature ranking task we order a given set of features according to their relevance for predicting a
target label. As in other supervised learning tasks, the ranking of the features is generated based
on an input training set. Examples of widely used feature ranking criteria are the Gini index, the
misclassification error, and Information Gain, also termed ‘cross-entropy’ (Hastie et al., 2001). The
focus of this paper is feature ranking in the presence of categorical features. We show that a direct
application of existing ranking criteria might lead to poor results in the presence of categorical

∗. A preliminary version of this paper appeared at the 20th Annual Conference on Learning Theory under the title
“Prediction by Categorical Features: Generalization Properties and Application to Feature Ranking”

c©2008 Sivan Sabato and Shai Shalev-Shwartz.
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features that can take many values. We propose an adaptation of existing ranking criteria that copes
with these difficulties.

Many feature ranking methods are equivalent to the following two-phase process: First, each
individual feature is used to construct a predictor of the label. Then, the features are ranked based on
the errors of these predictors. Most current approaches use the same training set both for construct-
ing the predictor and for evaluating its error. When dealing with binary features, the training error is
likely to be close to the generalization error, and therefore the ranking generated by current methods
works rather well. However, this is not the case when dealing with categorical features that can take
a large number of values. To illustrate this fact, consider the problem of predicting whether someone
is unemployed, based on their social security number (SSN). A predictor constructed using any fi-
nite training set would have zero error on the training set but a large generalization error. Therefore,
a ranking criterion that supports categorical features should employ a more robust estimation of the
generalization error.

The first contribution of this paper is an estimator for the generalization error of the predictor
associated with the Gini index. This estimator can be calculated from the training set and we propose
to use it instead of the original Gini index criterion in the presence of categorical features. We
prove that regardless of the underlying distribution, our estimation is close to the true value of the
generalization error for almost all training sets.

Based on our perspective of ranking criteria as estimators of the generalization error of a certain
predictor, a natural question that arises is which predictor to use. Among all predictors that are based
on a single feature, we ultimately would like to use the one whose generalization error is minimal.
We prove that the best predictor in this sense is the predictor associated with the misclassification
error criterion. We analyze the difference between the expected generalization error of this predictor
and the error of the Bayes optimal hypothesis. Finally, we show a concentration result for the
generalization error of this predictor.

Feature ranking criteria have been extensively studied in the context of decision trees (Mingers,
1989; Kearns and Mansour, 1996; Quinlan, 1993). The failure of existing feature ranking criteria
in the presence of categorical features with a large number of possible values has been previously
discussed in Quinlan (1993) and Mitchell (1997). Quinlan suggested the Information Gain Ratio
as a correction to the Information Gain criterion. In a broader context, information-theoretic mea-
sures are commonly used for feature ranking (see for example Torkkola, 2006, and the references
therein). One justification for their use is the existence of bounds on the Bayes optimal error that are
based on these measures (Torkkola, 2006). However, obtaining estimators for the entropy or mu-
tual information seems to be difficult in the general case (Antos and Kontoyiannis, 2001). Another
ranking criterion designed to address the above difficulty is a distance-based measure introduced by
de Mantaras (1991).

The problem we address shares some similarities with the problem of estimating the miss-
ing mass of a sample, typically encountered in language modeling (Good, 1953; McAllester and
Schapire, 2000; Drukh and Mansour, 2005). The missing mass of a sample is the total probability
mass of the values not occurring in the sample. Indeed, in the aforementioned example of the SSN
feature, the value of the missing mass will be close to one. In some of our proofs we borrow ideas
from McAllester and Schapire (2000) and Drukh and Mansour (2005). However, our problem is
more involved, as even for a value that we do observe in the sample, if it appears only a small
number of times then the training error is likely to diverge from the generalization error. Finally, we
would like to note that classical VC theory for bounding the difference between the training error
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and the generalization error is not applicable here. This is because the VC dimension grows with the
number of values a categorical feature may take, and in our framework this number is unbounded.

This paper is organized as follows. In Sec. 2 we formally describe our problem setting. We
introduce our main results in Sec. 3 and prove them in Sec. 4. We present experimental results in
Sec. 5 and concluding remarks are given in Sec. 6.

2. Problem Setting

In this section we establish the notation used throughout the paper and formally describe our prob-
lem setting. In the supervised feature ranking setting we are provided with k categorical features
and with a label. Each categorical feature is a random variable that takes values from a finite set.
We denote a feature by X and the set of values X can take by V . We make no assumptions on the
identity of V for each X nor on its size. The label is a binary random variable, denoted Y , that takes
values from {0,1}.

Generally speaking, the goal of supervised feature ranking is to rank the features based on their
merit in constructing an accurate classification rule. The features are ranked according to their
“relevance” to the label. Different criteria exist for assessing the relevance of a feature to the label.
Since relevance is assessed for each feature separately, let us ignore the fact that we have k features
and from now on focus on defining a relevance measure for a single feature X . We denote by V the
set of values that X can take. To simplify our notation we denote

pv
∆
= Pr[X = v] and qv

∆
= Pr[Y = 1|X = v].

In practice, the probabilities {pv} and {qv} are unknown. Instead, it is assumed that we have
a training set S = {(xi,yi)}m

i=1, which is sampled i.i.d. according to the joint probability distribu-
tion Pr[X ,Y ]. Based on S, the probabilities {pv} and {qv} are usually estimated as follows. Let
cv = |{i : xi = v}| be the number of examples in S for which the feature takes the value v and let
c+

v = |{i : xi = v∧ yi = 1}| be the number of examples in which the value of the feature is v and the
label is 1. Then {pv} and {qv} are estimated as follows:

p̂v
∆
=

cv

m
and q̂v

∆
=

{

c+
v

cv
cv > 0

1
2 cv = 0.

Note that p̂v and q̂v are implicit functions of the training set S.
Two popular relevance criteria (Hastie et al., 2001) are the misclassification error

∑
v∈V

p̂v min{q̂v,(1− q̂v)} , (1)

and the Gini index
2 ∑

v∈V

p̂v q̂v(1− q̂v) . (2)

In these criteria, smaller values indicate more relevant features.
Both the misclassification error and the Gini index were found to work rather well in practice

when |V | is small. However, for categorical features with a large number of possible values, we
might end up with a poor feature ranking criterion. As an example (see Mitchell, 1997), suppose
that Y indicates whether a person is unemployed and we have two features: X1 is the person’s SSN

1085



SABATO AND SHALEV-SHWARTZ

and X2 is 1 if the person has a mortgage and 0 otherwise. For the first feature, V is the set of all the
SSNs. Because the SSN alone determines the target label, we have that q̂v is either 0 or 1 for any v
such that p̂v > 0. Thus, both the misclassification error and the Gini index are zero for this feature.
For the second feature, it can be shown that with high probability over the choice of the training
set, the two criteria mentioned above take positive values. Therefore, both criteria prefer the first
feature over the second. In contrast, for our purposes X2 is much better than X1. This is because X2

can be used later for learning a reasonable classification rule based on a finite training set, while X1

will suffer from over-fitting.
It would have been natural to attribute the failure of the relevance criteria to the fact that we use

estimated probabilities instead of the true (unknown) probabilities. However, note that in the above
example, the same problem would arise even if we used {pv} and {qv} in Eq. (1) and Eq. (2). The
aforementioned problem was previously underscored in the context of the Information Gain crite-
rion (Quinlan, 1993; de Mantaras, 1991; Mitchell, 1997). In that context, Quinlan (1993) suggested
an adaptation of the Information Gain, called Information Gain Ratio, which was found rather ef-
fective in practice.

In this paper we take a different approach, and propose to interpret a feature ranking criterion as
the generalization error of a classification rule that can be inferred from the training set. To do so,
let us first introduce some additional notation. A probabilistic hypothesis is a function h : V → [0,1],
where h(v) is the probability to predict the label 1 given the value v. The generalization error of h is
the probability to incorrectly predict the label,

`(h)
∆
= ∑

v∈V

pv (qv (1−h(v))+(1−qv)h(v)) . (3)

We now define two hypotheses based on the training set S. The first one is

hGini
S (v) = q̂v . (4)

As its name indicates, hGini
S is closely related to the Gini index filter given in Eq. (2). To see this, we

note that the generalization error of hGini
S is

`(hGini
S ) = ∑

v∈V

pv (qv (1− q̂v)+(1−qv) q̂v) .

If the estimated probabilities {p̂v} and {q̂v} coincide with the true probabilities {pv} and {qv}, then
`(hGini

S ) is identical to the Gini index defined in Eq. (2). This will be approximately true, for example,
when m � |V |. In other words, the Gini index is the training error of hGini

S . When the training set is
small, using `(hGini

S ) is preferable to using the Gini index given in Eq. (2), because `(hGini
S ) takes into

account the fact that the estimated probabilities might be skewed.
The second hypothesis we define is

hBayes

S (v) =











1 q̂v > 1
2

0 q̂v < 1
2

1
2 q̂v = 1

2

. (5)

Note that if {q̂v} coincide with {qv} then hBayes

S is the Bayes optimal classifier, which we denote by
hBayes

∞ . If in addition {p̂v} and {pv} are the same, then `(hBayes

S ) is identical to the misclassification
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error defined in Eq. (1). Here again, the misclassification error might differ from `(hBayes

S ) for small
training sets.

To illustrate the advantage of `(hGini
S ) and `(hBayes

S ) over their counterparts given in Eq. (2) and
Eq. (1), we return to the example mentioned above. For X1, the SSN feature we have `(hGini

S ) =

`(hBayes

S ) = 1
2 M0, where M0

∆
= ∑v:cv=0 pv. In general, we denote

Mk
∆
= ∑

v:cv=k

pv . (6)

The quantity M0 is known as the missing mass (Good, 1953; McAllester and Schapire, 2000) and
for the SSN feature, M0 ≥ (|V |−m)/|V |. Therefore, the generalization error of both hGini

S and hBayes

S
would be close to 1 for a reasonable m. On the other hand, for X2, the feature of having a mortgage,
it can be verified that both `(hBayes

S ) and `(hGini
S ) are likely to be small. Therefore, using `(hGini

S ) or
`(hBayes

S ) yields a correct ranking for this naive example.
We have proposed a modification of the Gini index and the misclassification error that uses the

generalization error and therefore is suitable even when m is smaller than |V |. In practice, however,
we cannot directly use the generalization error criterion since it depends on the unknown probabil-
ities {pv} and {qv}. To overcome this obstacle, we must derive estimators for the generalization
error that can be calculated from the training set. In the next section we discuss the problem of
estimating `(hGini

S ) and `(hBayes

S ) based on the training set. Additionally, we analyze the difference
between `(hBayes

S ) and the error of the Bayes optimal hypothesis.

3. Main Results

We start this section with a derivation of an estimator for `(hGini
S ), which can serve as a new feature

ranking criterion. We show that for most training sets, this estimator will be close to the true
value of `(hGini

S ). We then shift our attention to `(hBayes

S ). First, we prove that among all predictors
with no prior knowledge on the distribution Pr[X ,Y ], the generalization error of hBayes

S is smallest in
expectation. Next, we bound the difference between the generalization error of hBayes

S and the error of
the Bayes optimal hypothesis. Finally, we prove a concentration bound for `(hBayes

S ). Regretfully, we
could not find a good estimator for `(hBayes

S ). Nevertheless, we believe that our concentration results
can be used for finding such an estimator. This task is left for future research.

We propose the following estimator for the generalization error of hGini
S :

ˆ̀ ∆
=

|{v : cv = 1}|
2m

+ ∑
v:cv>1

2cv

cv −1
p̂vq̂v(1− q̂v) . (7)

This estimator can be derived using a leave-one-out technique (see for instance Wasserman, 2004).
In the next section we show a different derivation, based on a conditional cross-validation technique.
We suggest to use the estimation of `(hGini

S ) given in Eq. (7) rather than the original Gini index given
in Eq. (2) as a feature ranking criterion. Let us compare these two criteria: First, for values v that
appear many times in the training set we have that cv

cv−1 ≈ 1. If for all v ∈ V we have that the size
of the training set is much larger than 1/pv, then all values in V are likely to appear many times in
the training set and thus the definitions in Eq. (7) and Eq. (2) consolidate. The two definitions differ
when there are values that appear rarely in the training set. For such values, the correction term
is larger than 1. Special consideration is given to values that appear exactly once in the training
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set. For such values we estimate the generalization error to be 1
2 , which is the highest possible

error. Intuitively, since one example provides us with no information as to the variance of the label
Y given X = v, we cannot have a more accurate estimation for the contribution of this value to the
total generalization error. Furthermore, the fraction of values that appear exactly once in the training
set is an estimator for the probability mass of those values that do not appear at all in the training
set (see also Good, 1953; McAllester and Schapire, 2000).

We now turn to analyze the quality of the proposed estimator. We first show in Thm. 1 that the
bias of this estimator is small. Then, in Thm. 2, we prove a concentration bound for the estimator,
which holds for any joint distribution of Pr[X ,Y ] and does not depend on the size of V . Specifically,
we show that for any δ ∈ (0,1), in a fraction of at least 1− δ of the training sets the error of the
estimator is O( ln(m/δ)√

m ).

Theorem 1 Let S be a set of m examples sampled i.i.d. according to the probability measure
Pr[X ,Y ]. Let hGini

S be the Gini hypothesis given in Eq. (4) and let `(hGini
S ) be the generalization

error of hGini
S , where ` is as defined in Eq. (3). Let ˆ̀ be the estimation of `(hGini

S ) as given in Eq. (7).
Then,

∣

∣E[`(hGini
S )]−E[ ˆ̀]

∣

∣≤ 1
2m , where expectation is taken over all samples S of m examples.

The next theorem shows that for most training sets, our estimator is close to the true generaliza-
tion error of hGini

S .

Theorem 2 Under the same assumptions as in Thm. 1, let δ be an arbitrary scalar in (0,1). Then,
with probability of at least 1−δ over the choice of S, we have

∣

∣`(hGini
S )− ˆ̀

∣

∣≤ O

(

ln(m/δ)
√

ln(1/δ)√
m

)

.

Based on the above theorem, ˆ̀ can be used as a ranking criterion. The convergence rate shown can
be used to establish confidence intervals on the true Gini generalization error. The proofs of Thm. 1
and Thm. 2 are given in the next section.

So far we have derived an estimator for the generalization error of the Gini hypothesis and
shown that it is close to the true Gini error. The Gini hypothesis has the advantage of being highly
concentrated around its mean. This is important especially when the sample size is fairly small.
However, the Gini hypothesis does not produce the lowest generalization error in expectation. We
now turn to show that the hypothesis hBayes

S defined in Eq. (5) is optimal in this respect, but that its
concentration might be weaker. These two facts are characteristic of the well known bias-variance
tradeoff commonly found in estimation and prediction tasks.

Had we known the underlying distribution of our data, we could have used the Bayes optimal
hypothesis, hBayes

∞ , that achieves the smallest possible generalization error. When the underlying
distribution is unknown, the training set is used to construct the hypothesis. Thm. 3 below shows
that among all hypotheses that can be learned from a finite training set, hBayes

S achieves the smallest
generalization error in expectation. More precisely, hBayes

S is optimal among all the hypotheses that
are symmetric with respect to both |V | and the label values. Clearly, symmetric hypotheses cannot
exploit prior knowledge on the underlying distribution Pr[X ,Y ]. Formally, let F be the set of all
symmetric functions over N×N, that is,

F = { f : N×N → [0,1] | ∀n1,n2 ∈ N, f (n1,n2) = 1− f (n1,n1 −n2)}
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and let H be the following set of mappings from samples of size m to hypotheses:

H =
{

h : (V ×{0,1})m →V [0,1]
∣

∣ (8)

∃ f ∈ F s.t. ∀S ∈ (V ×{0,1})m,∀v ∈V, h[S](v) = f (cv(S),c+
v (S))

}

.

That is, H is the set of mappings that given a sample, generate a hypothesis based solely on the
sample. Thus, hypotheses that rely on any prior knowledge on Pr[X ,Y ] are excluded.

The following theorem establishes the optimality of hBayes

S and bounds the difference between the
Bayes optimal error and the error achieved by hBayes

S .

Theorem 3 Let S be a set of m examples sampled i.i.d. according to the probability measure
Pr[X ,Y ]. For any hypothesis h, let `(h) be the generalization error of h, as defined in Eq. (3).
Let hBayes

S be the hypothesis given in Eq. (5), let hBayes
∞ be the Bayes optimal hypothesis, and let H be

the set of hypothesis mappings defined in Eq. (8). Then

E[`(hBayes

S )] = min
h∈H

E[`(h[S])], (9)

and

E[`(hBayes

S )]− `(hBayes
∞ ) ≤ 1

2
E[M0]+

1
8

E[M1]+
1
8

E[M2]+
m

∑
k=3

1√
ek

E[Mk], (10)

where Mk is as defined in Eq. (6). Furthermore,

lim
m→∞

(

1
2

E[M0]+
1
8

E[M1]+
1
8

E[M2]+
m

∑
k=3

1√
ek

E[Mk]

)

= 0. (11)

Note that the first term in the difference between E[`(hBayes

S )] and `(hBayes
∞ ) is exactly half the expec-

tation of the missing mass. This is expected, because we cannot improve our prediction over the
baseline error of 1

2 for values not seen in the training set, as exemplified in the SSN example de-
scribed in the previous section. Subsequent terms in the bound can be attributed to the fact that even
for values observed in the training set, a wrong prediction might be generated if there is a small
number of examples.

We have shown that hBayes

S has the smallest generalization error in expectation, but this does not
guarantee a small generalization error on a given sample. Thm. 4 below bounds the concentration of
`(hBayes

S ). This concentration along with Thm. 3 provides us with a bound on the difference between
hBayes

S and the Bayes optimal error that is true for most samples.

Theorem 4 Under the same assumptions of Thm. 3, assume that m ≥ 8 and let δ be an arbitrary
scalar in (0,1). Then, with probability of at least 1−δ over the choice of S, we have

|`(hBayes

S )−E[`(hBayes

S )]| ≤ O

(

ln(m/δ)
√

ln(1/δ)

m1/6

)

.

The concentration bound for `(hBayes

S ) is weaker than the concentration bound for `(hGini
S ), sug-

gesting that indeed the choice between hGini
S and hBayes

S is not trivial. To use `(hBayes

S ) as a ranking
criterion, an estimator for this quantity is needed. However, at this point we cannot provide such an
estimator. We conjecture that based on Thm. 4 an estimator with a small bias but a weak concentra-
tion can be constructed. We leave this task to further work. Finally, we would like to note that Antos
et al. (1999) have shown that the Bayes optimal error cannot be estimated based on a finite training
set. Finding an estimator for `(hBayes

S ) would allow us to approximate the Bayes optimal error up to
the bias term quantified in Thm. 3.
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4. Proofs of Main Results

In this section we provide the full proofs of the theorems presented above.

4.1 Proof of Thm. 1

In the previous section, an estimator for the generalization error of the Gini hypothesis was pre-
sented. We stated that for most training sets this estimation is reliable. In this section, we first
derive the estimator ˆ̀ given in Eq. (7) using a conditional cross-validation technique, and then use
this interpretation of ˆ̀ to prove Thm. 1 and Thm. 2.

To derive the estimator given in Eq. (7), let us first rewrite `(hGini
S ) as the sum ∑v `v(hGini

S ), where
`v(hGini

S ) is the amount of error due to value v and is formally defined as

`v(h)
∆
= Pr[X = v] Pr[h(X) 6= Y | X = v] = pv (qv (1−h(v))+(1−qv)h(v)) .

We now estimate the two factors Pr[X = v] and Pr[hGini
S (X) 6= Y | X = v] independently. Later on

we multiply the two estimations. The resulting local estimator of `v(h) is denoted ˆ̀v and our global

estimator is ˆ̀ ∆
= ∑v

ˆ̀v.
To estimate Pr[X = v], we use the straightforward estimator p̂v. Turning to the estimation of

Pr[hGini
S (X) 6= Y | X = v], recall that hGini

S , defined in Eq. (4), is a probabilistic hypothesis where q̂v is
the probability to return the label 1 given that the value of X is v. Equivalently, we can think of the
label that hGini

S (v) returns as being generated based on the following process: Let S(v) be the set of
those indices in the training set in which the feature takes the value v, namely, S(v) = {i : xi = v}.
Then, to set the label hGini

S (v) we randomly choose an index i ∈ S(v) and return the label yi. Based on
this interpretation, a natural path for estimating Pr[hGini

S (X) 6= Y | X = v] is through cross-validation:
Select an i ∈ S(v) to determine hGini

S (v), and estimate the generalization error to be the fraction of
the examples whose label is different from the label of the selected example. That is, the estimation
is 1

cv−1 ∑ j∈S(v): j 6=i 1yi 6=y j . Obviously, this procedure cannot be used if cv = 1. We handle this case
separately later on. To reduce the variance of this estimation, this process can be repeated, selecting
each single example from S(v) in turn and validating each time using the rest of the examples in
S(v). It is then possible to average over all the choices of the examples. The resulting estimation
therefore becomes

∑
i∈S(v)

1
cv

(

1
cv −1 ∑

j∈S(v): j 6=i

1yi 6=y j

)

=
1

cv(cv −1) ∑
i, j∈S(v):i6= j

1yi 6=y j .

Thus, we estimate Pr[hGini
S (X) 6= Y | X = v] based on the fraction of differently-labeled pairs of

examples in S(v). Multiplying this estimator by p̂v we obtain the following estimator for `v(hGini
S ),

ˆ̀v = p̂v
1

cv(cv −1) ∑
i, j∈S(v),i6= j

1yi 6=y j (12)

= p̂v
2c+

v (cv − c+
v )

cv(cv −1)
= p̂v

2c2
v q̂v(1− q̂v)

cv(cv −1)
= p̂v ·

2cv

cv −1
q̂v(1− q̂v).

Finally, for values v that appear only once in the training set, the above cross-validation procedure
cannot be applied, and we therefore estimate their generalization error to be 1

2 , the highest possible
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error. The full definition of ˆ̀v is thus:

ˆ̀v =

{

p̂v · 1
2 cv ≤ 1

p̂v · 2cv
cv−1 q̂v(1− q̂v) cv ≥ 2.

(13)

The resulting estimator ˆ̀ defined in Eq. (7) is exactly the sum ∑v
ˆ̀v.

Based on the above derivation of ˆ̀v, we now turn to prove Thm. 1, in which it is shown that the
expectations of our estimator and of the true generalization error of the Gini hypothesis are close.
To do so, we first inspect each of these expectations separately, starting with E[ ˆ̀v]. The following
lemma calculates the expectation of ˆ̀v over those training sets with exactly k appearances of the
value v.

Lemma 5 For k such that 1 < k ≤ m, E[ ˆ̀v | cv(S) = k] = k
m ·2qv(1−qv).

Proof If cv = k, then p̂v = k
m . Therefore, based on Eq. (12), we have

E[ ˆ̀v | cv(S) = k] =
k
m

1
k(k−1)

E
[

∑
i, j∈S(v),i6= j

1yi 6=y j | cv(S) = k
]

. (14)

Let Z1, . . . ,Zk be independent binary random variables with Pr[Zi = 1] = qv for all i ∈ [k]. The
conditional expectation on the right-hand side of Eq. (14) equals to

E[∑
i6= j

1Zi 6=Z j ] = ∑
i6= j

E[1Zi 6=Z j ] = ∑
i6= j

2qv (1−qv) = k(k−1) ·2qv (1−qv) .

Combining the above with Eq. (14) concludes the proof.

Based on the above lemma, we are now ready to calculate E[ ˆ̀v]. We have

E[ ˆ̀v] = ∑
S

Pr[S]E[ ˆ̀v] =
m

∑
k=0

∑
S:cv(S)=k

Pr[S] ·E[ ˆ̀v | cv(S) = k]. (15)

From the definition of ˆ̀, we have E[ ˆ̀v | cv(S)=1] = 1
2m and E[ ˆ̀v | cv(S)=0] = 0. Combining this

with Lemma 5 and Eq. (15), we get

E[ ˆ̀v] = Pr[cv = 1] · 1
2m

+
m

∑
k=2

Pr[cv = k] · k
m
·2qv(1−qv)

=
1
m

(
1
2
−2qv(1−qv)) Pr[cv = 1]+2qv(1−qv)

m

∑
k=0

Pr[cv = k] · k
m

=
1
m

(
1
2
−2qv(1−qv)) Pr[cv = 1]+ pv ·2qv(1−qv) , (16)

where the last equality follows from the fact that ∑m
k=0 Pr[cv = k] k

m = E[p̂v] = pv. Having calcu-
lated the expectation of ˆ̀v we now calculate the expectation of `v(hGini

S ).

Lemma 6 E[`v(hGini
S )] = pv(

1
2 −2qv(1−qv))Pr[cv = 0]+ pv ·2qv(1−qv).
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Proof From the definition of `v(hGini
S ), we have that

E[`v(h
Gini
S )] = E[pv (qv(1−hGini

S (v))+(1−qv)h
Gini
S (v))]

= pv (qv(1−E[hGini
S (v)])+(1−qv)E[hGini

S (v)])

= pv (qv +(1−2qv) E[hGini
S (v)])) . (17)

Next, we calculate E[hGini
S (v)] as follows

E[hGini
S (v)] = ∑

S

Pr[S]hGini
S (v)

= Pr[cv(S) = 0] · 1
2

+
m

∑
k=1

k

∑
i=0

Pr[cv(S) = k and c+
v (S) = i]

i
k

= Pr[cv(S) = 0] · 1
2

+
m

∑
k=1

Pr[cv(S) = k]
k

∑
i=0

Pr[c+
v (S) = i | cv(S) = k]

i
k

= Pr[cv(S) = 0] · 1
2

+
m

∑
k=1

Pr[cv(S) = k] ·qv

= Pr[cv(S) = 0] · 1
2

+Pr[cv(S) > 0] ·qv

= qv +
1
2
(1−2qv)Pr[cv(S) = 0] . (18)

Plugging Eq. (18) into Eq. (17) and rearranging terms we conclude our proof.

Equipped with the expectation of ˆ̀v given in Eq. (16) and the expectation of `v(hGini
S ) given in

Lemma 6, we are now ready to prove Thm. 1.
Proof [of Thm. 1] Using the definitions of `(hGini

S ) and ˆ̀ we have that

E[ ˆ̀]−E[`(hGini
S )] = E[∑

v

ˆ̀v]−E[∑
v

`v(h
Gini
S )] = ∑

v
(E[ ˆ̀v]−E[`v(h

Gini
S )]) . (19)

Fix some v ∈V . From Eq. (16) and Lemma 6 we have

E[ ˆ̀v]−E[`v(h
Gini
S )] = (

1
2
−2qv(1−qv))(

1
m

Pr[cv = 1]− pv Pr[cv = 0]) . (20)

Also, it is easy to see that

1
m

Pr[cv = 1]− pv Pr[cv = 0] = pv(1− pv)
m−1 − pv(1− pv)

m

= p2
v(1− pv)

m−1 =
pv

m
Pr[cv = 1] .

Plugging this into Eq. (20) we obtain:

E[ ˆ̀v]−E[`v(h
Gini
S )] = (

1
2
−2qv(1−qv))

1
m

pv Pr[cv = 1].

For any qv we have that 0 ≤ 2qv(1−qv) ≤ 1
2 , which implies the following inequality:

0 ≤ E[ ˆ̀v]−E[`v(h
Gini
S )] ≤ 1

2m
pv Pr[cv = 1] ≤ pv

2m
.
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Summing this over v and using Eq. (19) we conclude that

0 ≤ E[ ˆ̀]−E[`(hGini
S )] ≤ ∑

v

pv

2m
=

1
2m

.

4.2 Proof of Thm. 2

We now turn to prove Thm. 2 in which we argue that with high confidence on the choice of S, the
value of our estimator is close to the actual generalization error of hGini

S . To do this, we show that
both our estimator and the true generalization error of hGini

S are concentrated around their mean. The
proof of Thm. 2 will then follow from Thm. 1.

We start by showing that our estimator ˆ̀ is concentrated around its expectation. The concentra-
tion of ˆ̀ follows relatively easily by application of McDiarmid’s Theorem (McDiarmid, 1989):

Theorem 7 (McDiarmid) Let X1, . . . ,Xm be independent random variables taking values in a set
V and let f : V m → R be such that for every 1 ≤ i ≤ m

sup | f (x1, . . . ,xm)− f (x1, . . . ,xi−1,x
′
i,xi+1, . . . ,xm)| ≤ ci

where the supremum is taken over all x1, . . . ,xm,x′i ∈V . Then with probability at least 1−δ

f (X1, . . . ,Xm) ≤ E[ f (X1, . . . ,Xm)]+

√

1
2

ln(
1
δ
)

m

∑
i=1

ci

and with probability at least 1−δ

f (X1, . . . ,Xm) ≥ E[ f (X1, . . . ,Xm)]−
√

1
2

ln(
1
δ
)

m

∑
i=1

ci .

To simplify our notation, we will henceforth use the shorthand ∀δS π[S,δ] to indicate that the
predicate π[S,δ] holds with probability of at least 1−δ over the choice of S.

Lemma 8 Let δ ∈ (0,1). Then, ∀δS
∣

∣ ˆ̀−E[ ˆ̀]
∣

∣≤ 12
√

ln( 2
δ )

2m .

Proof We prove the lemma using McDiardmid’s theorem. To do so, we need to show that ˆ̀ has the
bounded differences property; namely, we shall find an upper bound for the effect of any change of
a single example in S on ˆ̀. Changing example (xi,yi) in S to (x′i,y

′
i) is tantamount to first removing

(xi,yi) and then adding (x′i,y
′
i). Since the effect of adding is simply the opposite of the effect of

removing, it is sufficient to find an upper bound for the effect a single removal of example can have.
Then the effect of a change on the sample would be no larger than twice the effect of the removal.

Let S\i denote the set S\{(xi,yi)}. We therefore need to bound | ˆ̀(S)− ˆ̀(S\i)|. Assume, without
loss of generality, that xi = v and yi = 0. Then, using the definition of ˆ̀v we have that

| ˆ̀(S)− ˆ̀(S\i)| = | ˆ̀v(S)− ˆ̀v(S
\i)| .
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Based on the definitions of p̂v = cv/m and q̂v = c+
v /cv, we can rewrite Eq. (13) as

ˆ̀v(S) =

{

1
2m cv = 1
2c+

v (cv−c+
v )

m(cv−1) cv ≥ 2.

Therefore, if cv ≥ 3,

| ˆ̀v(S)− ˆ̀v(S
\i)| = 2c+

v

m

(

cv − c+
v

cv −1
− cv − c+

v −1
cv −2

)

=
2c+

v (c+
v −1)

m(cv −1)(cv −2)

≤ 2cv(cv −1)

m(cv −1)(cv −2)
=

2cv

m(cv −2)
≤ 6

m
,

while if cv = 2 then

| ˆ̀v(S)− ˆ̀v(S
\i)| = 2c+

v (2− c+
v )

m
− 1

2m
≤ 2

m
.

Lastly, if cv = 1 then | ˆ̀v(S)− ˆ̀v(S\i)| = 1
2m . Therefore for any sample S

| ˆ̀v(S)− ˆ̀v(S
\i)| ≤ 6

m
,

and thus the effect of a single change in S is no larger than 12
m . We can now apply McDiarmid’s

theorem to get that with probability of at least 1−δ:

| ˆ̀−E[ ˆ̀]| ≤
√

1
2

ln

(

2
δ

)

m(
12
m

)2 = 12

√

ln
(

2
δ
)

2m
.

We now turn to show a concentration bound on the true generalization error `(hGini
S ). Here we cannot

directly use McDiarmid’s Theorem since the bounded differences property does not hold for `(hGini
S ).

To see this, suppose that V = {0,1}, p0 = p1 = 1
2 , q0 = 0.99 and q1 = 1. Assume in addition that

|S(0)| = 1; namely, there is only a single example in S for which the feature takes the value 0,
an unlikely but possible scenario. In this case, if the single example in S(0) is labeled 1, then
`(hGini

S ) = 0.01, but if this example is labeled 0, then `(hGini
S ) = 0.99. That is, a change of a single

example might have a dramatic effect on `(hGini
S ). This problem can intuitively be attributed to the

fact that S is an atypical sample of the underlying distribution {pv}. To circumvent this obstacle, we
use the following lemma. Note that a similar result can be derived from the results in Kutin (2002),
albeit with much larger constants. The lemma below provides tighter bounds for a more restricted
case.

Lemma 9 Let S be a sample with m examples drawn i.i.d from the distribution Pr[X ,Y ]. Let δ be
a confidence parameter. For two samples S1 and S2 with m examples, we say that d(S1,S2) ≤ 1 if
there is at most one example that is different between the two samples. Let f be a real function of
the sample. If there exists a function of the sample g and real numbers c,b such that the following
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conditions hold:

∀S1,S2 s.t. d(S1,S2) ≤ 1 |g(S1)−g(S2)| ≤
c
m

(21)

∀δS f (S) = g(S) (22)

|E[ f (S)]−E[g(S)]| ≤ b√
m

, (23)

then

∀2δS | f (S)−E[ f (S)]| ≤
c
√

ln( 2
δ)+b

√
2

√
2m

.

Proof From Eq. (21) and McDiarmid’s theorem we have

∀δS |g(S)−E[g(S)]| ≤
c
√

ln( 2
δ)

√
2m

.

In addition,

| f (S)−E[ f (S)]| ≤ | f (S)−g(S)|+ |g(S)−E[g(S)]|+ |E[ f (S)]−E[g(S)]| .

Therefore, using Eq. (22) and Eq. (23) and applying a union bound, we have

∀2δS | f (S)−E[ f (S)]| ≤ 0+
c
√

ln( 2
δ)

√
2m

+
b√
m

=
c
√

ln( 2
δ)+b

√
2

√
2m

.

To use Lemma 9 we define a new hypothesis hδ
S that depends both on the sample S and on the

desired confidence parameter δ. This hypothesis would ‘compensate’ for atypical samples. We let

f
∆
= `(hGini

S ) and g
∆
= `(hδ

S), and show that the conditions of the lemma hold.
We construct a hypothesis hδ

S such that g satisfies the three requirements given in Eqs. (21-23)
based on Lemma 10 below. This lemma states that except for values with small probabilities, we
can assure that with high confidence, cv(S) grows with pv. This means that as long as pv is not too
small, a change of a single example in cv(S) does not change hδ

S(v) too much. On the other hand,
if pv is small then the value v has little effect on the error to begin with. Therefore, regardless of
the probability pv, the error `(hδ

S) cannot be changed too much by a single change of example in S.
This would allow us to prove a concentration bound on `(hδ

S) using McDiardmid’s theorem. Let us
first introduce a new notation. Given a confidence parameter δ > 0, a probability p ∈ [0,1], and a
sample size m, we define

ρ(δ, p,m)
∆
= mp−

√

mp ·3ln(2/δ).

Lemma 10 below states that cv(S) is likely to be at least ρ(δ/m, pv,m) for all values with non-
negligible probabilities.

Lemma 10 Let δ ∈ (0,1) be a confidence parameter. Then,

∀δS ∀v ∈V : pv ≥
6ln( 2m

δ )

m
⇒ cv(S) ≥ ρ(δ/m, pv,m) > 1.
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Proof The proof is based on lemma 44 from Drukh and Mansour (2005). This lemma states that

for all v ∈V such that pv ≥ 3ln( 2
δ )

m we have that

∀δS |pv − p̂v| ≤

√

pv ·3ln( 2
δ)

m
. (24)

Based on this lemma, we immediately get that for all v such that pv ≥ 3ln( 2
δ)/m,

∀δS cv ≥ ρ(δ, pv,m).

Note, however, that this bound is trivial for pv = 3ln( 2
δ)/m, because in this case ρ(δ, pv,m) = 0. We

therefore use the bound for values in which pv ≥ 6ln( 2
δ)/m. For these values it is easy to show that

ρ(δ, pv,m) > 1 for any δ ∈ (0,1). Trivially, there are at most m values v for which pv ≥ 6ln(2/δ)
m .

Therefore, by substituting δ/m for δ and applying a union bound, the proof is concluded.

Based on the bound given in the above lemma, we define hδ
S to be

hδ
S(v)

∆
=







hGini
S (v) pv <

6ln( 2m
δ )

m or cv ≥ ρ( δ
m , pv,m)

c+
v +qv(dρ( δ

m ,pv,m)e−cv)

dρ( δ
m ,pv,m)e otherwise.

That is, hδ
S(v) is equal to hGini

S (v) if either pv is negligible or if there are enough representatives of
v in the sample. If this is not the case, then S is not a typical sample and thus we “force” it to
be typical by adding dρ( δ

m , pv,m)e− cv ‘pseudo-examples’ to S with the value v and with labels
that are distributed according to qv. Therefore, except for values with negligible probability pv,
the hypothesis hδ

S(v) is determined by at least dρ( δ
m , pv,m)e ‘examples’. As a direct result of this

construction we obtain that a single example from S has a small effect on the value of `(hδ
S).

We can now show that each of the properties in (21-23) hold. From the definition of hδ
S and

Lemma 10 it is clear that Eq. (22) holds. Let us now show that Eq. (23) holds, with b.

Lemma 11
∣

∣E[`(hGini
S )]−E[`(hδ

S)]
∣

∣≤ 1
m .

Proof We have
E[`(hGini

S )]−E[`(hδ
S)] = ∑

v

(

E[`v(h
Gini
S )− `v(h

δ
S)]
)

. (25)

We bound E[`v(hGini
S )− `v(hδ

S)] as follows. First, for values v such that pv < 6ln( 2m
δ )/m, we have

that hGini
S (v) = hδ

S(v). Thus E[`v(hGini
S ) − `v(hδ

S)] = 0. For the rest of the values, pv ≥ 6ln( 2m
δ )/m

and thus the definition of `v(hδ
S) implies

E[`v(h
Gini
S )− `v(h

δ
S)] =

Pr [cv < ρ(δ/m, pv,m)] ·E
[

`v(h
Gini
S )− `v(h

δ
S) | cv < ρ(δ/m, pv,m)

]

. (26)

Using Eq. (24) again, we obtain that Pr[cv < ρ(δ/m, pv,m)] ≤ δ/m. In addition, since both `v(hGini
S )

and `v(hδ
S) are in [0, pv] we have that

∣

∣

∣E

[

`v(h
Gini
S )− `v(h

δ
S) | cv < ρ(δ/m, pv,m)

]∣

∣

∣≤ pv.
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Combining the above two facts with Eq. (26) we get

∣

∣

∣
E[`v(h

Gini
S )− `v(h

δ
S)]
∣

∣

∣
≤ pvδ

m
≤ pv

m
.

Summing the above over v and using Eq. (25) we conclude that,

∣

∣

∣E[`(hGini
S )− `(hδ

S)]
∣

∣

∣≤ ∑
v

pv

m
=

1
m

.

Finally, the following lemma shows that Eq. (21) also holds.

Lemma 12 For any δ > 0, and for any two samples S1 and S2 with m examples such that d(S1,S2)≤
1 with d defined as in Lemma 9,

∣

∣

∣`(hδ
S1

)− `(hδ
S2

)
∣

∣

∣≤
12ln( 2m

δ )

m
.

The proof of this lemma is deferred to the appendix.

We have shown that the functions g
∆
= `(hδ

S) and f
∆
= `(hGini

S ) satisfy the three requirements given
in Eqs. (21-23) and therefore Lemma 9 can be used to show that `(hGini) is concentrated.

Lemma 13 ∀δ > 0 ∀δS
∣

∣`(hGini
S )−E[`(hGini

S )]
∣

∣≤
12ln( 4m

δ )
√

ln( 4
δ)√

2m
+ 1

m .

Proof In Lemma 9, let f
∆
= `(hGini

S ) and let g
∆
= `(hδ

S). Let c
∆
= 12ln( 2m

δ ), and let b
∆
= 1√

m . By
Lemma 10, Eq. (22) holds. By Lemma 12, Eq. (21) holds, and by Lemma 11, Eq. (23) holds.
Therefore, from Lemma 9 we have

∀δ > 0 ∀2δS | f (S)−E[ f (S)]| ≤
12ln( 2m

δ )
√

ln( 2
δ)

√
2m

+
1
m

.

The proof is concluded by substituting δ
2 for δ.

Thm. 2 states that with high confidence, the estimator ˆ̀ is close to the true generalization error of the
Gini hypothesis, `(hGini

S ). We conclude the analysis of the Gini estimator by proving this theorem.
Proof [of Thm. 2] Substituting δ

2 for δ and applying a union bound, we have that all three properties
stated in Lemma 13, Thm. 1 and Lemma 8 hold with probability of at least 1− δ. We therefore
conclude that with probability of at least 1−δ,

∣

∣`(hGini
S )− ˆ̀

∣

∣≤ |`(hGini
S )−E[`(hGini

S )]|+
∣

∣E[`(hGini
S )]−E[ ˆ̀]

∣

∣+
∣

∣E[ ˆ̀]− ˆ̀
∣

∣

≤ 2
m

+
12ln

(

8m
δ
)

√

ln
(

8
δ
)

√
2m

+12

√

ln( 4
δ)

2m
= O





ln(m
δ )
√

ln( 1
δ)

√
m



 .
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4.3 Proof of Thm. 3

Throughout this section we use the notation S(m) to denote a random training set of m examples.
Before proving Thm. 3, we provide the following lemma, that shows that the expectation of Mk

converges to 0 for any k.

Lemma 14 For any natural k and a countable V ,

lim
m→∞

E[Mk(S
(m))] = 0

Proof Following McAllester and Schapire (2000) we have that for any m

E[Mk(S
(m))] = ∑

v∈V

pv Pr[|S(m)
v | = k] .

Since V is a countable set we can rewrite it as V
∆
= {v1,v2,v3, . . .}. Let ε > 0, and let N be a positive

integer such that ∑N
i=1 pvi > 1− ε

2 . Since limm→∞

(

Pr[|S(m)
v | = k]

)

= 0 for any natural k, there exists

an m′ such that for any m > m′, ∑N
i=1 pvi Pr[|S(m)

vi | = k] < ε
2 . In addition, ∑|V |

i=N+1 pvi < ε
2 . Hence, for

every m > m′,

E[Mk(S
(m))] =

N

∑
i=1

pvi Pr[|S(m)
vi | = k]+

|V |

∑
i=N+1

pvi Pr[|S(m)
vi | = k] < ε.

Proof [of Thm. 3] To prove Eq. (9), we calculate the expectation of the generalization error E[`(hS)]
of an arbitrary hypothesis mapping h ∈ H and show that this error is minimized when h[S] = hBayes

S .
Let fh : N×N → [0,1] be a function such that fh(n1,n2) = 1− fh(n1,n1−n2) and let h be a hypoth-
esis mapping such that for all v ∈V , h[S](v) = fh(cv(S),c+

v (S)). Then,

E[`(h[S])] = ∑
v

pv E[qv(1− fh(cv(S),c+
v (S)))+(1−qv) fh(cv(S),c+

v (S))]

= ∑
v

pv(qv +(1−2qv))E[ fh(cv(S),c+
v (S))].

From the above expression it is clear that if qv < 1
2 then E[`(h[S])] is minimal when E[ fh(cv(S),c+

v (S))]
is minimal, and if qv > 1

2 then E[`(h[S])] is minimal when E[ fh(cv(S),c+
v (S))] is maximal. If qv = 1

2
the expectation equals 1

2 regardless of the choice of fh. We have

E[ fh(cv(S),c+
v (S))] = ∑

S

Pr[S] fh(cv(S),c+
v (S))

=
m

∑
k=0

Pr[cv(S) = k]
k

∑
i=0

Pr[c+
v (S) = i | cv(S) = k] fh(k, i)
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Consider the summation on i for a single k from the above sum. If k is odd, then

k

∑
i=0

Pr[c+
v = i | cv = k] fh(k, i)

=

k−1
2

∑
i=0

Pr[c+
v = i | cv = k] fh(k, i)+

k

∑
i= k+1

2

P[c+
v = i | cv = k](1− fh(k,k− i))

=

k−1
2

∑
i=0

Pr[c+
v = i | cv = k] fh(k, i)+

k−1
2

∑
i=0

Pr[c+
v = k− i | cv = k](1− fh(k, i))

= C +

k−1
2

∑
i=0

(

Pr[c+
v = i | cv = k]−Pr[c+

v = k− i | cv = k]
)

fh(k, i)

where C is a constant that does not depend on fh. In the above expression, note that if qv < 1
2 then

for each i ≤ k−1
2 , Pr[c+

v = i | cv = k]−Pr[c+
v = k− i | cv = k] is positive, and that if qv > 1

2 then this
expression is negative. This means that in both cases, to minimize E[`(hS)], we need to maximize
fh(k, i) for i ≤ k−1

2 . For an even k the analysis is similar, except that we have the special case of
i = k

2 that does not pair with another summand. However, from the symmetry constraint on fh it
follows that fh(k, k

2) = 1
2 . Therefore no maximization or minimization is allowed for this value of i.

Based on the above analysis, the function fh that minimizes E[`(hS)] is:

fh(n1,n2) =











1 n2 ≤ n1−1
2

0 n2 ≥ n1+1
2

1
2 n2 = n1

2

Setting hS(v) = fh(cv(S),c+
v (S)) we have that hS(v) = hBayes

S (v) for all values v in V .
To prove Eq. (10), we first calculate the difference between `v(hBayes

∞ ) and the expectation of
`v(h

Bayes

S ). Assume without loss of generality that qv > 1
2 . Then `v(hBayes

∞ ) = pv(1−qv), and

E[`v(h
Bayes

S )] = pv(qv Pr[q̂v <
1
2
]+ (1−qv)(1−Pr[q̂v <

1
2
])+

1
2

Pr[q̂v =
1
2
]).

Subtracting, we have

E[`v(h
Bayes

S )]− `v(h
Bayes
∞ ) = pv(2qv −1)(Pr[q̂v <

1
2
]+

1
2

Pr[q̂v =
1
2
])

≤ pv(2qv −1)Pr[cv = 0] · 1
2

+ pv

m

∑
k=1

Pr[cv = k](2qv −1)Pr[q̂v ≤
1
2
|cv = k].

We use Lemma 17 below to bound (2qv−1)Pr[q̂v ≤ 1
2 |cv = k] for k ≥ 3. For k = 0,1,2 we maximize

this term individually for each k. This leads us to the following bound:

E[`v(h
Bayes

S )]− `v(h
Bayes
∞ )

≤ 1
2

pv Pr[cv = 0]+
1
8

pv Pr[cv = 1]+
1
8

pv Pr[cv = 2]+
m

∑
k=3

1√
ek

pv Pr[cv = k].
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Recall that Mk is the probability mass of the values seen k times in the sample. Following McAllester
and Schapire (2000) we have that for k ≥ 0, E[Mk] = ∑v pv Pr[cv = k]. Hence, summing over all the
values v, we have

E[`(hBayes

S )]− `(hBayes
∞ ) = ∑

v
(E[`v(h

Bayes

S )]− `v(h
Bayes
∞ ))

≤ 1
2

E[M0]+
1
8

E[M1]+
1
8

E[M2]+
m

∑
k=3

1√
ek

E[Mk].

To prove Eq. (11), denote by S(m) a sample of m examples. Let ε > 0 be a scalar. Then there
exists an integer t such that 1√

et
< ε

2 . Since ∑m
k=1 E[Mk(S(m))] = 1, we have

m

∑
k=t

1√
ek

E[Mk(S
(m))] <

ε
2
. (27)

Now, by Lemma 14, for every k < t, limm→∞ E[Mk(S(m))] = 0. Hence, there exists an m′ such that
for every m > m′,

1
2

E[M0(S
(m))]+

1
8

E[M1(S
(m))]+

1
8

E[M2(S
(m))]+

t

∑
k=3

1√
ek

E[Mk(S
(m))] <

ε
2
. (28)

Combining Eq. (27) and Eq. (28), we have that for every m > m′,

1
2

E[M0]+
1
8

E[M1]+
1
8

E[M2]+
m

∑
k=3

1√
ek

E[Mk] < ε.

Hence the limit of this expression when m → ∞ is 0.

4.4 Proof of Thm. 4

To prove Thm. 4, we first introduce some additional notation. Let δ ∈ (0,1) be a confidence param-
eter. Let V δ

1 , V δ
2 , and V δ

3 be three sets that partition V according to the values of the probabilities
pv:

V δ
1 = {v | pv ≤ 6ln

(

2m
δ

)

m− 2
3 }

V δ
2 = {v | 6ln

(

2m
δ

)

m− 2
3 < pv ≤ 6ln

(

2m
δ

)

m− 1
2 }

V δ
3 = {v | 6ln

(

2m
δ

)

m− 1
2 < pv}

We denote the contribution of each set to `(hBayes

S ) by `δ
i (S)

∆
= ∑v∈V δ

i
`v(h

Bayes

S ). Additionally, given

two samples S and S′, let κ(S,S′) be the predicate that gets the value “true” if for all v ∈V we have
cv(S) = cv(S′).
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Using the above definitions and the triangle inequality, we can bound |`(hBayes

S ) − E[`(hBayes

S )]|
as follows:

|`(hBayes

S )−E[`(hBayes

S )]| =

∣

∣

∣

∣

∣

3

∑
i=1

(

`δ
i (S)−E[`δ

i ]
)

∣

∣

∣

∣

∣

≤
∣

∣

∣
`δ

1(S)−E[`δ
1]
∣

∣

∣
+
∣

∣

∣
`δ

2(S)−E[`δ
2(S

′) | κ(S,S′)]
∣

∣

∣
+

∣

∣

∣ `δ
3(S)−E[`δ

3(S
′) | κ(S,S′)]

∣

∣

∣+
∣

∣

∣ E[`δ
2(S

′)+ `δ
3(S

′) | κ(S,S′)]−E[`δ
2 + `δ

3]
∣

∣

∣ .

To prove Thm. 4 we bound each of the above terms as follows: First, to bound
∣

∣ `δ
1(S)−E[`δ

1]
∣

∣

(Lemma 15 below), we use the fact that for each v ∈ V δ
1 the probability pv is small. Thus, a single

change of an example in S has a moderate effect on the error and we can use McDiarmid’s theorem.
To bound

∣

∣ `δ
2(S)−E[`δ

2(S
′) | κ(S,S′)]

∣

∣ (Lemma 16 below) we note that the expectation is taken
with respect to those samples S′ in which cv(S′) = cv(S) for all v. Therefore, the variables `v(h

Bayes

S )
are independent. We show in addition that each of these variables is bounded in [0, pv] and thus we
can apply Hoeffding’s bound. Next, to bound

∣

∣ `δ
3(S)−E[`δ

3(S
′) | κ(S,S′)]

∣

∣ (Lemma 19 below), we
use the fact that in a typical sample, cv(S) is large for all v ∈ V δ

3 . Thus, we bound the difference
between `v(h

Bayes

S ) and E[`v(S′) | κ(S,S′)] for each value in V δ
3 separately. Then, we apply a union

bound to show that for all of these values the above difference is small. Finally, we use the same
technique to bound

∣

∣ E[`δ
2(S

′)+ `δ
3(S

′) | κ(S,S′)]−E[`δ
2 + `δ

3]
∣

∣ (Lemma 20 below). The proof of the
first lemma, stated below, is omitted.

Lemma 15 ∀δ > 0 ∀δS |`δ
1(S)−E[`δ

1]| ≤
12ln( 2m

δ )
m1/6

√

1
2 ln
(

2
δ
)

.

Proof We prove the lemma using McDiarmid’s theorem. To do so, we examine the effect a removal
of a single example (xi,yi) from S can have on `δ

1(h
Bayes

S ). The largest effect occurs if xi ∈V δ
1 and the

removal of yi changes the value of hBayes(xi). In this case,

|`δ
1(S)− `δ

1(S
\i)| = |`xi(h

Bayes

S )− `xi(h
Bayes

S\i )| ≤ pv ≤ 6ln

(

2m
δ

)

m− 2
3 .

Applying McDiarmid’s theorem, it follows that |`δ
1(S)−E[`δ

1]| is at most
√

1
2

ln

(

2
δ

)

m ·
(

12ln

(

2m
δ

)

m− 2
3

)2

=
12ln

(

2m
δ
)

m1/6

√

1
2

ln

(

1
δ

)

.

Lemma 16 ∀δ > 0 ∀δS |`δ
2(S)−E[`δ

2(S
′) | κ(S,S′)]| ≤

√

3ln( 2m
δ ) ln( 2

δ)
m1/4 .

Proof Since the expectation is taken over samples S′ for which cv(S′) = cv(S) for each v ∈V , we get
that the value of the random variable `v(h

Bayes

S ) for each v depends only on the assignment of label
for each example. Therefore the random variables `v(h

Bayes

S ) are all independent of each other when
conditioned on κ(S,S′), and `δ

2(S) = ∑v∈V δ
2
`v(h

Bayes

S ) is a sum of independent random variables. The
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expectation of this sum is E[`δ
2(S

′) | κ(S,S′)]. In addition, it is trivial to show that `v(h
Bayes

S ) ∈ [0, pv]
for all v. Thus, by Hoeffding’s inequality,

Pr[|`δ
2(S)−E[`δ

2(S
′) | κ(S,S′)]| ≥ t] ≤ 2e

−2t2/∑v∈V δ
2

p2
v
. (29)

Using the fact that for v in V δ
2 , pv ≤ 6ln

(

2m
δ
)

/
√

m we obtain that

∑
v∈V δ

2

p2
v ≤ max

v∈V δ
2

{pv} · ∑
v∈V δ

2

pv ≤ 6ln

(

2m
δ

)

/
√

m .

Plugging the above into Eq. (29) we get that

Pr[|`δ
2(S)−E[`δ

2(S
′) | κ(S,S′)]| ≥ t] ≤ 2e−2t2√m/(6ln( 2m

δ )) .

Setting the right-hand side to δ and solving for t, we conclude our proof.

So far, we have bounded the terms
∣

∣ `δ
1(S)−E[`δ

1]
∣

∣ and
∣

∣ `δ
2(S)−E[`δ

2(S
′) | κ(S,S′)]

∣

∣. In both
of these cases, we used the fact that pv is small for all v ∈V δ

1 ∪V δ
2 . We now turn to bound the term

∣

∣ `δ
3(S)−E[`δ

3(S
′) | κ(S,S′)]

∣

∣. In this case, the probabilities pv are no longer negligible. Therefore,
we use a different technique whereby we analyze the probability of hBayes

S (v) to be ‘wrong’, that is
to return the less probable label. Since pv is no longer small, we expect cv to be relatively large.
The following key lemma bounds the probability of hBayes

S (v) to be wrong given that cv is large. The
resulting bound depends on the difference between qv and 1/2 and becomes vacuous whenever qv

is close to 1/2. On the other hand, if qv is close to 1/2, the price we pay for a wrong prediction is
small. In the second part of this lemma, we balance these two terms and end up with a bound that
does not depend on qv.

Lemma 17 Let Z̄ = (Z1, . . . ,Zk) be a sequence of i.i.d. binary random variables such that
Pr[Zi = 1] = q for all i, and assume that q ≥ 1

2 . Then,

Pr[∑
i

Zi ≤ k/2] ≤ e−2(q− 1
2 )2 k and (2q−1) Pr[∑

i

Zi ≤ k/2] ≤ 1√
ek

.

Proof The first inequality is a direct application of Hoeffding’s inequality. Multiplying both sides by
2q−1 we get that the left-hand side of the second inequality is bounded above by (2q−1)e−2(q− 1

2 )2k.
We now let x = q− 1

2 and use the inequality 2xe−2x2k ≤ 1/
√

ek, which holds for all x ≥ 0 and k > 0.

Based on the above lemma, we now bound
∣

∣ `δ
3(S)−E[`δ

3(S
′) | κ(S,S′)]

∣

∣. First, we show that if
cv(S) is large then `v(S) is likely to be close to the expectation of `v over samples S′ in which
cv(S) = cv(S′). This is equivalent to the claim of the following lemma.

Lemma 18 Under the same assumptions of Lemma 17. Let f (Z̄) be the function

f (Z̄) =











(1−q) if ∑i Zi > k/2

q if ∑i Zi < k/2
1
2 if ∑i Zi = k/2

.

Then, for all δ ∈ (0,e−1/2] we have ∀δZ̄ | f (Z̄)−E[ f ]| ≤
√

2ln( 1
δ)

ek .
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Proof To simplify our notation, denote α = Pr[∑i Zi > k/2], β = Pr[∑i Zi < k/2], and γ = Pr[∑i Zi =
k/2]. A straightforward calculation shows that

| f (Z̄)−E[ f (Z̄)]| =











(2q−1)(β+ γ/2) with probability α
(2q−1)(α+ γ/2) with probability β
(2q−1)(α−β) with probability γ

.

Using the fact that (α,β,γ) is in the probability simplex we immediately obtain that

| f (z̄)−E[ f (Z̄)]| ≤ (2q−1) .

If 2q− 1 ≤
√

2 ln
(

1
δ
)

/k then the bound in the lemma clearly holds. Therefore, from now on we

assume that 2q− 1 >
√

2 ln
(

1
δ
)

/k. In this case, using the first inequality of Lemma 17 we have

that β + γ ≤ e−2(q− 1
2 )2k ≤ δ. Therefore, 1− δ < α, and so with probability of at least 1− δ we

have that
| f (Z̄)−E[ f (Z̄)]| = (2q−1)(β+ γ/2) ≤ (2q−1)(β+ γ) .

Applying the second inequality of Lemma 17 on the right-hand side of the above inequality we
get that | f (Z̄)−E[ f (Z̄)]| ≤

√

1/ek ≤
√

2ln(1/δ)/ek, where the last inequality holds since we
assume that δ ≤ e−1/2.

Equipped with the above lemma we are now ready to bound
∣

∣ `δ
3(S)−E[`δ

3(S
′) | κ(S,S′)]

∣

∣.

Lemma 19 If m ≥ 4 then ∀(2δ)S |`δ
3(S)−E[`δ

3(S
′) | κ(S,S′)]| ≤ 1/m

1
4 .

Proof Recall that `δ
3(S) = ∑v∈V δ

3
`v(S). m ≥ 4, hence δ/m ≤ 1/m ≤ e−1/2. Choose v ∈ V δ

3 and

without loss of generality assume that qv ≥ 1/2. Thus, from Lemma 18 and the definition of `v(S)
we get that with probability of at least 1−δ/m over the choice of the labels in S(v):

|`v(S)−E[`v(S
′) | κ(S,S′)]| ≤ pv

√

2ln
(

m
δ
)

e · cv(S)
. (30)

By the definition of V δ
3 and Lemma 10, ∀δS, ∀v ∈ V δ

3 , cv(S) ≥ ρ(δ/m, pv,m). Using the fact
that ρ is monotonically increasing with respect to pv it is possible to show (see Lemma 21 in
the appendix)that ρ(δ/m, pv,m) ≥ 2ln

(

m
δ
)

m1/2 for all v ∈ V δ
3 for m ≥ 4. Therefore, if indeed

cv(S) ≥ ρ(δ/m, pv,m) for any v ∈V δ
3 , we have that

√

2ln
(

m
δ
)

e · cv(S)
≤ pv m−1/4.

Using a union bound to make sure that this condition holds and Eq. (30) holds for all v ∈V δ
3 simul-

taneously, we obtain that ∀(2δ)S ∀v ∈ V δ
3 |`v(S)−E[`v(S′) | κ(S,S′)]| ≤ pv m−1/4 . Summing

over v ∈ V δ
3 , using the triangle inequality, and using the fact that ∑v pv = 1 we conclude the proof.
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Lemma 20 For m ≥ 8,

∀δS |E[`δ
2(S

′)+ `δ
3(S

′) | κ(S,S′)]−E[`δ
2(S

′)+ `δ
3(S

′)]| ≤ 1
m

+
1

m1/6
.

Proof As in the proof of Lemma 19, we use the definitions of V δ
3 and V δ

2 along with Lemma 10 and
Lemma 21 to get that for m ≥ 8

∀δS ∀v ∈V δ
2 ∪V δ

3 cv(S) ≥ ρ(δ/m, pv,m) ≥ 3ln(m/δ)m1/3 . (31)

To bound the difference between the conditional expectation and the unconditional expectation,
let us first examine both these quantities for individual values v. To simplify our notation, denote
α1 = Pr[q̂v(S′) > 1/2 | cv(S′) = cv(S)], β1 = Pr[q̂v(S′) < 1/2 | cv(S′) = cv(S)], and γ1 = Pr[q̂v(S′) =
1/2 | cv(S′) = cv(S)]. Similarly, denote α2 = Pr[q̂v(S′) > 1/2], β2 = Pr[q̂v(S′) < 1/2], and γ2 =
Pr[q̂v(S′) = 1/2]. Using the definition of `v we have that

E[`v(S
′) | cv(S) = cv(S

′)] = pv

(

(1−qv)α1 +qβ1 +
1
2

γ1

)

.

Similarly, for the unconditional expectation:

E[`v(S
′)] = pv

(

(1−qv)α2 +qβ2 +
1
2

γ2

)

. (32)

Subtracting the above two equations and rearranging terms it can be shown that

∆ ∆
= |E[`v(S

′) | cv(S) = cv(S
′)]−E[`v(S

′)]|

= pv (q− 1
2
) | (β1 + γ1)− (β2 + γ2)+(γ1 − γ2) | . (33)

Let Z1, . . . ,Zcv(S) be an i.i.d. sequence of random variables with Pr[Zi = 1] = qv. Then we have

β1 + γ1 = Pr[∑i Zi ≤ cv(S)/2]. In addition cv(S) ≥ dρ(δ/m, pv,m)e ∆
= ρ. Assume without loss of

generality that qv ≥ 1/2. Thus we have Pr[∑ρ
i=1 Zi ≤ ρ/2] ≥ Pr[∑cv(S)

i=1 Zi ≤ cv(S)/2]. We clearly
have that 0 ≤ β1 + γ1 ≤ Pr[∑ρ

i=1 Zi ≤ ρ/2]. We now argue that

0 ≤ β2 + γ2 ≤
δ
m

+Pr[
ρ

∑
i=1

Zi ≤ ρ/2] .

The left-hand side inequality is trivial. To prove the right-hand side inequality, we note that

β2 + γ2 =
m

∑
i=1

Pr[cv(S
′) = i]Pr

[

q̂v(S
′) ≤ 1

2
| cv(S

′) = i

]

≤ Pr[cv(S
′) ≤ ρ]+Pr

[

q̂v(S
′) ≤ 1

2
| cv(S

′) = ρ
]

≤ δ
m

+Pr[
ρ

∑
i=1

Zi ≤ ρ/2] .
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Therefore,

|(β1 + γ1)− (β2 + γ2)| ≤
δ
m

+Pr[
k

∑
i=1

Zi ≤ k/2] . (34)

Similarly, since 0 ≤ γ1 ≤ β1 + γ1 and 0 ≤ γ2 ≤ β2 + γ2 we also have that

|γ1 − γ2| ≤
δ
m

+Pr[
ρ

∑
i=1

Zi ≤ ρ/2] . (35)

Combining Eq. (34) and Eq. (35) with Eq. (33) we get that

∆ ≤ pv (2q−1)

(

δ
m

+Pr[
ρ

∑
i=1

Zi ≤ ρ/2]

)

≤ pv





1
m

+
1

√

e ·ρ( δ
m , pv,m)



 ,

where the last inequality follows from Lemma 17. Finally, by summing over v ∈ V δ
2 ∪ V δ

3 and
using Eq. (31) we conclude our proof.

5. Experiments

In this section we present experimental results that demonstrate the merits of our feature ranking
criterion given in Eq. (7). Throughout this section we compare the following four feature ranking
criteria:

1. IG: The Information Gain criterion (Quinlan, 1993; de Mantaras, 1991; Mitchell, 1997).

2. IGR: The Information Gain Ratio criterion (Quinlan, 1993).

3. Gini: The original Gini Index (Breiman et al., 1984), which is given in Eq. (2).

4. Ginger: Our modified Gini criterion that aims to minimize the generalization error, given in
Eq. (7).

We first present experiments with synthetic data that exemplify the generalization properties of
the different criteria. Next, we compare the performance of the different criteria on a natural data
set from the UCI repository. Finally, we compare the use of the different ranking criteria for the
task of growing a decision tree.

5.1 Synthetic Data

Three synthetic data sets were constructed to exemplify the generalization properties of the different
ranking criteria in different scenarios. In all of the synthetic data sets the target label was first
sampled according to the probability measure Pr[Y = 1] = 1

2 . Synthetic data set I includes only
binary features. The goal of data set I is to show that the Ginger criterion behaves similarly to the
Gini criterion on binary features. 11 binary features were constructed. For each i ∈ {0,1, . . . ,10}
the ith feature was sampled according to the probability measure Pr[Xi = Y |Y ] = 1+0.1 i

2 . Thus,
feature X0 is completely uncorrelated with the label, while feature X10 perfectly predicts the label.
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Figure 1: Each of the plots above show the generalization error of each feature (the y axis) against
the ranking order of the feature in one of the ranking criteria (the x axis). Each column
corresponds to a specific ranking criteria. Each row corresponds to a specific synthetic
data set.

A training set of 5000 examples was generated, and the features were ranked using each of the four
ranking criteria on the training set. The generalization errors of the 11 classification rules of each
feature, defined as in Eq. (5), were measured on a fresh test set of 5000 examples. A plot of the
generalization error of each feature against the ranking order of the feature is given for each of the
ranking criteria on the top row of Fig. 1. This plot should be monotonically increasing for good
feature ranking criteria. As the plots show, all four criteria perform well on this data set.

Data set II is identical to data set I, except that one more feature, indexed X11, was added. X11 is
simply the index of the example (this simulates an SSN-like feature as described in Sec. 2). Clearly,
the generalization error of X11 is 1

2 as no value of the feature that occurred in the training set would
occur in a test set. The performance of the four feature ranking criteria on data set II is shown
on the second row of Fig. 1. As expected, the Gini criterion and the IG criterion both suffer from
overfitting and rank X11 very high. The IGR criterion, suggested by Quinlan (1993) attempts to
fix the overfitting effect of the IG criterion by dividing IG by the entropy of the feature. As the
plots show, this correction indeed causes IGR to rank X11 lower than do IG and Gini. However, the
correction is not strong enough, as the new feature is still ranked 8th out of 12 features although
its generalization error is the worst. Finally, it is clear from the plots that the new Ginger criterion
produces a correct ranking of the features in this example.
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Data set III is identical to data set II, except that one more feature indexed X12 was added. X12

was constructed according to the following probability measure:

Pr[X = i | Y = 1] =

{

1
2000 if i ∈ {1, . . . ,2000}
0 otherwise

and

Pr[X = i | Y = −1] =

{

1
2000 if i ∈ {2001, . . . ,4000}
0 otherwise

X12 is thus categorical with many values but it is still highly predictive of the label. The performance
of the four feature ranking criteria on data set III is shown on the bottom row of Fig. 1. As the plots
show, the rankings of the Gini criterion and of the IG criterion are not adversely affected by the
addition of this feature, although they still fail on X11, the SSN-like feature. IGR penalizes X12

because it has a large number of values, thus its ranking for this feature is too low. The new Ginger
criterion is the only one to rank the features in accordance with their respective generalization error,
as is apparent from its monotonically increasing plot.

5.2 Natural Data

To test the ranking criteria on natural data, we used the USCensus1990raw data set from the UCI
Repository.1 This data set contains person records, where each record has 125 features, such as age,
salary, marital status etc. Several labeled data sets were constructed from USCensus1990raw by
defining a binary target label based on one of the attributes, and using the rest of the attributes as
features. For attributes that take more than two values, the binary label was set to 1 if the feature
takes its most frequent value and −1 otherwise. Only cases where the probability of the label to
be 1 was at least 0.1 and no more than 0.9 were used. This process resulted in 62 binary learning
problems.

In Fig. 2, each of the rows corresponds to one learning problem. A plot is shown for each
problem and each ranking criterion, depicting the generalization error of each feature against the
ranking order of the features. Recall that good ranking criteria should produce monotonically in-
creasing graphs. The plots clearly show that the Ginger criterion produces the most accurate feature
ranking. Fig. 3 compares the Ginger criterion to each of the other ranking criteria. In each of the
plots, each data point corresponds to one of the 62 learning problems and portrays the difference
in generalization error between the feature that was top-ranked by Ginger and the feature that was
top-ranked by the other criterion. Positive data points are cases where Ginger outperformed the
other criterion. Again, it is apparent that the Ginger criterion outperforms the other criteria.

5.3 Decision Trees

Decision tress are a popular classification tool (see for instance Mitchell, 1997). The process of
growing a decision tree is a greedy iterative procedure which is performed as follows: The procedure
starts with a tree composed only of a root node. At each iteration, one of the leaves of the tree is
turned into an inner node, whose children represent all the possible values of one feature. Choosing

1. The original census data set was used rather than the preprocessed data set. The preprocessed data set obtained from
Meek, Thiesson, and Heckerman eliminates categorical attributes that have many values, exactly the type of attributes
that this paper addresses. The data set used in our experiments is available through
http://kdd.ics.uci.edu/databases/census1990/USCensus1990raw.data.txt.
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Label IG Gini IGR Ginger
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Figure 2: Each of the plots above show the generalization error of the features in a learning problem
(the y axis) against the ranking order of the features in one of the ranking criteria (the x
axis). Each column corresponds to a specific ranking criterion. Each row corresponds to
a specific learning problem, generated from USCensus1990raw by setting the label to be
the most common value of one of the attributes.
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Figure 3: Each plot above portrays the difference in generalization error between the feature that
was top-ranked by Ginger and the feature that was top-ranked by one of the other criteria,
for each of the 62 learning problems obtained from USCensus1990raw.

which leaf to split and which feature to use for splitting can be based on feature ranking criteria
such as the ones discussed in this paper. In our experiments, we compared decision tree learning
with each of the four feature ranking criteria: IG, IGR, Gini, and Ginger. The experiments were
performed on the 62 learning problems described in Sec. 5.2.

Usually, the iterative process of growing a decision tree continues until no further splits can be
made. Then, as a post processing step, the tree is pruned, so as to improve the generalization error
of the decision tree. Since this paper focuses on splitting criteria rather then on pruning methods,
the experiments do not include tree post-pruning. Instead, the generalization error is measured as
a function of the number of splits. Given a ranking criterion, the following procedure is used to
choose which leaf to split and which feature to split by: Let m be the number of training examples.
A decision tree T with k leaves is equivalent to a mapping T : {1, . . . ,m}→ {1, . . . ,k}. That is, each
example is mapped to one of the leaves of the tree. We can think of the vector (T (1), . . . ,T (m)) as
the vector of values of a constructed feature. At each iteration of the decision tree learning process,
a new tree needs to be generated from the current tree by splitting one of the current tree leaves
based on one of the features. Each possible new tree induces a different new constructed feature
as described above. To select the leaf to split and the feature to split by, we assess the quality of
each new constructed feature based on the ranking criterion in use. The selected leaf and feature are
those that correspond to the top-ranked constructed feature.

Fig. 4 shows the training error and generalization error of the Gini, IGR and Ginger splitting
criteria as a function of the number of splits, for several learning problems. The IG criterion plot
was omitted since its behavior was almost identical to that of the Gini criterion. As can be seen
from the plots, the training error of the Gini criterion drops faster, but the resulting tree suffers from
severe overfitting. In contrast, the generalization error of the Ginger criterion is much smaller and
remains close to the training error, as long as the number of splits is not too large. As expected, after
making a large number of splits all criteria exhibit an overfitting effect. Comparing the IGR and the
Ginger criteria, we observe that both methods perform rather well, each showing an advantage on
some of the learning problems.

Lastly, Fig. 5 compares the performance of the decision tree learning with the Ginger splitting
criterion to decision tree learning with the other splitting criteria. In each of the plots, the data points
correspond to the 62 learning problems, and portray the difference in the minimal generalization
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Label Gini IGR Ginger
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Figure 4: The training error (solid red line) and generalization error (dotted blue line) of decision
trees grown according to the Gini, IGR, and Ginger splitting criteria, as a function of the
number of splits. Each column corresponds to a specific splitting criterion. Each row
corresponds to a specific learning problem, generated from USCensus1990raw by setting
the label to be the most common value of one of the attributes.
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Figure 5: Left: The minimal generalization error of the IG criterion minus the minimal generaliza-
tion error of the Ginger criterion for each of the labeled data sets. Middle: Same for IGR.
Right: Same for Gini.

error achieved by the decision tree grown using Ginger and the one that was achieved using the
other criterion. Positive data points are cases where Ginger outperformed the other criterion. The
plots show that the Ginger criterion outperforms the IG and Gini criteria, and that in most cases the
Ginger criterion outperforms the IGR criterion as well.

6. Discussion

In this paper, a new approach for feature ranking is proposed, based on a direct estimation of the
true generalization error of predictors that are deduced from the training set. We focused on two
specific predictors, namely hGini

S and hBayes

S . An estimator for the generalization error of hGini
S , termed

the Ginger criterion, was proposed and its convergence was analyzed. Experimental evaluation
suggests that the Ginger criterion outperforms existing feature ranking methods. We showed that
the expected error of hBayes

S is optimal and proved a concentration bound for this error. Constructing
an estimator for hBayes

S is left for future work.

There are various extensions for this work that we did not pursue. First, it is interesting to
analyze the number of categorical features one can rank while avoiding overfitting. The experiments
with decision trees suggest that the Ginger criterion has potential to improve the generalization
error of decision trees. It may be possible to use the bounds for constructing a stopping criterion
for growing the decision tree. Second, our view of a ranking criterion as an estimator for the
generalization error of a predictor can be used for constructing new ranking criteria by defining
other predictors. Finally, understanding the relationship between this view and information theoretic
measures is also an interesting future direction.

Appendix A. Technical Proofs

Lemma 21 Let c be a positive constant. Then, if pv > 6ln
(

2
δ
)

m−c, and m ≥ 2
1

1−c we have

∀δ > 0 ρ(δ, pv,m) ≥ 3ln

(

2
δ

)

m1−c.
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Proof By the definition of ρ,

ρ(δ, pv,m) = mpv −
√

mpv ·3ln

(

2
δ

)

=
√

mpv

(

√
mpv −

√

3ln

(

2
δ

)

)

.

Therefore, ρ( δ
m , pv,m) is upward monotonic with pv. Thus if pv > 6ln

(

2m
δ
)

m−c,

ρ(δ, pv,m) = mpv −
√

mpv ·3ln

(

2
δ

)

≥ 6ln

(

2
δ

)

m1−c −
√

6ln

(

2
δ

)

m1−c ·3ln

(

2
δ

)

= 3ln

(

2
δ

)

m
1−c

2

(

2m
1−c

2 −
√

2
)

= 3ln

(

2
δ

)

m
1−c

2 (m
1−c

2 +m
1−c

2 −
√

2)

≥ 3ln

(

2
δ

)

m1−c.

Proof [Lemma 12] Similarly to the proof of Lemma 8, we will bound the effect a single removal of
an example from S can have on `(hδ

S). The maximal effect of a single change in the sample is no
larger than twice the maximal effect of a single removal. Assume without loss of generality that the
removed example is xi = (v,0), and denote the resulting sample by S\i. The removal only affects
`v(hδ

S). Therefore

|`(hδ
S)− `(hδ

S\i)| = |`v(h
δ
S)− `v(h

δ
S\i)|

=
∣

∣

∣
pv

(

qv(1−hδ
S(v))+(1−qv)h

δ
S(v)− pvqv(1−hδ

S\i(v))+(1−qv)h
δ
S(v)

)∣

∣

∣

=
∣

∣

∣pv(1−2qv)(h
δ
S(v)−hδ

S\i(v))
∣

∣

∣

≤ pv

∣

∣

∣
hδ

S(v)−hδ
S\i(v)

∣

∣

∣
.

For v such that pv <
6ln( 2m

δ )

m ,

|`(hδ
S)− `(hδ

S\i)| ≤ pv <
6ln( 2m

δ )

m
. (36)

For v such that pv ≥ 6ln( 2m
δ )

m , we distinguish between three cases by cv, the number of examples of v
in S:

1. cv < ρ( δ
m , pv,m),

2. ρ( δ
m , pv,m) ≤ cv < ρ( δ

m , pv,m)+1,
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3. ρ( δ
m , pv,m)+1 ≤ cv.

In case 1,

hδ
S(v) =

c+
v +qv(dρ( δ

m , pv,m)e− cv)

dρ( δ
m , pv,m)e

and hδ
S\i(v) =

c+
v +qv(dρ( δ

m , pv,m)e− (cv −1))

dρ( δ
m , pv,m)e

,

hence
|hδ

S(v)−hδ
S\i(v)| =

qv

dρ( δ
m , pv,m)e

.

In case 2, dρ( δ
m , pv,m)e = cv, therefore

hδ
S(v) = hGini

S (v) =
c+

v

cv
and hδ

S\i(v) =
c+

v +qv(cv − (cv −1))

cv
,

hence
|hδ

S(v)−hδ
S\i(v)| =

qv

cv
=

qv

dρ( δ
m , pv,m)e

.

In case 3, since ρ( δ
m , pv,m) > 1 we have cv ≥ 2 and

hδ
S(v) = hGini

S (v) =
c+

v

cv
and hδ

S\i(v) = hδ
S\i(v) =

c+
v

cv −1

Hence

|hδ
S(v)−hδ

S\i(v)| =
c+

v

cv(cv −1)
≤ cv

cv(cv −1)
=

1
cv −1

≤ 1

dρ( δ
m , pv,m)e

.

Therefore, in all cases, for v such that pv ≥ 6ln( 2m
δ )

m ,

|`(hδ
S)− `(hδ

S\i)| ≤ pv

∣

∣

∣hδ
S(v)−hδ

S\i(v)
∣

∣

∣≤ pv

ρ( δ
m , pv,m)

=
pv

mpv −
√

mpv ·3ln( 2m
δ )

=
1
m

√
pv

√
pv −

√

3ln( 2m
δ )

m

≤ 1
m





√

6ln( 2m
δ )

m
√

6ln( 2m
δ )

m −
√

3ln( 2m
δ )

m



=
1
m

2√
2−1

≤ 4
m

.

Combining this with Eq. (36), we have

|`(hδ
S)− `(hδ

S\i)| ≤ max

{

4
m

,
6ln( 2m

δ )

m

}

=
6ln( 2m

δ )

m
.

Hence, doubling the effect of a single removal, we have that for any two samples S1 and S2 such
that d(S1,S2) ≤ 1

|`(hδ
S1

)− `(hδ
S2

)| ≤
12ln( 2m

δ )

m
.
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Abstract
Statistical spam filters are known to be vulnerable to adversarial attacks. One of the more common
adversarial attacks, known as the good word attack, thwarts spam filters by appending to spam
messages sets of “good” words, which are words that are common in legitimate email but rare in
spam. We present a counterattack strategy that attempts to differentiate spam from legitimate email
in the input space by transforming each email into a bag of multiple segments, and subsequently
applying multiple instance logistic regression on the bags. We treat each segment in the bag as
an instance. An email is classified as spam if at least one instance in the corresponding bag is
spam, and as legitimate if all the instances in it are legitimate. We show that a classifier using our
multiple instance counterattack strategy is more robust to good word attacks than its single instance
counterpart and other single instance learners commonly used in the spam filtering domain.

Keywords: spam filtering, multiple instance learning, good word attack, adversarial learning

1. Introduction

It has been nearly thirty years since the first email spam appeared on the Arpanet. Today, to most
end users, spam does not seem to be a serious threat due to the apparent effectiveness of current
spam filters. Behind the scenes, however, is a seemingly never-ending battle between spammers
and spam fighters. With millions of email users, profit-driven spammers have great incentives to
spam. With as little as 0.001% response rate, a spammer could potentially profit $25,000 on a
$50 product (Carpinter and Hunt, 2006). Over the years, spammers have grown in sophistication
with cutting-edge technologies and have become more evasive. The best evidence of their growing
effectiveness is a recent estimate of over US $10 billion worldwide spam-related cost (Jennings,
2005). In this paper, we target one of the adversarial techniques spammers often use to circumvent
existing spam filters.

Adversarial attacks on spam filters have become an increasing challenge to the anti-spam com-
munity. The good word attack (Lowd and Meek, 2005b) is one of the techniques most frequently
employed by spammers. This technique involves appending sets of so-called “good words” to spam
messages. Good words are words that are common to legitimate emails (also called ham) but rare
in spam. Spam messages injected with such words are more likely to appear legitimate and bypass
spam filters. So far, relatively little research has been done to investigate how spam filters might be
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trained to account for such attacks. This paper presents a possible defense strategy using multiple
instance learning that has shown promising results in our experiments.

Multiple instance (MI) learning (Dietterich et al., 1997) differs from single instance supervised
learning in that an example is represented by a set, or bag, of instances rather than as just a single
instance. The bag is assigned a class label (either positive or negative) based on the instances it
contains; however, the instances within the bag are not necessarily labeled. Classic MI learning
assumes that a bag is positive if at least one instance in the bag is positive, and negative if all
instances are negative. Therefore, the goal of multiple instance learning is to learn a classification
function that accurately maps a given bag to a class. Formally, let B = {B1, . . . ,Bi, . . . ,Bm} be a set
of bags where Bi = {X1i,X2i, . . . ,X ji} is the ith bag and X1i,X2i, . . . ,X ji are the j instances contained
in bag Bi. If B is a training set, then every Bi ∈ B also has a class label ci ∈C = {positive,negative}
associated with it. The training process, using B as input, yields a binary classification function
f (Bi) : B →C that maps a bag to a class label.

Our spam filtering strategy adopts the classical MI assumption, which states that a bag is positive
if at least one of its instances is positive, and negative if all instances are negative. We treat each
email as a bag of instances. Thus, an email is classified as spam if at least one instance in the
corresponding bag is spam, and as legitimate if all the instances in it are legitimate. The idea is that
by splitting an email into multiple instances, a multiple instance learner will be able to recognize the
spam part of the message even if the message has been injected with good words. Our experimental
results show that a multiple instance learner, combined with an appropriate technique for splitting
emails into multiple instance bags, is more robust to good word attacks than its single instance
counterpart and other single instance learners that are commonly used in the spam filtering domain.

The remainder of this paper is organized as follows. First, we discuss recent research that
has motivated our work. Next, we formalize the spam filtering problem as a multiple instance
learning problem and explain our proposed counterattack strategy in more detail. Following that,
we present our experimental results to demonstrate the effectiveness of our filtering strategy. Finally,
we conclude our work and discuss future directions.

2. Related Work

Our work is primarily motivated by recent research on adversarial learning (Dalvi et al., 2004;
Lowd and Meek, 2005a; Kolter and Maloof, 2005). Dalvi et al. (2004) consider classification to
be a game between classifiers and adversaries in problem domains where adversarial attacks are
expected. They model the computation of the adversary’s optimal strategy as a constrained opti-
mization problem and approximate its solution based on dynamic programming. Subsequently, an
optimal classifier is produced against the optimal adversarial strategy. Their experimental results
demonstrate that their game-theoretic approach outperforms traditional classifiers in the spam filter-
ing domain. However, in their adversarial classification framework, they assume both the classifier
and the adversary have perfect knowledge of each other, which is unrealistic in practice.

Instead of assuming the adversary has perfect knowledge of the classifier, Lowd and Meek
(2005a) formalized the task of adversarial learning as the process of reverse engineering the clas-
sifier. In their adversarial classifier reverse engineer (ACRE) framework, the adversary aims to
identify difficult spam instances (the ones that are hard to detect by the classifier) through member-
ship queries. The goal is to find a set of negative instances with minimum adversarial cost within a
polynomial number of membership queries.
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Newsome et al. (2006) emphasize the point that the training data used to build classifiers for
spam filtering and the similar problem of internet worm detection is, to a large extent, controlled by
an adversary. They describe and demonstrate several attacks on the generators of such classifiers
in which the adversary is able to significantly impair the learning of accurate classifiers by manip-
ulating the training data, even while still providing correct labels for the training instances. The
attacks involve inserting features, in a specific manner, into one or both classes of the training data
and are specifically designed to cause a significant increase in false positives or false negatives for
the resulting classifier. They conclude that the generation of classifiers for adversarial environments
should take into account the fact that training data is controlled by an adversarial source in order to
ensure the production of accurate classifiers.

Barreno et al. (2006) explore possible adversarial attacks on machine learning algorithms from
multiple perspectives. They present a taxonomy of different types of attacks on machine learning
systems. An attack is causative if it targets the training data, and is exploratory if it aims to discover
information through, for example, offline analysis. An attack is targeted if it focuses on a small
set of points, and is indiscriminate if it targets a general class of points. An integrity attack leads
to false negatives, and an availability attack aims to cause (machine learning) system dysfunction
by generating many false negatives and false positives. They also discuss several potential defenses
against those attacks, and give a lower bound on the adversary’s effort in attacking a naı̈ve learning
algorithm.

A practical example of adversarial learning is learning in the presence of the good word attack.
Lowd and Meek (2005b) present and evaluate several variations of this type of attack on spam filters.
They demonstrate two different ways to carry out the attack: passively and actively. Active good
word attacks use feedback obtained by sending test messages to a spam filter in order to determine
which words are “good”. The active attacks were found to be more effective than the passive
attacks; however, active attacks are generally more difficult to perform than passive attacks because
they require user-level access to the spam filter, which is not always possible. Passive good word
attacks, on the other hand, do not involve any feedback from the spam filter, but rather, guesses
are made as to which words are considered good. Three common ways for passively choosing
good words are identified. First, dictionary attacks involve selecting random words from a large
collection of words, such as a dictionary. In testing, this method did not prove to be effective; in
fact, it actually increased the chances that the email would be classified as spam. Next, frequent
word attacks involve the selection of words that occur most often in legitimate messages, such as
news articles. This method was more effective than the previous one, but it still required as many
as 1,000 good words to be added to the original message. Finally, frequency ratio attacks involve
the selection of words that occur very often in legitimate messages but not in spam messages. The
authors’ tests showed that this technique was quite effective, resulting in the average spam message
being passed off as legitimate by adding as few as 150 good words to it. Preliminary results were
also presented that suggested that frequent retraining on attacked messages may help reduce the
effect of good word attacks on spam filters.

Webb et al. (2005) also examined the effectiveness of good word attacks on statistical spam
filters. They present a “large-scale evaluation” of the effectiveness of the attack on four spam filters:
naı̈ve Bayes, support vector machine (SVM), LogitBoost, and SpamProbe. Their experiments were
performed on a large email corpus consisting of around a million spam and ham messages, which
they formed by combining several public and private corpora. Such a large and diverse corpus
more closely simulates the environment of a server-level spam filter than a client-level filter. The
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experimental results show that, on normal email, that is, email that has not been modified with
good words, each of the filters is able to attain an accuracy as high as 98%. When testing on
“camouflaged messages”, however, the accuracies of the filters drop to between 50% and 75%. In
their experiments, spam emails were camouflaged by combining them with portions of legitimate
messages. They experimented with camouflaged messages containing twice as much spam content
as legitimate content, and vice versa. They also proposed and demonstrated a possible solution to
the attack. By training on a collection of emails consisting of half normal and half camouflaged
messages, and treating all camouflaged messages as spam, they were able to improve the accuracy
of the filters when classifying camouflaged messages.

Our counterattack strategy against good word attacks is inspired by work in the field of multiple
instance (MI) learning. The concept of MI learning was initially proposed by Dietterich et al. (1997)
for predicting drug activities. The challenge of identifying a drug molecule that binds strongly to
a target protein is that a drug molecule can have multiple conformations, or shapes. A molecule
is positive if at least one of its conformations binds tightly to the target, and negative if none of
its conformations bind well to the target. The problem was tackled with an MI model that aims to
learn axis-parallel rectangles (APR). Later, learning APR in the multiple instance setting was further
studied and proved to be NP-complete by several other researchers in the PAC-learning framework
(Auer, 1997; Long and Tan, 1998; Blum and Kalai, 1998).

Several probabilistic models: Diverse Density (DD) (Maron and Lozano-Pérez, 1998) and its
variation EM-DD (Zhang and Goldman, 2002), and multiple instance logistic regression (MILR)
(Ray and Craven, 2005), employ a maximum likelihood estimation to solve problems in the MI
domain. The original DD algorithm searches for the target concept by finding an area in the feature
space with maximum diverse density, that is, an area with a high density of positive points and a low
density of negative points. The diverse density at a point in the feature space is defined to measure
probabilistically how many different positive bags have instances near that point, and how far the
negative instances are from that point. EM-DD combines EM with the DD algorithm to reduce the
multiple instance learning problem to a single-instance setting. The algorithm uses EM to estimate
the instance in each bag which is most likely to be the one responsible for the label of the bag.
The MILR algorithm presented by Ray and Craven (2005) is designed to learn linear models in a
multiple instance setting. Logistic regression is used to model the posterior probability of the label
of each instance in a bag, and the bag level posterior probability is estimated by using softmax to
combine the posterior probabilities over the instances of the bag. Similar approaches with different
combining functions are presented by Xu and Frank (2004).

Many single-instance learning algorithms have been adapted to solve the multiple instance learn-
ing problem. For example, Wang and Zucker (2000) propose the lazy MI learning algorithms,
namely Bayesian-kNN and citation-kNN, which solve the multiple instance learning problem by us-
ing the Hausdorff distance to measure the distance between two bags of points in the feature space.
Chevaleyre and Zucker (2001) propose the multi-instance decision tree ID3-MI and decision rule
learner RIPPER-MI by defining a new multiple instance entropy function and a multiple instance
coverage function. Other algorithms that have been adapted to multiple instance learning include
the neural network MI-NN (Ramon and Raedt, 2000), DD-SVM (Chen and Wang, 2004), MI-SVM
and mi-SVM (Andrews et al., 2003), multi-instance kernels (Gärtner et al., 2002), MI-Ensemble
(Zhou and Zhang, 2003), and MI-Boosting (Xu and Frank, 2004).

In this paper, we demonstrate that a counterattack strategy against good word attacks, developed
in the framework of multiple instance learning, can be very effective, provided that a single instance
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can be properly transformed into a bag of instances. We also explore several possible ways to
transform emails into bags of instances. Our experiments also verify earlier observations, discussed
in other works (Lowd and Meek, 2005b; Webb et al., 2005), that retraining on emails modified
during adversarial attacks may improve the performance of the filters against the attack.

3. Problem Definition

Consider a standard supervised learning problem with a set of training data D = {< X1,Y1 >,. . . ,<
Xm,Ym >}, where Xi is an instance represented as a single feature vector, Yi = C(Xi) is the target
value of Xi, where C is the target function. Normally, the task is to learn C given D. The learning
task becomes more difficult when there are adversaries who could alter some instance Xi so that
Xi → X ′

i and cause Yi → Y ′
i , where Yi 6= Y ′

i . Let ∆Xi be the difference between Xi and X ′
i , that is,

X ′
i = Xi +∆Xi. In the case of spam filtering, an adversary can modify spam emails by injecting them

with good words. So, ∆Xi represents a set of good words added to a spam message by the spammer.
There are two cases that need to be studied separately:

1. the filter is trained on normal emails, that is, emails that have not been injected with good
words, and tested on emails which have been injected with good words;

2. both the training and testing sets contain emails injected with good words.

In the first case, the classifier is trained on a clean training set. Predictions made for the altered
test instances are highly unreliable. In the second case, the classifier may capture some adversarial
patterns as long as the adversaries consistently follow a particular pattern.

In both cases, the problem becomes trivial if we know exactly how the instances are altered;
we could recover the original data and solve the problem as if no instances were altered by the
adversary. In reality, knowing exactly how the instances are altered is impossible. Instead, we seek
to approximately separate Xi and ∆Xi and treat them as separate instances in a bag. We then apply
multiple instance learning to learn a hypothesis defined over a set of bags.

4. Multiple Instance Bag Creation

We now formulate the spam filtering problem as a multiple instance binary classification problem
in the context of adversarial attacks. Note that the adversary is only interested in altering positive
instances, that is, spam, by injecting sets of good words that are commonly encountered in negative
instances, that is, legitimate emails, or ham. We propose four different approaches to creating multi-
ple instance bags from emails. We call them split-half (split-H), split-term (split-T), split-projection
(split-P), and split-subtraction (split-S). We will now discuss each of these splitting methods, in
turn. Later, in Section 8, we investigate and discuss possible weaknesses of some of these splitting
methods.

4.1 Split-H

The first and simplest splitting method that we considered, which we call split-half (split-H), in-
volves splitting an email down the middle into approximately equal halves. Formally, let B =
{B1, . . . ,Bi, . . . ,Bm} be a set of bags (emails), where Bi = {Xi1,Xi2} is the ith bag, and Xi1, Xi2 are
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the two instances in the ith bag created from the upper half and the lower half of the email respec-
tively. This splitting approach is reasonable in practice because spammers usually append a section
of good words to either the beginning or the end of an email to ensure the legibility of the spam
message. As will be discussed in Section 8, this splitting method, because it relies on the positions
of words in an email, could potentially be circumvented by the spammer. The next three splitting
methods do not rely on the positions of the words and thus do not suffer from that problem.

4.2 Split-T

The second splitting method, split-term (split-T), partitions a message into three groups of words
(terms) depending on whether the word is an indicator of spam, an indicator of ham, or neutral, that
is, Bi = {Xis,Xin,Xih}, where Xis is the spam-likely instance, Xin is the neutral instance, and Xih is
the ham-likely instance in bag Bi. The instance to which each word is assigned is based on a weight
generated for it during preprocessing. These weights are calculated using word frequencies obtained
from the spam and legitimate messages in the training corpus. More specifically, the weight of a
term W is given as follows:

weight(W ) =
p(W | Ds)

p(W | Ds)+ p(W | Dh)
,

where Ds and Dh are the spam and ham emails in the training set respectively. When splitting an
email into instances we used two threshold values, threshs and thresh`, to determine which instance
(spam-likely, ham-likely, or neutral) each word in the email should be assigned to, given its weight.
We considered any word with a weight greater than threshs to be spammy, any word with a weight
less than thresh` to be legitimate, and any word with a weight in between to be neutral. In our
experiments, reasonable threshold values were determined by using cross-validation on training
emails. Given each training set, threshs was selected such that some fraction of the terms chosen
during attribute selection (discussed in Section 6.2) would have a weight greater than or equal to it.
thresh` was selected so that some other fraction of the terms would have a weight less than or equal
to it.

4.3 Split-P

The third splitting method, split-projection (split-P), transforms each message into a bag of two
instances by projecting the message vector onto the spam and ham prototype vectors. The prototype
vectors are computed using all the spam and ham messages in the training set. If we view the spam
and ham messages in the training set as two clusters, then the prototypes are essentially the centroid
of the two clusters. More specifically, let Cs be the set of emails that are spam and C` be the set
of emails that are legitimate. The prototypes are computed using Rocchio’s algorithm (Rocchio Jr.,
1971) as follows:

Ps = β ·1/|Cs| ·
|Cs|

∑
i=1

Csi − γ ·1/|C`| ·
|C`|

∑
i=1

C`i ,

P̀ = β ·1/|C`| ·
|C`|

∑
i=1

C`i − γ ·1/|Cs| ·
|Cs|

∑
i=1

Csi

where Csi is the ith spam message in Cs and C`i is the ith ham message in C`, β is a fixed constant
suggested to be 16 and γ is a fixed constant suggested to be 4. Given a message M, two new
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instances, MS and M`, are formed by projecting M onto Ps and P̀ :

Ms =
M ·Ps

|Ps|
2 Ps,

M` =
M · P̀

|P̀ |2
P̀ .

The rationale of this splitting approach rests on the assumption that a message is close to the spam
prototype in terms of cosine similarity if it is indeed spam, and a ham message is close to the ham
prototype.

4.4 Split-S

The last splitting method, split-subtraction (split-S), like the former, uses prototype (centroid) vec-
tors. In this method, however, the ham and spam prototypes are calculated by averaging the corre-
sponding attribute values of all of the ham and spam emails, respectively:

Ps = 1/|Cs| ·
|Cs|

∑
i=1

Csi ,

P̀ = 1/|C`| ·
|C`|

∑
i=1

C`i .

where Cs is a set of spam and Csi is the ith spam message in Cs; C` is a set of ham, and C`i is the
ith ham message in C`. A message can then be transformed from a single instance attribute vector
M into a bag of two instances by subtracting corresponding attribute values in the single instance
vector from the ham prototype and the spam prototype, yielding a legitimate instance M` = M− P̀
and a spam instance Ms = M−Ps, respectively (Zhang and Zhou, 2007).

Now that we have devised several techniques for creating multiple instance bags from email
messages, we can transform the standard supervised learning problem of spam filtering into a mul-
tiple instance learning problem under the standard MI assumption. In this paper, we adopt the
multiple instance logistic regression (MILR) model to train a spam filter that is more robust to ad-
versarial good word attacks than traditional spam filters based on single instance models. We chose
to use the MILR classifier over other MI classifiers mainly because its single instance counter-part,
logistic regression (LR), which has been shown to be very effective in the spam filtering domain
(Yih et al., 2006), appeared to be the best among the single instance learners considered in our
experiments. The next section outlines multiple instance logistic regression.

5. Multiple Instance Logistic Regression

Given a set of training bags

B = {< B1,Y1 >,. . . ,< Bi,Yi >,. . . ,< Bm,Ym >},

let Pr(Yi = 1 | Bi) be the probability that the ith bag is positive, and Pr(Yi = 0 | Bi) be the probability
that it is negative. Here Yi is a dichotomous outcome of the ith bag (for example, spam or legitimate).
The bag-level binomial log-likelihood function is:
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L =
m

∑
i=1

[Yi logPr(Yi = 1|Bi)+(1−Yi) logPr(Yi = 0|Bi)].

In a single instance setting where logistic regression is used, given an example Xi, we model the
expected value of the dichotomous outcome of Xi with a sigmoidal response function, that is,
Pr(Yi = 1 | Xi) = exp(p ·Xi + b)/(1 + exp(p ·Xi + b)), then estimate the parameters p and b that
maximize the log-likelihood function. In a multiple instance setting, we do not have direct mea-
sure of bag-level probabilities in the log-likelihood function. However, since individual instances
in the bags can also be considered as binary response data, we estimate the instance-level class
probabilities Pr(Yi j = 1 | Xi j) with a sigmoidal response function as follows:

Pr(Yi j = 1 | Xi j) =
exp(p ·Xi j +b)

1+ exp(p ·Xi j +b)
,

where Xi j is the jth instance in the ith bag, and p and b are the parameters that need to be estimated.
Thus Pr(Yi = 0 | Bi) with instance-level class probabilities can be computed as follows:

Pr(Yi j = 0 | Xi j) =
1

1+ exp(p ·Xi j +b)
.

Now we can compute the probability that a bag is negative as:

Pr(Yi = 0 | Bi) =
n

∏
j=1

Pr(Yi j = 0 | Xi j)

= exp(−
n

∑
j=1

(log(1+ exp(p ·Xi j +b))))

where n is the number of instances in the ith bag. Note that this probability estimate encodes the
multiple instance assumption, that is, a bag is negative if and only if every instance in the bag is
negative, and thus the probability estimate

Pr(Yi = 1 | Bi) = 1−Pr(Yi = 0 | Bi)

encodes that a bag is positive if at least one instance in the bag is positive. In our case, given a set
of emails for training, Xi j is a vector of the frequency counts (or other variations such as a tf-idf
weight) of unique terms in each email. We can apply maximum likelihood estimation (MLE) to
maximize the bag-level log-likelihood function, and estimate the parameters p and b that maximize
the probability of observing the bags in B.

6. Experimental Setup

We evaluated our multiple instance learning counterattack strategy on emails from the 2006 TREC
Public Spam Corpus (Cormack and Lynam, 2006). Good word attacks were simulated by gener-
ating a list of good words from the corpus and injecting them into spam messages in the training
and/or test data sets. We compared our counterattack strategy, using the multiple instance logistic
regression model and the four splitting methods introduced above, to its single instance learning
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counterpart—logistic regression (LR)—and to the support vector machine (SVM) and the multino-
mial naı̈ve Bayes (MNB) classifiers. Additionally, we tested a relatively new compression-based
spam filter (Bratko and Filipič, 2005) against the good word attack. The information in the next two
subsections regarding corpus preprocessing and feature selection and weighting does not apply to
the compression-based filter; it will be discussed separately in Section 7.3.

6.1 Experimental Data

Our experimental data consists of 36,674 spam and legitimate email messages from the 2006 TREC
spam corpus. We preprocessed the entire corpus by stripping HTML and non-textual parts and
applying stemming and stop-list to all terms. The to, from, cc, subject, and received headers
were retained, while the rest of the headers were stripped. Messages that had an empty body after
preprocessing were discarded. Tokenization was done by splitting on nonalphanumeric characters.
We did not take any measures to counter obfuscated words in the spam messages, as that is out of
the scope of this paper. Given that there are a large number of possible ways to disguise a word,
most content-based spam filters will not be able to deobfuscate the text of a message efficiently
(Carpinter and Hunt, 2006). Recently, an efficient complementary filter (Lee and Ng, 2005) has
been demonstrated to be able to effectively deobfuscate text with high accuracy. In practice, this
type of technique could be used during preprocessing.

For our experiments we sorted the emails in the corpus chronologically by receiving date and
evenly divided them into 11 subsets {D1, . . . ,D11}. In other words, the messages in subset n come
chronologically before the messages in subset n + 1. Experiments were run in an on-line fashion,
that is, training on subset n and testing on subset n + 1. Each subset contains approximately 3300
messages. The percentage of spam messages in each subset varies as in the operational setting (see
Figure 1). We used the Multiple Instance Learning Tool Kit (MILK) (Xu, 2003) implementation of
MILR and the Weka 3.4.7 (Witten and Frank, 2000) implementations of LR, SVM and multinomial
naı̈ve Bayes, in our experiments. For the compression-based filter, we used the spam filter described
in Bratko and Filipič (2005), which uses the prediction by partial matching algorithm with escape
method D (PPMD) and is available as part of the PSMSLib C++ library (Bratko, 2008).

Figure 1: Percentage of emails in each data set that are spam.
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6.2 Feature Selection and Weighting

We reduced the feature space used to describe the emails in our experiments to the top 500 features
ranked using information gain. Feature selection is necessary for reasons of efficiency and for
avoiding the curse of dimensionality. It is also common practice in the spam filtering domain. In
our experiments, retaining 500 features appeared to be the best compromise among the classifiers
in terms of improved efficiency and impaired performance. Figure 2 shows how the performance of
the classifiers varies as the number of retained features increases.
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Figure 2: Effect of number of retained features on f-measure.

Attribute values for each email were calculated using the common tf-idf (term frequency inverse
document frequency) weighting scheme. Under this weighting scheme, attributes are assigned a
weight that corresponds to their importance to the email message in the corpus that contains them.
The tf-idf weight for a given term in a given email is calculated as follows. Let f be the number of
occurrences of the given term in the given email, the term frequency. We normalize f by dividing it
by the maximum value of f for the given term over all emails in the corpus. Let t f be the normalized
value of f . The inverse document frequency, id f , is log2(

a
b) where a is the total number of emails in

the corpus and b is the number of emails in the corpus that contain the given term. Then the weight
for the given term is w = t f × id f . Note that tf-idf weighting is widely used in information retrieval
and text mining, and has been shown to be able to greatly improve the performance of multinomial
naı̈ve Bayes in several text categorization tasks (Kibriya et al., 2004).

6.3 Good Word List Creation

The good word list used in our simulated good word attacks was generated in two different ways:
1) the global good word list was generated using all 36,674 messages in the 2006 Trec corpus,
2) and the local good word list was generated using messages in the current training set. When
generating the global good word list, we ranked every unique word in the corpus according to the
ratio of its frequency in the legitimate messages over its frequency in the spam messages. We then
selected the top 1,000 words from the ranking to use as our good word list. Generating the good
word list in this manner has an important implication. Since the list was generated from the entire
corpus rather than from the subset of messages used to train the classifiers, and since we represent
emails using a feature vector of 500 features, some of the words in the list will not have an effect
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on the classification of messages that they are injected into. Such a list is more representative of
the kind of list a spammer would be able to produce in practice, since the spammer would have
no way of knowing the exact features used by the target filter. We noticed that in our experiments,
only about 10% of the injected good words were actually retained in the feature vector, yet they had
a significant impact on the classification. Nevertheless, we also tested the extreme case in which
we assumed the adversary has perfect knowledge of the training set and the selected features. We
created a local good word list from messages in each training set and kept only the words that are
in the selected feature vector.

6.4 Threshold Values for Split-Term

The two threshold values, threshs and thresh`, must be determined for the splitting method split-
term. As mentioned earlier, for each training set, threshs was selected such that some fraction of
the terms chosen would have a weight greater than or equal to it. thresh` was selected so that some
other fraction of the terms would have a weight less than or equal to it. For each of the ten training
sets we selected, by using 5-fold cross validation, the best threshold values that divide the terms into
three categories—spam, ham, and neutral.

The selected thresholds were used for testing on the test set. Table 1 lists the percentages of the
terms divided by the thresholds selected for each training set.

Subset % of terms with weights ≥ threshs % of terms with weights ≤ thresh`

1 20% 50%
2 20% 50%
3 30% 50%
4 10% 50%
5 20% 50%
6 20% 50%
7 10% 50%
8 10% 50%
9 30% 50%
10 30% 50%

Table 1: Percentages of the terms divided by the MILRT threshold values selected for each training
set.

7. Experimental Results

We now present the results of two experiments in which we evaluate the effectiveness of our pro-
posed multiple instance counterattack strategy. In the first experiment, we train all of the classifiers
on normal email (that is, email that has not been injected with good words) and then test them on
email that has been injected with good words. In the second experiment we train on both normal and
attacked emails to observe how doing so affects classification of both normal and attacked emails.
The compression-based filter and its susceptibility to the good word attack are examined separately
in Section 7.3.
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7.1 Experiment 1: Attacking the Test Set

In this experiment, we tested the ability of the MILR algorithm, using the four splitting methods
introduced above, to classify email injected with good words. We also tested the single instance
logistic regression (LR), support vector machine (SVM) and multinomial naı̈ve Bayes (MNB) clas-
sifiers for comparison. The classifiers were each trained and tested on the eleven chronologically
sorted data sets in an on-line fashion. That is, all of the classifiers were trained on the same unal-
tered data set Dn, and then tested on the data set Dn+1, for n = 1...10. Fifteen variations of each test
set were created to test the susceptibility of the classifiers to good word attacks of varying strengths.
The first version of each test set was left unmodified, that is, no good words were injected. Half of
the spam messages (selected at random) in each of the remaining 14 variations of each test set were
injected with some quantity of random good words from our global good word list, beginning with
10 words. With each successive version of the test set, the quantity of good words injected into half
of the spam messages was increased: first in increments of 10 words, up to 50, and then in incre-
ments of 50 words up to 500. The injected words were randomly selected, without replacement,
from our global good word list on a message by message basis. We chose to inject good words
into only half of the messages in each test set because, in practice, spam messages injected with
good words account for only a subset of the spam emails encountered by a given filter. The preci-
sion of each classifier was fixed at 0.9 and the corresponding recall on each version of the test set
for all 10 test sets was averaged and recorded for each classifier. In our results, we use “MILRH”,
“MILRT”, “MILRP” and “MILRS” where split-H, split-T, split-P and split-S were used with MILR,
respectively.

Figure 3 shows how the average recall of each classifier is affected as the good word attack
increases in strength (that is, the quantity of good words injected into the spam emails increases).
Figures 4-7 and Table 2 show the ROC curves and corresponding AUC values, respectively, for each
classifier as the good words are injected. Each ROC graph contains six curves, each corresponding
to a specific quantity of good words. We chose not to include curves for all quantities of good words
in order to keep the graphs readable. To make comparison easier, Figure 8 shows two ROC graphs
containing the ROC curves of all the classifiers when 0 words and 500 words are added to the test
set respectively. ROC graphs show the tradeoffs between true positives and false positives and are
commonly used to visualize the performance of classifiers (Fawcett, 2006). The total area under a
ROC curve (AUC) is also commonly used as a metric to compare classifiers. The AUC of a spam
classifier can be interpreted as the probability that the classifier will rate a randomly chosen spam
email as more spammy than a randomly chosen legitimate email. In our results, each ROC curve
shown is an average of the curves resulting from the ten subsets. The curves were averaged using
the vertical averaging algorithm given by Fawcett (2006).

From the results we can see that, with the exception of MILRT, the good word attack signifi-
cantly affected the ability of each classifier to identify spam emails. MILRT was the most resilient
of all the classifiers to the attack, dropping by only 3.7% (from 0.963 to 0.927) in average recall
after 500 good words had been added to the spam messages. MILRH and MILRP stood up better to
the attack than the single instance classifiers and the MILRS classifier, but the attack still had a very
noticeable effect on their ability to classify spam, reducing the average recall of MILRH by 30.8%
(from 0.972 to 0.673) and the average recall of MILRP by 35.3% (from 0.938 to 0.607). Of the
single instance classifiers, LR was the most resilient; however, the attack still had a very significant
effect on its ability to classify spam, reducing its average recall by 42.5% (from 0.986 to 0.567). The
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Figure 3: The change in average recall, corresponding to a fixed precision of 0.9, as the quantity
of good words injected into half of the spam messages in the test set increases; no good
words were injected into the training set.

Words MILRT MILRH MILRS MILRP LR MNB SVM

0 0.946 0.966 0.962 0.957 0.981 0.976 0.979
10 0.945 0.962 0.944 0.934 0.968 0.935 0.961
20 0.943 0.956 0.928 0.914 0.958 0.898 0.946
30 0.941 0.953 0.917 0.901 0.948 0.871 0.933
40 0.941 0.949 0.903 0.888 0.939 0.842 0.921
50 0.940 0.943 0.889 0.875 0.928 0.816 0.910
100 0.937 0.919 0.838 0.831 0.883 0.730 0.855
150 0.935 0.893 0.804 0.800 0.845 0.684 0.810
200 0.935 0.868 0.775 0.774 0.813 0.656 0.774
250 0.934 0.844 0.749 0.756 0.785 0.642 0.745
300 0.934 0.825 0.730 0.741 0.764 0.631 0.725
350 0.933 0.803 0.712 0.726 0.742 0.622 0.702
400 0.933 0.786 0.699 0.714 0.727 0.617 0.689
450 0.933 0.775 0.688 0.710 0.712 0.614 0.675
500 0.933 0.762 0.681 0.702 0.702 0.611 0.664

Table 2: Area Under the ROC Curve as the Quantity of Injected Good Words is Increased.

average recall of MNB and SVM dropped by 49.2% (from 0.984 to 0.500) and 46% (from 0.984 to
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Figure 4: Average ROC curves of (a) MILRH and (b) LR when specific quantities of good words
are injected into half of the messages in the test set.
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Figure 5: Average ROC curves of (a) MILRT and (b) MNB when specific quantities of good words
are injected into half of the messages in the test set.
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Figure 6: Average ROC curves of (a) MILRP and (b) SVM when specific quantities of good words
are injected into half of the messages in the test set.
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Figure 7: Average ROC curves of MILRS when specific quantities of good words are injected into
half of the messages in the test set.

0.531) respectively. MILRS turned out to be nearly as vulnerable to the attack as the single instance
classifiers, dropping by 42% (from 0.974 to 0.565) in average recall.

One thing that is clear from these results is that the effectiveness of our multiple instance coun-
terattack strategy is very much dependent on the specific technique used to split emails into multiple
instance bags. The success of the split-term method is due to the fact that the classifier is able to
consider both spammy and legitimate terms independently, since they are placed into separate in-
stances in the bag created from an email. Under the multiple instance assumption, if at least one
instance in a bag is spammy, the entire bag is labeled as spammy. When good words are injected
into a spam message they end up in the legitimate instance of the bag and have no effect on the
spammy instance; thus the bag still contains a spammy instance and is classified correctly as spam.
We verified this by running the experiment again on the following classifier configurations: MILR
with no splitting (single instance bags), MILRT with the neutral and hammy instances discarded
from each bag, and LR with spammy terms only (all legitimate terms were excluded from the fea-
ture vector). We found that using MILR without any of the splitting methods (all bags contained
a single instance), caused it to behave almost identically to the way LR behaved in experiment 1.
We also found that discarding the neutral and hammy instances from the MILRT bags resulted in a
classifier that was unaffected by the good word attack, but was only able to attain a maximum recall
of 0.757 and a maximum precision of 0.906. Training LR on spammy terms only produced very
similar results; it was unaffected by the good word attack, but only attained a maximum recall of
0.723 and a maximum precision of 0.931.

To test the extreme case, in which an adversary has perfect knowledge of the training set and the
selected features, we repeated the experiment using a local good word list for each training set. The
words in each of the local good word lists were generated from the respective training set and were
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Figure 8: ROC curves for all classifiers when 0 words (top) and 500 words (bottom) have been
injected into the test set.

limited to only those good words that were in the selected feature vector for the training set. For
each corresponding test set, the entire contents of the local good word list were added to all of the
spam messages in the set. Figure 9 shows the result of this attack on each of the classifiers in terms
of precision and recall. MILR, with every splitting method, was more resilient to the attack than
any of the single instance classifiers. MILRT again was most resilient to the attack. However, the
effect of the attack was severe enough for all of the classifiers to consider them defeated for practical
purposes. Although it is not realistic to assume that the adversary could obtain perfect knowledge
of the target filter in practice, these results serve to illustrate the amount of damage a good word
attack could potentially inflict on these classifiers in the extreme cases.
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Figure 9: The average precision (left) and recall (right) of each classifier when injecting the entire
local good word list into all of the spam messages in the test set.

7.2 Experiment 2: Training on Attacked Spam Messages

In the second experiment, our goal was to observe the effect that training on messages injected with
good words has on the susceptibility of the classifiers to attacks on the test set. As in the previous
experiment, we tested each of the classifiers on the eleven chronologically sorted data sets in an
on-line fashion. This time, however, in addition to creating 15 versions of the test set injected with
increasing quantities of good words, we also created 5 versions of the training set. We injected 10
good words into half of the spam messages (selected at random) in the first version of the training
set and then increased the number of injected good words by 10 for each subsequent version, up to
50 good words for the fifth version. We also tried injecting larger numbers of good words, but after
exceeding 50 words, the additional effect was minimal; therefore, those results are not shown here.
For each version of the training set we tested the classifiers on the 15 versions of the corresponding
test set. As before, good words were selected from our global good word list randomly and without
replacement on a message by message basis. For all ten tests, the precision of each classifier was
fixed at 0.9 and the corresponding recall values on each version of the test set were averaged and
recorded, separately for each of the 5 versions of the training set. Figures 10– 14 show the change
in average recall as the number of good words injected into the training set increased from 10 to 50.
Figure 15 shows two graphs containing the ROC curves of all the classifiers when 0 good words and
500 good words are added to the test set respectively and 10 good words are added to the training
set. Figure 16 shows the same curves after 50 good words have been added to the training set.

Injecting just 10 good words into half of the spam messages in the training set appeared to lessen
the effect of the good word attack for almost all of the classifiers. In particular, the average recall of
LR with 500 good words injected into half of the spam messages in the test set was 32.1% higher
after 10 good words had been injected into the training set compared to when no good words had
been injected into the training set (comparing Figures 3 and 10). Likewise, the average recall values
of MNB, SVM, MILRH, MILRP and MILRS were 32.6% higher, 29.4% higher, 10.1% higher,
26.9% higher and 25.8% higher respectively. The average recall for MILRT was actually 5.5%
lower even though it was still the best among all the classifiers.

Increasing the number of good words injected into the training set from 10 to 20 (see Figure 11)
continued to lessen the effect of the attack for all of the classifiers. After 30 good words had been
injected into the training set, the presence of good words in the test messages actually began to
increase the likelihood that such messages would be correctly classified as spam. These results
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Figure 10: The change in average recall, corresponding to a fixed precision of 0.9, as the number
of good words injected into half of the spam messages in the test set increases; 10 good
words were also injected into half of the spam messages in the training set.
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Figure 11: The change in average recall, corresponding to a fixed precision of 0.9, as the number
of good words injected into half of the spam messages in the test set increases; 20 good
words were also injected into half of the spam messages in the training set.

confirm the observations of several other researchers (Lowd and Meek, 2005b; Webb et al., 2005),
that retraining on normal and attacked emails may help to counter the effects of the good word
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attack. However, it is important to realize that this would only work in cases where the attacked
messages being classified contained the same good words as the attacked messages that the spam
filter was trained on. One of the major advantages of our proposed multiple instance strategy is that
the spam filter need not be trained on attacked messages in order to be effective against attacks and
further, that frequent retraining on attacked messages is not necessary for the strategy to maintain
its effectiveness.

Recall with 30 Words Added to the Training Set 
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Figure 12: The change in average recall, corresponding to a fixed precision of 0.9, as the number
of good words injected into half of the spam messages in the test set increases; 30 good
words were also injected into half of the spam messages in the training set.

To test the extreme case, in which an adversary has perfect knowledge of the training set and
the selected features, we repeated the experiment using local good word lists for each training set.
The words in each of the local good word lists were generated from the respective training set
and were limited to only those good words that were in the selected feature vector for the training
set. The entire contents of the local good word list were added to all of the spam messages in
the corresponding training and test sets. Figure 17 shows the result of this attack on each of the
classifiers in terms of precision and recall. Notice that for every classifier, with the exception of
multinomial naive Bayes, the effects of the attack on the training set were completely countered by
adding the same words to the spam messages in the training set; however, we should again point
out that these results are possible only because the good words added to the spam messages in the
training and test sets were the same. In practice, there is no such guarantee.

7.3 Attacking the Compression-Based Filter

Relatively new to the spam filtering scene is the idea of using statistical data compression algorithms
for spam filtering. Bratko and Filipič (2005) proposed and investigated the use of character-level
data compression models for spam filtering. The general idea is to construct two compression
models, one from a collection of spam emails and one from a collection of legitimate emails, and
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Figure 13: The change in average recall, corresponding to a fixed precision of 0.9, as the number
of good words injected into half of the spam messages in the test set increases; 40 good
words were also injected into half of the the spam messages in the training set.
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Figure 14: The change in average recall, corresponding to a fixed precision of 0.9, as the number
of good words injected into half of the spam messages in the test set increases; 50 good
words were also injected into half of the the spam messages in the training set.
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Figure 15: ROC curves for all classifiers when 0 good words (top) and 500 good words (bottom)
have been injected into the test set and 10 good words have been injected into the training
set.

then to classify a message according to which of the resulting models compresses the message more
efficiently. Using statistical data compression for spam filtering has a number of advantages over
machine learning algorithms that use word-level models. First, the compression algorithms work on
the character level rather than the word level. For this reason, preprocessing and feature selection,
both of which are highly prone to error, are unnecessary. Instead the algorithm is able to make
full use of all message features. Another benefit of the character-level nature of the compression
algorithms is that they are more robust to obfuscation. Spammers often disguise spammy words
by deliberately misspelling them or by inserting punctuation between characters. This can cause
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Figure 16: ROC curves for all classifiers when 0 good words (top) and 500 good words (bottom)
have been injected into the test set and 50 good words have been injected into the training
set.

a word-level spam filter to misclassify emails containing such words unless extra care and effort
are expended to detect and deal with these obfuscations. Bratko and Filipič (2005) implemented
their compression-based spam filter using the prediction by partial matching algorithm with escape
method D (PPMD). Their experiments for the Trec 2005 spam track showed promising results.
They also demonstrated that their filter was indeed quite robust to obfuscation. To our knowledge,
however, the effects of the good word attack on such filters have not yet been investigated.

We repeated the two experiments from Sections 7.1 and 7.2 on the compression-based spam
filter discussed by Bratko and Filipič (2005). Since preprocessing of the input corpus is unnecessary
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Figure 17: The average precision (left) and recall (right) of each classifier when injecting the entire
contents of each local good word list into all of the spam messages in the corresponding
training and test sets.

for this type of filter, we ran the experiments using the raw version of the corpus. However, we also
ran the two experiments using the preprocessed corpus in order to observe how well the filter stood
up against the attack using the same data available to the other filters. Figure 18 shows the results of
the first experiment with the PPMD filter on the raw (PPMD1) and preprocessed (PPMD2) corpora.
The attack had no effect on the precision of the filter, regardless of which version of the corpus was
used; it remained consistently at 0.999 and is not shown on the chart. On the other hand, the recall
suffered as a result of the attack, on both corpora. The decrease in recall on the preprocessed corpus
was comparable to that of the single instance algorithms. When the raw corpus was used, however,
the effect was much less severe. The compression-based filter implementation discussed by Bratko
and Filipič (2005), which we used in these experiments, was set by default to truncate all messages
to 2500 bytes, presumably for efficiency reasons. However, since our simulated attack appends good
words to the bottom of the spam messages, it is possible that truncating the messages could result in
some or all of the added good words being removed from spam messages that are longer than 2500
bytes. Therefore, we ran the experiment twice more, truncating at 5000 bytes and 10000 bytes. The
result was a drop in average recall (when 500 good words are injected) to 0.702 when truncating
at 5000 bytes and a drop to 0.627 when truncating at 10000 bytes, for PPMD1 (raw corpus) (see
Figure 19). For PPMD2 (preprocessed corpus) the average recall dropped to 0.503 when truncating
at 5000 bytes and dropped to 0.482 when truncating at 10000 bytes (see Figure 20). There was no
additional drop in precision when truncating at 5000 or 10000 bytes.

Figure 21 shows the results of the second experiment on the PPMD filter, in terms of average
recall, when 10 good words have been injected into the training set. Again, there was virtually no
change in average precision so it is not shown on the charts. Apparently injecting 10 good words
into the training set was enough to counter any number of good words in the test set. As figure 21
shows, the results of adding up to 50 good words to the training set are nearly identical.

Although it is difficult to directly compare the compression-based filter to the other filters dis-
cussed in this paper, due to differences in their modeling and preprocessing requirements, it is safe
to say that the compression-based filter is susceptible to good word attacks. However, this type of
filter also has a definite advantage over the other algorithms in that it is able to take advantage of
message features that the other algorithms cannot easily use, making it more difficult to attack.
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Figure 18: Effect of the good word attack on the PPMD algorithm as the number of good words
added into half of the spam messages in the test set increases; no good words were added
to the spam in the training set. Messages truncated at 2.5kB.
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Figure 19: Effect of the good word attack on the PPMD algorithm as the number of good words
added into half of the spam messages in the test set increases; no good words were added
to the spam in the training set. Messages truncated at 5kB.

8. Potential Attacks on the Splitting Methods

In this section we investigate possible attacks on the splitting methods we have proposed. We rec-
ognized two possible ways for a spammer to attack a spam filter equipped with splitting methods
like split-H. Both of the attacks work because split-H relies on how the words are physically posi-
tioned in an email to split it into multiple instances. One way to attack it is to create a visual pattern
with good words so that the original spam message is still legible after the attack, but the spam is
fragmented in such a way that “spammy” words are well separated. If this is done correctly, when
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Figure 20: Effect of the good word attack on the PPMD algorithm when half of the spam messages
in the test set were altered. Messages truncated at 10kB.
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Figure 21: Effect of the good word attack on the PPMD algorithm when half of the spam in the
training/test sets were altered; 10 words were added to the training spam.
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Figure 22: Effect of the good word attack on the PPMD algorithm when half of the spam in the
training/test sets were altered; 50 words were added to the training spam.
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the attacked message is split, good words should outweigh spammy words in both instances. The
example in Table 3 illustrates the idea.

From: foo@internet.org
To: foo-foo@email.org
Subject: meeting agenda

good words . . . low . . . good words
good words . . . mortgage . . . good words
good words . . . rate . . . good words

Table 3: Attacking split-H by fragmenting spam with injected good words.

We tested this attack by running MILRH (MILR with split-H) on the 11 data sets, with the
test set at each iteration attacked with 500 good words in the following manner. 50% of the spam
messages in each test set were selected at random to be attacked by inserting 3 random good words
before and after every 6 words in the message. No more and no less than 500 words were inserted
into any message, regardless of the length of the message. That is, in the case of short messages,
after 3 good words were inserted before and after every 6 words of the message, words were added
to the end of the message until a total of 500 words had been added. For long messages, once 500
words were added, the process was stopped. The good words were selected, without replacement,
from the same global good word list used in the other experiments.

Figure 23 compares the effects of adding 500 good words to the messages in the manner just
described to the effects of adding 500 good words by appending them to the end of the messages
(as in experiment 1), in terms of the recall averaged over the ten tests (corresponding to a fixed pre-
cision of 0.9). As the figure shows, attacking the messages in the manner described here drastically
decreases the effectiveness of split-H, reducing the average recall of MILRH by 24.8% to 0.506
(compared to that of MILRH in experiment 1 with 500 good words added to the test set, which was
0.673). This attack had the same effect on the other splitting methods as did the attack in experiment
1 (Section 7.1) since the physical position of the words in the attacked messages has no influence
on how they are split with those methods; thus, those results are not shown here.

A second way to defeat the split-H method is to append a very large block of good words to
the spam messages, so that after the split, good words would still outweigh spammy words in both
instances in the bag. In fact, we believe this is exactly what happened in experiment 1. Observe in
Figure 3 that the average recall of MILRH did not really begin to drop significantly until after 50
good words had been injected into the spam messages in the test set. As even more good words were
injected into the spam messages, the average recall continued to drop as the longer messages began
to accumulate enough good words to outweigh the spammy words in both instances. In practice,
depending on the length of the spam message, coming up with a large enough block of good words
might prove difficult.

9. Conclusions and Future Work

A multiple instance learning counterattack strategy for combating adversarial good word attacks on
statistical spam filters has been proposed. In the proposed strategy, emails are treated as multiple
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Figure 23: A comparison of the effects of the split-H attack and the experiment 1 style attack, in
terms of average recall, with precision fixed at 0.9.

instance bags and a logistic model at the instance level is learned indirectly by maximizing the bag-
level binomial log-likelihood function. The proposed counterattack strategy has been demonstrated
on good word attacks of varying strength and has been shown to be effective. Additionally, we
have confirmed earlier reports that re-training on attacked as well as normal emails may strengthen
a spam filter against good word attacks. One of the advantages of our proposed strategy, as demon-
strated by our experiments, is that it is effective even when trained on normal email and that frequent
re-training on attacked messages is not necessary to maintain that effectiveness. We presented sev-
eral possible methods for creating multiple instance bags from emails. As was observed from our
experimental results, the splitting method used ultimately determines how well the strategy per-
forms. The splitting methods we presented here work fairly well, especially the split-term method,
but there are possibly other, perhaps better, methods that could be used. We plan to investigate other
possible splitting methods in the future.

Since it is an arms race between spammers and filter designers, we also plan to make our MI
strategy adaptive as new spam techniques are devised, and on-line as the concept of spam drifts over
time. In addition, we plan to investigate the possibility of extending the proposed multiple instance
learning strategy to handle similar adversarial attacks in other domains.
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Abstract
We propose a highly efficient framework for penalized likelihood kernel methods applied to multi-
class models with a large, structured set of classes. As opposed to many previous approaches
which try to decompose the fitting problem into many smaller ones, we focus on a Newton opti-
mization of the complete model, making use of model structure and linear conjugate gradients in
order to approximate Newton search directions. Crucially, our learning method is based entirely
on matrix-vector multiplication primitives with the kernel matrices and their derivatives, allow-
ing straightforward specialization to new kernels, and focusing code optimization efforts to these
primitives only.

Kernel parameters are learned automatically, by maximizing the cross-validation log likelihood
in a gradient-based way, and predictive probabilities are estimated. We demonstrate our approach
on large scale text classification tasks with hierarchical structure on thousands of classes, achieving
state-of-the-art results in an order of magnitude less time than previous work.

Parts of this work appeared in the conference paper Seeger (2007).
Keywords: multi-way classification, kernel logistic regression, hierarchical classification, cross
validation optimization, Newton-Raphson optimization

1. Introduction

In recent years, machine learning researchers started to address problems with kernel machines
which require models with a large number of dependent variables, and whose fitting demand train-
ing samples with very many cases. For example, for multi-way classification models with a hierar-
chically structured label space (Cai and Hofmann, 2004), modern applications call for predictions
on thousands of classes, and very large data sets become available. However, if n and C denote
data set size and number of classes respectively, nonparametric kernel methods like support vector
machines (SVMs) or Gaussian processes (GPs) typically scale super-linearly in nC, if dependencies
between the latent class functions are represented properly.

Furthermore, most large scale kernel methods proposed so far refrain from solving the problem
of learning hyperparameters (kernel or loss function parameters), also known as “learning the ker-
nels”. The user has to run cross-validation schemes essentially “by hand”, which is not suitable for
learning more than a few hyperparameters. However, many models for modern applications come
with a large number of hyperparameters (for example to represent dependencies through “mixing”
as in independent components analysis), and adjusting them through optimization must make use
of gradients.

c©2008 Matthias Seeger.
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We propose a general framework for learning in probabilistic kernel classification models.
While the models treated here are not novel, a major feature of our approach is the high compu-
tational efficiency with which the primary fitting (for fixed hyperparameters) is done. For example,
our framework applied to hierarchical classification with hundreds of classes and thousands of data
points requires a few minutes for fitting. The central idea is to step back from what seems to be
the dominating approach in machine learning at the moment, namely to solve a large convex opti-
mization problem by iteratively solving very many small ones. A popular approach for these small
steps is to minimize the criterion w.r.t. a few variables only, keeping the other ones fixed, and many
variations of this theme have been proposed. In this paper, we focus on the opposite approach of
trying to find directions which lead to fast descent, no matter how many of the variables are in-
volved. This is essentially Newton’s method, and one aspect of our work is to find approximate
Newton directions very efficiently, making use of model structure and linear conjugate gradients in
order to reduce the computation to standard linear algebra primitives on large contiguous chunks
of memory. Interestingly, such global approaches are generally favoured in the optimization com-
munity for problems (such as kernel methods fitting) which cannot be decomposed naturally into
parts. While other gradient-based optimizers such as scaled conjugate gradients could be used as
well, they require more fine-tuning (for example, preconditioning) to the specific problem they are
applied to, while Newton’s method is closer to a “black box” technique and can be transferred to
novel situations without many changes.

For multi-way classification, our primary fitting method scales linearly in C, and depends on n
mainly via a fixed number of matrix-vector multiplications (MVM) with n× n kernel matrices. In
many situations, these MVM primitives can be computed very efficiently, often without having to
store the kernel matrices themselves.

We also show how to choose hyperparameters automatically by maximizing the cross-validation
log likelihood, making use of our primary fitting technology as inner loop in order to compute the
CV criterion and its gradient. It is important to note that our hyperparameter learning method works
by gradient-based optimization, where the dominating part of the gradient computation does not
scale with the number of hyperparameters at all.1 The gradient computation also requires a number
of MVMs with derivatives of kernel matrices, which can be reduced to kernel MVMs for many
frequently used kernels (see Section 7.3). Therefore, our approach can in principle be used to learn
a large number of hyperparameters without user interaction.

We apply our framework to hierarchical classification with many classes. The hierarchy is
represented through an ANOVA setup. While the C latent class functions are fully dependent a
priori, the scaling of our method stays close to what unstructured (flat) classification with C classes
would require. We test our framework on the same tasks treated by Cai and Hofmann (2004),
achieving comparable results in at least an order of magnitude less time.

Our proposal to use approximate Newton methods is not novel as such. The Newton method, or
a variant of it called Fisher scoring, is the standard approach for fitting generalized linear models in
statistics (Green and Silverman, 1994; McCullach and Nelder, 1983), at least if parametric models
are fitted to moderately sized samples. Our primary fitting method for flat multi-way classification
(see Section 2) appeared in Williams and Barber (1998). However, we demonstrate the usefulness
of this principle on a much larger scale, showing how model structure can (and has to) be exploited

1. Such scaling behaviour is fairly standard in Gaussian process marginal likelihood maximization techniques (Williams
and Barber, 1998), but has only recently been brought to attention in the SVM community (Keerthi et al., 2007).
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in this context. Furthermore, we demonstrate how the secondary task of hyperparameter learning
can be reduced to the same underlying primitives.

The structure of the paper is as follows. Our model and method of parameter fitting is given
in Section 2. An extension to hierarchical classification is provided in Section 3, and in Section 4
we give our automatic hyperparameter learning procedure. Essential computational details are dis-
cussed in Section 5. Experimental results on a very large hierarchical text classification and several
standard machine learning problems are given in Section 6. We close with a discussion in Section 7,
relating our global direction approach to popular block coordinate descent techniques in Section 7.2,
and pointing out future work in Section 7.4.

Optimized C++ software for our framework is available as part of the LHOTSE toolbox for adap-
tive statistical models, which is freely available for non-commercial purposes.2 The implementation
contains the linear kernel case used in Section 6.1 (see Appendix D.3), as well as a generic represen-
tation described in Appendix D.1, with which the experiments in Section 6.2, Section 6.3 have been
done. It is fairly simple to include new kernels or (approximate) kernel MVM implementations.

2. Penalized Multiple Logistic Regression

In this section, we introduce our framework on a multi-way classification model with C classes,
where structure between classes is not modelled. We refer to this setup as flat classification, in that
the label set is flat (unstructured).

log P(y | u) log P(u)

likelihood
coupling

u1 u2 uC
. . .

latent
dependent
functions

"prior" mixing (optional)

latent
independent
functions

+

penalization

. . .u1 u2 uP

( ( (

Figure 1: Structure of penalized likelihood optimization.

In general, our framework is applicable to models of the form depicted in Figure 1. A set of
latent (unobserved) functions uc(·) is fitted to observed data by penalized likelihood maximization.
For many models, the penalisation term (also called regulariser) corresponds to the logarithm of a
prior density over the uc(·). This primary fitting step corresponds to a convex optimization problem
over finitely many variables. Structure in such models is represented either as couplings in the log

2. Available at www.kyb.tuebingen.mpg.de/bs/people/seeger/lhotse/.

1149



SEEGER

likelihood function, or in the penalisation (or log prior) term. The latter can be realized through the
linear mixing of a priori independent functions ŭp(·), in other words the penaliser over the latter
decouples w.r.t. p (our main example of such mixing is hierarchical classification, developed in
Section 3).

We now apply this general framework to flat classification, where y ∈ {1, . . . ,C} is to be pre-
dicted from x ∈ X , given some i.i.d. data D = {(xi,yi) | i = 1, . . . ,n}. Our notation convention for
vectors and matrices is detailed in Appendix A, where we also collect all major notational definitions
in a table. We code yi as yi ∈ {0,1}C, 1T yi = 1 (zero-one coding).3 We employ the multiple logistic
regression model, consisting of C latent class functions uc(·) feeding into the multiple logistic (or
softmax) likelihood P(yic = 1|xi,ui(·)) = euc(xi)/(∑c′ e

uc′ (xi)).
We write uc(·) = fc(·)+ bc for intercept (or bias) parameters bc ∈ R and functions fc(·) living

in a reproducing kernel Hilbert space (RKHS) with kernel K (c) = K(c)(·, ·) (Schölkopf and Smola,
2002), and consider the penalized negative log likelihood

Φ = −
n

∑
i=1

logP(yi|ui)+(1/2)
C

∑
c=1

‖ fc(·)‖
2
c +(1/2)σ−2‖b‖2, ui = (uc(xi))c ∈ R

C,

which we minimize for primary fitting. Here, ‖ · ‖c is the RKHS norm for kernel K(c). The idea
is that deviations in fc from desired functional properties encoded in K(c) are penalized by a large
‖ fc(·)‖

2
c . For example, for the Gaussian kernel (7), non-smooth fc are penalized, and for the linear

kernel (Appendix D.3), ‖ fc(·)‖
2
c is the squared norm of the weight vector. Details on penalized

likelihood kernel methods and RKHS penalisation can be found in Green and Silverman (1994) and
Schölkopf and Smola (2002).

The model can also be understood in a Bayesian context, where the penalisation terms come
from zero mean Gaussian process priors on the functions fc(·), and b has a zero mean Gaussian prior
with variance σ2. From this viewpoint, we do a maximum a-posteriori (MAP) approximation here,
without however taking covariances into account properly (which would be much more expensive
to do). Details on Gaussian processes for machine learning can be found in Seeger (2004) and
Rasmussen and Williams (2006).

Since the likelihood depends on the fc(·) only through the values fc(xi) at the data points,
every minimizer of Φ must be a kernel expansion: fc(·) = ∑i αicK(c)(·,xi). This fact is known as
representer theorem (Green and Silverman, 1994; Wahba, 1990). Plugging this in, the regulariser
becomes (1/2)αT Kα +(1/2)σ−2‖b‖2, where K(c) = (K(c)(xi,x j))i, j ∈R

n,n, and K = diag(K(c))c is
block-diagonal. The kernels K(c) can in general be different, although sharing kernels among classes
can lead to computational savings, in that some of the blocks K (c) are identical. Our implementation
of block sharing is described in Appendix D.1.

We show in Section 5.1.1 that the bc may be eliminated as b = σ2(I ⊗ 1T )α. Thus, if K̃ =
K +σ2(I ⊗1)(I ⊗1T ), then our criterion Φ becomes

Φ = Φlh +
1
2

αT K̃α, Φlh = −yT u +1T l , li = log1T exp(ui), u = K̃α. (1)

Φ is strictly convex in α, being a sum of linear, quadratic, and logsumexp terms of the form
log1T exp(ui) (Boyd and Vandenberghe, 2002), so it has a unique minimum point α̂. The corre-

3. We switch between the formats yi, yi. Note that yic denotes a component in yi = (yic)c.
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sponding kernel expansions are

ûc(·) = ∑
i

α̂ic(K
(c)(·,xi)+σ2).

Estimates of the conditional probability on test points x∗ are obtained by plugging ûc(x∗) into the
likelihood. These estimates are asymptotically consistent, although better finite sample estimates
could probably be obtained by a more Bayesian treatment.

We note that this setup is related to the multi-class SVM (Crammer and Singer, 2001), where
− logP(yi|ui) is replaced by the margin loss −uyi(xi)+maxc{uc(xi)+1−δc,yi}. Here, δa,b = I{a=b}.
The negative log multiple logistic likelihood has similar properties, but is smooth as a function of
u, and the primary fitting of α does not require constrained convex optimization. Furthermore,
universal consistency for estimates of P(y∗|x∗) can be established for the multiple logistic loss, but
fails to hold for the SVM variant (Bartlett and Tewari, 2004).

We will minimize Φ using the Newton-Raphson (NR) algorithm. The computation of Newton
search directions requires solving a system with the Hessian and the gradient of Φ, which we will
do approximately using the linear conjugate gradients (LCG) algorithm. This can be done without
fully computing, storing, or inverting the Hessian, all of which would not be possible for large nC.
In fact, the task is reduced to computing k1(k2 + 2) MVMs with K , where k1 is the number of NR
iterations, k2 the number of LCG steps for computing each Newton direction. Since NR is a second-
order convergent method, k1 is generally small. k2 determines the quality of each Newton direction,
and again, fairly small values seem sufficient (see Section 6.1). Details are provided in Section 5.1.

Finally, some readers may wonder why we favour the NR algorithm here, which in practice can
be fairly complicated to implement, while we could do a simpler gradient-based optimization of Φ
w.r.t. α, for example by scaled (non-linear) conjugate gradients (SCG). The problem is that on tasks
of the size we want to address, non-invariant methods such as SCG tend to fail completely if not
properly preconditioned, and we experienced exactly that in preliminary experiments. In contrast to
that, NR is invariant to the choice of optimization variables, so does not have to be preconditioned.
It is by far the preferred method in the optimization literature (Bertsekas, 1999; Boyd and Vanden-
berghe, 2002), and many ideas for preconditioning or Quasi-Newton try to approximate the NR
directions. We think that a proper SCG implementation can be at least as efficient as NR, but needs
fine-tuning to the specific problem, which in the case of hierarchical classification (discussed next)
is already quite difficult. More details on this point are given in Section 5.4 and also Section 7.2.

3. Hierarchical Classification

So far we dealt with flat classification, the classes being independent a priori, with block-diagonal
kernel matrix K . However, if the label set has a known structure,4 we can benefit from representing
it in the model. Here we focus on hierarchical classification, the label set {1, . . . ,C} being the leaf
nodes of a tree. Classes with lower common ancestor should be more closely related. In this section,
we propose a model for this setup and show how it can be dealt with in our framework with minor
modifications and reasonable extra cost.

In flat classification, the latent class functions uc(·) are modelled as a priori independent, in
that the penaliser (or the log prior in the GP view) is a sum of individual terms for each c, without

4. Learning an unknown label set structure may be achieved by expectation maximization techniques, but this is subject
to future work.

1151



SEEGER

1

4 5 6 7 8

3

0

2

6 36u  = u  + u

( (

Figure 2: Example of a tree-structured target space, where labels correspond to leaf nodes (shaded).

interaction terms. Analysis of variance (ANOVA) models go beyond such independent designs, they
have previously been applied to text classification by Cai and Hofmann (2004), see also Shahbaba
and Neal (2007). Let {0, . . . ,P} be the nodes of the tree, 0 being the root, and the numbers are
assigned breadth first (1,2, . . . are the root’s children). The tree is determined by P and np, p =
0, . . . ,P, the number of children of node p. Let L be the set of leaf nodes, |L| = C. Assign a pair
of latent functions up, ŭp to each node, except the root. The ŭp are assumed a priori independent,
as in flat classification. up is the sum of ŭp′ , where p′ is running over the nodes (including p) on
the path from the root to p. An example is given in Figure 2. The class functions to be fed into
the classification likelihood are the uL(c) of the leafs. This setup represents similarities according
to the hierarchy. For example, if leafs L(c), L(c′) have the common parent p, then uL(c) = up +
ŭL(c), uL(c′) = up + ŭL(c′), so the class functions share the effect up. Since regularisation forces all
independent effects ŭp′ to be smooth, the classes c, c′ are urged to behave similarly a priori.

Let u = (up(xi))i,p, ŭ = (ŭp(xi))i,p ∈R
nP. The vectors are linearly related as u = (Φ⊗ I)ŭ, Φ ∈

{0,1}P,P, a special case of the mixing of Figure 1. Importantly, Φ has a simple structure which
allows MVM with Φ or ΦT to be computed easily in O(P), without having to compute or store Φ
explicitly. Let csp = ∑p′<p np′ , and define Φp ∈ R

d,d , d = csp + np, to be the upper left block of
Φ, so that Φ = ΦP. If p is a leaf node, then Φp = Φp−1. Otherwise, Φp is obtained from Φp−1 by
attaching rows (δT

p Φp−1,δT
j ), j = 1, . . . ,np, where δT

p Φp−1 is the p-th row of Φp−1. This is because
ucsp+ j = up + ŭcsp+ j for the functions of the children of p. Formally,

Φp =

(

Φp−1 0
1δT

p Φp−1 I

)

,

where the lower right I ∈ R
np,np . Note that Φ is lower triangular with diagΦ = I. This recursive

definition directly implies simple methods for computing v 7→ Φv and v 7→ ΦT v.
Under the hierarchical model, the class functions uL(c) are strongly dependent a priori. Rep-

resenting this prior coupling in our framework amounts to simply plugging in the implied kernel
matrix

K = (ΦL,·⊗ I)K̆(ΦT
L,·⊗ I), (2)
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into the flat classification model of Section 2. Here, the inner K̆ is block-diagonal, while in the flat
model, K itself had this property. In the hierarchical case, K is not sparse and certainly not block-
diagonal, but we are still able to compute kernel MVMs efficiently: pre- and post-multiplying by Φ
is very cheap, and K̆ is block-diagonal just as in the flat case.

In fact, the step from flat to hierarchical classification requires minor modifications of existing
code only. If code for representing a block-diagonal K is available, we can use it to represent
the inner K̆ , just replacing C by P. This simplicity carries through to the hyperparameter learning
method (see Section 4). The cost of a kernel MVM is increased5 by a factor P/C < 2, which in most
hierarchies in practice is close to 1.

However, it would be wrong to claim that hierarchical classification in general comes as cheap
as flat classification. In fact, primary fitting becomes more costly, precisely because there is more
coupling between the variables. In the flat case, the Hessian of Φ (1) is close to block-diagonal.
The LCG algorithm to compute Newton directions converges quickly, because it nearly decom-
poses into C independent ones, and fewer NR steps are required. In the hierarchical case, this
“near-decomposition” does not hold, and both LCG and NR need more iterations to attain the same
accuracy, although each LCG step comes at about the same cost as in the flat case.

In numerical mathematics, much work has been done to approximately decouple linear systems
by preconditioning. In some of these strategies, knowledge about the structure of the system matrix
(in our case: the hierarchy) can be used to drive preconditioning. An important point for future re-
search is to find a good preconditioning strategy for the system (5). However, in all our experiments
so far the fitting of the hierarchical model took less than twice the time required for the flat model
on the same task.

4. Hyperparameter Learning

Our framework comes with an automatic method for setting free hyperparameters h, by gradient-
based maximization of the cross-validation (CV) log likelihood. Our primary fitting method of
Section 2 is used here as principal subroutine. Such a setup is commonplace in Bayesian statistics,
where (marginal) inference is typically employed as subroutine in parameter learning.

Recall that primary fitting works by minimizing Φ (1) w.r.t. α. Let {Ik} be a partition of the data
set range {1, . . . ,n}, with Jk = {1, . . . ,n}\ Ik, and let

ΦJk = uT
[Jk]

((1/2)α[Jk]− yJk
)+1T l[Jk]

be the negative log likelihood of the subset Jk of the data. Here, u[Jk] = K̃ Jk
α[Jk]. The α[Jk] are

independent variables, not part of a common6 α. The cross-validation criterion is

Ψ = ∑
k

ΨIk , ΨIk = −yT
Ik

u[Ik] +1T l[Ik], u[Ik] = K̃ Ik,Jk
α[Jk], (3)

where α[Jk] is the minimizer of ΦJk . Since for each k, we fit and evaluate the likelihood on disjoint
parts of y, Ψ is an unbiased estimator of the true negative expected log likelihood.

In order to adjust h, we pick a fixed partition at random, then do gradient-based minimization of
Ψ w.r.t. h. To this end, we maintain the set {α[Jk]} of primary variables, and iterate between re-fitting

5. Nodes with a single child only can be pruned from the hierarchy. Note that our formalism does not require all leaf
nodes to have the same depth.

6. Which is why they are not referred to as αJk .
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those for each fold k, and computing Ψ and ∇hΨ. The gradient can be determined analytically, using
a computation which is equivalent to the Newton direction computations for α[Jk], meaning that the
same code can be used. Details are given in Section 5.2. Note that Ψ is not a convex objective.

As for computational complexity, suppose there are q folds. The update of the α[Jk] requires
q primary fitting applications, but since they are initialized with the previous values α[Jk], they do
converge very rapidly, especially during later iterations. Computing Ψ based on the α[Jk] comes
basically for free. The gradient computation decomposes into two parts: accumulation, and kernel
derivative MVMs. The accumulation part requires solving q systems of size ((q− 1)/q)nC, thus
qk3 kernel MVMs on the K̃ Jk

if linear conjugate gradients (LCG) is used, k3 being the number of
LCG steps. We also need two buffer matrices E , F of qnC elements each. Note that the accumu-
lation step is independent of the number of hyperparameters. The second part consists of q kernel
derivative MVMs for each independent component of h. This second part is much simpler than the
accumulation one, consisting entirely of large matrix operations, which can be run very efficiently
using specialized numerical linear algebra code. The method for computing Ψ and ∇hΨ can be
plugged into a custom gradient-based optimizer, such as Quasi-Newton or conjugate gradients, in
order to learn h.

As shown in Section 5.3, the extension of hyperparameter learning to the hierarchical case of
Section 3 is done by wrapping the accumulation part with Φ MVMs, the coding and additional
memory effort being minimal.

We finally note from our findings in practice (see Section 6.3) that on large tasks, our automatic
method can require some fine-tuning. This is due to the delicate dependencies between the different
approximations used. The accuracy of Ψ and ∇hΨ depends on how accurate the inner NR opti-
mizations for α[Jk] turn out, and the latter depend on how many iterations of LCG are done in order
to compute search directions. Fortunately, ΦJk and its gradient w.r.t. u[Jk] can be computed exactly
in order to assess inner optimization convergence, so we do at least know when things go wrong.
In our implementation, we deem an evaluation of Ψ and ∇hΨ usable if the average of ‖∇u[Jk ]

ΦJk‖
over folds is below a threshold, which depends on the problem and on time constraints. A failed
evaluation leads to a right bracket there for the outer optimization line search, in that step sizes
beyond the failed one are not accessed. We can now tune the basic running time parameters k1, k2

so that Ψ evaluations do not fail too often. In this context, it is important to regard the {α[Jk]} as
an inner state alongside the hyperparameter vector h. Although inner optimizations are convex, for
large problems and reasonable k1, k2, successive minima are attained only when we start from the
previous best inner state. This is true especially during later stages, where for certain problems (see
Section 6.3) h attends “extreme” values and the inner optimizations become quite hard.7 Therefore,
the inner state used to initialize a given Ψ evaluation is the final one for the last recent successful
evaluation.8 Inner states attained during failed evaluations are discarded.

7. Although inner optimizations are convex, speed of convergence of NR depends strongly on the value of h. For
“extreme” values, the Newton direction computation by LCG is harder, and search directions can become large in
early NR iterations. The latter may be because we work in u rather than α space, but only the former is really feasible.

8. Within outer line searches, we use {α[Jk]} from the last recent successful evaluation to the left (along the search
direction).
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5. Computational Details

In this section, we provide details for the material above. The techniques given here do characterize
our framework, they are novel in this combination, and some of them may be useful in other contexts
as well. More specific details of our implementation can be found in Appendix D.

5.1 Details for Flat Classification

In this section, we provide details for the primary fitting optimization in the case of flat multi-way
classification, introduced in Section 2. Note that this fitting method appeared in Williams and Barber
(1998) in the context of approximate Gaussian process inference, although some fairly essential
ideas here are novel to our knowledge (symmetrisation of Newton system, pair optimization line
search, numerical stability considerations).

Recall that we want to minimize the strictly convex criterion Φ (1) w.r.t. α, using the Newton-
Raphson (NR) method. Modern variants of this algorithm iterate line searches along the Newton
directions −H−1g, where g, H are gradient and Hessian of Φ at the current α. We will start with
the Newton direction computation in Section 5.1.1, commenting on the line searches afterwards in
Section 5.1.2 (it turns out that it basically comes for free). An overview of the fitting algorithm is
given in Section 5.1.3.

5.1.1 COMPUTING THE NEWTON DIRECTION

Recall Φ and related variables from (1). Let πic = P(yic = 1|ui), π = exp(u−1⊗ l), and recall that
Φlh is the likelihood part in Φ. Now,

g := ∇Φlh = π− y, W := ∇∇Φlh = D−DPclsD, Pcls = (1⊗ I)(1T ⊗ I).

Here, D = diagπ, and gradient and Hessian are taken w.r.t. u (not w.r.t. α). Our convention for nC
vectors and matrices and the use of ⊗ is explained in Appendix A. The form of W can be understood
by noting that W is block-diagonal in a different ordering, which uses c (classes) as inner and i (data
points) as outer index, then switching to our standard ordering.

It is easy to compute gradient and Hessian of Φ w.r.t. α, b. A full (classical) Newton step is
given by the system

(I +W K)α′ +W (I ⊗1)b′ = W u−g,

(I ⊗1T )W Kα′ +(I ⊗1T )W (I ⊗1)b′ +σ−2b′ = (I ⊗1T )(W u−g),

and the Newton search direction is obtained as the difference α′−α, b′− b. Subtracting (I ⊗ 1T )
times the first from the second, we obtain b′ = σ2(I⊗1T )α′, and plugging this into the first equation,
we have

(

I +W
(

K +σ2Pdata
))

α′ = W u−g, Pdata = (I ⊗1)(I ⊗1T ). (4)

Note that Pdataa = (∑i′ ai′)i, which does the same as Pcls, but on index i rather than c. We denote

K̃ = K +σ2Pdata,

noting that this corresponds to K̃ (c)
= K(c) + σ211T . The correct way of incorporating intercept

parameters is to add the constant σ2 to the kernels, then to obtain bc = σ2 ∑i αic. This is the meaning
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of “eliminating b” in Section 2. While we could optimize σ2 as a hyperparameter, we consider it
fixed and given for simplicity.9 In the sequel, we consider b being eliminated from the model by
replacing K → K̃ everywhere. We have u = K̃α.

We can solve the system (4) exactly if we can tolerate a scaling of O(n3C) and O(n2C) memory.
Note that this scaling is linear rather than cubic in C. The exact solution is derived in Appendix C.
It is efficient for moderate n, and generally useful for code debugging, and is supported by our
implementation. In the remainder of this section, we focus on approximate computations.

Although we could solve the system using a bi-conjugate gradients solver, we can do much bet-
ter by transforming it into symmetric positive definite form. First, note that W is positive semidef-
inite, but singular. This can be seen by noting that the parameterization of our likelihood in terms
of ui is overcomplete, in that ui + κ1 gives the same likelihood values for all κ. We could fix one
of the ui components, which would however lead to subtle dependencies between the remaining
C − 1 functions uc(·). In order to justify our a priori independent treatment of these functions,
we have to retain the overcomplete likelihood. The nullspace kerW is given by {(d)c |d ∈ R

n}
and has dimension n. This can be seen by noting that W a = 0 iff a = ( ā)c, ā =∑c′ a

(c′). W has
rank n(C − 1). We have a ∈ ranW iff ∑c a(c) = (1T ⊗ I)a = 0 (recall that kerW and ranW are
orthogonal, and their direct sum is R

nC). From (4) we see that α′ + g lies in ranW . Note that
∑c g(c) = ∑c(π(c) − y(c)) = 1− 1 = 0, therefore g ∈ ranW , thus α′ ∈ ranW . We see that the dual
coefficients must fulfill the constraint α ∈ ranW . Note that ranW is in fact independent of D. What-
ever starting value is used for α, it should be projected onto ranW , which is done by subtracting
C−1Pclsα. The NR updates then make sure that the constraint remains fulfilled.

Next, we need a decomposition W =VV T of W . Such a V exists (because W is positive semidef-
inite). In fact,

W = ADAT , A = I −DPcls.

This follows easily from (1T ⊗ I)D(1⊗ I) = ∑c′ D
(c′) = I. Thus, W = VV T with V = AD1/2. The

matrix A has fixed points ranW , namely if a ∈ ranW , then (1T ⊗ I)a = 0, so that Aa = a.
Since there exists some ṽ (not unique) s.t. α′ = W ṽ, we can rewrite the system (4) as

V
(

I +V T K̃V
)

V T ṽ = V
(

V T u− g̃
)

,

where g̃ is s.t. g = V g̃ (such a vector exists because g ∈ ranW ). This suggests the following proce-
dure for finding α′:

(

I +V T K̃V
)

β = V T u− g̃, α′ = V β. (5)

To see the validity of this approach, simply multiply both sides of (5) by V from the left, which
shows that V β solves the original system. Since the latter has a unique solution (strict convexity!),
we must have V β = α′. Finally, we note that g̃ = D−1/2g does the job, because V D−1/2g = Ag = g.
The latter follows because g ∈ ranW .

Thus, in exact arithmetic, the Newton direction computation is implemented in a three-stage
procedure. First, compute g̃ = D−1/2g. Second, solve the system (5) for β. This is a symmetric
positive definite system with the typically well-conditioned matrix I +V T K̃V , and can be solved
efficiently using the linear conjugate gradients (LCG) algorithm (Saad, 1996). The cost of each step
is dominated by the MVM v 7→ Kv, which scales linearly in C, due to the block-diagonal structure
of K . Third, set α′ = V β. The Newton direction is obtained as α′−α.

9. In our experience so far, a good value of σ2 is fairly robust across different tasks for the same problem, but may differ
strongly between different problems. It can be chosen based on some initial experiments.
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We can start the LCG run from a good guess as follows. Let α be the current dual vector which
solved the last recent system. We would like to initialize β s.t. α = V β = AD1/2β. If we assume
that D1/2β ∈ ranW , then α = D1/2β. Therefore, a good initialization is β = D−1/2α. Alternatively,
we may also retain β from the last recent system.

Issues of numerical stability are addressed in Appendix B. Furthermore, the LCG algorithm is
hardly ever run without some sort of preconditioning. Our present implementation uses diagonal
preconditioning, as described in Appendix B. We have already noted in Section 3 that a non-
diagonal preconditioning strategy could be valuable, but this is subject to future work.

5.1.2 THE LINE SEARCH

The classical NR algorithm proceeds doing full steps α → α′, but modern variants typically employ
a line search along the Newton direction α′−α. In the non-convex case, this ensures global con-
vergence, and even for our convex objective Φ, a line search saves time and leads to numerically
more stable behaviour. Interestingly, the special structure of our problem leads to the fact that line
searches essentially come for free, certainly compared with the effort of obtaining Newton direc-
tions. We refer to this simple idea as pair optimization, the reader may be reminded of similar tricks
in primal-dual schemes for SVM.

Let s = α′−α be the NR direction, computed as shown above, and set α0 to α. The line search
minimizes (or sufficiently decreases) Φ on the line segment α0 +λs, λ ∈ (0,1], starting with λ = 1
(which is the classical Newton step). The idea is to treat Φ as a function of the pair (u,α), where
u = K̃α. The corresponding line segment is u = u0 + λs̃, s̃ = K̃s, requiring a single kernel MVM
for computing s̃. Let j = argmax |s̃ j|. For an evaluation of Φ at u, we reconstruct λ = (u j −u0, j)/s̃ j

and α = α0 +λs, then

Φ = uT ((1/2)α− y)+1T l , ∇Φ = π− y +α,

so that an evaluation comes at the cost O(nC) and does not require additional kernel MVM ap-
plications. We now do the line minimization of Φ in the variable u. The driving feature of pair
optimization is that we can go back and forth between α and u without significant cost, once the
search direction is known w.r.t. both variables.

5.1.3 OVERVIEW OF THE OPTIMIZATION ALGORITHM

In Algorithm 1, we give a schematic overview of the primary fitting algorithm, written in terms of a
MVM primitive v 7→ Kv. For simplicity, we do not include the measures discussed in Appendix B
to increase numerical stability.

5.2 Details for Hyperparameter Learning

In this section, we provide details for the CV hyperparameter learning scheme, introduced in Sec-
tion 4. The gradient of the CV criterion Ψ (3) is computed as follows. Ψ is a sum of terms ΨIk , one
for each fold. We focus on a single term and write I = Ik, J = Jk. α[J] is determined by the stationary
equation α[J] +g[J] = 0 (all terms of subscript [J] are as in Section 5.1.1, but for the subset J of the
data, and w.r.t. α[J]). Taking derivatives gives

dα[J] = −W [J]

(

(dKJ)α[J] + K̃ J(dα[J])
)

,
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Algorithm 1 Newton-Raphson optimization to find posterior mode α̂.
Require: Starting values for α,b. Targets y.

α = α−C−1(∑c′ α(c′))c, so that α ∈ ranW . u = K̃α.
repeat

Compute l , log(π) from u. Compute Φ.
if relative improvement in Φ small enough then

Terminate outer loop.
else if maximum number of iterations done then

Terminate outer loop.
end if
Initialize β = D−1/2α. Compute r.h.s. r = V T u− g̃, g̃ = D−1/2g.
Compute preconditioner diag(I +V T K̃V ).
Run preconditioned CG algorithm in order to solve the system (5) approximately. The CG code
is configured by a primitive to compute v 7→ (I +V T K̃V )v, which in turn calls the primitive for
v 7→ Kv.
Compute α′ = AD1/2β′.
Do line search along s = α′−α. This is done in u, along s̃ = K̃s.
Assign line minimizer to α, u.

until forever

since dg[J] = W [J]du[J]. We obtain a system for dα[J] which is symmetrised as in Section 5.1.1:

(

I +V T
[J]K̃ JV [J]

)

β = −V T
[J](dKJ)α[J], dα[J] = V [J]β.

Also,
dΨI =

(

π[I]− yI

)T
((dKI,J)α[J] + K̃ I,J(dα[J])).

With

f = I·,I(π[I]− yI)− I·,JV [J]

(

I +V T
[J]K̃ JV [J]

)−1
V T

[J]K̃ J,I(π[I]− yI),

we have that dΨI = (I·,Jα[J])
T (dK) f .

If we collect these vectors as columns of E , F ∈ R
nC,q, q the number of folds, we have that

dΨ = trET (dK)F (6)

for the complete criterion. The computation of E , F was called “accumulation” in Section 4. It
involves a loop over folds, in which α[Jk] is determined by NR optimization, starting from its pre-
vious value, then f (column of F ) is computed by solving one more system of the same form as
is required to compute Newton directions. Importantly, this accumulation phase is independent of
the number of hyperparameters. The gradient computation then requires to compute (6) for each
component, using kernel derivative MVMs. First of all, ∂K/∂hp is block-diagonal just as K , and
for many standard kernels, it is a simple expression, involving K itself (see Section 7.3), so one
may be able to share computations between the different gradient components. Importantly, the
computation of (6) is easily broken down into large numerical linear algebra primitives, for which
very efficient code may be used (see Section 7.2). This is a significant advantage in the presence of
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many hyperparameters. For moderately many hyperparameters, the accumulation clearly dominates
the CV criterion and gradient computation.

The dominating part of the accumulation is the re-optimisation of the α[J], which are done by
calling the optimized code for primary fitting (Section 5.1) as subroutine. Here, a feature of our
implementation becomes important. Instead of representing each KJk separately, we represent the
full K only for all subset kernel MVMs. The representation depends on the covariance function,
and in general on how kernel MVMs are actually done. A generic representation is described in
Appendix D.1. In order to work on the data subset Jk, we shuffle the representation such that in the
permuted kernel matrix, KJk forms the upper left corner. This means that linear algebra primitives
with KJk can be run without mapping matrix coordinates through an index, which would be many
times slower. Details on “covariance shuffling” are given in Appendix D.2.

As mentioned in Section 5.1.1 and detailed in Appendix C, we can also compute Newton direc-
tions exactly in O(C n3) in the flat classification case. This exact treatment can be extended to the
computation of Ψ and its gradient, as is shown in Appendix C. Exact computations lead to more
robust behaviour, and may actually run faster for small to moderate n. Exact computations are also
useful for debugging purposes.

5.3 Details for Hierarchical Classification

In this section, we provide details for hierarchical classification method, introduced in Section 3.
Recall that u = (Φ⊗ I)ŭ for an indicator matrix Φ of simple structure, and that MVM with Φ or ΦT

can be computed easily in O(P), without having to store Φ. Since the ŭp(·) are given independent
priors (or regularisers), the corresponding kernel matrix K̆ is block-diagonal. The induced covari-
ance matrix K over uL is given by (2), and hierarchical classification differs from the flat variant
only in that this non-block-diagonal matrix is used.

The MVM primitive v 7→ Kv is computed in three steps. MVM with (ΦL,·⊗ I) and (ΦT
L,·⊗ I)

works by computing S 7→ SΦ, S 7→ SΦT for S ∈ R
n,P. In between, MVM with K̆ has to be done in

the same way as for flat classification, only that K̆ has P rather than C diagonal blocks.
The diagonal preconditioning of LCG (see Appendix B) requires the computation of diagK ∈

R
nC. We have

Kic,ic = (δT
p Φ⊗δT

i )K̆(ΦT δp ⊗δi) = δT
p Φ(diag(K̆

(p′)
i )p′)ΦT δp, p = L(c),

where δT
p Φ is the p-th row of Φ. From the recursive structure of Φ we know that if np > 0, then

δT
csp+ jΦ = δT

p Φ +δT
csp+ j, j = 1, . . . ,np, so if

di(csp+ j) = dip + K̆
(csp+ j)
i , j = 1, . . . ,np,

then diagK = dL.
Hyperparameter learning (see Section 5.2) is easily extended to the hierarchical case, recalling

(2) and the fact that Φ does not depend on hyperparameters. Define Ẽ = (ΦT
L,·⊗ I)E ∈ R

nP,q, F̃

accordingly, with E , F given in Section 5.2. The gradient components (6) translate to tr Ẽ T
(dK̆)F̃ ,

where K̆ is block-diagonal as before. In our implementation, we reserve buffer space for Ẽ , F̃ , yet
build E , F there during accumulation. We then transform them to Ẽ , F̃ using in-place computations.

The step from flat to hierarchical classification requires only minor modifications of existing
code. Wrappers for MVM and the other primitives essentially pre- and post-multiply their input
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with Φ and ΦT respectively, calling the existing “flat” primitives for K̆ in between (block-diagonal
with P rather than C blocks).

5.4 Why Newton Raphson?

Why do we propose to use the second-order NR method for minimizing Φ, instead of using a
simpler gradient-based technique such as scaled conjugate gradients (SCG)? We already motivated
our choice at the end of Section 2, but give more details concerning this important point here.

The convex problems we are interested in here live in very high-dimensional spaces and come
with complicated couplings between the components which cannot be characterized simply. Cer-
tainly, there is no simple decomposition into parts. It is well known in the optimization literature
(Bertsekas, 1999) that simple gradient-based techniques such as SCG require well-chosen precon-
ditioning in order to work effectively in such cases.

For example, we could optimize Φ (1) w.r.t. α directly, the gradient requires a single MVM with
K rather than solving a system. However, this problem is very ill-conditioned, the Hessian being
K̃W K̃ + K̃ (large kernel matrices are typically very ill-conditioned, and here we deal with K2), and
SCG runs exceedingly slowly to the point of being essentially useless (as we determined in exper-
iments). It can be saved (to our knowledge) only by preconditioning, which in our case requires
to solve a system again. Another idea is to optimize Φ w.r.t. u by SCG, which works better. The
Hessian is W + K̃−1, whose condition number is similar to K . In preliminary direct comparisons,
the NR method still works more efficiently, meaning that SCG would require additional precon-
ditioning specific to the problem at hand, which would likely be different for flat and hierarchical
classification. From our experience, and also from the predominance of NR in the optimization
literature, we opted for this method which comes with self-tuning capabilities, making it easier to
transfer the framework to novel problems.

6. Experiments

In this section, we provide experimental results for our method on a range of flat and hierarchical
classification tasks.

6.1 Hierarchical Classification: Patent Texts

We use the WIPO-alpha collection,10 many thanks to L. Cai, T. Hofmann for providing us with
the count data and dictionary. We did Porter stemming, stop word removal, and removal of empty
categories. The attributes are bag-of-words over the dictionary. All input vectors xi were scaled to
unit norm. Many thanks to Peter Gehler for helping us with the preprocessing.

These tasks have previously been studied by Cai and Hofmann (2004), where patents (title and
claim text) are to be classified w.r.t. the standard taxonomy IPC, a tree with 4 levels and 5229
nodes. Sections A, B,. . . , H form the first level. As in Cai and Hofmann (2004), we concentrate
on the 8 subtasks rooted at the sections, ranging in size from D (n = 1140, C = 160, P = 187)
to B (n = 9794, C = 1172, P = 1319). We use linear kernels (see Appendix D.3) with variance
parameters vc.

All experiments are averaged over three training/test splits, different methods using the same
ones. The CV criterion Ψ is used with a different (randomly drawn) 5-partition per section and

10. Available at www.wipo.int/tools/en/dbindex.html, or google for “Data Collections hosted by WIPO”.
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split, the same across all methods. Our method outputs a predictive distribution p j ∈ R
C for each

test case x j. The standard prediction y(x j) = argmaxc p jc maximizes expected accuracy, classes are
ranked as r j(c) ≤ r j(c′) iff p jc ≥ p jc′ , where r j(c) ∈ {1, . . . ,C} is the rank of class c for case x j.
Let y j denote the true label for x j. The test scores we use here are the same as in Cai and Hofmann
(2004): accuracy (acc) m−1 ∑ j I{y(x j)=y j}, precision (prec) m−1 ∑ j r j(y j)

−1, parent accuracy (pacc)
m−1 ∑ j I{par(y(x j))=par(y j)}, par(c) being the parent of leaf node L(c) (recall that L(c) corresponds to
class c). Here, m is the test set size. Let ∆(c,c′) be half the length of the shortest path between
leafs L(c), L(c′). The taxo-loss (taxo) is m−1 ∑ j ∆(y(x j),y j). These scores are motivated in Cai and
Hofmann (2004). For taxo-loss and parent accuracy, we better choose y(x j) to minimize expected
loss,11 which is different in general than the standard prediction (the latter maximizes expected
accuracy and precision).

We compare methods F1, F2, H1, H2 (F: flat, not using IPC; H: hierarchical). F1: all vc shared
(1); H1: vc shared across each level of the tree (3). F2, H2: vc shared across each subtree rooted
at root’s children (A: 15, B: 34, C: 17, D: 7, E: 7, F: 17, G: 12, H: 5). The numbers in parentheses
are the total number of hyperparameters. Recall that there are three parameters determining the
running time (see Section 2, Section 4). For hyperparameter learning: k1 = 8,k2 = 4,k3 = 15 (F1,
F2); k1 = 10,k2 = 4,k3 = 25 (H1, H2).12 For the final fitting (after hyperpars have been learned):
k1 = 25,k2 = 12 (F1, F2); k1 = 30,k2 = 17 (H1, H2). The optimization is started from vc = 5 for all
methods. We set σ2 = 0.01 throughout. Results are given in Table 1.

The hierarchical model outperforms the flat one consistently, especially w.r.t. taxo-loss and par-
ent accuracy. Also, minimizing expected loss is consistently better than using the standard rule for
the latter, although the differences are not significant. H1 and H2 do not perform differently: choos-
ing many different vc in the linear kernel seems no advantage here (but see Section 6.2). The results
are quite similar to the ones of Cai and Hofmann (2004), obtained with a support vector machine
variant. However, for our method, the recommendation in Cai and Hofmann (2004) to use vc = 1
(not further motivated there) leads to significantly worse results in all scores. The vc chosen by our
method are generally larger. Note that their code has not been made publicly available, so a direct
comparison with “all other things equal” could not be done.

In Table 2, we present running times13 for the final fitting and for a single fold during hyper-
parameter optimization (5 of these are required for Ψ, ∇hΨ). In comparison, a final fitting time
of 2200s on the D section is quoted in Cai and Hofmann (2004), using a SVM variant, while we
require 119s (more than six times faster).14 It is precisely this high efficiency of primary fitting,
which allows us to use it as inner loop for automatic hyperparameter learning (Cai and Hofmann,
2004, do not adjust hyperparameters to the data). Possible reasons for the performance difference
are given in Section 7.2.

11. For parent accuracy, let p( j) be the node with maximal mass (under p j) of its children which are leafs, then y(x j)
must be a child of p( j).

12. Except for section C, where k1 = 14,k2 = 6,k3 = 35.
13. Processor time on 64bit 2.33GHz AMD machines.
14. Cai and Hofmann average over three training/test splits. The timing figure 2200s in their paper is for three splits

(thanks to one of the reviewers to point this out).
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acc (%) prec (%) taxo
F1 H1 F2 H2 F1 H1 F2 H2 F1 H1 F2 H2

A 40.6 41.9 40.5 41.9 51.6 53.4 51.4 53.4 1.27 1.19 1.29 1.19
B 32.0 32.9 31.7 32.7 41.8 43.8 41.6 43.7 1.52 1.44 1.55 1.44
C 33.7 34.7 34.1 34.5 45.2 46.6 45.4 46.4 1.34 1.26 1.35 1.27
D 40.0 40.6 39.7 40.8 52.4 54.1 52.2 54.3 1.19 1.11 1.18 1.11
E 33.0 34.2 32.8 34.1 45.1 47.1 45.0 47.1 1.39 1.31 1.38 1.31
F 31.4 32.4 31.4 32.5 42.8 44.9 42.8 45.0 1.43 1.34 1.43 1.34
G 40.1 40.7 40.2 40.7 51.2 52.5 51.3 52.5 1.32 1.26 1.32 1.26
H 39.3 39.6 39.4 39.7 52.4 53.3 52.5 53.4 1.17 1.15 1.17 1.14

taxo[0-1] pacc (%) pacc[0-1] (%)
F1 H1 F2 H2 F1 H1 F2 H2 F1 H1 F2 H2

A 1.28 1.19 1.29 1.18 58.9 61.6 58.2 61.5 57.2 61.3 56.9 61.4
B 1.54 1.44 1.56 1.44 53.6 56.4 52.7 56.6 51.9 55.9 51.4 55.9
C 1.33 1.26 1.32 1.26 58.9 62.6 58.5 62.0 58.6 61.8 58.9 61.6
D 1.20 1.12 1.22 1.12 64.6 67.0 64.4 67.1 63.5 67.1 62.6 67.0
E 1.43 1.33 1.44 1.34 56.0 59.1 56.2 59.2 54.0 58.2 53.5 57.9
F 1.43 1.34 1.44 1.34 56.8 59.7 56.8 59.8 54.9 58.7 54.6 58.9
G 1.32 1.26 1.32 1.26 58.0 59.7 57.6 59.6 56.8 59.2 56.6 58.9
H 1.19 1.16 1.19 1.15 61.6 62.5 61.8 62.5 59.9 61.6 60.0 61.8

Table 1: Results on patent text classification tasks A-H. Methods F1, F2 flat, H1, H2 hierarchical.
taxo[0-1], pacc[0-1] for argmaxc p jc standard prediction rule, rather than minimization of
expected loss.

Final NR (s) CV Fold (s) Final NR (s) CV Fold (s)
F1 H1 F1 H1 F1 H1 F1 H1

A 2030 3873 573 598 E 131.5 203.4 32.2 49.6
B 3751 8657 873 1720 F 1202 2871 426 568
C 4237 7422 719 1326 G 1342 2947 232 579
D 56.3 118.5 9.32 20.2 H 971.7 1052 146 230

Table 2: Running times for tasks A-H. Method F1 flat, H1 hierarchical. Final NR: Final fitting with
Newton-Raphson. CV Fold: Re-optimization of α[J] and gradient accumulation for single
fold J.
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6.2 Flat Classification: Remote Sensing

We use the satimage remote sensing task from the statlog repository.15 This task has been used
in the extensive SVM multi-class study of Hsu and Lin (2002), where it is among the data sets on
which the different methods show the most variance. It has n = 4435 training, m = 2000 test cases,
and C = 6 classes. Covariates x have 36 attributes with values in {0, . . . ,255}. No preprocessing
was done.

We use the isotropic Gaussian (RBF) covariance function

K(c)(x,x′) = vc exp
(

−
wc

2
‖x − x′‖2

)

, vc,wc > 0. (7)

We compare the methods mc-sep (ours with separate kernels for each class; 12 hyperparameters),
mc-tied (ours with a single shared kernel; 2 hyperparameters), mc-semi (ours with single kernel
M(1), but different vc; 7 hyperparameters), 1rest (one-against-rest; 12 hyperparameters). For 1rest,
C binary classifiers are fitted on the tasks of separating class c from all others. They are combined
afterwards by the rule x∗ 7→ argmaxc P̂c(+1|x∗), where P̂c(+1|x∗) is the predictive probability esti-
mate of the c-classifier.16 Note that 1rest is arguably the most efficient method, in that its binary
classifiers can be fitted separately and in parallel. Even if run sequentially, 1rest typically requires
less memory by a factor of C than a joint multi-class method, although this is not true if the ker-
nel matrices are dominating the memory requirements and they are shared between classes in a
multi-class method (as in mc-tied and mc-semi here).

We use our 5-fold CV criterion Ψ for each method. Results here are averaged over ten randomly
drawn 5-partitions of the training set (the same partitions are used for the different methods). All
optimizations are started from vc = 10, wc = (∑ j Var[x j])

−1 = 0.017, Var[x j] being the empirical
variance of attribute j. We set σ2 = 16 throughout. The parameters determining the running time
(see Section 2, Section 4) are set to k1 = 13, k2 = 25, k3 = 40 during hyperparameter learning, and
k1 = 30, k2 = 50 for final fitting (these are very conservative settings). Error-reject curves are shown
in Figure 3.

Test errors are 7.95%(±0.15%) for mc-sep, 8.00%(±0.10%) for 1rest, 8.10%(±0.13%) for
mc-semi, and 8.35%(±0.20%) for mc-tied. Therefore, using a single fixed kernel for all K (c) does
significantly worse than allowing for an individual K(c) per class. The test error difference between
mc-sep and 1rest is not significant here, but the error-reject curve is significantly better for our
method mc-sep than for one-against-rest, especially in the domain α ∈ [0.025,0.25], arguably most
important in practice (where the rejection of a small fraction of test cases may often be an option).
This indicates that the predictive probability estimates from our method are better than from one-
against-rest, at least w.r.t. their ranking property. The curves for mc-semi, mc-tied are closer to
1rest, underlining that different kernels K(c) should be used for each class. The result for mc-sep is
state-of-the-art. The best SVM technique tested in Hsu and Lin (2002) attained 7.65% (no error-
reject curves were given there), and SVM one-against-rest attained 8.3% in this study. To put this
into perspective, note that extensive hyperparameter selection by cross-validation is done in Hsu
and Lin (2002), in what seems to be a quite user-intensive process, while our method is completely
automatic.

15. Available at http://www.niaad.liacc.up.pt/old/statlog/.
16. Asymptotically, P̂c(+1|x∗) converges to the true P(y∗ = c|x∗), and this combination rule is optimal. We use our

method with C = 2 in order to implement the binary classifiers.
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Figure 3: Error-reject curves (averaged over 10 runs) for different methods on the satimage task.
Curve obtained by allowing the method to abstain from prediction on fraction α of test
set, counting errors for predictions only. Depends on ranking of test points. Ranking
score (over test points x∗): maxc P̂(y∗ = c|x∗) (mc-sep, mc-semi, mc-tied), maxc P̂c(+1|x∗)
(1rest).

6.3 Flat Classification: Handwritten Digits

We use the USPS handwritten digits recognition task (LeCun et al., 1989). The covariates x are
16×16 gray-scale images with values in {16k+15 |k = 0, . . . ,30}. The task has n = 7291 training,
m = 2007 test cases, and C = 10 classes. No preprocessing was done.

We use Gaussian kernels (7) once more, different ones for each class. We do not optimize
the 5-fold CV criterion Ψ using the full training set, but subsets of size n′ = 2000. Our results are
averaged over five runs with different randomly drawn training subsets for hyperparameter learning,
while we use the full training set for final fitting. All optimizations are started from vc = 10, wc =
(∑ j Var[x j])

−1 = 0.0166, and we set σ2 = 4 throughout. The parameters determining the running
time are k1 = 25, k2 = 35, k3 = 40 during hyperparameter learning (on n′ = 2000 points), and k1 =
45, k2 = 80 for final fitting (on n = 7291 points). The settings for hyperparameter learning are quite
conservative, and the final fitting ones were sufficient for convergence on three of the five runs,
whereas on two we had to add another k1 = 25 iterations with k2 = 90. An error-reject curve is
shown in Figure 4.
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Figure 4: Error-reject curves (averaged over 5 runs) for different methods on the USPS task. Curve
obtained by allowing the method to abstain from prediction on fraction α of test set,
counting errors for predictions only. Depends on ranking of test points.

Test errors are 4.77%(±0.18%). These results are state-of-the-art for kernel classification.
Seeger (2003) reports 4.98% for the IVM (Sect. 4.8.4), where hyperparameters are learned auto-
matically. Csató (2002) states 5.15% for his sparse online method with multiple sweeps over the
data (Sect. 5.2). Results for the support vector machine are given in Schölkopf and Smola (2002),
Table 18.1, method SV-254, where a combination heuristic based on kernel PCA was used to attain
a test error of 4.4%. Crammer and Singer (2001) quote a test error of 4.38%, kernel parameters
having been selected by 5-fold cross-validation. All these used the Gaussian kernel as well. The
latter studies do not quote fluctuations w.r.t. choices such as the fold partition in CV, which is not
negligible in our case here. The SVM-based methods do not attempt test set rankings or predictive
probability estimation, and the corresponding studies do not show error-reject (or ROC) curves.
Seeger (2003) gives an error-reject curve, which is very similar to ours here.

Note that the harder settings of k1, k2 for the final fitting are necessary due to the problem size,
and are motivated in Section 4. There are 72910 parameters, and the hyperparameters found through
optimizing Ψ spread by 3 orders of magnitude, so that the corresponding final fitting problems are
computationally hard to solve without a good initialization of α (in the absence of such, we start with
α = 0). If we solve for Newton directions using too few LCG steps, the approximations often do not
lead to much (or any) descent. Such “stalling” of NR line searches does happen now and then even
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after k2 = 80 LCG steps.17 Lessons learned from these large scale experiments are commented on
in Section 4. There are delicate dependencies between k1, k2 and the running time to convergence,
which need to be explored in large scale settings, but this was not done thoroughly here.

7. Discussion

We have presented a general framework for learning kernel-based penalized likelihood classification
methods from data. A central feature of the framework is its high computational efficiency, even
though all classes are treated jointly. This is achieved by employing approximate Newton-Raphson
optimization for the parameter fitting, which requires few large steps only for convergence. These
steps are reduced to matrix-vector multiplication (MVM) primitives with kernel matrices. For gen-
eral kernels, these MVM primitives can be reduced to large numerical linear algebra primitives,
which can be computed very efficiently on modern computer architectures. This is very much
in contrast to many chunking algorithms for kernel method fitting, which have been proposed in
machine learning, and the advantages of our approach are detailed in Section 7.2. Dependencies
between classes can be encoded a priori with minor additional efforts, as has been demonstrated
for the case of hierarchical classification. Our method provides estimates of predictive probabilities
which are asymptotically correct. Hyperparameters can be adjusted automatically, by optimizing a
cross-validation log likelihood score in a gradient-based manner, and these computations are once
more reduced to the same MVM primitives. This means that within our framework, all code opti-
mization efforts can be concentrated on these essential primitives (see also Section 7.3), rather than
having to tune a set of further heuristics.

7.1 Related Work

Our primary fitting optimization for flat multi-way classification appeared in Williams and Barber
(1998), although some fairly essential features are novel here. They also did not consider large scale
problems or class structures. Empirical Bayesian criteria such as the marginal likelihood are rou-
tinely used for hyperparameter learning in Gaussian process models (Williams and Barber, 1998;
Williams and Rasmussen, 1996). However, in cases other than regression estimation with Gaussian
noise, the marginal likelihood for a GP model cannot be computed analytically, and approxima-
tions differ strongly in terms of accuracy and computational complexity. For the multi-class model,
Williams and Barber (1998) use an MAP approximation for fixed hyperparameters, just as we do,
but their second-order approximation to the marginal likelihood is quite different from our criterion,
conceptually as well as computationally (see below). Approximately solving large linear system
by linear conjugate gradients (LCG) is standard in numerical mathematics, and has been used in
machine learning as well (Gibbs, 1997; Williams and Barber, 1998; Keerthi and DeCoste, 2005).

The idea of optimizing approximations to a cross-validation score for hyperparameter learning
is not novel (Craven and Wahba, 1979; Qi et al., 2004). Our approach is different to these, in that the
CV score and gradient computations are reduced to elementary steps of the primary fitting method,

17. We cannot obtain a good initial α value from the final α[Jk] of hyperparameter learning, because this is done on
training subsets only. Moreover, in our implementation, the “stalling” (no improvement) of a NR step means that
LCG is restarted from its last recent β, so that eventually an improvement in Φ is still obtained. Of course, the stalled
NR iterations counts as such, and we do k1 iterations in total.
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so both can be done with the same code.18 In contrast, scores like GCV (Craven and Wahba, 1979)
or second order marginal likelihood (Williams and Barber, 1998) come in terms of the form trH−1

or log |H | for the Hessian H of size nC. There are approximate reductions of computing these
terms to solving linear systems (randomized trace estimator, Lanczos), but they rely on additional
sampling of Gaussian noise, which introduces significant inaccuracies. In practice, optimizing such
“noisy” criteria is quite difficult, whereas our criterion can be optimized using standard optimization
code. Qi et al. (2004) propose an interesting approach of approximating leave-one-out CV using
expectation propagation, see also Opper and Winther (2000). They use a sparse approximation
for efficiency, but they deal with a single-process model only (C = 1), and it is not clear how
to implement EP efficiently (scaling linearly in C) for the multi-class model. Interestingly, they
observe that optimizing their approximate CV score is more robust to overfitting than the marginal
likelihood. Finally, none of these papers propose (or achieve) a complete reduction to kernel MVM
primitives only, nor do they deal with representing class structures or work on problems of the scale
considered here.

Many different multi-class SVM techniques have been proposed, see Crammer and Singer
(2001) and Hsu and Lin (2002) for references. These can be split into joint (“all-together”) and
decomposition methods. The latter reduce the multi-class problem to a set of binary ones (“one-
against-rest” of Section 6.2 is a prominent example), with the advantage that good code is available
for the binary case. The problem with these methods is that the binary discriminants are fitted
separately without knowledge of each other, or of their role in the final multi-way classifier, so in-
formation from data is wasted. Also, their post-hoc combination into a multi-way discriminant is
heuristic. Joint methods are like ours here, in that all classes are jointly represented. Fitting is a
constrained convex problem, and often fairly sparse solutions (many zeros in α) are found. How-
ever, in difficult structured label tasks, the degree of sparsity is usually not high, and in these cases,
commonly used chunking algorithms for multi-class SVM can be very inefficient (see Section 7.2).
We should note that our approach here cannot be applied directly to multi-class SVMs, since they
require the solution of a constrained convex problem, but the principles used here should hold there
as well. Some novel suggestions here appear independently in Keerthi et al. (2007). SVM methods
typically do not come with efficient automatic kernel parameter learning schemes, and they do not
provide estimates of predictive probabilities which are asymptotically correct.

On the other hand, in a direct comparison our implementation would still be slower than the
highly optimized multi-class SVM code of Crammer and Singer (2001), at least on standard non-
structured tasks such as USPS (Section 6.3) or MNIST. Especially on the latter, sparsity in α is
clearly present, and years of experience with the SVM problem led to very effective ways of ex-
ploiting it. In contrast, α in our approach is not sparse, and it is not our goal here to find a sparse
approximation. Hyperparameters are selected “by hand” in their method, not via gradient-based op-
timization. For a small number of hyperparameters, this traditional approach is often faster than our
optimization-based one here, and importantly, it can be fully parallelized. However, our approach
is still workable in situations with many dependent hyperparameters (for example, Section 7.4.1),
where CV by hand simply cannot be done.

Our ANOVA setup for hierarchical classification is proposed by Cai and Hofmann (2004),
whose use it within a SVM “all-together” method. We compare our method against theirs in Sec-

18. A small drawback of our approach is that our CV score Ψ depends on a partitioning of the training set. In our
experiments here, we chose this at random. Leave-one-out (LOO) CV does not depend on a partitioning, but it is not
clear how to reduce LOO CV to solving a small number of linear systems.
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tion 6.1, achieving quite similar results in an order of magnitude less time. They also do not address
the problem of hyperparameter learning.

7.2 Global versus Decomposition Methods

In most kernel methods proposed so far in machine learning, the primary fitting to data (for fixed
hyperparameters) translates to a convex minimization problem, where the penalisation terms cor-
respond to quadratic expressions with kernel matrices. While kernel matrices may show a rapidly
decaying eigenvalue spectrum, they certainly do couple the optimization variables strongly.19 While
a convex function can be optimized by any method which just guarantees descent in each step, there
are huge differences in how fast the minimum is attained to a desired accuracy. In fact, in the ab-
sence of local minima, the speed of convergence becomes the most important characteristic of a
method, besides robustness and ease of implementation.

In machine learning, the most dominant technique for large scale (structured label) kernel clas-
sification is what optimization researchers call block coordinate descent methods (BCD), see Bert-
sekas (1999, Sect. 2.7). The idea is to minimize the objective w.r.t. a few variables at a time, keeping
all others fixed, and to iterate this process using some scheduling over the variables. Each step is
convex again,20 yet much smaller than the whole, and often the steps can be solved analytically.
Ignoring the aspect of scheduling, such methods are simple to implement.

A complementary approach is to find search directions which lead to as fast a descent as possi-
ble, these directions typically involve all degrees of freedom of the optimization variables. If local
first and second order information can be computed, the optimal search direction is Newton’s, which
has to be corrected if constraints are present (conditional gradient or gradient projection methods). If
the Newton direction cannot be computed feasibly, approximations may be used. Such Newton-like
methods are certainly vastly preferred in the optimization community, due to superior convergence
rates, but also because features of modern computer architectures are used more efficiently, as is
detailed below. In this paper, we advocate to follow this preference for kernel machine fitting in
machine learning. We are encouraged not only by our own experiences, but can refer to the fact that
(approximate) Newton methods are standard for fitting generalized linear models in statistics, and
that such methods are also routinely used for Gaussian process models (Williams and Barber, 1998;
Rasmussen and Williams, 2006), albeit typically on problems of smaller scale than treated here.

The dominance of BCD methods for kernel machine fitting, while somewhat surprising, can
be attributed to early success stories with SVM training, culminating in the SMO algorithm (Platt,
1998), where only two variables are changed at a time. If an SVM is fitted to a task with low noise,
the solution can be highly sparse, and if the active set of “support vectors” is detected early in the
optimization process, methods like SMO can be very efficient. Importantly, SMO or other BCD
methods are easily implemented. On the other hand, as SVMs are increasingly applied to hard
structured label problems which usually do not have very sparse solutions, or whose active sets are
hard to find, weaknesses of BCD methods become apparent.

Block coordinate descent methods are often referred to as using the “divide-and-conquer” prin-
ciple, but this is not the case for kernel method fitting. BCD methods “are often useful in contexts
where the cost function and the constraints have a partially decomposable structure with respect to

19. An almost low-rank kernel matrix translates into a coupling of a simple structure, but the dominant couplings are
typically strong and not sparse.

20. If f (x) is convex, so is f (Ax) for any matrix A. The same is true for linear constraints.
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the problem’s optimization variables” (Bertsekas, 1999, p. 269). In kernel methods, such a decom-
posable structure is not present, because the penalisation terms couple all variables strongly via the
kernel matrices. In such cases, chunking techniques divide without conquering, often running for
very many steps, because improvements w.r.t. some block of variables tend to erase earlier improve-
ments. This central problem of block coordinate descent methods is well known as “zig-zagging”
in optimization. It occurs whenever variables not in the same block are significantly coupled, a sit-
uation which is to be expected for kernel machines in general. The situation is similar to a number
of cases in machine learning and statistics. Iterative proportional fitting (Della Pietra et al., 1997) is
a BCD method for learning the potentials of an undirected graphical model (Markov random field),
which is all but superseded now by modern global direction methods such as limited memory Quasi-
Newton, running orders of magnitude faster. Gibbs sampling is a basic Markov chain Monte Carlo
technique for approximate Bayesian inference, which typically is very simple to implement, but is
exceedingly slow in the presence of many coupled variables. Modern techniques such as Hybrid
Monte Carlo, or Swendsen-Wang can be seen as “global direction” variants of “block coordinate”
Gibbs sampling, and while they are harder to implement, they typically run orders of magnitude
faster.

Another significant problem with BCD methods may come more as a surprise, namely because
it concerns a characteristic which is often sold as advantage of these methods: they make each
step as small as possible. Such small steps can often be dealt with analytically, or by using simple
methods. This characteristic certainly makes BCD methods easy to implement. However, in light
of modern computer architectures, the advice must be to make each step as large as possible, with
the aim of requiring fewer steps. Modern systems use many internal parallelisms and hierarchies
of caching, with the aim of processing vector operations many times faster than an equivalent loop
over scalar operations, and large global steps do make use of these features. In contrast, a method
which calls very many small steps in a non-linear ordering, runs contrary to these mechanisms. For
example, data transfer between cache levels is done in blocks of significant sizes, and a method
which accesses memory element-wise from all over the place, leads to inefficiencies up to cache
thrashing, where the majority of cache accesses are misses (see Appendix D.3 for an example).

In well-designed global direction methods, the bottleneck operations (where almost all real-
world running time is spent) are large vectorised mappings which access memory contiguously.
Even better, these operations should lie in a standard class, for which highly optimized implemen-
tations are readily available. In our case here, the bottleneck operations are numerical linear algebra
primitives from the basic linear algebra subroutines (BLAS), a standardized interface for high-
performance dense linear algebra code. Very efficient implementations of the BLAS are available
for all computer architectures.21

In this paper, we advocate to take a step back and to use global direction methods as approx-
imation to Newton’s method for kernel machine fitting. The prospect seems daunting, since there
are many thousands of variables with complicated couplings, and the reader may be reminded of
early disastrous trials of applying off-the-shelf QP packages to SVM fitting, or of ongoing efforts
to formulate otherwise tractable machine learning problems as semidefinite programs and “solving”
them using O(n7) SDP packages. This association is wrong. Our advice is to approximate the
global Newton direction, making use of all structure in the model in order to gain efficiency, which
is exactly the opposite of running a black box solver or implementing Newton’s method straight

21. ATLAS, a self-tuning BLAS implementation, is available as free software, see
http://math-atlas.sourceforge.net/.
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out of a textbook. In the context of kernel machines, where couplings through large unstructured
matrices are present, the large steps of approximating the Newton direction should be reduced to
standard linear algebra primitives on dense or sparse matrices, operating on contiguous chunks of
memory as large as possible, since highly optimized code for such primitives is readily available.

7.3 Matrix-Vector Multiplication

The computational load in our framework is determined by applications of the MVM primitives
v 7→ K(c)v and v 7→ (∂K(c)/∂hp)v. A user only needs to provide those for a kernel of choice. The
generic representation of Appendix D.1 applies to general covariance functions, but much more
efficient alternatives may be used in special cases (see Appendix D.3).

If the cost for a direct evaluation of these primitives is prohibitive, several well-known approx-
imations may be applied. Its has been suggested to use specialized data structures to approximate
MVM with matrices from isotropic kernels (Yang et al., 2005; Shen et al., 2006) such as the Gaus-
sian one (7). For such kernels, the derivative MVM can often be addressed using the same tech-
niques. For the Gaussian kernel, we have K = vexp(wA), A = (−(1/2)‖xi −x j‖

2)i, j, in which case
(∂K/∂ logv) = K and (∂K/∂ logw) = wK ◦A, where ◦ denotes component-wise product. Since the
specialized data structures concentrate on approximating A, they apply to all required MVM vari-
ants. Our public code could fairly easily be extended, given specialized approximate kernel MVM
code is available.

7.4 Extensions and Future Work

Some concrete extensions are mentioned just below. In general, we think that many structured
label kernel methods proposed in the SVM context can be addressed in our framework as well.
For example, the kernel conditional random field (CRF) (Lafferty et al., 2004) for label sequence
learning can be treated by recognizing that MVM with the Hessian of the CRF log likelihood can be
implemented efficiently using the method described in Pearlmutter (1994). We also plan to address
hierarchical multi-label problems, which differ from hierarchical multi-class in that each instance
can have multiple associated labels.

7.4.1 MODELLING DEPENDENCIES BETWEEN CLASSES

In the flat classification application of Section 2, we do not explicitly represent dependencies be-
tween classes. This is done in the hierarchical classification application of Section 3, but the depen-
dency structure is fixed a priori. In this section, we motivate how dependencies between classes can
be learned from data.

Let B ∈ R
C,C be a nonsingular coupling matrix, which will be a part of the model. In fact,

B should be regarded as hyperparameters. In the flat model, we have ui = f i + b, which is now
replaced by ui = B f i +b, or

u = (B⊗ I)Kα +b⊗1.

This is the same modification which led to the hierarchical extension, only that the fixed coupling
matrix Φ is replaced by the variable B. Therefore, the same modification of our method can be done,
replacing K by K(B) = (B⊗ I)K(BT ⊗ I). Again, MVM with K(B) is of the same complexity as with
K , because MVM with (B ⊗ I) can be done in O(C2n). Note that B represents conditional depen-
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dencies between the uc(·), its role is comparable to the “mixing matrix” in independent components
analysis.

We are also interested in learning B, whose elements are taken as hyperparameters. The cor-
responding gradient of Ψ is obtained in the same way as described in Section 5.2, only that dK [B]

now further decomposes into parts for dB and for dK . Note that learning B by non-automatic
cross-validation would not be possible, due to the large number of components.

Consider the case where we have many classes C, but not much data for most of them. We
can postulate the assumptions that the behaviour of the C class functions uc(·) is represented by
p � C underlying latent factors, which are then modelled as independent. This is achieved in our
framework by having a non-square mixing matrix B ∈ R

C,p (the “factor loadings”). It is not hard to
adapt our framework to this case, in which it is obviously necessary to learn B as hyperparameters
from data. A related model in a Bayesian context was considered in Teh et al. (2005).

7.4.2 UNCERTAIN TARGETS IN HIERARCHICAL CLASSIFICATION

Recall the hierarchical classification setup of Section 3. Suppose that for some patterns xi, the target
is unknown, but we know that the path from its class to the root goes through an inner node p.
Denote by Lp the set of leaf nodes of the subtree rooted at p, so that Lp = {p} for a leaf node p ∈ L,
and L0 = L.

We can allow for such uncertain target information by using pseudo-targets ỹi ∈ {1, . . . ,P}. If
ỹi 6∈ L, it is the lowest inner node we are certain about. The corresponding likelihood factor is

∑
c∈Lỹi

P(yi = c|ui).

Note that the log likelihood is not a concave function anymore, whenever |Lỹi | > 1, and in the pres-
ence of such factors, primary fitting is not a convex problem. However, an expectation-maximization
(EM) (Dempster et al., 1977) approach can be used to deal with uncertain targets. Namely, in “E
steps” we compute

qic ∝ I{c∈Lỹi}
P(yi = c|ui)

for the current uc(·), where qi = (qic)c are distributions. “M steps” consists of Newton-Raphson
iterations as before, but using ∑c qic logP(yi = c|ui) as log likelihood factors. To this end, we just
have to replace the vector y ∈ R

nC by q. Importantly, we only used the properties 1T yi = 1, yi ≥ 0
above (but not that yic ∈ {0,1}), which are true for q just as well.

7.4.3 LOW RANK APPROXIMATIONS

Our generic kernel matrix representation is described in Appendix D.1. If the data set size n is large,
we may not be able to keep the correlation matrices M(l) in memory, and MVM with them becomes
prohibitively expensive. We can use standard low rank matrix approximations to deal with this
problem (see also Section 7.3). Namely, suppose that M(l) is approximated by P(l)L(l)L(l)T P(l)T ,
where P(l) is a permutation matrix, and L(l) ∈ R

n,dl for dl � n. Denote Il ⊂ {1, . . . ,n} the active set
of size dl . The approximation may be obtained by an incomplete Cholesky factorization22 (ICF),
which has the special property that only a small set of dl columns of M(l) (along with its diagonal)

22. Matlab code for ICF (in the form required here) can be downloaded from
http://www.kyb.tuebingen.mpg.de/bs/people/seeger/software.html.
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ever have to be evaluated (Bach and Jordan, 2002). In this case, L(l)
1...dl ,·

is the lower triangular

Cholesky factor of M(l)
Il

∈ R
dl ,dl , so that P(l)T M(l)

·,Il
= L(l)L(l)

1...dl ,·
T . Note that in the ICF case, we have

that
diag

(

P(l)T M(l)P(l)−L(l)L(l)T
)

≥ 0

point-wise, because the elements are simply the squared pivots for a potential continuation of the
factorization (which has been stopped after dl steps). Therefore, we can correct the approximation
by replacing the diagonal of L(l)L(l)T by the true one, ending up with the approximation

M(l) ≈ M̃ (l) := (diag2 M(l))+P(l)
(

L(l)L(l)T − (diag2 L(l)L(l)T )
)

P(l)T .

Snelson and Ghahramani (2006) motivate this diagonal correction in another context. It is clear that

MVM with M̃ (l) can be done in O(ndl).
If ∗ indexes test points different from the training points, then the test-training correlation matrix

is
M(l)

∗,· = M(l)
∗,I(L

(l)
1...dl ,·

)−T L(l)T P(l)T .

We can also learn parameters of the M(l) functions in this low rank setup by gradient-based opti-
mization, assuming that the choice of Il does not depend on these kernel parameters, but this is not
discussed here.
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Appendix A. Notation

In this section, we describe the notation used in this paper. We denote vectors and matrices by bold-
face lower-case and upper-case letters, scalars and scalar functions are set normally. Subscripts
select parts of objects, they can be single indexes or index sets. For example, a = (ai)i is a vector
with components ai, A = (ai, j)i, j a matrix with entries ai, j. We also write a = (ai), A = (ai, j) if
the indexes are clear from context. A·,i is the i-th column of A (“·” is short for the full index set).
⊗ denotes the Kronecker product, A ⊗B = (ai, jB)i, j, 1 (0) the vector of all ones (vector/matrix of
all zeros), I the identity matrix, and δ j = (I{i= j})i (columns of I). For a matrix A, diagA = (ai,i)i

extracts the diagonal. For a vector v, diagv is the corresponding diagonal matrix. We also use
this for matrix-valued vectors, an example is the diagonal kernel matrix K = diag(K (c))c in flat
classification.

Many vectors and matrices are indexed by data points (i) and classes (c) at the same time, for
example u = (uic) ∈ R

nC. We use double indexes ic for these, which are flattened as i +(c− 1)n,
so the component ordering23 is u = (u11,u21, . . . ,un1,u12, . . .). In this context, selection index sets

23. In Matlab, reshape(u,n,C) would give a matrix in R
n,C.
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I are applied to the i (data point) index only: uI = (uic)i∈I,c ∈ R
|I|C. Kronecker product notation

works nicely with this double index convention. If A⊗B is applied to u, A has C, B n columns. We
frequently use (1T ⊗ I)u = ∑c u(c), where u(c) = (uic)i ∈ R

n, or (1⊗ I)v for v ∈ R
n, which stacks v

on top of each other C times. The matrix Pcls = (1⊗ I)(1T ⊗ I) (introduced in Section 5.1) combines
these operations:

Pclsx =







x̄
x̄

...

















C, x̄ =∑
c

x(c),

and Pdata does the same, but operating on the i rather than the c index.
All major notational definitions are listed in Table 3 for reference. For kernel matrices (for

example, K(c)), we do not list the kernel functions (here: K(c)), and for evaluation vectors (for
example, u), we do not list the underlying functions (here: u(c)(·)).

n Number data points 2 LCG Linear Conjugate Gradients 2
C Number classes 2 P Number nodes (hierarchy) 3
y Targets (zero-one) 2 L Leaf nodes (hierarchy) 3
xi Input points 2 ŭ Latent output (before mixing) 3
u Latent output (after mixing) 2 Φ Hierarchy mixing matrix 3
b Intercepts 2 K̆ Kernel matrix (before mixing) (2)
σ2 Penalizing constant for b 2 Ik,Jk Partitions for CV criterion 4
Φ Criterion for primary fitting 2 Ψ CV criterion 4
α Dual variables 2 q Number of folds 4
K Kernel matrix (after mixing) 2 h Hyperparameters 4
K(c) Kernel matrix block 2 k3 Complexity parameter 4
K̃ Kernel matrix (b eliminated) 2 g,W Gradient, Hessian Φlh 5.1
l Logsumexp vector (1) Pcls Sum-distribute matrix 5.1
k1,k2 Complexity parameters 2 Pdata Sum-distribute matrix 5.1
NR Newton-Raphson 2 E ,F Accumulation matrices 5.2

Table 3: Reference for notational definitions. k: Section of definition; (k): Equation of definition.

Appendix B. Details for Primary Fitting Algorithm

In this section, we discuss further details of the primary fitting algorithm of Section 2, in addition
to Section 5.1.

We need to counter the problem that roundoff errors may lead to numerical instabilities. The
criterion we minimize is strictly convex, even if the kernel matrix K is singular (or nearly so).
However, problems could arise from components in π becoming very small. Recall that logπic =
uic − li. We make use of a threshold κ < 0 and define

I = {(i,c) | logπic < κ, yic > 0} , I0 = {(i,c) | logπic < κ, yic = 0} .

The indices in I can be problematic due to the corresponding component g̃ic ≈ yic/π1/2
ic becoming

large. Note that this happens only if (xi,yi) is a strong outlier w.r.t. the current predictor. Now, from
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the system (5) we see that D1/2β = DAT (u − K̃α′)− g. Therefore, if (i,c) ∈ I, then (D1/2β)ic ≈
−gic ≈ yic. The idea is to solve the reduced system on the components in \I for (D1/2β)\I and to
plug in (D1/2β)I = yI . Finally, within \I, the components in I0 may be problematic when computing
the starting value β = D−1/2α for the CG run. However, in this case g̃ic ≈ 0, leading to βic ≈ 0 from
(5). The corresponding components in the starting value β can therefore be set to zero.

Next, the LCG algorithm for solving systems of the form (5) needs to be preconditioned. Sup-
pose we want to solve Ax = b. If we have an approximation Ã to A so that v 7→ Ã

−1
v can be

computed efficiently (essentially in linear time in the size of v), the preconditioned CG algorithm
solves the system Ã

−1
Ax = Ã

−1
b instead. The idea is that Ã

−1
A typically has a lower condition

number than A, and LCG converges faster and less erratically. Our implementation does precondi-
tioning with the diagonal of the system matrix I +V T K̃V . Note that V δic = π1/2

ic (δc −πi)⊗ δi, so
that

(

I +V T K̃V
)

ic,ic = 1+πic

(

(1−2πic)(K
(c)
i +σ2)+∑

c′
π(c′)2

i (K(c′)
i +σ2)

)

.

Therefore, the diagonal can be computed based on the diagK (c) vectors. If the joint kernel matrix
K is not block-diagonal (as in hierarchical classification, see Section 3), diagK is not sufficient
for computing the system matrix diagonal. Let v ∈ R

nC be defined via vi = Kiπi, where Ki =
(I ⊗δT

i )K(I ⊗δi) ∈ R
C,C. Then, the system matrix diagonal has elements

1+πic
(

Kic +σ2 −2wic +πT
i wi
)

, w = v +σ2π.

Appendix C. Solving Systems Exactly

In this section, we show how to implement our flat multi-class scheme using exact rather than
approximate solutions of linear systems, yet still scaling linearly in C (at present, we do not know
how to implement hierarchical classification exactly with such scaling).

For a Newton step, we need to solve (I +W K̃)α′ = r with W = D−DPclsD. This can be written
as

(

A−UV T )D−1/2α′ = D−1/2r, A = I +D1/2K̃D1/2,

U = D1/2(1⊗ I), V = (A− I)U .

We now use the Sherman-Morrison-Woodbury formula together with the fact that U TU = ∑c D(c) =
I to obtain

α′ = D1/2 (A−1 +A−1U (UT A−1U )−1UT (I −A−1)
)

D−1/2r.

We used that V T A−1 = UT (I −A−1). Note that A−1 is block-diagonal, and that

UT A−1U = ∑
c

D(c)1/2A(c)−1D(c)1/2.

We maintain Cholesky factors of all A(c), as well as the Cholesky decomposition U T A−1U = RRT

(where A(c)−1 are obtained from the Cholesky factors).
For hyperparameter learning, we consider the partitions (I,J) sequentially. Since the α[J] are dif-

ferent across folds, we cannot obtain the A[J], H [J] as parts of underlying common matrices. Recall
Section 5.2. α[J] +g[J] = 0 gives H [J](dα[J]) = −W [J](dKJ)α[J]. With

f = I·,I(π[I]− yI)− I·,JW [J]H
−T
[J] K̃ J,I(π[I]− yI),
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we have that dΨI = (I·,Jα[J])
T (dK) f . Again, these vectors are accumulated in matrices E , F . Solv-

ing a system with HT
[J] is an obvious variant of the procedure discussed above.

Appendix D. Further Details of the Implementation

Our implementation is designed to be as efficient as possible, while still being general and easy
to extend to novel situations. This is achieved mainly by breaking down the problems to calling
sequences of MVM primitives. These are then reduced to large numerical linear algebra primi-
tives, where matrices are organized contiguously in memory, in order to exploit modern caching
architectures (see Section 7.2).

D.1 A Generic Kernel Matrix Representation

A kernel matrix representation is some data structure which allows to compute kernel matrix MVMs
v 7→ K(c)v efficiently, being the principal primitives of our primary fitting method. Further require-
ments arise if additional features of our framework are used. For example, if hyperparameters are
to be learned as well, derivative MVMs v 7→ (∂K(c)/∂hp)v are required as well, and “covariance
shuffling” should be possible (see Section 5.2).

An efficient representation depends strongly on the covariance function used, and also on whether
kernel matrix MVMs are approximated rather than computed exactly. For example, for linear ker-
nels a special representation is used (see Appendix D.3). In this section, we describe a generic
representation, which is part of our implementation.

The generic representation can be used with any covariance function, in that no special structure
is assumed. It requires kernel matrices to be stored explicitly, which may not be possible for very
large n. In general, we allow for different covariance functions K (c) for each class c, although
sharing of kernels is supported, in that K(c)(·, ·) = vcM(lc)(·, ·) and vc > 0. Here, lc = lc′ is allowed
for c 6= c′. The matrices M(l) are stored explicitly. Note that the flexibility of using different variance
parameters vc with the same M(l) does come at no extra cost, except for the fact that these have to
be adjusted individually.

Since the M(l) are symmetric, two can be stored each in a n× n block, say the odd-numbered
ones in the lower triangles. Here, the diagM(l) are stored separately, and whenever a specific M(l) is
required explicitly, the diagonal is copied into the block. It is important to note that the BLAS (see
Section 7.2) directly supports symmetric matrices which are stored in the lower or upper triangle of
a rectangular block.

The reader may wonder whether space could be saved by storing intermediates of the M (l)

instead. For example, if the M(l) are isotropic kernels of the form f (l)(‖x − x′‖), we could store the
inner product matrix (xT

i x j)i, j only. In practice, this turns out to be significantly slower (by a factor),
the reason being that the optimized BLAS primitives are many times more efficient than applying
a non-linear function f (l) point-wise to a matrix, even if the matrix is stored contiguously. For the
same reason, computing MVMs on the fly without storing matrices is even more costly.

D.2 Shuffling the Kernel Matrix Representation

Covariance matrix shuffling has been motivated in Section 5.2. It is required during hyperparameter
optimization, because the MVM primitives for sub-matrices KJk have to be driven by a single rep-
resentation of the complete K (note that each KJk is of size n(q−1)/q, thus almost as large as K ).
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A simple approach would be to use sub-indexed matrix-vector multiplication code, but this is very
inefficient (usually more than one order of magnitude slower than the flat BLAS functions).

Instead, when dealing with fold k, we shuffle the representation so that KJk moves to the upper
left corner of the matrix. How this is done, depends on the representation. In this context, it is
important to note that the underlying BLAS explicitly allows working on sub-matrices within upper
left corners of larger frames, with virtually no loss in efficiency.24 In the generic representation of
Appendix D.1, we simply permute the kernel matrices K (c) using the index (Jk, Ik). A corresponding
de-shuffling operation has to restore the old representation for K .

D.3 The Linear Kernel

Our application described in Section 6.1 uses the linear kernel K (c)(x,x′) = vcxT x′, where x is very
high-dimensional (word counts over a dictionary), but also extremely sparse (by far the most entries
are zero). The linear kernel fits the setup of Appendix D.1 with a single M(1) = X XT , where X ∈R

n,d

is the design matrix. X is very sparse, and in our implementation is represented using a standard
sparse matrix format.

An MVM is done as v 7→ vc(X XT v), where X is sparse. More generally, we do S 7→ X X T S
with large matrices S. Kernel matrix shuffling (Appendix D.2) is implemented by simply reordering
the non-zero positions for X . In this context, it is interesting to remark a finding which under-
lines the arguments in Section 7.2. The sparse matrix format is such that X X T S is reduced to
so-called daxpy operations (a = a + αb) on the rows of S. By Fortran (and BLAS) convention, S
is stored in column-order, so that rows can only be accessed directly by using a striding value > 1
(the distance between consecutive vector elements in memory). We added a simple trick (called
dimension flipping) to the implementation, which in essence switches our default ordering of C n
vectors v = (v11,v21,v31, . . .)

T to (v11,v12,v13, . . .)
T before major kernel MVM computations are

done. This simple modification led to a direct five-times speedup, which underlines the importance
of contiguous memory access in the bottleneck computations of a method (which allows optimal
usage of cache hierarchies).
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Abstract
We consider the least-square regression problem with regularization by a block `1-norm, that is, a
sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as
the group Lasso, extends the usual regularization by the `1-norm where all spaces have dimension
one, where it is commonly referred to as the Lasso. In this paper, we study the asymptotic group
selection consistency of the group Lasso. We derive necessary and sufficient conditions for the
consistency of group Lasso under practical assumptions, such as model misspecification. When
the linear predictors and Euclidean norms are replaced by functions and reproducing kernel Hilbert
norms, the problem is usually referred to as multiple kernel learning and is commonly used for
learning from heterogeneous data sources and for non linear variable selection. Using tools from
functional analysis, and in particular covariance operators, we extend the consistency results to
this infinite dimensional case and also propose an adaptive scheme to obtain a consistent model
estimate, even when the necessary condition required for the non adaptive scheme is not satisfied.
Keywords: sparsity, regularization, consistency, convex optimization, covariance operators

1. Introduction

Regularization has emerged as a dominant theme in machine learning and statistics. It provides an
intuitive and principled tool for learning from high-dimensional data. Regularization by squared
Euclidean norms or squared Hilbertian norms has been thoroughly studied in various settings, from
approximation theory to statistics, leading to efficient practical algorithms based on linear algebra
and very general theoretical consistency results (Tikhonov and Arsenin, 1997; Wahba, 1990; Hastie
et al., 2001; Steinwart, 2001; Cucker and Smale, 2002).

In recent years, regularization by non Hilbertian norms has generated considerable interest in
linear supervised learning, where the goal is to predict a response as a linear function of covariates;
in particular, regularization by the `1-norm (equal to the sum of absolute values), a method com-
monly referred to as the Lasso (Tibshirani, 1996; Osborne et al., 2000), allows to perform variable
selection. However, regularization by non Hilbertian norms cannot be solved empirically by simple
linear algebra and instead leads to general convex optimization problems and much of the early
effort has been dedicated to algorithms to solve the optimization problem efficiently. In particular,
the Lars algorithm of Efron et al. (2004) allows to find the entire regularization path (i.e., the set of
solutions for all values of the regularization parameters) at the cost of a single matrix inversion.

As the consequence of the optimality conditions, regularization by the `1-norm leads to sparse
solutions, that is, loading vectors with many zeros. Recent works (Zhao and Yu, 2006; Yuan and
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Lin, 2007; Zou, 2006; Wainwright, 2006) have looked precisely at the model consistency of the
Lasso, that is, if we know that the data were generated from a sparse loading vector, does the
Lasso actually recover it when the number of observed data points grows? In the case of a fixed
number of covariates, the Lasso does recover the sparsity pattern if and only if a certain simple
condition on the generating covariance matrices is verified (Yuan and Lin, 2007). In particular, in
low correlation settings, the Lasso is indeed consistent. However, in presence of strong correlations
between relevant variables and irrelevant variables, the Lasso cannot be consistent, shedding light
on potential problems of such procedures for variable selection. Adaptive versions where data-
dependent weights are added to the `1-norm then allow to keep the consistency in all situations
(Zou, 2006).

A related Lasso-type procedure is the group Lasso, where the covariates are assumed to be
clustered in groups, and instead of summing the absolute values of each individual loading, the sum
of Euclidean norms of the loadings in each group is used. Intuitively, this should drive all the weights
in one group to zero together, and thus lead to group selection (Yuan and Lin, 2006). In Section 2,
we extend the consistency results of the Lasso to the group Lasso, showing that similar correlation
conditions are necessary and sufficient conditions for consistency. Note that we only obtain results
in terms of group consistency, with no additional information regarding variable consistency inside
each group. Also, when the groups have size one, then we get back similar conditions than for the
Lasso. The passage from groups of size one to groups of larger sizes leads however to a slightly
weaker result as we can not get a single necessary and sufficient condition (in Section 2.6, we show
that the stronger result similar to the Lasso is not true as soon as one group has dimension larger
than one). Also, in our proofs, we relax the assumptions usually made for such consistency results,
that is, that the model is completely well-specified (conditional expectation of the response which is
linear in the covariates and constant conditional variance). In the context of misspecification, which
is a common situation when applying methods such as the ones presented in this paper, we simply
prove convergence to the best linear predictor (which is assumed to be sparse), both in terms of
loading vectors and sparsity patterns.

The group Lasso essentially replaces groups of size one by groups of size larger than one. It
is natural in this context to allow the size of each group to grow unbounded, that is, to replace the
sum of Euclidean norms by a sum of appropriate Hilbertian norms. When the Hilbert spaces are
reproducing kernel Hilbert spaces (RKHS), this procedure turns out to be equivalent to learn the
best convex combination of a set of basis positive definite kernels, where each kernel corresponds
to one Hilbertian norm used for regularization (Bach et al., 2004a). This framework, referred to as
multiple kernel learning (Bach et al., 2004a), has applications in kernel selection, data fusion from
heterogeneous data sources and non linear variable selection (Lanckriet et al., 2004a). In this latter
case, multiple kernel learning can exactly be seen as variable selection in a generalized additive
model (Hastie and Tibshirani, 1990). We extend the consistency results of the group Lasso to this
nonparametric case, by using covariance operators and appropriate notions of functional analysis.
These notions allow to carry out the analysis entirely in “primal/input” space, while the algorithm
has to work in “dual/feature” space to avoid infinite dimensional optimization. Throughout the
paper, we will always go back and forth between primal and dual formulations, primal formulation
for analysis and dual formulation for algorithms.

The paper is organized as follows: in Section 2, we present the consistency results for the group
Lasso, while in Section 3, we extend these to Hilbert spaces. Finally, we present the adaptive
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schemes in Section 4 and illustrate our set of results with simulations on synthetic examples in
Section 5.

2. Consistency of the Group Lasso

We consider the problem of predicting a response Y ∈ R from covariates X ∈ R
p, where X has

a block structure with m blocks, that is, X = (X>
1 , . . . ,X>

m )> with each X j ∈ R
p j , j = 1, . . . ,m, and

∑m
j=1 p j = p. Throughout this paper, unless otherwise specified, ‖a‖ will denote the Euclidean norm

of a vector a (for all possible dimensions of a, for example, p, n or p j). The only assumptions that
we make on the joint distribution PXY of (X ,Y ) are the following:

(A1) X and Y have finite fourth order moments: E‖X‖4 < ∞ and EY 4 < ∞.

(A2) The joint covariance matrix ΣXX = EXX>− (EX)(EX)> ∈ R
p×p is invertible.

(A3) We denote by (w,b) ∈ R
p ×R any minimizer of E(Y −X>w−b)2. We assume that E((Y −

w>X − b)2|X) is almost surely greater than σ2
min > 0. We denote by J = { j,w j 6= 0} the

sparsity pattern of w.1

The assumption (A3) does not state that E(Y |X) is an affine function of X and that the conditional
variance is constant, as it is commonly done in most works dealing with consistency for linear
supervised learning. We simply assume that given the best affine predictor of Y given X (defined by
w ∈ R

p and b ∈ R), there is still a strictly positive amount of variance in Y . If (A2) is satisfied, then
the full loading vector w is uniquely defined and is equal to w = Σ−1

XX ΣXY , where ΣXY = E(XY )−
(EX)(EY ) ∈ R

p. Note that throughout this paper, we do include a non regularized constant term b
but since we use a square loss it will optimized out in closed form by centering the data. Thus all
our consistency statements will be stated only for the loading vector w; corresponding results for b
then immediately follow.

We often use the notation ε = Y −w>X −b. In terms of covariance matrices, our assumption
(A3) leads to: Σεε|X = E(εε|X) > σ2

min and ΣεX = 0 (but ε might not in general be independent
from X).

2.1 Applications of Grouped Variables

In this paper, we assume that the groupings of the univariate variables are known and fixed, that is,
the group structure is given and we wish to achieve sparsity at the level of groups. This has numerous
applications, for example, in speech and signal processing, where groups may represent different
frequency bands (McAuley et al., 2005), or bioinformatics (Lanckriet et al., 2004a) and computer
vision (Varma and Ray, 2007; Harchaoui and Bach, 2007) where each group may correspond to
different data sources or data types. Note that those different data sources are sometimes referred to
as views (see, e.g., Zhou and Burges, 2007).

Moreover, we always assume that the number m of groups is fixed and finite. Considering cases
where m is allowed to grow with the number of observed data points, in the line of Meinshausen
and Yu (2006), is outside the scope of this paper.

1. Note that throughout this paper, we use boldface fonts for population quantities.
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2.2 Notations

Throughout this paper, we consider the block covariance matrix ΣXX with m2 blocks ΣXiX j , i, j =
1, . . . ,m. We refer to the submatrix composed of all blocks indexed by sets I, J as ΣXIXJ . Similarly,
our loadings are vectors defined following block structure, w = (w>

1 , . . . ,w>
m)> and we denote by wI

the elements indexed by I. Moreover we denote by 1q the vector in R
q with constant components

equal to one, and by Iq the identity matrix of size q.

2.3 Group Lasso

We consider independent and identically distributed (i.i.d.) data (xi,yi) ∈ R
p ×R, i = 1, . . . ,n,

sampled from PXY and the data are given in the form of matrices Ȳ ∈ R
n and X̄ ∈ R

n×p and we
write X̄ = (X̄1, . . . , X̄m) where each X̄ j ∈ R

n×p j represents the data associated with group j (i.e., the
i-th row of X̄ j is the j-th group variable for xi, while Ȳi = yi). Throughout this paper, we make the
same i.i.d. assumption; dealing with non identically distributed or dependent data and extending
our results in those situations are left for future research.

We use the square loss, that is, 1
2n ∑n

i=1(yi−w>xi−b)2 = 1
2n‖Ȳ − X̄w−b1n‖

2, and thus consider
the following optimization problem:

min
w∈Rp, b∈R

1
2n

‖Ȳ − X̄w−b1n‖
2 +λn

m

∑
j=1

d j‖w j‖,

where d = (d1, . . . ,dm)> ∈ R
m is a vector of strictly positive fixed weights. Note that consider-

ing weights in the block `1-norm is important in practice as those have an influence regarding the
consistency of the estimator (see Section 4 for further details). Since b is not regularized, we can
minimize in closed form with respect to b, by setting b = 1

n 1>n (Ȳ − X̄w). This leads to the following
reduced optimization problem in w:

min
w∈Rp

1
2

Σ̂YY − Σ̂>
XY w+

1
2

w>Σ̂XX w+λn

m

∑
j=1

d j‖w j‖, (1)

where Σ̂YY = 1
nȲ>ΠnȲ , Σ̂XY = 1

n X̄>ΠnȲ and Σ̂XX = 1
n X̄>ΠnX̄ are empirical covariance matrices

(with the centering matrix Πn defined as Πn = In −
1
n 1n1>n ). We denote by ŵ any minimizer of

Eq. (1). We refer to ŵ as the group Lasso estimate.2 Note that with probability tending to one, if
(A2) is satisfied (i.e., if ΣXX is invertible), there is a unique minimum.

Problem (1) is a non-differentiable convex optimization problem, for which classical tools from
convex optimization (Boyd and Vandenberghe, 2003) lead to the following optimality conditions
(see proof by Yuan and Lin, 2006, and in Appendix A.1):

Proposition 1 A vector w∈R
p with sparsity pattern J = J(w) = { j, w j 6= 0} is optimal for problem

(1) if and only if

∀ j ∈ Jc,
∥

∥Σ̂X jX w− Σ̂X jY
∥

∥6 λnd j, (2)

∀ j ∈ J, Σ̂X jX w− Σ̂X jY = −w j
λnd j

‖w j‖
. (3)

2. We use the convention that all “hat” notations correspond to data-dependent and thus n-dependent quantities, so we
do not need the explicit dependence on n.
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2.4 Algorithms

Efficient exact algorithms exist for the regular Lasso, that is, for the case where all group dimen-
sions p j are equal to one. They are based on the piecewise linearity of the set of solutions as a
function of the regularization parameter λn (Efron et al., 2004). For the group Lasso, however, the
path is only piecewise differentiable, and following such a path is not as efficient as for the Lasso.
Other algorithms have been designed to solve problem (1) for a single value of λn, in the original
group Lasso setting (Yuan and Lin, 2006) and in the multiple kernel setting (Bach et al., 2004a,b;
Sonnenburg et al., 2006; Rakotomamonjy et al., 2007). In this paper, we study path consistency of
the group Lasso and of multiple kernel learning, and in simulations we use the publicly available
code for the algorithm of Bach et al. (2004b), that computes an approximate but entire path, by
following the piecewise smooth path with predictor-corrector methods.

2.5 Consistency Results

We consider the following two conditions:

max
i∈Jc

1
di

∥

∥

∥ΣXiXJΣ−1
XJXJ

Diag(d j/‖w j‖)wJ

∥

∥

∥< 1, (4)

max
i∈Jc

1
di

∥

∥

∥ΣXiXJΣ−1
XJXJ

Diag(d j/‖w j‖)wJ

∥

∥

∥6 1, (5)

where Diag(d j/‖w j‖) denotes the block-diagonal matrix (with block sizes p j) in which each diag-

onal block is equal to d j

‖w j‖
Ip j (with Ip j the identity matrix of size p j), and wJ denotes the concate-

nation of the loading vectors indexed by J. Note that the conditions involve the covariance between
all active groups X j, j ∈ J and all non active groups Xi, i ∈ Jc.

These are conditions on both the input (through the joint covariance matrix ΣXX ) and on the
weight vector w. Note that, when all blocks have size 1, this corresponds to the conditions derived
for the Lasso (Zhao and Yu, 2006; Yuan and Lin, 2007; Zou, 2006). Note also the difference between
the strong condition (4) and the weak condition (5). For the Lasso, with our assumptions, Yuan and
Lin (2007) has shown that the strong condition (4) is necessary and sufficient for path consistency of
the Lasso; that is, the path of solutions consistently contains an estimate which is both consistent for
the `2-norm (regular consistency) and the `0-norm (consistency of patterns), if and only if condition
(4) is satisfied.

In the case of the group Lasso, even with a finite fixed number of groups, our results are not as
strong, as we can only get the strict condition as sufficient and the weak condition as necessary. In
Section 2.6, we show that this cannot be improved in general. More precisely the following theorem,
proved in Appendix B.1, shows that if the condition (4) is satisfied, any regularization parameter
that satisfies a certain decay conditions will lead to a consistent estimator; thus the strong condition
(4) is sufficient for path consistency:

Theorem 2 Assume (A1-3). If condition (4) is satisfied, then for any sequence λn such that λn → 0
and λnn1/2 → +∞, the group Lasso estimate ŵ defined in Eq. (1) converges in probability to w and
the group sparsity pattern J(ŵ) = { j, ŵ j 6= 0} converges in probability to J (i.e., P(J(ŵ) = J)→ 1).

The following theorem, proved in Appendix B.2, states that if there is a consistent solution on
the path, then the weak condition (5) must be satisfied.
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Theorem 3 Assume (A1-3). If there exists a (possibly data-dependent) sequence λn such that ŵ
converges to w and J(ŵ) converges to J in probability, then condition (5) is satisfied.

On the one hand, Theorem 2 states that under the “low correlation between variables in J and
variables in Jc” condition (4), the group Lasso is indeed consistent. On the other hand, the re-
sult (and the similar one for the Lasso) is rather disappointing regarding the applicability of the
group Lasso as a practical group selection method, as Theorem 3 states that if the weak correlation
condition (5) is not satisfied, we cannot have consistency.

Moreover, this is to be contrasted with a thresholding procedure of the joint least-square esti-
mator, which is also consistent with no conditions (but the invertibility of ΣXX ), if the threshold is
properly chosen (smaller than the smallest norm ‖w j‖ for j ∈ J or with appropriate decay condi-
tions). However, the Lasso and group Lasso do not have to set such a threshold; moreover, further
analysis show that the Lasso has additional advantages over regular regularized least-square pro-
cedure (Meinshausen and Yu, 2006), and empirical evidence shows that in the finite sample case,
they do perform better (Tibshirani, 1996), in particular in the case where the number m of groups
is allowed to grow. In this paper we focus on the extension from uni-dimensional groups to multi-
dimensional groups for finite number of groups m and leave the possibility of letting m grow with n
for future research.

Finally, by looking carefully at condition (4) and (5), we can see that if we were to increase
the weight d j for j ∈ Jc and decrease the weights otherwise, we could always be consistent: this
however requires the (potentially empirical) knowledge of J and this is exactly the idea behind the
adaptive scheme that we present in Section 4. Before looking at these extensions, we discuss in the
next Section, qualitative differences between our results and the corresponding ones for the Lasso.

2.6 Refinements of Consistency Conditions

Our current results state that the strict condition (4) is sufficient for joint consistency of the group
Lasso, while the weak condition (5) is only necessary. When all groups have dimension one, then
the strict condition turns out to be also necessary (Yuan and Lin, 2007).

The main technical reason for those differences is that in dimension one, the set of vectors
of unit norm is finite (two possible values), and thus regular squared norm consistency leads to
estimates of the signs of the loadings (i.e., their normalized versions ŵ j/‖ŵ j‖) which are ultimately
constant. When groups have size larger than one, then ŵ j/‖ŵ j‖ will not be ultimately constant (just
consistent) and this added dependence on data leads to the following refinement of Theorem 2 (see
proof in Appendix B.3):

Theorem 4 Assume (A1-3). Assume the weak condition (5) is satisfied and that for all i ∈ Jc such

that 1
di

∥

∥

∥
ΣXiXJΣ−1

XJXJ
Diag(d j/‖w j‖)wJ

∥

∥

∥
= 1, we have

∆>ΣXJXiΣXiXJΣ−1
XJXJ

Diag

[

d j/‖w j‖

(

Ip j −
w jw>

j

w>
j w j

)]

∆ > 0, (6)

with ∆ = −Σ−1
XJXJ

Diag(d j/‖w j‖)wJ. Then for any sequence λn such that λn → 0 and λnn1/4 → +∞,
the group Lasso estimate ŵ defined in Eq. (1) converges in probability to w and the group sparsity
pattern J(ŵ) = { j, ŵ j 6= 0} converges in probability to J.
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This theorem is of lower practical significance than Theorem 2 and Theorem 3. It merely shows
that the link between strict/weak conditions and sufficient/necessary conditions are in a sense tight
(as soon as there exists j ∈ J such that p j > 1, it is easy to exhibit examples where Eq. (6) is or is
not satisfied). The previous theorem does not contradict the fact that condition (4) is necessary for

path-consistency in the Lasso case: indeed, if w j has dimension one (i.e., p j = 1), then Ip j −
w jw>

j

w>
j w j

is

always equal to zero, and thus Eq. (6) is never satisfied. Note that when condition (6) is an equality,
we could still refine the condition by using higher orders in the asymptotic expansions presented in
Appendix B.3.

We can also further refined the necessary condition results in Theorem 3: as stated in Theorem 3,
the group Lasso estimator may be both consistent in terms of norm and sparsity patterns only if the
condition (5) is satisfied. However, if we require only the consistent sparsity pattern estimation,
then we may allow the convergence of the regularization parameter λn to a strictly positive limit λ0.
In this situation, we may consider the following population problem:

min
w∈Rp

1
2
(w−w)>ΣXX(w−w)+λ0

m

∑
j=1

d j‖w j‖. (7)

If there exists λ0 > 0 such that the solution has the correct sparsity pattern, then the group Lasso
estimate with λn → λ0, will have a consistent sparsity pattern. The following proposition, which
can be proved with standard M-estimation arguments, make this precise:

Proposition 5 Assume (A1-3). If λn tends to λ0 > 0, then the group Lasso estimate ŵ is sparsity-
consistent if and only if the solution of Eq. (7) has the correct sparsity pattern.

Thus, even when condition (5) is not satisfied, we may have consistent estimation of the sparsity
pattern but inconsistent estimation of the loading vectors. We provide in Section 5 such examples.

2.7 Probability of Correct Pattern Selection

In this section, we focus on regularization parameters that tend to zero, at the rate n−1/2, that is,
λn = λ0n−1/2 with λ0 > 0. For this particular setting, we can actually compute the limit of the
probability of correct pattern selection (proposition proved in Appendix B.4). Note that in order to
obtain a simpler result, we assume constant conditional variance of Y given w>X :

Proposition 6 Assume (A1-3) and var(Y |w>x) = σ2 almost surely. Assume moreover λn = λ0n−1/2

with λ0 > 0. Then, the group Lasso ŵ converges in probability to w and the probability of correct
sparsity pattern selection has the following limit:

P

(

max
i∈Jc

1
di

∥

∥

∥

∥

σ
λ0

ti −ΣXiXJΣ−1
XJXJ

Diag

(

d j

‖w j‖

)

wJ

∥

∥

∥

∥

6 1

)

, (8)

where t is normally distributed with mean zero and covariance matrix ΣXJc XJc |XJ = ΣXJc XJc−

ΣXJc XJΣ−1
XJXJ

ΣXJXJc (which is the conditional covariance matrix of XJc given XJ).

The previous theorem states that the probability of correct selection tends to the mass under a non
degenerate multivariate distribution of the intersection of cylinders. Under our assumptions, this set
is never empty and thus the limiting probability is strictly positive, that is, there is (asymptotically)
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always a positive probability of estimating the correct pattern of groups (see Bach, 2008a, for ap-
plication of this result to model consistent estimation of a bootstrapped version of the Lasso, with
no consistency condition).

Moreover, additional insights may be gained from Proposition 6, namely in terms of the depen-
dence on σ, λ0 and the tightness of the consistency conditions. First, when λ0 tends to infinity, then
the limit defined in Eq. (8) tends to one if the strict consistency condition (4) is satisfied, and tends
to zero if one of the conditions is strictly not met. This corroborates the results of Theorem 2 and 3.
Note however, that only an extension of Proposition 6 to λn that may deviate from a n−1/2 would
actually lead to a proof of Theorem 2, which is a subject of ongoing research.

Finally, Eq. (8) shows that σ has a smoothing effect on the probability of correct pattern selec-
tion, that is, if condition (4) is satisfied, then this probability is a decreasing function of σ (and an
increasing function of λ0). Finally, the stricter the inequality in Eq. (4), the larger the probability of
correct rank selection, which is illustrated in Section 5 on synthetic examples.

2.8 Loading Independent Sufficient Condition

Condition (4) depends on the loading vector w and on the sparsity pattern J, which are both a priori
unknown. In this section, we consider sufficient conditions that do not depend on the loading vector,
but only on the sparsity pattern J and of course on the covariance matrices. The following condition
is sufficient for consistency of the group Lasso, for all possible loading vectors w with sparsity
pattern J:

C(ΣXX ,d,J) = max
i∈Jc

max
∀ j∈J, ‖u j‖=1

∥

∥

∥

∥

1
di

ΣXiXJΣ−1
XJXJ

Diag(d j)uJ

∥

∥

∥

∥

< 1. (9)

As opposed to the Lasso case, C(ΣXX ,d,J) cannot be readily computed in closed form, but we
have the following upper bound:

C(ΣXX ,d,J) 6 max
i∈Jc

1
di

∑
j∈J

d j

∥

∥

∥

∥

∥

∑
k∈J

ΣXiXk

(

Σ−1
XJXJ

)

k j

∥

∥

∥

∥

∥

,

where for a matrix M, ‖M‖ denotes its maximal singular value (also known as its spectral norm).
This leads to the following sufficient condition for consistency of the group Lasso (which extends
the condition of Yuan and Lin, 2007):

max
i∈Jc

1
di

∑
j∈J

d j

∥

∥

∥

∥

∥

∑
k∈J

ΣXiXk

(

Σ−1
XJXJ

)

k j

∥

∥

∥

∥

∥

< 1. (10)

Given a set of weights d, better sufficient conditions than Eq. (10) may be obtained by solving a
semidefinite programming problem (Boyd and Vandenberghe, 2003):

Proposition 7 The quantity max
∀ j∈J, ‖u j‖=1

∥

∥

∥
ΣXiXJΣ−1

XJXJ
Diag(d j)uJ

∥

∥

∥

2
is upperbounded by

max
M<0, trMii=1

trM
(

Diag(d j)Σ−1
XJXJ

ΣXJXiΣXiXJΣ−1
XJXJ

Diag(d j)
)

, (11)
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where M is a matrix defined by blocks following the block structure of ΣXJXJ . Moreover, the bound
is also equal to

min
λ∈Rm, Diag(d j)Σ−1

XJXJ
ΣXJXi ΣXiXJ Σ−1

XJXJ
Diag(d j)4Diag(λ)

m

∑
j=1

λ j.

Proof We denote M = uu> < 0. Then if all u j for j ∈ J have norm 1, then we have trM j j = 1 for
all j ∈ J. This implies the convex relaxation. The second problem is easily obtained as the convex
dual of the first problem (Boyd and Vandenberghe, 2003).

Note that for the Lasso, the convex bound in Eq. (11) is tight and leads to the bound given above
in Eq. (10) (Yuan and Lin, 2007; Wainwright, 2006). For the Lasso, Zhao and Yu (2006) consider
several particular patterns of dependencies using Eq. (10). Note that this condition (and not the
condition in Eq. 9) is independent from the dimension and thus does not readily lead to rules of
thumbs allowing to set the weight d j as a function of the dimension p j; several rules of thumbs have
been suggested, that loosely depend on the dimension on the blocks, in the context of the linear
group Lasso (Yuan and Lin, 2006) or multiple kernel learning (Bach et al., 2004b); we argue in this
paper, that weights should also depend on the response as well (see Section 4).

2.9 Alternative Formulation of the Group Lasso

Following Bach et al. (2004a), we can instead consider regularization by the square of the block
`1-norm:

min
w∈Rp, b∈R

1
2n

‖Ȳ − X̄w−b1n‖
2 +

1
2

µn

(

m

∑
j=1

d j‖w j‖

)2

.

This leads to the same path of solutions, but it is better behaved because each variable which is not
zero is still regularized by the squared norm. The alternative version has also two advantages: (a) it
has very close links to more general frameworks for learning the kernel matrix from data (Lanckriet
et al., 2004b), and (b) it is essential in our proof of consistency in the functional case. We also get
the equivalent formulation to Eq. (1), by minimizing in closed form with respect to b, to obtain:

min
w∈Rp

1
2

Σ̂YY − Σ̂Y X w+
1
2

w>Σ̂XX w+
1
2

µn

(

m

∑
j=1

d j‖w j‖

)2

. (12)

The following proposition gives the optimality conditions for the convex optimization problem de-
fined in Eq. (12) (see proof in Appendix A.2):

Proposition 8 A vector w ∈ R
p with sparsity pattern J = { j, w j 6= 0} is optimal for problem (12)

if and only if

∀ j ∈ Jc,
∥

∥Σ̂X jX w− Σ̂X jY
∥

∥6 µnd j (∑n
i=1 di‖wi‖) ,

∀ j ∈ J, Σ̂X jX w− Σ̂X jY = −µn (∑n
i=1 di‖wi‖)

d jw j

‖w j‖
.

Note the correspondence at the optimum between optimal solutions of the two optimization prob-
lems in Eq. (1) and Eq. (12) through λn = µn (∑n

i=1 di‖wi‖). As far as consistency results are con-
cerned, Theorem 3 immediately applies to the alternative formulation because the regularization
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paths are the same. For Theorem 2, it does not readily apply. But since the relationship between λn

and µn at optimum is λn = µn (∑n
i=1 di‖wi‖) and that ∑n

i=1 di‖ŵi‖ converges to a constant whenever
ŵ is consistent, it does apply as well with minor modifications (in particular, to deal with the case
where J is empty, which requires µn = ∞).

3. Covariance Operators and Multiple Kernel Learning

We now extend the previous consistency results to the case of nonparametric estimation, where each
group is a potentially infinite dimensional space of functions. Namely, the nonparametric group
Lasso aims at estimating a sparse linear combination of functions of separate random variables,
and can then be seen as a variable selection method in a generalized additive model (Hastie and
Tibshirani, 1990). Moreover, as shown in Section 3.5, the nonparametric group Lasso may also be
seen as equivalent to learning a convex combination of kernels, a framework referred to as multiple
kernel learning (MKL). In this context it is customary to have a single input space with several
kernels (and hence Hilbert spaces) defined on the same input space (Lanckriet et al., 2004b; Bach
et al., 2004a).3 Our framework accommodates this case as well, but our assumption (A5) regarding
the invertibility of the joint correlation operator states that the kernels cannot span Hilbert spaces
which intersect.

In this nonparametric context, covariance operators constitute appropriate tools for the statistical
analysis and are becoming standard in the theoretical analysis of kernel methods (Fukumizu et al.,
2004; Gretton et al., 2005; Fukumizu et al., 2007; Caponnetto and de Vito, 2005). The following
section reviews important concepts. For more details, see Baker (1973) and Fukumizu et al. (2004).

3.1 Review of Covariance Operator Theory

In this section, we first consider a single set X and a positive definite kernel k : X ×X → R, as-
sociated with the reproducing kernel Hilbert space (RKHS) F of functions from X to R (see, e.g.,
Schölkopf and Smola 2001 or Berlinet and Thomas-Agnan 2003 for an introduction to RKHS the-
ory). The Hilbert space and its dot product 〈·, ·〉F are such that for all x ∈ X , then k(·,x)∈ F and for
all f ∈ F , 〈k(·,x), f 〉F = f (x), which leads to the reproducing property 〈k(·,x),k(·,y)〉F = k(x,y)
for any (x,y) ∈ X ×X .

3.1.1 COVARIANCE OPERATOR AND NORMS

Given a random variable X on X with bounded second order moment, that is, such that Ek(X ,X) <
∞, we can define the covariance operator as the bounded linear operator ΣXX from F to F such that
for all ( f ,g) ∈ F ×F ,

〈 f ,ΣXX g〉F = cov( f (X),g(X)) = E( f (X)g(X))− (E f (X))(Eg(X)).

The operator ΣXX is auto-adjoint, non-negative and Hilbert-Schmidt, that is, for any orthonormal
basis (ep)p>1 of F , then ∑∞

p=1 ‖ΣXX ep‖
2
F is finite; in this case, the value does not depend on the

chosen basis and is referred to as the square of the Hilbert-Schmidt norm. The norm that we use by
default in this paper is the operator norm ‖ΣXX‖F = sup f∈F , ‖ f‖F =1 ‖ΣXX f‖F , which is dominated
by the Hilbert-Schmidt norm. Note that in the finite dimensional case where X = R

p, p > 0 and the

3. Note that the grouplasso can be explicitly seen as a special case of multiple kernel learning. Using notations from
Section 2, this is done by considering X = (X1, . . . ,Xm)> ∈ R

m and the m kernels km(X ,Y ) = X>
m Ym.
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kernel is linear, the covariance operator is exactly the covariance matrix, and the Hilbert-Schmidt
norm is the Frobenius norm, while the operator norm is the maximum singular value (also referred
to as the spectral norm).

The null space of the covariance operator is the space of functions f ∈ F such that var f (X) = 0,
that is, such that f is constant on the support of X .

3.1.2 EMPIRICAL ESTIMATORS

Given data xi ∈ X , i = 1, . . . ,n, sampled i.i.d. from PX , then the empirical estimate Σ̂XX of ΣXX is
defined such that 〈 f , Σ̂XX g〉F is the empirical covariance between f (X) and g(X), which leads to:

Σ̂XX =
1
n

n

∑
i=1

k(·,xi)⊗ k(·,xi)−
1
n

n

∑
i=1

k(·,xi)⊗
1
n

n

∑
i=1

k(·,xi),

where u⊗v is the operator defined by 〈 f ,(u⊗v)g〉F = 〈 f ,u〉F 〈g,v〉F . If we further assume that the
fourth order moment is finite, that is, Ek(X ,X)2 < ∞, then the estimate is uniformly consistent, that
is, ‖Σ̂XX −ΣXX‖F = Op(n−1/2) (see Fukumizu et al., 2007, and Appendix C.1), which generalizes
the usual result from finite dimension.4

3.1.3 CROSS-COVARIANCE AND JOINT COVARIANCE OPERATORS

Covariance operator theory can be extended to cases with more than one random variables (Baker,
1973). In our situation, we have m input spaces X1, . . . ,Xm and m random variables X = (X1, . . . ,Xm)
and m RKHS F1, . . . ,Fm associated with m kernels k1, . . . ,km.

If we assume that Ek j(X j,X j) < ∞, for all j = 1, . . . ,m, then we can naturally define the cross-
covariance operators ΣXiX j from F j to Fi such that ∀( fi, f j) ∈ Fi ×F j,

〈 fi,ΣXiX j f j〉Fi = cov( fi(Xi), f j(X j)) = E( fi(Xi) f j(X j))− (E fi(Xi))(E f j(X j)).

These are also Hilbert-Schmidt operators, and if we further assume that Ek j(X j,X j)
2 < ∞, for all

j = 1, . . . ,m, then the natural empirical estimators converges to the population quantities in Hilbert-
Schmidt and operator norms at rate Op(n−1/2). We can now define a joint block covariance operator
on F = F1 ×·· ·×Fm following the block structure of covariance matrices in Section 2. As in the
finite dimensional case, it leads to a joint covariance operator ΣXX and we can refer to sub-blocks
as ΣXIXJ for the blocks indexed by I and J.

Moreover, we can define the bounded (i.e., with finite operator norm) correlation operators
through ΣXiX j = Σ1/2

XiXi
CXiX j Σ

1/2
X jX j

(Baker, 1973). Throughout this paper we will make the assumption
that those operators CXiX j are compact for i 6= j: compact operators can be characterized as limits
of finite rank operators or as operators that can be diagonalized on a countable basis with spectrum
composed of a sequence tending to zero (see, e.g., Brezis, 1980). This implies that the joint operator
CXX , naturally defined on F = F1 × ·· ·×Fm, is of the form “identity plus compact”. It thus has
a minimum and a maximum eigenvalue which are both between 0 and 1 (Brezis, 1980). If those
eigenvalues are strictly greater than zero, then the operator is invertible, as are all the square sub-
blocks. Moreover, the joint correlation operator is lower-bounded by a strictly positive constant
times the identity operator.

4. A random variable Zn is said to be of order Op(an) if for any η > 0, there exists M > 0 such that supn P(|Zn| >
Man) < η. See Van der Vaart (1998) for further definitions and properties of asymptotics in probability.
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3.1.4 TRANSLATION INVARIANT KERNELS

A particularly interesting ensemble of RKHS in the context of nonparametric estimation is the set
of translation invariant kernels defined over X = R

p, where p > 1, of the form k(x,x′) = q(x′− x)
where q is a function on R

p with pointwise nonnegative integrable Fourier transform (which implies
that q is continuous). In this case, the associated RKHS is F = {q1/2 ∗g, g ∈ L2(Rp)}, where q1/2

denotes the inverse Fourier transform of the square root of the Fourier transform of q and ∗ denotes
the convolution operation, and L2(Rp) denotes the space of square integrable functions. The norm
is then equal to

‖ f‖2
F =

Z

|F(ω)|2

Q(ω)
dω,

where F and Q are the Fourier transforms of f and q (Wahba, 1990; Schölkopf and Smola, 2001).
Functions in the RKHS are functions with appropriately integrable derivatives. In this paper, when
using infinite dimensional kernels, we use the Gaussian kernel k(x,x′) = q(x− x′) = exp(−b‖x−
x′‖2), with b > 0.

3.1.5 ONE-DIMENSIONAL HILBERT SPACES

In this paper, we also consider real random variables Y and ε embedded in the natural Euclidean
structure of real numbers (i.e., we consider the linear kernel on R). In this setting the covariance
operator ΣX jY from R to F j can be canonically identified as an element of F j. Throughout this paper,
we always use this identification.

3.2 Problem Formulation

We assume in this section and in the remaining of the paper that for each j = 1, . . . ,m, X j ∈X j where
X j is any set on which we have a reproducible kernel Hilbert spaces F j, associated with the positive
kernel k j : X j ×X j → R. We now make the following assumptions, that extend the assumptions
(A1), (A2) and (A3). For each of them, we detail the main implications as well as common natural
sufficient conditions. The first two conditions (A4) and (A5) depend solely on the input variables,
while the two other ones, (A6) and (A7) consider the relationship between X and Y .

(A4) For each j = 1 . . . ,m, F j is a separable reproducing kernel Hilbert space associated with
kernel k j, and the random variables k j(·,X j) are not constant and have finite fourth-order
moments, that is, Ek j(X j,X j)

2 < ∞.

This is a non restrictive assumption in many situations; for example, when (a) X j = R
p j and

the kernel function (such as the Gaussian kernel) is bounded, or when (b) X j is a compact subset of
R

p j and the kernel is any continuous function such as linear or polynomial. This implies notably,
as shown in Section 3.1, that we can define covariance, cross-covariance and correlation operators
that are all Hilbert-Schmidt (Baker, 1973; Fukumizu et al., 2007) and can all be estimated at rate
Op(n−1/2) in operator norm.

(A5) All cross-correlation operators are compact and the joint correlation operator CXX is invert-
ible.

This is also a condition uniquely on the input spaces and not on Y . Following Fukumizu et al.
(2007), a simple sufficient condition is that we have measurable spaces and distributions with joint
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density pX (and marginal distributions pXi(xi) and pXiX j(xi,x j)) and that the mean square contin-
gency between all pairs of variables is finite, that is,

E

{

pXiX j(xi,x j)

pXi(xi)pX j(x j)
−1

}

< ∞.

The contingency is a measure of statistical dependency (Renyi, 1959), and thus this sufficient con-
dition simply states that two variables Xi and X j cannot be too dependent. In the context of multiple
kernel learning for heterogeneous data fusion, this corresponds to having sources which are hetero-
geneous enough. On top of compacity we impose the invertibility of the joint correlation operator;
we use this assumption to make sure that the functions f1, . . . , fm are unique. This ensures the non
existence of any set of functions f1, . . . , fm in the closures of F1, . . . ,Fm, such that var f j(X j) > 0,
for all j, and a linear combination is constant on the support of the random variables. In the con-
text of generalized additive models, this assumption is referred to as the empty concurvity space
assumption (Hastie and Tibshirani, 1990).

(A6) There exists functions f = (f1, . . . , fm) ∈ F = F1 ×·· ·×Fm, b ∈ R, and a function h of X =
(X1, . . . ,Xm) such that E(Y |X) = ∑m

j=1 f j(X j)+ b + h(X) with Eh(X)2 < ∞, Eh(X) = 0 and
Eh(X) f j(X j) = 0 for all j = 1, . . . ,m and f j ∈ F j. We assume that E((Y − f(X)−b)2|X) is
almost surely greater than σ2

min > 0 and smaller than σ2
max < ∞. We denote by J = { j, f j 6= 0}

the sparsity pattern of f.

This assumption on the conditional expectation of Y given X is not the most general and follows
common assumptions in approximation theory (see, e.g., Caponnetto and de Vito, 2005; Cucker and
Smale, 2002, and references therein). It allows misspecification, but it essentially requires that the
conditional expectation of Y given sums of measurable functions of X j is attained at functions in the
RKHS, and not merely measurable functions. Dealing with more general assumptions in the line of
Ravikumar et al. (2008) requires to consider consistency for norms weaker than the RKHS norms
(Caponnetto and de Vito, 2005; Steinwart, 2001), and is left for future research. Note also, that to
simplify proofs, we assume a finite upper-bound σ2

max on the residual variance.

(A7) For all j ∈ {1, . . . ,m}, there exists g j ∈ F j such that f j = Σ1/2
X jX j

g j, that is, each f j is in the

range of Σ1/2
X jX j

.

This technical condition, already used by Caponnetto and de Vito (2005), which concerns all RKHS
independently, ensures that we obtain consistency for the norm of the RKHS (and not another
weaker norm) for the least-squares estimates. Note also that it implies that var f j(X j) > 0, that
is, f j is not constant on the support of X j.

This assumption might be checked (at least) in two ways; first, if (ep)p>1 is a sequence of
eigenfunctions of ΣXX , associated with strictly positive eigenvalues λp > 0, then f is in the range of
ΣXX if and only if f is constant outside the support of the random variable X and ∑p>1

1
λp
〈 f ,ep〉

2 is

finite (i.e., the decay of the sequence 〈 f ,ep〉
2 is strictly faster than λp).

We also provide another sufficient condition that sheds additional light on this technical con-
dition which is always true for finite dimensional Hilbert spaces. For the common situation where
X j = R

p j , PX j (the marginal distribution of X j) has a density pX j(x j) with respect to the Lebesgue
measure and the kernel is of the form k j(x j,x′j) = q j(x j − x′j), we have the following proposition
(proved in Appendix C.5):
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Proposition 9 Assume X = R
p and X is a random variable on X with distribution PX that has a

strictly positive density pX(x) with respect to the Lebesgue measure. Assume k(x,x′) = q(x−x′) for
a function q∈ L2(Rp) has an integrable pointwise positive Fourier transform, with associated RKHS

F . If f can be written as f = q∗g (convolution of q and g) with
R

Rp g(x)dx = 0 and
R

Rp
g(x)2

pX (x)dx < ∞,

then f ∈ F is in the range of the square root Σ1/2
XX of the covariance operator.

The previous proposition gives natural conditions regarding f and pX . Indeed, the condition
R g(x)2

pX (x)dx < ∞ corresponds to a natural support condition, that is, f should be zero where X has
no mass, otherwise, we will not be able to estimate f ; note the similarity with the usual condition
regarding the variance of importance sampling estimation (Brémaud, 1999). Moreover, f should
be even smoother than a regular function in the RKHS (convolution by q instead of the square root
of q). Finally, we provide in Appendix E detailed covariance structures for Gaussian kernels with
Gaussian variables.

3.2.1 NOTATIONS

Throughout this section, we refer to functions f = ( f1, . . . , fm)∈F = F1×·· ·×Fm and the joint co-
variance operator ΣXX . In the following, we always use the norms of the RKHS. When considering
operators, we use the operator norm. We also refer to a subset of f indexed by J through fJ . Note
that the Hilbert norm ‖ fJ‖FJ is equal to ‖ fJ‖FJ = (∑ j∈J ‖ f j‖F j)

1/2. Finally, given a nonnegative
auto-adjoint operator S, we denote by S1/2 its nonnegative autoadjoint square root (Baker, 1973).

3.3 Nonparametric Group Lasso

Given i.i.d data (xi j,yi), i = 1, . . . ,n, j = 1, . . . ,m, where each xi j ∈ X j, our goal is to estimate
consistently the functions f j and which of them are zero. We denote by Ȳ ∈ R

n the vector of
responses. We consider the following optimization problem:

min
f∈F , b∈R

1
2n

n

∑
i=1

(

yi −
m

∑
j=1

f j(xi j)−b

)2

+
µn

2

(

m

∑
j=1

d j‖ f j‖F j

)2

.

By minimizing with respect to b in closed form, we obtain a similar formulation to Eq. (12), where
empirical covariance matrices are replaced by empirical covariance operators:

min
f∈F

1
2

Σ̂YY −〈 f , Σ̂XY 〉F +
1
2
〈 f , Σ̂XX f 〉F +

µn

2

(

m

∑
j=1

d j‖ f j‖F j

)2

. (13)

We denote by f̂ any minimizer of Eq. (13), and we refer to it as the nonparametric group Lasso
estimate, or also the multiple kernel learning estimate. By Proposition 13, the previous problem has
indeed minimizers, and by Proposition 14 this global minimum is unique with probability tending
to one.

Note that formally, the finite and infinite dimensional formulations in Eq. (12) and Eq. (13)
are the same, and this is the main reason why covariance operators are very practical tools for the
analysis. Furthermore, we have the corresponding proposition regarding optimality conditions (see
proof in Appendix A.3):
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Proposition 10 A function f ∈ F with sparsity pattern J = J( f ) = { j, f j 6= 0} is optimal for
problem (13) if and only if

∀ j ∈ Jc,
∥

∥Σ̂X jX f − Σ̂X jY
∥

∥

F j
6 µnd j (∑n

i=1 di‖ fi‖Fi) , (14)

∀ j ∈ J, Σ̂X jX f − Σ̂X jY = −µn (∑n
i=1 di‖ fi‖Fi)

d j f j

‖ f j‖F j

. (15)

A consequence (and in fact the first part of the proof) is that an optimal function f must be in the
range of Σ̂XY and Σ̂XX , that is, an optimal f is supported by the data; that is, each f j is a linear
combination of functions k j(·,xi j), i = 1, . . . ,n. This is a rather circumvoluted way of presenting the
representer theorem (Wahba, 1990), but this is the easiest for the theoretical analysis of consistency.
However, to actually compute the estimate f̂ from data, we need the usual formulation with dual
parameters (see Section 3.5).

Moreover, one important conclusion is that all our optimization problems in spaces of functions
can be in fact transcribed into finite-dimensional problems. In particular, all notions from multivari-
ate differentiable calculus may be used without particular care regarding the infinite dimension.

3.4 Consistency Results

We consider the following strict and weak conditions, which correspond to condition (4) and (5) in
the finite dimensional case:

max
i∈Jc

1
di

∥

∥

∥
Σ1/2

XiXi
CXiXJC

−1
XJXJ

Diag(d j/‖f j‖F j)gJ

∥

∥

∥

Fi

< 1, (16)

max
i∈Jc

1
di

∥

∥

∥
Σ1/2

XiXi
CXiXJC

−1
XJXJ

Diag(d j/‖f j‖F j)gJ

∥

∥

∥

Fi

6 1, (17)

where Diag(d j/‖f j‖F j) denotes the block-diagonal operator with operators d j

‖f j‖F j
IF j on the diagonal.

Note that this is well-defined because CXX is invertible and that it reduces to Eq. (4) and Eq. (5) when
the input spaces X j, j = 1, . . . ,m are of the form R

p j and the kernels are linear. The main reason
of rewriting the conditions in terms of correlation operators rather than covariance operators is that
correlation operators are invertible by assumption, while covariance operators are not as soon as
the Hilbert spaces have infinite dimensions. The following theorems give necessary and sufficient
conditions for the path consistency of the nonparametric group Lasso (see proofs in Appendix C.2
and Appendix C.3):

Theorem 11 Assume (A4-7) and that J is not empty. If condition (16) is satisfied, then for any
sequence µn such that µn → 0 and µnn1/2 → +∞, any sequence of nonparametric group Lasso
estimates f̂ converges in probability to f and the sparsity pattern J( f̂ ) = { j, f̂ j 6= 0} converges in
probability to J.

Theorem 12 Assume (A4-7) and that J is not empty. If there exists a (possibly data-dependent)
sequence µn such f̂ converges to f and Ĵ converges to J in probability, then condition (17) is satisfied.

Essentially, the results in finite dimension also hold when groups have infinite dimensions. We
leave the extensions of the refined results in Section 2.6 to future work. Condition (16) might be
hard to check in practice since it involves inversion of correlation operators; see Section 3.6 for an
estimate from data.
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3.5 Multiple Kernel Learning Formulation

Proposition 10 does not readily lead to an algorithm for computing the estimate f̂ . In this section,
following Bach et al. (2004a), we link the group Lasso to the multiple kernel learning framework
(Lanckriet et al., 2004b). Problem (13) is an optimization problem on a potentially infinite di-
mensional space of functions. However, the following proposition shows that it reduces to a finite
dimensional problem that we now precise (see proof in Appendix A.4):

Proposition 13 The dual of problem (13) is

max
α∈Rn, α>1n=0

{

−
1
2n

‖Ȳ −nµnα‖2 −
1

2µn
max

i=1,...,m

α>Kiα
d2

i

}

, (18)

where (Ki)ab = ki(xa,xb) are the kernel matrices in R
n×n, for i = 1, . . . ,m. Moreover, the dual

variable α ∈ R
n is optimal if and only if α>1n = 0 and there exists η ∈ R

m
+ such that ∑m

j=1 η jd2
j = 1

and
(

m

∑
j=1

η jK j +nµnIn

)

α = Ȳ , (19)

∀ j ∈ {1, . . . ,m},
α>K jα

d2
j

< max
i=1,...,m

α>Kiα
d2

i

⇒ η j = 0.

The optimal function may then be written as f j = η j ∑n
i=1 αik j(·,xi j).

Since the problem in Eq. (18) is strictly convex, there is a unique dual solution α. Note that Eq. (19)
corresponds to the optimality conditions for the least-square problem:

min
f∈F

1
2

Σ̂YY −〈 f , Σ̂XY 〉F +
1
2
〈 f , Σ̂XX f 〉F +

1
2

µn ∑
j, η j>0

‖ f j‖
2
F j

ηi
,

whose dual problem is:

max
α∈Rn, α>1n=0

{

−
1
2n

‖Ȳ −nµnα‖2 −
1

2µn
α>

(

m

∑
j=1

ηiKi

)

α

}

,

and unique solution is α = Πn(∑m
j=1 η jΠnK jΠn + nµnIn)

−1ΠnȲ . That is, the solution of the MKL
problem leads to dual parameters α and set of weights η > 0 such that α is the solution to the
least-square problem with kernel K = ∑m

j=1 η jK j. Bach et al. (2004a) has shown in a similar con-
text (hinge loss instead of the square loss) that the optimal η in Proposition 13 can be obtained
as the minimizer of the optimal value of the regularized least-square problem with kernel matrix
∑m

j=1 η jK j, that is:

J(η) = max
α∈Rn, α>1n=0

{

−
1
2n

‖Ȳ −nµnα‖2 −
1

2µn
α>

(

m

∑
j=1

η jK j

)

α

}

,

with respect to η > 0 such that ∑m
j=1 η jd2

j = 1. This formulation allows to derive probably approx-
imately correct error bounds (Lanckriet et al., 2004b; Bousquet and Herrmann, 2003). Besides,
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this formulation allows η to be negative, as long as the matrix ∑m
j=1 η jK j is positive semi-definite.

However, theoretical advantages of such a possibility still remain unclear.
Finally, we state a corollary of Proposition 13 that shows that under our assumptions regarding

the correlation operator, we have a unique solution to the nonparametric groups Lasso problem with
probability tending to one (see proof in Appendix A.5):

Proposition 14 Assume (A4-5). The problem (13) has a unique solution with probability tending
to one.

3.6 Estimation of Correlation Condition (16)

Condition (4) is simple to compute while the nonparametric condition (16) might be hard to check
even if all densities are known (we provide however in Section 5 a specific example where we can
compute in closed form all covariance operators). The following proposition shows that we can con-

sistently estimate the quantities
∥

∥

∥
Σ1/2

XiXi
CXiXJC

−1
XJXJ

Diag(d j/‖f j‖F j)gJ

∥

∥

∥

Fi

given an i.i.d. sample (see

proof in Appendix C.4):

Proposition 15 Assume (A4-7), and κn → 0 and κnn1/2 → ∞. Let

α = Πn

(

∑
j∈J

ΠnK jΠn +nκnIn

)−1

ΠnȲ

and η̂ j = 1
d j

(α>K jα)1/2. Then, for all i ∈ Jc, the norm
∥

∥

∥Σ1/2
XiXi

CXiXJC
−1
XJXJ

Diag(d j/‖f j‖)gJ

∥

∥

∥

Fi

is

consistently estimated by:
∥

∥

∥

∥

∥

∥

(ΠnKiΠn)
1/2

(

∑
j∈J

ΠnK jΠn +nκnIn

)−1(

∑
j∈J

1
η̂ j

ΠnK jΠn

)

α

∥

∥

∥

∥

∥

∥

. (20)

4. Adaptive Group Lasso and Multiple Kernel Learning

In previous sections, we have shown that specific necessary and sufficient conditions are needed
for path consistency of the group Lasso and multiple kernel learning. The following procedures,
adapted from the adaptive Lasso of Zou (2006), lead to two-step procedures that always achieve
both consistency, with no condition such as Eq. (4) or Eq. (16). As before, results are a bit different
when groups have finite sizes and groups may have infinite sizes.

4.1 Adaptive Group Lasso

The following theorem extends the similar theorem of Zou (2006), and shows that we can get both
Op(n−1/2) consistency and correct pattern estimation:

Theorem 16 Assume (A1-3) and γ > 0. We denote by ŵLS = Σ̂−1
XX Σ̂XY the (unregularized) least-

square estimate. We denote by ŵA any minimizer of

1
2

Σ̂YY − Σ̂Y X w+
1
2

w>Σ̂XX w+
µn

2

(

m

∑
j=1

‖ŵLS
j ‖−γ‖w j‖

)2

.
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If n−1/2 � µn � n−1/2−γ/2, then ŵA converges in probability to w, J(ŵA) converges in probability to
J, and n1/2(ŵA

J −wJ) tends in distribution to a normal distribution with mean zero and covariance
matrix Σ−1

XJXJ
.

This theorem, proved in Appendix D.1, shows that the adaptive group Lasso exhibit all important
asymptotic properties, both in terms of errors and selected models. In the nonparametric case, we
obtain a weaker result.

4.2 Adaptive Multiple Kernel Learning

We first begin with the consistency of the least-square estimate (see proof in Appendix D.2):

Proposition 17 Assume (A4-7). The unique minimizer f̂ LS
κn

of

1
2

Σ̂YY −〈Σ̂XY , f 〉F +
1
2
〈 f , Σ̂XX f 〉F +

κn

2

m

∑
j=1

‖ f j‖
2
F j

,

converges in probability to f if κn → 0 and κnn1/2 → 0. Moreover, we have ‖ f̂ LS
κn

− f‖F = Op(κ
1/2
n +

κ−1
n n−1/2).

Since the least-square estimate is consistent and we have an upper bound on its convergence
rate, we follow Zou (2006) and use it to defined adaptive weights d j for which we get both sparsity
and regular consistency without any conditions on the value of the correlation operators.

Theorem 18 Assume (A4-7) and γ > 1. Let f̂ LS
n−1/3 be the least-square estimate with regularization

parameter proportional to n−1/3, as defined in Proposition 17. We denote by f̂ A any minimizer of

1
2

Σ̂YY −〈Σ̂XY , f 〉F +
1
2
〈 f , Σ̂XX f 〉F +

µ0n−1/3

2

(

m

∑
j=1

‖( f̂ LS
κn

) j‖
−γ
F j
‖ f j‖F j

)2

.

Then f̂ A converges to f and J( f̂ A) converges to J in probability.

Theorem 18 allows to set up a specific vector of weights d. This provides a principled way to
define data adaptive weights, that allows to solve (at least theoretically) the potential consistency
problems of the usual MKL framework (see Section 5 for illustration on synthetic examples). Note
that we have no result concerning the Op(n−1/2) consistency of our procedure (as we have for the
finite dimensional case) and obtaining precise convergence rates is the subject of ongoing research.

The following proposition gives the expression for the solution of the least-square problem,
necessary for the computation of adaptive weights in Theorem 18.

Proposition 19 The solution of the least-square problem in Proposition 17 is given by

∀ j ∈ {1, . . . ,m}, f LS
j =

n

∑
i=1

αik j(·,xi j) with α = Πn

(

m

∑
j=1

ΠnK jΠn +nκnIn

)−1

ΠnȲ ,

with norms ‖F̂LS
j ‖F j =

(

α>K jα
)1/2

, j = 1, . . . ,m.
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Other weighting schemes have been suggested, based on various heuristics. A notable one (which
we use in simulations) is the normalization of kernel matrices by their trace (Lanckriet et al., 2004b),
which leads to d j = (trΣ̂X jX j)

1/2 = ( 1
n trΠnK jΠn)

1/2. Bach et al. (2004b) have observed empirically
that such normalization might lead to suboptimal solutions and consider weights d j that grow with
the empirical ranks of the kernel matrices. In this paper, we give theoretical arguments that indicate
that weights which do depend on the data are more appropriate and work better (see Section 5 for
examples).

5. Simulations

In this section, we illustrate the consistency results obtained in this paper with a few simple simula-
tions on synthetic examples.

5.1 Groups of Finite Sizes

In the finite dimensional group case, we sampled X ∈R
p from a normal distribution with zero mean

vector and a covariance matrix of size p = 8 for m = 4 groups of size p j = 2, j = 1, . . . ,m, generated
as follows: (a) sample an p× p matrix G with independent standard normal distributions, (b) form
ΣXX = GG>, (c) for each j ∈ {1, . . . ,m}, rescale X j ∈R

2 so that trΣX jX j = 1. We selected Card(J) =
2 groups at random and sampled non zero loading vectors as follows: (a) sample each loading from
from independent standard normal distributions, (b) rescale those to unit norm, (c) rescale those
by a scaling which is uniform at random between 1

3 and 1. Finally, we chose a constant noise
level of standard deviation σ equal to 0.2 times (E(w>X)2)1/2 and sampled Y from a conditional
normal distribution with constant variance. The joint distribution on (X ,Y ) thus defined satisfies
with probability one assumptions (A1-3).

For cases when the correlation conditions (4) and (5) were or were not satisfied, we consider two
different weighting schemes, that is, different ways of setting the weights d j of the block `1-norm:
unit weights (which correspond to the unit trace weighting scheme) and adaptive weights as defined
in Section 4.

In Figure 1, we plot the regularization paths corresponding to 200 i.i.d. samples, computed by
the algorithm of Bach et al. (2004b). We only plot the values of the estimated variables η̂ j, j =
1, . . . ,m for the alternative formulation in Section 3.5, which are proportional to ‖ŵ j‖ and normal-
ized so that ∑m

j=1 η̂ j = 1. We compare them to the population values η j: both in terms of values,
and in terms of their sparsity pattern (η j is zero for the weights which are equal to zero). Figure 1
illustrates several of our theoretical results: (a) the top row corresponds to a situation where the
strict consistency condition is satisfied and thus we obtain model consistent estimates with also a
good estimation of the loading vectors (in the figure, only the behavior of the norms of these loading
vectors are represented); (b) the right column corresponds to the adaptive weighting schemes which
also always achieve the two type of consistency; (c) in the middle and bottom rows, the consistency
condition was not satisfied, and in the bottom row, the condition of Proposition 5, that ensures that
we can get model consistent estimates without regular consistency, is met, while it is not in the
middle row: as expected, in the bottom row, we get some model consistent estimates but with bad
norm estimation.

In Figure 2, 3 and 4, we consider the three joint distributions used in Figure 1 and compute
regularization paths for several number of samples (10 to 105) with 200 replications. This allows
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Figure 1: Regularization paths for the group Lasso for two weighting schemes (left: non adaptive,
right: adaptive) and three different population densities (top: strict consistency condition
satisfied, middle: weak condition not satisfied, no model consistent estimates, bottom:
weak condition not satisfied, some model consistent estimates but without regular con-
sistency). For each of the plots, plain curves correspond to values of estimated η̂ j, dotted
curves to population values η j, and bold curves to model consistent estimates.

us to estimate both the probability of correct pattern estimation P(J(ŵ) = J) which is considered in
Section 2.7, and the logarithm of the expected error logE‖ŵ−w‖2.

From Figure 2, it is worth noting (a) the regular spacing between the probability of correct
pattern selection for several equally spaced (in log scale) numbers of samples, which corroborates
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Figure 2: Synthetic example where consistency condition in Eq. (4) is satisfied (same example as
the top of Figure 1: probability of correct pattern selection (left) and logarithm of the ex-
pected mean squared estimation error (right), for several number of samples as a function
of the regularization parameter, for regular regularization (top), adaptive regularization
with γ = 1 (bottom).

the asymptotic result in Section 2.7. Moreover, (b) in both rows, we get model consistent estimates
with increasingly smaller norms as the number of samples grows. Finally, (c) the mean square errors
are smaller for the adaptive weighting scheme.

From Figure 3, it is worth noting that (a) in the non adaptive case, we have two regimes for the
probability of correct pattern selection: a regime corresponding to Proposition 6 where this probabil-
ity can take values in (0,1) for increasingly smaller regularization parameters (when n grows); and a
regime corresponding to non vanishing limiting regularization parameters corresponding to Propo-
sition 5: we have model consistency without regular consistency. Also, (b) the adaptive weighting
scheme allows both consistencies. In Figure 4 however, the second regime (correct model estimates,
inconsistent estimation of loadings) is not present.

In Figure 5, we sampled 10,000 different covariance matrices and loading vectors using the
procedure described above. For each of these we computed the regularization paths from 1000
samples, and we classify each path into three categories: (1) existence of model consistent esti-
mates with estimation error ‖ŵ−w‖ less than 10−1, (2) existence of model consistent estimates
but none with estimation error ‖ŵ−w‖ less than 10−1 and (3) non existence of model consistent
estimates. In Figure 5 we plot the proportion of each of the three class as a function of the loga-

rithm of maxi∈Jc
1
di

∥

∥

∥ΣXiXJΣ−1
XJXJ

Diag(d j/‖w j‖)wJ

∥

∥

∥. The position of the previous value with respect

to 1 is indicative of the expected model consistency. When it is less than one, then we get with
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Figure 3: Synthetic example where consistency condition in Eq. (5) is not satisfied (same example
as the middle of Figure 1: probability of correct pattern selection (left) and logarithm
of the expected mean squared estimation error (right), for several number of samples
as a function of the regularization parameter, for regular regularization (top), adaptive
regularization with γ = 1 (bottom).

overwhelming probability model consistent estimates with good errors. As the condition gets larger
than one, we get fewer such good estimates and more and more model inconsistent estimates.

5.2 Nonparametric Case

In the infinite dimensional group case, we sampled X ∈ R
m from a normal distribution with zero

mean vector and a covariance matrix of size m = 4, generated as follows: (a) sample a m×m matrix
G with independent standard normal distributions, (b) form ΣXX = GG>, (c) for each j ∈ {1, . . . ,m},
rescale X j ∈ R so that ΣX jX j = 1.

We use the same Gaussian kernel for each variable X j, k j(x j,x′j) = e−(x j−x′j)
2
, for j ∈ {1, . . . ,m}.

In this situation, as shown in Appendix E we can compute in closed form the eigenfunctions and
eigenvalues of the marginal covariance operators; moreover, assumptions (A4-7) are satisfied. We
then sample functions from random independent components on the first 10 eigenfunctions. Exam-
ples are given in Figure 6. Note that although we consider univariate variables, we still have infinite
dimensional Hilbert spaces.

In Figure 7, we plot the regularization paths corresponding to 1000 i.i.d. samples, computed by
the algorithm of Bach et al. (2004b). We only plot the values of the estimated variables η̂ j, j =
1, . . . ,m for the alternative formulation in Section 2.9, which are proportional to ‖ŵ j‖ and normal-
ized so that ∑m

j=1 η̂ j = 1. We compare them to the population values η j: both in terms of values,
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Figure 4: Synthetic example where consistency condition in Eq. (5) is not satisfied (same example
as the bottom of Figure 1: probability of correct pattern selection (left) and logarithm
of the expected mean squared estimation error (right), for several number of samples
as a function of the regularization parameter, for regular regularization (top), adaptive
regularization with γ = 1 (bottom).

and in terms of their sparsity pattern (η j is zero for the weights which are equal to zero). Figure 7
illustrates several of our theoretical results: (a) the top row corresponds to a situation where the
strict consistency condition is satisfied and thus we obtain model consistent estimates with also a
good estimation of the loading vectors (in the figure, only the behavior of the norms of these loading
vectors are represented); (b) in the bottom row, the consistency condition was not satisfied, and we
do not get good model estimates. Finally, (b) the right column corresponds to the adaptive weight-
ing schemes which also always achieve the two type of consistency. However, such schemes should
be used with care, as there is one added free parameter (the regularization parameter κ of the least-
square estimate used to define the weights): if chosen too large, all adaptive weights are equal, and
thus there is no adaptation, while if chosen too small, the least-square estimate may overfit.

6. Conclusion

In this paper, we have extended some of the theoretical results of the Lasso to the group Lasso, for
finite dimensional groups and infinite dimensional groups. In particular, under practical assumptions
regarding the distributions the data are sampled from, we have provided necessary and sufficient
conditions for model consistency of the group Lasso and its nonparametric version, multiple kernel
learning.
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Figure 6: Functions to be estimated in the synthetic nonparametric group Lasso experiments (left:
consistent case, right: inconsistent case).

The current work could be extended in several ways: first, a more detailed study of the limiting
distributions of the group Lasso and adaptive group Lasso estimators could be carried and then
extend the analysis of Zou (2006) or Juditsky and Nemirovski (2000) and Wu et al. (2007), in
particular regarding convergence rates. Second, our results should extend to generalized linear
models, such as logistic regression (Meier et al., 2006). Also, it is of interest to let the number m of
groups or kernels to grow unbounded and extend the results of Zhao and Yu (2006) and Meinshausen
and Yu (2006) to the group Lasso. Finally, similar analysis may be carried through for more general
norms with different sparsity inducing properties (Bach, 2008b).
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Figure 7: Regularization paths for the group Lasso for two weighting schemes (left: non adaptive,
right: adaptive) and two different population densities (top: strict consistency condition
satisfied, bottom: weak condition not satisfied. For each of the plots, plain curves corre-
spond to values of estimated η̂ j, dotted curves to population values η j, and bold curves
to model consistent estimates.
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Appendix A. Proof of Optimization Results

In this appendix, we give detailed proofs of the various propositions on optimality conditions and
dual problems.

A.1 Proof of Proposition 1

We rewrite problem in Eq. (1), in the form

min
w∈Rp, v∈Rm

1
2

Σ̂YY − Σ̂Y X w+
1
2

w>Σ̂XX w+λn

m

∑
j=1

d jv j,

with added constraints that ∀ j,‖w j‖ 6 v j. In order to deal with these constraints we use the tools
from conic programming with the second-order cone, also known as the “ice cream” cone (Boyd
and Vandenberghe, 2003). We consider the Lagrangian with dual variables (β j,γ j) ∈ R

p j ×R such
that ‖β j‖ 6 γ j:

L(w,v,β,γ) =
1
2

Σ̂YY − Σ̂Y X w+
1
2

w>Σ̂XX w+λnd>v−
m

∑
j=1

(

w j

v j

)>(β j

γ j

)

.

The derivatives with respect to primal variables are

∇wL(w,v,β,γ) = Σ̂XX w− Σ̂XY −β,

∇vL(w,v,β,γ) = λnd − γ.

At optimality, primal and dual variables are completely characterized by w and β. Since the dual and
the primal problems are strictly feasible, strong duality holds and the KKT conditions for reduced
primal/dual variables (w,β) are

∀ j, ‖β j‖ 6 λnd j (dual feasibility) ,

∀ j, β j = Σ̂X jX w− Σ̂X jY (stationarity) ,

∀ j, β>
j w j +‖w j‖λnd j = 0 (complementary slackness) .

Complementary slackness for the second order cone has special consequences: w>
j β j +‖w j‖λnd j =

0 if and only if (Boyd and Vandenberghe, 2003; Lobo et al., 1998), either (a) w j = 0, or (b) w j 6= 0,

‖β j‖= λnd j and ∃η j > 0 such that w j =−
η j

λn
β j (anti-proportionality), which implies β j =−w j

λnd j

‖w j‖

and η j = ‖w j‖/d j. This leads to the proposition.

A.2 Proof of Proposition 8

We follow the proof of Proposition 1 and of Bach et al. (2004a). We rewrite problem in Eq. (12), in
the form

min
w∈Rp, v∈Rm, t∈R

1
2

Σ̂YY − Σ̂Y X w+
1
2

w>Σ̂XX w+
1
2

µnt2,
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with constraints that ∀ j,‖w j‖ 6 v j and d>v 6 t. We consider the Lagrangian with dual variables
(β j,γ j) ∈ R

p j ×R and δ ∈ R+ such that ‖β j‖ 6 γ j, j = 1, . . . ,m:

L(w,v,β,γ,δ) =
1
2

Σ̂YY − Σ̂Y X w+
1
2

w>Σ̂XX w+
1
2

µnt2 −β>w− γ>v+δ(d>v− t).

The derivatives with respect to primal variables are

∇wL(w,v,β,γ) = Σ̂XX w− Σ̂XY −β,

∇vL(w,v,β,γ) = δd − γ,
∇tL(w,v,β,γ) = µnt −δ.

At optimality, primal and dual variables are completely characterized by w and β. Since the dual and
the primal problems are strictly feasible, strong duality holds and the KKT conditions for reduced
primal/dual variables (w,β) are

∀ j,β j = Σ̂X jX w− Σ̂X jY (stationarity - 1) ,

∀ j,
m

∑
j=1

d j‖w j‖ =
1
µn

max
i=1,...,m

‖βi‖

di
(stationarity - 2) , (21)

∀ j,

(

β j

d j

)>

w j +‖w j‖ max
i=1,...,m

‖βi‖

di
= 0 (complementary slackness) .

Complementary slackness for the second order cone implies that:

(

β j

d j

)>

w j +‖w j‖ max
i=1,...,m

‖βi‖

di
= 0,

if and only if, either (a) w j = 0, or (b) w j 6= 0 and ‖β j‖
d j

= max
i=1,...,m

‖βi‖

di
, and ∃η j > 0 such that

w j = −η jβ j/µn, which implies ‖w j‖ =
η jd j

µn
max

i=1,...,m

‖βi‖

di
.

By writing η j = 0 if w j = 0 (i.e., in order to cover all cases), we have from Eq. (21) ∑m
j=1 d j‖w j‖=

1
µn

max
i=1,...,m

‖βi‖

di
, which implies ∑m

j=1 d2
j η j = 1 and thus ∀ j, η j =

‖w j‖/d j

∑i di‖wi‖
. This leads to ∀ j,β j =

−w jµn/η j = −
w j

‖w j‖
∑n

i=1 di‖wi‖. The proposition follows.

A.3 Proof of Proposition 10

By following the usual proof of the representer theorem (Wahba, 1990), we obtain that each optimal
function f j must be supported by the data points, that is, there exists α = (α1, . . . ,αm) ∈ R

n×m such
that for all j = 1, . . . ,m, f j = ∑n

i=1 αi jk j(·,xi j). When using this representation back into Eq. (13),
we obtain an optimization problem that only depends on φ j = G>

j α j for j = 1, . . . ,m where G j de-
notes any square root of the kernel matrix K j, that is, K j = G jG>

j . This problem is exactly the finite
dimensional problem in Eq. (12), where X̄ j is replaced by G j and w j by φ j. Thus Proposition 8 ap-
plies and we can easily derive the current proposition by expressing all terms through the functions
f j. Note that in this proposition, we do not show that the α j, j = 1, . . . ,m, are all proportional to the
same vector, as is done in Appendix A.4.
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A.4 Proof of Proposition 13

We prove the proposition in the linear case. Going to the general case, can be done in the same
way as done in Appendix A.3. We denote by X̄ the covariate matrix in R

n×p; we simply need to
add a new variable u = X̄w+b1n and to “dualize” the added equality constraint. That is, we rewrite
problem in Eq. (12), in the form

min
w∈Rp, b∈R, v∈Rm, t∈R, u∈Rn

1
2n

‖Ȳ −u‖2 +
1
2

µnt2,

with constraints that ∀ j,‖w j‖ 6 v j, d>v 6 t and X̄w + b1n = u. We consider the Lagrangian with
dual variables (β j,γ j) ∈ R

p j ×R and δ ∈ R+ such that ‖β j‖ 6 γ j, and α ∈ R
n:

L(w,b,v,u,β,γ,α,δ) =
1
2n

‖Ȳ −u‖2 +µnα>(u− X̄w)+
1
2

µnt2 −
m

∑
j=1

{

β>
j w j + γ jv j

}

+δ(d>v− t).

The derivatives with respect to primal variables are

∇wL(w,v,u,β,γ,α) = −µnX̄>α−β,

∇vL(w,v,u,β,γ,α) = δd − γ,
∇tL(w,v,u,β,γ,α) = µnt −δ,

∇uL(w,v,u,β,γ,α) =
1
n
(u− Ȳ +µnnα),

∇bL(w,v,u,β,γ,α) = µnα>1n.

Equating them to zero, we get the dual problem in Eq. (18). Since the dual and the primal problems
are strictly feasible, strong duality holds and the KKT conditions for reduced primal/dual variables
(w,α) are

∀ j, X̄w− Ȳ +µnnα = 0 (stationarity - 1) ,

∀ j,
m

∑
j=1

d j‖w j‖ = max
i=1,...,m

(α>Kiα)1/2

di
(stationarity - 2) ,

α>1n = 0 (stationarity - 3) ,

∀ j,

(

−X̄>
j α

d j

)>

w j +‖w j‖ max
i=1,...,m

(α>Kiα)1/2

di
= 0 (complementary slackness) .

Complementary slackness for the second order cone goes leads to:
(

−X̄>
j α

d j

)>

w j +‖w j‖ max
i=1,...,m

(α>Kiα)1/2

di
= 0,

if and only if, either (a) w j = 0, or (b) w j 6= 0 and (α>K jα)1/2

d j
= max

i=1,...,m

(α>Kiα)1/2

di
, and ∃η j > 0

such that w j = −η j

(

−X̄>
j α
)

, which implies ‖w j‖ = η jd j max
i=1,...,m

(α>Kiα)1/2

di
.

By writing η j = 0 if w j = 0 (to cover all cases), we have from Eq. (22), ∑m
j=1 d j‖w j‖ =

max
i=1,...,m

(α>Kiα)1/2

di
, which implies ∑m

j=1 d2
j η j = 1. The proposition follows from the fact that at

optimality, ∀ j, w j = η jX̄>
j α.
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A.5 Proof of Proposition 14

What makes this proposition non obvious is the fact that the covariance operator ΣXX is not invertible
in general. From Proposition 13, we know that each f j must be of the form f j = η j ∑n

i=1 αik j(xi j, ·),
where α is uniquely defined. Moreover, η is such that

(

∑m
j=1 η jK j +nµnIn

)

α = Ȳ

and such that if α>K jα
d2

j
< A, then η j = 0 (where A = maxi=1,...,m

α>Kiα
d2

i
). Thus, if the solution is

not unique, there exists two vectors η 6= ζ such that η and ζ have zero components on indices
j such that α>K jα < Ad2

j (we denote by J the active set and thus Jc this set of indices), and
∑m

j=1(ζ j −η j)K jα = 0. This implies that the vectors ΠnK jα = ΠnK jΠnα, j ∈ J are linearly depen-
dent. Those vectors are exactly the centered vector of values of the functions g j = ∑n

i=1 αik j(xi j, ·) at
the observed data points. Thus, non unicity implies that the empirical covariance matrix of the ran-
dom variables g j(X j), j ∈ J, is non invertible. Moreover, we have ‖g j‖

2
F j

= α>K jα = d2
j A > 0 and

the empirical marginal variance of g j(X j) is equal to α>K2
j α > 0 (otherwise ‖g j‖

2
F j

= 0). By nor-
malizing by the (non vanishing) empirical standard deviations, we thus obtain functions such that
the empirical covariance matrix is singular, but the marginal empirical variance are equal to one.
Because the empirical covariance operator is a consistent estimator of ΣXX and CXX is invertible, we
get a contradiction, which proves the unicity of solutions.

Appendix B. Detailed Proofs for the Group Lasso

In this appendix, detailed proofs of the consistency results for the finite dimensional case (Theo-
rems 2 and 3) are presented. Some of the results presented in this appendix are corollaries of the
more general results in Appendix C, but their proofs in the finite dimensional case are much simpler.

B.1 Proof of Theorem 2

We begin with a lemma, which states that if we restrict ourselves to the covariates which we are
after (i.e., indexed by J), we get a consistent estimate as soon as λn tends to zero:

Lemma 20 Assume (A1-3). Let w̃J any minimizer of

1
2n

‖Ȳ − X̄JwJ‖
2 +λn ∑

j∈J
d j‖w j‖ =

1
2

Σ̂YY − Σ̂Y XJwJ +
1
2

w>
J Σ̂XJXJwJ +λn ∑

j∈J
d j‖w j‖.

If λn → 0, then w̃J converges to wJ in probability.

Proof If λn tends to zero, then the cost function defining w̃J converges to F(wJ) = 1
2 ΣYY −ΣY XJwJ +

1
2 w>

J ΣXJXJwJ whose unique (because ΣXJXJ is positive definite) global minimum is wJ (true generat-
ing value). The convergence of w̃J is thus a simple consequence of standard results in M-estimation
(Van der Vaart, 1998; Fu and Knight, 2000).

We now prove Theorem 2. Let w̃J be defined as in Lemma 20. We extend it by zeros on Jc. We
already know from Lemma 20 that we have consistency in squared norm. Since with probability
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tending to one, the problem has a unique solution (because ΣXX is invertible), we now need to prove
that the probability that w̃ is optimal for problem in Eq. (1) is tending to one.

By definition of w̃J, the optimality condition (3) is satisfied. We now need to verify optimality
condition (2), that is, that variables in Jc may actually be left out. Denoting ε = Y −w>X −b, we
have:

Σ̂XY = Σ̂XX w+ Σ̂Xε =
(

ΣXX +Op(n
−1/2)

)

w+Op(n
−1/2) = ΣXXJwJ +Op(n

−1/2),

because of classical results on convergence of empirical covariances to covariances (Van der Vaart,
1998), which are applicable because we have the fourth order moment condition (A1). We thus
have:

Σ̂XY − Σ̂XXJw̃J = ΣXXJ(wJ − w̃J)+Op(n
−1/2). (22)

From the optimality condition Σ̂XJY − Σ̂XJXJw̃J = λn Diag(d j/‖w̃ j‖)w̃J defining w̃J and Eq. (22), we
obtain:

w̃J −wJ = −λnΣ−1
XJXJ

Diag(d j/‖w̃ j‖)w̃J +Op(n
−1/2). (23)

Therefore,

Σ̂XJcY − Σ̂XJc XJw̃J = ΣXJc XJ(wJ − w̃J)+Op(n
−1/2) by Eq. (22) ,

= λnΣXJc XJΣ−1
XJXJ

Diag(d j/‖w̃ j‖)w̃J +Op(n
−1/2) by Eq. (23).

Since w̃ is consistent, and λnn1/2 → +∞, then for each i ∈ Jc,

1
diλn

(

Σ̂XiY − Σ̂XiXJw̃J
)

converges in probability to 1
di

ΣXiXJΣ−1
XJXJ

Diag(d j/‖w j‖)wJ which is of norm strictly smaller than
one because condition (4) is satisfied. Thus the probability that w̃ is indeed optimal, which is equal
to

P

{

∀i ∈ Jc,
1

diλn

∥

∥Σ̂XiY − Σ̂XiXJw̃J
∥

∥6 1

}

> ∏
i∈Jc

P

{

1
diλn

∥

∥Σ̂XiY − Σ̂XiXJw̃J
∥

∥6 1

}

,

is tending to 1, which implies the theorem.

B.2 Proof of Theorem 3

We prove the theorem by contradiction, by assuming that there exists i ∈ Jc such that

1
di

∥

∥

∥ΣXiXJΣ−1
XJXJ

Diag(d j/‖w j‖)wJ

∥

∥

∥> 1.

Since with probability tending to one J(ŵ) = J, with probability tending to one, we have from
optimality condition (3):

ŵJ = Σ̂−1
XJXJ

(

Σ̂XJY −λn Diag(d j/‖ŵ j‖)ŵJ
)

,

and thus

Σ̂XiY − Σ̂XiXJŵJ = (Σ̂XiY − Σ̂XiXJ Σ̂−1
XJXJ

Σ̂XJY )+λnΣ̂XiXJ Σ̂−1
XJXJ

Diag(d j/‖ŵ j‖)ŵJ

= An +Bn.
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The second term Bn in the last expression (divided by λn) converges to

v = ΣXiXJΣ−1
XJXJ

Diag(d j/‖w j‖)wJ ∈ R
pi ,

because ŵ is assumed to converge in probability to w and empirical covariance matrices converge
to population covariance matrices. By assumption ‖v‖ > di, which implies that the probability

P

{

(

v
‖v‖

)>
(Bn/λn) > (di +‖v‖)/2)

}

converges to one.

The first term is equal to (with εk = yk −w>xk −bk and ε̄ = 1
n ∑n

k=1 εk):

An = Σ̂XiY − Σ̂XiXJ Σ̂−1
XJXJ

Σ̂XJY

= Σ̂XiXJwJ − Σ̂XiXJ Σ̂−1
XJXJ

Σ̂XJXJwJ + Σ̂Xiε − Σ̂XiXJ Σ̂−1
XJXJ

Σ̂XJε

= Σ̂Xiε − Σ̂XiXJ Σ̂−1
XJXJ

Σ̂XJε

= Σ̂Xiε −ΣXiXJΣ−1
XJXJ

Σ̂XJε +op(n
−1/2)

=
1
n

n

∑
k=1

(εk − ε̄)
(

xki −ΣXiXJΣ−1
XJXJ

xkJ

)

+op(n
−1/2) = Cn +op(n

−1/2).

The random variable Cn is a is a U-statistic with square integrable kernel obtained from i.i.d.
random vectors; it is thus asymptotically normal (Van der Vaart, 1998). We thus simply need to
compute the mean and the variance of Cn. We have ECn = 0 because E(Xε) = ΣXε = 0. We denote
Dk = xki −ΣXiXJΣ−1

XJXJ
xkJ −

1
n ∑n

k=1 xki −ΣXiXJΣ−1
XJXJ

xkJ. We have:

var(Cn) = EC2
n = E(E(C2

n |X̄))

= E

[

1
n2

n

∑
k=1

E(ε2
k |X̄)DkD>

k

]

< E

[

1
n2

n

∑
k=1

σ2
minDkD>

k

]

=
1
n

σ2
minE

(

Σ̂XiXi −ΣXiXJΣ−1
XJXJ

Σ̂XJXi

)

=
n−1

n2 σ2
min

(

ΣXiXi −ΣXiXJΣ−1
XJXJ

ΣXJXi

)

,

where M < N denotes the partial order between symmetric matrices (i.e., equivalent to M − N
positive semidefinite).

Thus n1/2Cn is asymptotically normal with mean 0 and covariance matrix larger than

σ2
minΣXi|XJ = σ2

min × (ΣXiXi −ΣXiXJΣ−1
XJXJ

ΣXJXi)

which is positive definite (because this is the conditional covariance of Xi given XJ and ΣXX is as-
sumed invertible). Therefore P(n1/2v>An > 0) converges to a constant a ∈ (0,1), which implies

that P

{

v
‖v‖

>(An +Bn)/λn > (di +‖v‖)/2
}

is asymptotically bounded below by a. Thus, since

‖(An +Bn)/λn‖ > v
‖v‖

>(An + Bn)/λn > (di + ‖v‖)/2 > di implies that ŵ is not optimal, we get a
contradiction, which concludes the proof.
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B.3 Proof of Theorem 4

We first prove the following refinement of Lemma 20:

Lemma 21 Assume (A1-3). Let w̃J any minimizer of

1
2n

‖Ȳ − X̄JwJ‖
2 +λn ∑

j∈J
d j‖w j‖ =

1
2

Σ̂YY − Σ̂Y XJwJ +
1
2

w>
J Σ̂XJXJwJ +λn ∑

j∈J
d j‖w j‖.

If λn → 0 and λnn1/2 → ∞, then 1
λn

(w̃J −wJ) converges in probability to

∆ = −Σ−1
XJXJ

Diag(d j/‖w j‖)wJ.

Proof We follow Fu and Knight (2000) and write w̃J = wJ +λn∆̃. The vector ∆̃ is the minimizer of
the following function:

F(∆) = −Σ̂Y XJ(wJ +λn∆)+
1
2
(wJ +λn∆)>Σ̂XJXJ(wJ +λn∆)+λn ∑

j∈J
d j‖w j +λn∆ j‖

= −λnΣ̂Y XJ∆+
λ2

n

2
∆>Σ̂XJXJ∆+λnw>

J Σ̂XJXJ∆

+λn ∑
j∈J

d j (‖w j +λn∆ j‖−‖w j‖)+ cst

= −λnΣ̂εXJ∆+
λ2

n

2
∆>Σ̂XJXJ∆+λn ∑

j∈J
d j (‖w j +λn∆ j‖−‖w j‖)+ cst,

by using Σ̂Y XJ = w>
J Σ̂XJXJ + Σ̂εXJ . The first term is Op(n−1/2λn) = op(λ2

n), while the last ones are

equal to ‖w j +λn∆ j‖−‖w j‖ = λn

(

w j

‖w j‖

)>
∆ j +op(λn). Thus,

F(∆)/λ2
n =

1
2

∆>ΣXJXJ∆+ ∑
j∈J

d jw j

‖w j‖

>

∆ j +op(1).

By Lemma 20, ŵJ is Op(1) and the limiting function has an unique minimum; standard results in
M-estimation (Van der Vaart, 1998) shows that ∆̃ converges in probability to the minimum of the
last expression which is exactly ∆ = −Σ−1

XJXJ
Diag(d j/‖w j‖)wJ.

We now turn to the proof of Theorem 4. We follow the proof of Theorem 2. Given w̃ defined
through Lemma 20 and 21, we need to satisfy optimality condition (2) for all i ∈ Jc, with probability

tending to one. For all those i such that 1
di

∥

∥

∥ΣXiXJΣ−1
XJXJ

Diag(d j/‖w j‖)wJ

∥

∥

∥< 1, then we know from

Appendix B.1, that the optimality condition is indeed satisfied with probability tending to one. We

now focus on those i such that 1
di

∥

∥

∥
ΣXiXJΣ−1

XJXJ
Diag(d j/‖w j‖)wJ

∥

∥

∥
= 1, and for which we have the

condition in Eq. (6). From Eq. (23) and the few arguments that follow, we get that for all i ∈ Jc,

Σ̂XiY − Σ̂XiXJw̃J = λnΣXiXJΣ−1
XJXJ

Diag(d j/‖w̃ j‖)w̃J +Op(n
−1/2) (24)

1210



CONSISTENCY OF THE GROUP LASSO AND MULTIPLE KERNEL LEARNING

Moreover, we have from Lemma 21 and standard differential calculus, that is, the gradient and the

Hessian of the function v ∈ R
q 7→ ‖v‖ ∈ R are v/‖v‖ and 1

‖v‖

(

Iq −
vv>

v>v

)

:

w̃ j

‖w̃ j‖
=

w j

‖w j‖
+

λn

‖w j‖

(

Ip j −
w jw>

j

w>
j w j

)

∆ j +op(λn). (25)

From Eq. (24) and Eq. (25), we get:

1
λn

(Σ̂XiY − Σ̂XiXJw̃J) = Op(n
−1/2λ−1

n )+ΣXiXJΣ−1
XJXJ

{

Diag(d j/‖w j‖)wJ +λnΣXiXJΣ−1
XJXJ

Diag

[

d j/‖w j‖

(

Ip j −
w jw>

j

w>
j w j

)]

∆+op(λn)

}

= A+λnB+op(λn)+Op(n
−1/2λ−1

n ).

Since λn � n−1/4, we have Op(n−1/2λ−1
n ) = op(λn). Thus, since we assumed that ‖A‖ =

‖ΣXiXJΣ−1
XJXJ

Diag(d j/‖w j‖)wJ‖ = di, we have:

∥

∥

∥

∥

1
λn

(Σ̂XiY − Σ̂XiXJw̃J)

∥

∥

∥

∥

2

= ‖A‖2 +2λnA>B+op(λn)d
2
i +op(λn)

= d2
i +op(λn)

−2λn∆>ΣXJXiΣXiXJΣ−1
XJXJ

Diag

(

d j/‖w j‖(Ip j −
w jw>

j

w>
j w j

)

)

∆,

(note that we have A = −ΣXiXJ∆) which is asymptotically strictly smaller than d2
i if Eq. (6) is satis-

fied, which proves optimality and concludes the proof.

B.4 Proof of Proposition 6

As in the proof of Theorem 2 in Appendix B.1, we consider the estimate w̃ built from the reduced
problem by constraining w̃Jc = 0. We consider the following event:

E1 = {Σ̂XX invertible and ∀ j ∈ J, w̃ j 6= 0}.

This event has a probability converging to one. Moreover, if E1 is true, then the group Lasso estimate
has the correct sparsity pattern if and only if for all i ∈ Jc,

∥

∥Σ̂XiXJ(w̃J −wJ)− Σ̂Xiε
∥

∥6 λndi = λ0n−1/2di.

Moreover we have by definition of w̃J: Σ̂XJXJ(w̃J −wJ)− Σ̂XJε = −λn Diag(d j/‖w̃ j‖)w̃J, and thus,
we get:

Σ̂XiXJ(w̃J −wJ)− Σ̂Xiε

= Σ̂XiXJ Σ̂−1
XJXJ

Σ̂XJε − Σ̂Xiε −λ0n−1/2Σ̂XiXJ Σ̂−1
XJXJ

Diag(d j/‖w̃ j‖)w̃J

= ΣXiXJΣ−1
XJXJ

Σ̂XJε − Σ̂Xiε −λ0n−1/2ΣXiXJΣ−1
XJXJ

Diag(d j/‖w j‖)wJ +Op(n
−1)
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The random vector ΣXε ∈R
p is a multivariate U-statistic with square integrable kernel obtained from

i.i.d. random vectors; it is thus asymptotically normal (Van der Vaart, 1998) and we simply need
to compute its mean and variance. The mean is zero, and the variance is n−1

n2 σ2ΣXX = n−1σ2ΣXX +

o(n−1). This implies that the random vector s of size Card(Jc) defined by

si = n1/2‖Σ̂XiXJ(w̃J −wJ)− Σ̂Xiε‖,

is equal to

si =
∥

∥

∥
σΣXiXJΣ−1

XJXJ
uJ −σui −λ0ΣXiXJΣ−1

XJXJ
Diag(d j/‖w j‖)wJ

∥

∥

∥
+Op(n

−1/2)

= fi(u)+Op(n
−1/2),

where u = σ−1n−1/2Σ̂Xε and fi are deterministic continuous functions. The vector f (u) converges in
distribution to f (v) where v is normally distributed with mean zero and covariance matrix ΣXX . By
Slutsky’s lemma (Van der Vaart, 1998), this implies that the random vector s has the same limiting
distribution. Thus, the probability P(maxi∈Jc si/di 6 λ0) converges to

P

(

max
i∈Jc

1
di

∥

∥

∥
σ(ΣXiXJΣ−1

XJXJ
vJ − vi)−λ0ΣXiXJΣ−1

XJXJ
Diag(d j/‖w j‖)wJ

∥

∥

∥
6 λ0

)

.

Under the event E1 which has probability tending to one, we have correct pattern selection if and
only if maxi∈Jc si/di 6 λ0, which leads to

P

(

max
i∈Jc

1
di

∥

∥

∥σti −λ0ΣXiXJΣ−1
XJXJ

Diag(d j/‖w j‖)wJ

∥

∥

∥6 λ0

)

,

where ti = ΣXiXJΣ−1
XJXJ

vJ− vi. The vector t is normally distributed and a short calculation shows that
its covariance matrix is equal to ΣXJc XJc |XJ , which concludes the proof.

Appendix C. Detailed Proofs for the Nonparametric Formulation

We first prove lemmas that will be useful for further proofs, and then prove the consistency results
for the nonparametric case.

C.1 Useful Lemmas on Empirical Covariance Operators

We first have the following lemma, proved by Fukumizu et al. (2007), which states that the empir-
ical covariance estimator converges in probability at rate Op(n−1/2) to the population covariance
operators:

Lemma 22 Assume (A4) and (A6). Then ‖Σ̂XX −ΣXX‖F = Op(n−1/2) (for the operator norm),
‖Σ̂XY −ΣXY‖F = Op(n−1/2) and ‖Σ̂Xε‖F = Op(n−1/2).

The following lemma is useful in several proofs:

Lemma 23 Assume (A4). Then
∥

∥

∥

(

Σ̂XX +µnI
)−1ΣXX−(ΣXX +µnI)−1 ΣXX

∥

∥

∥

F
= Op(

µ−1
n

n1/2 ), and
∥

∥

∥

(

Σ̂XX +µnI
)−1 Σ̂XX − (ΣXX +µnI)−1 ΣXX

∥

∥

∥

F
= Op(

µ−1
n

n1/2 ).
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Proof We have:
(

Σ̂XX +µnI
)−1 ΣXX − (ΣXX +µnI)−1 ΣXX

=
(

Σ̂XX +µnI
)−1

(ΣXX − Σ̂XX)(ΣXX +µnI)−1 ΣXX .

This is the product of operators whose norms are respectively upper bounded by µ−1
n , Op(n−1/2) and

1, which leads to the first inequality (we use ‖AB‖F 6 ‖A‖F ‖B‖F ). The second inequality follows
along similar lines.

Note that the two previous lemma also hold for any suboperator of ΣXX , that is, for ΣXJXJ , or ΣXiXi .

Lemma 24 Assume (A4), (A5) and (A7). There exists hJ ∈ FJ such that fJ = Σ1/2
XJXJ

hJ.

Proof The range condition implies that

fJ = Diag(Σ1/2
X jX j

)gJ = Diag(Σ1/2
X jX j

)C1/2
XJXJ

C−1/2
XJXJ

gJ

(because CXX is invertible). The result follows from the identity

ΣXJXJ = Diag(Σ1/2
X jX j

)C1/2
XJXJ

(Diag(Σ1/2
X jX j

)C1/2
XJXJ

)∗

and the fact that if ΣXJXJ =UU∗ and f =Uα then there exists β such that f = Σ1/2
XJXJ

β (Baker, 1973).5

C.2 Proof of Theorem 11

We now extend Lemma 20 to covariance operators, which requires to use the alternative formulation
and a slower rate of decrease for the regularization parameter:

Lemma 25 Let f̃J be any minimizer of

1
2

Σ̂YY −〈Σ̂XJY , fJ〉FJ +
1
2
〈 fJ, Σ̂XJXJ fJ〉FJ +

µn

2

(

∑
j∈J

d j‖ f j‖F j

)2

.

If µn → 0 and µnn1/2 → +∞, then ‖ f̃J − fJ‖FJ converges to zero in probability. Moreover for any ηn

such that ηn � µ1/2
n +µ−1

n n−1/2 then ‖ f̃J − fJ‖FJ = Op(ηn).

Proof Note that from Cauchy-Schwarz inequality, we have:

(

∑
j∈J

d j‖ f j‖F j

)2

=



∑
j∈J

d1/2
j ‖f j‖

1/2
F j

×
d1/2

j ‖ f j‖F j

‖f j‖
1/2
F j





2

6

(

∑
j∈J

d j‖f j‖F j

)

∑
j∈J

d j‖ f j‖
2
F j

‖f j‖F j

,

5. The adjoint operator V ∗ of V : Fi → FJ is so that for all f ∈ Fi and g ∈ FJ, 〈 f ,Vg〉Fi
= 〈V ∗ f ,g〉FJ (Brezis, 1980).
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with equality if and only if there exists α > 0 such that ‖ f j‖F j = α‖f j‖F j for all j ∈ J. We consider
the unique minimizer f̄J of the following cost function, built by replacing the regularization by its
upperbound,

F( fJ) =
1
2

Σ̂YY −〈Σ̂XJY , fJ〉FJ +
1
2
〈 fJ, Σ̂XJXJ fJ〉FJ +

µn

2

(

∑
j∈J

d j‖f j‖F j

)

∑
j∈J

d j‖ f j‖
2
F j

‖f j‖F j

.

Since it is a regularized least-square problem, we have (with ε = Y −∑ j∈J f j(X)−b):

f̄J =
(

Σ̂XJXJ +µnD
)−1 (Σ̂XJXJfJ + Σ̂XJε

)

,

where D =
(

∑ j∈J d j‖f j‖
)

Diag(d j/‖f j‖). Note that D is upperbounded and lowerbounded, as an
auto-adjoint operator, by strictly positive constants times the identity operator (with probability
tending to one), that is, DmaxIFJ < D < DminIFJ with Dmin,Dmax > 0. We now prove that f̄J − fJ is
converging to zero in probability. We have:

(

Σ̂XJXJ +µnD
)−1 Σ̂XJε = Op(n

−1/2µ−1
n ),

because of Lemma 22 and
∥

∥

∥

(

Σ̂XJXJ +µnD
)−1
∥

∥

∥

FJ

6 D−1
minµ−1

n . Moreover, similarly, we have

(

Σ̂XJXJ +µnD
)−1 Σ̂XJXJ fJ −

(

Σ̂XJXJ +µnD
)−1 ΣXJXJfJ = Op(n

−1/2µ−1
n ).

Besides, by Lemma 23,

(

Σ̂XJXJ +µnD
)−1 ΣXJXJ fJ −

(

ΣXJXJ +µnD
)−1 ΣXJXJ fJ = Op(n

−1/2µ−1
n ).

Thus f̄J − fJ = V +Op(n−1/2µ−1
n ), where

V =
[

(

ΣXJXJ +µnD
)−1 ΣXJXJ − I

]

fJ = −
(

ΣXJXJ +µnD
)−1

µnDfJ.

We have

‖V‖2
FJ

= µ2
n〈fJ,D

(

ΣXJXJ +µnD
)−2

DfJ〉FJ

6 D2
maxµ2

n〈fJ,
(

ΣXJXJ +µnDminI
)−2 fJ〉FJ

6 D2
maxµn〈fJ,

(

ΣXJXJ +µnDminI
)−1 fJ〉FJ

6 D2
maxµn〈hJ,ΣXJXJ

(

ΣXJXJ +µnDminI
)−1 hJ〉FJ by Lemma 24,

6 D2
maxµn‖hJ‖

2
FJ

.

Finally we obtain ‖ f̄J − fJ‖FJ = Op(µ
1/2
n +n−1/2µ−1

n ).

We now consider the cost function defining f̃J:

Fn( fJ) =
1
2

Σ̂YY −〈Σ̂XJY , fJ〉FJ +
1
2
〈 fJ, Σ̂XJXJ fJ〉FJ +

µn

2

(

∑
j∈J

d j‖ f j‖F j

)2

.
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We have (note that although we seem to take infinite dimensional derivatives, everything can be
done in the finite subspace spanned by the data):

Fn( fJ)−F( fJ) =
µn

2





(

∑
j∈J

d j‖ f j‖F j

)2

−

(

∑
j∈J

d j‖f j‖F j

)

∑
j∈J

d j‖ f j‖
2
F j

‖f j‖F j



 ,

∇ fiFn( fJ)−∇ fiF( fJ) = µn

[(

∑
j∈J

d j‖ f j‖F j

)

di fi

‖ fi‖F j

−

(

∑
j∈J

d j‖f j‖F j

)

di fi

‖fi‖F j

]

.

Since the right hand side of the previous equation corresponds to a continuously differentiable func-
tion of fJ around fJ (with upper-bounded derivatives around fJ), we have:

‖∇ fiFn( f̄J)−0‖Fi 6 Cµn‖fJ − f̄J‖FJ = µnOp(µ
1/2
n +n−1/2µ−1

n ).

for some constant C > 0. Moreover, on the ball of center f̄J and radius ηn such that ηn � µ1/2
n +

µ−1
n n−1/2 (to make sure that it asymptotically contains fJ, which implies that on the ball each f j,

j ∈ J are bounded away from zero), and ηn � 1 (so that we get consistency), we have a lower bound
on the second derivative of

(

∑ j∈J d j‖ f j‖F j

)

. Thus for any element of the ball,

Fn( fJ) > Fn( f̄J)+ 〈∇ fJFn( f̄J),( fJ − f̄J)〉FJ +C′µn‖ fJ − f̄J‖
2
FJ

,

where C′ > 0 is a constant. This implies that the value of Fn( fJ) on the edge of the ball is larger than

Fn( f̄J)+ηnµnOp(µ
1/2
n +n−1/2µ−1

n )+C′η2
nµn,

Thus if η2
nµn � ηnµ3/2

n and η2
nµn � n−1/2ηn, then we must have all minima inside the ball of

radius ηn (because with probability tending to one, the value on the edge is greater than one value
inside and the function is convex) which implies that the global minimum of Fn is at most ηn away
from f̄J and thus since f̄J is O(µ1/2

n ) away from fJ, we have the consistency if

ηn � 1 and ηn � µ1/2
n +n−1/2µ−1

n ,

which concludes the proof of the lemma.

We now prove Theorem 11. Let f̃J be defined as in Lemma 20. We extend it by zeros on Jc. We
already know the squared norm consistency by Lemma 20. Since by Proposition 14, the solution is
unique with probability tending to one, we need to prove that with probability tending to one f̃ is
optimal for problem in Eq. (13). We have by the first optimality condition for f̃J:

Σ̂XJY − Σ̂XJXJ f̃J = µn‖ f̃‖d Diag(d j/‖ f̃ j‖) f̃J,

where we use the notation ‖ f‖d = ∑m
j=1 d j‖ f j‖F j (note the difference with the norm ‖ f‖F =

(∑m
j=1 ‖ f j‖

2
F j

)1/2). We thus have by solving for f̃J and using Σ̂XJY = Σ̂XJXJfJ + Σ̂XJε:

f̃J =
(

Σ̂XJXJ +µnDn
)−1 (Σ̂XJXJfJ + Σ̂XJε

)

,
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with the notation Dn = ‖ f̃‖d Diag(d j/‖ f̃ j‖F j). We can now put that back into Σ̂XJcY − Σ̂XJc XJ f̃J and
show that this will have small enough norm with probability tending to one. We have for all i ∈ Jc:

Σ̂XiY − Σ̂XiXJ f̃J = Σ̂XiY − Σ̂XiXJ

(

Σ̂XJXJ +µnDn
)−1 (Σ̂XJXJfJ + Σ̂XJε

)

= −Σ̂XiXJ

(

Σ̂XJXJ +µnDn
)−1 Σ̂XJXJfJ

+Σ̂XiY − Σ̂XiXJ

(

Σ̂XJXJ +µnDn
)−1 Σ̂XJε

= −Σ̂XiXJfJ + Σ̂XiXJ

(

Σ̂XJXJ +µnDn
)−1

µnDnfJ

+Σ̂XiY − Σ̂XiXJ

(

Σ̂XJXJ +µnDn
)−1 Σ̂XJε

= Σ̂XiXJ

(

Σ̂XJXJ +µnDn
)−1

µnDnfJ

+Σ̂Xiε − Σ̂XiXJ

(

Σ̂XJXJ +µnDn
)−1 Σ̂XJε (26)

= An +Bn.

The first term An (divided by µn) is equal to

An

µn
= Σ̂XiXJ

(

Σ̂XJXJ +µnDn
)−1

DnfJ.

We can replace Σ̂XiXJ in An
µn

by ΣXiXJ at cost Op(n−1/2µ−1/2
n ) because 〈fJ,Σ−1

XJXJ
fJ〉FJ < ∞ (by Lemma 24).

Also, we can replace Σ̂XJXJ in An
µn

by ΣXJXJ at cost Op(n−1/2µ−1
n ) as a consequence of Lemma 23.

Those two are op(1) by assumptions on µn. Thus,

An

µn
= ΣXiXJ

(

ΣXJXJ +µnDn
)−1

DnfJ +op(1).

Furthermore, we denote D = ‖f‖d Diag(d j/‖f j‖F j). From Lemma 25, we know that Dn−D = op(1).
Thus we can replace Dn by D at cost op(1) to get:

An

µn
= ΣXiXJ

(

ΣXJXJ +µnD
)−1

DfJ +op(1) = Cn +op(1).

We now show that this last deterministic term Cn ∈ Fi converges to:

C = Σ1/2
XiXi

CXiXJC
−1
XJXJ

DgJ,

where, from (A7), ∀ j ∈ J, f j = Σ1/2
X jX j

g j. We have

Cn −C = Σ1/2
XiXi

CXiXJ

[

Diag(Σ1/2
X jX j

)
(

ΣXJXJ +µnD
)−1

Diag(Σ1/2
X jX j

)−C−1
XJXJ

]

DgJ

= Σ1/2
XiXi

CXiXJKnDgJ.

where Kn = Diag(Σ1/2
X jX j

)
(

ΣXJXJ +µnD
)−1

Diag(Σ1/2
X jX j

)−C−1
XJXJ

. In addition, we have:

Diag(Σ1/2
X jX j

)CXJXJKn = ΣXJXJ

(

ΣXJXJ +µnD
)−1

Diag(Σ1/2
X jX j

)−Diag(Σ1/2
X jX j

)

= −µnD
(

ΣXJXJ +µnD
)−1

Diag(Σ1/2
X jX j

).
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Following Fukumizu et al. (2007), the range of the adjoint operator
(

Σ1/2
XiXi

CXiXJ

)∗
=CXJXiΣ

1/2
XiXi

is in-

cluded in the closure of the range of Diag(ΣX jX j) (which is equal to the range of ΣXJXJ by Lemma 24).

For any vJ∈FJ in the intersection of two ranges, we have vJ =CXJXJ Diag(Σ1/2
X jX j

)uJ (note that CXJXJ

is invertible), and thus

〈KnDgJ,vJ〉FJ = 〈KnDgJ,CXJXJ Diag(Σ1/2
X jX j

)uJ〉FJ

= 〈−µnD
(

ΣXJXJ +µnD
)−1

Diag(Σ1/2
X jX j

)DgJ,uJ〉FJ

which is Op(µ
1/2
n ) and thus tends to zero. Since this holds for all elements in the intersection of the

ranges, Lemma 9 by Fukumizu et al. (2007) implies that ‖Cn −C‖FJ converges to zero.

We now simply need to show that the second term Bn is dominated by µn. We have: ‖Σ̂Xiε‖Fi =

Op(n−1/2) and ‖Σ̂XiXJ

(

Σ̂XJXJ +µnDn
)−1 Σ̂XJε‖Fi 6 ‖Σ̂Xiε‖Fi , thus, since µnn1/2 → +∞, Bn = op(µn)

and therefore for for each i ∈ Jc,

1
diµn‖f‖d

(

Σ̂XiY − Σ̂XiXJ f̃J
)

converges in probability to ‖C‖FJ/di‖f‖d which is strictly smaller than one because Eq. (16) is
satisfied. Thus

P

{

1
diµn‖f‖d

∥

∥Σ̂XiY − Σ̂XiXJ f̃J
∥

∥

Fi
6 1

}

is tending to 1, which implies the theorem (using the same arguments than in the proof of Theorem 2
in Appendix B.1).

C.3 Proof of Theorem 12

Before proving the analog of the second group Lasso theorem, we need the following additional
proposition, which states that consistency of the patterns can only be achieved if µnn1/2 → ∞ (even
if chosen in a data dependent way).

Proposition 26 Assume (A4-7) and that J is not empty. If f̂ is converging in probability to f and
J( f̂ ) converges in probability to J, then µnn1/2 → ∞ in probability.

Proof We give a proof by contradiction, and we thus assume that there exists M > 0 such that
liminfn→∞ P(µnn1/2 < M) > 0. This imposes that there exists a subsequence which is almost surely
bounded by M (Durrett, 2004). Thus, we can take a further subsequence which converges to a limit
µ0 ∈ [0,∞). We now consider such a subsequence (and still use the notation of the original sequence
for simplicity).

With probability tending to one, we have the optimality condition (15):

Σ̂XJε + Σ̂XJXJfJ = Σ̂XJY = Σ̂XJXJ f̂J +µn‖ f̂‖d Diag(d j/‖ f̂ j‖F j) f̂J.

If we denote Dn = n1/2µn‖ f̂‖d Diag(d j/‖ f̂ j‖F j), we get:

DnfJ =
[

Σ̂XJXJ +Dnn−1/2
]

n1/2 [fJ − f̂J
]

+n1/2Σ̂XJε,
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which can be approximated as follows (we denote D = ‖f‖d Diag(d j/‖f j‖F j)):

µ0DfJ +op(1) = ΣXJXJn1/2 [fJ − f̂J
]

+op(1)+n1/2Σ̂XJε.

We can now write for i ∈ Jc:

n1/2 (Σ̂XiY − Σ̂XiXJ f̂J
)

= n1/2Σ̂Xiε + Σ̂XiXJn1/2(fJ − f̂J)

= n1/2Σ̂Xiε +ΣXiXJn1/2(fJ − f̂J)+op(1).

We now consider an arbitrary vector wJ ∈ FJ, such that ΣXJXJwJ is different from zero (such vector
exists because ΣXJXJ 6= 0, as we have assumed in (A4) that the variables are not constant). Since
the range of ΣXJXi is included in the range of ΣXJXJ (Baker, 1973), there exists vi ∈ Fi such that

ΣXJXivi = ΣXJXJwJ. Note that since ΣXJXJwJ is different from zero, we must have Σ1/2
XiXi

vi 6= 0. We
have:

n1/2〈vi, Σ̂XiY − Σ̂XiXJ f̂J〉Fi = n1/2〈vi, Σ̂Xiε〉Fi + 〈wJ,ΣXJXJn1/2(fJ − f̂J)〉FJ +op(1)

= n1/2〈vi, Σ̂Xiε〉Fi + 〈wJ,µ0D fJ −n1/2Σ̂XJε〉FJ +op(1)

= 〈wJ,µ0D fJ〉FJ +n1/2〈vi, Σ̂Xiε〉Fi−n1/2〈wJ, Σ̂XJε〉FJ +op(1).

The random variable En = n1/2〈vi, Σ̂Xiε〉−n1/2〈wJ, Σ̂XJε〉 is a U-statistic with square integrable kernel
obtained from i.i.d. random vectors; it is thus asymptotically normal (Van der Vaart, 1998) and we
simply need to compute its mean and variance. The mean is zero and a short calculation similar to
the one found in the proof of Theorem 3 in Appendix B.2 shows that we have:

EE2
n > (1−1/n)σ2

min〈vi,ΣXiXivi〉Fi +σ2
min〈wJ,ΣXJXJwJ〉FJ −2σ2

min〈vi,ΣXiXJwJ〉Fi

= (1−1/n)(σ2
min〈vi,ΣXiXivi〉Fi −σ2

min〈vi,ΣXiXJwJ〉Fi).

The operator C−1
XJXJ

CXJXi has the same range as CXJXJ (because CXX is invertible), and is thus included

in the closure of the range of Diag(Σ1/2
X jX j

) (Baker, 1973). Thus, for any u ∈ Fi, C−1
XJXJ

CXJXiu can be

expressed as a limit of terms of the form Diag(Σ1/2
X jX j

)t where t ∈ FJ. We thus have that

〈u,CXiXJ Diag(Σ1/2
X jX j

)wJ〉Fi = 〈u,CXiXJC
−1
XJXJ

CXJXJ Diag(Σ1/2
X jX j

)wJ〉Fi

can be expressed as a limit of terms of the form

〈t,Diag(Σ1/2
X jX j

)CXJXJ Diag(Σ1/2
X jX j

)wJ〉FJ = 〈t,ΣXJXJwJ〉FJ = 〈t,ΣXJXivi〉FJ

= 〈t,Diag(Σ1/2
X jX j

)CXJXiΣ
1/2
XiXi

vi〉FJ → 〈u,CXiXJC
−1
XJXJ

CXJXiΣ
1/2
XiXi

vi〉Fi .

This implies that CXiXJ Diag(Σ1/2
X jX j

)wJ = CXiXJC
−1
XJXJ

CXJXiΣ
1/2
XiXi

vi, and thus we have:

EE2
n > σ2

min〈vi,ΣXiXivi〉Fi −σ2
min〈vi,Σ

1/2
XiXi

CXiXJ Diag(Σ1/2
X jX j

)wJ〉Fi

= σ2
min〈vi,ΣXiXivi〉Fi −σ2

min〈vi,Σ
1/2
XiXi

CXiXJC
−1
XJXJ

CXJXiΣ
1/2
XiXi

vi〉Fi

= σ2
min〈Σ

1/2
XiXi

vi,(IFi −CXiXJC
−1
XJXJ

CXJXi)Σ
1/2
XiXi

vi〉Fi .
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By assumption (A5), the operator IFi −CXiXJC
−1
XJXJ

CXJXi is lower bounded by a strictly positive con-

stant times the identity matrix, and thus, since Σ1/2
XiXi

vi 6= 0, we have EE2
n > 0. This implies that

n1/2〈vi, Σ̂XiY − Σ̂XiXJ f̂J〉 converges to a normal distribution with strictly positive variance. Thus the
probability P

(

n1/2〈vi, Σ̂XiY − Σ̂XiXJ f̂J〉Fi > di‖ f̂‖d‖vi‖Fi +1
)

converges to a strictly positive limit
(note that ‖ f̂‖d can be replaced by ‖f‖d without changing the result). Since µnn1/2 → µ0 < ∞, this
implies that

P
(

µ−1
n 〈vi, Σ̂XiY − Σ̂XiXJ f̂J〉Fi > di‖ f̂‖d‖vi‖Fi

)

is asymptotically strictly positive (i.e., has a strictly positive liminf). Thus the optimality condi-
tion (14) is not satisfied with non vanishing probability, which is a contradiction and proves the
proposition.

We now go back to the proof of Theorem 12. We prove by contradiction, by assuming that there
exists i ∈ Jc such that

1
di

∥

∥

∥
Σ1/2

XiXi
CXiXJC

−1
XJXJ

Diag(d j/‖f j‖F j)gJ

∥

∥

∥

Fi

> 1.

Since with probability tending to one J( f̂ ) = J, with probability tending to one, we have from
optimality condition (15), and the usual line of arguments (see Eq. (26) in Appendix B.2) that for
every i ∈ Jc:

Σ̂XiY − Σ̂XiXJ f̂J = µnΣ̂XiXJ

(

Σ̂XJXJ +µnDn
)−1

Dnf

+Σ̂Xiε − Σ̂XiXJ

(

Σ̂XJXJ +µnDn
)−1 Σ̂XJε,

where Dn = ‖ f̂‖d Diag(d j/‖ f̂ j‖). Following the same argument as in the proof of Theorem 11,
(and because µnn1/2 → +∞ as a consequence of Proposition 26), the first term in the last expression
(divided by µn) converges to

vi = Σ1/2
XiXi

CXiXJC
−1
XJXJ

‖f‖d Diag(d j/‖f j‖F j)gJ

By assumption ‖vi‖ > di‖f‖d . We have the second term:

Σ̂Xiε − Σ̂XiXJ

(

Σ̂XJXJ +µn‖ f̂‖d Diag(d j/‖ f̂ j‖F j)
)−1 Σ̂XJε

= Op(n
−1/2)− Σ̂XiXJ

(

Σ̂XJXJ +µn‖f‖d Diag(d j/‖f j‖F j)
)−1 Σ̂XJε +Op(n

−1/2).

The remaining term can be bounded as follows (with D = ‖f‖d Diag(d j/‖f j‖F j)):

E

(

∥

∥

∥
Σ̂XiXJ

(

Σ̂XJXJ +µnD
)−1 Σ̂XJε

∥

∥

∥

2

Fi

|X̄

)

6
σ2

max

n
trΣ̂XiXJ

(

Σ̂XJXJ +µnD
)−1 Σ̂XJXJ

(

Σ̂XJXJ +µnD
)−1 Σ̂XJXi

6
σ2

max

n
trΣ̂XiXi ,
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which implies that the full expectation is O(n−1) (because our operators are trace-class, that is, have
finite trace). Thus the remaining term is Op(n−1/2) and thus negligible compared to µn, therefore

1
µn‖ f̂‖d

(

Σ̂XiY − Σ̂XiXJ f̂J
)

converges in probability to a limit which is of norm strictly greater than di.

Thus there is a non vanishing probability of being strictly larger than di, which implies that with non
vanishing probability, the optimality condition (14) is not satisfied, which is a contradiction. This
concludes the proof.

C.4 Proof of Proposition 15

Note that the estimator defined in Eq. (20) is exactly equal to

∥

∥Σ̂XiXJ(Σ̂XJXJ +κnI)−1 Diag(d j/‖( f̂ LS
κn

) j‖F j)( f̂ LS
κn

)J
∥

∥

Fi
.

Using Proposition 17 and the arguments from Appendix C.2 by replacing f̃ by F̂LS, we get the
consistency result.

C.5 Range Condition of Covariance Operators

We denote by C(q) the convolution operator by q on the space of real functions on R
p and T (p)

the pointwise multiplication by p(x). In this appendix, we look at different Hilbertian products of
functions on R

p, we use the notations 〈·, ·〉F and 〈·, ·〉L2(pX ) and 〈·, ·〉L2(Rp) for the dot products in
the RKHS F , the space L2(pX) of square integrable functions with respect to p(x)dx, and the space
L2(Rp) of square integrable functions with respect to the Lebesgue measure. With our assumptions,
for all f̃ , g̃ ∈ L2(Rp), we have:

〈 f̃ , g̃〉L2 = 〈C(q)1/2 f̃ ,C(q)1/2g̃〉F .

Denote by {λk}k≥1 and {ek}k≥1 the positive eigenvalues and the eigenvectors of the covariance
operator ΣXX , respectively. Note that since pX(x) was assumed to be strictly positive, all eigenvalues
are strictly positive (the RKHS cannot contain any non zero constant functions on R

p). For k > 1,
set fk = λ−1/2

k (ek −
R

Rp ek(x)pX(x)dx). By construction, for any k, ` > 1,

λkδk,` = 〈ek,Σe`〉F =
Z

Rp
pX(x)(ek −

R

Rp ek(x)pX(x)dx)(e`−
R

Rp e`(x)pX(x)dx)dx

= λ1/2
k λ1/2

`

Z

Rp
pX(x) fk(x) f`(x)dx = λ1/2

k λ1/2
` 〈 fk, f`〉L2(pX ) .

Thus { fk}k>1 is an orthonormal sequence in L2(pX). Let f = C(q)g for g ∈ L2(Rp) such that
R

Rp g(x)dx = 0. Note that f is in the range of Σ1/2
XX if and only if 〈 f ,Σ−1 f 〉F is finite. We have:

〈 f ,Σ−1 f 〉F =
∞

∑
p=1

λ−1
p 〈ep, f 〉2

F =
∞

∑
p=1

λ−1
p 〈ep,g〉

2
L2(Rp) =

∞

∑
p=1

λ−1
p

(

Z

Rp
g(x)ep(x)dx

)2

=
∞

∑
p=1

〈

p−1
X g, fp

〉2
L2(pX )

6 ‖p−1
X g‖2

L2(pX ) =
Z

Rp

g2(x)
pX(x)

dx,

because { fk}k>1 is an orthonormal sequence in L2(pX). This concludes the proof.
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Appendix D. Proof of Results on Adaptive Group Lasso

In this appendix, we give proofs of the consistency of the adaptive group Lasso procedures.

D.1 Proof of Theorem 16

We define w̃ as the minimizer of the same cost function restricted to wJc = 0. Because ŵLS is
consistent, the norms of ŵLS

j for j ∈ J are bounded away from zero, and we get from standard
results on M-estimation (Van der Vaart, 1998) the normal limit distribution with given covariance
matrix if µn � n−1/2.

Moreover, the patterns of zeros (which is obvious by construction of w̃) converges in probability.
What remains to be shown is that with probability tending to one, w̃ is optimal for the full problem.
We just need to show that with probability tending to one, for all i ∈ Jc,

‖Σ̂Xiε − Σ̂XiXJ(w̃J −wJ)‖ 6 µn‖w̃‖d‖ŵLS
i ‖−γ. (27)

Note that ‖w̃‖d converges in probability to ‖w‖d > 0. Moreover, ‖ŵLS
i −wi‖ = Op(n−1/2). Thus,

if i ∈ Jc, that is, if fi = 0, then ‖ŵLS
i ‖ = Op(n−1/2). The left hand side in Eq. (27) is thus upper

bounded by Op(n−1/2) while the right hand side is lower bounded asymptotically by µnnγ/2. Thus
if n−1/2 = o(µnnγ/2), then with probability tending to one we get the correct optimality condition,
which concludes the proof.

D.2 Proof of Proposition 17

We have:
f̂ LS
κn

=
(

Σ̂XX +κnIF
)−1 Σ̂XY ,

and thus:

f̂ LS
κn

− f =
(

Σ̂XX +κnIF
)−1 Σ̂XX f− f+

(

Σ̂XX +κnIF
)−1 Σ̂Xε

= (ΣXX +κnI)−1 ΣXX f− f+Op(n
−1/2κ−1

n ) from Lemma 23

= −(ΣXX +κnIF )−1 κnf+Op(n
−1/2κ−1

n ).

Since f = Σ1/2
XX g, we have ‖− (ΣXX +κnIF )−1 κnf‖2

F 6 Cκn‖g‖2
F , which concludes the proof.

D.3 Proof of Theorem 18

We define f̃ as the minimizer of the same cost function restricted to fJc = 0. Because f̂ LS
n−1/3 is

consistent, the norms of ( f̂ LS
n−1/3) j for j ∈ J are bounded away from zero, and Lemma 25 applies with

µn = µ0n−1/3, that is, f̃ converges in probability to f and so are the patterns of zeros (which is obvious
by construction of f̃ ). Moreover, for any η > 0, from Lemma 25, we have ‖ f̃J− fJ‖= Op(n−1/6+η)

(because µ−1/2
n +n−1/2µ−1

n = Op(n−1/6)).
What remains to be shown is that with probability tending to one, f̃ is optimal for the full

problem. We just need to show that with probability tending to one, for all i ∈ Jc,

‖Σ̂Xiε − Σ̂XiXJ( f̃J − fJ)‖ 6 µn‖ f̃‖d‖( f̂ LS
n−1/3)i‖

−γ
Fi

. (28)

Note that ‖ f̃‖d converges in probability to ‖f‖d > 0. Moreover, by Proposition 17, ‖( f̂ LS
n−1/3)i− fi‖=

Op(n−1/6). Thus, if i ∈ Jc, that is, if fi = 0, then ‖( f̂ LS
n−1/3)i‖Fi = Op(n−1/6). The left hand side in
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Eq. (28) is thus upper bounded by Op(n−1/2 +n−1/6+η) while the right hand side is lower bounded
asymptotically by n−1/3nγ/6. Thus if −1/6+η < −1/3+ γ/6, then with probability tending to one
we get the correct optimality condition. As soon as γ > 1, we can find η small enough and strictly
positive, which concludes the proof.

Appendix E. Gaussian Kernels and Gaussian Variables

In this section, we consider X ∈ R
m with normal distribution with zero mean and covariance matrix

S. We also consider Gaussian kernels k j(x j,x′j) = exp(−bi(x j − x′j)
2) on each of its component. In

this situation, we can find orthonormal basis of the Hilbert spaces F j where we can compute the
coordinates of all covariance operators. This thus allows to check conditions (16) or (17) without
using sampling.

We consider the eigenbasis of the non centered covariance operators on each F j, j = 1, . . . ,m,
which is equal to (Zhu et al., 1998):

e j
k(x j) = (λ j

k)
1/2

(

c1/2
j

a1/2
j 2kk!

)1/2

e−(c j−a j)u2
Hk((2c j)

1/2x j)

with eigenvalues λ j
k =

(

2a j

A j

)1/2
(B j)

k, where ai = 1/4Sii, c j = (a2
j + 2a jb j)

1/2, A j = a j + b j + c j

and B j = b j/A j, and Hk is the k-th Hermite polynomial.
We can then compute all required expectations as follows (note that by definition we have

Ee j
k(X j)

2 = λi
k):

Ee j
2k+1(X j) = 0

Ee j
2k(X j) =

(

λ j
2k

2a1/2
j c1/2

j

(a j + c j)

(

2k
k

)

)1/2
(

c j −a j

2(c j +a j)

)k

Ee j
k(X j)e

i
`(Xi) =

(

λ j
2kλi

2`

c1/2
j c1/2

i

a1/2
j a1/2

i 2k2`k!`!

)1/2
(SiiS j j −S2

i j)
−1/2

4πc1/2
i c1/2

j

Dk`(Qi j),

where Qi j =

( 1
2(1−ai/ci) 0

0 1
2(1−a j/c j)

)

+ 1
4

(

Siici Si jc
1/2
i c1/2

j

Si jc
1/2
i c1/2

j S j jc j

)−1

and

Dk`(Q) =
Z

R2
exp

[

−

(

u
v

)>

Q

(

u
v

)

]

Hk(u)H`(v)dudv,

for any positive matrix Q. For any given Q, Dk`(Q) can be computed exactly by using a singular
value decomposition of Q and the appropriate change of variables.6

6. Matlab code to compute Dk`(Q) can be downloaded from the author’s webpage.
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Abstract
We study a generative model in which hidden causes combine competitively to produce observa-
tions. Multiple active causes combine to determine the value of an observed variable through a max
function, in the place where algorithms such as sparse coding, independent component analysis, or
non-negative matrix factorization would use a sum. This maxrule can represent a more realistic
model of non-linear interaction between basic components in many settings, including acoustic and
image data. While exact maximum-likelihood learning of the parameters of this model proves to
be intractable, we show that efficient approximations to expectation-maximization (EM) can be
found in the case of sparsely active hidden causes. One of these approximations can be formulated
as a neural network model with a generalized softmax activation function and Hebbian learning.
Thus, we show that learning in recent softmax-like neural networks may be interpreted as approxi-
mate maximization of a data likelihood. We use the bars benchmark test to numerically verify our
analytical results and to demonstrate the competitivenessof the resulting algorithms. Finally, we
show results of learning model parameters to fit acoustic andvisual data sets in which max-like
component combinations arise naturally.

Keywords: component extraction, maximum likelihood, approximate EM, competitive learning,
neural networks

1. Introduction

In recent years, algorithms such as independent components analysis (ICA; Comon, 1994; Bell
and Sejnowski, 1997), sparse coding (SC; Olshausen and Field, 1996), and non-negative matrix
factorization (NMF; Lee and Seung, 1999) have been used to describethe statistics of the natural
environment, and the components extracted by these methods have been linked to sensory neuronal
response properties. Stated in the language of probabilistic generative models (see, e.g., Dayan and
Abbott, 2001; Rao et al., 2002) these systems describe sensory data as alinear superposition of
learned components. For many types of data, including images, this assumed linear cooperation
between generative causes is unrealistic. Alternative, more competitive generative models have also
been proposed: for instance, Saund (1995) suggests a model in whichhidden causes are combined
by a noisy-or rule, while Dayan and Zemel (1995) suggest a yet more competitive scheme. Here,
we formulate an extreme case of competition, in which the strongest generative influence on an
observed variable (e.g., an image pixel) alone determines its value. Such a rule has the property of
selecting, for each observed variable, a single generative cause to determine that variable’s value.

c©2008 J̈org Lücke and Maneesh Sahani.
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This form of combination emerges naturally in the context of spectrotemporalmasking in mixed
audio signals. For image data, occlusion leads to a different combination rule, but one that shares
the selection property in that, under constant lighting conditions, the appearance of each observed
pixel is determined by a single object.

In parallel to this development of generative approaches, a number of artificial neural network
architectures have been designed to tackle the problem of non-linear component extraction, mostly
in artificial data (e.g., Spratling and Johnson, 2002; Lücke and von der Malsburg, 2004; Lücke and
Bouecke, 2005; Spratling, 2006), although sometimes in natural images (e.g., Harpur and Prager,
1996; Charles et al., 2002; Lücke, 2007). These models often perform quite well with respect to
various benchmark tests. However, the relationship between them and the density models that are
implicit or explicit in the generative approach has not, thus far, been made clear. We show here
that inference and learning in a restricted form of our novel generative model correspond closely in
form to the processing and plasticity rules used in such neural network approaches, thus bringing
together these two disparate threads of investigation.

The organization of the remainder of this article is as follows. In Section 2 we define the novel
generative model and then proceed to obtain the associated parameter update rules in Section 3. In
Section 4 we derive computationally efficient approximations to these update rules, in the context of
sparsely active hidden causes—that is, when a small number of hidden causes generally suffices to
explain the data. In Section 5 we relate a restricted form of the generative model to neural network
learning rules with Hebbian plasticity and divisive normalization. Results of numerical experiments
in Section 6 show the component extraction performance of the generativeschemes as well as a
comparison to other algorithms. Finally, in Section 7, we discuss our analyticaland numerical
results.

2. A Generative Model with Maximum Non-linearity

We consider a generative model forD observed variablesyd, (d = 1, . . . ,D), in which H hidden
binary causessh, (h = 1, . . . ,H), each taking the value 0 or 1,competeto determine the value of
each observation (see Figure 1). Associated with each pair(sh,yd), is a weightWhd. Given a set of
active causes (i.e., those taking the value 1), the distribution ofyd is determined by thelargestof
the weights associated with the active causes andyd.

Much of our discussion will apply generally to all models of this causal structure, irrespective
of the details of the distributions involved. For concreteness, however, we focus on a particular
choice, in which the hidden variables are drawn from a multivariate Bernoulli distribution; and the
observed variables are non-negative, integer-valued and, given the causes, conditionally independent
and Poisson-distributed. Thus, collecting all the causes into a single binaryvector~s∈ {0,1}H , and
all the observed variables into an integer vector~y∈ Z

D
+ we have:

p(~s|~π) =
H

∏
h=1

p(sh |πh), p(sh |πh) = πsh
h (1−πh)

1−sh, (1)

p(~y|~s,W) =
D

∏
d=1

p(yd |Wd(~s,W)), p(yd |w) =
wyd

yd!
e−w. (2)

Here,~π ∈ [0,1]H parameterizes the prior distribution on~s, while the weight matrixW ∈ RH×D

parameterizes the influence of the hidden causes on the distribution of~y. It will be convenient to
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s1 s2 s3

· · · yD
Wd(~s,W)

y1 · · ·

Whd

Figure 1: A generative model withH = 3 hidden variables andD = 5 observed variables. The
valuesyd of the observed variables are conditionally independent given the values~s of
the hidden variables. The valueyd is drawn from a distribution which is determined by
the parametersW1d, W2d, andW3d. For a given binary vector~s these parameters combine
competitively according to the functionWd(~s,W) = maxh{shWhd}.

group these parameters together intoΘ = (~π,W). The functionWd(~s,W) in (2) gives theeffective
weightonyd, resulting from a particular pattern of causes~s. Thus, in the model considered here,

Wd(~s,W) = max
h

{shWhd} . (3)

It is useful to place the model (1)–(3) in context. Models of this general type, in which the obser-
vations are conditionally independent of one another given a set of hidden causes, are widespread.
They underlie algorithms such as ICA, SC, principal components analysis (PCA), factor analysis
(see, e.g., Everitt, 1984), and NMF. In these five cases, and indeed in the majority of such models
studied, the effective weightsWd(~s,W) are formed by a linear combination of all the weights that
link hidden variables to the observation; that is,Wd(~s,W) = ∑hshWhd. Some other models, notably
those of Saund (1995) and Dayan and Zemel (1995), have implemented more competitive combina-
tion rules, where larger individual weights dominate the effective combination. The present model
takes this competition to an extreme, so that only the single largest weight (amongst those associ-
ated with active hidden variables) determines the output distribution. Thus, where ICA, PCA, SC,
or NMF use a sum, we use a max. We refer to this new generative model as theMaximal Causes
Analysis (MCA) model.

Figure 2 illustrates the difference between linear superposition and competitive combination us-
ing (3). Let us suppose that noise-free observations are generatedby causes in the form of horizontal
and vertical objects with the same gray-value, on a dark (black) background (see Figure 2). If these
objects occlude one-another, they may generate an observed image suchas that illustrated in Fig-
ure 2B. However, if we were to use the actual causes and weights in Figure 2A, but instead combine
them linearly, we would obtain the (different) input pattern of Figure 2C. Inthis case, competitive
combination using the max-rule of Equation (3) would result in the correct pattern. This is not,
of course, generally true, but for monochrome objects with small variationsin their gray-values it
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{

{

{

{

cause 3

cause 4

A B C

cause 2

cause 1 non-linear linear

max
h

{shWhd} ∑
h

shWhd

Figure 2: An illustration of non-linear versus linear combination of hidden causes.A Four exam-
ples of hidden causes with gray-value 200.B The input image that may result if sources
occlude one another. In this case, the correct functionWd(~s,W) (see Figure 1) to combine
the hidden causes is the max-operation.C The input image that results if the four causes
combine linearly (gray-values are scaled to fill the interval [0,255]). ForC, the correct
functionWd(~s,W) is linear super-position.

holds approximately. More generally, the maximum combination rule is always closer to the result
of occlusion than is the simple sum implied by models such as ICA.

As stated above, although in this paper we focus on the specific distributionsgiven in (1) and
(2), much of the analytical treatment is independent of these specific choices. Thus, update rules
for learning the weightsW from data will be derived in a general form, that can accommodate
alternative, non-factored distributions for the binary hidden variables.This general form is also
preserved if the Poisson distribution is replaced, for example, by a Gaussian. Poisson variability
represents a reasonable choice for the non-negative data considered in this paper, and resembles the
cost function introduced by Lee and Seung (1999) for NMF.

3. Maximum Likelihood

Given a set of observed data vectorsY={~y(n)}n=1,...,N, taken to be generated independently from
a stationary process, we seek parameter valuesΘ∗ = (~π∗,W∗) that maximize the likelihood of the
data under the generative model of Equations (1) to (3):

Θ∗ = argmaxΘ{L(Θ)} with L(Θ) = log
(

p(~y(1), . . . ,~y(N) |Θ)
)

.

We use Expectation-Maximization (EM; Dempster et al. 1977; see also Neal and Hinton 1998, for
the formulation that appears here) to maximize the likelihood in this latent variable model. To do
so, we introduce the free-energyF (Θ,q)—a data-dependent function of the parametersΘ and an
unknown distributionq(~s(1), . . . ,~s(N)) over the hidden data or variables—that is always equal to or
less than the likelihood evaluated at the same parameter values. For independently generated data
vectors~y(n), the distributionq may be taken (without loss of generality) to factor over the hidden
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vectorsq(~s(1), . . . ,~s(N)) = ∏nqn(~s(n)). Then the free-energy is defined as:

F (Θ,q) =
N

∑
n=1

[

∑
~s

qn(~s)
[

log
(

p(~y(n) |~s,Θ)
)

+ log
(

p(~s|Θ)
)

]

]

+H(q) ≤ L(Θ), (4)

whereH(q) = ∑nH(qn(~s)) = −∑n ∑~sqn(~s) log(qn(~s)) is the Shannon entropy ofq. The iterations
of EM alternately increaseF with respect to the distributionsqn while holdingΘ fixed (the E-step),
and with respect toΘ while holding theqn fixed (the M-step). Thus, if we consider a pair of steps
beginning from parametersΘ′, the E-step first finds new distributionsqn that depend onΘ′ and the
observations~y(n), which we write asqn(~s;Θ′). Ideally, these distributions maximizeF for fixed
Θ′, in which case it can be shown thatqn(~s;Θ′) = p(~s|~y(n),Θ′) andF (Θ′,qn(~s;Θ′)) =L(Θ′) (Neal
and Hinton, 1998). In practice, computation of this exact posterior may be intractable, and it is often
replaced by an approximation. After choosing theqn’s in the E-step, we maximizeF with respect
to Θ in the M-step while holding theqn distributions fixed. Thus the free-energy can be re-written
in terms ofΘ andΘ′:

F (Θ,Θ′) =
N

∑
n=1

[

∑
~s

qn(~s;Θ′)
[

log
(

p(~y(n) |~s,Θ)
)

+ log
(

p(~s|Θ)
)

]

]

+ H(Θ′) . (5)

whereH(Θ′) = ∑nH(qn(~s;Θ′)). A necessary condition to achieve this maximum with respect to
Wid ∈ Θ, is that (see Appendix A for details):

∂
∂Wid

F (Θ,Θ′) = ∑
n

∑
~s

qn(~s;Θ′)

(

∂
∂Wid

Wd(~s,W)

)

y(n)
d − Wd(~s,W)

Wd(~s,W)

!
= 0. (6)

Unfortunately, under the max-combination rule of Equation (3),Wd is not differentiable. Instead,
we define a smooth functionW

ρ
d that converges toWd asρ approaches infinity:

W
ρ
d(~s,W) :=

(

H

∑
h=1

(shWhd)
ρ

)
1
ρ

⇒ lim
ρ→∞

W
ρ
d(~s,W) = Wd(~s,W), (7)

and replace the derivative ofWd by the limiting value of the derivative ofW
ρ
d, which we write as

A id (see Appendix A for details):

A id(~s,W) := lim
ρ→∞

(

∂
∂Wid

W
ρ
d(~s,W)

)

= lim
ρ→∞

si (Wid)ρ

∑hsh(Whd)
ρ . (8)

Armed with this definition, a rearrangement of the terms in (6) yields (see Appendix A):

Wid =

∑
n
〈A id(~s,W)〉qn

y(n)
d

∑
n
〈A id(~s,W)〉qn

, (9)

where〈A id(~s,W)〉qn
is the expectation ofA id(~s,W) under the distributionqn(~s;Θ′):

〈A id(~s,W)〉qn
= ∑

~s

qn(~s;Θ′)A id(~s,W) . (10)
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Equation (9) represents a set of non-linear equations (one for eachWid) that defines the necessary
conditions for an optimum ofF with respect toW. The equations do not represent straightforward
update rules forWid because the right-hand-side does not depend only on the old valuesW′ ∈ Θ′.
They can, however, be used as fixed-point iteration equations, by simplyevaluating the derivatives
A id at W′ instead ofW. Although there is no guarantee that these iterations converge, if they do
converge the corresponding parameters must lie at a stationary point of the free-energy. Numerical
experiments described later confirm that this fixed-point approach is, in fact, robust and convergent.
Note that the denominator in (9) vanishes only ifqn(~s;Θ′)A id(~s,W) = 0 for all~s andn (assuming
positive weights), in which case (6) is already satisfied, and no update ofW is required.

Thus far, we have not made explicit reference to the form of prior source distribution, and
so the result of Equation (9) is independent of this choice. For our chosen Bernoulli distribution
(1), the M-step is obtained by setting the derivative ofF with respect toπi to zero, giving (after
rearrangement):

πi =
1
N ∑

n
〈si〉qn

, with 〈si〉qn
= ∑

~s

qn(~s;Θ′)si . (11)

Parameter values that satisfy Equations (9) and (11), maximize the free-energy given the distribu-
tions qn = qn(~s;Θ′). As stated before, the optimum with respect toq (and therefore, exact opti-
mization of the likelihood, since the optimal setting ofq forces the free-energy bound to be tight) is
obtained by setting theqn to the posterior distributions:

qn(~s;Θ′) = p(~s|~y(n),Θ′) =
p(~s,~y(n) |Θ′)

∑
∼
~s

p(
∼

~s,~y(n) |Θ′)
, (12)

wherep(~s,~y(n) |Θ′) = p(~s|~π′) p(~y(n) |~s,W′), and with the latter distributions given by (1) and (2),
respectively.

Equations (9) to (12) thus represent a complete set of update rules for maximizing the data
likelihood under the generative model. The only approximation made to this pointis to use the
old valuesW′ on the right-hand-side of the M-step equation in (9). We therefore referto this set of
updates as a pseudo-exact learning rule and call the algorithm they define MCAex, with the subscript
for exact. We will see in numerical experiments that MCAex does indeed maximize the likelihood.

4. E-Step Approximations

The computational cost of finding the exact sufficient statistics〈A id(~s,W)〉qn
, with qn equal to the

posterior probability (12), is intractable in general. It grows exponentiallyin the smaller of the
number of hidden causesH, and the number of observed variablesD (see Appendix B for details).
A practical learning algorithm, then, must depend on finding a computationally tractable approxi-
mation to the true expectation. One approach, a form of variational method (Jordan et al., 1999),
would be to optimize theqn within a constrained class of distributions; for example, distributions
that factor over the sourcessh. Unfortunately, this conventional factoring approach provides lim-
ited benefit here, as the form ofA id(~s,W) resists straightforward evaluation of the expected value
with respect to the individual sources. Instead, we base our approximations on an assumption of
sparsity—that only a small number of active hidden sources is needed to explain any one observed
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data vector (note that sparsity here refers to thenumberof active hidden sources, rather than to their
proportion). The resulting expressions relate to those that would be found by a variational opti-
mization constrained to distributions that are sparse in the sense above, butare not identical. The
relationship will be explored further in the Discussion.

To develop the sparse approximations, consider grouping the terms in the expected value of
Equation (10) according to the number of active sources in the vector~s:

〈A id(~s,W)〉qn
= ∑

~s

p(~s|~y(n),Θ′)A id(~s,W) (13)

= ∑
a

p(~sa |~y
(n),Θ′)A id(~sa,W)+∑

a,b
a < b

p(~sab|~y
(n),Θ′)A id(~sab,W)+ ∑

a,b,c
a < b < c

. . . ,

where ~sa := (0, . . . ,0,1,0, . . . ,0) with only sa = 1

~sab := (0, . . . ,0,1,0, . . . ,0,1,0, . . . ,0) with only sa = 1, sb = 1, a 6= b,

and~sabc etc. are defined analogously.

Note thatA id(~0,W) = 0 because of (7) and (8). Now, each of the conditional probabilities
p(~s|~y(n),Θ′) implicitly contains a similar sum over~s for normalization:

p(~s|~y(n),Θ′) =
1
Z

p(~s,~y(n) |Θ′) , Z := ∑
~s

p(~s,~y(n) |Θ′) , (14)

and the terms of this sum may be grouped in the same way

Z := p(~0,~y(n) |Θ′)+∑
a

p(~sa,~y
(n) |Θ′)+∑

a,b
a < b

p(~sab,~y
(n) |Θ′)+ ∑

a,b,c
a < b < c

p(~sabc,~y
(n) |Θ′)+ . . . .

Combining (13) and (14) yields:

〈A id(~s,W)〉qn
= (15)

∑a p(~sa,~y(n) |Θ′)A id(~sa,W)+∑ a,b
a<b

p(~sab,~y(n) |Θ′)A id(~sab,W)+ . . .

p(~0,~y(n) |Θ′)+∑a p(~sa,~y(n) |Θ′)+∑ a,b
a<b

p(~sab,~y(n) |Θ′)+ . . .
.

A similar grouping of terms is possible for the expectation〈sh〉qn
.

If we now assume that the significant posterior probability mass will concentrate on vectors~s
with only a limited number of non-zero entries, the expanded sums in both numerator and denomi-
nator of (15) may be truncated without significant loss. The accuracy ofthe approximation depends
both on the sparsity of the true generative process, and on the distance of the current model param-
eters (in the current EM iteration) from the true ones. In general, provided that the true process is
indeed sparse, a truncated approximation will become more accurate as the estimated parameters
approach their maximum likelihood values. The convergence properties and accuracy of algorithms
based on this form of approximation will be tested numerically in Section 6.

Different choices of the truncation yield approximate algorithms with different properties. Two
of these will be considered here.
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4.1 MCA3

In the first approximation, we truncate all but one of the sums that appear inthe expansions of
〈A id(~s,W)〉qn

and〈si〉qn
after the terms that include three active sources, while truncating the nu-

merator of〈A id(~s,W)〉qn
after the two-source terms (see Appendix C for details):

〈A id(~s,W)〉qn
≈

πi exp(I (n)
i ) + ∑

c(c6=i)

πiπcexp(I (n)
ic )H (Wid −Wcd)

1+∑
h

πhexp(I (n)
h ) + 1

2 ∑
a,b

a 6= b

πaπbexp(I (n)
ab ) + 1

6 ∑
a,b,c

a 6= b 6= c

πaπbπcexp(I (n)
abc)

(16)

and 〈si〉qn
≈

πi exp(I (n)
i ) + ∑

c(c6=i)

πiπcexp(I (n)
ic ) + α

2 ∑
b,c(b6=c6=i)

πiπbπcexp(I (n)
ibc )

1+∑
h

πhexp(I (n)
h ) + 1

2 ∑
a,b

a 6= b

πaπbexp(I (n)
ab ) + 1

6 ∑
a,b,c

a 6= b 6= c

πaπbπcexp(I (n)
abc)

, (17)

where

πi =
πi

1−πi
, I (n)

i = ∑
d

(

log(Wid)y(n)
d − Wid

)

,

W̃ab
d = max(Wad,Wbd), I (n)

ab = ∑
d

(

log(W̃ab
d )y(n)

d − W̃ab
d

)

,

W̃abc
d = max(Wad,Wbd,Wcd), I (n)

abc = ∑
d

(

log(W̃abc
d )y(n)

d − W̃abc
d

)

,

(18)

and whereH (x) = 1 for x > 0; 1
2 for x = 0; 0 forx < 0 is the Heaviside function. The above

equations have been simplified by dividing both numerator and denominator byterms that do not
depend on~s, for example, by∏H

i=1(1−πi) (see Appendix C). Approximations (16) and (17) are used
in the fixed-point updates of Equations (9) and (11), where the parameters that appear on the right-
hand-side are held at their current values. Thus all parameters that appear on the right-hand-side of
the approximations take values inΘ′ = (~π′,W′).

The early truncation of the numerator in (16) improves performance in experiments, partly by
increasing competition between causes further, and partly by reducing thecontribution of more
complex data patterns that are better fit, given the current parameter settings, by three active sources
than by two. By contrast, the three-source terms are kept in the numerator of (17). In this case,
neglecting complex input patterns as in (16) would lead to greater errors in the estimated source
activation probabilitiesπi . Indeed, even while keeping these terms,πi tend to be underestimated
if the input data include many patterns with more than three active sources. Tocompensate, we
introduce a factor ofα > 1 multiplying the three-source term in (17) (so thatα = 1 corresponds to
the actual truncated sum), which is updated as described in Appendix C. This scheme yields good
estimates ofπi , even if more than three sources are often active in the input data.

The M-step Equations (9) and (11) together with E-step approximations (16) and (17) represent
a complete set of update equations for the MCA generative model. The computational cost of one
parameter update grows polynomially in the total number of causes, with orderH3. The algorithm
that is defined by these updates will therefore be referred to as MCA3.
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4.2 R-MCA2

In the second place, we consider a restriction of the generative model in which (i) all sh are dis-
tributed according to the same prior distribution with fixed parameterπ; (ii) the weightsWid associ-
ated with each source variablei are constrained to sum to a constantC:

∀i ∈ {1, . . . ,H} : πi = π and ∑
d

Wid = C; (19)

and (iii) on average, the influence of each hidden source is homogeneously covered by the other
sources. This third restriction means that each non-zero generating weight Wgen

id associated with
causei can be covered by the same number ofWgen

cd ≥Wgen
id :

Wgen
id > 0 ⇒ ∑

c6=i

H (Wgen
cd −Wgen

id ) ≈ bi , (20)

whereH is the Heaviside function andbi is the number of causes that can cover causei. Figure 3 il-

B CA

Figure 3: A and B show patterns of weights that satisfy the uniformity condition (20) whereas
weights inC violate it. Each hidden cause is symbolized by an ellipse, with the gray-
level of the ellipse representing the valueWid of each weight within the ellipse. Weights
outside the ellipse for each cause are zero (black). The black squaresindicate the 4-by-4
grid of observed pixels.

lustrates this condition. Figure 3A,B show weight patterns associated with hidden causes for which
the condition is fulfilled; for instance in Figure 3Bbi = 0 for all causes with horizontal weight pat-
terns, whilebi = 1 for the vertically oriented cause. In Figure 3C the condition is violated. Roughly,
these conditions guarantee that all hidden causes have equal averageeffects on the generated data
vectors. They make the development of a more efficient approximate learning algorithm possible
but, despite their role in the derivation, the impact of these assumptions is limited in practice, in the
sense that the resulting algorithm can perform well even when the input data set violates assump-
tions (19) and (20). This is demonstrated in a series of numerical experiments detailed below.

Update rules for the restricted generative model can again be derived by approximate expectation-
maximization (see Appendix C). Using both the sum constraint of (19) and theassumption of ho-
mogeneous coverage of causes, we obtain the M-step update:

Wid = C
∑
n
〈A id(~s,W)〉qn

y(n)
d

∑
d′

∑
n
〈A id′(~s,W)〉qn

y(n)
d′

. (21)
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Empirically, we find that the restricted parameter space of this model means thatwe can approximate
the sufficient statistics〈A id(~s,W)〉qn

by a more severe truncation than before, now keeping two-
source terms in the denominator, but only single-source terms in the numerator, of the expansion
(15). This approximation, combined with the fact that any zero-valued observed patterns (i.e., those
with ∑d y(n)

d = 0) do not affect the update rule (21) and so can be neglected, yields theexpression
(see Appendix C):

〈A id(~s,W)〉qn
≈

exp(I (n)
i )

∑
h

exp(I (n)
h ) + π

2 ∑
a,b

a 6= b

exp(I (n)
ab )

, π :=
π

1−π
, (22)

with abbreviations given in (18). Equations (21) and (22) are update rules for the MCA generative
model, subject to the conditions (19) and (20). They define an algorithm that we will refer to as
R-MCA2 with R for restrictedand with2 indicating a computational cost that grows quadratically
with H.

5. Relation to Neural Networks

We now relate component extraction as learned within the MCA framework to that achieved by
a family of artificial neural networks. Consider the network of Figure 4 which consists ofD input
variables (orunits) with valuesy1, . . . ,yD andH hidden units with valuesg1, . . . ,gH . An observation
~y is represented by the values (oractivities) of the input units, which act throughconnectionspa-
rameterized by(Wid) to determine the activities of the hidden units through anactivation function
gi = gi(~y,W ). These parameters(Wid) are known as the network (or synaptic)weights.

Wid

gi(~y,W )

yd

Figure 4: Architecture of a two layer neural network. Input is represented by valuesy1 to yD of
D input units (small black circles). These values combine with synaptic weightsW to
determine the activities of the hidden unitsg1 to gH (big black circles). The dotted hor-
izontal arrows symbolize lateral information exchange that may be requiredto compute
the functionsg1 to gH . After thegi are computed the parameters(Wid) are modified using
a ∆-rule.

Learning in such a neural network involves adjusting the weightsW in response to a series of
input patterns, using a rule that is heuristically designed to extract some form of structure from these
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inputs. A standard choice is the Hebbian∆-rule with divisive normalization:

∆Wid = εgi(~y,W )yd and W new
id = C

Wid +∆Wid

∑d′(Wid′ +∆Wid′)
, (23)

The normalization step is needed to prevent weights from growing without bound, and the divisive
form used here is most common. Here, the constantC defines the value at which∑dWid is held
constant; it will be related below to theC appearing in Equation 19. Many neural networks with
the structure depicted in Figure 4, and that use a learning rule identical or similar to (23), have been
shown to converge to weight values that identify clusters in, or extract useful components from, a
set of input patterns (O’Reilly, 2001; Spratling and Johnson, 2002; Yuille and Geiger, 2003; L̈ucke
and von der Malsburg, 2004; Lücke, 2004; L̈ucke and Bouecke, 2005; Spratling, 2006).

The update rule (23) depends on only one input pattern, and is usually applied online, with the
weights being changed in response to each pattern in turn. If, instead, weconsider the effect of
presenting a group of patterns{~y(n)}, the net change is approximately (see Appendix D):

W new
id ≈ C

∑n gi(~y(n),W )y(n)
d

∑d′ ∑n gi(~y(n),W )y(n)
d′

. (24)

Now, comparing (24) to (21), we see that if the activation function of a neural network were cho-
sen so thatgi(~y(n),W ) = 〈A id(~s,W)〉qn

, then the network would optimize the parameters of the
restricted MCA generative model, withW = W (we drop the distinction betweenW andW from
now on). Unfortunately, the expectation〈A id(~s,W)〉qn

depends ond, and thus exact optimization
in the general case would require a modified Hebbian rule. However, the truncated approximation
of (22) is the same for alld, and so the changes in each weight depend only on the activities of the
corresponding pre- and post-synaptic units. Thus, the Hebbian∆-rule,

∆Wid = εgi yd with gi =
exp(Ii)

∑
h

exp(Ih) + π
2 ∑

a,b
a 6= b

exp(Iab)
(25)

(whereIh, Iab, andπ are the abbreviations introduced in Equations 18 and 22), when combined with
divisive normalization, implements an online version of the R-MCA2 algorithm. We refer to this
online weight update rule as R-MCANN (for Neural Network).

Note that the functiongi in (25) resembles the softmax function (see, e.g., Yuille and Geiger,
2003), but contains an additional term in the denominator. This added term reduces the change in
weights when an input pattern results in more than one hidden unit with significant activity. That is,
the system tries to explain a given input pattern using the current state of its model parametersW.
If one hidden unit explains the input better than any combination of two units, that unit is modified.
If the input is better explained by a combination of two units, the total learning rate is reduced.

Soft winner-take-all (WTA) activation functions, such as the softmax, are found in many net-
works that serve to both clusterandextract components from inputs, as appropriate. For clustering,
the relationship between WTA-like competition and maximum-likelihood methods is well known
(Nowlan, 1990). The connection drawn here offers a probabilistic account of the effectiveness of
similar rules for component identification. If the probability of more than one cause being active is
small (i.e.,π is small), our activation rule forgi (25) reduces to the standard softmax, suggesting that
neural networks with activation and learning functions that resemble Equations (25) may perform
well at both component extraction and clustering.

1237
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6. Experiments

The MCA generative model, along with the associated learning algorithms that have been intro-
duced here, are designed to extract component features from non-linear mixtures. To study their
performance, we employ numerical experiments, using artificial as well as more realistic data. The
artificial data sets are based on a widely-used benchmark for non-linearcomponent extraction, while
the more realistic data are taken from acoustic recordings in one case and from natural images in
the other. The goals of these experiments are (1) to establish whether the approximate algorithms
do indeed increase the likelihood of the model parameters; (2) to test convergence and asymptotic
accuracy of the algorithms; (3) to compare component extraction using MCAto other component-
extraction algorithms; and (4) to demonstrate the applicability of the model and algorithms to more
realistic data where non-linear component combinations arise naturally.

6.1 The Bars Test

The data sets used in experiments on artificial data were drawn from variants of the “bars test”
introduced by F̈oldiák (1990). Each data vector represents a grayscale image, with a non-linear
combination of randomly chosen horizontal and vertical light-colored bars, each extending all the
way across a black background. Most commonly, the intensity of the bars isuniform and equal,
and the combination rule is such that overlapping regions remain at the same intensity. This type
of data is a benchmark for the study of component extraction with non-linearinteractions between
hidden causes. Many component-extraction algorithms have been applied toa version of the bars
test, including some with probabilistic generative semantics (Saund, 1995; Dayan and Zemel, 1995;
Hinton et al., 1995; Hinton and Ghahramani, 1997), as well as many with non-generative objective
functions (Harpur and Prager, 1996; Hochreiter and Schmidhuber, 1999; Lee and Seung, 2001;
Hoyer, 2004) a substantial group of which have been neurally inspired(Földiák, 1990; Fyfe, 1997;
O’Reilly, 2001; Charles et al., 2002; Spratling and Johnson, 2002; Lücke and von der Malsburg,
2004; L̈ucke and Bouecke, 2005; Spratling, 2006; Butko and Triesch, 2007).

In most of the experiments described here the input data were 25-dimensional vectors, repre-
senting a 5-by-5 grid of pixels; that is,D = 5×5. There wereb possible single bars, some of which
were superimposed to create each image. On the 5-by-5 grid there are 5 possible horizontal, and 5
vertical, bar positions, so thatb = 10. Each bar appears independently with a probabilityπ, with
areas of overlap retaining the same value as the individual bars. Figure 5A shows an example set of
noisy data vectors constructed in this way.

6.2 Annealing

The likelihood surface for the MCA generative model is potentially multimodal. Thus, hill-climbing
algorithms based on EM may converge to local optima in the likelihood, which may well be con-
siderably poorer than the global optimum. This tendency to find sub-optimal fixed points can be
reduced by incorporating a deterministic annealing, or relaxation, procedure (Ueda and Nakano,
1998; Sahani, 1999), whereby the entropy of the posterior distribution inthe free energy (4) is
artificially inflated in early iterations, with this inflation progressively reducedin later iterations,
under the control of a temperature parameter. All of the experiments discussed here incorporated
deterministic annealing, the details of which are given in Appendix E.
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Figure 5: Bars test data withb = 10 bars onD = 5× 5 pixels and a bar appearance probability
of π = 2

10. A 24 patterns from the set ofN = 500 input patterns that were generated
according to the generative model with Poisson noise.B Change of the parametersW if
MCA3 is used for parameter update. Learning stopped automatically after 108 iterations
in this trial (see Appendix E).

6.3 Convergence

From a theoretical standpoint, none of the four algorithms MCAex, MCA3, R-MCA2, or R-MCANN,
can be guaranteed to maximize the likelihood of the MCA generative model. All ofthem update
the parameters in the M-step using a fixed-point iteration, rather than either maximization or a
gradient step. All but MCAex also approximate the posterior sufficient statistics (10). Thus, our
first numerical experiments are designed to verify that the algorithms do, in fact, increase parameter
likelihood in practice, and that they do converge. For this purpose, it is appropriate to use a version
of the bars test in which observations are generated by the MCA model.

Thus, we selected MCA parameters that generated noisy bar-like images. There were 10 hidden
sources in the generating model, one corresponding to each bar. The associated matrix of generating
weights,Wgen, was 10×25, with each row representing a horizontal or vertical bar in a 5-by-5 pixel
grid. The weightsWgen

id that correspond to the pixels of the bar were set to 10, the others to 0, so
that∑dWgen

id = 50. Each source was active with probabilityπgen
i = 2

10, leading to an average of two

1239
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bars appearing in each image. We generatedN = 500 input patterns (each with 25 elements) using
Equations (1) to (3); a subset of the resulting patterns is displayed in Figure 5A.
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Figure 6: Change of the MCA parameter likelihood under different MCA learning algorithms. Data
were generated as in Figure 5. To allow for comparison, the same set ofN = 500 input
patterns was used for all experiments shown. The likelihood of the generating parameters
(Wgen,~πgen) is shown by the dotted horizontal line. The main axes show likelihood values
of the batch-mode algorithms MCAex, MCA3, and R-MCA2 as a function of EM iteration.
The inset axes shows likelihood values of the online algorithm R-MCANN as a function
of number of input pattern presentations. Patterns were randomly selectedfrom the set of
N = 500 inputs, and the parameters were updated for each pattern.

Figure 6 shows the evolution of parameter likelihoods, as a function of iteration, for each of the
MCA algorithms, with 5 different choices of initial parameters for each. With the exception of the
first few iterations of R-MCA2, the likelihood of the parameters under the batch mode algorithms
increased at almost every iteration. The online R-MCANN showed greater fluctuations as updates
based on individual data vectors inevitably perturbed the parameter estimates.

As might be expected, given the observation of increasing likelihoods andthe fact that the like-
lihoods are bounded, each algorithm eventually converged from each initial value used in Figure 6.
Furthermore, in each case, the likelihood of the solution found was close to the likelihood of the ac-
tual weights used in generation (the dashed horizontal lines). The final likelihood values for MCAex

were slightly higher than the likelihoods of (Wgen, ~πgen), as is expected for an exact maximum-
likelihood algorithm in noisy data; whereas the values achieved by the approximations MCA3 and
R-MCA2 were slightly lower. In fact, in 100 further experiments, the annealing and parameter ini-
tialization schemes described in Appendix E, brought the likelihood close to that of the generating
weights in 98 of 100 runs using R-MCA2 and in 90 of 100 runs using MCA3. We did not run
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these more extensive tests for MCAex due to its long running time (it is also omitted from similar
quantitative analyses below).

The two basic observations, that likelihoods generally increased at eachiteration and that the
batch-mode algorithms all reliably converged, held true for all of the experiments described here
and below, even where data were not generated from a version of the MCA model. Thus, we
conclude that these algorithms are generally robust in practice, despite theabsence of any theoretical
guarantees.

6.4 Parameter Recovery

Figure 5B shows the evolution of parametersW, under the approximate MCA3 algorithm, showing
that the estimatedW did indeed converge to values close to the generating parametersWgen, as was
suggested by the convergence of the likelihood to values close to that of thegenerative parameters.
While not shown, the convergence ofW under MCAex, R-MCA2 or R-MCANN was qualitatively
similar to this sequence.

Clearly, if MCAex finds the global optimum, we would expect the parameters found to be close
to those used for generation. The same is not necessarily true of the approximate algorithms. How-
ever, both MCA3 and R-MCA2 did in fact find weightsW that were very close to the generating
values whenever an obviously poor local optimum was avoided.

In MCA3 the average pixel intensity of a bar was estimated to be 10.0±0.5 (standard deviation),
taken across all bar pixels in 90 trials where the likelihood increased to a highvalue. Using R-MCA2
this value was estimated to be 10.0±0.8 (across all bar pixels on 98 high-likelihood trials). Note
that the Poisson distribution (2) results in a considerable variance of bar pixel intensities around the
mean of 10.0 (compare Figure 5A) which explains the high standard deviation around the relatively
precise mean value. The background pixels (original value zero) are estimated to have an intensity
of 0.05±0.02 in MCA3 and are all virtually zero (all are smaller than 10−56) in R-MCA2. MCA3

also estimates the parameters~π. Because of the finite number of patterns (N = 500) we compared the
estimates with the actual frequency of occurrence of each bari: π′

i = (numb of barsi in input)/N.
The mean absolute difference between the estimateπi and the actual probabilityπ′

i was 0.006 (across
the 90 trials with high likelihood), which demonstrates the relative accuracy ofthe solutions, despite
the approximation made in Equation (17).

For the neural network algorithm R-MCANN given by (25) we observed virtually the same be-
havior as for R-MCA2 when using a small learning rate (e.g.,ε = 0.1) and the same cooling schedule
in both cases (see Lücke and Sahani, 2007). The additional noise introduced by the online updates
of R-MCANN had only a negligible effect. For larger learning rates the situation was different, how-
ever. For later comparison to noisy neural network algorithms, we used a version of R-MCANN

with a relatively high learning rate ofε = 1.0. Furthermore, instead of a cooling schedule, we
used a fixed temperatureT = 16 and added Gaussian noise (σ = 0.02) at each parameter update:
∆Wid = εgi yd +ση. With these learning parameters, R-MCANN learned very rapidly, requiring
fewer than 1000 pattern presentations in the majority of trials. Ten plots of likelihoods against
number of presented patterns are shown for R-MCANN in Figure 6 (inset figure, black lines) for the
sameN = 500 patterns as used for the batch-mode algorithms. Because of the additional noise in
W, the final likelihood values were somewhat lower than those of the generating weights. Using
R-MCANN with the same parameters but without added noise (σ = 0), final likelihood values were
often higher (inset axes, gray lines) but the algorithm also converged tolocal optima more often. In
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Reliability
Model noisy no noise

MCA3 90% 81%
R-MCA2 98% 96%

R-MCANN >99% >99%

Reliability
Model no noise reference

noisy-or 27% Saund, 1995
competitive 69%∗ Dayan/Zemel, 1995

LOCOCODE 96% Hochreiter/Schmidhuber, 1999

Table 1: Comparison of MCA algorithms with other systems in the standard bars test with b = 10
bars (D = 5×5,π = 2

10, N = 500). For the MCA algorithms reliability values are computed
on the basis of 100 trials. Values for these algorithms are also given for thesame bars test
with Poisson noise. Reliability values for the other systems are taken from the literature.
For instance, the model of Hochreiter and Schmidhuber (1999) is reported to fail to extract
all bars in one of 25 trials. Two systems, back-propagation (BP) and GeneRec, that are
described by O’Reilly (2001) have also been applied to this bars test. In their standard
versions, BP and GeneRec achieve 10% and 60% reliability, respectively. Hochreiter and
Schmidhuber (1999) report that ICA and PCA extract only subsets of all bars. ∗Trained
without bar overlap.

contrast, R-MCANN with noise avoided local optima in all 100 trials. In the following, R-MCANN

will therefore refer to the noisy version withσ = 0.02 unless otherwise stated.

6.5 Comparison to Other Algorithms—Noiseless Bars

To compare the component extraction results of MCA to that of other algorithmsreported in the
literature, we used a standard version of the bars benchmark test, in whichthe bars appear with no
noise. The competing algorithms do not necessarily employ probabilistic semantics, and may not
be explicitly generative; thus, we cannot compare performance in terms oflikelihoods, nor in terms
of the accuracy with which generative parameters are recovered. Instead, we adopt a commonly
used measure, which asks howreliably all the different bars are identified (see, e.g., Hochreiter and
Schmidhuber, 1999; O’Reilly, 2001; Spratling and Johnson, 2002; Lücke and von der Malsburg,
2004; Spratling, 2006). For each model, an internal variable (say the activities of the hidden units,
or the posterior probabilities of each source being active) is identified as the response to an image.
The responses evoked in the learned model by each of the possible single-bar images are then
considered, and the most active unit or most probable source corresponding to each bar is identified.
If the mapping from single-bar images to the most active internal variable is injective—that is, for
each single bar a different hidden unit or source is the most active—thenthis instance of the model
is said to have represented all of the bars. The reliability is the frequency with which each model
represents all possible bars, when started from random initial conditions, and given a random set
of images generated with the same parameter settings. For the MCA algorithms, theresponses are
defined to be the approximated posterior values for each possible sourcevector with only one active
source, evaluated at the final parameter values after learning:q(~sh;Θ) ≈ p(~sh |~ybar,W).

The reliabilities of MCA3, R-MCA2, and R-MCANN as well as some other published component-
extraction algorithms are shown in Table 1. These experiments used a configuration of the bars test
much as above (D = 5× 5, b = 10, andπgen = 2

10) which is perhaps the most commonly used
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in the literature, (e.g., Saund, 1995; Dayan and Zemel, 1995; Hochreiter and Schmidhuber, 1999;
O’Reilly, 2001). The bars have a fixed and equal gray-value. We generatedN = 500 patterns ac-
cording to these settings and normalized the input patterns~y(n) to lie in the interval[0,10] (i.e., bar
pixels have a value of 10 and the background is 0). We considered both the case with Poisson noise
(which has been discussed above) and the standard noiseless case. Experiments were run starting
from 100 different randomly initialized parametersW. The same algorithms and the same cooling
schedule were used (the same fixedT in the case of R-MCANN) to fit patterns with and without
noise.

Without noise, MCA3 with H = 10 hidden variables found all 10 bars in 81 of 100 experiments.
R-MCA2 with H = 10 found all bars in 96 of 100 experiments. Using the criterion of reliability,
R-MCANN performed best and found all bars in all 100 of 100 experiments. This seems likely to
result from the fact that the added Gaussian noise, as well as noise introduced by the online updates,
combined to drive the system out of shallow optima. Furthermore, R-MCANN was, on average,
faster than MCA3 and R-MCA2 in terms of required pattern presentations. It took fewer than 1000
pattern presentations to find all bars in the majority of 100 experiments,1 although in a few trials
learning did take much longer.

On the other hand, MCA3 and R-MCA2 achieved better likelihoods and recovered generative
parameters closer to the true values. These algorithms also have the advantage of a well defined
stopping criterion. MCA3 learns the parameters of the prior distribution whereas R-MCA2 uses
a fixed value. R-MCA2 does, however, remain highly reliable, even when the fixed parameterπ
differs significantly from the true valueπgen.

Figure 7: A common local optimum found by MCA3 in the standard bars test. Two weight patterns
reflect the same hidden cause, while another represents the superposition of two causes.

As was the case for the noisy bars, the R-MCA algorithms avoided local optimamore often.
This may well be a result of the smaller parameter space associated with the restricted model. A
common local optimum for MCA3 is displayed in Figure 7, where the weights associated with two
sources generate the same horizontal bar, while a third source generates a weaker combination of
two bars. This local solution is suboptimal, but the fact that MCA3 has parameters to represent
varying probabilities for each cause being present, means that it can adjust the corresponding rates
to match the data. The fixed setting ofπ for R-MCA would introduce a further likelihood penalty
for this solution.

Many component-extraction algorithms—particularly those based on artificialneural networks—
use models with more hidden elements than there are distinct causes in the input data (e.g., Charles
et al., 2002; L̈ucke and von der Malsburg, 2004; Spratling, 2006). If we useH = 12 hidden vari-
ables, then all the MCA-algorithms (MCA3, R-MCA2, and R-MCANN) found all of the bars in all
of 100 trials.

1. Note that, according to the definition above, all bars are often already represented at intermediate likelihood values.
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B Input patterns with different bar sizes

W after learning (MCA3)

D W after learning (R-MCANN)

C

W after learning (MCA3)

Input patterns with overlapping parallel bars

W after learning (MCA3)

Input patterns with 3 bars on averageA

Figure 8: Experiments with increased bar overlap. InA bar overlap is increased by increasing the
bar appearance probability toπgen= 3

10 (an average of three bars per pattern). InB bar
overlap is varied using different bar widths (two one-pixel-wide bars and one three-pixel-
wide bar for each orientation). In the bars test inC there are 8 (two-pixel-wide) horizontal
bars and 8 (two-pixel-wide) vertical bars on aD = 9×9 pixel grid. Each bar appears with
probabilityπgen= 2

16 (two bars per input pattern on average). Each experimental data set
is illustrated by 14 typical input patterns. ForA to C the parametersW of a typical trial
are shown if MCA3 is used for learning. The vectors~Wi = (Wi1, . . . ,WiD) appear in order
of decreasing learned appearance probabilityπi . In D the parametersW for a typical trial
using R-MCANN are shown.
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6.6 Comparison to Other Algorithms—Bar Overlap

For most component-extraction algorithms that have been tested against the bars benchmark, it
is difficult to know how specialized they are to the form of this test. The algorithms might, for
example, depend on the fact that all bars appear with the same probability, or that they have the same
width. Different versions of the bars test have therefore been introduced to probe how generally
the different algorithms might succeed. In particular, there has been considerable recent interest
in studying robustness to varying degrees of overlap between bars (see, e.g., L̈ucke and von der
Malsburg, 2004; L̈ucke, 2004; Spratling, 2006). This is because it is the non-linear combination
within the regions of overlap that most distinguishes the bars test images fromlinear superpositions
of sources. In three different experiments we varied the degree of overlap in three different ways.
Following Spratling (2006), in all experiments the MCA model had twice as many possible sources
as there were bars in the generative input. In all experiments we used the same algorithms, initial
conditions, and cooling schedules as described above and in Appendix E. Again, each trial used
a newly generated set of training patterns and a different randomly generated matrixW. In the
following, reliability values are computed on the basis of 25 trials each.

The most straightforward way to increase the degree of bar overlap is to use the standard bars
test with an average of three instead of two bars per image, that is, takeπ = 3

10 for an otherwise
unchanged bars test withb = 10 bars onD = 5× 5 pixels (see Figure 8A for some examples).
When usingH = 20 hidden variables, MCA3 extracted all bars in 92% of 25 experiments. Thus the
algorithm works well even for relatively high degrees of superposition.The values ofW found in a
typical trial are shown in Figure 8A. The parameters~Wi = (Wi1, . . . ,WiD) that are associated with a
hidden variable or unit are sorted according to the learned appearanceprobabilitiesπi . Like MCA3,
both R-MCA2 and R-MCANN were run without changing any parameters. In the restricted case, this
meant that the assumed value for the source probability (π = 2

10) was different from the generating
value (πgen = 3

10). Nevertheless, the performance of both algorithms remained better than that of
MCA3, with R-MCA2 and R-MCANN finding all 10 bars in 96% and 100% of 25 trials, respectively.

We can also choose unequal bar appearance probabilities (cf., Lücke and von der Malsburg,
2004). For example, half the bars appeared with probabilityπgen

h = (1+ γ) 2
10 and the other half2

appeared with probabilityπgen
h = (1− γ) 2

10, MCA3 extracted all bars in all of 25 experiments for
γ = 0.5. Forγ = 0.6 (when half the bars appeared 4 times more often than the other half) all bars
were extracted in 88% of 25 experiments. Forγ = 0.6 R-MCA2 and R-MCANN found all bars in
96% and 100% of 25 experiments respectively. Reliability values for R-MCANN started to decrease
for γ = 0.7 (92% reliability).

As suggested by L̈ucke and von der Malsburg (2004), we also varied the bar overlap in a second
experiment by choosing bars of different widths. For each orientation we used two one-pixel wide
bars and one three-pixel-wide bar. Thus, for this data set,b = 6 andD = 5×5. The bar appearance
probability wasπ = 2

6, so that an input contained, as usual, two bars on average. Figure 8B shows
some examples. MCA3 extracted all bars in 84% of 25 experiments for this test. Reliability values
decreased for more extreme differences in the bar sizes. R-MCA2 and R-MCANN both found all
bars in all 25 trials each. Thus, although the unequal bar sizes violated theassumption∑dWid = C
that was made in the derivation of R-MCA2 and R-MCANN, the algorithms’ performance in terms
of reliability seemed unaffected.

2. If bars are numberedh = 1 to 5 for the horizontal andh = 6 to 10 for the vertical, we chose the ones with even
numbers to appear with the higher probability.
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Figure 9: Comparison of MCA3, R-MCA2, and R-MCANN with other systems in the bars test with
increased occlusion (compare Figure 8C and Figure 2). Bars test parameters areD =
9×9, b = 16, π = 2

16, andN = 400. Data for the non-MCA algorithms are taken from
Spratling (2006). The bar heights represent the average numbers of extracted bars in
25 trials. Error bars indicate the largest and the lowest number of bars found in a trial.
The algorithms NN-DI and DI are feed-forward neural networks of thetype depicted in
Figure 4. All other (non-MCA) algorithms are versions of NMF with different objectives
and constraints (see Appendix E and Spratling, 2006, for details).

In the third experiment we changed the degree of bar overlap more substantially, using a bars
test that included overlapping parallel bars as introduced by Lücke (2004). We used eight horizontal
and eight vertical bars, each two pixels wide, on a 9-by-9 grid. Thus, two parallel neighboring bars
had substantial overlap. Figure 8C shows some typical input patterns. Note that the introductory
example of Figure 2A,B is also of this type. To allow for a detailed comparison withother systems
we adopted the exact settings used by Spratling (2006), that is, we considered 25 runs of a system
with H = 32 hidden variables using bars test parametersD = 9×9, πgen= 2

16, andN = 400. For
these data, MCA3 found all 16 bars in all of 25 experiments. The same is true for R-MCA2 whereas
R-MCANN missed one bar in one of the 25 trials. Figure 9 shows a quantitative comparison with
other algorithms that have been applied to this version of the bars test. Of the ten algorithms stud-
ied by Spratling (2006) just one, namely non-negative sparse coding (NN-SC; Hoyer, 2002, with
sparseness parameterλ = 1), is as reliable as MCA3 and R-MCA2. The other systems, including
forms of NMF both with and without a sparseness constraint, fail partly or entirely in extracting
the actual hidden causes. For a typical trial using MCA3 the final parametersW are displayed in
Figure 8C. Again the~Wi ’s associated with the different hidden variables are sorted according totheir
learned parametersπi . A qualitatively different set of~Wi ’s was obtained when R-MCANN was used
for learning. Figure 8D shows a typical outcome (~Wi ’s are not sorted). In this case, only the actual
causes are clearly represented whereas the~Wi ’s of the supernumerary units remain unspecialized.
The same feature is reported by Spratling (2006) for the algorithms NN-DI and DI used in this same
test. Convergence to a representation that contains just the true hidden causes and leaves super-
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numerary units unspecialized can improve the interpretability of the result. When using a higher
fixed temperature for R-MCANN all the hidden units represented bars, with some bars represented
by more than one unit. However, hidden units that represented more composite inputs, as seen for
MCA3, were rarely observed. On the other hand, the parameters found by MCA3 provide an indi-
cation of significance of each weight pattern in the appearance probabilities πi . Thus, in Figure 8C
the appearance probabilities for the first 16 sources are much higher than for the others. The later
sources may be interpreted as capturing some of the higher-order structure that results from a finite
set of input patterns. In contrast to R-MCA, such higher-order representations need not adversely af-
fect the data likelihood because the corresponding appearance probabilities can be relatively small.

A Generating causes B Input patterns

C W after learning (MCA3)

Figure 10: Experiments with more causes and hidden variables than observed variables.A The
12 patterns used to generate the data. Each is a 1-by-2 pixel bar on a 3-by-3 grid
(D = 9). B Ten examples of the 500 input patterns generated using the causes shown
in A. C ParametersW found in a typical run of MCA3 with H = 24. The vectors
~Wi = (Wi1, . . . ,WiD) appear in order of decreasing learned appearance probabilityπi .

6.7 More Causes than Observed Variables

In the experiments described above, the number of hidden causes was always smaller than the
number of observed variables. We next briefly studied the “over-complete” case where data were
generated, and models were fit, using more hidden causes than observedvariables. We generated
N = 500 patterns on a 3-by-3 grid (D = 9), using sparse combinations of 12 hidden causes corre-
sponding to 6 horizontal and 6 vertical bars, each 1-by-2 pixels in size and thus extending across
only a portion of the image (Figure 10A). As in the bars tests above, black was assigned to a value
of 0 and white to 10. Patterns were generated without noise, with an average of two bars appearing
in each (π = 2

12). Ten such patterns are shown in Figure 10B.
Figure 10C shows the weights learned during a typical run using MCA3 with the same parameter

settings as above and twice as many hidden variables than observed ones (H = 24). Weights are
sorted in order of decreasing inferred appearance probabilitiesπi . All 12 causes were identified,
with many represented more than once. A few hidden variables, with lower inferred probabilities of
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appearance, were associated with more composite patterns. MCA3 extracted all causes in all of 25
trials. R-MCA2 also extracted all causes in all of 25 trials, and never represented composite patterns.
R-MCANN only extracted all causes when run at fixed temperatures that were lowerthan those used
for the bars tests above (e.g.,T = 3), in which case it did so in all of 25 trials. This requirement
for a lower temperature was consistent with the observation that a lower datadimensionD leads to
a decrease in the critical temperatures associated with the algorithms (see Appendix E). For larger
values ofT (e.g.,T = 16) R-MCANN did not extract single causes.

6.8 Violations of Model Assumptions

To optimize the likelihood of the data under the MCA generative model, each of the approximate
learning algorithms relies on the fact that, under the Bernoulli prior (1), some number of the ob-
served data vectors will be generated by only a small number of active sources. To highlight this
point we explicitly removed such sparse data vectors from a standard bars test, thereby violating
the Bernoulli prior assumption of the generative model. We used bars tests as described above,
with b = 10 orb = 16 bars andπ = 2

b, generatingN = 500 (or more) patterns, in each case by first
drawing causes from the Bernoulli distribution (1) and then rejecting patterns in which fewer thanm
causes were active. As might be expected, whenm was 3 or greater the approximate algorithms all
failed to learn the weights associated with single causes. However, when only patterns with fewer
than 2 bars had been removed, MCA3 was still able to identify all the bars in many of the runs.
More precisely, using data generated as above withb= 10,m= 2 andN = 500, MCA3 with H = 10
hidden variables found all causes in 69 of 100 trials with noisy observations and in 37 of 100 trials
without noise (the parameters for MCA3 and the associated annealing schedule were unchanged).
Note that in these experiments the average number of active causes per input vector is increased by
the removal of sparse data vectors. An increase in reliability in the noisy case is consistent with our
other experiments. The relatively low reliability seen for noiseless bars in thisexperiment may be
due to the combined violation of both the assumed prior and noise distributions.

As long as the data set did contain some vectors generated by few sources, the learning algo-
rithms could all relatively robustly identify the causes given sufficient data, even when the average
observation contained many active sources. For instance, in a standardnoiseless bars test with
b = 16 bars on an 8×8 grid, andN = 1000 patterns with an average of four active causes in each
(π = 4

16), all three algorithms still achieved high reliability values, using twice as many hidden vari-
ables as actual bars (H = 32), and using the same parameters as for the standard bars test above.
MCA3 found all causes in 20 of 25 trials in these data (80% reliability). Reliabilities of R-MCA2

and R-MCANN (25 trials each) were 76% and 100%, respectively. The reliabilities of all algorithms
fell when the data set contained fewer patterns, or when the average number of bars per pattern was
larger.

6.9 Applications to More Realistic Data

We study two examples of component extraction in more realistic settings, applying the MCA algo-
rithms to both acoustic and image data.

Acoustic data.Sound waveforms from multiple different sources combine linearly, and soare con-
ventionally unmixed using algorithms such as ICA applied to simultaneous recordings from mul-
tiple microphones. The situation is different, however, forspectrogramrepresentations of natural
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Figure 11: Application to acoustic data.A Pressure waveforms of six phonemes spoken by a male
voice. Axes here, and for the waveform inC, are as shown for [a0] (A is a normalized
amplitude).B The log-spectrograms of the phonemes inA. We use 50 frequency chan-
nels and nine time windows (t̃ = 1, . . . ,9). Axes of all log-spectrograms in the figure
are as shown for [a0]. C Waveform of the linear mixture of phonemes [a0] and [k], and
the log-spectrogram of this linear mixture.D Six examples of theN = 500 data vectors
that were used for the experiments. Each data vector is the log-spectrogram of a linear
mixture of the phoneme waveforms inA. The data sets for the experiments used an av-
erage of two waveforms per data vector.E ParametersW found by MCA3 with H = 12,
using 500 mixture log-spectrograms. The parameter vectors~Wi = (Wi1, . . . ,WiD) appear
in order of decreasing learned appearance probabilityπi and are linearly scaled to fill
the gray scale.
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sound. The power of natural sounds in individual time-frequency binsvaries over many orders of
magnitude, and so is typically measured logarithmically and expressed in units ofdecibels, giving
a representation that is closely aligned with the response of the cochlea to thecorresponding sound.
In this representation, the combination of log-spectrograms of the different sources may be well
approximated by the max rule (R. K. Moore, 1983, quoted by Roweis, 2003). In particular, the
logarithmic power distribution, as well as the sub-linear power summation due to phase misalign-
ment, both lead to the total power in a time-frequency bin being dominated by the single largest
contribution to that bin (see Discussion).

To study the extraction of components from mixtures of sound by MCA, we based the following
experiment on six recordings of phonemes spoken by a male voice (see Figure 11A). The phoneme
waveforms were mixedlinearly to generateN = 500 superpositions, with each phoneme appearing
in each mixture with probabilityπ = 2

6. Thus each mixture comprised two phonemes on average,
with a combination rule that resembled the MCA max-rule in the approximate sense described
above.

We applied the MCA algorithms to the log-spectrograms of these mixtures. Figure11B shows
the log-spectrograms of the individual phonemes and Figure 11C shows the log-spectrogram of an
example phoneme mixture. We used 50 frequency channels and 9 time bins to construct the log-
spectrograms. The resulting values were thresholded and then rescaledlinearly so that power-levels
across all phonemes filled the interval[0,10], as in the standard bars test. For more details see
Appendix E.

The MCA algorithms were used with the same parameter settings as in the bars testsabove,
except that annealing began at a lower initial temperature (see Appendix E). As in the bars tests
with increased overlap, we used twice as many hidden variables (H = 12) as there were causes in
the input. Figure 11E shows the parametersW learned in one run using MCA3. The parameter
vectors~Wi = (Wi1, . . . ,WiD) are displayed in decreasing order of the corresponding learned valueof
πi . As can be seen, the first six such vectors converged to spectrogramrepresentations similar to
those of the six original phonemes. The six hidden variables associated withlower values ofπi ,
converged to weight vectors that represented more composite spectrograms. This result is represen-
tative of those found with MCA3. R-MCA2 also converged to single spectrogram representations,
but tended to represent those single spectrograms multiple times rather than representing more com-
posite patterns with the additional components. Results for R-MCANN were very similar to those
for R-MCA2 when we used a high fixed temperature (see Appendix E for details). For intermedi-
ate fixed temperatures, results for R-MCANN were similar to those of the bars test in Figure 8D in
that each cause was represented just once, with additional hidden units displaying little structure in
their weights. For lower fixed temperatures (starting fromT ≈ 40) R-MCANN failed to represent all
causes.

In general, the reliability values of all three algorithms were high. These were measured as
described for the bars tests above, by checking whether, after learning, inference based on each
individual phoneme log-spectrogram led to a different hidden cause being most probable. MCA3
found all causes in 21 of 25 trials (84% reliability), R-MCA2 found all causes in all of 25 trials; as
did R-MCANN (with fixed T = 70). Reliability for MCA3 improved to 96% with a slower cooling
procedure (θ∆W = 0.25×10−3; see Appendix E).

Visual data.Finally, we consider a data set for which the exact hidden sources and their mixing rule
are unknown. The data were taken from a single 250-by-250 pixel gray-level image of grass taken
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Figure 12: Application to visual data.A The 250-by-250 pixel image used as basis for the ex-
periments. The image is taken from the van Hateren database of natural images (see
Appendix E). For visualization we have brightened the image (we let values inthe lower
half of the light intensity range fill the range of gray values from zero to 255 and clamped
values in the upper half to value 255). Without brightening, the image would appear
unnaturally dark on a finite gray scale because of a small number of pixels with very
high values.B 35 examples taken from the 5000 10-by-10 pixel patches that were used
for numerical experiments. The patches represent light intensities linearly.For visu-
alization, each patch has been scaled to fill the range of gray values.C ParametersW
resulting from a typical run of R-MCA2 with H = 50 hidden variables andN = 5000
image patches. For visualization, each parameter vector~Wi = (Wi1, . . . ,WiD) has been
linearly scaled to fill the range of gray values.D Patches generated using the restricted
generative model and weights as inC (patches have been scaled as inB andC).
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L ÜCKE AND SAHANI

from the van Hateren database (Figure 12A) and linearly rescaled so that pixel intensities filled the
interval [0,10]. Each data vector was a 10-by-10 pixel patch drawn from a random position in the
image (see Figure 12B for some examples).

The image comprised stems and blades of grass which occluded each other.As discussed above
(see, e.g., Figure 2), the combination rule for such objects may be well approximated by the max
rule of the MCA generative model (at least for the lighting conditions that appear to prevail in
Figure 12A). Thus, the MCA learning algorithms may be expected to converge to parametersW
that represent intensity images of ‘grass’-like object parts. However,each blade of grass might
appear at many different positions within the image patches, rather than at afixed set of possible
locations as in the bars test. Thus to recover these grass-like elements in the MCA causal weights
requires the use of models with large numbers of hidden variables (and, correspondingly, many data
vectors). For the number of patches and hidden variables required, thecubic cost of MCA3 led
to impractically long execution times. In experiments with smaller patch sizes and smallH (e.g.,
H = 10 orH = 20) some weight patterns did converge to represent ‘grass’-like objects, but many
converged to less structured configurations.

The computational cost of R-MCA2 is smaller and we evaluated trials usingH = 50 hidden vari-
ables andN = 5000 10-by-10 patches. R-MCA2 was used with the same parameter setting as for
the bars tests above, except for lower initial and final temperatures for annealing (see Appendix E).
Figure 12C shows a typical outcome obtained when cooling fromT = 4.0 toT = 1.0. A large num-
ber of weight vectors have converged to represent ‘grass’-like object parts, whereas others represent
more extensive causes that might be interpreted as capturing background noise. Many of the weight
patterns have an orientation similar to the dominant orientation in the original image.Figure 12D
shows a selection of patches generated using the learned weights. We used a higher value ofC
during generation than during learning (the parameter is not learned with R-MCA2), thus globally
rescaling the learned weights, so as to reduce the apparent noise level. In experiments where anneal-
ing was terminated atT = 1.5 (as in the bars test), the resulting weights were generally similar to the
ones in Figure 12C, but with a larger proportion of weight vectors showing little structure. Learning
with slower annealing did not result in significantly different weights. With fewer thanN = 5000
patches for training, the weight patterns were less smooth, presumably reflecting overfitting to the
subset of data used.

In experiments applying the online algorithm R-MCANN to a set of 5000 10-by-10 patches as
above, we found that it would converge to ‘grass’-like weight patternsprovided the learning rate
(ε in Equation 25) was set to a much lower value than had been used in the bars tests. A lower
learning rate corresponds to effectively averaging over a much largerset of input patterns. With
ε = 0.02 (instead of 1.0 as above), and with noise on the weights (σ) scaled down by the same factor,
R-MCANN converged to weights similar to those shown in Figure 12C (for R-MCA2), although a
larger number of hidden units showed relatively uniform weight structure. For R-MCANN we used
a fixed temperature ofT = 2.0.

7. Discussion

We discuss the applicability of the MCA learning algorithms, and the generality ofthe MCA frame-
work, before relating the new algorithms to previous methods and neural network systems.
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7.1 Applicability of the Model

The MCA generative model and associated learning algorithms are designed to extract causal com-
ponents from input data in which the components combine non-linearly. Moreprecisely, the genera-
tive model assumes that the single active cause with the strongest influenceon a particular observed
variable alone determines its observed value—something we have referredto here as the max-rule
for combination. This stands in contrast to other feature extraction models such as PCA, ICA, NMF,
or SC, in which the influences of the different causes are summed.

One context in which data with a superposition property very close to the max-rule arise natu-
rally is the psychoacoustic combination of sounds. The perception of sound is largely driven by the
logarithm of the time-varying intensity within each of a bank of narrow-band frequency channels.
The narrow-band, short-time intensity of natural sounds may vary over many orders of magnitude.
Further, sounds from different sources may have unrelated phases, and so intensities within each
channel will generally add sub-linearly. Thus, even though soundwaveformsfrom different sources
combine linearly, the time- and frequency-localintensities, expressed logarithmically (in decibels),
are dominated by the loudest of the sounds within each time-frequency bin. Indeed, even if two
sounds are of equal loudness, the intensity of the sum is greater than each of them by at most 3 dB.
Here, then, the max-rule is a very good approximation to the true generativecombination. This
observation motivated our use of acoustic data in the experiments shown in Figure 11.

In the image domain, the max-rule’s relevance comes from the fact that it matches the true
occlusive combination rule more closely than does the more commonly used sum. This is true
both quantitatively (see Figure 2 and the discussion thereof), and also qualitatively, in the sense that
both occlusion and the max-rule share a property of exclusiveness—that is, only one of the hidden
causes determines the value of each pixel. Numerical experiments on raw image data (Figure 12)
demonstrate that plausible generative causes are extracted using the MCAapproach. The weight
patterns associated with the extracted causes resemble images of the single object parts (blades
and stems of grass in our example) that combine non-linearly to generate the image. The MCA
approach also holds some potential for component extraction in more low-level image processing,
for example, if we assume that each input pixel is generated exclusively by one edge instead of a
whole object or object part. The application of MCA might, however, be lessstraight-forward in
this case and presumably requires image preprocessing and perhaps a different noise model.

7.2 Generality of the Framework

Many of the details of the algorithms presented here, as well as many of the experiments, have been
based on a specific model in which the hidden variables are drawn from a multivariate Bernoulli dis-
tribution (1), and the observations are then Poisson, conditioned on thesevalues (2). These choices
are natural ones for non-negative data generated from binary sources (cf., NMF; Lee and Seung,
1999, 2001). However, while the details have largely been omitted for brevity, it is straightforward
to incorporate alternative generative distributions within the same framework, and with the same
approximations.

Thus, the equations that define the M-step (9), as well as the expansion (15) used to approx-
imate the E-step, would hold for any well-behaved prior over binary variables. In particular, the
sources need not be marginally independent. This generality contrasts withthe key assumption of
independence that underlies many linear combination models. It suggests that an extension to a
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hierarchical model, in which higher-order statistics in the source distributionwere captured by a
further parametric model, might be straightforward.

The general formalism also remains unchanged for different noise distributions. Thus, if the
conditional distribution of observations given sources, here Poisson,were instead Gaussian, all of
the derivations and approximations would essentially remain unchanged, withone exception being
the definitions ofI (n)

i , I (n)
ab , and I (n)

abc in Equation (18). Approximate learning for the additional
variance parameter of a Gaussian distribution would also be straightforward, largely following the
arguments developed for the parametersW and~π. If suited to the data set under consideration,
distributions other than Poisson and Gaussian may also be used within this same framework, and
combined with different dependent or independent prior distributions.

7.3 Relationship to Variational Approximations

A now standard approach to approximate learning in intractable models is to replace the true poste-
rior distribution of equation (12) by an approximateqn that is obtained by minimizing the Kullback-
Leibler divergenceKL[qn‖p(~s|~y(n),Θ′)] within a constrained class of functions. This provides a
form of variational learning (Jordan et al., 1999), which provably increases a lower bound on the
likelihood at every iteration. A common choice of a constrained family might be one which factors
over the latent variables. Unfortunately, this common choice is of little benefit inthe MCA gener-
ative model, as the costs of evaluation of the expected values of the derivativesA id(~s,W), given in
(8), grows exponentially even under factored distributions.

An alternative approach would be to constrainqn to place mass only on source configurations
where a limited number of causes are active. The minimum Kullback-Leibler divergence under
this constraint would then be achieved when the probability of such sparseconfigurations under
qn was proportional to the corresponding true posterior values. Revisiting the argument leading to
equation (15), it is clear that such an approximation would correspond to truncating the sums in both
numerator and denominator of (15), as well as the corresponding expression for〈sh〉qn

, at the same
point. Our experience has been that the algorithms described here, in which fewer terms are kept
in the numerator of (15) than in the denominator, always perform better thanthis strict variational
approach.

7.4 The Different MCA Algorithms

The computational cost of exact expectation-maximization learning (i.e., MCAex) in the MCA gen-
erative model grows exponentially in the smaller of the number of observationdimensions and the
number of hidden variables (min(D,H)), and is thus generally intractable. We have introduced three
approximations, all based on early truncation of the expanded sums in Equation (15). One of these,
MCA3, with cubic computational complexity, learns all the parameters of the full generative model,
including the prior source probabilities. However, if the sums over sourcedistributions are truncated
further, to yield an algorithm with quadratic complexity, experimental performance of an otherwise
unconstrained algorithm suffers. This difficulty is avoided in the restrictedversion of the generative
model, in which the prior probabilities are held fixed and equal, and the weightsassociated with
the sources satisfy a homogeneous coverage property. In this restricted model, the quadratic-cost
algorithm becomes effective, and we have studied both a batch-mode algorithm, R-MCA2, and an
online version R-MCANN. Experiments showed that these restricted algorithms remained effective
in terms of identifying generative weight vectors, even when the data weregenerated with prior
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source probabilities that were substantially different from that assumed by the algorithms (see, e.g.,
the experiments of Figure 8A or the discussion of violations of model assumptions in Experiments).
Furthermore, the R-MCA algorithms were also robust to violations of the assumption of homoge-
neously distributed hidden causes (20). In some situations, the R-MCA algorithms succeeded in
extracting the true causes where MCA3 did not. We have observed that this is particularly true
for bars with large differences in intensity. For this type of data, R-MCA2 appears to be the most
robust of the algorithms (see Lücke and Sahani, 2007). The R-MCA algorithms may also be more
robust to greater differences in bar widths than those that we have studied here. Overall, in terms of
the reliability with which hidden sources are recovered, R-MCA2 and R-MCANN may outperform
MCA3 even in experiments in which the assumptions used to derive them are violated.These results
suggest that constrained optimization can improve measures such as reliabilityor learning time (in
terms of pattern presentations), even when the constraint is not exactly valid. Approximately valid
constraints may make it easier to avoid local optima, and to learn from fewer examples. However,
the more severe approximation of R-MCA2 and R-MCANN can affect the likelihood of the param-
eters found. In this sense, MCA3 is the more successful algorithm. One approach to increasing the
speed of convergence might be to use R-MCANN to provide initial values to MCA3, thus reducing
the number of cubic-complexity iterations required for final convergence. Such a hybrid algorithm
would provide a learning system with relatively short learning times, high final likelihoods and high
reliability.

7.5 Relationship to Previous Algorithms

It is helpful to divide the algorithms that have previously been proposed for component extraction
into three groups: generative models with linear superposition, competitive generative models, and
neural network models in which assumptions about the data are implicit in the network structure
and learning algorithm.

7.5.1 LINEAR SUPERPOSITIONMODELS

The functional difference between linear superposition and the max-rulehas been discussed above.
Despite the mismatch in the generative process, linear superposition models have been used within
non-linear component extraction contexts, with some success. In particular, the non-negativity con-
straints of NMF have helped to identify constructively combined features (Lee and Seung, 1999).

For non-negative data, the specific algorithms developed here (MCA3, R-MCA2, and R-MCANN)
can all be regarded as explicitly non-linear alternatives to the different versions of NMF. In particu-
lar, the Poisson noise distribution matches one of the cost functions often used with NMF (Lee and
Seung, 1999). The basic methodology of our MCA development is, however, independent of the
assumption of non-negativity.

It is worth noting that non-negativity may be better suited to finding featural sub-parts (cf., Lee
and Seung, 1999; Wersing and Körner, 2003) of generative components (as was, in fact, originally
proposed) than the entire components. In the bars test (withb = 16) Spratling (2006) showed that
at least some NMF algorithms succeed in extracting all of the bars. However, if the bar overlap
is increased (as in the test depicted in Figure 2 and Figure 8C), most NMF algorithms fail. For
such input data, NMF only succeeds if its objective function is extended byan additional term that
enforces a form of sparseness. MCA3 and R-MCA2 perform better on these data than all other
algorithms tested (see Figure 9 for results) except for one sparse-NMFversion (NN-SC; Hoyer,
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2002) that performs equally well. However, for this and other sparse versions of NMF the sparseness
parameter (or parameters) must be chosen either based on prior knowledge about the input, or by
trial-and-error (see Spratling, 2006, for a critical discussion).

In contrast, thegenerative modelunderlying MCA does not assume sparseness. Instead, the
notion of sparseness was introduced in the discussion of learning, to justify the tractable approx-
imate learning algorithms MCA3, R-MCA2, and R-MCANN. The truncated approximations that
underlie these algorithms are more accurate when the input causes are sparsely active; but this does
not incorporate an explicit prior for sparsity in the way that SC, ICA, or sparse-NMF do, and does
not enforce a pre-specified degree of sparseness in the learned generative model. Indeed, the MCA
algorithms were found to robustly optimize the data likelihood, even for input causes that were not
sparsely active on average. It is possible, however, that if data weregenerated by a process that
was substantially different from that assumed by MCA, the approximate algorithms might well in-
troduce a bias towards a sparser solution. These differences in approach to sparsity between MCA
and models such as SC, ICA, and sparse-NMF, suggest that MCA might provide a good basis from
which to study the relationship between non-linear component combinations and sparsity assumed
in learning algorithms.

7.5.2 COMPETITIVE GENERATIVE MODELS

Models that use an explicitly non-linear generative combination rule include those of Saund (1995),
which uses a noisy-or rule for binary observations, and of Dayan andZemel (1995), where the com-
bination scheme is more competitive. The MCA model may be viewed as taking this competition
to an extreme, by selecting just one hidden variable to be responsible for each observed one.

Competitive generative models have proven challenging from a learning standpoint, in that pub-
lished algorithms often converge to local optima. In the bars test (b = 10, N = 500) the noisy-or
algorithm (Saund, 1995) finds all bars in just 27% of trials. The more competitive scheme (Dayan
and Zemel, 1995) only extracts all bars if bar overlap is excluded for training, that is, if training
patterns only contain parallel bars. In this simplified case the system achieves 69% reliability.

For comparison, the MCA learning algorithms MCA3, R-MCA2, and R-MCANN all show sig-
nificantly higher values of reliability in the same bars test (see Table 1), at least when combined
with an annealing procedure. The reliability can be boosted further in two ways—either by adding
Poisson noise to the input (Table 1), or by adding more hidden variables orunits to the model (in
which case all three MCA algorithms find all 10 bars in all of our experiments).

7.5.3 NEURAL NETWORK MODELS

High reliability in component extraction in the bars test is not a feature exclusive to the new al-
gorithms presented. Other highly reliable systems include some that optimize a non-probabilistic
objective function (e.g., Charles and Fyfe, 1998; Hochreiter and Schmidhuber, 1999; Charles et al.,
2002) as well as neural network models (Spratling and Johnson, 2002;Lücke and von der Malsburg,
2004; L̈ucke, 2004; L̈ucke and Bouecke, 2005; Spratling, 2006; Butko and Triesch, 2007). While
the probabilistic generative approach has the advantage of a principled framework, which makes
clear the assumptions being made about the data, it has been criticized (Hochreiter and Schmid-
huber, 1999; Spratling and Johnson, 2002; Lücke and von der Malsburg, 2004) for not working
reliably—that is, for often failing to extract the true causes.
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The models and algorithms introduced here show that a generative approach can indeed be made
robust. The R-MCANN algorithm shows that generative and neural network approaches cancome
together in the form of a competitive neural network model that is both reliableand probabilisti-
cally interpretable. Using a high learning rate and additional noise, the network model R-MCANN

avoids local optima and needs few pattern presentations for learning (lessthan 1000 in the majority
of trials). The same is reported for other network models (Spratling and Johnson, 2002; L̈ucke and
von der Malsburg, 2004; Spratling, 2006) which fit into the framework ofEquation (23) and Fig-
ure 4. The appropriate activation rule for a network to optimize the data likelihood under our genera-
tive model turns out to be a generalization of the softmax rule (see Equation 25). For input generated
by very sparsely active causes, this generalization reduces to the usual softmax, which is commonly
used for clustering (see, e.g., McLachlan and Peel, 2000). The generalized rule (25) therefore offers
an explanation for why some networks (Spratling and Johnson, 2002; Lücke and von der Malsburg,
2004; L̈ucke, 2004) can also be successfully applied to clustering tasks. However, R-MCANN and
standard neural network algorithms can differ in the details of their behavior. On the one hand,
for data involving substantial overlap between components (e.g., Figure 9), R-MCANN seems to be
more robust than the DI and NN-DI networks discussed by Spratling (2006). On the other hand, DI
and the network of L̈ucke and von der Malsburg (2004) seem to be more robust to larger differences
in component sizes.

A distinguishing feature of our model is the use of the max function. In neural modeling this
function has also been used in other contexts and for other purposes. Among other models (e.g.,
Grzywacz and Yuille, 1990) it has been used as an activation function for hidden units in a feed-
forward model for visual object recognition (Riesenhuber and Poggio, 1999). However this use in
the recognition model should not be confused with our use of the max function in the generative
process. Indeed, inference within the MCA model shows that the appropriate activation function
of hidden units, for example, (16) or (22), is necessarily more complex. The extraction of input
components, for example, in the bars test, fails if a simple max is used for inference instead. How-
ever, for input without superposition (and for recognition after learning) a max function as used by
Riesenhuber and Poggio (1999) may be interpreted as a further approximation of the generalized
softmax in the neural network approximation of R-MCANN.

7.6 Conclusion

To conclude, we have formulated a novel class of generative models thatcompetitively combines
hidden causes. In place of the linear superposition of prominent models likePCA, ICA, SC, and
NMF, we use the max-operation. We have shown how a new technique for posterior approximation
in such models can provide efficient parameter update rules if the input causes are sparsely active.
Making specific choices for prior and noise distributions, we obtain efficient algorithms that per-
formed well on artificial and natural non-linear mixtures, and are found tobe competitive with the
best current performance on standard non-linear benchmarks.
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L ÜCKE AND SAHANI

Appendix A. Maximum Likelihood

To maximizeF (Θ,Θ′) in (5) with respect toWid we require that:
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with p(y|w) given in (2). Now, for any well-behaved functiong, and largeρ:
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Equation (28) holds becauseAρ
id(~s,W) ≈ 0 wheneverWd(~s,W) 6= Wid . Hence it follows from (26)
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Equation (9) is obtained in the limit of largeρ. To be more precise, we might have usedA
ρ
id(~s,W)

instead ofA id(~s,W) in the main text. However, we abstained from doing so for the sake of readabil-
ity, and because only the limitρ → ∞ is needed to derive the learning algorithms. The expression
for this limit given in Equation (8) is found from (7), with the derivative ofW

ρ
d given by:

∂
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In the limit ρ → ∞ this reduces to (8) because the second factor on the right-hand-side converges to
1 whenever the first term is nonzero.

Note that (29) is true for any type of conditionally independent noise distribution. Only in the
final step, from Equation (29) to (30), is the specific form of the Poissondistribution needed, where
it appears in the derivative (27).

Appendix B. Intractability of Sufficient Statistics

To compute the exact sufficient statistics in (10) requires the evaluation of sums over all possible
hidden states~s, suggesting a computational complexity of 2H . In some cases, however, there may be
multiple different source configurations, all of which result in the same effective weightsWd(~s,W)
for all dimensionsd ∈ {1, . . . ,D}. In such cases, it might be possible to group these equal terms in
each of the sums together, thereby reducing the complexity of the sum to scalewith the number of
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such groups, rather than with the number of source configurations. In fact, we show below that the
complexity of computing these expected values in general scales at least asfast as 2min(H,D).

We examine three cases individually:

H = D Consider parametersW for which, corresponding to each observed noded, there is a
hidden nodei such thatWid > Wjd for all j 6= i (beyond this restriction, the entries in
W may have arbitrary values). ForH = D this condition can be satisfied, and if it is,
then for any two hidden vectors~s and~s′ there is ad such thatWd(~s,W) 6= Wd(~s′,W).
In other words: any change of the hidden vector~s results in a change of the pre-
noise output vector(W1(~s,W), . . . ,WD(~s,W)). Hence, each summand in the partition
function in (12) contributes a potentially different value, and they must be evaluated
one-by-one. Thus, in this case the computational cost scales as 2H .

H < D Consider a subset ofH of theD observed nodes and apply the argument above. Thus,
the computational cost scales as 2H . Note that for fixedH and random parametersW
the existence ofH (or approximatelyH) hidden nodes for which the above condition
is fulfilled becomes increasingly likely with increasingD.

H > D On the one hand, if we just considerD of theH hidden nodes and apply the argument
above, we can infer that the computational complexity grows with at least 2D. On the
other hand, we can obtain at mostHD +1 different vectors(W1(~s,W), . . . ,WD(~s,W))
and thus at mostHD +1 groups to sum over. The computational complexity thus lies
between 2D andHD +1 in this case.

Appendix C. MCA 3 and R-MCA2—Details of the Derivations

The update rules that define the algorithms MCA3 and R-MCA2 follow directly from (12) and
(15) using the distributions (1) and (2). Note that in (15) the joint probabilityp(~s,~y(n) |Θ′) can

be replaced by any functionF satisfyingF(~s,~y(n),Θ′) = p(~s,~y(n) |Θ′)

A(~y(n),Θ′)
, whereA is any well-behaved

function not depending on~s. For the update rules of MCA3 and R-MCA2 we have used:

F(~s,~y(n),Θ) =

(

∏
i

πsi
i

)

exp(I (n)) , I (n) = ∑
d

(

log(Wd(~s,W))y(n)
d − Wd(~s,W)

)

.

C.1 MCA3

The first term in the sum over states~s in the denominator of (16) and (17) only contributes signifi-
cantly if~y(n) =~0, that is, ifF(~0,~y(n),Θ) = 1 (given Poisson noise). In all other cases its contribution
is negligible. To derive the numerator of (16) we have used the property:

A id(~sh,W) = δih , A id(~sab,W) = δia H (Wid −Wbd)+δib H (Wid −Wad) , (32)

whereH is the Heaviside function. Note that instead of (32) we also could have usedA id(~sh,W)
andA id(~sab,W) directly or the corresponding expressions ofA

ρ
id(~s,W) in (31) with high ρ. By

using (32) we can simplify the expression of the numerator of (16), however.
The derivation of the numerator of (17) (withα = 1) is straightforward. For less sparse input we

have to correct for neglecting input patterns which were generated by four or more hidden causes.

1259
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We do so by updatingα using a consistency argument. On the one hand, using the same arguments
as for the derivation of (16) and (17), we can estimate the total number of input patterns generated
by less than three causes:

N
≤2

(Y,Θ) ≈ ∑
n

H (1
2 −∑

d

y(n)
d ) + ∑

i

πi exp(I (n)
i ) + 1

2 ∑
a,b(a6=b)

πaπbexp(I (n)
ab )

1+∑
h

πhexp(I (n)
h ) + 1

2 ∑
a,b

a 6= b

πaπbexp(I (n)
ab ) + 1

6∑
a,b,c

a 6= b 6= c

πaπbπcexp(I (n)
abc)

. (33)

On the other hand, the same number can be estimated using the prior distributionsalone:

Ñ
≤2

(~π) = N

(

∏
i

(1−πi)

)(

1 + ∑
h

πh + 1
2 ∑

a,b(a6=b)

πa πb

)

. (34)

If the parametersπi are underestimated using approximation (17), the estimate (33) is smaller
than the estimate (34). We changeα after each EM iteration until both estimates are consistent
(N

≤2
(Y,Θ) ≈ Ñ

≤2
(~π)):

α = αold +
εα

N

(

Ñ
≤2

(~π) − N
≤2

(Y,Θ)
)

.

Note that the additional computational cost to inferα is small. Computations in (34) scale quadrat-
ically with H, and the terms in (33) have to be computed for (17) anyway. In experimentswe use
εα = 1.

C.2 R-MCA2

If we optimize (5) under the constraint∑dWid = C in (19), we obtain:

∑
n
〈A id(~s,W)〉qn

y(n)
d − Wid

Wid
+ µi = 0.

The elimination of the Lagrange multipliersµi results in:

Wid =
∑n 〈A id(~s,W)〉qn

y(n)
d

1
C ∑n,d′ 〈A id′(~s,W)〉qn

y(n)
d′ − ∑n

(

(∑d′ 〈A id′(~s,W)〉qn

Wid′

C ) − 〈A id(~s,W)〉qn

) .

If the model parametersW fulfill condition (20), which can be expected at least close to the max-
imum likelihood solution, we obtain after the rearrangement of terms, the approximate M-step of
Equation (21). To derive the sufficient statistics (22) note that given theupdate rule (21) we have:

Wid = C
∑
n
〈A id(~s,W)〉qn

y(n)
d

∑
d′

∑
n
〈A id′(~s,W)〉qn

y(n)
d′

= C

∑
n∈N>0

〈A id(~s,W)〉qn
y(n)

d

∑
d′

∑
n∈N>0

〈A id′(~s,W)〉qn
y(n)

d′

,

whereN
>0

is the set of all non-zero input patterns. To approximate〈A id(~s,W)〉qn
we can therefore

assume input statistics that follow from Equations (1) to (3), but in which all inputs exactly equal
to zero are omitted. For such modified input statistics, Equation (15) remains unchanged except for
the partition functionZ in (14) whose termp(~0,~y(n) |Θ′) now equals zero. If we truncate the sum
in (15) after terms of order two, we obtain Equation (22).
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Appendix D. Neural Network Details

Here we show that the online neural network update rule (23) approaches the batch rule (24) for
large data sets and small learning rates. LetW (n) be the weight matrix at thenth update, and for
convenience define the Hebbian correlation signal to beG(n)

id = gi(~y(n),W (n))y(n)
d , and the weight

renormalization term to bez(n)
i = C−1 ∑d′

(

W
(n)
id′ + εG(n)

id′

)

= (1+ ε
C ∑d′ G(n)

id′ ) (where we have used

the fact that∑d′W
(n)
id′ = C). Then we can rewrite (23) as

W
(n)
id =

W
(n−1)
id + εG(n−1)

id

z(n−1)
i

,

and by applyingN updates starting from initial stept find that

W
(t+N)
id =

W
(t)
id + ε ∑N

n=1G(t+N−n)
id ∏N

k=n+1z(t+N−k)
i

∏N
k=1z(t+N−k)

i

,

where the empty product atn = N is taken equal to 1.
We now make approximations based on the assumptions thatN is large,ε is small, and that

W (t) is drawn from the equilibrium distribution over weights. First, as eachz(n)
i is (slightly) larger

than 0, the sum will be dominated by the leading terms (wheren is small). The coefficients of these
terms can be approximated, assuming thatε is small, by a logarithmic transform and the weak law
of large numbers:∏N

k=n+1z(t+N−k)
i ≈ exp

(

(N− n) ε
C ∑d′ Gid′

)

, whereGid is the expected value of

G(n)
id , which is taken to be stationary by the equilibrium assumption.

Inserting this expression into (35), taking the expected value of the right-hand-side, and sum-
ming the resulting geometric series to infinity, we obtain:

W
(t+N)
id ≈ e−Nε∑d′ Gid′/CW

(t)
id + εGid

(

1

1−e−ε∑d′ Gid′/C
−1

)

.

Finally, assumingNε to be large enough for the first term to be negligible, expanding the second,
and keeping only terms that do not scale withε we obtain

W
(t+N)
id ≈ C

Gid

∑d′ Gid′

≈ C
∑N

n=1 gi(~y(n),W (t))y(n)
d

∑d′ ∑N
n=1 gi(~y(n),W (t))y(n)

d′

.

This equivalence of the online and batch rules at equilibrium shows that theaverage fixed points of
R-MCANN equal fixed points of R-MCA2. The equivalence becomes inexact away from equilib-
rium, although our experiments suggest that the behaviour during convergence may nonetheless be
similar (Lücke and Sahani, 2007).

Appendix E. Experimental Details

This appendix gives details of the training procedures used for the MCA algorithms, provides more
information about the other algorithms used for comparison, and gives particulars of the acoustic
and visual data used.
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E.1 Initialization

We initialized the parametersW by drawing eachWid from a Gaussian distribution with unit mean
and standard deviation of1

3. Thereafter we normalized such that the average over allWid wasWinit .
For MCA3 we usedWinit = 4 and for the R-MCA algorithms we usedWinit = 2 (for this choice
the sum,∑dWid = 50, corresponds to the sum of the parameters used to generate the data).The
parameters of the prior distribution were initialized to beπi =

1
H for MCA3, that is, half the value of

the generatingπgen
i = 2

H in the standard bars test. For R-MCA2 and R-MCANN we initialized with
valuesπi = π = 2

H . The reliability of both R-MCA algorithms is only marginally affected by the
exact choices ofπ andWinit . Reliability values remained about the same even if the assumed values
of π differed significantly from the generating valuesπgen

i (see, e.g., the experiments of Figure 8 or
the paragraph on ‘Violations of model assumptions’ in Experiments).

E.2 Annealing

In Equations (16) and (18) we make the following substitutions:

H (x) → ST(x) =
(

1 + exp
(

− λ
T−1x

))−1
, (35)

πi → (πi)
β , I (n)

i → β I (n)
i , I (n)

ab → β I (n)
ab , I (n)

abc → β I (n)
abc, with β = 1

T . (36)

while making only the substitutions of (36) in Equation (33). Here,T plays the role of a ‘temper-
ature’. In the limit ofT = 1, β is equal to one and the sigmoidal functionST(x) converges to the
Heaviside function, that is, we recover the original Equations (16) and (17). A temperatureT > 1
has the effect of leveling the differences between the parameter updatesto a certain extent. For a
high temperatureT ≫ 1, the differences between the parameters associated with different hidden
variables vanish after a few iterations.

Smoothing the Heaviside function in (35) is a technique frequently used, forexample, in the
context of perceptrons, and the substitutions in (36) correspond to the standard annealing procedure
for EM (Ueda and Nakano, 1998; Sahani, 1999). The slope of the sigmoidal functionST(x) atx= 0
is parameterized byλ whose value is set toλ = 0.2.

In experiments for MCA3 and R-MCA2 we started learning at a relatively high temperature
T1 > 1 and cooled to a valueTo close to one. A final temperatureTo > 1 makes the system more
robust and counteracts over-fitting (Weiss, 1998). Experimental results on artificial data remained
essentially the same when we usedTo = 1 but the cooling procedure needed to be slower to avoid
numerical instabilities in this case. If not otherwise stated, we usedTo = 1.5. For MCA3 and
R-MCA2 we cooled fromT1 to To in steps of∆T = T1−To

50 after each iteration. However, we did
not change the temperature if the parametersW still changed significantly. More precisely, we only
decreased the temperature if the change inWid fell below a thresholdθ∆W for all i = 1, . . . ,H. In
formulas:

(∀i : ∆Wi < θ∆W) ⇒ Tnew = Told − ∆T , (37)

where ∆Wi =

√

∑d(W
old
id − Wnew

id )2

∑dWold
id

. (38)

Cooling conditioned on small parameter changes in this way allows the use of larger cooling
steps∆T and thus leads to learning in fewer iterations. For all trials we used a threshold of
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θ∆W = 2.5×10−3, except for the application to more realistic data for which we ran additional
trials with θ∆W = 0.25×10−3.

In experiments it was observed that a given system had a critical temperatureTc above which the
weights did not specialize to different patterns after random initialization. Instead the parameters
converged to about the same values for all hidden variables (compare Sahani, 1999; L̈ucke, 2004). A
natural choice of an initial temperatureT1 > 1 is therefore a value close to this critical temperature.
Experiments on different versions of the bars test showed a roughly linear dependence between
the critical temperatureTc and the number of input dimensionsD. Thus, in all versions of the
bars test we usedT1 = 0.4D + 1 andT1 = 0.7D + 1 for MCA3 and R-MCA2, respectively. In the
experiments on acoustic and visual data, the critical temperatures are lowerthan those measured
in bars tests with sameD, presumably due to more homogeneous distributions of input values in
those cases (generating weights in the bars test were all either 0 or 10, whereas generating weights
in the naturally-derived data could take on any value in[0,10]). Thus, experiments on phoneme
data started at an initial temperature ofT1 = 70 for MCA3 andT1 = 100 for R-MCA2; and those on
visual data started atT1 = 2 for MCA3 (8-by-8 patches,H = 20) andT1 = 4 for R-MCA2 (10-by-
10 patches,H = 50). In all experiments the temperature was maintained atT1 during the first ten
iterations. After the system had cooled toTo using (37) and (38) learning was terminated once all
∆Wi remained smaller thanθ∆W for 20 iterations.

For R-MCANN we used a fixed temperature ofT = 16 if not otherwise stated, and stopped after
all single causes were represented by the same hidden variables for 4000 pattern presentations. In a
given trial, the first pattern presentation after which the representation didnot change was taken as
the learning time of R-MCANN. For the acoustic data set we usedT = 70 and additionally report
results forT = 50 and valuesT ≤ 40. For the visual data we usedT = 2.

For MCAex in Figure 6 we have used a relatively fast and fixed cooling schedule.

E.3 Algorithms for the Comparison in Figure 9

For the comparison in Figure 9 we have reproduced data reported by Spratling (2006). While we
have adopted the same abbreviations as were used there, we repeat themin Table 2 for the conve-
nience of the reader.

Algorithm Description
NN-SC non-negative sparse coding (λ = 1)

SC-NMFA NMF with a sparseness constraint of 0.5 on the basis vectors
SC-NMFAY NMF with a sparseness constraint of 0.5 on the basis vectors

and 0.7 on the activations
DI dendritic inhibition network

NN-DI dendritic inhibition network with non-negative weights
SC-NMFY NMF with a sparseness constraint of 0.7 on the activations

S-NMF sparse-NMF (α = 1)
NMFdiv NMF with divergence objective
NMFmse NMF with Euclidean objective
L-NMF local NMF

Table 2: Description of the algorithms used for the comparison in Figure 9.
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E.4 Acoustic Data

The data used to study component extraction in the acoustic domain were generated from recordings
of three vowels (two of them diphthongs), [a0], [i:], and [ cI] and three consonants [k], [t], [p]. The
phonemes were spoken by a male voice and recorded at 8000Hz. The data were taken from a pub-
licly accessible data base (Sunsite, 1997). To construct spectrograms we used 1000 samples for each
of the phonemes, which required truncation in three cases and padding withzeros in the other three
cases. The waveformsz(t) were normalized in power such that1

T ∑t(z(t))
2 = 1. The waveforms

were then linearly mixed (zmix(t) = z(t)+ z′(t)+ . . .) to produceN = 500 observed spectrograms.
The probability of a phoneme of appearing in a mixed waveform was set to2

6. The spectrograms
of these mixtures were computed using short-time Fourier transforms with 50 frequency channels
ranging from 100 to 4000Hz, with logarithmic scaling of center frequencies(see Figure 11D). We
used 9 Hamming windows of 200 samples each, with successive windows overlapping by 100 sam-
ples. We then took the logarithms of the magnitudes of the 50-by-9 spectrogram entries, and lin-
early rescaled the top 42.8dB of dynamic range to lie between 0 and 10, with magnitudes more than
42.8dB below the highest intensity being clipped to 0.

E.5 Visual Data

The image that was used for the experiments on visual data has been taken from the publicly
available image database of the van Hateren group athlab.phys.rug.nl/imlib/. Images of the
database represent light intensities linearly, which results in most images appearing relatively dark
if displayed using a finite gray scale (see van Hateren and van der Schaaf, 1998, for details). We
have used image number 2338 (deblurred), cut out a segment of 500-by-500 pixels in the lower left
corner and scaled it down to a resolution of 250-by-250 pixels.
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Abstract
Given a sample covariance matrix, we examine the problem of maximizing the variance explained
by a linear combination of the input variables while constraining the number of nonzero coefficients
in this combination. This is known as sparse principal component analysis and has a wide array
of applications in machine learning and engineering. We formulate a new semidefinite relaxation
to this problem and derive a greedy algorithm that computes a full set of good solutions for all
target numbers of non zero coefficients, with total complexity O(n3), where n is the number of
variables. We then use the same relaxation to derive sufficient conditions for global optimality of a
solution, which can be tested in O(n3) per pattern. We discuss applications in subset selection and
sparse recovery and show on artificial examples and biological data that our algorithm does provide
globally optimal solutions in many cases.
Keywords: PCA, subset selection, sparse eigenvalues, sparse recovery, lasso

1. Introduction

Principal component analysis (PCA) is a classic tool for data analysis, visualization or compres-
sion and has a wide range of applications throughout science and engineering. Starting from a
multivariate data set, PCA finds linear combinations of the variables called principal components,
corresponding to orthogonal directions maximizing variance in the data. Numerically, a full PCA
involves a singular value decomposition of the data matrix.

One of the key shortcomings of PCA is that the factors are linear combinations of all original
variables; that is, most of factor coefficients (or loadings) are non-zero. This means that while PCA
facilitates model interpretation and visualization by concentrating the information in a few factors,
the factors themselves are still constructed using all variables, hence are often hard to interpret.

In many applications, the coordinate axes involved in the factors have a direct physical inter-
pretation. In financial or biological applications, each axis might correspond to a specific asset or
gene. In problems such as these, it is natural to seek a trade-off between the two goals of statisti-
cal fidelity (explaining most of the variance in the data) and interpretability (making sure that the
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factors involve only a few coordinate axes). Solutions that have only a few nonzero coefficients in
the principal components are usually easier to interpret. Moreover, in some applications, nonzero
coefficients have a direct cost (e.g., transaction costs in finance) hence there may be a direct trade-
off between statistical fidelity and practicality. Our aim here is to efficiently derive sparse principal
components, that is, a set of sparse vectors that explain a maximum amount of variance. Our belief
is that in many applications, the decrease in statistical fidelity required to obtain sparse factors is
small and relatively benign.

In what follows, we will focus on the problem of finding sparse factors which explain a maxi-
mum amount of variance, which can be written:

max
‖z‖≤1

zT Σz−ρCard(z) (1)

in the variable z ∈ Rn, where Σ ∈ Sn is the (symmetric positive semi-definite) sample covariance
matrix, ρ is a parameter controlling sparsity, and Card(z) denotes the cardinal (or `0 norm) of z,
that is, the number of non zero coefficients of z.

While PCA is numerically easy, each factor requires computing a leading eigenvector, which can
be done in O(n2), sparse PCA is a hard combinatorial problem. In fact, Moghaddam et al. (2006b)
show that the subset selection problem for ordinary least squares, which is NP-hard (Natarajan,
1995), can be reduced to a sparse generalized eigenvalue problem, of which sparse PCA is a par-
ticular intance. Sometimes factor rotation techniques are used to post-process the results from PCA
and improve interpretability (see QUARTIMAX by Neuhaus and Wrigley 1954, VARIMAX by
Kaiser 1958 or Jolliffe 1995 for a discussion). Another simple solution is to threshold the load-
ings with small absolute value to zero (Cadima and Jolliffe, 1995). A more systematic approach to
the problem arose in recent years, with various researchers proposing nonconvex algorithms (e.g.,
SCoTLASS by Jolliffe et al. 2003, SLRA by Zhang et al. 2002 or D.C. based methods such as
(Sriperumbudur et al., 2007) which find modified principal components with zero loadings). The
SPCA algorithm, which is based on the representation of PCA as a regression-type optimization
problem (Zou et al., 2006), allows the application of the LASSO (Tibshirani, 1996), a penaliza-
tion technique based on the `1 norm. With the exception of simple thresholding, all the algorithms
above require solving non convex problems. Recently also, d’Aspremont et al. (2007b) derived an
`1 based semidefinite relaxation for the sparse PCA problem (1) with a complexity of O(n4√logn)
for a given ρ. Finally, Moghaddam et al. (2006a) used greedy search and branch-and-bound meth-
ods to solve small instances of problem (1) exactly and get good solutions for larger ones. Each step
of this greedy algorithm has complexity O(n3), leading to a total complexity of O(n4) for a full set
of solutions. Moghaddam et al. (2007) improve this bound in the regression/discrimination case.

Our contribution here is twofold. We first derive a greedy algorithm for computing a full set of
good solutions (one for each target sparsity between 1 and n) at a total numerical cost of O(n3) based
on the convexity of the of the largest eigenvalue of a symmetric matrix. We then derive tractable
sufficient conditions for a vector z to be a global optimum of (1). This means in practice that, given
a vector z with support I, we can test if z is a globally optimal solution to problem (1) by performing
a few binary search iterations to solve a one dimensional convex minimization problem. In fact, we
can take any sparsity pattern candidate from any algorithm and test its optimality. This paper builds
on the earlier conference version (d’Aspremont et al., 2007a), providing new and simpler conditions
for optimality and describing applications to subset selection and sparse recovery.

While there is certainly a case to be made for `1 penalized maximum eigenvalues (à la d’Aspremont
et al., 2007b), we strictly focus here on the `0 formulation. However, it was shown recently (see
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Candès and Tao 2005, Donoho and Tanner 2005 or Meinshausen and Yu 2006 among others) that
there is in fact a deep connection between `0 constrained extremal eigenvalues and LASSO type
variable selection algorithms. Sufficient conditions based on sparse eigenvalues (also called re-
stricted isometry constants in Candès and Tao 2005) guarantee consistent variable selection (in the
LASSO case) or sparse recovery (in the decoding problem). The results we derive here produce
upper bounds on sparse extremal eigenvalues and can thus be used to prove consistency in LASSO
estimation, prove perfect recovery in sparse recovery problems, or prove that a particular solution of
the subset selection problem is optimal. Of course, our conditions are only sufficient, not necessary
and the duality bounds we produce on sparse extremal eigenvalues cannot always be tight, but we
observe that the duality gap is often small.

The paper is organized as follows. We begin by formulating the sparse PCA problem in Section
2. In Section 3, we write an efficient algorithm for computing a full set of candidate solutions
to problem (1) with total complexity O(n3). In Section 4 we then formulate a convex relaxation
for the sparse PCA problem, which we use in Section 5 to derive tractable sufficient conditions
for the global optimality of a particular sparsity pattern. In Section 6 we detail applications to
subset selection, sparse recovery and variable selection. Finally, in Section 7, we test the numerical
performance of these results.

1.1 Notation

For a vector z ∈ R, we let ‖z‖1 = ∑n
i=1 |zi| and ‖z‖ =

(

∑n
i=1 z2

i

)1/2
, Card(z) is the cardinality of z,

that is, the number of nonzero coefficients of z, while the support I of z is the set {i : zi 6= 0} and
we use Ic to denote its complement. For β ∈ R, we write β+ = max{β,0} and for X ∈ Sn (the set of
symmetric matrix of size n× n) with eigenvalues λi, Tr(X)+ = ∑n

i=1 max{λi,0}. The vector of all
ones is written 1, while the identity matrix is written I. The diagonal matrix with the vector u on the
diagonal is written diag(u).

2. Sparse PCA

Let Σ ∈ Sn be a symmetric matrix. We consider the following sparse PCA problem:

φ(ρ) ≡ max
‖z‖≤1

zT Σz−ρCard(z) (2)

in the variable z ∈ Rn where ρ > 0 is a parameter controlling sparsity. We assume without loss of
generality that Σ ∈ Sn is positive semidefinite and that the n variables are ordered by decreasing
marginal variances, that is, that Σ11 ≥ . . . ≥ Σnn. We also assume that we are given a square root A
of the matrix Σ with Σ = AT A, where A ∈ Rn×n and we denote by a1, . . . ,an ∈ Rn the columns of A.
Note that the problem and our algorithms are invariant by permutations of Σ and by the choice of
square root A. In practice, we are very often given the data matrix A instead of the covariance Σ.

A problem that is directly related to (2) is that of computing a cardinality constrained maximum
eigenvalue, by solving:

maximize zT Σz
subject to Card(z) ≤ k

‖z‖ = 1,
(3)
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in the variable z ∈ Rn. Of course, this problem and (2) are related. By duality, an upper bound on
the optimal value of (3) is given by:

inf
ρ∈P

φ(ρ)+ρk.

where P is the set of penalty values for which φ(ρ) has been computed. This means in particular
that if a point z is provably optimal for (2), it is also globally optimum for (3) with k = Card(z).

We now begin by reformulating (2) as a relatively simple convex maximization problem. Sup-
pose that ρ ≥ Σ11. Since zT Σz ≤ Σ11(∑n

i=1 |zi|)2 and (∑n
i=1 |zi|)2 ≤ ‖z‖2 Card(z) for all z ∈ Rn, we

have:
φ(ρ) = max‖z‖≤1 zT Σz−ρCard(z)

≤ (Σ11 −ρ)Card(z)
≤ 0,

hence the optimal solution to (2) when ρ ≥ Σ11 is z = 0. From now on, we assume ρ ≤ Σ11 in which
case the inequality ‖z‖ ≤ 1 is tight. We can represent the sparsity pattern of a vector z by a vector
u ∈ {0,1}n and rewrite (2) in the equivalent form:

φ(ρ) = max
u∈{0,1}n

λmax(diag(u)Σdiag(u))−ρ1T u

= max
u∈{0,1}n

λmax(diag(u)AT Adiag(u))−ρ1T u

= max
u∈{0,1}n

λmax(Adiag(u)AT )−ρ1T u,

using the fact that diag(u)2 = diag(u) for all variables u ∈ {0,1}n and that for any matrix B,
λmax(BT B) = λmax(BBT ). We then have:

φ(ρ) = max
u∈{0,1}n

λmax(Adiag(u)AT )−ρ1T u

= max
‖x‖=1

max
u∈{0,1}n

xT Adiag(u)AT x−ρ1T u

= max
‖x‖=1

max
u∈{0,1}n

n

∑
i=1

ui((a
T
i x)2 −ρ).

Hence we finally get, after maximizing in u (and using maxv∈{0,1} βv = β+):

φ(ρ) = max
‖x‖=1

n

∑
i=1

((aT
i x)2 −ρ)+, (4)

which is a nonconvex problem in the variable x ∈ Rn. We then select variables i such that (aT
i x)2 −

ρ > 0. Note that if Σii = aT
i ai < ρ, we must have (aT

i x)2 ≤ ‖ai‖2‖x‖2 < ρ hence variable i will never
be part of the optimal subset and we can remove it.

3. Greedy Solutions

In this section, we focus on finding a good solution to problem (2) using greedy methods. We first
present very simple preprocessing solutions with complexity O(n logn) and O(n2). We then recall
a simple greedy algorithm with complexity O(n4). Finally, our first contribution in this section is
to derive an approximate greedy algorithm that computes a full set of (approximate) solutions for
problem (2), with total complexity O(n3).
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3.1 Sorting and Thresholding

The simplest ranking algorithm is to sort the diagonal of the matrix Σ and rank the variables by
variance. This works intuitively because the diagonal is a rough proxy for the eigenvalues: the
Schur-Horn theorem states that the diagonal of a matrix majorizes its eigenvalues (Horn and John-
son, 1985); sorting costs O(n logn). Another quick solution is to compute the leading eigenvector
of Σ and form a sparse vector by thresholding to zero the coefficients whose magnitude is smaller
than a certain level. This can be done with cost O(n2).

3.2 Full Greedy Solution

Following Moghaddam et al. (2006a), starting from an initial solution of cardinality one at ρ = Σ11,
we can update an increasing sequence of index sets Ik ⊆ [1,n], scanning all the remaining variables
to find the index with maximum variance contribution.

Greedy Search Algorithm.

• Input: Σ ∈ Rn×n

• Algorithm:

1. Preprocessing: sort variables by decreasing diagonal elements and permute elements of
Σ accordingly. Compute the Cholesky decomposition Σ = AT A.

2. Initialization: I1 = {1}, x1 = a1/‖a1‖.

3. Compute ik = argmaxi/∈Ik
λmax

(

∑ j∈Ik∪{i} a jaT
j

)

.

4. Set Ik+1 = Ik ∪{ik} and compute xk+1 as the leading eigenvector of ∑ j∈Ik+1
a jaT

j .

5. Set k = k +1. If k < n go back to step 3.

• Output: sparsity patterns Ik.

At every step, Ik represents the set of nonzero elements (or sparsity pattern) of the current point
and we can define zk as the solution to problem (2) given Ik, which is:

zk = argmax
{zIc

k
=0, ‖z‖=1}

zT Σz−ρk,

which means that zk is formed by padding zeros to the leading eigenvector of the submatrix ΣIk,Ik .
Note that the entire algorithm can be written in terms of a factorization Σ = AT A of the matrix Σ,
which means significant computational savings when Σ is given as a Gram matrix. The matrices
ΣIk,Ik and ∑i∈Ik

aiaT
i have the same eigenvalues and their eigenvectors are transformed of each other

through the matrix A, that is, if z is an eigenvector of ΣIk,Ik , then AIk z/‖AIk z‖ is an eigenvector of
AIk A

T
Ik

.

3.3 Approximate Greedy Solution

Computing n−k eigenvalues at each iteration is costly and we can use the fact that uuT is a subgra-
dient of λmax at X if u is a leading eigenvector of X (Boyd and Vandenberghe, 2004), to get:

λmax

(

∑
j∈Ik∪{i}

a ja
T
j

)

≥ λmax

(

∑
j∈Ik

a ja
T
j

)

+(xT
k ai)

2,
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which means that the variance is increasing by at least (xT
k ai)

2 when variable i is added to Ik. This
provides a lower bound on the objective which does not require finding n− k eigenvalues at each
iteration. We then derive the following algorithm:

Approximate Greedy Search Algorithm.

• Input: Σ ∈ Rn×n

• Algorithm:

1. Preprocessing. Sort variables by decreasing diagonal elements and permute elements of
Σ accordingly. Compute the Cholesky decomposition Σ = AT A.

2. Initialization: I1 = {1}, x1 = a1/‖a1‖.

3. Compute ik = argmaxi/∈Ik
(xT

k ai)
2

4. Set Ik+1 = Ik ∪{ik} and compute xk+1 as the leading eigenvector of ∑ j∈Ik+1
a jaT

j .

5. Set k = k +1. If k < n go back to step 3.

• Output: sparsity patterns Ik.

Again, at every step, Ik represents the set of nonzero elements (or sparsity pattern) of the current
point and we can define zk as the solution to problem (2) given Ik, which is:

zk = argmax
{zIc

k
=0, ‖z‖=1}

zT Σz−ρk,

which means that zk is formed by padding zeros to the leading eigenvector of the submatrix ΣIk,Ik .
Better points can be found by testing the variables corresponding to the p largest values of (xT

k ai)
2

instead of picking only the best one.

3.4 Computational Complexity

The complexity of computing a greedy regularization path using the classic greedy algorithm in
Section 3.2 is O(n4): at each step k, it computes (n− k) maximum eigenvalue of matrices with
size k. The approximate algorithm in Section 3.3 computes a full path in O(n3): the first Cholesky
decomposition is O(n3), while the complexity of the k-th iteration is O(k2) for the maximum eigen-
value problem and O(n2) for computing all products (xT a j). Also, when the matrix Σ is directly
given as a Gram matrix AT A with A ∈ Rq×n with q < n, it is advantageous to use A directly as the
square root of Σ and the total complexity of getting the path up to cardinality p is then reduced
to O(p3 + p2n) (which is O(p3) for the eigenvalue problems and O(p2n) for computing the vector
products).

4. Convex Relaxation

In Section 2, we showed that the original sparse PCA problem (2) could also be written as in (4):

φ(ρ) = max
‖x‖=1

n

∑
i=1

((aT
i x)2 −ρ)+.
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Because the variable x appears solely through X = xxT , we can reformulate the problem in terms of
X only, using the fact that when ‖x‖= 1, X = xxT is equivalent to Tr(X) = 1, X � 0 and Rank(X) =
1. We thus rewrite (4) as:

φ(ρ) = max. ∑n
i=1(a

T
i Xai −ρ)+

s.t. Tr(X) = 1, Rank(X) = 1
X � 0.

Note that because we are maximizing a convex function over the convex set (spectahedron) ∆n =
{X ∈ Sn : Tr(X) = 1, X � 0}, the solution must be an extreme point of ∆n (i.e., a rank one matrix),
hence we can drop the rank constraint here. Unfortunately, X 7→ (aT

i Xai − ρ)+, the function we
are maximizing, is convex in X and not concave, which means that the above problem is still hard.
However, we show below that on rank one elements of ∆n, it is also equal to a concave function of
X , and we use this to produce a semidefinite relaxation of problem (2).

Proposition 1 Let A ∈ Rn×n, ρ ≥ 0 and denote by a1, . . . ,an ∈ Rn the columns of A, an upper bound
on:

φ(ρ) = max. ∑n
i=1(a

T
i Xai −ρ)+

s.t. Tr(X) = 1, X � 0, Rank(X) = 1

can be computed by solving

ψ(ρ) = max. ∑n
i=1 Tr(X1/2BiX1/2)+

s.t. Tr(X) = 1, X � 0.
(5)

in the variables X ∈ Sn, where Bi = aiaT
i −ρI, or also:

ψ(ρ) = max. ∑n
i=1 Tr(PiBi)

s.t. Tr(X) = 1, X � 0, X � Pi � 0,
(6)

which is a semidefinite program in the variables X ∈ Sn, Pi ∈ Sn.

Proof We let X1/2 denote the positive square root (i.e., with nonnegative eigenvalues) of a symmetric
positive semi-definite matrix X . In particular, if X = xxT with ‖x‖= 1, then X1/2 = X = xxT , and for
all β ∈ R, βxxT has one eigenvalue equal to β and n−1 equal to 0, which implies Tr(βxxT )+ = β+.
We thus get:

(aT
i Xai −ρ)+ = Tr((aT

i xxT ai −ρ)xxT )+

= Tr(x(xT aia
T
i x−ρ)xT )+

= Tr(X1/2aia
T
i X1/2 −ρX)+ = Tr(X1/2(aia

T
i −ρI)X1/2)+.

For any symmetric matrix B, the function X 7→ Tr(X 1/2BX1/2)+ is concave on the set of symmetric
positive semidefinite matrices, because we can write it as:

Tr(X1/2BX1/2)+ = max
{0�P�X}

Tr(PB)

= min
{Y�B, Y�0}

Tr(Y X),
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where this last expression is a concave function of X as a pointwise minimum of affine functions.
We can now relax the original problem into a convex optimization problem by simply dropping the
rank constraint, to get:

ψ(ρ) ≡ max. ∑n
i=1 Tr(X1/2aiaT

i X1/2 −ρX)+

s.t. Tr(X) = 1, X � 0,

which is a convex program in X ∈ Sn. Note that because Bi has at most one nonnegative eigen-
value, we can replace Tr(X 1/2aiaT

i X1/2 − ρX)+ by λmax(X1/2aiaT
i X1/2 − ρX)+ in the above pro-

gram. Using the representation of Tr(X 1/2BX1/2)+ detailed above, problem (5) can be written as a
semidefinite program:

ψ(ρ) = max. ∑n
i=1 Tr(PiBi)

s.t. Tr(X) = 1, X � 0, X � Pi � 0,

in the variables X ∈ Sn, Pi ∈ Sn, which is the desired result.

Note that we always have ψ(ρ)≥ φ(ρ) and when the solution to the above semidefinite program
has rank one, ψ(ρ) = φ(ρ) and the semidefinite relaxation (6) is tight. This simple fact allows us to
derive sufficient global optimality conditions for the original sparse PCA problem.

5. Optimality Conditions

In this section, we derive necessary and sufficient conditions to test the optimality of solutions to the
relaxations obtained in Sections 3, as well as sufficient condition for the tightness of the semidefinite
relaxation in (6).

5.1 Dual Problem and Optimality Conditions

We first derive the dual problem to (6) as well as the Karush-Kuhn-Tucker (KKT) optimality con-
ditions:

Lemma 2 Let A∈Rn×n, ρ≥ 0 and denote by a1, . . . ,an ∈Rn the columns of A. The dual of problem
(6):

ψ(ρ) = max. ∑n
i=1 Tr(PiBi)

s.t. Tr(X) = 1, X � 0, X � Pi � 0,

in the variables X ∈ Sn, Pi ∈ Sn, is given by:

min. λmax (∑n
i=1Yi)

s.t. Yi � Bi, Yi � 0, i = 1, . . . ,n.
(7)

in the variables Yi ∈ Sn. Furthermore, the KKT optimality conditions for this pair of semidefinite
programs are given by:







(∑n
i=1Yi)X = λmax (∑n

i=1Yi)X
(X −Pi)Yi = 0, PiBi = PiYi

Yi � Bi, Yi,X ,Pi � 0, X � Pi, TrX = 1.
(8)
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Proof Starting from:
max. ∑n

i=1 Tr(PiBi)
s.t. 0 � Pi � X

Tr(X) = 1, X � 0,

we can form the Lagrangian as:

L(X ,Pi,Yi) =
n

∑
i=1

Tr(PiBi)+Tr(Yi(X −Pi))

in the variables X ,Pi,Yi ∈ Sn, with X ,Pi,Yi � 0 and Tr(X) = 1. Maximizing L(X ,Pi,Yi) in the primal
variables X and Pi leads to problem (7). The KKT conditions for this primal-dual pair of SDP can
be derived from Boyd and Vandenberghe (2004, p.267).

5.2 Optimality Conditions for Rank One Solutions

We now derive the KKT conditions for problem (6) for the particular case where we are given a
rank one candidate solution X = xxT and need to test its optimality. These necessary and sufficient
conditions for the optimality of X = xxT for the convex relaxation then provide sufficient conditions
for global optimality for the non-convex problem (2).

Lemma 3 Let A∈Rn×n, ρ≥ 0 and denote by a1, . . . ,an ∈Rn the columns of A. The rank one matrix
X = xxT is an optimal solution of (6) if and only if there are matrices Yi ∈ Sn, i = 1, . . . ,n such that:















λmax (∑n
i=1Yi) = ∑i∈I((a

T
i x)2 −ρ)

xTYix =

{

(aT
i x)2 −ρ if i ∈ I

0 if i ∈ Ic

Yi � Bi, Yi � 0.

where Bi = aiaT
i −ρI, i = 1, . . . ,n and Ic is the complement of the set I defined by:

max
i/∈I

(aT
i x)2 ≤ ρ ≤ min

i∈I
(aT

i x)2.

Furthermore, x must be a leading eigenvector of both ∑i∈I aiaT
i and ∑n

i=1Yi.

Proof We apply Lemma 2 given X = xxT . The condition 0 � Pi � xxT is equivalent to Pi = αixxT

and αi ∈ [0,1]. The equation PiBi = XYi is then equivalent to αi(xT Bix− xTYix) = 0, with xT Bix =
(aT

i x)2 −ρ and the condition (X −Pi)Yi = 0 becomes xTYix(1−αi) = 0. This means that xTYix =
((aT

i x)2 −ρ)+ and the first-order condition in (8) becomes λmax (∑n
i=1Yi) = xT (∑n

i=1Yi)x. Finally,
we recall from Section 2 that:

∑i∈I((a
T
i x)2 −ρ) = max

‖x‖=1
max

u∈{0,1}n

n

∑
i=1

ui((a
T
i x)2 −ρ)

= max
u∈{0,1}n

λmax(Adiag(u)AT )−ρ1T u

hence x must also be a leading eigenvector of ∑i∈I aiaT
i .
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The previous lemma shows that given a candidate vector x, we can test the optimality of X =
xxT for the semidefinite program (5) by solving a semidefinite feasibility problem in the variables
Yi ∈ Sn. If this (rank one) solution xxT is indeed optimal for the semidefinite relaxation, then x
must also be globally optimal for the original nonconvex combinatorial problem in (2), so the above
lemma provides sufficient global optimality conditions for the combinatorial problem (2) based on
the (necessary and sufficient) optimality conditions for the convex relaxation (5) given in lemma
2. In practice, we are only given a sparsity pattern I (using the results of Section 3 for example)
rather than the vector x, but Lemma 3 also shows that given I, we can get the vector x as the leading
eigenvector of ∑i∈I aiaT

i .
The next result provides more refined conditions under which such a pair (I,x) is optimal for

some value of the penalty ρ > 0 based on a local optimality argument. In particular, they allow us
to fully specify the dual variables Yi for i ∈ I.

Proposition 4 Let A ∈ Rn×n, ρ ≥ 0 and denote by a1, . . . ,an ∈ Rn the columns of A. Let x be the
largest eigenvector of ∑i∈I aiaT

i . Let I be such that:

max
i/∈I

(aT
i x)2 < ρ < min

i∈I
(aT

i x)2, (9)

the matrix X = xxT is optimal for problem (6) if and only if there are matrices Yi ∈ Sn satisfying

λmax

(

∑
i∈I

BixxT Bi

xT Bix
+ ∑

i∈Ic

Yi

)

≤ ∑
i∈I

((aT
i x)2 −ρ),

with Yi � Bi − BixxT Bi
xT Bix

, Yi � 0, where Bi = aiaT
i −ρI, i = 1, . . . ,n.

Proof We first prove the necessary condition by computing a first order expansion of the functions
Fi : X 7→ Tr(X1/2BiX1/2)+ around X = xxT . The expansion is based on the results in Appendix A
which show how to compute derivatives of eigenvalues and projections on eigensubspaces. More
precisely, Lemma 10 states that if xT Bx > 0, then, for any Y � 0:

Fi((1− t)xxT + tY ) = Fi(xxT )+
t

xT Bix
TrBixxT Bi(Y − xxT )+O(t3/2),

while if xT Bx < 0, then, for any Y � 0,:

Fi((1− t)xxT + tY ) = t+ Tr
(

Y 1/2
(

Bi −
BixxT Bi

xT Bix

)

Y 1/2
)

+

+O(t3/2).

Thus if X = xxT is a global maximum of ∑i Fi(X), then this first order expansion must reflect the
fact that it is also local maximum, that is, for all Y ∈ Sn such that Y � 0 and TrY = 1, we must have:

lim
t→0+

1
t

n

∑
i=1

[Fi((1− t)xxT + tY )−Fi(xxT )] ≤ 0,

which is equivalent to:

−∑
i∈I

xT Bix+TrY

(

∑
i∈I

BixxT Bi

xT Bix

)

+ ∑
i∈Ic

Tr
(

Y 1/2
(

Bi −
BixxT Bi

xT Bix

)

Y 1/2
)

+

≤ 0.
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Thus if X = xxT is optimal, with σ = ∑i∈I xT Bix, we get:

max
Y�0,TrY=1

TrY

(

∑
i∈I

BixxT Bi

xT Bix
−σI

)

+ ∑
i∈Ic

Tr
(

Y 1/2 (Bi −Bix(x
T Bix)

†xT Bi
)

Y 1/2
)

+
≤ 0

which is also in dual form (using the same techniques as in the proof of Proposition 1):

min
{Yi�Bi− BixxT Bi

xT Bix
,Yi�0}

λmax

(

∑
i∈I

BixxT Bi

xT Bix
+ ∑

i∈Ic

Yi

)

≤ σ,

which leads to the necessary condition. In order to prove sufficiency, the only non trivial condition
to check in Lemma 3 is that xTYix = 0 for i ∈ Ic, which is a consequence of the inequality:

xT

(

∑
i∈I

BixxT Bi

xT Bix
+ ∑

i∈Ic

Yi

)

x ≤ λmax

(

∑
i∈I

BixxT Bi

xT Bix
+ ∑

i∈Ic

Yi

)

≤ xT

(

∑
i∈I

BixxT Bi

xT Bix

)

x.

This concludes the proof.

The original optimality conditions in (3) are highly degenerate in Yi and this result refines these
optimality conditions by invoking the local structure. The local optimality analysis in proposition 4
gives more specific constraints on the dual variables Yi. For i ∈ I, Yi must be equal to BixxT Bi/xT Bix,
while if i ∈ Ic, we must have Yi � Bi −BixxT Bi/xT Bix, which is a stricter condition than Yi � Bi

(because xT Bix < 0).

5.3 Efficient Optimality Conditions

The condition presented in Proposition 4 still requires solving a large semidefinite program. In
practice, good candidates for Yi, i ∈ Ic can be found by solving for minimum trace matrices satis-
fying the feasibility conditions of proposition 4. As we will see below, this can be formulated as a
semidefinite program which can be solved explicitly.

Lemma 5 Let A ∈ Rn×n, ρ ≥ 0, x ∈ Rn and Bi = aiaT
i −ρI with a1, . . . ,an ∈ Rn the columns of A.

If (aT
i x)2 < ρ and ‖x‖ = 1, an optimal solution of the semidefinite program:

minimize TrYi

subject to Yi � Bi − BixxT Bi
xT Bix

, xTYix = 0, Yi � 0,

is given by:

Yi = max

{

0,ρ
(aT

i ai −ρ)

(ρ− (aT
i x)2)

}

(I− xxT )aiaT
i (I− xxT )

‖(I− xxT )ai‖2 . (10)

Proof Let us write Mi = Bi − BixxT Bi
xT Bix

, we first compute:

aT
i Miai = (aT

i ai −ρ)aT
i ai −

(aT
i aiaT

i x−ρaT
i x)2

(aT
i x)2 −ρ

=
(aT

i ai −ρ)

ρ− (aT
i x)2

ρ(aT
i ai − (aT

i x)2).
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When aT
i ai ≤ ρ, the matrix Mi is negative semidefinite, because ‖x‖ = 1 means aT

i Mai ≤ 0 and
xT Mx = aT

i Mx = 0. The solution of the minimum trace problem is then simply Yi = 0. We now
assume that aT

i ai > ρ and first check feasibility of the candidate solution Yi in (10). By construction,
we have Yi � 0 and Yix = 0, and a short calculation shows that:

aT
i Yiai = ρ

(aT
i ai −ρ)

(ρ− (aT
i x)2)

(aT
i ai − (aT

i x)2)

= aT
i Miai.

We only need to check that Yi � Mi on the subspace spanned by ai and x, for which there is equality.
This means that Yi in (10) is feasible and we now check its optimality. The dual of the original
semidefinite program can be written:

maximize TrPiMi

subject to I−Pi +νxxT � 0
Pi � 0,

and the KKT optimality conditions for this problem are written:






Yi(I−Pi +νxxT ) = 0, Pi(Yi −Mi) = 0,
I−Pi +νxxT � 0,
Pi � 0, Yi � 0, Yi � Mi, YixxT = 0, i ∈ Ic.

Setting Pi = YiTrYi/TrY 2
i and ν sufficiently large makes these variables dual feasible. Because all

contributions of x are zero, TrYi(Yi −Mi) is proportional to TraiaT
i (Yi −Mi) which is equal to zero

and Yi in (10) satisifies the KKT optimality conditions.

We summarize the results of this section in the theorem below, which provides sufficient opti-
mality conditions on a sparsity pattern I.

Theorem 6 Let A ∈ Rn×n, ρ ≥ 0, Σ = AT A with a1, . . . ,an ∈ Rn the columns of A. Given a sparsity
pattern I, setting x to be the largest eigenvector of ∑i∈I aiaT

i , if there is a ρ∗ ≥ 0 such that the
following conditions hold:

max
i∈Ic

(aT
i x)2 < ρ∗ < min

i∈I
(aT

i x)2 and λmax

(

n

∑
i=1

Yi

)

≤ ∑
i∈I

((aT
i x)2 −ρ∗),

with the dual variables Yi for i ∈ Ic defined as in (10) and:

Yi =
BixxT Bi

xT Bix
, when i ∈ I,

then the sparsity pattern I is globally optimal for the sparse PCA problem (2) with ρ = ρ∗ and we
can form an optimal solution z by solving the maximum eigenvalue problem:

z = argmax
{zIc=0, ‖z‖=1}

zT Σz.
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Proof Following proposition 4 and lemma 5, the matrices Yi are dual optimal solutions correspond-
ing to the primal optimal solution X = xxT in (5). Because the primal solution has rank one, the
semidefinite relaxation (6) is tight so the pattern I is optimal for (2) and Section 2 shows that z is a
globally optimal solution to (2) with ρ = ρ∗.

5.4 Gap Minimization: Finding the Optimal ρ

All we need now is an efficient algorithm to find ρ∗ in theorem 6. As we will show below, when
the dual variables Y c

i are defined as in (10), the duality gap in (2) is a convex function of ρ hence,
given a sparsity pattern I, we can efficiently search for the best possible ρ (which must belong to an
interval) by performing a few binary search iterations.

Lemma 7 Let A ∈ Rn×n, ρ ≥ 0, Σ = AT A with a1, . . . ,an ∈ Rn the columns of A. Given a sparsity
pattern I, setting x to be the largest eigenvector of ∑i∈I aiaT

i , with the dual variables Yi for i ∈ Ic

defined as in (10) and:

Yi =
BixxT Bi

xT Bix
, when i ∈ I.

The duality gap in (2) which is given by:

gap(ρ) ≡ λmax

(

n

∑
i=1

Yi

)

−∑
i∈I

((aT
i x)2 −ρ),

is a convex function of ρ when

max
i/∈I

(aT
i x)2 < ρ < min

i∈I
(aT

i x)2.

Proof For i ∈ I and u ∈ Rn, we have

uTYiu =
(uT aiaT

i x−ρuT x)2

(aT
i x)2 −ρ

,

which is a convex function of ρ (Boyd and Vandenberghe, 2004, p.73). For i ∈ I c, we can write:

ρ(aT
i ai −ρ)

ρ− (aT
i x)2

= −ρ+(aT
i ai − (aT

i x)2)

(

1+
(aT

i x)2

ρ− (aT
i x)2

)

,

hence max{0,ρ(aT
i ai −ρ)/(ρ− (aT

i x)2)} is also a convex function of ρ. This means that:

uTYiu = max

{

0,ρ
(aT

i ai −ρ)

(ρ− (aT
i x)2)

}

(uT ai − (xT u)(xT ai))
2

‖(I− xxT )ai‖2

is convex in ρ when i ∈ Ic. We conclude that ∑n
i=1 uTYiu is convex, hence:

gap(ρ) = max
‖u‖=1

n

∑
i=1

uTYiu−∑
i∈I

((aT
i x)2 −ρ)

is also convex in ρ as a pointwise maximum of convex functions of ρ.
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This result shows that the set of ρ for which the pattern I is optimal must be an interval. It also
suggests an efficient procedure for testing the optimality of a given pattern I. We first compute x
as a leading eigenvector ∑i∈I aiaT

i . We then compute an interval in ρ for which x satisfies the basic
consistency condition:

max
i/∈I

(aT
i x)2 ≡ ρmin ≤ ρ ≤ ρmax ≡ min

i∈I
(aT

i x)2.

Note that this interval could be empty, in which case I cannot be optimal. We then minimize gap(ρ)
over the interval [ρmin,ρmax]. If the minimum is zero for some ρ = ρ∗, then the pattern I is optimal
for the sparse PCA problem in (2) with ρ = ρ∗.

Minimizing the convex function gap(ρ) can be done very efficiently using binary search. The
initial cost of forming the matrix ∑n

i=1Yi, which is a simple outer matrix product, is O(n3). At each
iteration of the binary search, a subgradient of gap(ρ) can then be computed by solving a maximum
eigenvalue problem, at a cost of O(n2). This means that the complexity of finding the optimal ρ over
a given interval [ρmin,ρmax] is O(n2 log2((ρmax −ρmin)/ε)), where ε is the target precision. Overall
then, the total cost of testing the optimality of a pattern I is O(n3 +n2 log2((ρmax −ρmin)/ε)).

Note that an additional benefit of deriving explicit dual feasible points Yi is that plugging these
solutions into the objective of problem (7):

min. λmax (∑n
i=1Yi)

s.t. Yi � Bi, Yi � 0, i = 1, . . . ,n.

produces an upper bound on the optimum value of the original sparse PCA problem (2) even when
the pattern I is not optimal (all we need is a ρ satisfying the consistency condition).

5.5 Solution Improvements and Randomization

When these conditions are not satisfied, the relaxation (6) has an optimal solution with rank strictly
larger than one, hence is not tight. At such a point, we can use a different relaxation such as DSPCA
by d’Aspremont et al. (2007b) to try to get a better solution. We can also apply randomization
techniques to improve the quality of the solution of problem (6) (Ben-Tal and Nemirovski, 2002).

6. Applications

In this section, we discuss some applications of sparse PCA to subset selection and compressed
sensing.

6.1 Subset Selection

We consider p data points in Rn, in a data matrix X ∈ Rp×n. We assume that we are given real
numbers y ∈ Rp to predict from X using linear regression, estimated by least squares. We are thus
looking for w∈Rn such that ‖y−Xw‖2 is minimum. In the subset selection problem, we are looking
for sparse coefficients w, that is, a vector w with many zeros. We thus consider the problem:

s(k) = min
w∈Rn

, Cardw≤k
‖y−Xw‖2.
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Using the sparsity pattern u ∈ {0,1}n, and optimizing with respect to w, we have

s(ρ) = min
u∈{0,1}n, 1T u≤k

‖y‖2 − yT X(u)(X(u)T X(u))−1X(u)T y,

where X(u) = X diag(u). We can rewrite yT X(u)(X(u)T X(u))−1X(u)T y as the largest generalized
eigenvalue of the pair (X(u)T yyT X(u),X(u)T X(u)), that is, as

yT X(u)(X(u)T X(u))−1X(u)T y = max
w∈Rn

wT X(u)T yyT X(u)w
wT X(u)T X(u)w

.

We thus have:

s(k) = ‖y‖2 − max
u∈{0,1}n,1T u≤k

max
w∈Rn

wT diag(u)XT yyT X diag(u)w
wT diag(u)XT X diag(u))w

.

Given a pattern u ∈ {0,1}n, let

s0 = yT X(u)(X(u)T X(u))−1X(u)T y

be the largest generalized eigenvalue corresponding to the pattern u. The pattern is optimal if and
only if the largest generalized eigenvalue of the pair {X(v)T yyT X(v),X(v)T X(v)} is less than s0 for
any v ∈ {0,1}n such that vT 1 = uT 1. This is equivalent to the optimality of u for the sparse PCA
problem with matrix XT yyT X − s0XT X , which can be checked using the sparse PCA optimality
conditions derived in the previous sections.

Note that unlike in the sparse PCA case, this convex relaxation does not immediately give a
simple bound on the optimal value of the subset selection problem. However, we get a bound of the
following form: when v ∈ {0,1}n and w ∈ Rn is such that 1T v = k with:

wT (X(v)T yyT X(v)− s0X(v)T X(v)
)

w ≤ B,

where B ≥ 0 (because s0 is defined from u), we have:

‖y‖2 − s0 ≥ s(k) ≥ ‖y‖2 − s0 −B

(

min
v∈{0,1}n,1T v=k

λmin(X(v)T X(v))

)−1

≥ ‖y‖2 − s0 −B
(

λmin(X
T X)

)−1
.

This bound gives a sufficient condition for optimality in subset selection, for any problem instance
and any given subset. This is to be contrasted with the sufficient conditions derived for particu-
lar algorithms, such as the LASSO (Yuan and Lin, 2007; Zhao and Yu, 2006) or backward greedy
selection (Couvreur and Bresler, 2000). Note that some of these optimality conditions are often
based on sparse eigenvalue problems (see Meinshausen and Yu, 2006, §2), hence our convex relax-
ations helps both in checking sufficient conditions for optimality (before the algorithm is run) and
in testing a posteriori the optimality of a particular solution.
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6.2 Sparse Recovery

Following Candès and Tao (2005) (see also Donoho and Tanner, 2005), we seek to recover a signal
f ∈ Rn from corrupted measurements y = A f + e, where A ∈ Rm×n is a coding matrix and e ∈ Rm

is an unknown vector of errors with low cardinality. This can be reformulated as the problem of
finding the sparsest solution to an underdetermined linear system:

minimize ‖x‖0

subject to Fx = Fy
(11)

where ‖x‖0 = Card(x) and F ∈ Rp×m is a matrix such that FA = 0. A classic trick to get good
approximate solutions to problem (11) is to substitute the (convex) `1 norm to the (combinatorial)
`0 objective above, and solve instead:

minimize ‖x‖1

subject to Fx = Fy,

which is equivalent to a linear program in x ∈ Rm. Following Candès and Tao (2005), given a matrix
F ∈ Rp×m and an integer S such that 0 < S ≤ m, we define its restricted isometry constant δS as the
smallest number such that for any subset I ⊂ [1,m] of cardinality at most S we have:

(1−δS)‖c‖2 ≤ ‖FIc‖2 ≤ (1+δS)‖c‖2, (12)

for all c ∈ R|I|, where FI is the submatrix of F formed by keeping only the columns of F in the set
I. The following result then holds.

Proposition 8 Candès and Tao (2005). Suppose that the restricted isometry constants of a matrix
F ∈ Rp×m satisfy

δS +δ2S +δ3S < 1 (13)

for some integer S such that 0 < S ≤ m, then if x is an optimal solution of the convex program:

minimize ‖x‖1

subject to Fx = Fy

such that Cardx ≤ S then x is also an optimal solution of the combinatorial problem:

minimize ‖x‖0

subject to Fx = Fy.

In other words, if condition (13) holds for some matrix F such that FA = 0, then perfect recovery of
the signal f given y = A f + e provided the error vector satisfies Card(e) ≤ S. Our key observation
here is that the restricted isometry constant δS in condition (13) can be computed by solving the
following sparse maximum eigenvalue problem:

(1+δS) ≤ max. xT (FT F)x
s. t. Card(x) ≤ S

‖x‖ = 1,
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in the variable x ∈ Rm and another sparse maximum eigenvalue problem on αI−FF T with α suffi-
ciently large, with δS computed from the tightest one. In fact, (12) means that:

(1+δS) ≤ max
{I⊂[1,m]: |I|≤S}

max
‖c‖=1

cT FT
I FIc

= max
{u∈{0,1}n: 1T u≤S}

max
‖x‖=1

xT diag(u)FT F diag(u)x

= max
{‖x‖=1, Card(x)≤S}

xT FT Fx,

hence we can compute an upper bound on δS by duality, with:

(1+δS) ≤ inf
ρ≥0

φ(ρ)+ρS

where φ(ρ) is defined in (2). This means that while Candès and Tao (2005) obtained an asymptotic
proof that some random matrices satisfied the restricted isometry condition (13) with overwhelm-
ing probability (i.e., exponentially small probability of failure), whenever they are satisfied, the
tractable optimality conditions and upper bounds we obtain in Section 5 for sparse PCA problems
allow us to prove, deterministically, that a finite dimensional matrix satisfies the restricted isometry
condition in (13). Note that Candès and Tao (2005) provide a slightly weaker condition than (13)
based on restricted orthogonality conditions and extending the results on sparse PCA to these condi-
tions would increase the maximum S for which perfect recovery holds. In practice however, we will
see in Section 7.3 that the relaxations in (7) and d’Aspremont et al. (2007b) do provide very tight
upper bounds on sparse eigenvalues of random matrices but solving these semidefinite programs for
very large scale instances remains a significant challenge.

7. Numerical Results

In this section, we first compare the various methods detailed here on artificial examples, then test
their performance on a biological data set. PathSPCA, a MATLAB code reproducing these results
may be downloaded from the authors’ web pages.

7.1 Artificial Data

We generate a matrix U of size 150 with uniformly distributed coefficients in [0,1]. We let v ∈ R150

be a sparse vector with:

vi =







1 if i ≤ 50
1/(i−50) if 50 < i ≤ 100
0 otherwise.

We form a test matrix Σ = UTU + σvvT , where σ is the signal-to-noise ratio. We first compare the
relative performance of the algorithms in Section 3 at identifying the correct sparsity pattern in v
given the matrix Σ. The resulting ROC curves are plotted in Figure 1 for σ = 2. On this example,
the computing time for the approximate greedy algorithm in Section 3.3 was 3 seconds versus
37 seconds for the full greedy solution in Section 3.2. Both algorithms produce almost identical
answers. We can also see that both sorting and thresholding ROC curves are dominated by the
greedy algorithms.
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Figure 1: ROC curves for sorting, thresholding, fully greedy solutions (Section 3.2) and approxi-
mate greedy solutions (Section 3.3) for σ = 2.

We then plot the variance versus cardinality tradeoff curves for various values of the signal-to-
noise ratio. In Figure 2, We notice that the magnitude of the error (duality gap) decreases with the
signal-to-noise ratio. Also, because of the structure of our problem, there is a kink in the variance
at the (exact) cardinality 50 in each of these curves. Note that for each of these examples, the error
(duality gap) is minimal precisely at the kink.

Next, we use the DSPCA algorithm of d’Aspremont et al. (2007b) to find better solutions where
the greedy codes have failed to obtain globally optimal solutions. In d’Aspremont et al. (2007b), it
was shown that an upper bound on (2) can be computed as:

φ(ρ) ≤ min
|Ui j|≤ρ

λmax(Σ+U).

which is a convex problem in the matrix U ∈ Sn. Note however that the cost of solving this relaxation
for a single ρ is O(n4√logn) versus O(n3) for a full path of approximate solutions. Also, the
results in d’Aspremont et al. (2007b) do not provide any hint on the value of ρ, but we can use the
breakpoints coming from suboptimal points in the greedy search algorithms in Section 3.3 and the
consistency intervals in Eq. (9). In Figure 2 we plot the variance versus cardinality tradeoff curve
for σ = 10. We plot greedy variances (solid line), dual upper bounds from Section 5.3 (dotted line)
and upper bounds computed using DSPCA (dashed line).

7.2 Subset Selection

We now present simulation experiments on synthetic data sets for the subset selection problem.
We consider data sets generated from a sparse linear regression problem and study optimality for
the subset selection problem, given the exact cardinality of the generating vector. In this setting,
it is known that regularization by the `1-norm, a procedure also known as the Lasso (Tibshirani,
1996), will asymptotically lead to the correct solution if and only if a certain consistency condition
is satisfied (Yuan and Lin, 2007; Zhao and Yu, 2006). Our results provide here a tractable test
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Figure 2: Left: variance versus cardinality tradeoff curves for σ = 10 (bottom), σ = 50 and σ = 100
(top). We plot the variance (solid line) and the dual upper bounds from Section 5.3 (dotted
line) for each target cardinality. Right: variance versus cardinality tradeoff curve for
σ = 10. We plot greedy variances (solid line), dual upper bounds from Section 5.3 (dotted
line) and upper bounds computed using DSPCA (dashed line). Optimal points (for which
the relative duality gap is less than 10−4) are in bold.

the optimality of solutions obtained from various algorithms such as the Lasso, forward greedy or
backward greedy algorithms.

In Figure 3, we consider two pairs of randomly generated examples in dimension 16, one for
which the lasso is provably consistent, one for which it isn’t. We perform 50 simulations with 1000
samples and varying noise and compute the average frequency of optimal subset selection for Lasso
and greedy backward algorithm together with the frequency of provable optimality (i.e., where our
method did ensure a posteriori that the point was optimal). We can see that the backward greedy
algorithm exhibits good performance (even in the Lasso-inconsistent case) and that our sufficient
optimality condition is satisfied as long as there is not too much noise. In Figure 4, we plot the
average mean squared error versus cardinality, over 100 replications, using forward (dotted line)
and backward (circles) selection, the Lasso (large dots) and exhaustive search (solid line). The plot
on the left shows the results when the Lasso consistency condition is satisfied, while the plot on the
right shows the mean squared errors when the consistency condition is not satisfied. The two sets of
figures do show that the LASSO is consistent only when the consistency condition is satisfied, while
the backward greedy algorithm finds the correct pattern if the noise is small enough (Couvreur and
Bresler, 2000) even in the LASSO inconsistent case.

7.3 Sparse Recovery

Following the results of Section 6.2, we compute the upper and lower bounds on sparse eigenvalues
produced using various algorithms. We study the following problem:

maximize xT Σx
subject to Card(x) ≤ S

‖x‖ = 1,
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Figure 3: Backward greedy algorithm and Lasso. We plot the probability of achieved (dotted line)
and provable (solid line) optimality versus noise for greedy selection against Lasso (large
dots), for the subset selection problem on a noisy sparse vector. Left: Lasso consistency
condition satisfied. Right: consistency condition not satisfied.
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Figure 4: Greedy algorithm and Lasso. We plot the average mean squared error versus cardinality,
over 100 replications, using forward (dotted line) and backward (circles) selection, the
Lasso (large dots) and exhaustive search (solid line). Left: Lasso consistency condition
satisfied. Right: consistency condition not satisfied.
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Figure 5: Upper and lower bound on sparse maximum eigenvalues. We plot the maximum sparse
eigenvalue versus cardinality, obtained using exhaustive search (solid line), the approx-
imate greedy (dotted line) and fully greedy (dashed line) algorithms. We also plot the
upper bounds obtained by minimizing the gap of a rank one solution (squares), by solving
the semidefinite relaxation explicitly (stars) and by solving the DSPCA dual (diamonds).
Left: On a matrix FT F with F Gaussian. Right: On a sparse rank one plus noise matrix.

where we pick F to be normally distributed and small enough so that computing sparse eigenvalues
by exhaustive search is numerically feasible. We plot the maximum sparse eigenvalue versus cardi-
nality, obtained using exhaustive search (solid line), the approximate greedy (dotted line) and fully
greedy (dashed line) algorithms. We also plot the upper bounds obtained by minimizing the gap of
a rank one solution (squares), by solving the semidefinite relaxation explicitly (stars) and by solving
the DSPCA dual (diamonds). On the left, we use a matrix Σ = F T F with F Gaussian. On the right,
Σ = uuT /‖u‖2 + 2V , where ui = 1/i, i = 1, . . . ,n and V is matrix with coefficients uniformly dis-
tributed in [0,1]. Almost all algorithms are provably optimal in the noisy rank one case (as well as
in many of the biological examples that follow), while Gaussian random matrices are harder. Note
however, that the duality gap between the semidefinite relaxations and the optimal solution is very
small in both cases, while our bounds based on greedy solutions are not as good. This means that
solving the relaxations in (7) and d’Aspremont et al. (2007b) could provide very tight upper bounds
on sparse eigenvalues of random matrices. However, solving these semidefinite programs for very
large values of n remains a significant challenge.

7.4 Biological Data

We run the algorithm of Section 3.3 on two gene expression data sets, one on Colon cancer from
Alon et al. (1999), the other on Lymphoma from Alizadeh et al. (2000). We plot the variance versus
cardinality tradeoff curve in Figure 6, together with the dual upper bounds from Section 5.3. In
both cases, we consider the 500 genes with largest variance. Note that for many cardinalities, we
have optimal or very close to optimal solutions. In Table 1, we also compare the 20 most important
genes selected by the second sparse PCA factor on the colon cancer data set, with the top 10 genes
selected by the RankGene software by Su et al. (2003). We observe that 6 genes (out of an original
4027 genes) were both in the top 20 sparse PCA genes and in the top 10 Rankgene genes.
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Rank Rankgene GAN Description
3 8.6 J02854 Myosin regul.

6 18.9 T92451 Tropomyosin

7 31.5 T60155 Actin

8 25.1 H43887 Complement fact. D prec.

10 2.1 M63391 Human desmin

12 32.3 T47377 S-100P Prot.

Table 1: 6 genes (out of 4027) that were both in the top 20 sparse PCA genes and in the top 10
Rankgene genes.
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Figure 6: Variance (solid lines) versus cardinality tradeoff curve for two gene expression data sets,
lymphoma (top) and colon cancer (bottom), together with dual upper bounds from Sec-
tion 5.3 (dotted lines). Optimal points (for which the relative duality gap is less than
10−4) are in bold.

8. Conclusion

We have presented a new convex relaxation of sparse principal component analysis, and derived
tractable sufficient conditions for optimality. These conditions go together with efficient greedy
algorithms that provide candidate solutions, many of which turn out to be optimal in practice. The
resulting upper bounds also have direct applications to problems such as sparse recovery, subset
selection or LASSO variable selection. Note that we extensively use this convex relaxation to test
optimality and provide bounds on sparse extremal eigenvalues, but we almost never attempt to
solve it numerically (except in some of the numerical experiments), which would provide optimal
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bounds. Having n matrix variables of dimension n, the problem is of course extremely large and
finding numerical algorithms to directly optimize these relaxation bounds would be an important
extension of this work.
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Appendix A. Expansion of Eigenvalues

In this appendix, we consider various results on expansions of eigenvalues we use in order to derive
sufficient conditions. The following proposition derives a second order expansion of the set of
eigenvectors corresponding to a single eigenvalue.

Proposition 9 Let N ∈ Sn. Let λ0 be an eigenvalue of N, with multiplicity r and eigenvectors
U ∈ Rn×r (such that UTU = I). Let ∆ be a matrix in Sn. If ‖∆‖F is small enough, the matrix N +∆
has exactly r (possibly equal) eigenvalues around λ0 and if we denote by (N + ∆)λ0 the projection
of the matrix N +∆ onto that eigensubspace, we have:

(N +∆)λ0 = λ0UUT +UUT ∆UUT +λ0UUT ∆(λ0I−N)† +λ0(λ0I−N)†∆UUT

+UUT ∆UUT ∆(λ0I−N)† +(λ0I−N)†∆UUT ∆UUT +UUT ∆(λ0I−N)†UUT

+λ0UUT ∆(λ0I−N)†∆(λ0I−N)† +λ0(λ0I−N)†∆(λ0I−N)†∆UUT

+λ0(λ0I−M)†∆UUT ∆(λ0I−M)† +O(‖∆‖3
F)

which implies the following expansion for the sum of the r eigenvalues in the neigborhood of λ0:

Tr(N +∆)λ0 = rλ0 +TrUT ∆U +TrUT ∆(λ0I−N)†∆U

+λ0 Tr(λ0I−N)†∆UUT ∆(λ0I−N)† +O(‖∆‖3
F).

Proof We use the Cauchy residue formulation of projections on principal subspaces (Kato, 1966):
given a symmetric matrix N, and a simple closed curve C in the complex plane that does not go
through any of the eigenvalues of N, then

ΠC (N) =
1

2iπ

I

C

dλ
λI−N

is equal to the orthogonal projection onto the orthogonal sum of all eigensubspaces of N associated
with eigenvalues in the interior of C (Kato, 1966). This is easily seen by writing down the eigenvalue
decomposition N = ∑n

i=1 λiuiuT
i , and the Cauchy residue formula ( 1

2iπ
H

C
dλ

λ−λi
= 1 if λi is in the

interior int(C ) of C and 0 otherwise), and:

1
2iπ

I

C

dλ
λI−N

=
n

∑
i=1

uiu
T
i × 1

2iπ

I

C

dλ
λ−λi

= ∑
i, λi∈int(C )

uiu
T
i .
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See Rudin (1987) for an introduction to complex analysis and Cauchy residue formula. Moreover,
we can obtain the restriction of N onto a specific sum of eigensubspaces as:

NΠC (N) =
1

2iπ

I

C

Ndλ
λI−N

=
1

2iπ

I

C

λdλ
λI−N

.

From there we can easily compute expansions around a given N by using expansions of (λI−N)−1.
The proposition follows by considering a circle around λ0 that is small enough to exclude other
eigenvalues of N, and applying several times the Cauchy residue formula.

We can now apply the previous proposition to our particular case:

Lemma 10 For any a ∈ Rn, ρ > 0 and B = aaT − ρI, we consider the function
F : X 7→ Tr(X1/2BX1/2)+ from Sn

+ to R. let x ∈ Rn such that ‖x‖ = 1. Let Y � 0. If xT Bx > 0,
then

F((1− t)xxT + tY ) = xT Bx+
t

xT Bx
TrBxxT B(Y − xxT )+O(t3/2),

while if xT Bx < 0, then

F((1− t)xxT + tY ) = Tr
(

Y 1/2
(

B− BxxT B
xT Bx

)

Y 1/2
)

+

+O(t3/2).

Proof We consider X(t) = (1−t)xxT +tY . We have X(t) =U(t)U(t)T with U(t) =

(

(1− t)1/2x
t1/2Y 1/2

)

,

which implies that the non zero eigenvalues of X(t)1/2BX(t)1/2 are the same as the non zero eigen-
values of U(t)T BU(t). We thus have

F(X(t)) = Tr(M(t))+,

with

M(t) =

(

(1− t)xT Bx t1/2(1− t)1/2xT BY 1/2

t1/2(1− t)1/2yT Bx tY 1/2BY 1/2

)

=

(

xT Bx 0
0 0

)

+ t1/2
(

0 xT BY 1/2

Y 1/2Bx 0

)

+ t

(

−xT Bx 0
0 Y 1/2BY 1/2

)

+O(t3/2)

= M(0)+ t1/2∆1 + t∆2 +O(t3/2).

The matrix M(0) has a single (and simple) non zero eigenvalue which is equal to λ0 = xT Bx with
eigenvector U = (1,0)T . The only other eigenvalue of M(0) is zero, with multiplicity n. Proposi-
tion 9 can be applied to the two eigenvalues of M(0): there is one eigenvalue of M(t) around xT Bx,
while the n remaining ones are around zero. The eigenvalue close to λ0 is equal to:

Tr(M(t))λ0 = t TrU>∆2U +λ0 + t TrUT ∆1(λ0I−M(0))†∆1U

+λ0 Tr(λ0I−M(0))†∆1UUT ∆1(λ0I−M(0))† +O(t3/2)

= xT Bx+
t

xT Bx
TrBxxT B(Y − xxT )+O(t3/2).
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For the remaining eigenvalues, we get that the projected matrix on the eigensubspace of M(t)
associated with eigenvalues around zero is equal to

(M(t))0 = t(I−UUT )∆2(I−UUT )+ t(I−UUT )∆1(−M(0))†(I−UUT )+O(t3/2)

=

(

0 0
0 tY 1/2(B− BxxT B

xT Bx )Y 1/2

)

,

which leads to a positive part equal to t+ Tr
[

Y 1/2(B− BxxT B
xT Bx )Y 1/2

]

+
. When xT Bx > 0, then the ma-

trix is negative definite (because B = aaT −ρI), and thus the positive part is zero. By summing the
two contributions, we obtain the desired result.
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André Elisseeff AEL@ZURICH.IBM.COM

Data Analytics Group
IBM Zurich Research Laboratory
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Abstract
We show how a generic feature-selection algorithm returning strongly relevant variables can be
turned into a causal structure-learning algorithm. We prove this under the Faithfulness assump-
tion for the data distribution. In a causal graph, the strongly relevant variables for a node X are
its parents, children, and children’s parents (or spouses), also known as the Markov blanket of X .
Identifying the spouses leads to the detection of the V-structure patterns and thus to causal orien-
tations. Repeating the task for all variables yields a valid partially oriented causal graph. We first
show an efficient way to identify the spouse links. We then perform several experiments in the con-
tinuous domain using the Recursive Feature Elimination feature-selection algorithm with Support
Vector Regression and empirically verify the intuition of this direct (but computationally expen-
sive) approach. Within the same framework, we then devise a fast and consistent algorithm, Total
Conditioning (TC), and a variant, TCbw, with an explicit backward feature-selection heuristics,
for Gaussian data. After running a series of comparative experiments on five artificial networks,
we argue that Markov blanket algorithms such as TC/TCbw or Grow-Shrink scale better than the
reference PC algorithm and provides higher structural accuracy.
Keywords: causal structure learning, feature selection, Markov blanket, partial correlation, statis-
tical test of conditional independence

1. Introduction

In this paper, we are interested in using concepts from the feature-selection field to help causal
structure learning. Causal structure learning (Pearl, 2000; Spirtes et al., 2001) is a multivariate data-
analysis approach that aims to build a directed acyclic graph (DAG) showing direct causal relations
among the variables of interest of a given system. These so-called causal graphs can be used together
with dedicated rules called do-calculus (Pearl, 1995) to predict the effect of interventions, that is,
of structural changes in the data-generating process. In this sense, it differs significantly from
traditional machine-learning techniques: given a set of interventions, we can predict the behavior of
a set of variables whose joint probability distribution has changed since the model was trained.

Building the causal graph is a difficult task, subject to a series of assumptions, and provably
correct algorithms have an exponential worst-case complexity. Identifying the exact causal graph is
in general impossible. By means of non-interventional data, causal graphs can only be identified up
to observational equivalence: only adjacencies and so-called V-structures (two independent causes

∗. Also at Pattern Analysis and Machine Learning Group, Swiss Federal Institute of Technology Zurich, Univer-
sitätstraße 6, CH–8092 Zurich.

c©2008 Jean-Philippe Pellet and André Elisseeff.
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leading to the same effect) can be specified exactly (Pearl, 2000, p. 19). Typical structure-learning
algorithms thus return partially directed acyclic graphs (PDAGs). These algorithms can be roughly
classified into two categories: the score-based algorithms associate a score function with a DAG
or PDAG given a training data set and perform, for instance, a greedy search in the space of DAGs
or PDAGs (e.g., the GES algorithm, Chickering, 2002); the constraint-based algorithms look for
dependencies and conditional dependencies in the data and build the causal graph accordingly. Well-
known examples are the PC (Spirtes et al., 2001) or the IC (Pearl and Verma, 1991) algorithms. In
an effort to get the best of both worlds, other algorithms use both conditional-independence tests
and scores to build the network; MMHC (Tsamardinos et al., 2006) is such an example.

The range of data sets that the typical algorithms can deal with is restricted: not any probability
distribution can be faithfully represented by a DAG. Faithfulness of the distribution is a well-defined
condition: it guarantees the existence of a DAG, called a perfect map, where there is a one-to-one
mapping between the graphical criterion of d-separation and conditional independence in the data.1

Nilsson et al. (2007) discuss faithful distributions and other types of distributions with respect to
properties of conditional independence. In the literature, Faithfulness is a precondition to prove
correctness of the algorithms.

In practice, both existing score-based and constraint-based techniques deal primarily with dis-
crete data sets. Score-based approaches for continuous variables are computationally expensive;2

as for the constraint-based approaches, only the multivariate Gaussian case has been dealt with ef-
ficiently (Scheines et al., 1995). Margaritis (2005) proposed a distribution-free test of conditional
independence, which is very computationally expensive and cannot be readily used with the current
constraint-based algorithms for all but very small networks.

Coming from the machine-learning community, feature selection (John et al., 1994; Guyon and
Elisseeff, 2003) is a common technique that aims at reducing the number of variables or features
used for building more efficient or more robust models. Techniques have evolved to be able to han-
dle nonlinear relationships between variables, redundant variables, in both discrete and continuous
domains. Feature selection and causal structure learning are related by a common concept: the
Markov blanket of a variable X is the smallest set Mb(X) containing all variables carrying informa-
tion about X that cannot be obtained from any other variable.3 In feature selection, this is the set of
strongly relevant features; that is, of features which carry information about the target that cannot
be obtained from any other variable (Kohavi and John, 1997). In a causal graph, this is the set of
all parents, children, and spouses of X . The feature-selection task and the causal graph construction
task can both be stated to some extent as Markov blanket identification tasks.

Relating feature selection and causal structure learning is not new. Several algorithms identify-
ing the Markov blanket of a single variable with techniques inspired from causal structure learning
have been proposed as the optimal solution to the feature-selection problem in the case of a faithful
distribution. Tsamardinos and Aliferis (2003) show that for faithful distributions, the Markov blan-
ket of a variable Y is exactly the set of strongly relevant features, and prove its uniqueness. They
propose the Incremental Association Markov Blanket (IAMB) algorithm to determine it. With the
same Faithfulness assumption, the Min-Max Markov Blanket algorithm (MMMB) (Tsamardinos

1. Conditional independence and d-separation are defined formally in Section 2.
2. Computationally tractable methods to learn Bayesian networks from continuous data exist (Fu, 2005), like Bach and

Jordan (2003), but do not offer the causality-related theoretical correctness guarantees.
3. Some authors write “Markov blanket” without the notion of minimality, and use “Markov boundary” to note the

smallest Markov blanket Mb(X). Even if defined as minimal, Mb(X) is generally not unique.
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et al., 2003) identifies the Markov blanket of a variable Y by calling a subroutine Min-Max Parents
and Children (MMPC). This subroutine finds the direct parents and children of Y with associa-
tion measures and conditional-independence tests. MMPC is again called on each of these nodes
to find potential spouses of Y . False positives are then discarded with conditional-independence
tests. MMMB was further discussed by Peña et al. (2005), who propose AlgorithmMB, a similar
approach based on scores and conditional-independence tests to retrieve Mb(Y ). The HITON MB
algorithm (Aliferis et al., 2003) is similar in its main steps, and selects an optimal subset of the
Markov blanket of a target variable given the Faithfulness assumption. Nilsson et al. (2007) also
propose a theoretical algorithm for consistent identification of strongly relevant features in poly-
nomial time for the class of strictly positive distributions. They also argue that some common
backward feature-elimination algorithms like Recursive Feature Elimination (Guyon et al., 2002)
are actually consistent, in the sense that they return the set of strongly relevant features in the large
sample limit.4

These are examples of using causal structure learning or similar constraint-based techniques to
help feature selection (see Guyon et al., 2007, for a review of those techniques). In this paper, we
propose a framework to do the converse. We present a generic approach using the outcome of a
consistent feature-selection algorithm FS to build an approximate structure of the true causal graph.
If we assume that FS returns the Markov blanket of the variables, we can show how to turn this
approximate result, called moral graph (Lauritzen and Spiegelhalter, 1988), into a provably correct
PDAG depicting the causal structure. This approach is also used in the Grow-Shrink algorithm
(Margaritis and Thrun, 1999), which also builds a moral graph before adjusting the local structure.

This paper contributes a generic algorithm to build a causal graph which clearly separates the
Markov blanket identification and the needed local adjustments, an efficient algorithm to perform
those adjustments, and two fast instances of the generic algorithm for multivariate Gaussian data
sets. This is presented as follows: in Section 2, we first review the needed terms and definitions
from feature selection and causality. In Section 3, we make the link from the outcome of a feature-
selection algorithm to a causal graph by detailing the needed local adjustments and detail an efficient
way to perform them. We directly apply it in Section 4, where we describe how we can build causal
graphs using the RFE feature-selection algorithm. As this direct application is very computationally
intensive, we then show our more efficient instantiations of the generic algorithm optimized for
the multivariate Gaussian case, the TC and TCbw algorithms. We list our experimental results in
Section 5, showing through empirical evaluation that Markov blanket algorithms are more scalable
and more accurate than the reference PC algorithm. We finally conclude in Section 6 and list proofs
in Appendix A.

1.1 Notation

Boldface capitals designate either matrices or sets of random variables or nodes in a graph, depend-
ing on the context. V is the set of all variables in the analysis. Italicized capitals like X ,Y,Z are
random variables or nodes and elements of V. Vectors are set in boldface lowercase, as b or w;
scalars in italics, as the number of samples n or the number of variables (the problem dimension) d.
We indiscriminately write “variable” or “feature” to refer to any variable in the causal analysis or

4. Actually, their definition of consistency has to do with returning the set of features relevant to the Bayes classifier,
which is slightly stronger than strong relevance as used here.
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any node in a causal graph, and write “predictor” to designate a variable used as input for a given
classifier or regression model.

2. Background

We formalize the feature-selection task suited for our needs and provide relevant definitions. We do
the same for the causal structure-learning task and prepare the needed basis for drawing the parallels
between the two in the next section.

2.1 Feature Selection

We are given a data set of n samples D = {(xi,yi), 1 ≤ i ≤ n}. Each data point (xi,yi) has d− 1
inputs, modeled as a vector xi ∈ Rd−1, and an output, or target, yi ∈ R (we use d−1 and not d for
the size of xi for consistency with the rest of the paper). The data points are assumed to be drawn
i.i.d. from a joint probability distribution over the random variables V = X∪{Y}. The result of the
feature-selection task we are interested in is a set of retained variables F⊆ X. How many variables
to retain and which variables to retain depends on the particular algorithm, and usually maximizes
some tradeoff between efficiency and classification/regression error of a given learning task.

John et al. (1994) propose a classification of the input variables X with respect to their relevance
to the target Y in terms of conditional independence.

Definition 1 (Conditional independence) In a variable set V, two random variables X ,Y are con-
ditionally independent given Z⊆ V\{X ,Y}, noted (X ⊥⊥ Y | Z), if:

∀x,y,z : P(X = x |Y = y,Z = z) = P(X = x |Z = z),

provided that ∀z : P(Z = z) > 0.

Conditional independence is a generalization of the traditional notion of statistical independence. If
two variables X and Y are independent, then the joint distribution is the product of the marginals:
P(X = x,Y = y) = P(X = x)P(Y = y). If they are dependent given some conditioning set Z, then we
can write P(X = x,Y = y |Z = z) = P(X = x |Z = z)P(Y = y |Z = z). Conditional independence is a
key concept in Bayesian networks (Pearl, 1988) because of the factorizations of the joint probability
distribution it allows.

In feature selection, relevance of predictors to the target as proposed by John et al. (1994) is
expressed in terms of conditional independence. In the following definitions, we write Xi to note
the ith input variable, and X\i to note all input variables but the ith one.

Definition 2 (Strong relevance) A variable Xi is strongly relevant to the target Y if

P(Y |X\i) 6= P(Y |X\i,Xi).

A variable is strongly relevant to the target if it carries information about Y that no other variable
carries. This is expressed in the definition by a change in the probability distribution of the target
between conditioning on all other variables, X\i, and also including Xi in the conditioning set. If Xi

carries no exclusive information about Y , the two distributions will be identical.
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Definition 3 (Weak relevance) A variable Xi is weakly relevant to the target Y if it is not strongly
relevant and

∃S⊆ X\i : P(Y |S) 6= P(Y |S,Xi).

We speak of weak relevance of a variable Xi when there exists a certain context S in which it carries
information about the target. However, this is not necessarily exclusive information, as it may be
possible to obtain it from other variables.

Corollary 4 (Irrelevance) A variable Xi is irrelevant to the target Y if it is neither strongly nor
weakly relevant, that is, if

∀S⊆ X\i : P(Y |S) = P(Y |S,Xi).

A variable is irrelevant if carries no information about the target at all, no matter what the context
is.

For our purposes, we assume that the feature-selection algorithm returns the set of all strongly
relevant variables, and only those.5 (In Section 5, we discuss with experiments whether this is a
reasonable assumption with the RFE algorithm.) Put in terms of conditional independence, the
result FY of the feature-selection task with target Y is, with V = X∪{Y}:

FY =
{

X
∣

∣ (X 6⊥⊥ Y | V\{X ,Y})
}

. (1)

That is the set of the variables that are dependent on the target Y , conditioned on all others. We need
this property in Section 3 to use the output of the feature-selection task to build a causal graph. Note
that if we repeat the feature-selection task using as target another variable X ∈ V yielding a result
FX , we have:

X ∈ FY ⇐⇒ Y ∈ FX . (2)

This follows as a direct consequence of (1) due to the symmetry of the conditional-independence
relation (X ⊥⊥ Y | Z) with respect to X and Y .

2.2 Causal Structure Learning

In causal structure learning, we are interested in representing graphically conditional dependencies
found in the data. Under a set of assumptions, they have a causal interpretation. For this task, we
have a data set of n samples D = {vi, 1≤ i≤ n}. We do not designate a specific target variable in V
as we are interested in learning the full structure of the network.

The graphical representation of choice for causal models is directed acyclic graphs (DAGs)
(Pearl, 2000). In a causal graph represented by a DAG, we want to represent direct causal relations
with arcs between pairs of variables. Choosing DAGs for this task implies restrictions, an obvious
one of which is that causal feedback loops are excluded from the analysis. More formally, the joint
probability distribution has to be faithful (or DAG-isomorphic, Pearl, 1988, p. 128); that is, there
must exist a DAG that represents all (conditional) dependencies and independencies entailed by the
distribution. Such a graph is called a perfect map of the distribution if there is a one-to-one mapping
between the conditional-independence relation defined on variables and the d-separation criterion
defined on the graphical nodes.

5. In the general case, this set can be empty without excluding the existence of other weakly relevant variables
(Tsamardinos and Aliferis, 2003). In the next subsection, we detail the Faithfulness hypothesis, which allows us
to exclude this particular case.
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Definition 5 (d-separation) In a DAG G , two nodes X ,Y are d-separated by Z⊆V\{X ,Y}, written
(X ↔| Y | Z), if every path from X to Y is blocked by Z. A path is blocked if at least one diverging
or serially connected node is in Z or if at least one converging node and all its descendants are not
in Z. If X and Y are not d-separated by Z, they are d-connected: (X ↔Y | Z).

Determining whether two nodes in a graph are d-separated given some conditioning set is not
visually immediate. It may for instance be unintuitive that whereas conditioning on a node W on
a directed path X →W → Y blocks the path from X to Y , conditioning on a common child Z of
two variables X ,Y in X → Z← Y connects them. In the latter case, this common child is called a
collider. If, furthermore, two parents X ,Y of a node Z are nonadjacent in the full graph, then Z is
called an unshielded collider for the pair (X ,Y ).

The definition of d-separation was worked out by Pearl (1988) to match as closely as possible
the complicated nature of the conditional-independence relation with a graphical criterion, so that
the class of faithful distributions, which can be represented by a perfect map, is as large as possible,
while still keeping a natural graphical representation.

Definition 6 (Perfect map) A DAG G is a directed perfect map of a joint probability distribution
P(V) if there is bijection between d-separation in G and conditional independence in P:

∀X ,Y ∈ V,∀Z⊆ V\{X ,Y} :
(

(X ↔| Y | Z) ⇐⇒ (X ⊥⊥ Y | Z)
)

. (3)

If we take apart the perfect-map equivalence, we distinguish two important concepts, known as the
Causal Markov condition and the Faithfulness condition (Spirtes et al., 2001, p. 29).

The Causal Markov condition is said to hold for a graph G = 〈V,E〉 and a probability distribu-
tion P(V) if every variable is statistically independent of its graphical non-descendants (intuitively,
of its non-effects, direct or indirect) conditional on its graphical parents (intuitively, its direct causes)
in P. Pairs 〈G ,P〉 that satisfy the Causal Markov condition satisfy the implication

∀X ,Y ∈ V,∀Z⊆ V\{X ,Y} :
(

(X ↔| Y | Z) =⇒ (X ⊥⊥ Y | Z)
)

.

This is called I-map property by Pearl (1988).
The Faithfulness condition can be interpreted as the converse of the Causal Markov condition,

and states that the only conditional independencies to hold are those specified by the Causal Markov
condition:

∀X ,Y ∈ V,∀Z⊆ V\{X ,Y} :
(

(X ↔Y | Z) =⇒ (X 6⊥⊥ Y | Z)
)

.

If the Causal Markov and Faithfulness conditions hold together for a pair 〈G ,P〉, then we find again
the equivalence (3), and G is a perfect map of P.

In practice, the Causal Markov condition is used by the so-called constraint-based algorithms
to perform conditional-independence tests on the data and build the graph accordingly, and Faith-
fulness is assumed to prove that the graph is correct. Hausman and Woodward (1999) discuss and
explain in more detail the Causal Markov condition, and Steel (2005) discusses the Faithfulness
condition and its motivations, pointing out cases where it can be violated. While the former is in
general not violated simply by construction of the causal graph, violation of the latter occurs if the
probability distribution is not faithful. A simple example is the n-bit parity problem where the prior
probability of each bit is uniform, of which the XOR problem is a special case: each variable is
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unconditionally independent of every other, but any variable pair becomes dependent conditioned
on all other variables. On this problem, current constraint-based algorithms yield an empty graph
because of the pairwise unconditional independencies, although it is not true that the data shows no
dependency at all since one variable is a well-defined function of all others.

From this point on and for all proofs, we assume that the working data set D has a distribution
that does not violate Faithfulness, and that it can thus be represented by a perfect map. In such a
context, however, it is still not clear that causation can be inferred from conditional independence.
We now proceed to explain the relation between causation and conditional independence.

Assuming Faithfulness, direct causation between X and Y , noted X _ Y , implies that X and Y
are dependent given any conditioning set (Pearl and Verma, 1991, see definitions of potential and
genuine causes):

X _ Y =⇒
(

∀S⊆ V\{X ,Y} : (X 6⊥⊥ Y | S)
)

.

We denote the absence of direct causation by X 6_ Y . The exact converse of this implication does
not hold. If we make the Causal Sufficiency assumption (Spirtes et al., 2001), that is, assume that
no hidden common cause of two variables exists, we can write:

(

∀S⊆ V\{X ,Y} : (X 6⊥⊥ Y | S)
)

=⇒ X _ Y or Y _ X . (4)

Using (4), we can theoretically determine all adjacencies of the causal graph with conditional-
independence tests, but we cannot orient the edges. But there is a special causation pattern where
conditional-independence tests can reveal the direction of causation. It is known as a V-structure
(Pearl, 2000): two common causes X ,Y , initially independent,6 become dependent when condi-
tioned on a common effect Z, then acting as a collider. This is noted X _ Z ^ Y , where we also
require X 6_ Y and, symmetrically, Y 6_ X . Formally, we have:

X _ Z ^ Y and X 6_ Y and Y 6_ X

=⇒
(

∃S⊆ V\{X ,Y,Z} : (X ⊥⊥ Y | S) and (X 6⊥⊥ Y | S∪{Z})
)

.

The exact converse does not hold either. But using (4), we can find an equivalence relation defining
a V-structure, still assuming Causal Sufficiency: first, we certify the existence of a link between
X and Z and between Y and Z. Z is then identified as an unshielded collider if conditioning on it
creates a dependency between X and Y :

X _ Z ^ Y ⇐⇒
(

(

∃S⊆ V\{X ,Y,Z} : (X ⊥⊥ Y | S) and (X 6⊥⊥ Y | S∪{Z})
)

and
(

∀S⊆ V\{X ,Z} : (X 6⊥⊥ Z | S)
)

and
(

∀S⊆ V\{Y,Z} : (Y 6⊥⊥ Z | S)
)

)

. (5)

Actually, typical algorithms first establish the existence of a link between two variables by seeking
a certificate equivalent to, or implicating the premise of, (4), and then look for orientation possi-
bilities. Note that there is no guarantee that all links can be oriented into causal arcs, and that in

6. The two causes X and Y actually do not need to be unconditionally independent, but there must exist a (possibly
empty) separating set SXY ⊆ V\{X ,Y} such that (X ⊥⊥ Y | SXY ) for the collider to be identifiable. This implies that
no direct causation X _ Y or Y _ X may exist: the collider must be unshielded.
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general we therefore cannot recover the full causal structure with conditional-independence tests.
This is the problem known as causal underdetermination (Spirtes et al., 2001, p. 62): for the
structure-learning task given observational data, a correct graph is specified by its adjacencies and
its V-structures only. Partially oriented graphs returned by structure-learning algorithms represent
observationally equivalent classes of causal graphs (Pearl, 2000, p. 19). This means that for a given
joint probability distribution P(V), the set of all conditional-independence statements that hold in P
does not yield a unique perfect map in general.

Formally, if we combine (3), (4) and (5), we find, for a perfect causal map G (using the symbol
“_” to denote direct causation and “→” to denote an arc in the graph):

X ,Y adjacent in G ⇐⇒ X _ Y or Y _ X

X → Z← Y ⇐⇒ X _ Z ^ Y. (6)

It is sometimes possible to orient further arcs in a graph by looking at already-oriented arcs and
propagating constraints, preventing acyclicity and the creation of additional V-structures other than
those already detected. The graph after this constraint-propagation step is called completed PDAG,
maximally oriented PDAG (CPDAG), or essential graph, depending on the author.

3. Causal Network Construction Based on Feature Selection

We have looked at the ideal outcome of feature selection in (1) and how to read a causal graph in
(6). We now turn to showing how feature selection can be used to build a causal graph. From now
on and for the rest of this paper, we assume that the joint probability distribution over all variables
V is faithful.

3.1 Identifying the Markov Blankets

In the context of directed graphical models, the Markov blanket of a node X , noted Mb(X), is the
set of parents, children, and children’s parents (spouses) of X . As an easy property, note that we
have:

X ∈Mb(Y ) ⇐⇒ Y ∈Mb(X).

The following statement is a key property of Markov blankets.

Property 7 (Total conditioning) In the context of a faithful causal graph G , we have:

∀X ,Y ∈ V :
(

X ∈Mb(Y ) ⇐⇒ (X 6⊥⊥ Y | V\{X ,Y})
)

.

(See Appendix A for the proof.) This property says that the Markov blanket of each node is the
set of all variables that are dependent on it, conditioned on all other variables. In other words, in
a causal graph, the parents, children, and spouses of Y store information about Y that cannot be
obtained from any other variable. Note that Mb(Y ) then has exactly the property of the output
of feature selection, FY , as characterized in (1). This links feature selection and causal structure
learning in the sense that

FY = Mb(Y ),
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the Faithfulness assumption guaranteeing the unicity of Mb(Y ). However, Markov blankets alone
do not fully specify a causal graph. Thus, feature selection, even if guaranteed to find only strongly
relevant features, cannot be directly used to construct the graph as we want it to be. The problem
is that spouses of Y , even if not directly linked in the original graph, would be linked in FY and
Mb(Y ). An additional step is needed to transform the Markov blankets into parents, children, and
spouses.

3.2 Recovering the Local Structure

The result of feature selection can be graphically shown by an undirected graph G = 〈V,E〉 where
(X ,Y ) ∈ E⇔ X ∈ FY . This graph is close to the original causal graph in that it contains all arcs as
undirected links, and additionally links spouses together, and is called the moral graph of the orig-
inal directed graph (Lauritzen and Spiegelhalter, 1988, p. 166). The extra step needed to transform
this graph into a causal PDAG is the deletion of the spouse links and the orientation of the arcs, a
task which we call “resolving the Markov blankets.”

An existing algorithm can resolve the Markov blankets, that is, use Markov blanket information
to infer the local structure around a node: the Grow-Shrink (GS) algorithm, proposed by Margaritis
and Thrun (1999). The full algorithm first finds the Markov blanket for each variable, and performs
further conditional-independence tests around each variable to infer the structure locally. It then
uses a heuristics to remove cycles possibly introduced by previous steps. We list in Algorithm 1
(using our notation) the steps of the algorithm responsible for building the local structure using
the Markov blanket information, as this is exactly the task we are trying to solve. In the code,
Bd(X) stands for the boundary of X ; that is, the set of its direct neighbors in the graph G . It
is different from Mb(X) in that whereas Mb(X) is passed as input to the algorithm and is fixed,
Bd(X) depends on the graph G , which is modified throughout the algorithm. We note a conditional-
independence test with a subroutine call to CONDINDEP(X ,Y,Z): ideally, this function returns true
when (X ⊥⊥ Y | Z) holds, and false otherwise. More will be said about the actual implementation
of such tests in Section 4. The command break is used to break out of the innermost loop, saving
unnecessary computations.

The GS algorithm makes two passes over all variables and the members of their Markov blankets
(or direct neighbors in the second pass). It first removes the possible spouse links between linked
variables X and Y by looking for a d-separating set around X and Y . In a second pass, it orients the
arcs whenever it finds that conditioning on a middle node creates a dependency. While searching
for the appropriate conditioning set, GS selects the smallest base search set (set B in Algorithm 1)
for each phase. This has two very desirable effects. First, it reduces the number of tests, which is
useful because each phase contains a subset search, exponential in time complexity with respect to
the searched set. Second, it reduces the average size of the conditioning set, which increases the
power of the statistical tests, and thus helps reduce the number of Type II errors.

While the GS approach considerably reduces the number of tests to be performed with respect
to a large subset search, it is possible to perform fewer tests while still identifying correctly the
structure and orienting the arcs, and decreasing the average conditioning set size. A helpful obser-
vation is that orientation and removal of the spouse links can be done together in a single pass. We
know, as discussed in the previous section, that only arcs in V-structures can be oriented: fortu-
nately, V-structures are exactly spotted when we identify a spouse link to be removed. Two spouses
X and Y that are not directly linked in the original causal graph can be d-separated by some set of
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Algorithm 1 Resolve the Markov Blankets with the Grow-Shrink Algorithm
1: procedure RESOLVEMARKOVBLANKETS GROWSHRINK

Input: Mb(·) : the Markov blanket information for each node X ∈ V
Output: G : partially oriented DAG

/* Compute graph structure */
2: G ← moral graph according to Mb(·)
3: for each X ∈ V and Y ∈Mb(X) do
4: B← smallest set of {Bd(X)\{Y}, Bd(Y )\{X}}
5: for each S⊆ B do
6: if CONDINDEP(X ,Y,S) then remove link X−Y from G ; break
7: end for
8: end for

/* Orient edges */
9: for each X ∈ V and Y ∈ Bd(X) do

10: for each Z ∈ Bd(X)\Bd(Y )\{Y} do
11: orient Y → X /* to be corrected if a test yields independence */
12: B← smallest set of {Mb(Y )\{Z}, Mb(Z)\{Y}}
13: for each S⊆ B do
14: if CONDINDEP(Y,Z,S∪{X}) then remove orientation Y → X ; break
15: end for
16: if Y → X then break
17: end for
18: end for
19: return G
20: end procedure

nodes. Thus, if we can find a set SXY that makes X and Y conditionally independent, we know that
the link between them is a spouse link to be removed. Moreover, we know that any node Z part
of the intersection of their Markov blankets not included in SXY is a collider and thus a common
child, and that the triplet (X ,Z,Y ) is actually a V-structure X → Z← Y in the original graph. This
follows from the definition of d-separation. What we need is an efficient search algorithm to find
such d-separating sets.

An approach based on this observation has two main benefits. First, it only searches the trian-
gles, that is, the cliques of three nodes, in the moral graph. Assuming that the information about
the Markov blanket is correct, only triangles can hide spouse links and V-structures. Second, for
each connected pair X −Y in a triangle, decisions about possible spouse links and arc orientation
are taken together and thus faster.

Pseudocode for the proposed search algorithm is listed in Algorithm 2, where the notation G \XY

denotes the moral graph G where all direct links involving X or Y have been removed. The algorithm
uses the following concept.
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Definition 8 (Collider sets) In an undirected graph G = 〈V,E〉, let Tri(X−Y ) (with X ,Y ∈V and
(X ,Y ) ∈ E) be the set of vertices forming a triangle with X and Y :

Tri(X−Y ) = {Z ∈ V | (X ,Z) ∈ E,(Y,Z) ∈ E} .

Suppose that G is the moral graph of the DAG representing the causal structure of a faithful data
set. A set of vertices Z ⊆ Tri(X −Y ) then has the Collider Set property for the pair (X ,Y ) if it is
the largest set that fulfills

∃SXY ⊆ V\{X ,Y}\Z :(X ⊥⊥ Y | SXY ) (7)

and ∀Zi ∈ Z :(X 6⊥⊥ Y | SXY ∪{Zi}) . (8)

The set SXY is then a d-separating set for X ,Y .

Lemma 9 In the context of a faithful causal graph, the set Z that has the Collider Set property for
a given pair (X ,Y ) exists if and only if X is neither a direct cause nor a direct effect of Y . This set
Z is unique when it exists. (Proof in Appendix A.)

The purpose of Algorithm 2 is thus to find these collider sets (in the pseudocode, the symbol (

denotes the strict subset relation). The algorithm loops over all triangle links and performs a collider
set search for each of them. Let X −Y be one of these links: if it is not a spouse link, the search
procedure will leave the value of the d-separating set SXY to its default value, null. Otherwise, SXY

will be set to a (possibly empty7) set for X and Y . The collider set can be inferred by removing
the d-separating set from the triangle nodes Tri(X −Y ): as Tri(X −Y ) contains nodes on a path
of length 2 between X and Y , finding a d-separating set that does not contain some of these nodes
proves that they can only be colliders according to the definition of d-separation.8 For instance, if
the procedure produces an empty set for a given linked pair X−Y , then X and Y are unconditionally
independent, and therefore all nodes in Tri(X−Y ) are colliders.

Two caveats have to be observed during this search, however. First, there might be other active,
d-connecting paths between X and Y that are not going through any node of Tri(X −Y ). Those
nodes must be blocked by appropriate conditioning on the boundary of X or Y as determined by the
base conditioning set at line 6. Second, this base conditioning set must be checked not to include
any descendant of possible colliders. If it did, it would open a d-connecting path according to
Definition 5. This check is performed at lines 13 to 21. At line 13, we build a set D that includes
all possible descendants of currently conjectured colliders that intersect our base conditioning set
B. The following loop makes sure none of them was opening a path between X and Y .

Theorem 10 In the large sample limit, for faithful, causally sufficient data sets, the procedure RE-
SOLVEMARKOVBLANKETS COLLIDERSETS correctly identifies all V-structures and all spouse
links, assuming consistent statistical tests. (Proof in Appendix A.)

This procedure is best understood with a graphical example. Consider the sample local struc-
ture in Figure 1, imagine it is part of a larger network, and suppose we are performing the search

7. Note that returning an empty d-separating set in SXY is different from returning null, signaling the absence of any
such set.

8. The next paragraphs describe patterns where this is not true and show how the algorithm still deals with them cor-
rectly.
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Algorithm 2 Resolve the Markov Blankets with Collider Sets
1: procedure RESOLVEMARKOVBLANKETS COLLIDERSETS

Input: Mb(·) : the Markov blanket information for each node X ∈ V
Output: G : partially oriented DAG

2: G ← moral graph according to Mb(·)
3: C←{}, an empty list of orientation directives
4: for each edge X−Y part of a fully connected triangle do

5: SXY ← null /* search for d-separating set */
6: B← smallest set of {Bd(X)\Tri(X−Y )\{Y}, Bd(Y )\Tri(X−Y )\{X}}
7: for each S ( Tri(X−Y ) do /* subset search */
8: Z← B∪S
9: if CONDINDEP(X ,Y,Z) then

10: SXY ← Z
11: break to line 23
12: end if
13: D← B∩

{

nodes reachable by W in G \XY |W ∈
(

Tri(X−Y )\S
)}

14: B′← B\D
15: for each S′ ( D do /* descendant of collider may be opening a path */
16: Z← B′∪S′∪S
17: if CONDINDEP(X ,Y,Z) then
18: SXY ← Z
19: break to line 23
20: end if
21: end for
22: end for

23: if SXY 6= null then /* save orientation directive */
24: mark link X−Y as spouse link in G
25: for each Z ∈

(

Tri(X−Y )\SXY
)

do
26: C← C∪{(X → Z← Y )}
27: end for
28: end if
29: end for

30: remove all spouse links (i.e., marked links) from G

31: for each orientation directive (X → Z← Y ) ∈ C do /* orient edges */
32: if edges X−Z and Y −Z still exist in G then
33: orient edges as X → Z← Y
34: end if
35: end for
36: return G
37: end procedure
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Figure 1: Sample local causal structure (i) and corresponding moral graph (ii). On (iii), the spouse
link and orientation information that the collider set search for the linked pair X−Y gives.

starting at line 5 in Algorithm 2. We are looking for a d-separating set for X and Y . Looking at
the original graph, we see that {W} is the smallest such set; let us see how the algorithm finds
it. We have: Tri(X −Y ) = {W,Z}, Bd(X) = {W,Y,Z,V} and Bd(Y ) = {W,X ,Z,U,T}. The base
conditioning set B will thus be the smallest of

{

{V}, {U,T}
}

, thus B = {V}. At this stage, condi-
tioning on V is justifiable: one cannot exclude situations where X and Y are d-connected given the
empty set through T and V , for instance if T and V both had a common cause farther away in the
network. But actually in this example, all (perfect) tests containing V in the conditioning set will
yield dependence, because it is a descendant of the collider Z and thus opens a path by definition
of d-separation. Eventually, in the iteration where S = {W}, we will find conditional independence
in the nested loop at lines 15 to 21. As Tri(X −Y ) \S = {Z}, D will be assigned the value {V}
and B′ will be empty, so that we will perform exactly one extra test at line 17 with the conditioning
set SXY = {W}, which yields independence. This in turn allows us to identify the link X −Y as a
spouse link and determine (line 25) that the set Tri(X−Y )\SXY = {Z} is the set of all direct effects
of X and Y ; that is, fulfills the Collider Set property.
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Figure 2: Another sample local causal structure (i) and corresponding moral graph (ii). On (iii),
a wrong result if orientation is done immediately at line 26 of Algorithm 2. On (iv), the
correct (non-)orientation if the condition at line 32 is added.

For some structures, the order in which arcs are removed and oriented must happen such that
all spouse links are removed before proceeding to orientation. Consider another example, shown in
Figure 2, and suppose again that that we are looking for a d-separating set for the pair (X ,Y ). As
X and Y are unconditionally independent, SXY = /0 is a valid d-separating set. We may thus remove
the link X−Y , and considering that Tri(X−Y ) = {W,Z}, we could want to orient X → Z← X and
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X →W ← X (leaving the spouse link W −Y to be removed later). This would be wrong, precisely
because W −Y is a spouse link, and thus the orientation X →W ← X is not allowed if one of
the links to be oriented does not actually exist in the original graph. This is the reason why all
orientation directives are saved in a list C at line 26 of Algorithm 2. After all spouse links have been
removed, the orientations are done at line 33 only when both links to be oriented still exist, thus
ensuring the existence of the V-structure X → Z← Y .

We do not claim that our algorithm uses the smallest possible conditioning set for the tests.
There is a tradeoff between obtaining the minimal possible conditioning set and keeping the total
number of tests low in the average case. In the empirical evaluation of this algorithm, we examine
three behavioral criteria: the total number of tests, the average size of the conditioning set, and the
maximum size of the conditioning set.

The complexity of the whole algorithm iterating over all triangle links, in terms of number of
calls to CONDINDEP, is O(d22α), where d is the number of variables and α = maxX∈V |Mb(X)|−1.
In the worst case of a fully connected graph, where Mb(X) = V\{Y}, it is exponential in the num-
ber of variables due to the subset search. But in practice, the original graphs are often sparse enough
so that the actual run time is not exponential. Many algorithms (e.g., MMMB, HITON MB, Algo-
rithmMB, GS) perform subset searches in the (possibly augmented) Markov blanket and thus rely
on graph sparseness to be efficient. Although the complexity of RESOLVEMARKOVBLANKETS

COLLIDERSETS is the same as that of RESOLVEMARKOVBLANKETS GROWSHRINK, we show in
the experimental results in Section 5 that the former performs fewer tests with a smaller average
conditioning set size, while still providing comparable accuracy in structure learning.

3.3 A Generic Algorithm Based on Feature Selection

Thanks to the subroutine explained in the previous section, we can now draft a generic algorithm
for structure learning based on feature-selection methods returning strongly relevant features. Al-
gorithm 3 lists pseudocode for the three main steps of this approach:

1. Find the conjectured Markov blanket of each variable with feature selection and build the
moral graph;

2. Remove spouse links and orient V-structures using collider sets;

3. Propagate orientation constraints.

For the sake of completeness, the constraint propagation rules of Step 3 have also been listed,
in a separate subroutine (see Algorithm 4). They are common in structure learning to obtain a
completed PDAG (Pearl and Verma, 1991). Meek (1995) proves that these three rules indeed return
the maximally oriented graph when given a PDAG whose V-structures are oriented.

The challenge with this approach is twofold. One issue is efficiency: consistent but slow feature-
selection algorithms will not beat existing causal learning algorithms, as they have to be run as many
times as the number of variables d. The second and biggest issue is that consistent feature-selection
algorithms are needed in order to prove correctness of this generic algorithm, in the sense that the
result of feature selection should be equal to the set of strongly relevant features. This requirement is
not always fulfilled. Hardin et al. (2004) study an SVM classifier and discuss feature selection based
on the w weights: although irrelevant variables are not selected in the large sample limit, they show
that the weights of the weakly relevant variables can be as close as one wishes to that of the strongly
relevant variables due to the large-margin behavior of SVMs. Forward feature selection has been
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Algorithm 3 Causal Structure Learning with Feature Selection
1: procedure GENERICSTRUCTURELEARNING

Input: D : n×d data set with n d-dimensional data points
Output: G : maximally oriented partially directed acyclic graph

/* Step 1: Markov blanket construction */
2: for each variable X ∈ V do
3: FX ← FEATURESELECTIONALGORITHM(X ,D)
4: end for
5: for each pair (X ,Y ) such that Y ∈ FX and X ∈ FY do /* symmetry check */
6: add X to Mb(Y ) and Y to Mb(X)
7: end for

/* Step 2: Spurious arc removal & V-structure detection */
8: G ← RESOLVEMARKOVBLANKETS(Mb(·))

/* Step 3: Constraint propagation */
9: G ← COMPLETEPDAG(G)

10: return G
11: end procedure

Algorithm 4 Orient a PDAG maximally
1: procedure COMPLETEPDAG

Input: G : partially directed acyclic graph
Output: G : maximally oriented partially directed acyclic graph

2: while G is changed by some rule do /* fixed-point iteration */
3: for each X ,Y,Z such that X → Y −Z do
4: orient as X → Y → Z /* no new V-structure */
5: end for
6: for each X ,Y such that X−Y and ∃ directed path from X to Y do
7: orient as X → Y /* preserve acyclicity */
8: end for
9: for each X ,Y s.t. X−Y & ∃nonadj. Z,W s.t. X−Z→ Y & X−W → Y do

10: orient as X → Y /* three-fork V with married parents */
11: end for
12: end while
13: return G
14: end procedure
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shown to miss strongly relevant variables (Guyon and Elisseeff, 2003). Nilsson et al. (2007) also
describe forward selection as inconsistent, but claim that backward feature elimination is actually
consistent in the large-sample limit.9 For finite data sets, Statnikov et al. (2006) further show (among
others) that even the weights of the irrelevant variables can get bigger than that of relevant variables,
and that weakly relevant variables can be selected more often than strongly relevant variables in
some cases.

These considerations are taken into account in our approach. In the next section, we describe
an instantiation of the generic algorithm with an existing backward feature-elimination algorithm.
Expecting the feature selection to be too inclusive, that is, to include features that are not strongly
relevant, we add the filtering condition at line 5 of the generic outline in Algorithm 3: in order to
link X and Y in the moral graph, we require the feature selection performed for X to have selected
variable Y , and conversely, we require X to have been selected by the feature selection performed
for Y . This does not theoretically guarantee the absence of “false positives,” however. Further in the
section, we replace the feature-selection step with a provably consistent algorithm in the multivariate
Gaussian case, and analyze its complexity and behavior.

4. Algorithms for Causal Feature Selection

In this section, we show two algorithms (and a variant) as instantiations of the generic approach
previously described. First, we explain an algorithm based on the Recursive Feature Elimination
(RFE) algorithm (Guyon et al., 2002) as a direct application of existing methods. We then describe
Total Conditioning (TC), a fast algorithm that can be proved correct under the multivariate Gaussian
assumption. We also show a variant, TCbw, that improves accuracy with low sample sizes by using
an explicit backward feature-selection heuristics. In Section 5, we report on experiments including
these algorithms.

4.1 An RFE-Based Approach

To empirically test the soundness of the approach, we propose to use RFE over a Support Vector
Regression (SVR) learner (Smola and Schölkopf, 1998) with a linear kernel, assuming for this
example that we will deal with multivariate Gaussian data. RFE is an instance of a backward
feature-elimination algorithm. Given some learner (in this case, SVR), it iteratively trains it, ranks
the features according to some criterion, and remove the feature (or the p features) with the smallest
ranking criterion. This criterion can be the weights w attributed to the features by the learner, or
some sensitivity measure of the features (Guyon et al., 2002). In our case, we used the weights w
of SVR as described in Smola and Schölkopf (1998).

Using RFE, the Markov blanket identification is done in two steps:

1. Use RFE to rank the predictors according to their weights in the trained model and to provide
what can be seen as a relevance ordering of the predictors;

2. Determine the size of the Markov blanket and thus the number of variables to select from the
list returned by RFE.

9. This is subject to the assumption that the underlying classifier must itself be consistent, in the sense that it must return
the Bayes classifier in the large-sample limit.
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We do not have a theoretical guarantee that RFE/SVR will return the Markov blanket variables.
Although Nilsson et al. (2007) shows that RFE/SVM as described in Guyon et al. (2002) is con-
sistent (i.e., returns strongly relevant variables in the large-sample limit), the limitations of ranking
variables on the w weights of an SVM with finite data sets have also been highlighted (Hardin et al.,
2004; Statnikov et al., 2006). For now, we thus use this feature-selection step as a heuristics.

In order to determine the number of variables to select from the ranked list returned by RFE,
we use the following criterion: starting with the first variable from the list, accept a new variable in
the Markov blanket if the cross-validated training error of the SVR decreases with the new variable,
and stop and return the current list if adding the next variable increases the error.

Algorithm 5 An RFE-Based Feature-Selection Step
1: procedure RFEFEATURESELECTION

Input: X : the target variable to perform feature selection for
D : n×d data set with n d-dimensional data points

Output: S : the set of selected variables

2: w← weights of V\X according to RFE(SVR)
3: P← predictor variables sorted according to w
4: S← /0
5: erroropt ← var[X ] /* MSE of constant function */
6: error← TRAIN(cross-validated SVR with predictor (P)1))
7: while error < erroropt do
8: erroropt ← error
9: S← S∪{(P)1 } /* add beneficial predictor */

10: P← P\{(P)1 }
11: error← TRAIN(cross-validated SVR with predictors S∪{(P)1 } )
12: end while
13: return S
14: end procedure

The symmetry condition (2), X ∈ FY ⇔ Y ∈ FX , might not be satisfied: we rely on the check at
line 5 of the generic approach of Algorithm 3 to make sure that we do not select spurious features
in the Markov blanket. This conservative approach implies that we expect RFE to select at least
all strongly relevant variables, plus possibly some others that we hope to identify with this simple
condition.

As a conditional-independence test at lines 9 and 17 of the collider set search in Algorithm 2,
we can use the distribution-free Recursive Median (RM) algorithm proposed by Margaritis (2005)
to detect the V-structure and remove the spouse links, or a z-test as used in Scheines et al. (1995) in
the case of Gaussian data.

Although we expect the resulting graph to be accurate in the large sample limit (see Section 5),
we also expect the run time of such an approach to be much higher compared to existing algorithms.
Training the SVR has a cubic complexity in terms of the number of samples, O(n3). To get an
accurate ranking, RFE runs the training d−1 times. Then, a new SVR learner is trained and cross-
validated several times (we used a 5-fold cross-validation) to get the validation error, which is
repeated for each variable in the actual Markov blanket. The complexity for the whole feature-
selection step is then O(d2n3), with a large constant factor. We thus emphasize that this RFE-based
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feature selection is not meant as a valid practical instantiation of the generic algorithm, but rather
as a proof of concept to validate the approach. In order to be practical, the feature-selection step
has to be redesigned so that it is done efficiently when run for all variables. This is what the next
algorithm is meant to address in the specific case of multivariate Gaussian variables.

4.2 The TC Algorithm

We now propose in the procedure TCFEATURESELECTION (Algorithm 6) another instantiation of
the feature-selection call at line 3 of the generic approach of Algorithm 3. The whole algorithm as
determined by the feature-selection, collider-identification, and maximal-orientation steps is equiv-
alent to the TC algorithm described in Pellet and Elisseeff (2007). (We thus write “TC” to refer to
the whole algorithm and not only to the feature-selection procedure, referred to as TCFEATURES-
ELECTION.)

For a given target variable X , TC estimates the coefficients of a multiple regression problem,
considering all other variables V\X as predictors. It then returns the significant predictors, accord-
ing to a t-test on the coefficient of each variable. Its short listing is in Algorithm 6.

Algorithm 6 The Total Conditioning Feature-Selection Step
1: procedure TCFEATURESELECTION

Input: X : the target variable to perform feature selection for
D : n×d data set with n d-dimensional data points

Output: S : the set of selected variables

2: b← weights of V\X in the problem of regressing X on V\X
3: S←{predictors whose b weight is significant}
4: return S
5: end procedure

The conditional-independence tests to be performed at lines 9 and 17 of the collider set search
of Algorithm 2 are done using partial correlation.

Definition 11 (Partial correlation) In a variable set V, the partial correlation between two random
variables X ,Y ∈V given Z⊆V\{X ,Y}, noted ρXY ·Z, is the correlation of the residuals RX and RY

resulting from the least-squares linear regression of X on Z and of Y on Z, respectively.

TC was shown to be correct in the large sample limit (subject to the consistency of the statistical
tests) in Pellet and Elisseeff (2007) under the Faithfulness and Causal Sufficiency assumptions. For
the sake of completeness, we add the proof to Appendix A. The main points leading to the correct-
ness of TC are the equivalence of a zero regression weight for some predictor Y while regressing X
on all variables V\X and a zero partial correlation ρXY ·V\{X ,Y}, and the fact that this is zero if and
only if (X ⊥⊥ Y | V\{X ,Y}) holds in a Gaussian context (Baba et al., 2004). Then, our feature-
selection step (Algorithm 6) gives the Markov blanket for each node, and the collider set search
(Algorithm 2) then takes care of identifying the V-structures and removing the spouse links.

The other advantage of using linear regression and partial correlation is that it yields a fast
algorithm. Actually, all regression weights and parameters needed for the feature-selection step of
TC can be efficiently computed by inverting the sample correlation matrix R∈ [−1,1]d×d . Building

1312



USING MARKOV BLANKETS FOR CAUSAL STRUCTURE LEARNING

graphs by inverting the correlation matrix is typically what is done with Gaussian Markov random
fields, a special case of undirected graphical models (see, e.g., Talih, 2003).

The weight computation and the statistical significance tests are performed as follows. Let b̂i j

be the maximum likelihood estimator of the true regression weight bi j of predictor X j when Xi is
the dependent variable, such that it solves the multiple regression equation for target Xi in the sense
that it minimizes the sum of the squared residuals

SSR =
n

∑
k=1

(

xik−
d

∑
j=1, j 6=i

b̂i jx jk

)2

where xik is the value of Xi for the kth sample. If we have the inverse correlation matrix R−1 = (ri j),
the vector b at line 2 of Algorithm 7 can be found in linear time: b̂i j =−ri j/rii (Raveh, 1985). For
instance, the list of weights to predict variable X1 with all others is

b1 = (b̂12, b̂13, · · · , b̂1d) =−(r12,r13, · · · ,r1d)/r11. (9)

The distribution of these weights is known (Judge et al., 1988):

b̂i j−bi j

σ̂i j
∼ t(n−(d−1)), (10)

where σ̂i j is the standard error of the jth predictor for variable Xi; that is, that it follows a t dis-
tribution with a number of degrees of freedom d f = number of samples − number of predictors
= n− (d− 1). For our null hypothesis H0 : bi j = 0, we need σ̂i j in addition to b̂i j to compute the
t-statistics b̂i j/σ̂i j. The estimate of the coefficient error σ̂i j can be expressed as

σ̂i j = σ̂i

√

ω j j/n,

where σ̂i is an estimator of the standard error of the regression for target Xi, and ω j j is the jth
diagonal element of the inverse correlation matrix of the predictors (Judge et al., 1988, p. 243).
(How to obtain the inverse correlation matrix of the predictors from the R−1 matrix in quadratic
time is discussed in the next subsection.) The standard error σ̂i can also be obtained in linear time
from R−1 as follows.

Without loss of generality, we assume a zero mean and a unit standard deviation for all variables.
Then σ2

i = 1−R2
i , where R2

i is the coefficient of determination of the regression for target Xi. This
coefficient can be expressed as the scalar product of the bi vector with the vector ri of the pairwise
correlation coefficients of the predictors with the target Xi (Raveh, 1985), which we read directly
from the correlation matrix R:

R2
i = bT

i ri.

An unbiased estimator σ̂i for σi is then

σ̂i =

√

n(1−bT
i ri)

n−d
.
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To sum up, we have a complexity of O(nd3) to build and invert the correlation matrix, and
O(d3) to check for significance. This comes from having to obtain d times the inverse correlation
matrix of d−1 predictors in O(d2), and then checking their significance in linear time. The overall
complexity of TC, including the collider identification and the constraint-propagation steps, is then
O(nd3 +d22α).

The weaknesses of this approach are its infeasability when the correlation matrix R does not
have full rank (including the special case n < d, that is, when there are fewer samples than variables),
the low power of the statistical tests with small data sets, and multicollinearity in the predictors. The
symptoms of the last two points are that the t-tests do not refute the null hypothesis of zero weight
because (i) there is not enough data to support it, or (ii) multicollinearity makes the weights lower
than they should be, such that it becomes harder to interpret them as depicting the independent
contribution of each predictor. We try to deal with this problem in the next section with the TCbw

algorithm.

4.2.1 SIGNIFICANCE TESTS

Independently of low sample sizes or multicollinearity, the statistical tests on the weights of the
linear regression equations are a delicate point in TC. The choice of the Type I error rate α needs
investigating as it significantly influences the result of the algorithm.

In a network of d nodes, the feature-selection step performs d(d− 1)/2 tests to determine the
undirected skeleton. We will falsely reject the null hypothesis bi j = 0 about m ·α times on average,
where m < d(d−1)/2 is the difference in the number of edges between the original DAG G0 and the
complete graph. We will thus add on average m ·α wrong edges. We can set the significance level
for the individual tests to be inversely proportional to d(d− 1)/2 to avoid this problem (assuming
a large m and thus rather sparse graphs), and check that it does not affect the Type II error rate too
much, which we do now.

According to (10), the expression (b̂i j−bi j)/σ̂i j follows a t distribution with n−(d−1) degrees
of freedom. If we call Ψ(·) the cumulative distribution function of a t distribution with n− (d−1)
degrees of freedom, we can write the Type II error rate β for each regression weight:

βi j = Ψ(Ψ−1(1−α/2)−|bi j|/σ̂i j).

The values for σ̂i j can be computed from the inverse correlation matrix R−1 and thus depend on
the particular data set being analyzed, but the true bi j are unknown. What we could do in theory to
optimize α is to minimize the average number of extraneous (Te) and missing (Tm) links:

T = Te +Tm = m ·α+ ∑
(i, j)∈E

βi j,

where m is the number of edges missing in the original DAG compared to a full graph, and E is the
set of arcs in the original DAG, so that m + |E| = d(d− 1)/2. As m, E and bi j are unknown, we
can only find an upper bound for the number of missed links Tm, provided (i) we can estimate the
graph sparseness to approximate m; (ii) we assume |bi j| ≥ δ; and (iii) we choose E? such that it
maximizes the sum in (11), with |E?|= d(d−1)/2−m. Then we have:

Tm ≤ ∑
(i, j)∈E?

Ψ(Ψ−1(1−α/2)−δ/σ̂i j). (11)
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Although this bound was found too loose for practical use, we can model the Type I and Type
II error rate as a function of α for artificial problems whose sparseness and regression weights are
known. This is shown in Figure 3 for a specific instance of an Alarm data set (see Section 5 for
details on this network) with two different sample sizes, n = 50 (left) and n = 250 (right). We
did not use this information to tune α in the experiments, as it cannot be obtained without prior
knowledge, but the curves showed that an α inversely proportional to d(d−1)/2 has the same order
of magnitude as the optimal α on the data sets we analyzed.

What we also see is that the Type I error curve rapidly goes up, whereas the Type II error curve
is upper-bounded by the total number of links in the original graph. In terms of pure number of
errors, setting a low α will thus be more beneficial than setting a higher α to get a low β. It is worth
discussing, however, depending on the particular problem to solve, which is more desirable: missing
causal links or getting extra causal links. In terms of Bayesian networks, getting too few links
prevents the model from being able to reconstruct the full joint probability distribution, because we
lose the I-map property; whereas getting too many links implies having to estimate more parameters
from the same data and thus complexifies a subsequent parameter learning task.

4.3 The TCbw Algorithm

Despite correctness of TC, with a low number of samples n it fails to have enough evidence for
rejecting the null hypothesis of zero regression weight, and thus misses links (see detailed results in
Section 5), even for a high α. We now try to address this particular issue by successively eliminating
the most insignificant predictors and reevaluating the remaining ones. This is actually a backward
stepwise-regression method. Pseudocode for this heuristics is listed in Algorithm 7.

Algorithm 7 The Total Conditioning Backward Feature-Selection Step
1: procedure TCBWFEATURESELECTION

Input: X : the target variable to perform feature selection for
D : n×d data set with n d-dimensional data points

Output: S : the set of selected variables

2: P← V\X /* all predictors */
3: S← /0 /* significant predictors */
4: while P 6= /0 and P 6= S do
5: b← weights of P in the problem of regressing X on P
6: S← S∪{predictors whose b weight is significant}
7: P← P\{the p less significant predictors}
8: end while
9: return S

10: end procedure

Intuitively, the problem to solve is that the regression weights cannot be high enough for sig-
nificance with small sample sizes. By removing the most insignificant predictors and thus the most
likely to be actually zero, we scale down the regression problem and increase the power of the tests.
How many insignificant predictors to remove can be discussed; in our implementation, we com-
pared p = 1 to p = (number of predictors)/2 and found that the latter yielded results that were just
as good with an important speed gain.
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Figure 3: Expected Type I and II errors as a function of α

This stepwise regression raises some issues; notably, Tibshirani (1994) argues that the repeated
tests on non-changing data are biased and that the remaining b coefficients are too large. We thus
expect TCbw to be biased and to include more false positives than TC. Ideally, one would need a
criterion to predict when the additional false positives would outweigh the benefits of reducing the
false negatives. Whether such a criterion, which would allow us to know a priori whether TC or
TCbw should be used, can be found, is an open question.

Solving a standard multiple regression problem with d predictors traditionally has complexity
O(nd3). Naı̈vely solving d− 1 regression problems d times in the case p = 1 would have a com-
plexity of O(nd5). But we can avoid reinverting matrices in the inner loop of the stepwise regression
thanks to the following result.

Let Σ = XT X be n times the correlation matrix R, where X is the n× d matrix representing a
data set where all variables have zero mean and unit standard deviation. Then we can use Σ−1 to
linearly find the weights of the regression problems and their standard error, which are needed for
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the t-tests. Suppose we find that variable X1 is the weakest predictor, and want to reevaluate the
weights of the other predictors at line 5 of TCbw. Let X\i be the data set where variable Xi has been
removed. Then we need the matrix Ω−1 to solve the new problem, where Ω = XT

\1X\1. As a special
case of Strassen’s blockwise matrix inversion formula, we have:

Σ =

[

σ11 cT

c Ω

]

=⇒ Σ−1 =







1
σ11− cT Ω−1c

− cT Ω−1

σ11− cT Ω−1c

− Ω−1c
σ11− cT Ω−1c

Ω−1 + Ω−1ccT Ω−1

σ11− cT Ω−1c






.

Let σi j = (Σ−1)i j and b = Ω−1c. Then b are the weights of the regression of X1 on X2, · · · ,Xd and
can be computed without knowing Ω−1 (Raveh, 1985), see (9). We have:

σ11 = 1/(σ11− cT b)

and, (Σ−1)\1 being the matrix Σ−1 where the first row and column have been removed,

(Σ−1)\1 = Ω−1 +bbT /(σ11− cT b).

We can thus compute Ω−1 given Σ−1 with complexity O(d2) as follows:

Ω−1 = (Σ−1)\1−σ11bbT . (12)

This trick is also used in TC to find the inverse correlation matrix of the predictors from the
inverse correlation matrix of the whole variable set.

Equation (12) is implemented in TCbw such that we never need to invert another matrix again
once Σ−1 has been obtained, and leads to a complexity of O(d2) for stepwise elimination of a
predictor. In the most computationally expensive case p = 1, this elimination of row and column of
the inverse matrix is repeated at most d−2 for each variable, yielding a complexity of O(nd4) for
the whole feature-selection step for all variables. The overall complexity of TCbw is then O(nd4 +
d22α). We are only adding one complexity degree in d with respect to TC with the additional
stepwise regression.

5. Experimental Results

In this section, we report on experiments and results on two points separately. First, we test our
procedure described in Algorithm 2 to recover the local structure with the collider set search given
all Markov blankets, and compare it to the relevant steps of the GS algorithm, which are listed in
Algorithm 1, with 5 different network topologies. For the sake of comparison, we also run the
reference PC algorithm (Spirtes et al., 2001), initialized with the moral graph instead of the fully
connected graph.

Second, we conduct experiments to investigate how the whole structure-learning algorithms
behave. We first use the RFE-based approach. We then systematically compare TC, TCbw and
several reference algorithms, varying the data set size and the network size. Note that results for
some algorithms may be sparser due to their prohibitive run times on some data sets.
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5.1 Experimental Setup

In order to test the accuracy of the various algorithms, we chose to sample data from the following
known networks, from the Bayes net repository (Elidan, 2001):

• Alarm network (Beinlich et al., 1989). This network has become a de facto standard bench-
mark for structure-learning algorithms: it contains 37 nodes, 46 arcs, 4 undirected in the
PDAG of the equivalence class. It was originally designed to help interpret monitoring data
to alert anesthesiologists to various situations in the operating room. It is depicted in Figure 4.

• Insurance (Binder et al., 1997), 27 nodes, 52 arcs, 18 undirected in its PDAG. It was designed
to evaluate car insurance risks. This network has fewer nodes than Alarm but is denser, see
Figure 5.

• Hailfinder (Abramson et al., 1996), 56 nodes, 66 arcs, 17 undirected in its PDAG. It is a
normative system that forecasts severe summer hail in northeastern Colorado. See Figure 6.

• Carpo,10 61 nodes, 74 arcs, 24 undirected in its PDAG. It is meant to help diagnose the carpal
tunnel syndrome. The version we used has three disconnected subgraphs, one of which is a
single variable, and a relatively flat causal structure, as can be seen in Figure 7.

• A subset of Diabetes (Andreassen et al., 1991) with 104 nodes, 149 arcs, 8 undirected in its
PDAG, which was designed as a preliminary model for insulin dose adjustment. This subset
is made of 6 repeating patterns (there are 24 in the original network) of 17 nodes, plus 2
external nodes linked to every pattern. The first two of these patterns are shown in Figure 8.

We performed three series of experiments.

1. We compared our algorithm resolving the Markov blanket to the relevant steps of the Grow-
Shrink algorithm, as described in Section 3.2, and to PC;

2. We tested the RFE-based approach and compared it to PC;

3. Finally, we compared TC and TCbw to three reference algorithms and examine their accuracy,
run time, and number of tests while varying the network structure, the network size, and the
sample size.

The chosen reference algorithms are:

1. The PC algorithm. PC is, like TC and TCbw, exponential in the worst case, when graphs
are not sparse enough: we discuss which structural elements make PC or TC exhibit the
exponential behavior;

2. The full Grow-Shrink algorithm, as described in Margaritis and Thrun (1999);

3. A state-of-the-art Bayesian structure-learning algorithm that works with continuous data sets,
the Bach-Jordan scoring algorithm (Bach and Jordan, 2003), coupled with a greedy search in
the space of DAGs. Note that Bayesian structure-learning algorithms are often score-based
and return fully oriented DAGs. Maximizing the chosen score function might not minimize
the number of structural errors as we report in these results.
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Figure 7: The Carpo network
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Figure 8: Two of the six patterns of the Diabetes network

For all simulation experiments, we generated the data sets by using the 5 graphs as a structure
for a linear structural equations model: the parentless variables were sampled as Gaussians with
zero mean and unit standard deviation; the other variables were defined as a linear combination
of their parents with coefficients randomly distributed uniformly between 0.2 and 1, similarly to
what was done in Scheines et al. (1995) for the evaluation of PC. The disturbance terms were also
normally distributed. We compared the number of tests, the size of the conditioning sets, and the

10. Created by Alex Dagum with contributions from Mark Peot, as indicated on its page at the Bayes net repository. No
corresponding publication was found.
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structural errors in case of runs with artificial data. A structural error is an arc addition, deletion, or
reversal with respect to the original graph.

We used the implementation of PC proposed by Leray and François (2004) in the BNT Structure
Learning Matlab package. The implementation of TC and TCbw was also done in Matlab. The
statistical tests were done using Fisher’s z-transform of the partial correlation, unless otherwise
stated. For PC and GS, we chose the default value of α = 0.05; we note though that the optimal
value of α is problem dependent and that especially with low sample sizes, hand tuning α can return
better results than those listed here. For both TC and TCbw, we set α = 2/(d(d−1)), according to
the discussion at the end of Section 4.2.

5.2 Local Structure Recovery with Markov Blanket Information

In this series of experiments, we compare RESOLVEMARKOVBLANKETS COLLIDERSETS (CS) to
RESOLVEMARKOVBLANKETS GROWSHRINK and to a modified version of PC, where the graph
being built is initialized with the moral graph (instead of the full graph in the original version of PC).
This represents exactly the Markov blanket information available to the two other algorithms and
allows a direct comparison. Note that we observe the PDAG that PC obtains before the constraint-
propagation step building the maximally oriented PDAG, such that, in all three tested algorithms,
we only expect the V-structures to be oriented.

We tested the three algorithms on each network using two methods to check for conditional
independence: first, using a d-separation oracle with the original graph (which is equivalent to a
perfect test); and second, using Fisher’s z-transform of the sample partial correlation coefficient
as computed on artificial data, with significance α = 0.05. Using the oracle always yields correct
graphs.

Table 1 shows the results of these experiments. We first list the results obtained when using
a d-separation oracle to decide upon conditional independence. For GS, we ran two versions of
Algorithm 1: one, which we name GS(1), where the subset searches at lines 5 and 13 proceed with
decreasing sizes of the chosen subset S, and another, GS(2), with increasing subset sizes. GS(1)
usually leads to fewer tests, but with larger conditioning sets. The order of the subset searches for
our method (lines 7 and 15 in Algorithm 2) was fixed to decreasing subset sizes, as this always led
to fewer tests and smaller conditioning sets.

The results for the modified PC algorithm are only shown for the sake of comparison: PC is
a general-purpose algorithm which is not specialized in such local structure recognition given the
Markov blankets. What the comparison shows, however, is that, whenever this Markov blanket
information is available or cheap to obtain, there are much more efficient approaches.

GS(1) and GS(2) are close to one another in all scores, and outperform PC (by several orders of
magnitude) in the number of tests and (significantly) in average and maximum size of the condition-
ing sets (except, artificially, for the results marked with a star), because it uses the Markov blanket
information better. Our approach, however, is one order of magnitude better than GS(1) and GS(2)
in terms of number of tests, while still using smaller average and maximum conditioning set sizes
in all tested networks. Especially striking are the results on the Carpo network: this is an example
where CS saves a lot of time ignoring the numerous links not part of triangles, whereas GS(1) and
GS(2) also checks those, with the often large Markov blankets (Figure 7).

We then performed the same experiments, but using the statistical tests on data sampled from the
networks as described in the previous sections. We used a fixed sample size n = 500 and averaged
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Algorithm Alarm Insurance Hailfinder Carpo Diabetes
modified PC

# tests 11331 773572 19543985? 2025250? 93134?

avg. |Z| 4.36 7.65 5.75? 5.47? 4.64?

max |Z| 10 16 6? 6? 6?

GS(1)
# tests 1485 6435 2809 209342 5414
avg. |Z| 2.62 3.63 2.66 7.46 2.73
max |Z| 8 11 7 15 10

GS(2)
# tests 1472 7180 2979 200621 6197
avg. |Z| 2.20 3.05 2.31 7.39 2.39
max |Z| 7 8 7 15 8

CS
# tests 214 1288 593 294 943
avg. |Z| 1.80 2.69 2.30 1.79 2.13
max |Z| 5 6 6 8 7

Table 1: Number of tests and size of the conditioning sets (noted |Z|) as performed by various algo-
rithms to recover the local network structure of the networks given perfect Markov blanket
information. The star (?) notes PC results where the maximum size of the conditioning set
has been set to 6 to avoid prohibitive run times.

over 9 different samplings for each network. We only compared PC, GS(1) and CS on this series
of experiments, preferring GS(1) to GS(2) because of the lower number of tests it usually performs.
The exhaustive results are listed in Table 2 for the sake of completeness, and the sum of the structural
errors is also shown in Figure 9 for easier visualization.

First, we see that we get similar results as in Table 1 as far as the number of tests and size of
the conditioning sets are concerned: CS is faster and consistently performs fewer tests with smaller
conditioning sets, which leads to an increased power of the tests. However, that is sometimes
balanced out by the fact that CS relies on a single series of tests both to remove spouse links and
to orient (possibly multiple) V-structures at the same time, thus leading to a greater penalty if the
outcome of a test is wrong with respect to the initial graph.

We see that GS(1) and PC can beat CS on certain arc scores; PC, in particular, is good at avoiding
arc orientation mistakes in these experiments. GS(1), which checks not only triangle links but all
links to try to orient them, makes more orientation mistakes, especially on the Carpo network. PC
tends to miss a few more arcs than CS, which in turn misses a few more than GS(1). But in total,
CS beats GS(1) significantly on Insurance, Hailfinder, and Carpo, while performing slightly better
on Alarm and being slightly outperformed on Diabetes. Based on these results, we will now use our
collider set search as the method of choice to break up the Markov blankets for the next series of
experiments.
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Algorithm Alarm Insurance Hailfinder Carpo Diabetes
mod. PC

# tests 2850±285 13461±3247 9681105† 412791±104080 57153±9910
avg. |Z| 2.97±0.17 3.50±0.33 5.54† 5.17±0.15 4.37±0.14
max |Z| 6 6 6† 6 6

arcs:
missing 5.44±0.53 9.56±1.01 6† 14.22±1.64 9.56±1.88
extra 0.33±0.5 0.11±0.33 0† 0.22±0.44 1.11±0.60
reversed 0 0.22±0.67 1† 0.11±0.22 2.00±1.39
TOTAL 5.78±0.72 9.89±1.47 7† 14.56±1.86 12.67±2.69

GS(1)
# tests 1304±60 4544±195 2415±63 129265±17033 5239±46
avg. |Z| 2.66±0.10 3.66±0.04 2.62±0.02 7.49±0.08 2.76±0.01
max |Z| 8 11 7.89±0.33 15 10

arcs:
missing 1.56±0.53 5.44±0.53 3.11±0.33 0 6.11±0.78
extra 0.56±0.73 0.33±0.71 1±0.71 0.22±0.44 2.78±1.64
reversed 1.11±1.05 3.67±2.12 8±2.29 16.78±2.49 2.67±2.00
TOTAL 3.22±1.81 9.44±2.39 12.11±2.74 17±2.62 11.55±3.03

CS
# tests 173±3 782±19 507±18 308±14.39 907±4
avg. |Z| 1.55±0.03 2.36±0.02 2.08±0.03 1.90±0.12 2.17±0.01
max |Z| 5 6 5 8 7

arcs:
missing 1.56±0.73 6.33±0.5 3.44±0.52 0 5.11±1.17
extra 0.44±0.53 0.22±0.44 0.67±0.70 0.33±0.50 1.44±1.51
reversed 0.11±0.33 0.33±0.5 0.11±0.33 0 7.11±1.05
TOTAL 2.11±0.96 6.89±1.03 4.22±1.27 0.33±0.50 13.66±2.20

Table 2: Number of tests, size of the conditioning sets (noted |Z|), and structural errors as returned
by GS(1) and CS to recover the local network structure of the networks given perfect
Markov blanket information. Results are given is the form “mean ± standard deviation
over the 9 data sets.” The best performer for each type of structural error has been high-
lighted in bold. All runs of PC were done with a forced maximum size of the conditioning
set of 6. The dagger (†) notes PC results from a single data set instead of 9 because of the
long completion times. Represented graphically in Figure 9.

5.3 RFE-Based Approach

In this series of experiments, we tested our RFE-based approach on the Alarm network with sample
sizes n = 100, 200, 300, 400 and 500. Table 3 lists the results and shows the number of errors as
measured at different stages of the algorithm:
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Alarm Ins u rance Hailfinder Carpo Diabet es
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Figure 9: Average size of the conditioning sets and total number of errors for the three local struc-
ture discovery algorithms on various networks. Graphical representation corresponding
to the results in Table 2.

1. Right after the Markov blanket identification, without adjustment. This compares the true
Markov blanket of each variable with the identified Markov blanket as returned by Algo-
rithm 5;

2. After building the moral graph. This notably excludes variables from Markov blankets if they
do not satisfy the symmetry condition (2) due to the symmetry check performed at line 5 in
the generic approach described in Algorithm 3;

3a. After removal of the spouse links using the Recursive Median (RM) algorithm (Margaritis,
2005) to check for conditional independence in the continuous domain;

3b. Alternatively, after removal of the spouse links using a test on Fisher’s z-transform of partial
correlation;

4a. After removal of the spouse links using RM and after maximal orientation. This is actually
the result that can be compared to other full structure-learning algorithms;

4b. After removal of the spouse links using partial correlation tests and after maximal orientation;

5. Finally, we show how PC performs on the same instance for comparison.

Note that the RM test is a Bayesian distribution-free conditional-independence test. In this
case, where we use multivariate Gaussian distributed data, we do not expect it to perform better
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than the specialized z-test. We nevertheless include it in this series of experiments for two reasons.
First, it allows the collider set search to be also distribution-free, in the sense that if “distribution-
free feature selection” can be performed efficiently and consistently in the first phase, applying
a subsequent collider set search does not make more assumptions on the distribution. Second, it
allows to evaluate the cost of using a distribution-free algorithm on Gaussian data.

n = 100 n = 200 n = 300 n = 400 n = 500
0

5

10

15

20

25

30

35
Total number of structural errors

 

 
RFE/SVR + Collider Sets (RM)
RFE/SVR + Collider Sets (z−test)
PC

Figure 10: Total number of errors for the CPDAGs returned by the three global structure discovery
algorithms on the Alarm network with various sample sizes. Graphical representation
corresponding to the results in Table 3.

Detailed results are in Table 3 and the total number of structural errors is shown graphically
in Figure 10. What we can read from the results is that, generally, the selected Markov blankets
contain all variables from the true Markov blanket plus one or two additional variables. Starting
at n = 300, on average, less than two variables were missed. Many spurious variable are selected,
however, even for the larger data sets. This confirms the expectation the RFE approach also selects
weakly relevant features: on average, the Markov blankets in the Alarm network have a size of 3.5,
and on average 5.5 variables are selected per variable.

The symmetry check requiring Y to be part of Mb(X) and X to be part of Mb(Y ) to add a link
between X and Y fulfills its purpose, as even in the case n = 200 where on average about 73 variables
enter wrong Markov blankets, only 4 extra links are added in the moral graph. As a side note, we
thus argue that a global analysis can be beneficial to achieve better results on local tasks: we see
here that determining via RFE the Markov blanket of a single variable is too inclusive, but that
validating the selected variables globally, for instance with our Markov blanket symmetry check,
allows to significantly reduce the number of false positives.

After the collider set search, the number of missing and extra arcs can both either increase
or decrease. If the number of missing links increases, it is because the collider set search found
d-separation too often while variables were actually dependent. If it decreases, it means that the
missing arcs in the moral graph were spouse links, as their absence is not penalized in the PDAG
any more. If the number of extra arcs increases, then the collider set search failed to identify spouse
links; if it decreases, then the collider set search also removed through appropriate conditioning links
that were not spouse links (which in turn possibly led to wrong orientations). Also, determining
which part of the algorithm is responsible for a missed, extra, or reversed edge in a PDAG or CPDAG
is not evident. As the feature-selection step is not alone responsible for the extra or missing links,
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Stage n = 100 n = 200 n = 300 n = 400 n = 500
1. Mb(·) ident.

missing variables 17.33±3.33 3.33±1.48 0.78±1.11 0.78±1.48 0.33±1.48
extra variables 80.66±15.17 72.89±9.25 74.78±13.69 72.56±9.99 73.33±9.99

2. Moral graph
missing arcs 23.44±3.54 7.89±3.48 4.33±3.91 4.56±3.47 4.33±3.87
extra arcs 4.67±2.24 4.11±1.69 3.78±1.20 3.11±1.62 3.89±2.20
TOTAL 28.11±3.82 12.00±2.55 8.11±4.01 7.67±4.06 8.22±4.38

3a. PDAG/RM
missing arcs 17.44±2.35 10.00±1.80 6.89±2.67 6.33±2.60 4.56±1.51
extra arcs 4.78±2.17 4.22±1.56 3.33±1.12 3.22±1.48 3.44±2.01
reversed arcs 1.22±1.20 2.11±1.27 3.11±0.78 1.78±0.97 0.67±0.60
TOTAL 23.44±1.67 16.33±3.12 13.33±2.65 11.33±2.78 8.67±2.37

3b. PDAG/z-t.
missing arcs 11.89±2.32 3.33±1.32 2.67±1.94 2.11±1.17 2.56±1.51
extra arcs 5.22±2.22 4.00±1.58 3.22±1.20 2.78±1.30 3.44±2.01
reversed arcs 0.33±0.50 0.56±0.73 1.22±0.67 0.78±1.09 0.44±1.13
TOTAL 17.44±3.32 7.89±2.15 7.11±2.98 5.67±2.12 6.44±2.40

4a. CPDAG/RM
missing arcs 17.44±2.35 10.00±1.80 6.89±2.67 6.33±2.60 4.56±1.51
extra arcs 4.78±2.17 4.22±1.56 3.33±1.12 3.22±1.48 3.44±2.01
reversed arcs 6.00±3.87 8.67±2.12 6.11±2.32 6.11±3.59 0.89±0.60
TOTAL 28.22±3.93 22.89±3.02 16.33±3.08 15.67±2.24 8.89±2.37

4b. CPDAG/z-t.
missing arcs 11.89±2.32 3.33±1.32 2.67±1.94 2.11±1.17 2.56±1.51
extra arcs 5.22±2.22 4.00±1.58 3.22±1.20 2.78±1.30 3.44±2.01
reversed arcs 4.89±3.33 4.33±1.73 3.78±1.09 3.00±1.80 2.44±1.13
TOTAL 22.00±4.90 11.67±2.40 9.67±2.87 7.89±2.37 8.44±2.40

5. CPDAG/PC
missing arcs 12.11±2.52 7.44±1.42 4.22±0.97 5.67±1.12 4.78±0.83
extra arcs 4.56±2.19 2.67±1.87 2.78±1.48 2.11±0.93 2.00±1.66
reversed arcs 2.67±1.80 1.44±1.51 1.22±1.09 0.78±1.09 0.67±0.87
TOTAL 19.33±4.66 11.56±3.2 8.22±2.11 8.56±1.59 7.44±2.40

Table 3: Structural errors at various stages of the RFE-based approach, showing the missing, extra
and reversed arcs with respect to the original graph. For Step 1, identification of the
Markov blanket, the figures are averages over the 37 variables; that is, the count of the
extra or missing variables per Markov blanket, and thus not directly comparable to the
other steps. The sums of the errors for the CPDAGs are represented in Figure 10.
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the collider set search is not responsible for all orientation mistakes. In the collider set search, if
a wrong spouse link is removed, it is because a wrong V-structure has been identified, so that the
absence of an arc will be linked to the wrong orientation of the falsely recognized V-structure. It is
also possible to construct cases where missing a variable in the feature-selection step will lead not
only to a missing arc, but also to the detection of a spurious V-structure, even if all subsequent tests
are perfect.

For the PDAGs obtained using z-tests, the number of missing arcs always decreases with respect
to the moral graph, and so does the number of extra links for n≥ 200. We find that the more general
RM test seems to return independence too often, as for n≥ 200 more links are missing in the PDAG
than in the moral graph. (On highly nonlinear data, we would, however, expect RM to perform
better than a z-test, which assumes Gaussianity.)

The CPDAGs do not have a number of adjacency errors different from their PDAGs; this step
can only add directionality errors. We have nevertheless copied the results in order to improve the
readability and to make the comparison with PC easier. Although the RFE approach can outperform
PC in adjacency errors, PC still consistently makes fewer directionality errors. We remark, however,
that the overall performance of RFE/SVR with z-tests is very comparable to that of PC, as also
shown in Figure 10, which empirically justifies the intuition behind this approach.

5.4 TC and TCbw vs. Competitors

For this series of experiments, we performed more systematic testing of TC, TCbw, PC, the full GS
and the Bach-Jordan method on data sets sampled from Alarm, Insurance, Hailfinder, Carpo, and
Diabetes, varying the sample size. The Bach-Jordan method consists of a scoring function based
on Mercer kernels coupled with a greedy search in the space of DAGs and was designed to learn
Bayesian networks. It does not guarantee that the formal semantics of a causal graph are respected
in the large-sample limit, but has been included in the experiments for the sake of comparison.
Other possible competitors like SCA (Friedman et al., 2000) or AlgorithmMB (Peña et al., 2005)
were inapplicable because generalizing them to handle continuous variables require techniques that
are too computationally expensive, notably because of score-based subroutines that are hard to
generalize.

The structural errors, like before, are missing, extra, and reversed arcs in the returned CPDAG
with respect to the generating graph. For the Bach-Jordan method, similarly to what was done in
Fu (2005), we converted the returned DAG to its essential graph first before checking for structural
errors to avoid penalizing statistically equivalent structures. For all experiments, we also compare
the run times and the number of tests performed by TC, TCbw, GS, and PC.

Specific to the Bach-Jordan method is the issue of choosing the appropriate kernel parameters;
that is, in our case, the σ width in the Gaussian kernel. Bach and Jordan (2003) claim that the algo-
rithm is in general robust to the choice of σ. We have found, however, that for varying sample sizes,
the number of structural errors is quite sensitive to σ. As the authors do not propose a heuristics to
set it, we systematically tested the algorithm with σ = 2, 1, 0.5, and 0.3 for each run, and chose the
outcome with the smallest sum of structural errors. In general, smaller data sets preferred σ = 2,
while the larger ones preferred a smaller σ. The change of σ is not directly visible in the following
plots of the errors, but it often leads to “zigzags” in the Bach-Jordan curves. This is due to the fact
that we only tested a fixed number of values for σ and did not perform a full optimization of this
parameter for each run. The results shown are thus not the best results obtainable with this method.
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5.4.1 ALARM

The figures on p. 1330 show the structural errors, run times and number of statistical tests against
the number of samples for Alarm. For each sample size, 5 data sets were drawn from the model; the
error bars picture the standard deviation over these 5 runs.

The numbers of extra and missing links seem to clearly decrease on average for all algorithms
with an increasing number of samples, except for Bach-Jordan, which sometimes has the tendency
to add more links when more data points are available. Note that Bach-Jordan’s σ changes between
the last two runs, explaining the abrupt change in the extra arcs. The number of reversed arcs seems
to less satisfactory, in particular for TC. The explanation is that TC misses many arcs with low
sample sizes, and thus does not actually get the opportunity to make many directionality errors for
these cases. TCbw exhibits a related behavior, although much less stronger. We also see that Bach-
Jordan makes the most directionality errors (this is actually valid for all networks). GS reaches
repeatedly a zero extra arc score for n > 1000, although it misses some more than the others.

Starting at about 200 samples, TC equals or outperforms PC, GS and Bach-Jordan. TCbw beats
both TC and PC, and the converging curves of TC and TCbw show that the stepwise regression
becomes unnecessary with about 400 samples. On average, TC was about 20 times faster than the
implementation of PC we used, although the factor tended to decrease with larger sample sizes.
TCbw was naturally slower than TC, although only marginally compared to the speed difference
with PC.

Overall, the constraint-based methods seem to perform approximately equally well for n > 400,
and TCbw and GS perform slightly better than PC for low sample sizes. Note that for low sample
sizes, TC is always outperformed by TCbw, PC, and GS, but is often the one to perform best when
the sample size gets larger. The graphs in Figure 12 show that TC and TCbw are fastest, although
GS performed fewer tests that TCbw.

5.4.2 INSURANCE

For this network, we find similar behaviors to Alarm, shown in the graphs on p. 1331. The most
striking difference is the clear tendency of Bach-Jordan to add more arcs when more data is available
for this more densely connected network. Between the 5th and 6th sample sizes, there is again a
change of σ. Comparing the curves of the missing and extra arcs, we see that this changes the
tradeoff between false negatives and false positives.

In this case, too, TCbw outperforms TC with low sample sizes (because it misses fewer arcs)
but is outperformed with bigger data sets (because it adds too many). Both PC and GS, while being
slightly better than TCbw for n < 100, are outperformed starting at about n = 500. Note the overall
good performance of GS in terms of arc orientation errors. The corresponding curve also decreases
more smoothly with larger data sets. The Bach-Jordan method is unexpectedly fast on this data set,
although poorly accurate. The pattern of the number of statistical tests is very similar to that of
Alarm.

5.4.3 HAILFINDER

This network poses a problem to PC: we divided its run time and the number of tests by 10 in the
graphs of Figure 16 on p. 1332. Because of its long run times, PC was run only once for each point
in the plots, so that the error bars are missing. PC runs into trouble because of the node cluster
around variable 27 in the network (see Figure 6): it tries to separate it from the other nodes by doing
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subset searches on its large number of neighbors. In order to speed it up, we set the maximum node
fan-in parameter to 6, so that PC would not attempt to conduct conditional-independence tests with
conditioning sets larger than 6 (we see in Figure 16 how this imposes an upper bound on the run
times of PC). TC and TCbw do not run into this problem, because this cluster is correctly left alone
after the feature-selection step, done in O(d3) operations. Note that TC, TCbw, and GS would also
spend a long time on this cluster if all neighbors of variable 27 were its parents, because they would
contain a lot of extra spouse links to be checked with an exponential number of combinations. But
this example shows that a local lack of sparseness is fatal to the efficiency of PC, whereas other
algorithms can still deal with it if the density of the connections is caused by children rather than
parents.

This network shows more clearly the missing arc problem that TC has with low sample size, and
the benefits of using TCbw rather than TC here, at least for n < 2000. On this network, GS performs
overall well. It is beaten by TC only for n > 2000, but performs better than all others for n < 200.
Bach-Jordan still exhibits the same tendency to add more arcs when more data is available. For this
data set, σ changes twice, between the 4th and 5th, and between the 5th and 6th data set sizes. The
5th sample size seems to have generated an unfavorable data set for PC, as the number of extra arcs
is particularly high.

Examining the run times designates TC as the fastest. This is important especially with larger
sample sizes, as TC is often both the fastest and most accurate algorithm.

5.4.4 CARPO

The results for this network are shown on p. 1333. The structural particularity of this network is
multiple cases of a single variable having many children. PC performs overall badly on this network.
For n < 200, GS is the clear winner: all other algorithms make many more errors. The plain TC
especially misses many arcs. For n > 500, however, both TC and TCbw slightly but consistently
outperform GS. At n = 800, TC beats TCbw. Bach-Jordan, although fast on this instance, adds
again too many extra links, and makes numerous directionality errors.

5.4.5 DIABETES

This is our largest and final test network. The error patterns are most similar to those of the Insurance
network, with the exception of Bach-Jordan, which performs more poorly here. We can detect two
changes of σ: between the 3rd and 4th, and between the 5th and 6th sample sizes.

Starting at n > 1000, all constraint-based methods seem to yield similar overall accuracy. GS
is better in terms of directionality errors; TC and TCbw are better in terms of missed links. For
n > 4000, TC and TCbw have the same accuracy and slightly beat GS and PC, while they are beaten
significantly for n < 800. We note that the extra links added by GS seem to allow it to obtain a
better directionality accuracy than in our first series of experiments, where it was given the exact
moral graph as input.

5.4.6 DISCUSSION

Both TC and TCbw slightly but consistently beat the other competitors when the sample size exceeds
one or two thousand, depending on the network. They are usually weaker with low sample sizes
because of missed arcs. GS beats TC with small data sets, because of the way that PC goes through
conditioning sets for the statistical tests (Tsamardinos et al., 2006, discuss in detail this particular
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Figure 11: Differentiated errors on Alarm as a function of the sample size n: (a) extra arcs; (b)
missing arcs; (c) reversed arcs; (d) total sum.
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Figure 12: Alarm: (a) run times and (b) number of statistical tests as a function of the sample size
n.
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Figure 13: Differentiated errors on Insurance as a function of the sample size n: (a) extra arcs; (b)
missing arcs; (c) reversed arcs; (d) total sum.
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Figure 14: Insurance: (a) run times and (b) number of statistical tests as a function of the sample
size n.
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Figure 15: Differentiated errors on Hailfinder as a function of the sample size n: (a) extra arcs; (b)
missing arcs; (c) reversed arcs; (d) total sum.
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Figure 16: Hailfinder: (a) run times and (b) number of statistical tests as a function of the sample
size n.
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Figure 17: Differentiated errors on Carpo as a function of the sample size n: (a) extra arcs; (b)
missing arcs; (c) reversed arcs; (d) total sum.
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Figure 18: Carpo: (a) run times and (b) number of statistical tests as a function of the sample size
n.
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Figure 19: Differentiated errors on Diabetes as a function of the sample size n: (a) extra arcs; (b)
missing arcs; (c) reversed arcs; (d) total sum.
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Figure 20: Diabetes: (a) run times and (b) number of statistical tests as a function of the sample
size n.
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issue in the case of tests with discrete variables). The score-based Bach-Jordan method was found
difficult to tune with the parameter σ. For this multivariate Gaussian case, its performance is usually
worse than the other tested algorithms. This also reflects the fact PC, GS, TC and TCbw with z-tests
are all “tuned” for multivariate Gaussian data. The additional errors made by Bach-Jordan reflect
the price of being more generic.

In terms of run time, PC is slowed down by nodes with a high degree, whereas TC or GS
handle them without the exponential time complexity growth if they are not part of triangles, as in
Hailfinder. In general, TC and TCbw resolve all conditional-independence relations (up to married
parents) in the feature-selection step in O(d3) and O(d4), respectively, whereas all PC can do in
O(d2+α) is resolve conditional-independence relations with conditioning sets of cardinality α. It
is then reasonable to expect algorithms like GS, TC and TCbw to scale better than PC on sparse
networks where nodes have a small number of parents. The exponential growth in PC can be seen
in case the nodes have a high degree, be it parents or children; in TC and GS, it is due to large fully-
connected triangle structures and to spouse links coming from the Markov blanket-construction
step. And whereas these large structures imply a high degree, the converse is not true (for instance
in the Hailfinder network). So, PC will exhibit an exponential behavior on all problem instances
where TC and GS also exhibits this behavior, but the converse is not true.

It is interesting to investigate what kind of high-degree structure is more likely to appear. If it
is a node with many children (as node 27 in Hailfinder), which we call an explosion pattern, TC
can handle it efficiently. If it is a node with many parents, an implosion pattern, then none of these
algorithms can recognize it in polynomial time. Explosion patterns correspond to a single cause
that has many effects; implosion patterns correspond to many causes leading to the same effect. It
remains open for discussion to know which one is more likely to occur with real-life data sets.

GS could not be beaten on small sample sizes. It is yet an unsolved challenge for TC and TCbw

to handle problems where the number of variables exceeds the number of samples, as in gene ex-
pression networks, thus leading to an attempt at inverting a matrix that does not have full rank.
Regularizing the covariance matrix might help make TCbw more robust in this case. Computation-
ally, TCbw does add a degree of complexity with respect to TC, and the number of tests that TCbw

performs is usually comparable to GS.
TCbw helps solving problems with TC and small data sets, but still cannot operate below the

n = d threshold. The exact sample size where TCbw stops performing better than TC does not
appear to be a simple function of the n or d but depends on the structure of the network. It would
be useful to investigate when the feature-selection addition of TCbw becomes irrelevant. And as
GS is more accurate with small sample sizes, finding a similarly testable condition predicting the
threshold where TC is more accurate than GS would allow to merge the approaches into a single
algorithm that knows which Markov blanket approach to use in order to achieve better results.

6. Conclusion

Causal discovery and feature selection are closely related: optimal feature selection discovers
Markov blanket as sets of strongly relevant features, and causal discovery discovers Markov blan-
kets as direct causes, direct effects, and common causes of direct effects. By performing perfect
feature selection on each variable, we get the undirected moral graph as an approximation of the
causal graph. An extra step, the collider set identification, is needed in order to transform the
Markov blankets into parents, children, and spouses. This step is exponential in the worst case,
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but is actually efficient provided the graph is sparse enough—a common assumption of many algo-
rithms. We proposed an algorithm to do this task and compared it favorably to the similar steps of
the Grow-Shrink algorithm.

Determining the Markov blanket with existing backward feature elimination like RFE elimi-
nates the irrelevant variables in the large sample limit, but remains too inclusive. Global corrections
have to be made, such as for instance insuring that a variable in the selected Markov blanket of
a target also includes this target in its own selected Markov blanket. We conducted experiments
that confirmed that this adjustment discards most false positives, and thus provided a hint that the
approach is consistent in the large-sample limit. The main challenge is to perform feature selection
for all variables in an efficient way. This task is tractable with the multivariate Gaussian assump-
tion. We presented the TC and the TCbw algorithms, which fit into the described framework, and
compared them to PC, GS, and a Bayesian structure-learning method. For small sample sizes, GS
usually makes fewer structural errors, and TC/TCbw are better for larger samples sizes.

We are convinced of the superiority of the Markov blanket approaches as described in this paper.
We invoke as support for this claim the high run times of PC, and the good low and high sample size
accuracy of GS and TC/TCbw, respectively. Not only are Markov blanket techniques much more
scalable, they can be more accurate; they are also more easily modifiable to construct only parts the
network deemed relevant by some criterion.

The biggest challenges we face now with causal structure learning include robust and consistent
distribution-free structure learning with continuous and potentially highly nonlinear data. In the
future, we intend to make use of this framework to develop such techniques and thus try to get rid
of the Gaussianity assumption, often impractical with real-life data sets.
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Appendix A.

For all proofs, we assume the given data set D is faithful.

Lemma 12 In a DAG G , any (undirected) path π of length `(π) > 2 can be blocked by conditioning
on any two consecutive nodes in π.

Proof It follows from Definition 5 that a path π is blocked when either at least one collider (or one of
its descendants) is not in the conditioning set S, or when at least one non-collider is in S. It therefore
suffices to show that conditioning on two consecutive nodes always includes a non-collider. This
is the case because two consecutive colliders would require bidirected arrows, which is a structural
impossibility with simple DAGs.
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Lemma 13 In a DAG G , two nodes X ,Y are d-connected given all other nodes S = V \ {X ,Y} if
and only if any of the following conditions holds:

(i) There is an arc from X to Y or from Y to X (i.e., X → Y or X ← Y );

(ii) X and Y have a common child Z (i.e., X → Z← Y ).

Proof We prove this by first proving an implication and then its converse.
(⇐=) If (i) holds, then X and Y cannot be d-separated by any set. If (ii) holds, then Z is included

in the conditioning set and d-connects X and Y by Definition 5.
(=⇒) X and Y are d-connected given a certain conditioning set when at least one path remains

open. Using the conditioning set S, paths of length > 2 are blocked by Lemma 12 since S contains
all nodes on those paths. Paths of length 2 contain a mediating variable Z between X and Y ; by
Definition 5, S blocks them unless Z is a common child of X and Y . Paths of length 1 cannot be
blocked by any conditioning set. So the two possible cases where X and Y will be d-connected are
(i) or (ii).

Corollary 14 Two variables X ,Y are dependent given all other variables S = V\{X ,Y} if and only
if any of the following conditions holds:

(i) X causes Y or Y causes X;

(ii) X and Y have a common effect Z.

Proof It follows directly from Lemma 13 due to the faithful structure, which ensures that there
exists a DAG where conditional independence and d-separation map one-to-one. Lemma 13 can
then be reread in terms of conditional independence and causation instead of d-separation and arcs.

Property 7 (Total conditioning) In the context of a faithful causal graph G , we have:

∀X ,Y ∈ V :
(

X ∈Mb(Y ) ⇐⇒ (X 6⊥⊥ Y | V\{X ,Y})
)

.

Proof This is a direct consequence of Corollary 14, where points (i) and (ii) lead to the definition of
the Markov blanket of Y as (i) all its causes and effects, and (ii) the other direct causes of its effects.
This is equivalent to Mb(Y ) in G .

Lemma 15 When it exists, the subset Z that has the Collider Set property for the pair (X ,Y ) is the
set of all direct common effects of X and Y .

Proof We prove this using Z and a corresponding SXY that fulfills (7).
(=⇒) (Zi ∈Z =⇒ X _ Zi ^Y .) By (7) and (8), we know that each Zi opens a dependence path

between X and Y (which are independent given SXY ) by conditioning on SXY ∪{Zi}. By Definition 5,
conditioning on Zi opens a path if Zi is either a colliding node or one of its descendants. As, by
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definition, Z⊆ Tri(X −Y ), we are in the first case. We conclude that Zi is a direct effect of both X
and Y .

(⇐=) (X _ Zi ^ Y =⇒ Zi ∈ Z.) Note that (7) and (8) together are implied in presence of a
V-structure X _ Zi ^ Y . Thus, a direct effect is compatible with the conditions. The fact that Z
captures all direct effects follows from the maximization of its cardinality.

Lemma 9 In the context of a faithful causal graph, the set Z that has the Collider Set property for
a given pair (X ,Y ) exists if and only if X is neither a direct cause nor a direct effect of Y , and is
unique when it exists.

Proof The fact that Z exists if and only if X is neither a direct cause nor a direct effect of Y is a
direct consequence of (7), which states that X and Y can be made conditionally independent. This
is in contradiction with direct causation.

We now show unicity, using interchangeably the criteria of d-separation and conditional inde-
pendence, as allowed by the Faithfulness assumption. Suppose that, for a pair (X ,Y ), two sets Z,
W have been found that fulfill the Collider Set property, with the corresponding d-separating sets
SZ

XY ⊆ V \ {X ,Y} \Z and SW
XY ⊆ V \ {X ,Y} \W fulfilling (7). Let Z? = Z \W. Due to symmetry,

proving that Z? is empty proves that Z = W.

Suppose that Z? 6= /0; that is, ∃Z ∈ Z?. Then, by definition, we have that
(

X ⊥⊥ Y
∣

∣ SZ
XY

)

and
(

X 6⊥⊥ Y
∣

∣ SZ
XY ∪{Z}

)

. We now have two cases: either (i) Z /∈ SW
XY , or (ii) Z ∈ SW

XY . In the former
case (i), consider the set W′ = W∪ {Z}. Then W′ also fulfills the Collider Set property with
the same d-separating set SW

XY : the only additional condition is
(

X 6⊥⊥ Y
∣

∣ SW
XY ∪{Z}

)

. This holds
because, as shown by Lemma 15, Z is a direct child of X and Y , and conditioning on it opens a path,
no matter what the conditioning set is. But all this is in contradiction with the definition stating
that any set fulfilling this property must be the largest set to do so, because the cardinality of W′ is
greater than that of W.

In the latter case (ii), the d-separating set SW
XY contains Z. But this is impossible due to the same

reason that Z is a direct child of both X and Y and that thus any set containing Z cannot d-separate X
and Y . We therefore conclude Z? = /0 and Z = W, which leads to the uniqueness of the set fulfilling
the Collider Set property.

Theorem 10 In the large sample limit, for faithful, causally sufficient data sets, the procedure
RESOLVEMARKOVBLANKETS COLLIDERSETS correctly identifies all V-structures and all spouse
links, assuming consistent statistical tests.

Proof First, we note that in a moral graph, a node X is connected to its parents, children, and
spouses. Thus, all spouse links to be removed are in the moral graph, and, by the definition of
spouse, each spouse link between X and Y corresponds to at least one unshielded collider for the
pair (X ,Y ). Additionally, by the definition of unshielded collider, X and Y are nonadjacent, so that
for each spouse link X −Y there is a set SXY such that (X ⊥⊥ Y | SXY ) by the contraposition of (4).
So, when such a set SXY is found, the link X −Y is removed, and for each Z such that X −Z−Y
and Z /∈ SXY , we orient the triplet as X → Z← Y for the exact same reason that allows IC (or PC)
to do the same in Step 2 of the algorithm (Pearl, 2000). The proof boils down to proving that the
proposed search procedure always identify a d-separating set SXY when there is one.
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If some SXY exists, then the link between X and Y is a spouse link by definition of a moral
graph, which implies that X and Y have a nonempty set of common effects Z. Each Z ∈ Z is linked
to both X in Y and is thus in Tri(X −Y ) by definition. Let us assume we can d-separate X and
Y by some set: then, by the definition of d-separation, only conditioning on a common effect or
a descendant of a common effect can create a dependency. In Algorithm 2, all possible colliders
(line 7) and descendants of currently conjectured colliders (line 13) undergo a subset search, such
that there will always be one iteration where all colliders and their descendants will be left out of
the conditioning set. It is then enough to show that all d-connecting paths between X and Y that are
not due to conditioning on a collider or collider’s descendant go through the base conditioning set
as determined at line 6.

To prove this, we note that the subset search at line 7 will always go through an iteration where
it blocks all such d-connecting paths of length 2, that is, patterns of the type X →W → Y and
X←W →Y . As a direct consequence of the fact that we are working on the moral graph, all longer
dependency paths go both through a node W in the set of immediate neighbors Bd(X) of X , and
through a node in Bd(Y ). Let us look at Bd(X). We have two cases: either (i) W ∈ Tri(X −Y )
and will eventually be blocked by the subset search at line 7, or (ii) W ∈ Bd(X) \Tri(X −Y )
(and thus W ∈ Bd(X) \Tri(X −Y ) \ {Y} because W 6= Y ). This set is exactly the set selected as
base conditioning set at line 6, blocking all such paths, up to some symmetry with Y . The fact that
we may choose the smaller of the two possible base conditioning sets is due to symmetry reasons.

Theorem 16 If the variables are jointly distributed according to a multivariate Gaussian, TC re-
turns the maximally oriented PDAG of the Markov equivalence class of the DAG representing the
causal structure of the data-generating process in the large sample limit, assuming statistically
consistent tests.

Proof An edge is added between X and Y in the feature selection if we find that ρXY ·V\{X ,Y} 6= 0.
We conclude (X 6⊥⊥ Y | V\{X ,Y}) owing to the multivariate Gaussian distribution. Corollary 14
says that this implies that X causes Y or Y causes X , or that they share a common child. Therefore,
each V-structure is turned into a triangle by the end of the feature-selection step. The collider set
search then examines each link X −Y part of a triangle, and by Lemma 15, we know that if the
search for a set Z that has the Collider Set property succeeds, there must be no link between X and
Y . We know by the same lemma that this set includes all colliders for the pair (X ,Y ), so that all
V-structures are correctly identified. Step 3 is the same as in the IC or PC algorithms; see Pearl and
Verma (1991) and Spirtes et al. (2001).
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Abstract
The support vector machine has been successful in a variety of applications. Also on the theoretical
front, statistical properties of the support vector machine have been studied quite extensively with
a particular attention to its Bayes risk consistency under some conditions. In this paper, we study
somewhat basic statistical properties of the support vector machine yet to be investigated, namely
the asymptotic behavior of the coefficients of the linear support vector machine. A Bahadur type
representation of the coefficients is established under appropriate conditions, and their asymptotic
normality and statistical variability are derived on the basis of the representation. These asymptotic
results do not only help further our understanding of the support vector machine, but also they can
be useful for related statistical inferences.
Keywords: asymptotic normality, Bahadur representation, classification, convexity lemma, Radon
transform

1. Introduction

The support vector machine (SVM) introduced by Cortes and Vapnik (1995) has been successful in
many applications due to its high classification accuracy and flexibility. For reference, see Vapnik
(1996), Schölkopf and Smola (2002), and Cristianini and Shawe-Taylor (2000). In parallel with a
wide range of applications, statistical properties of the SVM have been studied by many researchers
recently in addition to the statistical learning theory by Vapnik (1996) that originally motivated the
SVM. These include studies on the Bayes risk consistency of the SVM (Lin, 2002; Zhang, 2004;
Steinwart, 2005) and its rate of convergence to the Bayes risk (Lin, 2000; Blanchard, Bousquet,
and Massart, 2008; Scovel and Steinwart, 2007; Bartlett, Jordan, and McAuliffe, 2006). While the
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existing theoretical analysis of the SVM largely concerns its asymptotic risk, there are some basic
statistical properties of the SVM that seem to have eluded our attention. For example, to the best of
our knowledge, large sample properties of the coefficients in the linear SVM have not been studied
so far although the magnitude of each coefficient is often the determining factor of feature selection
for the SVM in practice.

In this paper, we address this basic question of the statistical behavior of the linear SVM as a
first step to the study of more general properties of the SVM. We mainly investigate asymptotic
properties of the coefficients of variables in the SVM solution for linear classification. The inves-
tigation is done in the standard way that parametric methods are studied in a finite dimensional
setting, that is, the number of variables is assumed to be fixed and the sample size grows to in-
finity. Additionally, in the asymptotics, the effect of regularization through maximization of the
class margin is assumed to vanish at a certain rate so that the solution is ultimately governed by
the empirical risk. Due to these assumptions, the asymptotic results become more pertinent to the
classical parametric setting where the number of features is moderate compared to the sample size
and the virtue of regularization is minute than to the situation with high dimensional inputs. Despite
the difference between the practical situation where the SVM methods are effectively used and the
setting theoretically posited in this paper, the asymptotic results shed a new light on the SVM from
a classical parametric point of view. In particular, we establish a Bahadur type representation of the
coefficients as in the studies of sample quantiles and estimates of regression quantiles. See Bahadur
(1966) and Chaudhuri (1991) for reference. It turns out that the Bahadur type representation of
the SVM coefficients depends on Radon transform of the second moments of the variables. This
representation illuminates how the so called margins of the optimal separating hyperplane and the
underlying probability distribution within and around the margins determine the statistical behavior
of the estimated coefficients. Asymptotic normality of the coefficients then follows immediately
from the representation. The proximity of the hinge loss function that defines the SVM solution to
the absolute error loss and its convexity allow such asymptotic results akin to those for least absolute
deviation regression estimators in Pollard (1991).

In addition to providing an insight into the asymptotic behavior of the SVM, we expect that our
results can be useful for related statistical inferences on the SVM, for instance, feature selection.
For introduction to feature selection, see Guyon and Elisseeff (2003), and for an extensive empirical
study of feature selection using SVM-based criteria, see Ishak and Ghattas (2005). In particular,
Guyon, Weston, Barnhill, and Vapnik (2002) proposed a recursive feature elimination procedure
for the SVM with an application to gene selection in microarray data analysis. Its selection or
elimination criterion is based on the absolute value of a coefficient not its standardized value. The
asymptotic variability of estimated coefficients that we provide can be used in deriving a new feature
selection criterion which takes inherent statistical variability into account.

This paper is organized as follows. Section 2 contains the main results of a Bahadur type
representation of the linear SVM coefficients and their asymptotic normality under mild conditions.
An illustrative example is then provided in Section 3 followed by simulation studies in Section 4
and a discussion in Section 5. Proofs of technical lemmas and theorems are collected in Section 6.

2. Main Results

In this section, we first introduce some notations and discuss our asymptotic results for the linear
SVM coefficients.
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2.1 Preliminaries

Let (X ,Y ) be a pair of random variables with X ∈ X ⊂ R
d and Y ∈ {1,−1}. The marginal distri-

bution of Y is given by P(Y = 1) = π+ and P(Y = −1) = π− with π+,π− > 0 and π+ + π− = 1.
Let f and g be the densities of X given Y = 1 and −1 with respect to the Lebesgue measure.
Let {(X i,Y i)}n

i=1 be a set of training data, independently drawn from the distribution of (X ,Y ).
Denote the input variables as x = (x1, . . . ,xd)

> and their coefficients as β+ = (β1, . . . ,βd)
>. Let

x̃ = (x̃0, . . . , x̃d)
> = (1,x1, . . . ,xd)

> and β = (β0,β1, . . . ,βd)
>. We consider linear classifications

with hyperplanes defined by h(x;β) = β0 + x>β+ = x̃>β. Let ‖ · ‖ denote the Euclidean norm of
a vector. For separable cases, the SVM finds the hyperplane that maximizes the geometric mar-
gin, 2/‖β+‖2 subject to the constraints yih(xi;β) ≥ 1 for i = 1, . . . ,n. For non-separable cases, a
soft-margin SVM is introduced to minimize

C
n

∑
i=1

ξi +
1
2
‖β+‖2

subject to the constraints ξi ≥ 1− yih(xi;β) and ξi ≥ 0 for i = 1, . . . ,n, where C > 0 is a tuning
parameter and {ξi}n

i=1 are called the slack variables. Equivalently, the SVM minimizes the uncon-
strained objective function

lλ,n(β) =
1
n

n

∑
i=1

[
1− yih(xi;β)

]
+

+
λ
2
‖β+‖2 (1)

over β ∈ R
d+1, where [z]+ = max(z,0) for z ∈ R and λ > 0 is a penalization parameter; see

Vapnik (1996) for details. Let the minimizer of (1) be denoted by β̂λ,n = argminβ lλ,n(β). Note that
C = (nλ)−1. Choice of λ depends on the data, and usually it is estimated via cross validation in
practice. In this paper, we consider only nonseparable cases and assume that λ → 0 as n → ∞. We
note that separable cases require a different treatment for asymptotics because λ has to be nonzero
in the limit for the uniqueness of the solution.

Before we proceed with a discussion of the asymptotics of the β̂λ,n, we introduce some notation
and definitions first. The population version of (1) without the penalty term is defined as

L(β) = E

[
1−Y h(X ;β)

]
+

(2)

and its minimizer is denoted by β∗ = argminβ L(β). Then the population version of the optimal
hyperplane defined by the SVM is

x̃>β∗ = 0. (3)

Sets are identified with their indicator functions. For example,
Z

X
x j{x j > 0} f (x)dx =

R

{x∈X : x j>0} x j f (x)dx. Letting ψ(z) = {z ≥ 0} for z ∈R, we define S(β) = (S(β) j) to be the (d +1)-
dimensional vector given by

S(β) = −E

(
ψ(1−Y h(X ;β))Y X̃

)

and H(β) = (H(β) jk) to be the (d +1)× (d +1)-dimensional matrix given by

H(β) = E

(
δ(1−Y h(X ;β))X̃ X̃>

)
,
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where δ denotes the Dirac delta function with δ(t) = ψ′(t) in distributional sense. Provided that
S(β) and H(β) are well-defined, S(β) and H(β) are considered as the gradient and Hessian matrix
of L(β), respectively. Formal proofs of these relationships are given in Section 6.1.

For explanation of H(β), we introduce a Radon transformation. For a function s on X , define
the Radon transform R s of s for p ∈ R and ξ ∈ R

d as

(R s)(p,ξ) =
Z

X
δ(p−ξ>x)s(x)dx.

For 0 ≤ j,k ≤ d, the ( j,k)-th element of the Hessian matrix H(β) is given by

H(β) jk = π+(R f jk)(1−β0,β+)+π−(R g jk)(1+β0,−β+), (4)

where f jk(x) = x̃ jx̃k f (x) and g jk(x) = x̃ jx̃kg(x). Equation (4) shows that the Hessian matrix H(β)
depends on the Radon transforms of f jk and g jk for 0 ≤ j,k ≤ d. For Radon transform and its
properties in general, see Natterer (1986), Deans (1993), or Ramm and Katsevich (1996).

For a continuous integrable function s, it can be easily proved that R s is continuous. If f and g
are continuous densities with finite second moments, then f jk and g jk are continuous and integrable
for 0 ≤ j,k ≤ d. Hence H(β) is continuous in β when f and g are continuous and have finite second
moments.

2.2 Asymptotics

Now we present the asymptotic results for β̂λ,n. We state regularity conditions for the asymptotics
first. Some remarks on the conditions then follow for exposition and clarification. Throughout this
paper, we use C1,C2, . . . to denote positive constants independent of n.

(A1) The densities f and g are continuous and have finite second moments.

(A2) There exists B(x0,δ0), a ball centered at x0 with radius δ0 > 0 such that f (x) > C1 and g(x) >
C1 for every x ∈ B(x0,δ0).

(A3) For some 1 ≤ i∗ ≤ d,
Z

X
{xi∗ ≥ G−

i∗}xi∗g(x)dx <
Z

X
{xi∗ ≤ F+

i∗ }xi∗ f (x)dx

or
Z

X
{xi∗ ≤ G+

i∗}xi∗g(x)dx >
Z

X
{xi∗ ≥ F−

i∗ }xi∗ f (x)dx.

Here F+
i∗ ,G+

i∗ ∈ [−∞,∞] are upper bounds such that
Z

X
{xi∗ ≤ F+

i∗ } f (x)dx = min

(
1,

π−
π+

)
and

Z

X
{xi∗ ≤ G+

i∗}g(x)dx = min

(
1,

π+

π−

)
. Similarly, lower bounds F−

i∗ and G−
i∗ are defined as

Z

X
{xi∗ ≥ F−

i∗ } f (x)dx = min

(
1,

π−
π+

)
and

Z

X
{xi∗ ≥ G−

i∗}g(x)dx = min

(
1,

π+

π−

)
.

(A4) For an orthogonal transformation A j∗ that maps β∗
+/‖β∗

+‖ to the j∗-th unit vector e j∗ for some
1 ≤ j∗ ≤ d, there exist rectangles

D+ = {x ∈ M+ : li ≤ (A j∗x)i ≤ vi with li < vi for i 6= j∗}
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and
D− = {x ∈ M− : li ≤ (A j∗x)i ≤ vi with li < vi for i 6= j∗}

such that f (x)≥C2 > 0 on D+, and g(x)≥C3 > 0 on D−, where M+ = {x∈X | β∗
0 +x>β∗

+ =
1} and M− = {x ∈ X | β∗

0 + x>β∗
+ = −1}.

Remark 1

• (A1) ensures that H(β) is well-defined and continuous in β.

• When f and g are continuous, the condition that f (x0) > 0 and g(x0) > 0 for some x0 implies
(A2).

• The technical condition in (A3) is a minimal requirement to guarantee that β∗
+, the normal

vector of the theoretically optimal hyperplane is not zero. Roughly speaking, it says that for
at least one input variable, the mean values of the class conditional distributions f and g
have to be different in order to avoid the degenerate case of β∗

+ = 0. Some restriction of the
supports through F+

i∗ , G+
i∗ , F−

i∗ and G−
i∗ is necessary in defining the mean values to adjust for

potentially unequal class proportions. When π+ = π−, F+
i∗ and G+

i∗ can be taken to be +∞
and F−

i∗ and G−
i∗ can be −∞. In this case, (A3) simply states that the mean vectors for the two

classes are different.

• (A4) is needed for the positive-definiteness of H(β) around β∗. The condition means that
there exist two subsets of the classification margins, M+ and M− on which the class densities
f and g are bounded away from zero. For mathematical simplicity, the rectangular subsets
D+ and D− are defined as the mirror images of each other along the normal direction of
the optimal hyperplane. This condition can be easily met when the supports of f and g are
convex. Especially, if R

d is the support of f and g, it is trivially satisfied. (A4) requires that
β∗

+ 6= 0, which is implied by (A1) and (A3); see Lemma 4 for the proof. For the special case
d = 1, M+ and M− consist of a point. D+ and D− are the same as M+ and M−, respectively,
and hence (A4) means that f and g are positive at those points in M+ and M−.

Under the regularity conditions, we obtain a Bahadur-type representation of β̂λ,n (Theorem 1).

The asymptotic normality of β̂λ,n follows immediately from the representation (Theorem 2). Con-

sequently, we have the asymptotic normality of h(x; β̂λ,n), the value of the SVM decision function
at x (Corollary 3).

Theorem 1 Suppose that (A1)-(A4) are met. For λ = o(n−1/2), we have

√
n(β̂λ,n −β∗) = − 1√

n
H(β∗)−1

n

∑
i=1

ψ(1−Y ih(X i;β∗))Y iX̃ i +oP(1).

Theorem 2 Suppose (A1)-(A4) are satisfied. For λ = o(n−1/2),

√
n(β̂λ,n −β∗) → N

(
0,H(β∗)−1G(β∗)H(β∗)−1

)

in distribution, where
G(β) = E

(
ψ(1−Y h(X ;β))X̃ X̃>

)
.
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Remark 2 Since β̂λ,n is a consistent estimator of β∗ as n → ∞, G(β∗) can be estimated by its

empirical version with β∗ replaced by β̂λ,n. To estimate H(β∗), one may consider the following
nonparametric estimate:

1
n

[
n

∑
i=1

pb

(
1−Y ih(X i; β̂λ,n)

)
X̃ i(X̃ i)>

]
,

where pb(t) ≡ p(t/b)/b, p(t) ≥ 0 and
R

R
p(t)dt = 1. Note that pb(·) → δ(·) as b → 0. However,

estimation of H(β∗) requires further investigation.

Corollary 3 Under the same conditions as in Theorem 2,

√
n
(

h(x; β̂λ,n)−h(x;β∗)
)
→ N

(
0, x̃>H(β∗)−1G(β∗)H(β∗)−1x̃

)

in distribution.

Remark 3 Corollary 3 can be used to construct a confidence bound for h(x;β∗) based on an estimate

h(x; β̂λ,n), in particular, to judge whether h(x;β∗) is close to zero or not given x. This may be useful
if one wants to abstain from prediction at a new input x if it is close to the optimal classification
boundary h(x;β∗) = 0.

3. An Illustrative Example

In this section, we illustrate the relation between the Bayes decision boundary and the optimal
hyperplane determined by (2) for two multivariate normal distributions in R

d . Assume that f and g
are multivariate normal densities with different mean vectors µ f and µg and a common covariance
matrix Σ. Suppose that π+ = π− = 1/2.

We verify the assumptions (A1)-(A4) so that Theorem 2 is applicable. For normal densities f
and g, (A1) holds trivially, and (A2) is satisfied with

C1 = |2πΣ|−1/2 exp

(
− sup

‖x‖≤δ0

{
(x−µ f )

>Σ−1(x−µ f ),(x−µg)
>Σ−1(x−µg)

})

for δ0 > 0. Since µ f 6= µg, there exists 1 ≤ i∗ ≤ d such that i∗-th elements of µ f and µg are different.
By taking F+

i∗ = G+
i∗ = +∞ and F−

i∗ = G−
i∗ = −∞, we can show that one of the inequalities in (A3)

holds as mentioned in Remark 1. Since D+ and D− can be taken to be bounded sets of the form in
(A4) in R

d−1, and the normal densities f and g are bounded away from zero on such D+ and D−,
(A4) is satisfied. In particular, β∗

+ 6= 0 as implied by Lemma 4.
Denote the density and cumulative distribution function of N(0,1) as φ and Φ, respectively.

Note that β∗ should satisfy the equation S(β∗) = 0, or

Φ(a f ) = Φ(ag) (5)

and

µ f Φ(a f )−φ(a f )Σ1/2ω∗ = µgΦ(ag)+φ(ag)Σ1/2ω∗, (6)

1348



A BAHADUR REPRESENTATION OF THE LINEAR SUPPORT VECTOR MACHINE

where a f =
1−β∗

0 −µ>f β∗
+

‖Σ1/2β∗
+‖

, ag =
1+β∗

0 +µ>g β∗
+

‖Σ1/2β∗
+‖

and ω∗ = Σ1/2β∗
+/‖Σ1/2β∗

+‖. From (5) and the

definition of a f and ag, we have a∗ ≡ a f = ag. Hence

(β∗
+)>(µ f +µg) = −2β∗

0. (7)

It follows from (6) that

β∗
+/‖Σ1/2β∗

+‖ =
Φ(a∗)
2φ(a∗)

Σ−1(µ f −µg). (8)

First we show the existence of a proper constant a∗ satisfying (8) and its relationship with a statisti-
cal distance between the two classes. Define ϒ(a) = φ(a)/Φ(a) and let dΣ(u,v) = {(u−v)>Σ−1(u−
v)}1/2 denote the Mahalanobis distance between u and v ∈ R

d . Since ‖ω∗‖ = 1, we have ϒ(a∗) =
‖Σ−1/2(µ f −µg)‖/2. Since ϒ(a) is monotonically decreasing in a, there exists a∗ = ϒ−1(dΣ(µ f ,µg)/2)
that depends only on µ f , µg, and Σ. For illustration, when the Mahalanobis distances between the
two normal distributions are 2 and 3, a∗ is given by ϒ−1(1) ≈ −0.303 and ϒ−1(1.5) ≈ −0.969,
respectively. The corresponding Bayes error rates are about 0.1587 and 0.06681. Figure 1 shows a
graph of ϒ(a) and a∗ when dΣ(µ f ,µg)=2 and 3.

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

a

Υ
(a

)

Figure 1: A plot of ϒ function. The dashed lines correspond to the inverse mapping from the Ma-
halanobis distances of 2 and 3 to a∗ ≈−0.303 and −0.969, respectively.

Once a∗ is properly determined, we can express the solution β∗ explicitly by (7) and (8):

β∗
0 = − (µ f −µg)

>Σ−1(µ f +µg)

2a∗dΣ(µ f ,µg)+dΣ(µ f ,µg)2
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and

β∗
+ =

2Σ−1(µ f −µg)

2a∗dΣ(µ f ,µg)+dΣ(µ f ,µg)2 .

Thus the optimal hyperplane (3) is

2
2a∗dΣ(µ f ,µg)+dΣ(µ f ,µg)2

{
Σ−1(µ f −µg)

}>{
x− 1

2
(µ f +µg)

}
= 0,

which is equivalent to the Bayes decision boundary given by

{
Σ−1(µ f −µg)

}>{
x− 1

2
(µ f +µg)

}
= 0.

This shows that the linear SVM is equivalent to Fisher’s linear discriminant analysis in this setting.
In addition, H(β∗) and G(β∗) can be shown to be

G(β∗) =
Φ(a∗)

2

[
2 (µ f +µg)

>

µ f +µg G22(β∗)

]

and

H(β∗) =
φ(a∗)

4
(2a∗ +dΣ(µ f ,µg))

[
2 (µ f +µg)

>

µ f +µg H22(β∗)

]
,

where

G22(β∗) = µ f µ
>
f +µgµ>g +2Σ−

(
a∗

dΣ(µ f ,µg)
+1

)
(µ f −µg)(µ f −µg)

> and

H22(β∗) = µ f µ
>
f +µgµ>g +2Σ

+2

((
a∗

dΣ(µ f ,µg)

)2

+
a∗

dΣ(µ f ,µg)
− 1

d2
Σ(µ f ,µg)

)
(µ f −µg)(µ f −µg)

>.

For illustration, we consider the case when d = 1, µ f + µg = 0, and σ = 1. The asymptotic
variabilities of the intercept and the slope for the optimal decision boundary are calculated according
to Theorem 2. Figure 2 shows the asymptotic variabilities as a function of the Mahalanobis distance
between the two normal distributions, |µ f −µg| in this case. Also, it depicts the asymptotic variance
of the estimated classification boundary value (−β̂0/β̂1) by using the delta method. Although the
Mahalanobis distance roughly in the range of 1 to 4 would be of practical interest, the plots show
a notable trend in the asymptotic variances as the distance varies. When the two classes get very
close, the variances shoot up due to the difficulty in discriminating them. On the other hand, as
the Mahalanobis distance increases, that is, the two classes become more separated, the variances
become increasingly large. A possible explanation for the trend is that the intercept and the slope
of the optimal hyperplane are determined by only a small fraction of data falling into the margins in
this case.

4. Simulation Studies

In this section, simulations are carried out to illustrate the asymptotic results and their potential for
feature selection.
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Figure 2: The asymptotic variabilities of estimates of (a) the intercept, (b) the slope, and (c) their
ratio for the optimal hyperplane as a function of the Mahalanobis distance.

4.1 Bivariate Case

Theorem 2 is numerically illustrated with the multivariate normal setting in the previous section.
Consider a bivariate case with mean vectors µ f = (1,1)> and µg = (−1,−1)> and a common co-
variance matrix Σ = I2. This example has dΣ(µ f ,µg) = 2

√
2 and the corresponding Bayes error

rate is 0.07865. Data were generated from the two normal distributions with an equal probability
for each class. The total sample size was varied from 100 to 500. To see the direct effect of the
hinge loss on the SVM coefficients without regularization as in the way the asymptotic properties in
Section 2 are characterized ultimately, we estimated the coefficients of the linear SVM without the
penalty term by linear programming. Such a simulation was repeated 1,000 times for each sample
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size, and Table 1 summarizes the results by showing the averages of the estimated coefficients of
the SVM over 1,000 replicates. As expected, the averages get closer to the theoretically optimal
coefficients β∗ as the sample size grows. Moreover, the sampling distributions of β̂0, β̂1, and β̂2

approximate their theoretical counterparts for a large sample size as shown in Figure 3. The solid
lines are the estimated density functions of β̂0 and β̂1 for n = 500, and the dotted lines are the
corresponding asymptotic normal densities in Theorem 2.

Coefficients Sample size n Optimal values
100 200 500

β0 0.0006 -0.0013 0.0022 0
β1 0.7709 0.7450 0.7254 0.7169
β2 0.7749 0.7459 0.7283 0.7169

Table 1: Averages of estimated and optimal coefficients over 1,000 replicates.
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Figure 3: Estimated sampling distributions of (a) β̂0 and (b) β̂1 with the asymptotic normal densities
overlaid.

4.2 Feature Selection

Clearly the results we have established have implications to statistical inferences on the SVM.
Among others, feature selection is of particular interest. By using the asymptotic variability of
estimated coefficients, one can derive a new feature selection criterion based on the standardized
coefficients. Such a criterion will take inherent statistical variability into account. More generally,
this consideration of new criteria opens the possibility of casting feature selection for the SVM for-
mally in the framework of hypothesis testing and extending standard variable selection procedures
in regression to classification.
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We investigate the possibility of using the standardized coefficients of β̂ for selection of vari-
ables. For practical applications, one needs to construct a reasonable nonparametric estimator of
the asymptotic variance-covariance matrix, whose entries are defined through line integrals. A sim-
ilar technical issue arises in quantile regression. See Koenker (2005) for some suggested variance
estimators in the setting.

For the sake of simplicity in the second set of simulation, we used the theoretical asymptotic
variance in standardizing β̂ and selected those variables with the absolute standardized coefficient
exceeding a certain critical value. And we mainly monitored the type I error rate of falsely declaring
the significance of a variable when it is not, over various settings of a mixture of two multivariate
normal distributions. Different combinations of the sample size (n) and the number of variables
(d) were tried. For a fixed even d, we set µ f = (1d/2,0d/2)

>, µg = 0>d , and Σ = Id , where 1p and
0p indicate p-vectors of ones and zeros, respectively. Thus only the first half of the d variables
have nonzero coefficients in the optimal hyperplane of the linear SVM. Table 2 shows the minima,
median, and maxima of such type I error rates in selection of relevant variables over 200 replicates
when the critical value was z0.025 ≈ 1.96 (5% level of significance). If the asymptotic distributions
were accurate, the error rates would be close to the nominal level of 0.05. On the whole, the table
suggests that when d is small, the error rates are very close to the nominal level even for small
sample sizes, while for a large d, n has to be quite large for the asymptotic distributions to be valid.
This pattern is clearly seen in Figure 4, which displays the median values of the type I error rates. In
passing, we note that changing the proportion of relevant variables did not seem to affect the error
rates, which are not shown here.

Number of variables (d)
n 6 12 18 24

250 [0.050, 0.060, 0.090] [0.075, 0.108, 0.145] [0.250, 0.295, 0.330] [0.665, 0.698, 0.720]
500 [0.045, 0.080, 0.090] [0.040, 0.068, 0.095] [0.105, 0.130, 0.175] [0.275, 0.293, 0.335]
750 [0.030, 0.055, 0.070] [0.035, 0.065, 0.090] [0.055, 0.095, 0.115] [0.135, 0.185, 0.205]

1000 [0.050 ,0.065, 0.065] [0.060, 0.068, 0.095] [0.040, 0.075, 0.095] [0.105, 0.135, 0.175]
1250 [0.065, 0.065, 0.070] [0.035, 0.045, 0.050] [0.055, 0.080, 0.105] [0.070, 0.095, 0.125]
1500 [0.035, 0.050, 0.065] [0.040, 0.058, 0.085] [0.055, 0.075, 0.090] [0.050, 0.095, 0.135]
1750 [0.030, 0.035, 0.060] [0.035, 0.045, 0.075] [0.040, 0.065, 0.095] [0.055, 0.080, 0.120]
2000 [0.035, 0.040, 0.060] [0.040, 0.065, 0.080] [0.060, 0.070, 0.100] [0.055, 0.075, 0.105]

Table 2: The minimum, median, and maximum values of the type I error rates of falsely flagging
an irrelevant variable as relevant over 200 replicates by using the standardized SVM coef-
ficients at 5% significance level.

We leave further development of asymptotic variance estimators for feature selection and com-
parison with risk based approaches such as the recursive feature elimination procedure as a future
work.

5. Discussion

In this paper, we have investigated asymptotic properties of the coefficients of variables in the SVM
solution for nonseparable linear classification. More specifically, we have established a Bahadur
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Figure 4: The median values of the type I error rates in variable selection depending on the sample
size n and the number of variables d. The horizontal, dashed line indicates the nominal
level of 0.05.

type representation of the coefficients and their asymptotic normality using Radon transformation
of the second moments of the variables. The representation shows how the statistical behavior of the
coefficients is determined by the margins of the optimal hyperplane and the underlying probability
distribution. Shedding a new statistical light on the SVM, these results provide an insight into its
asymptotic behavior and can be used to improve our statistical practice with the SVM in various
aspects.

There are several issues yet to be investigated. The asymptotic results that we have obtained so
far pertain only to the linear SVM in nonseparable cases. Although it may be of more theoretical
consideration than practical, a similar analysis of the linear SVM in the separable case is antici-
pated, which will ultimately lead to a unified theory for separable as well as nonseparable cases.
The separable case would require a slightly different treatment than the nonseparable case because
the regularization parameter λ needs to remain positive in the limit to guarantee the uniqueness of
the solution. An extension of the SVM asymptotics to the nonlinear case is another direction of
interest. In this case, the minimizer defined by the SVM is not a vector of coefficients of a fixed
length but a function in a reproducing kernel Hilbert space. So, the study of asymptotic properties
of the minimizer in the function space essentially requires investigation of its pointwise behavior or
its functionals in general as the sample size grows. A general theory in Shen (1997) on asymptotic
normality and efficiency of substitution estimates for smooth functionals is relevant. In particular,
Theorem 2 in Shen (1997) provides the asymptotic normality of the penalized sieve MLE, char-
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acterization of which bears a close resemblance with function estimation for the nonlinear case.
However, the theory was developed under the assumption of the differentiability of the loss, and
it has to be modified for proper theoretical analysis of the SVM. As in the approach for the linear
case presented in this paper, one may get around the non-differentiability issue of the hinge loss by
imposing appropriate regularity conditions to ensure that the minimizer is unique and the expected
loss is differentiable and locally quadratic around the minimizer.

Consideration of these extensions will lead to a more complete picture of the asymptotic behav-
ior of the SVM solution.

6. Proofs

In this section, we present technical lemmas and prove the main results.

6.1 Technical Lemmas

Lemma 1 shows that there is a finite minimizer of L(β), which is useful in proving the uniqueness of
the minimizer in Lemma 6. In fact, the existence of the first moment of X is sufficient for Lemmas
1, 2, and 4. However, (A1) is needed for the existence and continuity of H(β) in the proof of other
lemmas and theorems.

Lemma 1 Suppose that (A1) and (A2) are satisfied. Then L(β) → ∞ as ‖β‖→ ∞ and the existence
of β∗ is guaranteed.

Proof. Without loss of generality, we may assume that x0 = 0 in (A2) and B(0,δ0) ⊂ X . For any
ε > 0,

L(β) = π+

Z

X
[1− x̃>β]+ f (x)dx+π−

Z

X
[1+h(x;β)]+g(x)dx

≥ π+

Z

X
{h(x;β) ≤ 0}(1−h(x;β)) f (x)dx+π−

Z

X
{h(x;β) ≥ 0}(1+h(x;β))g(x)dx

≥ π+

Z

X
{h(x;β) ≤ 0}(−h(x;β)) f (x)dx+π−

Z

X
{h(x;β) ≥ 0}h(x;β)g(x)dx

≥
Z

X
|h(x;β)|min(π+ f (x),π−g(x))dx

≥ C1 min(π+,π−)
Z

B(0,δ0)
|h(x;β)|dx

= C1 min(π+,π−)‖β‖
Z

B(0,δ0)
|h(x;w)|dx

≥ C1 min(π+,π−)‖β‖vol({|h(x;w)| ≥ ε}∩B(0,δ0))ε,

where w = β/‖β‖ and vol(A) denotes the volume of a set A.
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Note that −1 ≤ w0 ≤ 1. For 0 ≤ w0 < 1 and 0 < ε < 1,

vol({|h(x;w)| ≥ ε}∩B(0,δ0))

≥ vol({h(x;w) ≥ ε}∩B(0,δ0))

= vol

({
x>w+/

√
1−w2

0 ≥ (ε−w0)/
√

1−w2
0

}
∩B(0,δ0)

)

≥ vol

({
x>w+/

√
1−w2

0 ≥ ε
}
∩B(0,δ0)

)
≡V (δ0,ε)

since (ε−w0)/
√

1−w2
0 ≤ ε. When −1 < w0 < 0, we obtain

volB(h(x;w) ≤−ε) ≥V (δ0,ε)

in a similar way. Note that V (δ0,ε) is independent of β and V (δ0,ε) > 0 for some ε < δ0. Conse-
quently, L(β) ≥C1 min(π+,π−)‖β‖V (δ0,ε)ε → ∞ as ‖β‖→ ∞. The case w0 = ±1 is trivial.

Since the hinge loss is convex, L(β) is convex in β. Since L(β) → ∞ as ‖β‖ → ∞, the set,
denoted by M , of minimizers of L(β) forms a bounded connected set. The existence of the solution
β∗ of L(β) easily follows from this. �

In Lemmas 2 and 3, we obtain explicit forms of S(β) and H(β) for non-constant decision func-
tions.

Lemma 2 Assume that (A1) is satisfied. If β+ 6= 0, then we have

∂L(β)

∂β j
= S(β) j

for 0 ≤ j ≤ d.

Proof. It suffices to show that

∂
∂β j

Z

X
[1−h(x;β)]+ f (x)dx = −

Z

X
{h(x;β) ≤ 1}x̃ j f (x)dx.

Define ∆(t) = [1−h(x;β)− t x̃ j]+− [1−h(x;β)]+. Let t > 0.
First, consider the case x̃ j > 0. Then,

∆(t) =





0 if h(x;β) > 1
h(x;β)−1 if 1− t x̃ j < h(x;β) ≤ 1
−tx̃ j if h(x;β) ≤ 1− tx̃ j.

Observe that
Z

X
∆(t){x̃ j > 0} f (x)dx =

Z

X
{1− tx̃ j < h(x;β) ≤ 1}(h(x;β)−1) f (x)dx

−t
Z

X
{h(x;β) ≤ 1− t x̃ j, x̃ j > 0}x̃ j f (x)dx

and that
∣∣∣∣
1
t

Z

X
{1− tx̃ j < h(x;β) ≤ 1}(h(x;β)−1) f (x)dx

∣∣∣∣≤
Z

X
{1− tx̃ j < h(x;β) ≤ 1}x̃ j f (x)dx.
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By Dominated Convergence Theorem,

lim
t↓0

Z

X
{1− tx̃ j < h(x;β) ≤ 1}x̃ j f (x)dx =

Z

X
{h(x;β) = 1}x̃ j f (x)dx = 0

and
lim
t↓0

Z

X
{h(x;β) ≤ 1− t x̃ j, x̃ j > 0}x̃ j f (x)dx =

Z

X
{h(x;β) ≤ 1, x̃ j > 0}x̃ j f (x)dx.

Hence

lim
t↓0

1
t

Z

X
∆(t){x̃ j > 0} f (x)dx = −

Z

X
{h(x;β) ≤ 1, x̃ j > 0}x̃ j f (x)dx. (9)

Now assume that x̃ j < 0. Then,

∆(t) =





0 if h(x;β) > 1− t x̃ j

1−h(x;β)− tx̃ j if 1 < h(x;β) ≤ 1− t x̃ j

−tx̃ j if h(x;β) ≤ 1.

In a similar fashion, one can show that

lim
t↓0

1
t

Z

X
∆(t){x̃ j < 0} f (x)dx = −

Z

X
{h(x;β) ≤ 1, x̃ j < 0}x̃ j f (x)dx. (10)

Combining (9) and (10), we have shown that

lim
t↓0

1
t

Z

X
∆(t) f (x)dx = −

Z

X
{h(x;β) ≤ 1}x̃ j f (x)dx.

The proof for the case t < 0 is similar. �

The proof of Lemma 3 is based on the following identity
Z

δ(Dt +E)T (t)dt =
1
|D|T (−E/D) (11)

for constants D and E. This identity follows from the fact that δ(at) = δ(t)/|a| and
R

δ(t−a)T (t)dt =
T (a) for a constant a.

Lemma 3 Suppose that (A1) is satisfied. Under the condition that β+ 6= 0, we have

∂2L(β)

∂β j∂βk
= H(β) jk,

for 0 ≤ j,k ≤ d.

Proof. Define
Ψ(β) =

Z

X
{x>β+ < 1−β0}s(x)dx

for a continuous and integrable function s defined on X . Without loss of generality, we may assume
that β1 6= 0. It is sufficient to show that for 0 ≤ j,k ≤ d,

∂2

∂β j∂βk

Z

X
[1−h(x;β)]+ f (x)dx =

Z

X
δ(1−h(x;β))x̃ jx̃k f (x)dx.
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Define X− j = {(x1, . . . ,x j−1,x j+1, . . . ,xd) : (x1, . . . ,xd) ∈ X } and X j = {x j : (x1, . . . ,xd) ∈ X }.
Observe that

∂Ψ(β)

∂β0
= − 1

|β1|

Z

X−1

s

(
1−h(x;β)+β1x1

β1
,x2, . . . ,xd

)
dx−1 (12)

and that for k 6= 1,

∂Ψ(β)

∂βk
= − 1

|β1|

Z

X−1

xks

(
1−h(x;β)+β1x1

β1
,x2, . . . ,xd

)
dx−1. (13)

If βp = 0 for any p 6= 1, then

∂Ψ(β)

∂β1
= −1−β0

β1|β1|

Z

X−1

s

(
1−β0

β1
,x2, . . . ,xd

)
dx−1. (14)

If there is p 6= 1 with βp 6= 0, then we have

∂Ψ(β)

∂β1
= − 1

|βp|

Z

X−p

x1s

(
x1, . . . ,xp−1,

1−h(x;β)+βpxp

βp
,xp+1, . . . ,xd

)
dx−p. (15)

Choose D = β1, E = x̃>β−β1x1 −1, t = x1 in (11). It follows from (13) and (15) that

∂Ψ(β)

∂βk
= − 1

|β1|

Z

X−1

xks

(
1−h(x;β)+β1x1

β1
,x2, . . . ,xd

)
dx−1 (16)

= −
Z

X−1

Z

X1

xks(x)δ(h(x;β)−1)dx1dx−1

= −
Z

X
δ(1−h(x;β))xks(x)dx.

Similarly, we have
∂Ψ(β)

∂β0
= −

Z

X
δ(1−h(x;β))s(x)dx (17)

by (12).
Choosing D = β1, E = β0 −1, t = x1 in (11), we have

Z

X1

δ(β1x1 −1+β0)x1s(x)dx1 =
1

|β1|

(
1−β0

β1

)
s

(
1−β0

β1
,x2, . . . ,xd

)

by (14). This implies (16) for k = 1. The desired result now follows from (16) and (17). �

The following lemma asserts that the optimal decision function is not a constant under the
condition that the centers of two classes are separated.

Lemma 4 Suppose that (A1) is satisfied. Then (A3) implies that β∗
+ 6= 0.

Proof. Suppose that
Z

X
{xi∗ ≥ G−

i∗}xi∗g(x)dx <
Z

X
{xi∗ ≤ F+

i∗ }xi∗ f (x)dx (18)

in (A3). We will show that

min
β0

L(β0,0, . . .0) > min
β0,βi∗>0

L(β0,0, . . . ,0,βi∗ ,0, . . . ,0), (19)
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implying that β∗
+ 6= 0. Henceforth, we will suppress β’s that are equal to zero in L(β). The popula-

tion minimizer (β∗
0,β∗

i∗) is given by the minimizer of

L(β0,βi∗) = π+

Z

X
[1−β0 −βi∗xi∗ ]+ f (x)dx+π−

Z

X
[1+β0 +βi∗xi∗ ]+g(x)dx.

First, consider the case βi∗ = 0.

L(β0) =





π−(1+β0), β0 > 1
1+(π−−π+)β0, −1 ≤ β0 ≤ 1
π+(1−β0), β0 < −1

with its minimum
min

β0

L(β0) = 2min(π+,π−) . (20)

Now consider the case βi∗ > 0, where

L(β0,βi∗) = π+

Z

X

{
xi∗ ≤

1−β0

βi∗

}
(1−β0 −βi∗xi∗) f (x)dx

+π−

Z

X

{
xi∗ ≥

−1−β0

βi∗

}
(1+β0 +βi∗xi∗)g(x)dx.

Let β̃0 denote the minimizer of L(β0,βi∗) for a given βi∗ . Note that ∂L(β0,βi∗)/∂β0 is given as

∂L(β0,βi∗)

∂β0
(21)

= −π+

Z

X

{
xi∗ ≤

1−β0

βi∗

}
f (x)dx+π−

Z

X

{
xi∗ ≥

−1−β0

βi∗

}
g(x)dx,

which is monotonic increasing in β0 with limβ0→−∞
∂L(β0,βi∗ )

∂β0
→−π+ and limβ0→∞

∂L(β0,βi∗ )
∂β0

→ π−.

Hence β̃0 exists for a given βi∗ .
When π− < π+, we can easily check that F+

i∗ < ∞ and G−
i∗ = −∞. F+

i∗ and G−
i∗ may not be

determined uniquely, meaning that there may exist an interval with probability zero. There is no
significant change in the proof under the assumption that F+

i∗ and G−
i∗ are unique. Note that

1− β̃0

βi∗
≤ F+

i∗

by definition of F+
i∗ and (21). Then,

−1− β̃0

βi∗
≤ F+

i∗ − 2
βi∗

→−∞ as βi∗ → 0,

and
1− β̃0

βi∗
→ F+

i∗ as βi∗ → 0.

¿From (18),

π−

Z

X
xi∗g(x)dx < π+

Z

X
{xi∗ ≤ F+

i∗ }xi∗ f (x)dx. (22)
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Now consider the minimum of L(β̃0,βi∗) with respect to βi∗ > 0. From (21),

L(β̃0,βi∗) (23)

= π+

Z

X

{
xi∗ ≤

1− β̃0

βi∗

}
(1− β̃0 −βi∗xi∗) f (x)dx

+π−

Z

X

{
xi∗ ≥

−1− β̃0

βi∗

}
(1+ β̃0 +βi∗xi∗)g(x)dx

= 2π−

Z

X

{
xi∗ ≥

−1− β̃0

βi∗

}
g(x)dx

+βi∗

(
π−

Z

X

{
xi∗ ≥

−1− β̃0

βi∗

}
xi∗g(x)dx−π+

Z

X

{
xi∗ ≤

1− β̃0

βi∗

}
xi∗ f (x)dx

)

By (22), it can be easily seen that the second term in (23) is negative for sufficiently small βi∗ > 0,
implying

L(β̃0,βi∗) < 2π− for some βi∗ > 0.

If π− > π+, then F+
i∗ = ∞ and G−

i∗ > −∞. Similarly, it can be checked that

L(β̃0,βi∗) < 2π+ for some βi∗ > 0.

Suppose that π− = π+. Then it can be verified that

1− β̃0

βi∗
→ ∞ as βi∗ → 0,

and
−1− β̃0

βi∗
→−∞ as βi∗ → 0.

In this case, L(β̃0,βi∗) < 1.
Hence, under (18), we have shown that

L(β̃0,βi∗) < 1 for some βi∗ > 0.

This, together with (20), implies (19). For the second case in (A3), the same arguments hold with
βi∗ < 0. �

Note that (A1) implies that H is well-defined and continuous in its argument. (A4) ensures that
H(β) is positive definite around β∗ and thus we have a lower bound result in Lemma 5.

Lemma 5 Under (A1), (A3) and (A4),

β>H(β∗)β ≥C4‖β‖2,

where C4 may depend on β∗.
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Proof. Since the proof for the case d = 1 is trivial, we consider the case d ≥ 2 only. Observe that

β>H(β∗)β = E

(
δ(1−Y h(X ;β∗))h2(X ;β)

)

= π+

Z

X
δ(1−h(x;β∗))h2(x;β) f (x)dx+π−

Z

X
δ(1+h(x;β∗))h2(x;β)g(x)dx

= π+(R h2 f )(1−β∗
0,β

∗
+)+π−(R h2g)(1+β∗

0,−β∗
+)

= π+(R h2 f )(1−β∗
0,β

∗
+)+π−(R h2g)(−1−β∗

0,β
∗
+).

The last equality follows from the homogeneity of Radon transform.

Recall that β∗
+ 6= 0 by Lemma 4. Without loss of generality, we assume that j∗ = 1 in (A4). Let

A1β+ = a = (a1, . . . ,ad) and z = (A1x)/‖β∗
+‖. Given u = (u2, . . . ,ud), let u∗ =

(
(1−β∗

0)/‖β∗
+‖,u

)
.

Define Z = {z = (A1x)/‖β∗
+‖ : x ∈ X } and U = {u : u j = ‖β∗

+‖z j for j = 2, . . . ,d, and z ∈ Z}. Note
that detA1 = 1, du = ‖β∗

+‖d−1dz2 . . .dzd ,

‖β∗
+‖A>

1 z
∣∣∣
z1=(1−β∗

0)/‖β∗
+‖2

= A>
1




(1−β∗
0)/‖β∗

+‖
‖β∗

+‖z2
...

‖β∗
+‖zd


= A>

1 u∗

and

β0 +‖β∗
+‖a>z

∣∣∣
z1=(1−β∗

0)/‖β∗
+‖2

= β0 +‖β∗
+‖
(

a1(1−β∗
0)/‖β∗

+‖2 +
d

∑
j=2

a jz j

)

= β0 +a1(1−β∗
0)/‖β∗

+‖+‖β∗
+‖

d

∑
j=2

a jz j.

Using the transformation A1, we have

(R h2 f )(1−β∗
0,β

∗
+)

=
Z

Z
δ
(

1−β∗
0 −‖β∗

+‖(A1β∗
+)>z

)
h2
(
‖β∗

+‖A>
1 z;β

)
f
(
‖β∗

+‖A>
1 z
)
‖β∗

+‖ddz

=
Z

Z
δ
(

1−β∗
0 −‖β∗

+‖2e>1 z
)(

β0 +‖β∗
+‖(A1β+)>z

)2
f
(
‖β∗

+‖A>
1 z
)
‖β∗

+‖ddz

=
Z

Z
δ
(
1−β∗

0 −‖β∗
+‖2z1

)(
β0 +‖β∗

+‖a>z
)2

f
(
‖β∗

+‖A>
1 z
)
‖β∗

+‖ddz

=
1

‖β∗
+‖

Z

U

(
β0 +a1(1−β∗

0)/‖β∗
+‖+

d

∑
j=2

a ju j

)2
f (A>

1 u∗)du.

1361



KOO, LEE, KIM AND PARK

The last equality follows from the identity (11). Let D+
∗ =

{
u : A>

1 u∗ ∈ D+
}

. By (A4), there exists
a constant C2 > 0 and a rectangle D+

∗ on which f (A>
1 u∗) ≥C2 for u ∈ D+

∗ . Then

(R h2 f )(1−β∗
0,β

∗
+)

≥ 1
‖β∗

+‖

Z

D+
∗

(
β0 +a1(1−β∗

0)/‖β∗
+‖+

d

∑
j=2

a ju j

)2
f (A>

1 u∗)du

≥ 1
‖β∗

+‖
·C2

Z

D+
∗

(
β0 +a1(1−β∗

0)/‖β∗
+‖+

d

∑
j=2

a ju j

)2
du

=
1

‖β∗
+‖

·C2 ·vol(D+
∗ )Eu

(
β0 +a1(1−β∗

0)/‖β∗
+‖+

d

∑
j=2

a jU j

)2

=
1

‖β∗
+‖

·C2 ·vol(D+
∗ )
{(

β0 +a1(1−β∗
0)/‖β∗

+‖+E
u

d

∑
j=2

a jU j

)2
+V

u(
d

∑
j=2

a jU j)
}
,

where U j for j = 2, . . . ,d are independent and uniform random variables defined on D+
∗ , and E

u and
V

u denote the expectation and variance with respect to the uniform distribution.

Letting mi = (li + vi)/2, we have

(R h2 f )(1−β∗
0,β

∗
+) (24)

≥ 1
‖β∗

+‖
·C2 ·vol(D+

∗ )
{(

β0 +a1(1−β∗
0)/‖β∗

+‖+
d

∑
j=2

a jm j

)2
+ min

2≤ j≤d
V

u(U j)
d

∑
j=2

a2
j

}
.

Similarly, it can be shown that

(R h2g)(−1−β∗
0,β

∗
+) (25)

≥ 1
‖β∗

+‖
·C3 ·vol(D−

∗ )
{(

β0 −a1(1+β∗
0)/‖β∗

+‖+
d

∑
j=2

a jm j

)2
+ min

2≤ j≤d
V

u(U j)
d

∑
j=2

a2
j

}
,

where D−
∗ =

{
u : A>

1

(
(−1−β∗

0)/‖β∗
+‖,u

)
∈ D−

}
.
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Combining (24)-(25) and letting C5 = 2/‖β∗
+‖min

(
π+C2 ·vol(D+

∗ ),π−C3 ·vol(D−
∗ )
)

and C6 =

min
(

1,min2≤ j≤d V
u(U j)

)
, we have

β>H(β∗)β

≥ π+

‖β∗
+‖

·C2 ·vol(D+
∗ )
{(

β0 +a1(1−β∗
0)/‖β∗

+‖+
d

∑
j=2

a jm j

)2
+ min

2≤ j≤d
V

u(U j)
d

∑
j=2

a2
j

}

+
π−
‖β∗

+‖
·C3 ·vol(D−

∗ )
{(

β0 −a1(1+β∗
0)/‖β∗

+‖+
d

∑
j=2

a jm j

)2
+ min

2≤ j≤d
V

u(U j)
d

∑
j=2

a2
j

}

≥ C5C6

{(
β0 +a1(1−β∗

0)/‖β∗
+‖+

d

∑
j=2

a jm j

)2

+
(

β0 −a1(1+β∗
0)/‖β∗

+‖+
d

∑
j=2

a jm j

)2
+2

d

∑
j=2

a2
j

}
/2

= C5C6

{(
β0 +a1(1−β∗

0)/‖β∗
+‖
)2

+
(

β0 −a1(1+β∗
0)/‖β∗

+‖
)2

+4
(

β0 −a1β∗
0/‖β∗

+‖
) d

∑
j=2

a jm j +2
( d

∑
j=2

a jm j

)2
+2

d

∑
j=2

a2
j

}
/2.

Note that

( d

∑
j=2

a jm j

)2
+2
(

β0 −a1β∗
0/‖β∗

+‖
) d

∑
j=2

a jm j

=
( d

∑
j=2

a jm j +β0 −a1β∗
0/‖β∗

+‖
)2

−
(

β0 −a1β∗
0/‖β∗

+‖
)2

and
(

β0 +a1(1−β∗
0)/‖β∗

+‖
)2

+
(

β0 −a1(1+β∗
0)/‖β∗

+‖
)2

−2
(

β0 −a1β∗
0/‖β∗

+‖
)2

= 2a2
1/‖β∗

+‖2.

Thus, the lower bound of β>H(β∗)β except for the constant C5C6 allows the following quadratic
form in terms of β0,a1, . . . ,ad . Let

Q(β0,a1, . . . ,ad) = a2
1/‖β∗

+‖2 +
( d

∑
j=2

a jm j +β0 −a1β∗
0/‖β∗

+‖
)2

+
d

∑
j=2

a2
j .

Obviously Q(β0,a1, . . . ,ad)≥ 0 and Q(β0,a1, . . . ,ad) = 0 implies that a1 = . . . = ad = 0 and β0 = 0.
Therefore Q is positive definite. Letting ν1 > 0 be the smallest eigenvalue of the matrix correspond-
ing to Q, we have proved

β>H(β∗)β ≥ C5C6ν1(β2
0 +

d

∑
j=1

a2
j) = C5C6ν1(β2

0 +
d

∑
j=1

β2
j).

The last equality follows from the fact that A1β+ = a and the transformation A1 preserves the norm.
With the choice of C4 = C5C6ν1 > 0, the result follows. �
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Lemma 6 Suppose that (A1)-(A4) are met. Then L(β) has a unique minimizer.

Proof. By Lemma 1, we may choose any minimizer β∗ ∈ M . By Lemma 4 and 5, H(β) is positive
definite at β∗. Then L(β) is locally strictly convex at β∗, so that L(β) has a local minimum at β∗.
Hence the minimizer of L(β) is unique. �

6.2 Proof of Theorems 1 and 2

For fixed θ ∈ R
d+1, define

Λn(θ) = n
(

lλ,n(β∗ +θ/
√

n)− lλ,n(β∗)
)

and
Γn(θ) = EΛn(θ).

Observe that

Γn(θ) = n
(
L(β∗ +θ/

√
n)−L(β∗)

)
+

λ
2

(
‖θ+‖2 +2

√
nβ∗

+
>θ+

)
.

By Taylor series expansion of L around β∗, we have

Γn(θ) =
1
2

θ>H(β̃)θ+
λ
2

(
‖θ+‖2 +2

√
nβ∗

+
>θ+

)
,

where β̃ = β∗+(t/
√

n)θ for some 0 < t < 1. Define D jk(α) = H(β∗+α) jk −H(β∗) jk for 0 ≤ j,k ≤
d. Since H(β) is continuous in β, there exists δ1 > 0 such that |D jk(α)| < ε1 if ‖α‖ < δ1 for any
ε1 > 0 and all 0 ≤ j,k ≤ d. Then, as n → ∞,

1
2

θ>H(β̃)θ =
1
2

θ>H(β∗)θ+o(1).

It is because for sufficiently large n such that ‖(t/√n)θ‖ < δ1,

∣∣∣θ>
(

H(β̃)−H(β∗)
)

θ
∣∣∣ ≤ ∑

j,k

|θ j||θk|
∣∣∣∣D jk

(
t√
n

θ
)∣∣∣∣

≤ ε1 ∑
j,k

|θ j||θk| ≤ 2ε1‖θ‖2.

Together with the assumption that λ = o(n−1/2), we have

Γn(θ) =
1
2

θ>H(β∗)θ+o(1).

Define Wn = −∑n
i=1 ζiY iX̃ i where ζi =

{
Y ih(X i;β∗) ≤ 1

}
. Then 1√

nWn follows asymptotically

N
(

0,nG(β∗)
)

by central limit theorem. Note that

E

(
ζiY iX̃ i

)
= 0 and E

(
ζiY iX̃ i(ζiY iX̃ i)>

)
= E

(
ζiX̃ i(X̃ i)>

)
. (26)
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Recall that β∗ is characterized by S(β∗) = 0 implying the first part of (26). If we define

Ri,n(θ) =
[
1−Y ih(X i;β∗ +θ/

√
n)
]
+
−
[
1−Y ih(X i;β∗)

]
+

+ζiY ih(X i;θ/
√

n),

then we see that

Λn(θ) = Γn(θ)+W>
n θ/

√
n+

n

∑
i=1

(
Ri,n(θ)−ERi,n(θ)

)

and ∣∣∣Ri,n(θ)
∣∣∣≤
∣∣∣h(X i;θ)/

√
n
∣∣∣U
(∣∣∣h(X i;θ)/

√
n
∣∣∣
)

, (27)

where

U(t) =
{∣∣∣1−Y ih(X i;β∗)

∣∣∣≤ t
}

for t ∈ R.

To verify (27), let ζ = {a ≤ 1} and R = [1− z]+− [1−a]+ +ζ(z−a). If a > 1, then R = (1− z){z ≤
1}; otherwise, R = (z−1){z > 1}. Hence,

R = (1− z){a > 1,z ≤ 1}+(z−1){a < 1,z > 1} (28)

≤ |z−a|{a > 1,z ≤ 1}+ |z−a|{a < 1,z > 1}
= |z−a|

(
{a > 1,z ≤ 1}+{a < 1,z > 1}

)

≤ |z−a|{|1−a| ≤ |z−a|}.

Choosing z = Y ih(X i;β∗ +θ/
√

n) and a = Y ih(X i;β∗) in (28) yields (27).
Since cross-product terms in E(∑i(Ri,n −ERi,n))

2 cancel out, we obtain from (27) that for each
fixed θ,

n

∑
i=1

E

(
|Ri,n(θ)−ERi,n(θ)|2

)
≤

n

∑
i=1

E
(
Ri,n(θ)2)

≤
n

∑
i=1

E

((
h(X i;θ)/

√
n
)2

U
(
|h(X i;θ)/

√
n|
))

≤
n

∑
i=1

E

(
(1+‖X i‖2)‖θ‖2/n U

(√
1+‖X i‖2‖θ‖/

√
n

))

= ‖θ‖2
E

(
(1+‖X‖2) U

(√
1+‖X‖2‖θ‖/

√
n

))
.

(A1) implies that E
(
‖X‖2

)
< ∞. Hence, for any ε > 0, choose C7 such that E

(
(1 +‖X‖2){‖X‖ >

C7}
)

< ε/2. Then

E

(
(1+‖X‖2) U

(√
1+‖X‖2‖θ‖/

√
n

))

≤ E

(
(1+‖X‖2){‖X‖ > C7}

)
+(1+C2

7)P

(
U

(√
1+C2

7‖θ‖/
√

n

))
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By (A1), the distribution of X is not degenerate, which in turn implies that limt↓0 P(U(t)) = 0. We

can take a large N such that P

(
U

(√
1+C2

7‖θ‖/√n

))
< ε/(2(1 +C2

7)) for n ≥ N. This proves

that
n

∑
i=1

E

(
|Ri,n(θ)−ERi,n(θ)|2

)
→ 0

as n → ∞. Thus, for each fixed θ,

Λn(θ) =
1
2

θ>H(β∗)θ+W>
n θ/

√
n+oP(1).

Let ηn = −H(β∗)−1Wn/
√

n. By Convexity Lemma in Pollard (1991), we have

Λn(θ) =
1
2
(θ−ηn)

>H(β∗)(θ−ηn)−
1
2

η>
n H(β∗)ηn + rn(θ),

where, for each compact set K in R
d+1,

sup
θ∈K

|rn(θ)| → 0 in probability.

Because ηn converges in distribution, there exists a compact set K containing Bε, where Bε is a
closed ball with center ηn and radius ε with probability arbitrarily close to one. Hence we have

∆n = sup
θ∈Bε

|rn(θ)| → 0 in probability. (29)

For examination of the behavior of Λn(θ) outside Bε, consider θ = ηn + γv, with γ > ε and v, a
unit vector and a boundary point θ∗ = ηn + εv. By Lemma 5, convexity of Λn, and the definition of
∆n, we have

ε
γ

Λn(θ)+

(
1− ε

γ

)
Λn(ηn) ≥ Λn(θ∗)

≥ 1
2
(θ∗−ηn)

>H(β∗)(θ∗−ηn)−
1
2

η>
n H(β∗)ηn −∆n

≥ C4

2
ε2 +Λn(ηn)−2∆n,

implying that

inf
‖θ−ηn‖>ε

Λn(θ) ≥ Λn(ηn)+

(
C4

2
ε2 −2∆n

)
.

By (29), we can take ∆n so that 2∆n < C4ε2/4 with probability tending to one. So the minimum
of Λn cannot occur at any θ with ‖θ−ηn‖ > ε. Hence, for each ε > 0 and θ̂λ,n =

√
n(β̂λ,n −β∗),

P

(
‖θ̂λ,n −ηn‖ > ε

)
→ 0.

This completes the proof of Theorems 1 and 2. �
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Abstract
Linear support vector machines (SVM) are useful for classifying large-scale sparse data. Prob-
lems with sparse features are common in applications such as document classification and natural
language processing. In this paper, we propose a novel coordinate descent algorithm for training
linear SVM with the L2-loss function. At each step, the proposed method minimizes a one-variable
sub-problem while fixing other variables. The sub-problem is solved by Newton steps with the
line search technique. The procedure globally converges at the linear rate. As each sub-problem
involves only values of a corresponding feature, the proposed approach is suitable when accessing
a feature is more convenient than accessing an instance. Experiments show that our method is more
efficient and stable than state of the art methods such as Pegasos and TRON.
Keywords: linear support vector machines, document classification, coordinate descent

1. Introduction

Support vector machines (SVM) (Boser et al., 1992) are a popular data classification tool. Given a
set of instance-label pairs (x j,y j), j = 1, . . . , l, x j ∈ Rn, y j ∈ {−1,+1}, SVM solves the following
unconstrained optimization problem:

min
w

f (w) =
1
2

wT w+C
l

∑
j=1

ξ(w;x j,y j), (1)

where ξ(w;x j,y j) is a loss function, and C ∈ R is a penalty parameter. There are two common loss
functions. L1-SVM uses the sum of losses and minimizes the following optimization problem:

f (w) =
1
2

wT w+C
l

∑
j=1

max(1− y jwT x j,0), (2)

while L2-SVM uses the sum of squared losses, and minimizes

f (w) =
1
2

wT w+C
l

∑
j=1

max(1− y jwT x j,0)2. (3)

c©2008 Kai-Wei Chang, Cho-Jui Hsieh and Chih-Jen Lin.
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SVM is related to regularized logistic regression (LR), which solves the following problem:

min
w

f (w) =
1
2

wT w+C
l

∑
j=1

log(1+ e−y jwT x j). (4)

In some applications, we include a bias term b in SVM problems. For convenience, one may extend
each instance with an additional dimension to eliminate this term:

xT
j ← [xT

j ,1] wT ← [wT ,b].

SVM usually maps training vectors into a high-dimensional (and possibly infinite dimensional)
space, and solves the dual problem of (1) with a nonlinear kernel. In some applications, data appear
in a rich dimensional feature space, so that with/without nonlinear mapping obtain similar perfor-
mances. If data are not mapped, we call such cases linear SVM, which are often encountered in
applications such as document classification. While one can still solve the dual problem for linear
SVM, directly solving (2) or (3) is possible. The objective function of L1-SVM (2) is nondiffer-
entiable, so typical optimization methods cannot be directly applied. In contrast, L2-SVM (3) is a
piecewise quadratic and strongly convex function, which is differentiable but not twice differentiable
(Mangasarian, 2002). We focus on studying L2-SVM in this paper because of its differentiability.

In recent years, several optimization methods are applied to solve linear SVM in large-scale
scenarios. For example, Keerthi and DeCoste (2005); Mangasarian (2002) propose modified New-
ton methods to train L2-SVM. As (3) is not twice differentiable, to obtain the Newton direction,
they use the generalized Hessian matrix (i.e., generalized second derivative). A trust region Newton
method (TRON) (Lin et al.) is proposed to solve logistic regression and L2-SVM. For large-scale
L1-SVM, SVMperf (Joachims, 2006) uses a cutting plane technique to obtain the solution of (2).
Smola et al. (2008) apply bundle methods, and view SVMperf as a special case. Zhang (2004) pro-
poses a stochastic gradient method; Pegasos (Shalev-Shwartz et al., 2007) extends Zhang’s work
and develops an algorithm which alternates between stochastic gradient descent steps and projection
steps. The performance is reported to be better than SVMperf . Another stochastic gradient imple-
mentation similar to Pegasos is by Bottou (2007). All the above algorithms are iterative procedures,
which update w at each iteration and generate a sequence {wk}∞

k=0. To distinguish these approaches,
we consider the two extremes of optimization methods mentioned in the paper (Lin et al.):

Low cost per iteration; ←→ High cost per iteration;
slow convergence. fast convergence.

Among methods discussed above, Pegasos randomly subsamples a few instances at a time, so the
cost per iteration is low, but the number of iterations is high. In contrast, Newton methods such as
TRON take significant efforts at each iteration, but converge at fast rates. In large-scale scenarios,
usually an approximate solution of the optimization problem is enough to produce a good model.
Thus, methods with a low-cost iteration may be preferred as they can quickly generate a reasonable
model. However, if one specifies an unsuitable stopping condition, such methods may fall into the
situation of lengthy iterations. A recent overview on the tradeoff between learning accuracy and
optimization cost is by Bottou and Bousquet (2008).

Coordinate descent is a common unconstrained optimization technique, but its use for large
linear SVM has not been exploited much.1 In this paper, we aim at applying it to L2-SVM. A coor-

1. For SVM with kernels, decomposition methods are popular, and they are related to coordinate descent methods.
Since we focus on linear SVM, we do not discuss decomposition methods in this paper.
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dinate descent method updates one component of w at a time by solving a one-variable sub-problem.
It is competitive if one can exploit efficient ways to solve the sub-problem. For L2-SVM, the sub-
problem is to minimize a single-variable piecewise quadratic function, which is differentiable but
not twice differentiable. An earlier paper using coordinate descents for L2-SVM is by Zhang and
Oles (2001). The algorithm, called CMLS, applies a modified Newton method to approximately
solve the one-variable sub-problem. Here, we propose another modified Newton method, which
obtains an approximate solution by line searches. Two key properties differentiate our method and
CMLS:

1. Our proposed method attempts to use the full Newton step if possible, while CMLS takes a
more conservative step. Our setting thus leads to faster convergence.

2. CMLS maintains the strict decrease of the function value, but does not prove the convergence.
We prove that our method globally converges to the unique minimum.

We say ŵ is an ε-accurate solution if

f (ŵ)≤min
w

f (w)+ ε.

We prove that our process obtains an ε-accurate solution in O
(
nC3P6(#nz)3 log(1/ε)

)
iterations,

where the definitions of #nz and P can be found in the end of this section. Experiments show that
our proposed method is more efficient and stable than existing algorithms.

Subsequent to this work, we and some collaborators propose a dual coordinate descent method
for linear SVM (Hsieh et al., 2008). The method performs very well on document data (generally
better than the primal-based method here). However, the dual method is not be stable for some
non-document data with a small number of features. Clearly, if the number of features is much
smaller than the number of instances, one should solve the primal form, which has less variables.
In addition, the primal method uses the column format to store data (see Section 3.1). It is thus
suitable for data stored as some form of inverted index in a very large database.

The organization of this paper is as follows. In Section 2, we describe and analyze our algorithm.
Several implementation issues are discussed in Section 3. In Sections 4 and 5, we describe existing
methods such as Pegasos, TRON and CMLS, and compare them with our approach. Results show
that the proposed method is efficient and stable. Finally, we give discussions and conclusions in
Section 6.

All sources used in this paper are available at
http://www.csie.ntu.edu.tw/˜cjlin/liblinear/exp.html.

Notation The following notations are used in this paper. The input vectors are {x j} j=1,...,l , and
x ji is the ith feature of x j. For the problem size, l is the number of instances, n is number of features,
and #nz is total number of nonzero values of training data.

m =
#nz
n

(5)

is the average number of nonzero values per feature, and

P = max
ji
|x ji| (6)

represents the upper bound of x ji. We use ‖ · ‖ to represent the 2-norm of a vector.
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Algorithm 1 Coordinate descent algorithm for L2-SVM

1. Start with any initial w0.

2. For k = 0,1, . . . (outer iterations)

(a) For i = 1,2, . . . ,n (inter iterations)

i. Fix wk+1
1 , . . . ,wk+1

i−1 ,wk
i+1, . . . ,w

k
n and approximately solve the sub-problem (7) to

obtain wk+1
i .

2. Solving Linear SVM via Coordinate Descent

In this section, we describe our coordinate descent method for solving L2-SVM given in (3). The
algorithm starts from an initial point w0, and produces a sequence {wk}∞

k=0. At each iteration,
wk+1 is constructed by sequentially updating each component of wk. This process generates vectors
wk,i ∈ Rn, i = 1, . . . ,n, such that wk,1 = wk, wk,n+1 = wk+1, and

wk,i = [wk+1
1 , . . . ,wk+1

i−1 ,wk
i , . . . ,w

k
n]

T for i = 2, . . . ,n.

For updating wk,i to wk,i+1, we solve the following one-variable sub-problem:

min
z

f (wk+1
1 , . . . ,wk+1

i−1 ,wk
i + z,wk

i+1, . . . ,w
k
n)

≡min
z

f (wk,i + zei),
(7)

where ei = [0, . . . ,0
︸ ︷︷ ︸

i−1

,1,0, . . . ,0]T . A description of the coordinate descent algorithm is in Algorithm

1. The function in (7) can be rewritten as

Di(z) = f (wk,i + zei)

=
1
2
(wk,i + zei)

T (wk,i + zei)+C ∑
j∈I(wk,i+zei)

(b j(wk,i + zei))
2, (8)

where
b j(w) = 1− y jwT x j and I(w) = { j | b j(w) > 0}.

In any interval of z where the set I(wk,i + zei) does not change, Di(z) is quadratic. Therefore,
Di(z),z ∈ R, is a piecewise quadratic function. As Newton method is suitable for quadratic opti-
mization, here we apply it for minimizing Di(z). If Di(z) is twice differentiable, then the Newton
direction at a given z̄ would be

−D′i(z̄)
D′′i (z̄)

.

The first derivative of Di(z) is:

D′i(z) = wk,i
i + z−2C ∑

j∈I(wk,i+zei)

y jx ji(b j(wk,i + zei)). (9)
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Unfortunately, Di(z) is not twice differentiable as the last term of D′i(z) is not differentiable at
{z | b j(wk,i + zei) = 0 for some j}. We follow Mangasarian (2002) to define the generalized second
derivative:

D′′i (z) = 1+2C ∑
j∈I(wk,i+zei)

y2
jx

2
ji

= 1+2C ∑
j∈I(wk,i+zei)

x2
ji.

(10)

A simple Newton method to solve (7) begins with z0 = 0 and iteratively updates z by the following
way until D′i(z) = 0:

zt+1 = zt −D′i(z
t)/D′′i (z

t) for t = 0,1, . . . . (11)

Mangasarian (2002) proved that under an assumption, this procedure terminates in finite steps and
solves (7). Coordinate descent methods are known to converge if at each inner iteration we uniquely
attain the minimum of the sub-problem (Bertsekas, 1999, Proposition 2.7.1). Unfortunately, the
assumption by Mangasarian (2002) may not hold in real cases, so taking the full Newton step (11)
may not decrease the function Di(z). Furthermore, solving the sub-problem exactly is too expensive.

An earlier approach of using coordinate descents for L2-SVM without exactly solving the sub-
problem is by Zhang and Oles (2001). In their algorithm CMLS, the approximate solution is re-
stricted within a region. By evaluating the upper bound of generalized second-order derivatives in
this region, one replaces the denominator of the Newton step (11) with that upper bound. This set-
ting guarantees the decrease of Di(z). However, there are two problems. First, function decreasing
does not imply that {wk} converges to the global optimum. Secondly, the step size generated by
evaluating the upper bound of generalized second derivatives may be too conservative. We describe
details of CMLS in Section 4.3.

While coordinate descent methods have been well studied in optimization, most convergence
analyses assume that the one-variable sub-problem is exactly solved. We consider the result by
Grippo and Sciandrone (1999), which establishes the convergence by requiring only the following
sufficient decrease condition:

Di(z)−Di(0)≤−σz2, (12)

where z is the step taken and σ is any constant in (0, 1/2). Since we intend to take the Newton
direction

d =
−D′i(0)

D′′i (0)
, (13)

it is important to check if z = d satisfies (12). The discussion below shows that in general the
condition hold. If the function Di(z) is quadratic around 0, then

Di(z)−Di(0) = D′i(0)z+
1
2

D′′i (0)z2.

Using D′′i (0) > 1 in (10), z = d =−D′i(0)/D′′i (0) leads to

− D′i(0)2

2D′′i (0)
≤−σ

D′i(0)2

D′′i (0)2 ,

so (12) holds. As Di(z) is only piecewise quadratic, (12) may not hold using z = d. However, we
can conduct a simple line search. The following theorem shows that there is a λ ∈ (0,1) such that
z = λd satisfies the sufficient decrease condition:
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Algorithm 2 Solving the sub-problem using Newton direction with the line search.

1. Given wk,i. Choose β ∈ (0,1) (e.g., β = 0.5).

2. Calculate the Newton direction d =−D′i(0)/D′′i (0).

3. Compute λ = max{1,β,β2, . . .} such that z = λd satisfies (12).

Theorem 1 Given the Newton direction d as in (13). Then z = λd satisfies (12) for all 0 ≤ λ ≤ λ̄,
where

λ̄ =
D′′i (0)

Hi/2+σ
and Hi = 1+2C

l

∑
j=1

x2
ji. (14)

The proof is in Appendix A.1. Therefore, at each inner iteration of Algorithm 1, we take the
Newton direction d as in (13), and then sequentially check λ = 1,β,β2, . . . , where β ∈ (0,1), until
λd satisfies (12). Algorithm 2 lists the details of a line search procedure. We did not specify how to
approximately solve sub-problems in Algorithm 1. From now on, we assume that it uses Algorithm
2.

Calculating Di(λd) is the main cost of checking (12). We can use a trick to reduce the number
of Di(λd) calculations. Theorem 1 indicates that if

0≤ λ≤ λ̄ =
D′′i (0)

Hi/2+σ
, (15)

then z = λd satisfies the sufficient decrease condition (12). Hi is independent of w, so it can be
precomputed before training. Furthermore, we already evaluate D′′i (0) in computing the Newton
step, so it takes only constant time to check (15). At Step 3 of Algorithm 2, we sequentially use
λ = 1,β,β2, . . . , etc. Before calculating (12) using a smaller λ, we check if λ satisfies (15). If it
does, then there is no need to evaluate the new Di(λd). If λ = 1 already satisfies (15), the line search
procedure is essentially waived. Thus the computational time is effectively reduced.

We discuss parameters in our algorithm. First, as λ = 1 is often successful, our algorithm is
insensitive to β. We choose β as 0.5. Secondly, there is a parameter σ in (12). The smaller value
of σ leads to a looser sufficient decrease condition, which reduces the time of line search, but in-
creases the number of outer iterations. A common choice of σ is 0.01 in unconstrained optimization
algorithms.

It is important to study the convergence properties of Algorithm 1. An excellent study on the
convergence rate of coordinate descent methods is by Luo and Tseng (1992). They assume that each
sub-problem is exactly solved, so we cannot apply their results here. The following theorem proves
the convergence results of Algorithm 1.

Theorem 2 The sequence {wk} generated by Algorithm 1 linearly converges. That is, there is a
constant µ ∈ (0,1) such that

f (wk+1)− f (w∗)≤ (1−µ)( f (wk)− f (w∗)),∀k.
Moreover, the sequence {wk} globally converges to w∗. The algorithm obtains an ε-accurate solu-
tion in

O
(
nC3P6(#nz)3 log(1/ε)

)
(16)
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iterations.

The proof is in Appendix A.2. Note that as data are usually scaled before training, P ≤ 1 in most
practical cases.

Next, we investigate the computational complexity per outer iteration of Algorithm 1. The main
cost comes from solving the sub-problem by Algorithm 2. At Step 2 of Algorithm 2, to evaluate
D′i(0) and D′′i (0), we need b j(wk,i) for all j. Here we consider sparse data instances. Calculating
b j(w), j = 1, . . . , l takes O(#nz) operations, which are large. However, one can use the following
trick to save the time:

b j(w+ zei) = b j(w)− zy jx ji, (17)

If b j(w), j = 1, . . . , l are available, then obtaining b j(w + zei) involves only nonzero x ji’s of the ith
feature. Using (17), obtaining all b j(w+ zei) costs O(m), where m, the average number of nonzero
values per feature, is defined in (5). To have b j(w0), we can start with w0 = 0, so b j(w0) = 1,∀ j.
With b j(wk,i) available, the cost of evaluating D′i(0) and D′′i (0) is O(m). At Step 3 of Algorithm
2, we need several line search steps using λ = 1,β,β2, . . . , etc. For each λ, the main cost is on
calculating

Di(λd)−Di(0) =
1
2
(wk,i

i +λd)2− 1
2
(wk,i

i )2

+C
(

∑
j∈I(wk,i+λdei)

(b j(wk,i +λdei))
2− ∑

j∈I(wk,i)

(b j(wk,i))2
)

.
(18)

Note that from (17), if x ji = 0,
b j(wk,i +λdei) = b j(wk,i).

Hence, (18) involves no more than O(m) operations. In summary, Algorithm 2 costs

O(m) for evaluating D′i(0) and D′′i (0)

+ O(m) × # line search steps.

From the explanation earlier and our experiments, in general the sufficient decrease condition holds
when λ = 1. Then the cost of Algorithm 2 is about O(m). Therefore, in general the complexity per
outer iteration is:

O(nm) = O(#nz). (19)

3. Implementation Issues

In this section, we discuss some techniques for a fast implementation of Algorithm 1. First, we aim
at suitable data representations. Secondly, we show that the order of sub-problems at each iteration
can be any permutation of {1, . . . ,n}. Experiments in Section 5 indicate that the performance of
using a random permutation is superior to that of using the fixed order 1, . . . ,n. Finally, we present
an online version of our algorithm.

3.1 Data Representation

For sparse data, we use a sparse matrix

X =






xT
1
...

xT
l




 (20)
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to store the training instances. There are several ways to implement a sparse matrix. Two common
ones are “row format” and “column format” (Duff et al., 1989). For data classification, using col-
umn (row) format allows us to easily access any particular feature (instance). In our case, as we
decompose the problem (3) into sub-problems over features, the column format is more suitable.

3.2 Random Permutation of Sub-problems

In Section 2, we propose a coordinate descent algorithm which solves the one-variable sub-problems
in the order of w1, . . . ,wn. As the features may be correlated, the order of features may affect the
training speed. One can even use an arbitrary order of sub-problems. To prove the convergence, we
require that each sub-problem is solved once at one outer iteration. Therefore, at the kth iteration,
we construct a random permutation πk of {1, . . . ,n}, and sequentially minimize with respect to
variables wπ(1),wπ(2), . . . ,wπ(n). Similar to Algorithm 1, the algorithm generates a sequence {wk,i}
such that wk,1 = wk, wk,n+1 = wk+1,1 and

wk,i
t =

{

wk+1
t if π−1

k (t) < i,

wk
t if π−1

k (t)≥ i.

The update from wk,i to wk,i+1 is by

wk,i+1
t = wk,i

t + argmin
z

f (wk,i + zeπk(i)) if π−1
k (t) = i.

We can prove the same convergence result:

Theorem 3 Results in Theorem 2 hold for Algorithm 1 with random permutations πk.

The proof is in Appendix A.3. Experiments in Section 5 show that a random permutation of sub-
problems leads to faster training.

3.3 An Online Algorithm

If the number of features is very large, we may not need to go through all {w1, . . . ,wn} at each
iteration. Instead, one can have an online setting by arbitrarily choosing a feature at a time. That is,
from wk to wk+1 we only modify one component. A description is in Algorithm 3. The following
theorem indicates the convergence rate in expectation:

Theorem 4 Let δ ∈ (0,1). Algorithm 3 requires O
(
nl2C3P6(#nz) log( 1

δε)
)

iterations to obtain an
ε-accurate solution with confidence 1−δ.

The proof is in Appendix A.4.

4. Related Methods

In this section, we discuss three existing schemes for large-scale linear SVM. They will be com-
pared in Section 5. The first one is Pegasos (Shalev-Shwartz et al., 2007), which is notable for its
efficiency in training linear L1-SVM. The second one is a trust region Newton method (Lin et al.).
It is one of the fastest implementations for L2-SVM. The last one is CMLS, which is a coordinate
descent method proposed by Zhang and Oles (2001).
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Algorithm 3 An online coordinate descent algorithm

1. Start with any initial w0.

2. For k = 0,1, . . .

(a) Randomly choose ik ∈ {1,2, . . . ,n}.
(b) Fix wk

1, . . . ,w
k
ik−1,w

k
ik+1, . . . ,w

k
n and approximately solve the sub-problem (7) to obtain

wk+1
ik

.

Coordinate descent methods have been used in other machine learning problems. For example,
Rätsch et al. (2002) discuss the connection between boosting/logistic regression and coordinate
descent methods. Their strategies for selecting coordinates at each outer iteration are different from
ours. We do not discuss details here.

4.1 Pegasos for L1-SVM

We briefly introduce the Pegasos algorithm (Shalev-Shwartz et al., 2007). It is an efficient method
to solve the following L1-SVM problem:

min
w

g(w) =
λ
2

wT w+
1
l

l

∑
j=1

max(1− y jwT x j,0). (21)

By setting λ = 1
Cl , we have

g(w) = f (w)/Cl, (22)

where f (w) is the objective function of (2). Thus (21) and (2) are equivalent. Pegasos has two
parameters. One is the subsample size K, and the other is the penalty parameter λ. It begins
with an initial w0 whose norm is at most 1/

√
λ. At each iteration k, it randomly selects a set

Ak ⊂ {x j,y j} j=1,...,l of size K as the subsamples of training instances and sets a learning rate

ηk =
1

λk
. (23)

Then it updates wk with the following rules:

wk+1 = min

(

1,
1/
√

λ
‖wk+ 1

2 ‖

)

wk+ 1
2 ,

wk+ 1
2 = wk−ηk∇k,

∇k = λwk− 1
K ∑

j∈A+
k (wk)

y jx j,

A+
k (w) = { j ∈ Ak | 1− y jwT x j > 0},

(24)

where ∇k is considered as a sub-gradient of the approximate objective function:

λ
2

wT w+
1
K ∑

j∈Ak

max(1− y jwT x j,0).
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Algorithm 4 Pegasos algorithm for solving L1-SVM.

1. Given λ,K, and w0 with ‖w0‖ ≤ 1/
√

λ.

2. For k = 0,1, . . .

(a) Select a set Ak ∈ {x j,y j | j = 1 . . . l}, and the learning rate η by (23).

(b) Obtain wk+1 by (24).

Here wk+1/2 is a vector obtained by the stochastic gradient descent step, and wk+1 is the projection
of wk+1/2 to the set {w | ‖w‖ ≤ 1/

√
λ}. Algorithm 4 lists the detail of Pegasos. The parameter K

decides the number of training instances involved at an iteration. If K = l, Pegasos considers all
examples at each iteration, and becomes a subgradient projection method. In this case the cost per
iteration is O(#nz). If K < l, Pegasos is a randomized algorithm. For the extreme case of K = 1,
Pegasos chooses only one training instance for updating. Thus the average cost per iteration is
O(#nz/l). In subsequent experiments, we set the subsample size K to one as Shalev-Shwartz et al.
(2007) suggested.

Regarding the complexity of Pegasos, we first compare Algorithm 1 with Pegasos (K = l).
Both algorithms are deterministic and cost O(#nz) per iteration. Shalev-Shwartz et al. (2007) prove
that Pegasos with K = l needs Õ(R2/(εgλ)) iterations to achieve an εg-accurate solution, where
R = max j ‖x j‖, and Õ(h(n)) is shorthand for O(h(n) logk h(n)), for some k ≥ 0. We use εg as
Pegasos considers g(w) in (22), a scaled form of f (w). From (1), an εg-accurate solution for g(w)
is equivalent to an (ε/Cl)-accurate solution for f (w). With λ = 1/Cl and R2 = O(P2(#nz)/l), where
P is defined in (6), Pegasos takes

Õ

(
C2P2l(#nz)

ε

)

iterations to achieve an ε-accurate solution. One can compare this value with (16), the number of
iterations by Algorithm 1.

Next, we compare two random algorithms: Pegasos with K = 1 and our Algorithm 3. Shalev-
Shwartz et al. (2007) prove that Pegasos takes Õ( R2

λδεg
) iterations to obtain an εg-accurate solution

with confidence 1− δ. Using a similar derivation in the last paragraph, we can show that this is
equivalent to Õ(C2P2l(#nz)/δε). As the cost per iteration is O(#nz/l), the overall complexity is

Õ

(
C2P2(#nz)2

δε

)

.

For our Algorithm 3, each iteration costs O(m), so following Theorem 4 the overall complexity is
O
(
l2C3P6(#nz)2 log( 1

δε)
)
.

Based on the above analysis, the number of iterations required for our algorithm is proportional
to O(log(1/ε)), while that for Pegasos is O(1/ε). Therefore, our algorithm tends to have better final
convergence than Pegasos for both deterministic and random settings. However, for the dependence
on the size of data (number of instances and features), our algorithm is worse.

Regarding the stopping condition, as at each iteration Pegasos only takes one sample for updat-
ing w, neither function nor gradient information is available. This keeps Pegasos from designing
a suitable stopping condition. Shalev-Shwartz et al. (2007) suggest to set a maximal number of
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iterations. However, deciding a suitable value may be difficult. We will discuss stopping conditions
of Pegasos and other methods in Section 5.3.

4.2 Trust Region Newton Method (TRON) for L2-SVM

Recently, Lin et al. introduced a trust region Newton method for logistic regression. Their pro-
posed method can be extended to L2-SVM. In this section, we briefly discuss their approach. For
convenience, in subsequent sections, we use TRON to indicate the trust region Newton method for
L2-SVM, and TRON-LR for logistic regression

The optimization procedure of TRON has two layers of iterations. At each outer iteration k,
TRON sets a size ∆k of the trust region, and builds a quadratic model

qk(s) = ∇ f (wk)T s+
1
2

sT ∇2 f (wk)s

as the approximation of the value f (wk +s)− f (wk), where f (w) is the objective function in (3) and
∇2 f (w) is the generalized Hessian (Mangasarian, 2002) of f (w). Then an inner conjugate gradi-
ent procedure approximately finds the Newton direction by minimizing the following optimization
problem:

min
s

qk(s) (25)

subject to ‖s‖ ≤ ∆k.

TRON updates wk and ∆k by the following rules:

wk+1 =

{

wk + sk if ρk > η0,

wk if ρk ≤ η0,

∆k+1 ∈







[σ1 min{‖sk‖,∆k},σ2∆k] if ρk ≤ η1,

[σ1∆k,σ3∆k] if ρk ∈ (η1,η2),

[∆k,σ3∆k] if ρk ≥ η2,

ρk =
f (wk + sk)− f (wk)

qk(sk)
,

(26)

where ρk is the ratio of the actual reduction in the objective function to the approximation model
qk(s). Users pre-specify parameters η0 > 0, 1 > η2 > η1 > 0, and σ3 > 1 > σ2 > σ1 > 0. We use

η0 =10−4,η1 = 0.25,η2 = 0.75,

σ1 =0.25,σ2 = 0.5,σ3 = 4,

as suggested by Lin et al.. The procedure is listed in Algorithm 5.
For the computational complexity, the main cost per TRON iteration is

O(#nz)× (# conjugate gradient iterations). (27)

Compared to our approach or Pegasos, the cost per TRON iteration is high. It keeps TRON from
quickly obtaining a usable model. However, when w gets close to the minimum, TRON takes the
Newton step to achieve fast convergence. We give more observations in the experiment section.
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Algorithm 5 Trust region Newton method for L2-SVM.

1. Given w0.

2. For k = 0,1, . . .

(a) Find an approximate solution sk of the trust region sub-problem (25).

(b) Update wk and ∆k according to (26).

4.3 CMLS: A Coordinate Descent Method for L2-SVM

In Sections 2 and 3, we introduced our coordinate descent method for solving L2-SVM. Here,
we discuss the previous work (Zhang and Oles, 2001), which also applies the coordinate descent
technique. Zhang and Oles refer to their method as CMLS. At each outer iteration k, it sequentially
minimizes sub-problems (8) by updating one variable of (3) at a time. In solving the sub-problem,
Zhang and Oles (2001) mention that using line searches may result in small step sizes. Hence,
CMLS applies a technique similar to the trust region method. It sets a size ∆k,i of the trust region,
evaluates the first derivative (9) of (8), and calculates the upper bound of the generalized second
derivative subject to |z| ≤ ∆k,i:

Ui(z) = 1+
l

∑
j=1

β j(wk,i + zei),

β j(w) =

{

2C if y jwT x j ≤ 1+ |∆k,ixi j|,
0 otherwise.

Then we obtain the step z as:

z = min(max(−D′i(z)
Ui(z)

,−∆k,i),∆k,i). (28)

The updating rule of ∆ is:
∆k+1,i = 2|z|+ ε, (29)

where ε is a small constant.
In order to speed up the process, Zhang and Oles (2001) smooth the objective function of sub-

problems with a parameter ck ∈ [0,1]:

Di(z) =
1
2
(wk,i + zei)

T (wk,i + zei)+C
l

∑
j=1

(b j(wk,i + zei))
2,

where

b j(w) =

{

1− y jwT x j if 1− y jwT x j > 0,

ck(1− y jwT x j) otherwise.

Following the setting by (Zhang and Oles, 2001), we choose

ck = max(0,1− k/50), (30)
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Algorithm 6 CMLS algorithm for solving L2-SVM.

1. Given w0 and set initial ∆0,i = 10,∀i.

2. For k = 0,1, . . .

(a) Set ck by (30). Let wk,1 = wk.

(b) For i = 1,2, . . . ,n

i. Evaluate z by (28).

ii. wk,i+1 = wk,i + zei.

iii. Update ∆ by (29).

(c) Let wk+1 = wk,n+1.

Problem l n #nz
astro-physic 62,369 99,757 4,834,550
real-sim 72,309 20,958 3,709,083
news20 19,996 1,355,191 9,097,916
yahoo-japan 176,203 832,026 23,506,415
rcv1 677,399 47,236 49,556,258
yahoo-korea 460,554 3,052,939 156,436,656

Table 1: Data set statistics: l is the number of instances and n is the number of features.

and set the initial w = 0 and ∆0,i = 10,∀i. We find that the result is insensitive to these parameters.
The detail of CMLS algorithm is listed in Algorithm 6.

Zhang and Oles (2001) prove that if ck = 0,∀k, then the objective function of (3) is decreasing
after each inner iteration. However, such a property may not imply that Algorithm 6 converges to
the minimum. In addition, CMLS updates w by (28), which is more conservative than Newton steps.
In Section 5, we show that CMLS takes more time and iterations than ours to obtain a solution.

5. Experiments and Analysis

In this section, we conduct two experiments to investigate the performance of our proposed coor-
dinate descent algorithm. The first experiment compares our method with other L2-SVM solvers
in terms of the speed to reduce function/gradient values. The second experiment evaluates various
state of the art linear classifiers for L1-SVM, L2-SVM, and logistic regression. We also discuss the
stopping condition of these methods.

5.1 Data Sets

Table 1 lists the number of instances (l), features (n), and non-zero elements (#nz) of six data
sets. All sets are from document classification. Past studies show that linear SVM performs as
good as kernelized ones for such data. Details of astro-physic are mentioned in Joachims (2006),
while others are in Lin et al.. Three data sets real-sim, news20 and rcv1 are publicly available
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Data set CDPER CD TRON CMLS
astro-physic 0.5 1.2 1.2 2.6
real-sim 0.2 0.3 0.9 2.0
news20 2.4 1.0 5.2 5.3
yahoo-japan 2.9 9.3 38.2 13.5
rcv1 5.1 10.8 18.6 54.8
yahoo-korea 18.4 58.1 286.1 146.3

Table 2: The training time for an L2-SVM solver to reduce the objective value to within 1% of the
optimal value. Time is in seconds. We use C = 1. The approach with the shortest running
time is boldfaced.

at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets. A brief reminder for each
data set can be found below.

• astro-physic: This set is a classification problem of scientific papers from Physics ArXiv.

• real-sim: This set includes some Usenet articles.

• news20: This is a collection of news documents, and was preprocessed by Keerthi and De-
Coste (2005).

• yahoo-japan: We use binary term frequencies and normalize each instance to unit length.

• rcv1: This set (Lewis et al., 2004) is an archive of manually categorized newswire stories
from Reuters Ltd. Each vector is a cosine normalization of a log transformed TF-IDF (term
frequency, inverse document frequency) feature vector.

• yahoo-korea: Similar to yahoo-japan, we use binary term frequencies and normalize each
instance to unit length.

To examine the testing accuracy, we use a stratified selection to split each set to 4/5 training and
1/5 testing.

5.2 Comparisons

We compare the following six implementations. TRON-LR is for logistic regression, Pegasos is for
L1-SVM, and all others are for L2-SVM.

1. CD: the coordinate descent method described in Section 2. We choose σ in (12) as 0.01.

2. CDPER: the method modified from CD by permuting sub-problems at each outer step. See
the discussion in Section 3.2.

3. CMLS: a coordinate descent method for L2-SVM (Zhang and Oles, 2001, Algorithm 3). It is
discussed in Section 4.3.

4. TRON: the trust region Newton method (Lin et al.) for L2-SVM. See the discussion in Section
4.2. We use the L2-loss linear SVM implementation in the software LIBLINEAR (version 1.21
with option -s 2; http://www.csie.ntu.edu.tw/˜cjlin/liblinear).
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Data set
L2-SVM L1-SVM LR

C Accuracy C Accuracy C Accuracy
astro-physic 0.5 97.14 1.0 97.09 8.0 97.03
real-sim 1.0 97.59 1.0 97.52 8.0 97.57
news20 4.0 96.85 2.0 96.70 64.0 96.17
yahoo-japan 0.5 92.91 1.0 92.97 4.0 92.76
rcv1 0.5 97.77 1.0 97.77 8.0 97.76
yahoo-korea 2.0 87.51 4.0 87.42 64.0 87.31

Table 3: The best parameter C and the corresponding testing accuracy of L1-SVM, L2-SVM and
logistic regression (LR). We conduct five-fold cross validation to select C.

5. TRON-LR: the trust region Newton method for logistic regression introduced by Lin et al..
Similar to TRON, we use the implementation in the software LIBLINEAR with option -s 0.

6. Pegasos: the primal estimated sub-gradient solver for L1-SVM (Shalev-Shwartz et al., 2007).
See the discussion in Section 4.1. The source code is available online at http://ttic.
uchicago.edu/˜shai/code.

We do not include the bias term in all the solvers. All the above algorithms are implemented in
C++ with double-precision floating-point numbers. Using single precision (e.g., Bottou, 2007) may
reduce the computational time in some situations, but this setting may cause numerical inaccuracy.
We conduct experiments on an Intel 2.66GHz processor with 8GB of main memory under Linux.

In our first experiment, we compare L2-SVM solvers (with C = 1) in term of the speed to reduce
function/gradient values. In Table 2, we check their CPU time of reducing the relative difference of
the function value to the optimum,

f (wk)− f (w∗)
| f (w∗)| , (31)

to within 0.01. We run TRON with the stopping condition ‖∇ f (wk)‖ ≤ 0.01 to obtain the reference
solutions. Since objective values are stable under such strict stopping conditions, these solutions are
seen to be very close to the optima. Overall, our proposed algorithms CDPER and CD perform well
on all the data sets. For the large data sets (rcv1, yahoo-japan, yahoo-korea), CD is significantly
better than TRON and CMLS. With the permutation of sub-problems, CDPER is even better than
CD. To show more detailed comparisons, Figure 1 presents time versus relative difference (31). As
a reference, we draw a horizontal dotted line to indicate the relative difference 0.01. Consistent with
the observation in Table 2, CDPER is more efficient and stable than others.

In addition, we are interested in how fast these methods decrease the norm of gradients. Figure
2 shows the result. Overall, CDPER converges faster in the beginning, while TRON is the best for
final convergence.

The second experiment is to check the relationship between training time and testing accuracy
using our implementation and other solvers: CMLS, TRON (L2-SVM and logistic regression), and
Pegasos. That is, we investigate which method achieves reasonable testing accuracy more quickly.
To have a fair evaluation, we conduct five-fold cross validation to select the best parameter C for
each learning method. Using the selected C, we then train the whole training set and predict the
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Figure 1: Time versus the relative difference of the objective value to the minimum. The dotted line
indicates the relative difference 0.01. We show the training time for each solver to reach
this ratio in Table 2. Time is in seconds. C = 1 is used.
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Figure 2: The two-norm of gradient versus the training time. Time is in seconds. C = 1 is used.
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Figure 3: Testing accuracy versus the training time. Time is in seconds. We train each data set
using the best C from cross validation. (see Table 3 for details.)
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testing set. Table 3 presents the testing accuracy. Notice that some solvers scale the SVM formu-
lation, so we adjust their regularization parameter C accordingly.2 With the best parameter setting,
SVM (L1 and L2) and logistic regression give comparable generalization performances. In Figure
3, we present the testing accuracy along the training time. As an accurate solution of the SVM op-
timization problem does not imply the best testing accuracy, some implementations achieve higher
accuracy before reaching the minimal function value. Below we give some observations of the
experiments.

We do not include CD in Figure 3, because CDPER is better than it in almost all situations. One
may ask if simply shuffling features once in the beginning can give similar performances to CDPER.
Moreover, we can apply permutation schemes to CMLS as well. In Section 6.1, we give a detailed
discussion on the issue of feature permutations.

Regarding the online setting of randomly selecting only one feature at each step (Algorithm 3),
we find that results are similar to those of CDPER.

From the experimental results, CDPER converges faster than CMLS. Both are coordinate de-
scent methods, and the cost per iteration is similar. However, CMLS suffers from lengthy iterations
because its modified Newton method takes a conservative step size. In Figure 3(d), the testing accu-
racy even does not reach a reasonable value after 30 seconds. Conversely, CDPER usually uses full
Newton steps, so it converges faster. For example, CDPER takes the full Newton step in 99.997%
inner iterations for solving rcv1 (we check up to 5.96 seconds).

Though Pegasos is efficient for several data sets, the testing accuracy is sometimes unstable
(see Figure 3(c)). As Pegasos only subsamples one training data to update wk, it is influenced more
by noisy data. We also observe slow final convergence on the function value. This slow convergence
may make the selection of stopping conditions (maximal number of iterations for Pegasos) more
difficult.

Finally, compared to TRON and TRON-LR, CDPER is more efficient to yield good testing ac-
curacy (See Table 2 and Figure 3); however, if we check the value ||∇ f (wk)||, Figure 2 shows that
TRON converges faster in the end. This result is consistent with what we discussed in Section 1
on distinguishing various optimization methods. We indicated that a Newton method (where TRON
is) has fast final convergence. Unfortunately, since the cost per TRON iteration is high, and the
Newton direction is not effective in the beginning, TRON is less efficient in the early stage of the
optimization procedure.

5.3 Stopping Conditions

In this section, we discuss stopping conditions of our algorithm and other existing methods. In
solving a strictly convex optimization problem, the norm of gradients is often considered in the
stopping condition. The reason is that

‖∇ f (w)‖= 0 ⇐⇒ w is the global minimum.

For example, TRON checks whether the norm of gradient is small enough for stopping. However,
as our coordinate descent method updates one component of w at each inner iteration, we have only
D′i(0) = ∇ f (wk,i)i, i = 1, . . . ,n. Theorem 2 shows that wk,i→ w∗, so we have

D′i(0) = ∇ f (wk,i)i→ 0,∀i.
2. The objective function of Pegasos and (2) are equivalent by setting λ = 1/(C×number of instances), where λ is the

penalty parameter used by Shalev-Shwartz et al. (2007).

1387



CHANG, HSIEH AND LIN

0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e 
fu

nc
tio

n 
va

lu
e 

di
ffe

re
nc

e

 

 

CD
CDPERONE
CDPER
CMLS
CMLSPER

(a) news20

0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e 
fu

nc
tio

n 
va

lu
e 

di
ffe

re
nc

e

 

 

CD
CDPERONE
CDPER
CMLS
CMLSPER

(b) yahoo-japan

0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e 
fu

nc
tio

n 
va

lu
e 

di
ffe

re
nc

e

 

 

CD
CDPERONE
CDPER
CMLS
CMLSPER

(c) rcv1

0 50 100 150 200

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e 
fu

nc
tio

n 
va

lu
e 

di
ffe

re
nc

e

 

 

CD
CDPERONE
CDPER
CMLS
CMLSPER

(d) yahoo-korea

Figure 4: Results of different orders of sub-problems at each outer iteration. We present time versus
the relative difference of the objective value to the minimum. Time is in second.

Therefore, by storing Di(0),∀i, at the end of the kth iteration, one can check if ∑n
i=1 D′i(0)2 or

maxi |D′i(0)| is small enough. For Pegasos, we mentioned in Section 4.1 that one may need a maxi-
mal number of iterations as the stopping condition due to the lack of function/gradient information.
Another possible condition is to check the validation accuracy. That is, the training procedure ter-
minates after reaching a stable validation accuracy value.

6. Discussion and Conclusions

In this section, we discuss some related issues and give conclusions.

6.1 Order of Sub-problems at Each Outer Iteration

In Section 5.2, we show that a random order of the sub-problems helps our coordinate descent
method to converge faster in most cases. In this section, we give detailed experiments. Following
the same setting in Figure 1, we compare our coordinate descent method with/without permutation

1388



COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

of sub-problems (CDPER and CD), with permutation only once before training (CDPERONE), and
CMLS with/without permuting sub-problems (CMLS and CMLSPER). Figure 4 shows the relative
difference of the objective value to the minimum along time. Overall, CDPER converges faster than
CDPERONE and CD, but CMLSPER does not improve over CMLS much.

With the permutation of features at each iteration, the cost per CDPER iteration is slightly higher
than CD, but CDPER requires much fewer iterations to achieve a similar accuracy value. This result
seems to indicate that if the sub-problem order is fixed, the update of variables becomes slower.
However, as CD sequentially accesses features, it has better data locality in the computer memory
hierarchy. An example is news20 in Figure 4(a). As the number of features is much larger than the
number of instances, two adjacent sub-problems of CDPER may access two very far away features.
Then the cost per CD iteration is only 1/5 of CDPER, so CD is better in the beginning. CDPER
catches up in the end due to its faster convergence.

For CMLS and CMLSPER, the latter is only faster in the final stage (see the right end of Figures
4(b) and 4(d)). Since the function reduction of CMLS (or CMLSPER) is slow, the advantage of doing
permutations appears after long training time.

The main difference between CDPERONE and CDPER is that the former only permutes features
once in the beginning. Figure 4 clearly shows that CDPER is better than CDPERONE, so permuting
features only once is not enough. If we compare CD and CDPERONE, there is no definitive winner.
This result seems to indicate that feature ordering affects the performance of the coordinate descent
method. By using various feature orders, CDPER avoids taking a bad one throughout all iterations.

6.2 Coordinate Descents for Logistic Regression

We can apply the proposed coordinate descent method to solve logistic regression, which is twice
differentiable. An earlier study of using coordinate decent methods for logistic regression/maximum
entropy is by Miroslav et al. (2004). We compare an implementation with TRON-LR. Surprisingly,
our method is not better in most cases. Experiments show that for training rcv1, our coordinate
descent method takes 93.1 seconds to reduce the objective value to within 1% of the optimal value,
while TRON-LR takes 27.9 seconds. Only for yahoo-japan and yahoo-korea, where TRON-LR is
slow (see Figure 3), the coordinate descent method is competitive. This result is contrast to earlier
experiments for L2-SVM, where the coordinate descent method more quickly obtains a useful model
than TRON. We give some explanations below.

With the logistic loss, the objective function is (4). The single-variable function Di(z) is non-
linear, so we use Algorithm 2 to obtain an approximate minimum. To use the Newton direction,
similar to D′i(z) and D′′i (z) in (9) and (10), we need

D′i(0) = ∇i f (w) = wi +C ∑
j:x ji 6=0

−y jx jie−y jwT x j

1+ e−y jwT x j
,

D′′i (0) = ∇2
ii f (w) = 1+C ∑

j:x ji 6=0

x2
jie
−y jwT x j

(1+ e−y jwT x j)2
,

where we abbreviate wk,i to w, and use y j = ±1. Then |{ j | x ji 6= 0}| exponential operations are
conducted. If we assume that λ = 1 satisfies the sufficient decrease condition (12), then the cost per
outer iteration is

O(#nz)+(#nz exponential operations). (32)
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This complexity is the same as (19) for L2-SVM. However, since each exponential operation is ex-
pensive (equivalent to tens of multiplications/divisions), in practice (32) is much more time consum-
ing. For TRON-LR, a trust region Newton method, it calculates ∇ f (w) and ∇2 f (w) at the beginning
of each iteration. Hence l exponential operations are needed for exp(−y jwT x j), j = 1, . . . , l. From
(27), the cost per iteration is

O(#nz)× (# conjugate gradient iterations)+(l exponential operations). (33)

Since l� #nz, exponential operations are not significant in (33). Therefore, the cost per iteration of
applying trust region Newton methods to L2-SVM and logistic regression does not differ much. In
contrast, (32) shows that coordinate descent methods are less suitable for logistic regression than L2-
SVM. However, we may avoid expensive exponential operations if all the elements of x j are either
0 or the same constant. By storing exp(−y jwT x j), j = 1, . . . , l, one updates exp(−y j(wk,i)T x j) by
multiplying it by exp(−zy jx ji). Using y j = ±1, exp(−zy jx ji) = (exp(−zx ji))

y j . As x ji is zero or
a constant for all j, the number of exponential operations per inner iteration is reduced to one. In
addition, applying fast approximations of exponential operations such as Schraudolph (1999) may
speed up the coordinate descent method for logistic regression.

6.3 Conclusions

In summary, we propose and analyze a coordinate descent method for large-scale linear L2-SVM.
The new method possesses sound optimization properties. The method is suitable for data with
an easy access of any feature. Experiments indicate that our method is more stable and efficient
than most existing algorithms. We plan to extend our work to other challenging problems such as
training large data which can not fit into memory.
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Appendix A. Proofs

In this section, we prove theorems appeared in the paper. First, we discuss some properties of our
objective function f (w). Consider the following piecewise quadratic strongly convex function:

g(s) =
1
2

sT s+C‖(As−h)+‖2, (34)

where (·)+ is the operator that replaces negative components of a vector with zeros. Mangasarian
(2002) proves the following inequalities for all s,v ∈ Rn:

(∇g(s)−∇g(v))T (s−v) ≥ ‖s−v‖2, (35)

|g(v)−g(s)−∇g(s)T (v− s)| ≤ K
2
‖v− s‖2, (36)

where
K = 1+2C‖A‖2

2.
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Our objective function f (w) is a special case of (34) with A = Y X (X is defined in Eq. 20) and
h =−1, where Y is a diagonal matrix with Y j j = y j, j = 1, . . . , l and 1 is the vector of all ones. With
yi =±1, f (w) satisfies (35) and (36) with

K = 1+2C‖X‖2
2. (37)

To derive properties of the subproblem Di(z) (defined in Eq. 8), we set

A =−






y1x1i
...

ylxli




 and h =






y1wT x1− y1wix1i−1
...

ylwT xl− ylwixli−1




 ,

where we abbreviate wk,i to w. Since

Di(z) =
1
2

wT w− 1
2

w2
i +

(
1
2
(z+wi)

2 +‖(A(z+wi)−h)+‖2
)

,

the first and second terms of the above form are constants. Hence, Di(z) satisfies (35) and (36) with

K = 1+2C
l

∑
j=1

x2
ji.

We use Hi to denote Di(z)’s corresponding K. This definition of Hi is the same as the one in (14).
We then derive several lemmas.

Lemma 5 For any i ∈ {1, . . . ,n}, and any z ∈ R,

D′i(0)z+
1
2

Hiz
2 ≥ Di(z)−Di(0)≥ D′i(0)z+

1
2

z2. (38)

Proof There are two inequalities in (38). The first inequality directly comes from (36) using Di(z)
as g(s) and Hi as K. To derive the second inequality, if z < 0, using Di(z) as g(s) in (35) yields

D′i(z)≤ D′i(0)+ z.

Then,

Di(z)−Di(0) =−
Z 0

t=z
D′i(t)dt ≥ D′i(0)z+

1
2

z2.

The situation for z≥ 0 is similar.

Lemma 6 There exists a unique optimum solution for (3).

Proof From Weierstrass’ Theorem, any continuous function on a compact set attains its minimum.
We consider the level set A = {w | f (w) ≤ f (0)}. If A is not bounded, there is a sub-sequence
{wk} ⊂ A such that ‖wk‖→ ∞. Then

f (wk)≥ 1
2
‖wk‖2→ ∞.

This contradicts f (wk)≤ f (0), so A is bounded. Thus there is at least one optimal solution for (3).
Combining with the strict convexity of (3), a unique global optimum exists.
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A.1 Proof of Theorem 1

Proof By Lemma 5, we let z = λd and have

Di(λd)−Di(0)+σλ2d2

≤ D′i(0)λd +
1
2

Hiλ2d2 +σλ2d2

= −λ
D′i(0)2

D′′i (0)
+

1
2

Hiλ2 D′i(0)2

D′′i (0)2 +σλ2 D′i(0)2

D′′i (0)2

= λ
D′i(0)2

D′′i (0)

(

λ(
Hi/2+σ

D′′i (0)
)−1

)

. (39)

If we choose λ̄ =
D′′i (0)

Hi/2+σ , then for λ ≤ λ̄, (39) is non-positive. Therefore, (12) is satisfied for all

0≤ λ≤ λ̄.

A.2 Proof of Theorem 2 (convergence of Algorithm 1)

Proof By setting πk(i) = i, this theorem is a special case of Theorem 3.

A.3 Proof of Theorem 3 (Convergence of Generalized Algorithm 1)

Proof To begin, we define 1-norm and 2-norm of a vector w ∈ Rn:

‖w‖1 =
n

∑
i=1

|wi|, ‖w‖2 =

√
n

∑
i=1

w2
i .

The following inequality is useful:

‖w‖2 ≤ ‖w‖1 ≤
√

n‖w‖2, ∀w ∈ Rn. (40)

By Theorem 1, any λ ∈ [βλ̄, λ̄] satisfies the sufficient decrease condition (12), where β ∈ (0,1)
and λ̄ is defined in (14). Since Algorithm 2 selects λ by trying {1,β,β2, . . .}, the value λ selected
by Algorithm 2 satisfies

λ≥ βλ̄ =
β

Hi/2+σ
D′′πk(i)

(0).

This and (13) suggest that the step size z = λd in Algorithm 2 satisfies

|z|= λ

∣
∣
∣
∣
∣

−D′πk(i)
(0)

D′′πk(i)
(0)

∣
∣
∣
∣
∣
≥ β

Hi/2+σ
|D′πk(i)

(0)|. (41)

Assume

H = max(H1, . . . ,Hn) and γ =
β

H/2+σ
. (42)
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We use w and f (w) to rewrite (41):

|wk,i+1
πk(i)
−wk,i

πk(i)
| ≥ γ|∇ f (wk,i)πk(i)|, (43)

where we use the fact
D′πk(i)

(0) = ∇ f (wk,i)πk(i).

Taking the summation of (43) from i = 1 to n, we have

‖wk+1−wk‖1 ≥ γ
n

∑
i=1

|∇ f (wk,i)πk(i)|

≥ γ
n

∑
i=1

(|∇ f (wk,1)πk(i)|− |∇ f (wk,i)πk(i)−∇ f (wk,1)πk(i)|)

= γ

(

‖∇ f (wk,1)‖1−
n

∑
i=1

|∇ f (wk,i)πk(i)−∇ f (wk,1)πk(i)|
)

.

(44)

By the definition of f (w) in (3),

∇ f (w) = w−2C
l

∑
j=1

y jx j max(1− y jwT x j,0).

With y j =±1,

n

∑
i=1

|∇ f (wk,i)πk(i)−∇ f (wk,1)πk(i)|

≤
n

∑
i=1

(

|wk,i
πk(i)
−wk,1

πk(i)
|+2C

l

∑
j=1

|x jπk(i)| |(wk,i)T x j− (wk,1)T x j|
)

≤
n

∑
i=1

(

|wk+1
πk(i)
−wk

πk(i)
|+2C

l

∑
j=1

|x jπk(i)|
n

∑
q=1

|x jq| |wk,i
q −wk,1

q |
)

=‖wk+1−wk‖1 +2C
n

∑
i=1

l

∑
j=1

n

∑
q=1

|x jπk(i)| |x jq| |wk,i
q −wk,1

q |

≤‖wk+1−wk‖1 +2C
n

∑
q=1

|wk+1
q −wk

q| ∑
i, j:x jπk(i) 6=0

P2

=(1+2CP2(#nz))‖wk+1−wk‖1,

(45)

where P is defined in (6). From (44) and (45), we have

‖wk+1−wk‖1 ≥
γ

1+ γ+2γCP2(#nz)
‖∇ f (wk,1)‖1.

With (40),

‖wk+1−wk‖2 ≥
1√
n
‖wk+1−wk‖1

≥ γ√
n(1+ γ+2γCP2(#nz))

‖∇ f (wk)‖1 ≥
γ√

n(1+ γ+2γCP2(#nz))
‖∇ f (wk)‖2.

(46)
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From Lemma 6, there is a unique global optimum w∗ for (3). The optimality condition shows that

∇ f (w∗) = 0. (47)

From (35) and (47),

‖wk−w∗‖2 ≤ ‖∇ f (wk)−∇ f (w∗)‖2 = ‖∇ f (wk)‖2. (48)

With (46),

‖wk+1−wk‖2 ≥ τ‖wk−w∗‖2, where τ =
γ√

n(1+ γ+2γCP2(#nz))
. (49)

From (12) and (49),

f (wk)− f (wk+1) =
n

∑
i=1

( f (wk,i)− f (wk,i+1))

≥
n

∑
i=1

σ(wk,i+1
πk(i)
−wk,i

πk(i)
)2 = σ‖wk+1−wk‖2

2 ≥ στ2‖wk−w∗‖2
2.

By (36) and (47),

f (wk)− f (w∗)≤ K
2
‖wk−w∗‖2

2, (50)

where K is defined in (37). Therefore, we have

f (wk)− f (wk+1)≥ 2στ2

K
( f (wk)− f (w∗)).

This is equivalent to

( f (wk)− f (w∗))+( f (w∗)− f (wk+1))≥ 2στ2

K
( f (wk)− f (w∗)).

Finally, we have

f (wk+1)− f (w∗)≤ (1− 2στ2

K
)( f (wk)− f (w∗)). (51)

With τ≤ 1 from (49), K ≥ 1 from (37) and σ < 1/2, we have 2στ2/K < 1. Hence, (51) ensures that
f (wk) approaches f (w∗).

From (51), { f (wk)} converges to f (w∗). We can then prove that {wk} globally converges to w∗.
If this result does not hold, there is a sub-sequence {wk}M converging to a point w̄ 6= w∗. However,
Lemma 6 shows that f (w̄) > f (w∗), so limk∈M f (wk) > f (w∗), a contradiction.

Let µ = 2στ2/K, (51) implies

f (wk)− f (w∗)≤ (1−µ)k( f (w0)− f (w∗)), ∀k.

To achieve an ε-accurate solution, we need the right-hand side to be smaller than ε. Thus,

k ≥ log( f (w0)− f (w∗))+ log(1/ε)
− log(1−µ)

.
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From the inequality
log(1− x)≤−x if x < 1,

we have

k ≥ log( f (w0)− f (w∗))+ log(1/ε)
µ

. (52)

In following we discuss the order of µ−1 = K
2στ2 . From (37),

K = 2C‖X‖2
2 +1≤ 2C‖X‖2

F +1≤ 2CP2(#nz)+1, (53)

where ‖ · ‖F is the Frobenious norm. From (49),

τ−1 =
√

n

(
1
γ

+2CP2(#nz)+1

)

.

Since γ = β
σ+H/2 , from (14) and (42) we have

γ−1 = O(lCP2 +1)≤ O(CP2(#nz)+1). (54)

As #nz is usually large, we omit the constant term O(1) in the following discussion. Then τ−1 =
O(
√

nCP2(#nz)). Thus,

µ−1 =
K

2στ2 = O(nC3P6(#nz)3). (55)

From (52) and (55), Algorithm 1 obtains an ε-accurate solution in

O
(
nC3P6(#nz)3 log(1/ε)

)

iterations.

A.4 Proof of Theorem 4 (Linear Convergence of the Online Setting)

Proof To begin, we denote the expectation value of a function g of a random variable y to be

Ey(g(y)) = ∑
y

P(y)g(y).

Then for any vector s ∈ Rn and a random variable I where

P(I = i) =
1
n
, ∀i ∈ {1, . . . ,n},

we have

EI(s
2
I ) =

n

∑
i=1

s2
i

n
=

1
n
‖s‖2

2. (56)

At each iteration k (k = 0,1, . . . ) of Algorithm 3, we randomly choose one index ik and update wk

to wk+1. The expected function value after iteration k can be represented as

Ei0,...,ik−1,ik( f (wk+1)).

1395



CHANG, HSIEH AND LIN

From (12), (43), (56), (48), and (50), we have

Ei0,...,ik−1Eik( f (wk)− f (wk+1))

≥ σEi0,...,ik−1Eik(|wk+1
ik −wk

ik |
2)

≥ σγ2Ei0,...,ik−1Eik(|∇ f (wk)ik |2)

=
σγ2

n
Ei0,...,ik−1(‖∇ f (wk)‖2

2)

≥ σγ2

n
Ei0,...,ik−1(‖wk−w∗‖2

2)

≥ 2σγ2

nK
Ei0,...,ik−1( f (wk)− f (w∗)).

This is equivalent to

Ei0,...,ik( f (wk+1))− f (w∗)≤
(

1− 2σγ2

nK

)(

Ei0,...,ik−1( f (wk))− f (w∗)
)

.

From Markov inequality P(|Z| ≥ a)≤ E(|Z|)/a for any random variable Z and the fact f (wk+1)≥
f (w∗), we have

P
(

f (wk)− f (w∗)≥ ε
)

≤ E
(

f (wk)− f (w∗)
)

/ε. (57)

To achieve an ε-accurate solution with confidence 1− δ, we need the right-hand side of (57) to be
less than δ. This indicates the iteration number k must satisfy

Ei0,...,ik−1( f (wk))− f (w∗)≤ ( f (w0)− f (w∗))
(

1− 2σγ2

nK

)k

≤ εδ.

By a derivation similar to Theorem 3, we can show that after O( nK
σγ2 log( 1

δε)) iterations, with confi-
dence 1−δ, we obtain an ε-accurate solution. From (53) and (54), we have

K ≤ 2CP2(#nz)+1 and γ−1 = O(lCP2 +1).

Therefore,

O

(
nK
σγ2 log(

1
δε

)

)

= O

(

nl2C3P6(#nz) log(
1
δε

)

)

.
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Abstract

We describe and analyze an algorithmic framework for online classification where each online trial
consists of multiple prediction tasks that are tied together. We tackle the problem of updating the
online predictor by defining a projection problem in which each prediction task corresponds to a
single linear constraint. These constraints are tied together through a single slack parameter. We
then introduce a general method for approximately solving the problem by projecting simultane-
ously and independently on each constraint which corresponds to a prediction sub-problem, and
then averaging the individual solutions. We show that this approach constitutes a feasible, albeit
not necessarily optimal, solution of the original projection problem. We derive concrete simultane-
ous projection schemes and analyze them in the mistake bound model. We demonstrate the power
of the proposed algorithm in experiments with synthetic data and with multiclass text categorization
tasks.

Keywords: online learning, parallel computation, mistake bounds, structured prediction

1. Introduction

We discuss and analyze an algorithmic framework for complex prediction problems in the online
learning model. Our construction unifies various complex prediction tasks by considering a setting
in which at each trial the learning algorithm should make multiple binary decisions. We present
a simultaneous online update rule that uses the entire set of binary examples received at each trial
while retaining the simplicity of algorithms whose update is based on a single binary example.

Online learning is performed in a sequence of consecutive trials. At the beginning of each
trial, the algorithm first receives an instance and is required to make a prediction in some complex
domain. The prediction is generated using an hypothesis constructed by the algorithm. Once the
algorithm makes a prediction it receives the correct target and is allowed to update its hypothesis.
In this paper we consider an online learning model in which the complex prediction task can be
cast as multiple binary decisions. Such a view is common in Multiclass categorization tasks, for
example in Crammer et al. (2006), Crammer and Singer (2003), and Allwein et al. (2000). There,
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the complex problem of predicting which label out of k possible labels is the correct label is cast as
a set of binary prediction problems, each of which focuses on two labels.

Previous approaches to this construction can be roughly divided into two paradigms. The first
paradigm, which we term the max update, tackles the problem by selecting a single binary problem
and updating the algorithm’s hypothesis based on that problem solely. While this approach is sub-
optimal, it is often very simple to implement and quite effective in practice. The second approach
considers all the binary problems and incorporates the entire information contained for updating the
hypothesis. The second approach thus performs an optimal update at the price of often incurring
higher computational costs.

We introduce a third approach, which enjoys the simplicity and performance of the max-update
approach, while incorporating information expressed in all binary problems. Our family of algo-
rithms achieves this goal by considering each instance separately and acting simultaneously. An
update is constructed for each binary sub-problem, and then all the updates are combine together to
form the new online hypothesis. As we show in the sequel, the update rule due to each binary exam-
ple amounts to a projection operation. We thus denote our approach as the simultaneous projections
approach.

We propose a simple, general, and efficient framework for online learning of a wide variety
of complex problems. We do so by casting the online update task as an optimization problem in
which the newly devised hypothesis is required to be close to the current hypothesis while attaining
a small loss on multiple binary prediction problems. Casting the online learning task as a sequence
of instantaneous optimization problems was first suggested and analyzed by Kivinen and Warmuth
(1997) for binary classification and regression problems. In our optimization-based approach, the
complex decision problem is cast as an optimization problem that consists of multiple linear con-
straints each of which represents a single binary example. These constraints are tied through a single
slack variable whose role is to assess the overall prediction quality for the complex problem.

The max-update approach described above selects a single binary example, which translates
into a single constraint. Performing the update thus becomes a simple projection task, where an
analytical solution can often be easily devised. In contrast, the optimal update seeks the optimal
solution of the instantaneous optimization problem. However, in the general case no analytical
solution can be found, and the algorithm is required to resort to a full scale numeric solver.

We describe and analyze a family of two-phase algorithms. In the first phase, the algorithms
solve simultaneously multiple sub-problems. Each sub-problem distills to an optimization problem
with a single linear constraint from the original multiple-constraints problem. The simple structure
of each single-constraint problem results in an analytical solution, which is efficiently computable.
In the second phase, the algorithms take a convex combination of the independent solutions to obtain
a solution for the multiple-constraints problem. We further explore the structure of our problem
and attain an update form that combines the two phases while maintaining the simplicity of the
simultaneous projection scheme. The end result is an approach whose time complexity and mistake
bounds are equivalent to approaches which solely deal with the worst-violating constraint (Crammer
et al., 2006). In practice, though, the performance of the simultaneous projection framework is much
better than update schemes that are based on a single-constraint .

We introduce an additive and multiplicative variants of our framework. The additive framework
extends additive algorithms such as the Perceptron (Rosenblatt, 1958) and the family of Passive-
Aggressive algorithms (Crammer et al., 2006) to our settings. We then present a multiplicative
family of simultaneous algorithms that extends the Winnow family of algorithms (Littlestone, 1988).
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We further extend our model showing its applicability when working with a larger family of loss
functions. Finally we present a unified analysis in the mistake bound model, based on the primal-
dual analysis presented in Shalev-Shwartz and Singer (2006a). Our results are on par with the best
known mistake bounds for multiclass algorithms.

1.1 Related Work

The task of multiclass categorization can be thought of as a specific case of our construction. In
multiclass categorization the task is to predict a single label out of k possible outcomes. Our si-
multaneous projection approach is based on the fact that we can retrospectively (after receiving the
correct label) cast the problem as the task of making k−1 binary decisions, each of which involves
the correct label and one of the competing labels. Our framework then performs an update on each
of the problems separately and then combines the updates to form a new hypothesis. The perfor-
mance of the k− 1 predictions is measured through a single loss function. Our approach stands in
contrast to previously studied methods which can be roughly be partitioned into three paradigms.
The first paradigm follows the max update paradigm presented above. For example, the algorithms
by Crammer and Singer (2003) and Crammer et al. (2006) focus on the single, worst performing,
derived sub-problem. While this approach adheres with the original structure of the problem, the
resulting update mechanism is by construction sub-optimal as it oversees almost all of the con-
straints imposed by the complex prediction problem. (See also Shalev-Shwartz and Singer, 2006a,
for analysis and explanation of the sub-optimality of this approach).

Since applying full scale numeric solvers in each online trial is usually prohibitive due to the
high computational cost, the optimal paradigm for dealing with complex problems is to tailor a
specific efficient solution for the problem on hand. While this approach yielded highly efficient
learning algorithms for multiclass categorization problems (Crammer and Singer, 2003; Shalev-
Shwartz and Singer, 2006b) and aesthetic solutions for structured output problems (Taskar et al.,
2003; Tsochantaridis et al., 2004), devising these algorithms required dedicated efforts. Moreover,
tailored solutions typically impose rather restrictive assumptions on the representation of the data
in order to yield efficient algorithmic solutions.

The third (and probably the simplest) previously studied approach is to break the problem into
multiple decoupled problems that are solved independently. Such translation effectively changes
the problem definition. Thus, the simplicity of this approach also underscores its deficiency as it
is detached from the original loss of the complex decision problem. Such an approach was used
for instance for batch learning of multiclass support vector machines (Weston and Watkins, 1999)
and boosting algorithms (Schapire and Singer, 1999). Decoupling approaches have further been
extended to various ways. Hastie and Tibshirani (1998) considered construction of a binary problem
for each pair of classes. In Dietterich and Bakiri (1995), Allwein et al. (2000) and Crammer and
Singer (2002) error correcting output codes are applied to solve the multiclass problem as separate
binary problems.

It is interesting to note that the methods for performing multiple projections simultaneously
have been studied in a different context in the optimization community. Similar ideas which can be
broadly characterized as row-action methods date back more than 50 years, see for example Hildreth
(1957), Bregman (1967), and Pierro and Iusem (1986). These methods are used to find the optimal
solution of a convex function subject to a very large number of constraints. The core idea behind
row-action methods is to consider and isolate a few number of constraints and repeatedly perform
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a projection on a small subset (typically a single constrain) until convergence. Pierro and Iusem
(1986) introduced the concept of averaging to the general family of Bregmans methods, where
the projection step is relaxed and the new solution is the average of the previous solution and the
result of the projection. Censor and Zenios (1997) introduces a parallel version of the row-action
methods. The parallel algorithms perform the projection step on each constraint separately and
update the new solution to the average of all these projections. For further extensive description of
row-action methods see Censor and Zenios (1997). Row-actions methods have recently received
attention in the learning community, for problems such as finding the optimal solution of SVM. For
instance the SMO technique of Platt (1998) can be viewed as a row-action optimization method that
manipulates two constraints at a time. In this paper we take a different approach, and decompose a
single complex constraint into multiple projections problem which are tied together through a single
slack variable.

The rest of the paper is organized as follows. We start with a description of the problem setting
in Sec. 2. In Sec. 3 we describe two complex decision tasks that can be tackled by our approach. A
template algorithm for additive simultaneous projection in an online learning setting with multiple
instances is described in Sec. 4. We propose concrete schemes for selecting an update form in Sec.
5 and analyze our algorithms within the mistake bound model in Sec. 6. We extend our algorithm
to a large family of losses in Sec. 7 and derive family of multiplicative algorithms in Sec. 8. We
demonstrate the merits of our approach in a series of experiments with synthetic and real data sets
in Sec. 9 and conclude in Sec. 10.

2. Problem Setting

In this section we introduce the notation used throughout the paper and formally describe our prob-
lem setting. We denote vectors by lower case bold face letters (e.g., x and ω) where the j’th element
of x is denoted by x j. We denote matrices by upper case bold face letters (e.g., X), where the j’th
row of X is denoted by x j. The set of integers {1, . . . ,k} is denoted by [k]. Finally, we use the hinge
function [a]+ = max{0,a}.

Online learning is performed in a sequence of trials. At trial t the algorithm receives a matrix
Xt of size kt × n, where each row of Xt is an instance, and is required to make a prediction on the
label associated with each instance. We denote the vector of predicted labels by ŷt . We allow ŷt

j
to take any value in R, where the actual label being predicted is sign(ŷt

j) and |ŷt
j| is the confidence

in the prediction. After making a prediction ŷt the algorithm receives the correct labels yt where
yt

j ∈ {−1,1} for all j ∈ [kt ]. In this paper we assume that the predictions in each trial are formed
by calculating the inner product between a weight vector ωt ∈ R

n with each instance in Xt , thus
ŷt = Xt ωt . Our goal is to perfectly predict the entire vector yt . We thus say that the vector yt

was imperfectly predicted if there exists an outcome j such that yt
j 6= sign(ŷt

j). That is, we suffer a
unit loss on trial t if there exists j, such that sign(ŷt

j) 6= yt
j. Directly minimizing this combinatorial

error is a computationally difficult task. Therefore, we use an adaptation of the hinge-loss, defined

`(ŷt ,yt) = max j

[

1− yt
jŷ

t
j

]

+
, as a proxy for the combinatorial error. The quantity yt

jŷ
t
j is often

referred to as the (signed) margin of the prediction and ties the correctness and the confidence in
the prediction. We use `(ωt ;(Xt ,yt)) to denote `(ŷt ,yt) where ŷt = Xt ωt . We also denote the set
of instances whose labels were predicted incorrectly by M t = { j |sign(ŷt

j) 6= yt
j}, and similarly the

set of instances whose hinge-losses are greater than zero by Γt = { j | [1− yt
jŷ

t
j]+ > 0}.
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3. Derived Problems

In this section we further explore the motivation for our problem setting by describing two different
complex decision tasks and showing how they can be cast as special cases of our setting. We also
would like to note that our approach can be employed in other prediction problems (see Sec. 10).

3.1 Multilabel Categorization

In the multilabel categorization task each instance is associated with a set of relevant labels from the
set [k]. The multilabel categorization task can be cast as a special case of a ranking task in which
the goal is to rank the relevant labels above the irrelevant ones. Many learning algorithms for this
task employ class-dependent features (for example, see Schapire and Singer, 2000). For simplicity,
assume that each class is associated with n features and denote by φ(x,r) the feature vector for
class r. We would like to note that features obtained for different classes typically relay different
information and are often substantially different.

A categorizer, or label ranker, is based on a weight vector ω. A vector ω induces a score for
each class ω ·φ(x,r) which, in turn, defines an ordering of the classes. A learner is required to build
a vector ω that successfully ranks the labels according to their relevance, namely for each pair of
classes (r,s) such that r is relevant while s is not, the class r should be ranked higher than the class
s. Thus we require that ω ·φ(x,r) > ω ·φ(x,s) for every such pair (r,s). We say that a label ranking
is imperfect if there exists any pair (r,s) which violates this requirement. The loss associated with
each such violation is [1− (ω ·φ(x,r)−ω ·φ(x,s))]+ and the loss of the categorizer is defined as the
maximum over the losses induced by the violated pairs. In order to map the problem to our setting,
we define a virtual instance for every pair (r,s) such that r is relevant and s is not. The new instance
is the n dimensional vector defined by φ(x,r)−φ(x,s). The label associated with all of the instances
is set to 1. It is clear that an imperfect categorizer makes a prediction mistake on at least one of the
instances, and that the losses defined by both problems are the same.

3.2 Ordinal Regression

In the problem of ordinal regression an instance x is a vector of n features that is associated with
a target rank y ∈ [k]. A learning algorithm is required to find a vector ω and k thresholds b1 ≤
·· · ≤ bk−1 ≤ bk = ∞. The value of ω · x provides a score from which the prediction value can be
defined as the smallest index i for which ω · x < bi, ŷ = min{i|ω ·x < bi}. In order to obtain a
correct prediction, an ordinal regressor is required to ensure that ω · x ≥ bi for all i < y and that
ω · x < bi for i ≥ y. It is considered a prediction mistake if any of these constraints is violated. In
order to map the ordinal regression task to our setting, we introduce k−1 instances. Each instance
is a vector in R

n+k−1. The first n entries of the vector are set to be the elements of x, the remaining
k − 1 entries are set to −δi, j. That is, the i’th entry in the j’th vector is set to −1 if i = j and
to 0 otherwise. The label of the first y− 1 instances is 1, while the remaining k− y instances are
labeled as −1. Once we learned an expanded vector in R

n+k−1, the regressor ω is obtained by taking
the first n components of the expanded vector and the thresholds b1, . . . ,bk−1 are set to be the last
k−1 elements. A prediction mistake of any of the instances corresponds to an incorrect rank in the
original problem.
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Figure 1: Illustration of the simultaneous projections algorithm: each instance casts a constraint on
ω and each such constraint defines a halfspace of feasible solutions. We project on each
halfspace in parallel and the new vector is a weighted average of these projections

4. Simultaneous Projection Algorithms

Recall that on trial t the algorithm receives a matrix, Xt , of kt instances, and predicts ŷt = Xt ωt .
After performing its prediction, the algorithm receives the corresponding labels yt . Each instance-

label pair casts a constraint on ωt , yt
j

(

ωt ·xt
j

)

≥ 1. If all the constraints are satisfied by ωt then ωt+1

is set to be ωt and the algorithm proceeds to the next trial. Otherwise, we would like to set ωt+1 as
close as possible to ωt while satisfying all constraints.

Such an aggressive approach may be sensitive to outliers and over-fitting. Thus, we allow some
of the constraints to remain violated by introducing a trade-off between the change to ωt and the
loss attained on (Xt ,yt). Formally, we would like to set ωt+1 to be the solution of the following
minimization problem,

min
ω∈Rn

1
2 ‖ω−ωt‖2 +C `(ω;(Xt ,yt)) , (1)

where C is a trade-off parameter. As we discuss below, this formalism effectively translates to a
cap on the maximal change to ωt . We rewrite the above optimization by introducing a single slack
variable as follows:

min
ω∈Rn,ξ≥0

1
2

∥
∥ω−ωt

∥
∥2

+Cξ

s.t. ∀ j ∈ [kt ] : yt
j

(
ω ·xt

j

)
≥ 1−ξ ξ ≥ 0

. (2)

We denote the objective function of Eq. (2) by P t and refer to it as the instantaneous primal problem
to be solved on trial t. The dual optimization problem of P t is the maximization problem

max
αt

1,..,α
t
kt

kt

∑
j=1

αt
j −

1
2

∥
∥
∥ωt +

kt

∑
j=1

αt
j yt

j xt
j

∥
∥
∥

2
s.t.

kt

∑
j=1

αt
j ≤C , ∀ j : αt

j ≥ 0 . (3)

The complete derivation is given in Appendix A.
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Input:
Aggressiveness parameter C > 0

Initialize:
ω1 = (0, . . . ,0)

For t = 1,2, . . . ,T :
Receive instance matrix X t ∈ R

kt×n

Predict ŷt = Xt ωt

Receive correct labels yt

Suffer loss `(ωt ;(Xt ,yt))
If ` > 0:
Choose importance weights µt s.t.

µt
j ≥ 0 and ∑kt

j=1 µt
j = 1

Choose individual dual solutions αt
j

Update ωt+1 = ωt +∑kt
j=1 µt

j αt
j yt

j xt
j

Figure 2: Template of simultaneous projections algorithm.

Each dual variable corresponds to a single constraint of the primal problem. The minimizer of
the primal problem is calculated from the optimal dual solution as follows, ωt+1 = ωt +∑kt

j=1 αt
j yt

j xt
j.

Unfortunately, in the common case, where each xt
j is in an arbitrary orientation, there does not

exist an analytic solution for the dual problem (Eq. 3). The difficulty stems from the fact that the
sum of the weights αt

j cannot exceed C. We tackle the problem by breaking it down into kt reduced
problems, each of which focuses on a single dual variable. By doing so we replace the global sum
constraint, ∑kt

j=1 αt
j, with multiple box constraints, αt

j ≤C, which can easily be dealt with. Formally,
for the j’th variable, the j’th reduced problem solves Eq. (3) while fixing αt

j′ = 0 for all j′ 6= j. Each
reduced optimization problem amounts to the following problem

max
αt

j

αt
j −

1
2

∥
∥ωt +αt

j yt
j xt

j

∥
∥2

s.t. αt
j ∈ [0,C] . (4)

As we demonstrate in the sequel, this reduction into independent problems serves two roles. First,
it leads to simple solutions for the reduced problems. Second, and more important, the individual
solutions can and are grouped into a feasible solution of the original problem for which we can
prove various loss bounds.

We thus next obtain an exact or approximate solution for each reduced problem as if it were
independent of the rest. We then choose a non-negative vector µ ∈ ∆kt where ∆kt is the kt dimension
probability simplex, formally µi ≥ 0 and ∑kt

j=1 µ j = 1. Given the vector µ, we multiply each αt
j

by a corresponding value µt
j. Our choice of µ assures us {µt

jαt
j} constitutes a feasible solution to

the dual problem defined in Eq. (3) for the following reason. Each µt
jαt

j ≥ 0 and the fact that

αt
j ≤ C implies that ∑kt

j=1 µt
jαt

j ≤ C. Finally, the algorithm uses the combined solution and sets

ωt+1 = ωt +∑kt
j=1 µt

j αt
j yt

j xt
j. An illustration of the algorithm is provided in Fig. 4.
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Variant Choosing µt
j Choosing αt

j

SimPerc

{
1

|M t | j ∈ M t

0 otherwise
C

ConProj

{
1

|M t | j ∈ M t

0 otherwise
min

{

C,
`(ωt ;(xt

j,y
t
j))

‖xt
j‖2

}

ConProj

{
1
|Γt | j ∈ Γt

0 otherwise
min

{

C,
`(ωt ;(xt

j,y
t
j))

‖xt
j‖2

}

SimOpt See Fig. 4

Figure 3: Schemes for choosing µ and α.

5. Solving the Reduced Problems

We next present four schemes to obtain a solution for the reduced problem (Eq. 4) and then combine
the solution into a single update. The first three schemes provide feasible solutions for the reduced
problems and are easy to implement. However, these solutions are not necessarily optimal. In Sec.
5.4 we describe a rather involved yet efficient procedure for finding the optimal solution of each
reduced problem along side with their weight vector µ which constitute the means for combining
the individual solutions.

5.1 Simultaneous Perceptron

The simplest of the update forms generalizes the famous Perceptron algorithm from Rosenblatt
(1958) by setting αt

j to C if the j’th instance is incorrectly labeled, and to 0 otherwise. We then set

the weight of µt
j to 1

|M t | for j ∈ M t and to 0 otherwise. We abbreviate this scheme as the SimPerc
algorithm.

5.2 Soft Simultaneous Projections

The soft simultaneous projections scheme uses the fact that each reduced problem has an analytic

solution, which yields αt
j = min

{
C, `

(

ωt ;(xt
j,y

t
j)
)

/
∥
∥
∥xt

j

∥
∥
∥

2}
. We independently assign each αt

j this

optimal solution. We next set µt
j to be 1

|Γt | for j ∈ Γt and to 0 otherwise. We would like to comment
that this solution may update αt

j also for instances which were correctly classified as long as the
margin they attain is not sufficiently large. We abbreviate this scheme as the SimProj algorithm.

5.3 Conservative Simultaneous Projections

Combining ideas from the above methods, the conservative simultaneous projections scheme opti-
mally sets αt

j according to the analytic solution. It differs from the SimProj algorithm in the way it
selects µt . In the conservative scheme only the instances which were incorrectly predicted ( j ∈ M t)
are assigned a positive weight. Put another way, µt

j is set to 1
|M t | for j ∈ M t and to 0 otherwise. We

abbreviate this scheme as the ConProj algorithm.
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5.4 Jointly Optimizing µ and α

Recall that our goal is to propose a feasible solution to Eq. (3) and we do so by independently
considering the optimization problem of Eq. (4) for each j. Following, we multiply each αt

j by a
coefficient µt

j so that all µt
jαt

j form a feasible solution. The following analysis shows that the two
steps can be unified. For brevity, we omit the superscript t. The task of jointly optimizing both µ
and α casts a seemingly non-convex optimization and finding the optimal solution is a priori a hard
problem. In this section we derive a somewhat counterintuitive result. By exploring the structure
of the problem on hand we show that this joint optimization problem can efficiently be solved in
kt logkt time. .

We begin by taking the derivative of the optimal values for α j while assuming that the values µ j

are fixed and define a convex combination. The reduced problem of Eq. (4) becomes

max
α j

µ jα j −
1
2

∥
∥ω+µ jα j y j x j

∥
∥2

s.t. α j ∈ [0,C]

,

which can be rewritten as

max
α j

µ jα j (1− y j (ω ·x j))−
1
2

µ2
jα

2
j

∥
∥x j
∥
∥2 − 1

2
‖ω‖2 s.t. α j ∈ [0,C] .

For brevity, we denote the squared norm of x j by ν j. Thus, omitting constants that do not depend
on α j and µ j, the above optimization problem can be written as

max
α j

µ jα j (1− y j (ω ·x j))−
1
2

µ2
jα

2
jν j s.t. 0 ≤ α j ≤C . (5)

Let us denote the hinge-loss on instance j, max{0,1− y j (ω ·x j)} by ` j. By taking the derivative of
the Lagrangian with respect to α j and equating the result with zero, we get that

α j = min

{

C,
l j

µ jν j

}

.

We can now look at two disjoint cases. The first case is when α j =
l j

µ jν j
< C. In this case α j

takes the value of l j

µ jν j
and the value of the optimization problem above becomes

`2
j

ν j
− 1

2

`2
j

ν j
=

1
2

l2
j

ν j
.

We note in passing that this expression does not depend on µ j.
The second case is when α j = C. Plugging α j into Eq. (5) we get the following expression, as

a function of µ, which we denote by f j(µ j),

f j(µ j) = µ jC` j −
1
2

µ2
jC

2ν j . (6)

We next take the derivative of f j above with respect to µ j and obtain

∂ f
∂µ j

= C` j −µ jC
2ν j ,
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from which we conclude that the optimal value for µ j is

` j

Cν j
.

Plugging the optimal value for µ j back in Eq. (6) we get that the maximum of f j(µ j) is

f j

(
` j

Cν j

)

=
`2

j

ν j
− 1

2

`2
j

ν j
=

1
2

`2
j

ν j
.

To recap, we may express the optimal value of Eq. (5) as a function of µ j as follows.

f j(µ j) =







µ jC` j − 1
2 µ2

jC
2ν j µ j ≤ ` j

Cν j

1
2

`2
j

ν j
otherwise

.

Thus, f j is monotonically increasing in the range 0 ≤ µ j ≤ ` j

Cν j
and is constant for values greater

than ` j

Cν j
.

Recall that our primary goal is to find a convex combination of µ j. Thus, we would like to find
the optimal assignment to µ given that α is set optimally. We end up with the following optimization
problem.

max∑
j

f j (µ j)

s.t. ∀ j : µ j ≥ 0 ∑
j

µ j = 1
. (7)

As previously discussed, for all j, f j increases in the range 0 ≤ µ j ≤ ` j

Cν j
and is constant af-

terwards. We may use this fact to further classify the structure of the optimal solution of Eq. (7).
Assume first that ∑ j

` j

Cν j
≤ 1. In this case we can increment each, µ j =

` j

Cν j
+ B, where B is a non-

negative constant which assures that ∑ j µ j = 1. This assignment of µ is clearly optimal, as f j is

increasing and reaches its maximum obtainable value for µ j ≥ ` j

Cν j
.

Now, suppose ∑ j
` j

Cν j
> 1. In such a case there exists an optimal solution with µ j ≤ ` j

Cν j
for all

j. Suppose in contrary that for every optimal solution µ there exists some ĵ where µ ĵ =
` ĵ

Cν ĵ
+ ε for

some non-negative ε. Since ∑ j
` j

Cν j
> 1 there exists some j′ with µ j′ <

` j′
Cν j′

. Since f j′ monotonely

increases when µ j′ <
` j′

Cν j′
, while f ĵ is constant for µ ĵ >

` ĵ

Cν ĵ
we can create a new assignment µ?

increasing the value of the sum ∑ j f j(µ j) by setting µ?
ĵ
=

` ĵ

Cν ĵ
and add ε to µ?

j′ . We thus conclude that

for each solution where for some µ ĵ >
` ĵ

Cν ĵ
there exists an assignment µ? where for all j, µ j ≤ ` j

Cν j

and the objective of Eq. (7) is at least as high.
Thus, when ∑ j

` j

Cν j
> 1 we may add the constraint that µ j ≤ ` j

Cν j
and obtain the following opti-

mization problem.

max
µ ∑

j

f j (µ j)

s.t. ∀ j : 0 ≤ µ j ≤
` j

Cν j
∑

j

µ j = 1
.
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We next introduce non-negative Lagrange multipliers τ, {β j}, and {η j} to obtain the following
Lagrangian,

L = ∑
j

C` jµ j −
1
2

µ2
jC

2ν j −∑
j

β jµ j − τ

(

∑
j

µ j −1

)

+∑
j

η j

(

µ j −
` j

Cν j

)

.

Taking the derivative with respect to µ j and comparing to 0 we get the following condition.

C` j −µ jC
2ν j −β j − τ+η j = 0 ,

or

µ j =
C` j −β j − τ+η j

C2ν j
.

The complementary slackness assures us that when µ j > 0 then β j = 0 and thus

µ j =
C` j − τ+η j

C2ν j
.

Similarly, η j > 0 only when µ j =
` j

Cν j
and is used only when τ is negative, However, τ may be

negative only when ∑ j
` j

Cν j
< 1, which we covered before. To summarize, we can write the optimal

solution as

µ j = max{0,
C` j − τ
C2ν j

} . (8)

We now focus our attention on the task of finding the value of τ. First, note that every value
of τ partitions the set 1, . . . ,kt into two sets, indices j whose µ j > 0 and indices for which µ j = 0.
Formally, let H =

{
j|C` j > τ

}
and L = [kt ] \ H denote the two sets partitioned according to τ.

Clearly j ∈H ⇐⇒ µ j > 0. Clearly, knowing the value τ allows us to compute the partition to H and
L. The converse, however, is also true. Had we known H and L it would have been straightforward
to compute τ by using the fact that µ is in the probability simplex, ∑ j µ j = 1, to get that

∑
j∈H

C` j − τ
C2ν j

= 1 . (9)

Eq. (9) allows us to easily compute τ and obtain

τ =
∑ j∈H

C` j

C2ν j
−1

∑ j∈H
1

C2ν j

. (10)

In order to verify τ serve as a feasible solution, we’re required to verify that ∑ j∈H µ j = 1 and that
for all j ∈ L : C` j − τ ≤ 0. The following lemma states that there is only a single feasible value for
τ.

Lemma 1 Let ` j denote the hinge-loss of instance j, max{0,1− y j (ω ·x j)}. Let ν j denote the
squared norm of x j. Denote by f j the function of µ j given by f j(µ j) = µ jC` j − 1

2 µ2
jC

2ν j. Finally
let µ denote an optimal solution to Eq. (7) computed according to Eq. (8) and H(τ) denote the set
of indices j for which C` j > τ. Then, there is a single value τ that satisfies that ∑ j∈Hτ µ j = 1 while
maintaining that ∀ j /∈ H : µ j = 0.
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Input:
` j, ν j j ∈ [kt ]

Algorithm:
Sort the indices {1, . . . ,kt} by decreasing order of ` j

For i = 2, . . . ,kt :
Define H = {1, . . . , i−1}

Compute τ =
∑ j∈H

C` j
C2ν j

−1

∑ j∈H
1

C2ν j

Validate C`i ≤ τ. If not, continue to next iteration

Set µ j =
C` j−τ
C2ν j

Set α j = min
{

C,
l j

µ jν j

}

Figure 4: Calculating µ and α efficiently.

Proof Suppose by contradiction that there are two feasible values for τ, and denote these values as
τ1 and τ2. Denote H(τ1) and H(τ2) by H1 and H2 respectively. Assume without loss of generality
that τ1 < τ2.

First we note that H2 ⊂ H1. However,

1 = ∑
j∈H1

C` j − τ1

C2ν j
> ∑

j∈H1

C` j − τ2

C2ν j
,

where the inequality is due to our assumption that τ1 < τ2. Since ∑ j∈H2

C` j−τ2

C2ν j
must equal 1, we

conclude that H2 must strictly contain more items than H1. We have thus obtained a contradiction.

Using Lemma 1 we can devise an efficient algorithm for finding the optimal value for τ. We
first sort the indices 1, . . . ,kt by decreasing order of ` j. Then, for every i = 2, . . . ,kt , we define
Hi = {1, . . . , i−1} and compute the value suitable value of τ according to Eq. (10). Finally we
verify if C`i ≤ τ. The algorithm for finding τ is formally given in Fig. 4.

To recap, we have suggested a mechanism for jointly optimizing both µ and α. We showed that
it suffices to find a value τ which consistently divides the set [kt ] into two sets as follows. The first
set corresponds to indices j for which µ j is zero and the second includes the non-zero components
of µ. Furthermore, we showed that once τ is known, obtaining the vector µ is a simple task. Last,
we described how Lemma 1 translates into an efficient algorithm for finding τ. We thus derived
another simultaneous projections scheme, denoted by SimOpt, which jointly optimized α and µ.
This variant of the simultaneous projections framework is guaranteed to yield the largest increase
in the dual compared to all other simultaneous projections schemes. We describe empirical results
which validate experimentally this property in Sec. 9.

6. Analysis

The algorithms described in the previous section perform updates in order to increase the instanta-
neous dual problem defined in Eq. (3). We now use the mistake bound model to derive an upper
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bound on the number of trials on which the predictions of SimPerc and ConProj algorithms are
imperfect. Following Shalev-Shwartz and Singer (2006a), the first step in the analysis is to tie the
instantaneous dual problems to a global loss function. To do so, we introduce a primal optimization
problem defined over the entire sequence of examples as follows,

min
ω∈Rn

1
2
‖ω‖2 +C

T

∑
t=1

`
(
ω;
(
X t ,Y t)) .

We rewrite the optimization problem as the following equivalent constrained optimization problem,

min
ω∈Rn,ξ∈RT

1
2
‖ω‖2 +C

T

∑
t=1

ξt s.t. ∀t ∈ [T ],∀ j ∈ [kt ] : yt
j

(
ω ·xt

j

)
≥ 1−ξt ∀t : ξt ≥ 0 . (11)

We denote the value of the objective function at (ω,ξ) for this optimization problem by P (ω,ξ).
A competitor who may see the entire sequence of examples in advance may in particular set (ω,ξ)
to be the minimizer of the problem which we denote by (ω?,ξ?). Standard usage of Lagrange
multipliers yields that the dual of Eq. (11) is,

max
λ

T

∑
t=1

kt

∑
j=1

λt, j −
1
2

∥
∥
∥

T

∑
t=0

kt

∑
j=1

λt, j yt
j xt

j

∥
∥
∥

2
s.t. ∀t :

kt

∑
j=1

λt, j ≤C ∀t, j : λt, j ≥ 0 . (12)

We denote the value of the objective function of Eq. (12) by D(λ1, · · · ,λT ), where each λt is a vector
in R

kt . Through our derivation we use the fact that any set of dual variables λ1, · · · ,λT defines a
feasible solution ω = ∑T

t=1 ∑kt
j=1 λt, jyt

jx
t
j with a corresponding assignment of the slack variables.

Clearly, the optimization problem given by Eq. (12) depends on all the examples from the first
trial through time step T and thus can only be solved in hindsight. We note however, that if we
ensure that λs, j = 0 for all s > t then the dual function no longer depends on instances occurring on
rounds proceeding round t. As we show next, we use this primal-dual view to derive the skeleton
algorithm presented in Fig. 2 by finding a new feasible solution for the dual problem on every trial.
Formally, the instantaneous dual problem, given by Eq. (3), is equivalent (after omitting an additive
constant) to the following constrained optimization problem,

max
λ

D(λ1, · · · ,λt−1,λ,0, · · · ,0) s.t. λ ≥ 0 ,
kt

∑
j=1

λ j ≤C . (13)

That is, the instantaneous dual problem is obtained from D(λ1, · · · ,λT ) by fixing λ1, . . . ,λt−1 to
the values set in previous rounds, forcing λt+1 through λT to the zero vectors, and choosing a
feasible vector for λt . Given the set of dual variables λ1, . . . ,λt−1 it is straightforward to show that
the prediction vector used on trial t is ωt = ∑t−1

s=1 ∑ j λs, jys
jx

s
j. Equipped with these relations and

omitting constants which do not depend on λt , Eq. (13) can be rewritten as,

max
λ1,...,λkt

kt

∑
j=1

λ j −
1
2

∥
∥
∥
∥
∥

ωt +
kt

∑
j=1

λ jy
t
jx

t
j

∥
∥
∥
∥
∥

2

s.t. ∀ j : λ j ≥ 0,
kt

∑
j=1

λ j ≤C . (14)

The problems defined by Eq. (14) and Eq. (3) are equivalent. Thus, weighing the variables
αt

1, . . . ,α
t
kt

by µt
1, . . . ,µ

t
kt

also yields a feasible solution for the problem defined in Eq. (13), namely
λt, j = µt

j αt
j. We now tie all of these observations together by using the weak-duality theorem. Our

first bound is given for the SimPerc algorithm.
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Theorem 2 Let
(
X1,y1

)
, . . . ,

(
XT ,yT

)
be a sequence of examples where Xt is a matrix of kt exam-

ples and yt are the associated labels. Assume that for all t and j the norm of an instance xt
j is at

most R. Then, for any ω? ∈ R
n the number of trials on which the prediction of SimPerc is imperfect

is at most,
1
2‖ω?‖2 +C ∑T

t=1 `(ω?;(Xt ,yt))

C− 1
2C2R2

.

Proof To prove the theorem we make use of the weak-duality theorem. Recall that any dual feasible
solution induces a value for the dual’s objective function which is upper bounded by the optimum
value of the primal problem, P

(
ω?,ξ?). In particular, the solution obtained at the end of trial T is

dual feasible, and thus D(λ1, . . . ,λT ) ≤ P (ω?,ξ?) . We now rewrite the left-hand side of the above
equation as the following sum,

D(0, . . . ,0)+
T

∑
t=1

[
D(λ1, . . . ,λt ,0, . . . ,0)−D(λ1, . . . ,λt−1,0, . . . ,0)

]
.

Note that D(0, . . . ,0) equals 0. Therefore, denoting by ∆t the difference in two consecutive dual
objective values, D(λ1, . . . ,λt ,0, . . . ,0)−D(λ1, . . . ,λt−1,0, . . . ,0), we get that ∑T

t=1 ∆t ≤ P (ω?,ξ?).
We now turn to bounding ∆t from below. First, note that if the prediction on trial t is perfect
(M t = /0) then SimPerc sets λt to the zero vector and thus ∆t = 0. We can thus focus on trials for
which the algorithm’s prediction is imperfect. We remind the reader that by unraveling the update
of ωt we get that ωt = ∑s<t ∑ks

j=1 λs, jys
jx

s
j. We now rewrite ∆t as follows,

∆t =
kt

∑
j=1

λt, j −
1
2

∥
∥
∥
∥
∥

ωt +
kt

∑
j=1

λt, jy
t
jx

t
j

∥
∥
∥
∥
∥

2

+
1
2

∥
∥ωt
∥
∥2

. (15)

By construction, λt, j = µt
jαt

j and ∑kt
j=1 µt

j = 1, which lets us further expand Eq. (15) and write,

∆t =
kt

∑
j=1

µt
jα

t
j −

1
2

∥
∥
∥
∥
∥

ωt +
kt

∑
j=1

µt
jα

t
jy

t
jx

t
j

∥
∥
∥
∥
∥

2

+
1
2

kt

∑
j=1

µt
j

∥
∥ωt
∥
∥2

.

The squared norm, ‖·‖2 is a convex function in its vector argument and thus ∆t is concave, which
yields the following lower bound on ∆t ,

∆t ≥
kt

∑
j=1

µt
j

[

αt
j −

1
2

∥
∥ωt +αt

jy
t
jx

t
j

∥
∥2

+
1
2

∥
∥ωt
∥
∥2
]

. (16)

The SimPerc algorithm sets µt
j to be 1/|M t | for all j ∈ M t and to be 0 otherwise. Furthermore, for

all j ∈ M t , αt
j is set to C. Thus, the right-hand side of Eq. (16) can be further simplified and written

as,

∆t ≥ ∑
j∈M t

µt
j

[

C− 1
2

∥
∥ωt +Cyt

jx
t
j

∥
∥2

+
1
2

∥
∥ωt
∥
∥2
]

.

In order to further explore Eq. (6) we require the following simple lemma
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Lemma 3 Let ωt denote the predictor used by the SimPerc scheme on trial t. Let j ∈ M t denote an
index of a mispredicted instance on trial t. Then

1
2

∥
∥ωt +Cyt

jx
t
j

∥
∥2 − 1

2

∥
∥ωt
∥
∥2 ≤ 1

2
C2
∥
∥yt

jx
t
j

∥
∥2

.

Proof We start by expanding the norm of the vector after the update,

1
2

∥
∥ωt +Cyt

jx
t
j

∥
∥2

=
1
2

∥
∥ωt
∥
∥2

+Cyt
jω

t ·xt
j +

1
2

C2
∥
∥yt

jx
t
j

∥
∥2

.

Thus, the change in the norm is,

1
2

∥
∥ωt +Cyt

jx
t
j

∥
∥2 − 1

2

∥
∥ωt
∥
∥2

=
1
2

∥
∥ωt
∥
∥2

+Cyt
jω

t ·xt
j +

1
2

C2
∥
∥yt

jx
t
j

∥
∥2 − 1

2

∥
∥ωt
∥
∥2

= Cyt
jω

t ·xt
j +

1
2

C2
∥
∥yt

jx
t
j

∥
∥2

.

The set M t consists of indices of instances which were incorrectly classified. Thus, yt
j(ωt ·xt

j) ≤ 0

for every j ∈ M t . The equation above can thus be further bounded by 1
2C2

∥
∥
∥yt

jx
t
j

∥
∥
∥

2
.

Lemma 3 assures us that for all instances whose µ j > 0 the term 1
2

∥
∥
∥ωt +Cyt

jx
t
j

∥
∥
∥

2
− 1

2 ‖ωt‖2 can

be upper bounded. Therefore, ∆t can further be bounded from below as follows,

∆t ≥ ∑
j∈M t

µt
j

[

C− 1
2

C2
∥
∥yt

jx
t
j

∥
∥2
]

≥ ∑
j∈M t

µt
j

[

C− 1
2

C2R2
]

= C− 1
2

C2R2 ,

where for the second inequality we used the fact that the norm of all the instances is bounded by R.
To recap, we have shown that on trials for which the prediction is imperfect ∆t ≥C− 1

2C2R2, while
in perfect trials where no mistake is made ∆t = 0. Putting all the inequalities together we obtain the
following bound,

(

C− 1
2

C2R2
)

ε ≤
T

∑
t=1

∆t = D(λ1, . . . ,λT ) ≤ P (ω?,ξ?) ,

where ε is the number of imperfect trials. Finally, rewriting P (ω?,ξ?) as

1
2
‖ω?‖2 +C

T

∑
t=1

`(ω?;(Xt ,yt) ,

yields the bound stated in the theorem.

The ConProj algorithm updates the same set of dual variables as the SimPerc algorithm. How-
ever, it selects αt

j to be the optimal solution of Eq. (4). Thus, the value of ∆t attained by the ConProj
algorithm is never lower than the value attained by the SimPerc algorithm, assuming both versions
start with the same predictor ωt . The case of the SimOpt algorithm is very similar, as it promises
to optimally increase the value of ∆t and thus is never lower than the value attained by the SimPerc
algorithm. The following corollary is a direct consequence of these observations.
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Corollary 4 Under the same conditions of Thm. 2 and for any ω? ∈ R
n, the number of trials on

which the prediction of either ConProj or SimOpt is imperfect is at most,

1
2‖ω?‖2 +C ∑T

t=1 `(ω?;(Xt ,yt))

C− 1
2C2R2

.

Note that the predictions of the SimPerc algorithm do not depend on the specific value of C,
thus for R = 1 and an optimal choice of C the bound attained in Thm. 2 now becomes.

ε ≤ `
(
ω?;(Xt ,yt)

)
+

1
2
‖ω?‖2 +

1
2

√

‖ω?‖4 +‖ω?‖2
T

∑
t=1

`(ω?;(Xt ,yt)) .

See Appendix B for a complete analysis.
We conclude this section with a few closing words about the SimProj variant. The SimPerc and

ConProj algorithms ensure a minimal increase in the dual by focusing solely on classification errors
and ignoring margin errors. While this approach ensures a sufficient increase of the dual, in practice
it appears to be a double edged sword as the SimProj algorithm performs empirically better. This
superior empirical performance can be motivated by a viewing the similarity of the update forms
performed by the SimProj and SimOpt variants, which means that the actual increase in the dual
attained by the SimProj algorithm is larger than can be guaranteed using worst case analysis.

7. Decomposable Losses

Recall that our algorithms tackle complex decision problems by decomposing each instance into
multiple binary decision tasks, thus, on trial t the algorithm receives kt instances. The classifica-
tion scheme is evaluated by looking at the maximal violation of the margin constraints `(ŷt ,yt) =

max j

[

1− yt
jŷ

t
j

]

+
. While such approach often captures the inherent relation between the multiple

binary tasks, it may often be desired to introduce more complex evaluation measures. In this section
we introduce a generalization of the algorithm for various decomposable losses. As a corollary we
obtain a Simultaneous Projection algorithm that is competitive with the average performance error
on each set of kt instances.

First, we introduce the notion of the decomposable losses. On trial t the algorithms receives a
partition of the kt instances into rt sets. Let St

1, . . . ,S
t
rt

denote a partition of [kt ] into rt sets, namely,
∪lSt

l = [kt ] and ∀l 6= k : St
l ∩St

k = /0. A set Sl ties the instances in the sense that failing to predict any
instance in Sl amounts to the same error as failing to predict all of them. We thus suffer a unit loss
at trial t for each set Sl that was imperfectly predicted. The definition of the loss is extended to

ˆ̀
(
ŷt ,yt)=

1
rt

rt

∑
l=1

max
j∈St

l

[
1− yt

jŷ
t
j

]

+
. (17)

By construction, the setting suggested in Sec. 2 is a special case of the setting we consider in this
section. We show in the sequel though that our original analysis carries over this this more general
setting.

Thus, each iteration the algorithm receives kt instances and a partition of the labels into sets
St

1, . . . ,S
t
rt

. The instantaneous primal (Eq. 2) is thus extended to include a single slack variable for
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Input:
Aggressiveness parameter C > 0

Initialize:
ω1 = (0, . . . ,0)

For t = 1,2, . . . ,T :
Receive instance matrix X t ∈ R

kt×n

Predict ŷt = Xt ωt

Receive correct labels yt

Receive partition of labels St
1, . . . ,S

t
rt

Suffer loss ˆ̀(ωt ;(Xt ,yt))

If ˆ̀> 0:
Choose importance weights µt s.t. for each set St

l , ∑ j∈St
l
µt

j = 1
Choose individual dual solutions αt

j

Update ωt+1 = ωt +∑rt
l=1 ∑ j∈St

l
µt

j αt
j yt

j xt
j

Figure 5: The extended simultaneous projections algorithm for decomposable losses.

each set as follows:

min
ω∈Rn,ξ≥0

1
2

∥
∥ω−ωt

∥
∥2

+
C
rt

rt

∑
l=1

ξl

s.t. ∀l ∈ [rt ], ∀ j ∈ St
l : yt

j

(
ω ·xt

j

)
≥ 1−ξl ∀l ∈ [rt ] : ξl ≥ 0

. (18)

The dual of Eq. (18) is thus

max
αt

1,..,α
t
kt

kt

∑
j=1

αt
j −

1
2

∥
∥
∥ωt +

kt

∑
j=1

αt
j yt

j xt
j

∥
∥
∥

2

s.t. ∀l : ∑
j∈St

l

αt
j ≤

C
rt

∀ j : αt
j ≥ 0

.

Note that since ∀k 6= l : St
l ∩ St

k = /0 then the induced constraint ∑ j∈St
l
αt

j ≤ C
rt

corresponds to a
unique set of dual variables αt

j. We can thus apply the same technique and select a non-negative
vector µ where the entries corresponding to each set St

l form a probability distribution, namely
∀l : ∑ j∈St

l
µt

j = 1. To recap, we can employ any of the variants on each set separately and attain a
dual feasible solution. We denote these variants as the decomposition variants. In Fig. 5 we provide
the pseudo-code of the algorithm.

We next show that our mistake bound analysis can be extended to the decomposable loss. The
analysis follows closely to the analysis presented in Sec. 6, where the global primal and global
dual are modified so as to use the decomposition loss. We therefore focus only on highlighting the
necessary changes. Eq. (11) thus becomes

min
ω∈Rn,ξ∈RT

1
2
‖ω‖2 +C

T

∑
t=1

rt

∑
l=1

ξt,l

rt

s.t. ∀t ∈ [T ],∀l ∈ [rt ],∀ j ∈ St
l : yt

j

(
ω ·xt

j

)
≥ 1−ξt,l ∀t∀l : ξt,l ≥ 0

. (19)

1415



AMIT, SHALEV-SHWARTZ AND SINGER

and its dual is

max
λ

T

∑
t=1

kt

∑
j=1

λt, j −
1
2

∥
∥
∥

T

∑
t=0

kt

∑
j=1

λt, j yt
j xt

j

∥
∥
∥

2
s.t. ∀t∀l ∈ [rt ] : ∑

j∈St
l

λt, j ≤
C
rt

∀t, j : λt, j ≥ 0 .

Clearly, the instantaneous dual can still be seen as optimizing the global dual, while fixing the
dual variables λt ′, j for all t ′ 6= t.

To recap, we replace the loss of the instantaneous optimization problem defined in Eq. (1) with
the average over a decomposition of losses ˆ̀ as defined by Eq. (17). Next, in order to obtain a
mistake bound, we look at the global optimization task defined by Eq. (19). As previously showed,
the simultaneous projection scheme can be viewed as an incremental update to the dual of Eq.
(19). It is interesting to note that for every decomposition of the kt instances into sets, the value of
ˆ̀(ω;(Xt ,yt)) is upper bounded by `(ω;(Xt ,yt)), as ˆ̀ is the average over the margin violations while
` corresponds to the worst margin violation. Thus, the loss underpinning the global optimization
from Eq. (11) upper bounds the loss yielding Eq. (19). The following corollary immediately holds.

Corollary 5 Under the same conditions of Thm. 2, the loss suffered along the run of either decom-
position variant is at most,

1
2‖ω?‖2 +C ∑T

t=1
ˆ̀(ω?;(Xt ,yt))

C− 1
2C2R2

.

In conclusion, the simultaneous projection scheme allows us to easily obtain online algorithms
and update schemes for complex problems, such algorithms are obtained by decomposing a complex
problem into multiple binary problems. It is often the case where the maximal violation over all
binary problems correctly captures the inherent violation of the original complex problem. In this
section we explored cases where a more refined definition of error is required. Specifically, if
we define each binary instance in a separate set, we obtain an algorithmic framework where our
competitor is evaluated according to the average loss.

8. Simultaneous Multiplicative Updates

In this section we describe and analyze a multiplicative version of the simultaneous projection
scheme. Recall that our motivation was to introduce a solution to the instantaneous optimization
problem given in Eq. (2). The instantaneous objective captures the following trade-off. On one
hand we would like to set ω to be as close as possible to ωt . On the other hand, we would like to
minimize the loss incurred by the instances received on trial t. In previous sections we used the
squared Euclidean norm to define the measure of distance between ωt and ω. In this section we take
a different approach and use the relative entropy as the notion of closeness between two vectors.
By doing so we derive a multiplicative version of our online algorithmic framework. In this section
we confine ourselves to linear predictors that lie in the probability simplex, that is, we consider
non-negative vectors ω such that ∑n

i=1 ωi = 1. Previously, we used a fixed value of 1 for the margin
that is needed in order to suffer no loss, where it was understood that we may simultaneously scale
the prediction vector and the margin. Since we now prevent such scaling due to the choice of the
simplex domain, we need to slightly modify the definition of the loss and introduce the following

definition, `γ (ŷt ,yt) = max j

[

γ− yt
jŷ

t
j

]

+
.
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Recall that on trial t the algorithm receives kt instances arranged in a matrix Xt . After extending
a prediction vector, ωtXt , the algorithm receives the vector of correct labels yt and suffers a loss for
any incorrect prediction. If no mistake is made the algorithm proceeds to the next round. Otherwise
we would like to set ωt to be the solution of the following optimization problem

min
ω∈∆n

DKL (ω‖ωt)+C `γ(ω;(Xt ,yt)) , (20)

where C is a trade-off parameter. The term DKL is the relative entropy operator, also known as the
Kullback-Leibler divergence, and is defined as

DKL
(
ω‖ωt)=

n

∑
i=1

ωi log
ωi

ωt
i

.

The dual problem of Eq. (20) is,

γ
kt

∑
j=1

αt
j − log

(
n

∑
i=1

ωt
i exp

(
kt

∑
j=1

τ j
i

))

s.t.
kt

∑
j=1

αt
j ≤C ∀ j : αt

j ≥ 0 ∀ j : τ j = αt
jy

t
jx

t
j

. (21)

The prediction vector ω is set as follows,

ωi = ωt
i

exp
(

∑kt
j=1 τ j

i

)

∑n
l=1 ωt

l exp
(

∑kt
j=1 τ j

i

) . (22)

The complete derivation of the dual problem and the update of ω is given in Appendix A.
We follow the same technique suggested in Sec. 4 and decompose Eq. (21) into kt separate

problems, each concerning a single dual variable. The resulting j’th reduced dual problem is thus

γαt
j − log

(
n

∑
i=1

ωt
i exp

(

τ j
i

)
)

s.t. 0 ≤ αt
j ≤C τ j = αt

jy
t
jx

t
j

. (23)

We next obtain an exact or approximate solution for each reduced problem as if it were independent
of the rest. We follow by choosing a vector µ ∈ ∆kt , and multiply each αt

j by a corresponding
value µt

j. Our choice of µ assures us {µt
jαt

j} constitutes a feasible solution to the dual problem
defined in Eq. (21) for the following reason. Each µt

jαt
j ≥ 0 and the fact that αt

j ≤ C implies that

∑kt
j=1 µt

jαt
j ≤ C. Finally, the algorithm uses the combined solution and sets ωt+1 according to Eq.

(22). The template of the multiplicative simultaneous projections algorithm is described in Fig. 6.
We may now apply the methods introduced in Sec. 5 and introduce the multiplicative schemes.

The SimPerc scheme can be trivially applied to the multiplicative setting. We next show a closed-
form solution to αt

j for each reduced problem if the components of each instance are from {−1,0,1}n.
To so we need to introduce the following notation.

W+
j =

∑
i:yt

jx
t
ji=1

ωt
i

n

∑
l=1

ωt
l

, W−
j =

∑
i:yt

jx
t
ji=−1

ωt
i

n

∑
l=1

ωt
l

, and W 0
j = 1−W +

j −W−
j .
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Input:
Aggressiveness parameter C > 0

Initialize:
ω1 = ( 1

n , . . . , 1
n)

For t = 1,2, . . . ,T :
Receive instance matrix X t ∈ R

kt×n

Predict ŷt = Xt ωt

Receive correct labels yt

Suffer loss `(ωt ;(Xt ,yt))
If ` > 0:
Choose importance weights µt s.t. ∑kt

j=1 µt
j = 1

Choose individual dual solutions αt
j

Compute τ j = αt
jy

t
jx

t
j

Update ωt+1
i =

ωt
i exp

(

∑kt
j=1 µt

jτ
j
i

)

∑l ωt
l exp

(

∑kt
j=1 µt

jτ
j
l

)

Figure 6: The multiplicative simultaneous projections algorithm.

The optimal value of αt
j is thus log of the root of a quadric equation with W +

j , W−
j , W 0

j as coeffi-
cients. We also need to take into account the boundary constraints on αt

j, namely, 0 ≤ αt
j ≤C. Thus,

αt
j is the minimum between the following root and C,

log




γW 0

j +
√

γ2(W 0
j )2 +4(1− γ2)W+

j W−
j

2(1− γ)W +
j



 ,

The derivation can be found at Appendix C. Using the closed-form solution for αt
j we can adapt

both the ConProj and SimProj scheme to the multiplicative setting.
We next turn our attention to the analysis of the multiplicative algorithm and focus on the Sim-

Perc scheme. The analysis here follows closely the analysis presented in Sec. 6. Hence, the remain-
der of this section focuses on highlighting the key changes that are required. Formally, we prove the
following theorem.

Theorem 6 Let
(
X1,y1

)
, . . . ,

(
XT ,yT

)
be a sequence of examples where Xt is a matrix of kt exam-

ples and yt are the associated labels. Assume that for all t and j the `∞ norm of an instance xt
j is at

most R. Then, for any ω? ∈ ∆n the number of trials on which the prediction of SimPerc is imperfect
is at most,

∑n
i=1 ω?

i log ω?
i

1/n +C ∑T
t=1 `γ (ω?;(Xt ,yt))

C− 1
2C2R2

.

Proof Following the technique introduced in Sec. 6, our goal is to upper bound the number of
imperfect trials compared to the performance of any fixed competitor, even one defined in hindsight.
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Our competitor is thus evaluated using the global optimization problem given by,

min
ω∈∆n,ξ≥0

n

∑
i=1

ωi log
ωi

ωt
i
+C

T

∑
t=1

ξt

s.t. ∀t ∈ [T ],∀ j ∈ [kt ] : yt
j

(
ω ·xt

j

)
≥ γ−ξt ∀t : ξt ≥ 0

. (24)

The dual of Eq. (24) is

γ
T

∑
t=1

kt

∑
j=1

λt
j − log

(
n

∑
i=1

exp

(
T

∑
t=1

kt

∑
j=1

τt j
i

))

s.t. ∀t ∈ [T ] :
kt

∑
j=1

λt
j ≤C ∀t,∀ : λt

j ≥ 0 ∀t,∀ j : τt j = λt
jy

t
jx

t
j

. (25)

We denote the objective of Eq. (25) by D (λ1, . . . ,λT ). The instantaneous dual of Eq. (21) can
be seen as incrementally building an assignment for the dual: At trial t we fix λs for s < t to their
previous values, and fix λs for s > t to 0. Thus ωt is defined as follows

ωt
i =

exp
(

∑t
s=1 ∑ks

j=1 τs j
i

)

∑n
l=1 exp

(

∑T
s=1 ∑ks

j=1 τs j
l

) .

The key difference between the multiplicative schemes and the previously analyzed scheme lies in
Lemma 3. We thus progress to derive a similar lemma for the multiplicative setting.

Lemma 7 Let θ = ∑t−1
l=1 ∑kl

j=1 λt
jy

t
jx

t
j denote the dual variables assigned in trials prior to t by the

SimPerc scheme. Let j ∈ M t denote an index of a mispredicted instance on trial t. Then, the
difference,

log

(
n

∑
i=1

exp
(
θi +Cxt

jiy
t
j

)

)

− log

(
n

∑
i=1

exp(θi)

)

,

is upper bounded by 1
2C2 ‖x‖2

∞.

Proof Denote the vector Cxt
jy

t
j by τ. Let F(θ) denote the value of log

(

∑n
i=1 eθi

)
. Hence, we would

like to upper bound the difference F(θ + τ)−F(θ). We prove the lemma based on the following
inequality

F(θ+ τ)−F(θ) ≤
n

∑
i=1

eθi

∑l eθl
τi +

1
2

max
i

τ2
i .

The above inequality was used and proved in numerous previous analyses of multiplicative update
methods. See for instance Examples 2 and 5 in Kivinen and Warmuth (2001). Consider the term

∑n
i=1

eθi

∑l eθl
τi. Recall that the prediction in trial t is made by using the predictor defined by Eq. (22).

Thus, the above term is the following inner product between the vector τ and the predictor used on
round t,

n

∑
i=1

eθi

∑l eθl
τi =

n

∑
i=1

ωt
iτi = 〈ωt ,τ〉 = Cyt

j〈ωt ,xt
j〉 ≤ 0 ,
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where the last inequality is due to the fact that we assume j ∈ M t (the prediction was incorrect) and
the inner-product is non-positive. Therefore, we obtain the required upper bound

F(θ+ τ)−F(θ) ≤ 1
2

max
i

τ2
i

1
2
‖τ‖2

∞ =
1
2

C2
∥
∥xt

j

∥
∥2

∞ .

To recap, we showed that the instantaneous dual can be seen as incrementally constructing an
assignment for a global dual function (Eq. 25). Furthermore, we showed that Lemma 3 can be
adapted to the multiplicative settings. The rest of the proof follows the same lines of the proof given
in Sec. 6. Namely, trials in which a prediction mistake was made, the SimPerc scheme is guaranteed
a substantial increase in the incremental dual buildup. Finally, using weak-duality we obtain that
the evaluation measure for the competitor is the lower bounded by,

∑n
i=1 ω?

i log ω?
i

1/n +C ∑T
t=1 `γ (ω?;(Xt ,yt))

C− 1
2C2R2

.

The multiplicative ConProj scheme assigns αt
j the value which maximizes the reduced instan-

taneous dual. The ConProj scheme thus maximizes the difference between the value of the global
dual in two consecutive rounds. We thus obtain an equivalent corollary of Corollary 4 for the mul-
tiplicative setting.

Corollary 8 Under the same conditions of Thm. 6 and for any ω? ∈ R
n, the number of trials on

which the prediction of the ConProj scheme is imperfect is at most,

∑n
i=1 ω?

i log ω?
i

1/n +C ∑T
t=1 `γ (ω?;(Xt ,yt))

C− 1
2C2R2

.

We thus showed that the multiplicative SimPerc and ConProj schemes entertain a similar mis-
take bound as the original formulation. Note, however, that in the multiplicative settings we assume
that the `∞ norm of all instances are bounded by R, while in the additive settings, we have assumed
that the `2 norm of the instances is bounded by R.

9. Experiments

In this section we describe experiments we performed with synthetic and real data sets. The goal
of the experiments is to underscore the properties of the simultaneous projection algorithms and to
demonstrate some of their merits. Specifically, we examine how the various simultaneous projec-
tions variants perform with respect to the size of each block, how does the performance deteriorate
with label noise, and the dependency of the algorithms on the number of relevant features. Our ex-
periments with synthetic data are followed with email categorization experiments. On the synthetic
data we compare our simultaneous projections algorithms with a commonly used technique whose
updates are based on the most violating constraint on each online round (see for instance Crammer
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et al., 2006). In the multiclass email categorization experiment, we also use the Sopopo algorithm
described in Shalev-Shwartz and Singer (2006b) and a numerical solver which finds the optimal
solution of the optimization problem on hand. To recap, we experimented with the following three
families of online algorithms.

Simultaneous Projections Algorithms We evaluated all the variants given in Fig. 3, in both their
additive and multiplicative forms. We denote the different variants using the notation name.A
or name.M where name denotes the specific simultaneous projection scheme as given in Fig. 3
and the .A or .M suffix designate whether the update took an additive or multiplicative form.
For example the additive SimProj algorithm is denoted by SimProj.A

MaxPA The algorithm extends the binary Passive-Aggressive family of algorithms (Crammer et al.,
2006) to structured prediction problems. The algorithm uses a construction which is similar
to our instantaneous primal objective (Eq. 2), and analogously attempts to obtain a feasible
solution to its dual. The difference lies in the fact that the MaxPA algorithm focuses on a
single instance whose margin constraint is mostly violated and updates only its corresponding
dual variable, while fixing all other dual variables to zero. The single dual variable is then
optimally computed. This update form constitutes a feasible solution to the instantaneous
dual and casts a simple update for the online algorithm.

Optimal Solver The optimal solver algorithm employs a numerical solver on each iteration, and
solves optimally the instantaneous primal given by Eq. (2). Specifically, we used the Pegasos
algorithm from Shalev-Shwartz et al. (2007) to perform the optimization task. We chose this
algorithm since it provides a simple solver which proved superior to second order methods in
various classification tasks (Shalev-Shwartz et al., 2007).

Sopopo The Sopopo1 algorithm is a novel algorithm for label ranking and is thus used only in our
label ranking experiments with email data. The Sopopo algorithm computes the optimal so-
lution to an instantaneous optimization problem similar cast by Eq. (2) while using a slightly
different setting. We further elaborate on the different setting in Sec. 9.2.

9.1 Experiments with Synthetic Data

We tested the performance of the additive and the multiplicative variants of our algorithm in a se-
ries of experiments using synthetic data. Our goal in this section is to underscore the merits of
our simultaneous projections approach in comparison with the commonly used max update tech-
niques (MaxPA). Since it is often computationally prohibitive to run a full numerical solver on each
iteration, we omitted the optimal solver from this set comparisons.

Before we describe the results of our experiments with synthetic data, let us first discuss the
procedures used to generate the data. In order to compare both the additive and the multiplicative
versions of our framework, we confined ourselves to the more restrictive setting of the multiplicative
schemes as described in Sec. 8. Specifically, the data was generated by randomly constructing
instances xt ∈ {−1,0,1}n and classification was performed by selecting a probability vector ω ∈ ∆n.
We used a sparse classifier where the number of relevant features in ω varied from 10% to 50%
active features. The non-zero components of ω were chosen uniformly at random from [0,1]. We

1. The name Sopopo stands for SOft Projection Onto Polyhedra.
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Figure 7: The number of mistakes suffered by the various the additive and multiplicative simulta-
neous projections methods. The performance of the algorithms is compared as a function
of the block size.

then normalized the vector such that its L1 norm would be one. We generated linearly separable
data whose margin was calculated as follows. Each entry in x was set to 0 with probability p and
otherwise it was chosen from {−1,1} with equal probability. We then computed the value of γ for
which 75% of all instances sampled from the process above would fall inside a margin of γ. We
then repeatedly generated and rejected instances, until we managed to construct sufficient number
of examples. We refer to a set examples grouped together into a single classification task as a block.

We ran each online experiment for 1000 trials and recorded the number of mistakes performed
by the online algorithms. Each experiment was repeated 10 times. The results we present are the
averages of these runs. For each experiment, we performed a search for a good value of C. We
checked 9 values for C, ranging from 2−5 to 23. For the multiplicative variants, we also performed a
search for a good value of γ by examining values in the range 0.5 to 2 times the margin used during
the data generation process. We compared all simultaneous projection variants presented earlier, as
well as the multiplicative and additive versions of the MaxPA update.

The first experiment with synthetic data assesses the performance of the various update schemes
as a function of the block sizes. We used instances in {−1,0,1}500 where ω contained 50 relevant
features. The results are described in Fig. 7. We clearly see that while both schemes entertain the
same mistake bound, in practice the SimProj algorithms always perform better than the maximal
update. The difference in practical performance can be attributed to the fact that the simultaneous
projections mechanism uses more information regarding the structure of the problem at hand.

Note that for both the MaxPA.A scheme and the multiplicative schemes the performance de-
teriorates as the block size increases. A converse trend is exhibited in the case of SimProj.A and
SimOpt.A. One possible explanation for the improvement with block size increase may be observed
by considering the geometrical structure of the instances. Recall that we generate uniformly selected
linearly separable data. Thus, the update form the additive variants apply can be seen as performing
the update using the average instance. For large blocks the average instance is equivalent to the vec-
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Figure 8: The performance of the additive and multiplicative simultaneous projections algorithms
as a function of the sparsity of the hypothesis generating the data. Results are shown for
block size of 5 instances (left) and of 20 instances (right).

tor used to describe the separating hyperplane. Such averaging does not occur in the multiplicative
case, or the MaxPA.A scheme.

Our second experiment examines the effect of the sparsity of ω on the performance of the
algorithms. As before, we used instances in {−1,0,1}500. We varied the number of non-zero
elements of ω from 50 to 250. The results of this experiments are plotted in Fig. 8. We ran this
experiment with a block size of 5 instances per trial (Fig. 8 left) and a block size of 20 (Fig. 8 right).
We omit the plot of MaxPA.A as its performance is much worse than any of the other algorithms. It is
apparent that the additive versions are rather insensitive to the sparsity of the prediction matrix. The
converse is true for the multiplicative variants. For both block sizes, we see that the performance of
the multiplicative versions deteriorate as we increase the percentage of relevant features from 10%
to 30%. This decrease in performance is then replaced with a gradual increase in performance once
the number of relevant features is over 30%. This increase in performance may be attributed to the
fact that there are more relevant features which are set approximately uniformly. Thus, the optimal
solution is rather close to the initial vector and the multiplicative algorithm converges faster.

Our last experiment with synthetic data examines the effect of label noise on the performance of
the simultaneous projections algorithms. We employed the same settings as in the previous experi-
ment with instances of 500 dimensions and 50 non-zero entries in ω. After the data was generated,
we chose to contaminate with label noise each trial with a fixed probability. If the block was selected
for contamination, we flipped the label of each the instances in the block with probability 0.4. We
repeated the experiment with varying probabilities of picking a block for contamination. We tested
values from the set {0 (no label noise), 0.05,0.1,0.15, 0.2}. To avoid too aggressive online updates,
we increased the range of the search for C to be in [2−9,23]. The results of this experiment are
plotted in Fig. 9. We ran this experiment with a block size of 5 instances per trials (Fig. 9 left) and
block size of 20 (Fig. 9 right) instances per trial.

We can clearly see that the number of mistakes of all the SimProj variants scale linearly with the
noise rate. It is also apparent that the number of mistakes of the MaxPA.A algorithm scales super
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username k m Max-SP SimPerc ConProj SimProj SimOpt OptSolv
beck-s 101 1972 48.2 48.4 48.8 43.4 46.9 45.5

farmer-d 25 3398 25.8 28.8 28.4 25.0 24.2 27.5
kaminski-v 41 4478 48.0 47.2 47.6 46.0 44.4 44.0
kitchen-l 47 4016 42.5 45.1 43.8 41.4 42.4 40.3
lokay-m 11 2490 20.8 24.1 23.9 18.6 20.6 20.3
sanders-r 30 1189 18.6 20.9 22.2 17.7 19.3 18.2

williams-w3 18 2770 2.8 3.5 3.4 2.7 2.8 2.6

Table 1: The percentage of online mistakes of the four additive variants compared to MaxPA and
the optimal solver of each instantaneous problem. Experiments were performed on seven
users of the Enron data set.

linearly with the noise rate. The simultaneous projections variants (both additive and multiplicative)
exhibit the best performance. We see that for the smaller block sizes (Fig. 9 left) the best performing
version is the SimProj.M variant. Note, however, that the variants of SimOpt perform worse than
the variants of SimProj . This fact can possibly attributed to the more aggressive update taken by
the SimOpt variant when a mistake occurs. As the number of instances per trial increases, the
performance of all of simultaneous projections variants is comparable and they all perform better
than any of the MaxPA variants.

9.2 Email Classification Experiments

We next tested performance of the different additive and multiplicative simultaneous projection
methods described in Sec. 5 on multiclass email categorization tasks and compared them to previ-
ously studied algorithms for multiclass categorization. We compared our algorithms to the MaxPA
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algorithms and to the optimal solver. The experiments were performed with the Enron email data
set. The data set is available from http://www.cs.cmu.edu/∼enron/enron_mail_030204.tar.gz. The learn-
ing goal is to correctly classify email messages into user defined folders. Thus, the instances in
this data set are email messages, while the set of classes are the user defined folders denoted by
{1, . . . ,k}. We ran the experiments on the sequence of email messages from 7 different users.

Since each user employs different criteria for email classification, we treated each person as a
separate online learning problem. We represented each email message as a vector with a component
for every word in the corpus. In order to apply our algorithms, we next describe the class-dependent
map we use for the additive algorithms. On each trial, and for each class r, we constructed class-
dependent vectors as follows. We set φ j(xt ,r) to 2 if the j’th word appeared in the message and it
also appeared in a fifth of the messages previously assigned to folder r. Similarly, we set φ j(xt ,r)
to −1 if the j’th word appeared in the message but appeared in less than 2 percent of previous
messages. In all other cases, we set φ j(xt ,r) to 0. This class-dependent construction is very similar
to the construction used in Fink et al. (2006), which yielded high classification accuracy. Next, we
employed the mapping described in Sec. 3, and defined a set of k− 1 instances for each message
as follows. Let the relevant class of an instance be denoted by y. Then, for every irrelevant class
s 6= y, we define an instance xt

s = φ(xt ,y)−φ(xt ,s) and set its label to 1. All these instances were
combined into a single matrix Xt and were provided to the algorithm in trial t.

For the multiplicative algorithms we took a slightly different approach. Recall that the multi-
plicative variants assume that the components of each instance are in {−1,0,1}. Hence, in order to
adhere to this requirement, φ j(xt ,r) was set to 1 if the j’th word appeared in the message and it also
appeared in a fifth of the messages previously assigned to folder r and to 0 in all other cases. Note
that this feature generation is performed without knowing the correct label of the instance xt and is
thus limited to the information available to the online algorithm.

We repeated all tests for 11 values of the trade-off parameter C, testing values from 2−5 to 25.
For each algorithm we present the results for the best choice of C. We first compare the results of the
various additive approaches. The results of this experiments are described in Fig. 1. It is apparent
that the SimProj and SimOpt variants consistently perform better than the MaxPA variant, and their
performance is on par with the performance of the optimal solver. It is interesting to note that in 3
of the 7 users, the SimProj algorithm actually performs better than the optimal solver. The superior
performance of the SimProj algorithm may most likely attributed to to the fact that the optimal
solver is more aggressive in its update, and is thus more sensitive to noise. We can also see that
the SimOpt version, while guaranteeing a larger increase in the global dual, does not necessarily
assure better empirical performance. The performances of SimPerc and ConProj are comparable
with no obvious winner. Last, we would like to note that the computational cost of the simultaneous
projections algorithms is comparable to that of the MaxPA algorithm.

In Fig. 10 we plot the relative number of mistakes of each algorithm with respect to the number
of mistakes made by the optimal solver as a function of the number trials for 6 of the 7 users. (The
user williams-w3 was omitted as he classifies most his emails into a single folder.) In order to keep
the graphs intelligible, we use the optimal solver algorithm as the baseline and plot the difference
in performance of the other additive variants. The graphs clearly indicate the superiority of the
SimProj and SimOpt variants over the MaxPA algorithm, and show that SimProj often exhibits the
best accuracy.

We next compared the performance of the multiplicative and additive variants. The results
of this experiments are summarized in Table 2. Observe that the multiplicative versions usually
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Figure 10: The cumulative number of mistakes of the simultaneous projection algorithms compared
with the performance of the Max-PA algorithm and the optimal solver as a function of
the number of trials. We plot the difference in the number of mistakes between each
algorithm and the optimal solver.
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Additive Multiplicative
username k m Max-SP SimPerc ConProj SimProj Max-SP SimPerc ConProj SimProj

beck-s 101 1972 48.2 48.4 48.8 43.4 45.0 43.7 43.6 45.8
farmer-d 25 3398 25.8 28.8 28.4 25.0 33.1 35.1 34.8 33.0

kaminski-v 41 4478 48.0 47.2 47.6 46.0 50.0 49.8 49.8 49.8
kitchen-l 47 4016 42.5 45.1 43.8 41.4 46.8 47.3 47.2 46.5
lokay-m 11 2490 20.8 24.1 23.9 18.6 21.8 22.9 22.9 21.4
sanders-r 30 1189 18.6 20.9 22.2 17.7 17.8 17.9 17.9 19.3

williams-w3 18 2770 2.8 3.5 3.4 2.7 2.6 2.7 2.6 2.7

Table 2: The percentage of online mistakes of three additive variants and the MaxPA algorithm
compared to their multiplicative counterparts. Experiments were performed on seven users
of the Enron data set.

perform on par or slightly worse than the additive versions. This possibly surprising result may be
partially attributed to the slightly different feature selection process we used for the multiplicative
algorithms. The result also underscores the conjecture that we surfaced above when discussing the
synthetic experiments. Namely, the additive simultaneous projections algorithms seem to better
capture the structure of the data at hand. The multiplicative versions, however, seem to be less
sensitive to the trade-off parameter C taking a preference to the larger values in our test setting.

In our last experiment, we compared the results of our algorithms to the Sopopo algorithm from
Shalev-Shwartz and Singer (2006b). The results of this experiment are described in Table 3. Be-
fore we discuss the results of this comparison, it is important to note the difference in the model
the algorithms use. The algorithms we compare can be roughly divided into two classes of learn-
ing algorithms: single-prototype algorithms and multi-prototype algorithms. As the name imply,
the single prototype algorithms maintain a single hypothesis on each online trial. The prediction
is obtained by taking the inner-product of the hypothesis with some class dependent map of the
instance at hand. The class attaining the highest score is considered the predicted label. All the
simultaneous projections algorithms as well as the single prototype version of MaxPA fall into this
category. Multi-prototype algorithms take a different approach. On each trial, the online algorithm
maintains an hypothesis for each possible output class. In order to make a prediction, the algorithm
computes the inner product between each hypothesis and the instance at hand. The class attaining
the largest product is the predicted label. We can see that the various SimProj variants are compa-
rable to the Sopopo algorithm, while the former often performs better (4 of the 7 users we have). It
is worth nothing that the Sopopo algorithm exploits the specific settings present in multi-prototype
multiclass problems, and efficiently finds the optimum of a projection problem on each trial while
our algorithms only find an approximate solution. However, Sopopo is a multi prototype algorithm
and thus employs a larger hypothesis space which is more difficult to learn in an online setting. In
addition, by employing a single vector representation of the email message, Sopopo cannot benefit
from the on-the-fly feature selection which results in class-dependent features.

10. Discussion

We presented a new approach for online categorization with complex output structure. Our algo-
rithms decouples the complex optimization task into multiple sub-tasks, each of which is simple

1427



AMIT, SHALEV-SHWARTZ AND SINGER

Single Prototype Multi Prototype
username k m MaxPA SimPerc ConProj SimProj SimOpt MaxPA Sopopo

beck-s 101 1972 48.2 48.4 48.8 43.4 46.9 56.0 53.2
farmer-d 25 3398 25.8 28.8 28.4 25.0 24.2 24.0 23.0

kaminski-v 41 4478 48.0 47.2 47.6 46.0 44.4 45.9 43.4
kitchen-l 47 4016 42.5 45.1 43.8 41.4 42.4 42.2 40.9
lokay-m 11 2490 20.8 24.1 23.9 18.6 20.6 20.0 19.0
sanders-r 30 1189 18.6 20.9 22.2 17.7 19.3 27.9 26.9

williams-w3 18 2770 2.8 3.5 3.4 2.7 2.8 4.1 4.1

Table 3: The percentage of online mistakes of four additive simultaneous projection algorithms.
The simultaneous projection algorithms are compared with MaxPA (Single-prototype (SP)
and Multi-prototype (MP)) and the Sopopo algorithm. Experiments were performed on
seven users of the Enron data set.

enough to be solved analytically. While the dual representation of the online problem imposes a
global constraint on all the dual variables, namely ∑ j αt

j ≤C, our framework of simultaneous pro-
jections which are followed by averaging the solutions automatically adheres with this constraint
and hence constitute a feasible solution. It is worthwhile noting that our approach can also cope
with multiple constraints of the more general form ∑ j ν jα j ≤ C, where ν j ≥ 0 for all j. The box
constraint implied for each individual projection problem distils to 0 ≤ α j ≤ C/ν j and thus the
simultaneous projection algorithm can be used verbatim.

The main scope of this paper is prediction tasks for complex structured decision problems, such
as multiclass classification. We approach this problem by first describing the structured problem as
a complex optimization problem dealing with multiple binary problems simultaneously. We then
use our simultaneous projections scheme to propose a feasible solution to the optimization problem
which competes with any decomposition loss (see Sec. 7).

While such an approach is very natural for various structured problems, it is interesting to con-
sider settings in which multiple unrelated binary problems, should be served simultaneously. This
approach was the basis for our synthetic experiments, which showed us that the simultaneous projec-
tions methods perform much better than the MaxPA approach even though their theoretical bound is
similar. One possible explanation of this phenomenon may be attributed to the structure of the space
spanned by the examples. In order to illustrate this point, consider for example, the case where all
instances on trial t are of similar norm and are orthogonal to each other. The update performed by
the simultaneous projections approach is thus optimal. If, on the other hand, all instances received
on trial t are exactly the same, then the simultaneous projections approach cannot hope to attain
anything better than the MaxPA algorithm. These two extreme cases suggests that further analysis
may show that the geometrical structure of the data may shed more light on the progress attained by
the simultaneous projections approach.

It is also interesting to explore settings in which the simultaneous projections approach is not
immediately applicable. The simultaneous projections approach easily captures the structural re-
quirements expressed by the box constraint ∑kt

j=1 αt
j ≤C. While there are many practical problems

where such constraints suffice to capture the structure of the problem, more complex constraints are
quite prevalent. A notable examples for such a complex setting is the framework of the max-margin
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Markov (MMM) networks (Taskar et al., 2003). While the original learning setting of MMM net-
works was cast for the batch setting, an equivalent online formulation can be easily obtained. In
the MMM framework, the dual problems has dual variables whose number is exponential in the
original size of the problem. These variables are tied via a simple box constraint. The dual is then
transformed into an equivalent form with a much smaller number of variables which are strongly
tied with multiple constraints involving all these new variables. While the simultaneous projections
approach is well suited for the original formulation, the exponential size of the problem renders
such approach unsuitable. On the other hand, the simultaneous projections approach cannot easily
construct a feasible dual solution where multiple equality constraints are required. It is thus interest-
ing to explore alternative approaches in which the direct dual whose size is infeasible is reduced to
many reduced smaller problems, and only a polynomial subset of which are considered and solved.

Appendix A. Derivation of the Dual Problems

In this section we derive the dual problems of the primal problems presented in the main sections.
We start with the derivation of the dual of the optimization problem given in Eq. (2). Using Lagrange
multipliers, we rewrite Eq. (2) as follows

min
ω∈Rn,ξ

max
αt≥0,β≥0

1
2

∥
∥ω−ωt

∥
∥2

+Cξ+
kt

∑
j=1

αt
j

(
1−ξ− yt

j

(
ω ·xt

j

))
−βξt .

We rearrange the terms in the above equation and rewrite it as follows,

min
ω∈Rn,ξ

max
αt≥0,β≥0

kt

∑
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αt
j +

1
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∥
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. (26)

The dual of Eq. (26) is attained by changing the order of the min and max and is given by

max
αt≥0,β≥0

min
ω∈Rn

kt

∑
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αt
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1
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∥
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∥2 −

kt

∑
j=1

αt
jy

t
j

(
ω ·xt

j

)
+min

ξ
ξ

(

C−
kt

∑
j=1

αt
j −β

)

. (27)

The equation above can be written equivalently as

max
αt≥0

min
ω∈Rn

kt

∑
j=1

αt
j +

1
2

∥
∥ω−ωt

∥
∥2 −

kt
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αt
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t
j

(
ω ·xt

j

)

︸ ︷︷ ︸

L(α,ω)

s.t.
kt

∑
j=1

αt
j ≤C . (28)

In order to see that Eq. (28) and Eq. (27) are equivalent, note that the expression

min
ξ

ξ

(

C−
kt

∑
j=1

−β

)

,

takes the value of −∞ when ∑kt
j=1 αt

j +β 6= C. Such an assignment for αt and β cannot constitute the
optimal solution for the maximization problem. The constraint β≥ 0 thus translates to the constraint
∑kt

j=1 αt
j ≤C. Fixing αt , the derivative of L with respect to ω is given by

∂L
∂ω

= ω−ωt −
kt

∑
j=1

αt
jy

t
jx

t
j .
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Comparing the derivative to 0, yields the following equation, ω = ωt + ∑kt
j=1 αt

jy
t
jx

t
j. Plugging this

equality of ω Eq. (28) yields the following simplified constrained optimization problem,

max
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Rearranging the terms and adding constants which do not depend of αt , we obtain the following
dual problem,

max
αt
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.

We now turn our attention to the derivation of the dual of the optimization problem given by Eq.
(20). Eq. (20) can be rewritten as follows

min
ω∈∆n,ξ≥0

n

∑
i=1

ωi log
ωi

ωt
i
+Cξ

s.t. ∀ j ∈ [kt ] : yt
j

(
ω ·xt

j

)
≥ γ−ξ ξl ≥ 0

. (29)

We again use Lagrange theory and rewrite the optimization task above as,

min
ω∈∆n,ξ≥0

max
αt

j≥0

n

∑
i=1

ωi log
ωi

ωt
i
+Cξ+

kt

∑
j=1

αt
j

(
γ−ξ− yt

j

(
ω ·xt

j

))
.

Rearranging the terms in the above expression we obtain

min
ω∈∆n,ξ≥0

max
αt

j≥0

n

∑
i=1

ωi log
ωi

ωt
i
+ξ

(

C−
kt

∑
j=1

αt
j

)

+
kt

∑
j=1

αt
j

(
γ− yt

j

(
ω ·xt

j

))
. (30)

The dual of Eq. (30) is thus obtained by reversing the order of the min and max and is thus given by

max
αt

j≥0
min

ω∈∆n,ξ≥0

n

∑
i=1

ωi log
ωi

ωt
i
+ξ

(

C−
kt

∑
j=1

αt
j

)

+
kt

∑
j=1

αt
j

(
γ− yt

j

(
ω ·xt

j

))
. (31)

The equation above can be rewritten equivalently as follows

max
αt

j,βt
min
ω∈Rn

n

∑
i=1

ωi log
ωi

ωt
i
+

kt

∑
j=1

αt
j

(
γ− yt

j

(
ω ·xt

j

))
+βt(

n

∑
i=1

ωi −1)

s.t.
kt

∑
j=1

αt
j ≤C ∀ j : αt

j ≥ 0

. (32)
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In order to see Eq. (32) and Eq. (31) are equivalent, note that the expression minξ ξ
(

C−∑kt
j=1 αt

j

)

takes the value of −∞ when ∑kt
j=1 αt

j >C. Since our goal is to maximize the dual, such solution can-
not constitute the optimal assignment for αt . Similarly, when ∑n

i=1 ωi 6= 1, the maximization takes
the value ∞, thus such a solution cannot constitute the optimal assignment of minimization problem.
Finally, we may ignore the constraint ωi ≥ 0 as the optimal solution to the above problem always
yields a solution that satisfies this constraint.

In order to further analyze the Eq. (32), let us first denote the vector ∑kt
j=1 αt

jy
t
jx

t
j by τ. Taking

the derivative of Eq. (32) with respect to ω and comparing the result to 0 yields the following,

ωi = ωt
ie

τi−1+β .

Recall that β is the Lagrange multiplier associated with the constraint ∑n
i=1 ωi = 1, thus e−1+β serves

as a normalization constant, and the optimal assignment for ωi takes the following form.

ωi =
ωt

ie
τi

∑n
l=1 ωt

le
τl

.

Plugging the value for ω into Eq. (32) yields the following dual problem for Eq. (29)

max
αt

j

γ
kt

∑
j=1

αt
j − log

(
n

∑
i=1

ωt
ie

τi

)

s.t.
kt

∑
j=1

αt
j ≤C ∀ j : αt

j ≥ 0 τ =
kt

∑
j=1

αt
jy

t
jx

t
j .

Appendix B. Derivation of the SimPerc Mistake Bound

Thm. 2 assures us that the number of mistakes performed by the SimPerc algorithm is bound by

1
2‖ω?‖2 +C ∑T

t=1 `(ω?;(Xt ,yt))

C− 1
2C2R2

. (33)

Observe that the prediction made by the SimPerc algorithm does not depend on the value of C. We
may thus choose C as to tighten the above bound. Assume R = 1 and denote ∑T

t=1 `(ω?;(Xt ,yt))
by L and ‖ω?‖2 by B. It is easy to verify that if L = 0, the optimal assignment for C is attained by
setting C = 1. The bound in this case distills to B. Otherwise, assume L > 0. Then, Eq. (33) can be
written as

ϕ(C) =
1
2 B+CL

C− 1
2C2

. (34)

The above expression is convex with respect to the parameter C. Hence, in order to find the optimal
value of C, it suffices to take the derivative of Eq. (34) with respect to C and compare the result to
0, which yields,

L(C− 1
2C2)− ( 1

2 B+CL)(1−C)
(
C− 1

2C2
)2 = 0 ,

which implies that,

LC2 +BC−B = 0 . (35)
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The largest root of Eq. (35) is given by

C =
−B+

√
B2 +4BL

2L
=

−B+
√

B2 +4BL
2L

· −B−
√

B2 +4BL

−B−
√

B2 +4BL

=
B2 −B2 −4BL

2L
(

−B−
√

B2 +4BL
)

=
2

(

1+
√

1+4 L
B

)

,

It is easy to verify that for L > 0 this value of C lies in (0,2) and thus constitutes the optimal solution
of Eq. (34). Plugging Eq. (35) into Eq. (33) yields the following

1
2 B+CL

C− 1
2C2

=
B
C +L

1− 1
2C

=

1
2 B
(

1+
√

1+4 L
B

)

+2L

2

(

1− 1
2

2(

1+
√

1+4 L
B

)

)

=

(

1+
√

1+4 L
B

)(
1
2 B
(

1+
√

1+4 L
B

)

+2L
)

2
(√

1+4 L
B

)

=
1
2 B+2L

1
2

(√

1+4 L
B

) +
1
4

B+
1
4

B

(

1+

√

1+4
L
B

)

+L

=
1
2

B+L+
1
2

√

B2 +4LB

.

Using the definition of L and B to expand the above expression completes our proof.

Appendix C. An Analytic Solution for the Multiplicative Framework

Recall that throughout Sec. 8 section we assumed that the entries of each instance xt
j lie in {−1,0,1}.

On trial t we would like to find the optimal solution to the reduced problem given by Eq. (23). To
do so we recall the notation used in Sec. 8,

W +
j =

∑
i:yt

jx
t
ji=1

ωt
i

n

∑
l=1

ωt
l

, W−
j =

∑
i:yt

jx
t
ji=−1

ωt
i

n

∑
l=1

ωt
l

, and W 0
j = 1−W +

j −W−
j .

The optimization problem defined by Eq. (23) can thus be rewritten as

γαt
j − log

(

W+
j eαt

j +W−
j e−αt

j +W 0
j

)

s.t. 0 ≤ αt
j ≤C

.
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Taking the derivative of the above equation with respect to αt
j and comparing the result to zero

yields the following,

γ− W+eαt
j −W−e−αt

j

W +eαt
j +W−e−αt

j +W 0
= 0 . (36)

Rearranging terms, Eq. (36) reduces to

γ
(

W +eαt
j +W−e−αt

j +W 0
)

= W +eαt
j −W−e−αt

j ⇒ (1− γ)W +eαt
j − (1+ γ)W−e−αt

j − γW 0 = 0 .

For brevity, we denote eαt
j by β. The equation above is equivalent to the following equation in β,

(1− γ)W +β− (1+ γ)W−β−1 − γW 0 = 0 .

Multiplying both sides of the above equation by β, we obtain the following quadratic equation

(1− γ)W +β2 − γW 0β− (1+ γ)W− ,

whose largest root (the second root is negative) is

β =
γW 0 +

√

γ2(W 0)2 +4(1− γ2)W +W−

2(1− γ)W +
.

Since αt
j must reside in [0,C] we set αt

j to be the minimum between log(β) and C, yielding,

αt
j = min

{

C, log

(

γW 0 +
√

γ2(W 0)2 +4(1− γ2)W+W−

2(1− γ)W +

)}

.
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